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New factorization relations for Yang-Mills amplitudes
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A double-cover extension of the scattering equation formalism of Cachazo, He, and Yuan leads us to
conjecture covariant factorization formulas of n-particle scattering amplitudes in Yang-Mills theories.
Evidence is given that these factorization relations are related to Berends-Giele recursions through repeated
use of partial fraction identities involving linearized propagators.

DOI: 10.1103/PhysRevD.99.025014

I. INTRODUCTION

The CHY formalism of scattering equations of Cachazo,
He, and Yuan provide an intriguing novel way of comput-
ing gauge and gravity S-matrix elements [1-3]. The n-point
scattering amplitudes are expressed here in terms of
integrals over auxiliary variables z, on the Riemann sphere
that become localized on the set of solutions to the
scattering equations,

S, = sib =0. (1)
b1 .ba <@ — %b

Here s, = 2k, - k,, are generalized Mandelstam variables,
and the index a labels the (ordered) external particles of
momenta k,. One remarkable feature of the CHY formal-
ism, and one which shows its fundamental nature, is that
it is dimension-agnostic. The defining integral over the
variables z, is invariant under an SL(2, C) transformation

Az, +B

., AD-BC=1, 2
W2 1D (2)

which needs to be fixed. Fixing three of the variables in
the standard manner, only (n — 3) variables z, are left.
This precisely matches the (n — 3) independent scattering
equations after imposing overall momentum conservation.
The number of independent solutions (n —3)! is never-
theless huge, and finding all these solutions is computa-
tionally difficult even for moderate values of n. Summing
over these independent solutions can fortunately be done
more directly, through general integration rules developed
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in Refs. [4,5]. A proof of the CHY formalism has been
provided by Dolan and Goddard in Ref. [6].

Recently, one of us [7] (see also Ref. [8]) showed how the
CHY formalism can be given a new formulation in which
the basic variables z, live not on CP! but on the complex
projective plane CP2. Dubbed the “A-formalism” in [7], here
we refer to it as CHY on a double cover. At first sight it may
seem to be a complication to extend the CHY formalism
in this manner. However, as we demonstrate in this paper,
the double-cover formalism adds a new ingredient to the
standard CHY formalism that is much more difficult to
extract in the single-cover formulation. Briefly stated, the
double-cover formalism naturally expresses the scattering
amplitude so that it is factorized into different channels. The
propagator that forms the bridge between two factorized
pieces arises as the link between two separate CP! pieces,
thus intuitively explaining why the double cover naturally
expresses amplitudes in a factorized manner.

In many cases, the factorizations obtained in this way
correspond directly to all the physical channels. Interestingly,
there are instances where, unavoidably, the factorizations
proceed in a slightly different manner: Some physical
channels appear immediately, but others only resurface after
pole-canceling terms have rearranged the expressions.

We start with a brief review of the CHY formalism and
then give the corresponding expressions in the double-
cover formulation of Ref. [7]. Next, we describe how the
evaluation of amplitudes on a double cover produces
factorizations into different channels. Finally, we write
down an explicit factorization expression valid for n gluons
in any dimension and relate it to known techniques such as
on-shell and Berends-Giele recursions.

II. THE CHY CONSTRUCTION AND
A DOUBLE-COVER

Consider the scattering of n massless particles. The
scattering data will then be presented in terms of a set

Published by the American Physical Society
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of n momentum vectors {k},k5,....ki} and n “wave
functions” that encode the spin degrees of freedom. For
Yang-Mills amplitudes the latter will correspond to the
polarization vectors {€/, €5, ..., €, }. Graviton scattering will
similarly be characterized by a set of polarization tensors or,
put more simply, as outer products of polarization vectors.

Let us introduce the compact notation of |ijk|. indicating
the Vandermonde determinant of variables z;, z;, zx:

1 Z; Zl‘z
lijk]|, EH(ZJ._Z[) =1 z; 2| (3)
i<j 1 Z Z%

It is possible to show that for any rational function H(z)
which transforms as

n

H(z) - H(z) [ [(Cz, + D)*, (4)
a=1
when
Az, + B
e AB-CD =1
[ Coi i D and C , (5)

the contour integral [2]

/ H iz —NiKl:parl
a=1,a#{i,j.k} c=l.c#{p.q.r} Se(2)

H(z)  (6)

is independent of the choice of fixed punctures, {z,-, Zj, Zk},
and of equations eliminated, {S,,S,,S,}.

The precise form of the integrand H(z) defines different
(color-ordered) theories. The simplest case is ¢° theory.
Let us define a “Parke-Taylor’-factor

o 1
") = (21 = 22)(220 = 23) ** (2a _Zl). )

PT(1,2, ...

Color-ordered ¢ amplitudes correspond to integrands with
such factors squared:

H(z) = [PT(1,2,....,n)]%. (8)

As shown in Refs. [9,10] (see also [11]), the basic building
blocks of other theories are products of one Parke-Taylor
factor with a shuffled Parke-Taylor factor (a indicating a
permutation):

H(z) = PT(1,2,...,n) x PT(a(1),a(2),...,a(n)).  (9)
Such a product of Parke-Taylor factors in the integrand thus
forms a basic skeleton for all other theories.

For Yang-Mills theory we have

H™ = PT(1,2,....n) x P'¥,,, (10)
where
pr, = CU priw, (11)
n Zi—z; niiyl

The 2n x 2n matrix, ¥, is defined as

A —CT
¥, = c B /) (12)
with
Chocky e a#b,
Aab = { T ) Bab = {Za o (13)
0 0 a=>b,
and
ae, -k a ;& b
_ Za—2p ’
Cab = { _ Z" ae, k. a=b (14)
c=lic#a z,—z, o

Notice the unusual normalization in the A and C matrices. If
we puta = 1, we recover the CHY prescription as originally
defined. If instead we choose a = v/2, the normalization
matches with the color-ordered Feynman rules given by
Dixon in [12]. In what follows, a can take any value (it only
changes the overall normalization of the color-ordered
amplitudes, a convention), but we keep it arbitrary at this
point to facilitate a comparison with Feynman diagrams
based on color-ordered Feynman rules later in this paper.
The matrix (‘Pn)g denotes the reduced matrix obtained by
removing the rows and columns i, j from Y¥,, where
1 <i < j < n. For how to use the integration rules [5,13]
in the context of Yang-Mills theory, see [9-11].

A. The double cover

A double-cover version of the CHY construction was
recently developed by one of us in [7]. In this approach the
amplitudes are given as contour integrals on n-punctured
double-covered Riemann spheres. Restricted to the curves
0=C,=y2-02+A*fora=1,...,n, the pairs (¢, y,),
(62,¥2)s -+, (64, y,) provide the new set of doubled var-
iables. A translation table has been worked out in detail in
Ref. [7]. Specifically, one defines

1 (ya +yb+6a_o-b> (15)
Ya

and

A(pgr) = (T(p.g)T(q.0 T(rp) (16)

025014-2
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and simultaneously imposes scattering equations in the
form (momentum conservation » | k, = 0 is implicitly used
throughout)

n

Sq = Zsabf(a,b) =0, (17)

b=1
b#a

where a = 1, ..., n. Amplitudes are then derived from the
following expression:

AQ:/dﬂﬁ,\x
r

where the measure dul is defined as

Z,(0,y)

: 18

s = 1 y dA ﬁ Yadyado, — Agpgr) ’
VOI(GL(z, C)) A Ca Hd#:p,q,r,mSZ

(19)

with the I' contour being defined by the equations
A=0
§5=0

This rewriting of the amplitude in terms of this contour T,
which does not encircle the scattering equation S7,, follows
from the global residue theorem. Note that the integrand
now includes a scale A. In order to fix this larger GL(2, C)
symmetry, we gauge-fix four ¢,,’s. Then the measure must
be multiplied by the Faddeev-Popov determinant

ford # {p,q,r,m}, C,=0,...,C,=0.

(20)

Apgrim) = 0pAigrm) = OmA (pgr) T 0rAmpg) = OgA(rmp)
(21)
Therefore, du becomes
l dA Vady, doy
du = H (parim)Bpar)»
“ d#p.q.r.m d
(22)

which has been explained in detail in [7,14].

As in the original CHY approach, the precise form of the
integrand Z (o, y) defines the theory. For example, color-
ordered ¢ theory corresponds to the integrand

Z,=1[PT"(1,2, ...n)]z, (23)
where

PTT(1,2, n) ET(1’2)1(2V3) "'T(n,l)- (24)

Note the 7’s are neither antisymmetric nor symmetric; the
precise definition as given above is correct. Similarly, other
theories correspond to products of such modified Parke-
Taylor factors with additional expressions, much like in the

original CHY formalism. Again, the integrands for these
other theories can be broken down to products of shuffled
Parke-Taylor expressions.

III. THE YANG-MILLS THEORY IN
THE DOUBLE-COVER
PRESCRIPTION

Since () # —T(pa), it is not immediately obvious
how to define the double-cover analog of the reduced
Pfaffian for pure Yang-Mills theory. In order to obtain the
double-cover version of the ¥,, matrix, we write [we define

(¥6), =Ya +04]

1
T(ab) = (ya) X Ty = (ya) X s (25)

Ya Ya (yd)a - (yo-)b

on the support, C, = C, = 0, where clearly T, = =T,
Since T, is antisymmetric, We establish the single- and
double-cover identification, —— - < T ,»» so the double-cover

matrix W2 is defined as ‘PA _ nl L_r,,- Notice that it is

straightforward to rewrite the ¢ 1ntegrand in terms of 7',
namely,

¥ (alp) = PT (ay, ...a,) X ﬁ bo)s x PTT (B, ...5w),

with

PTT(ﬁl,ﬂz, ﬁn) = Tﬂnﬁl‘ (26)

Following the CHY program developed in [3], the double-
cover representation of the ordered Yang-Mills amplitude
is obtained by the replacement PTT(B,ps,...5,) —

(—1)"+J'T,~ij[(‘I‘Q)Z], ie

Tﬂ]ﬁz Tﬂ2ﬂ3 e

IM(a) = PT* (e, ...a,) x Pf'P2, (27)

with

- (ya)a i+ ij
PfYA = Hy— X (=1)™HT,PE[(WM)I]. (28)
a=1 a

where the (‘I’{})Z matrix is given by removing the rows and
columns i, j from W2, with 1 <i < j < n. Therefore, the
pure Yang-Mills amplitude at tree level in the double-cover
language is given by the expression

-1A rA rlm
An(a)=/rd/49< ) A4 A (parim)

o x ITM(a),  (29)

where the upper index “YM” in A,(a) is no longer
necessary.
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IV. A SIMPLE EXAMPLE

As a simple example, let us consider the four-point
amplitude A4(1,2,3,4), with the gauge fixing (pgr|m) =
(123]4) and the reduced matrix (¥4)13.

First, we focus on the configuration where the sets of
punctures (6y,0,) and (o3,04) are on the upper and the
lower sheet of the curves, respectively,

( = /ot - A2, a) (v = +y/e3 - A2, %),
()’3 = —\/ﬂ, 0'3), <y4 = —\/ﬂ, 64).

(30)

Expanding all elements in A4(1,2,3,4) around A = 0, we
obtain (to leading order)

PT*(1,2,3,4)|}2 N 1 1
T UBA T 92 (61000p,,0p,,1) (0p,303404p,)

El

A(123)A(12314)[12 23 o 1
S% 14 TAY (0120'2P340P341) P§4
X (5P12303454P|2)2’ (31)

4 - 2 —
TT 8% s 7y pra) 2 = -2 5 EU

2
a1 Ya 2 M OPsyl
r 0 ek €k —C22_
Opyy2 o012
€5y ko 0 eﬁ-s] €5 €
< Pf OP3y2 , 0Pyl OP3y2
€k €163 €16
a 0
o12 O1p3y o12
€€ €€
C 2 %34 2 € 0
L 2 02Pyy 021 4
[ €y ke €5 ky T
0 —a Opr4 034 _C44
12
€1y kg 0 6%'6‘3 6%'64
« (—1) « Pf Opir4 } Opis3 Opir4
0p,3 a63~k4 €3:€ 0 €3 €4
034 03p, 034
C €€y €4-€3 0
L 44 04py, 043 J
N~ (=1 Pty (=)
_ 34 P53
=-23) PE[(W5)pi] x —=PI[(¥3)p5].  (32)

2 3
2 7 0Pyl Opy3

where we have introduced the notation P;; =k; +k;
and the new fixed punctures op,, = op, =0. The Cy
and Cyy factors are given by the usual expressions [15]

-k P k P
C22 = —0—— £2:4 _ aez 4 C44 - £af3 064712, and the
021 O2P3 043 Oapy,

equality in (32) is obtained under the completeness

relationship
S .
M
Therefore, the labels sets {1,2} and {3,4} have been
separated.
1 dA

From the measure duy = 3%,
integral, and the amplitude becomes

_ A3(P5;. 1,2
A4(1,2,3,4)|} _22

(33)

we compute the A

) X A3(P<y,3,4)
P ’

(34)

where on the right-hand side the factorized object is
given by amplitudes with one leg off shell, as indicated.
The overall factor 1/2 cancels out after summing over
mirrored configurations, i.e.,

A4(1,2,3, 4)| + A4(1,2,3, 4)
_ZA?)( 34’1’2)XA3(P12’3 4) (35)
= 2
M 12
In a similar way, the factorization expansion
Ay(1,2,3, 4)|‘21:; becomes
A4(1,2,3, 4)| + A4(1,2,3, 4)
As( 41’2 3) XA3(P2374 1)
=2 7, (36)
M

Notice that after starting with the double-cover reduced
matrix, (\PA)” (P13, the resulting subamplitudes in

(35) and (36) have as reduced matrices the ones obtained
by removing the rows or columns,

{i, j} = {off-shell puncture} U ({all punctures} N {1,3}),
(37)

as can be seen in (32).
Finally, besides the two physical factorization expansions
around A = 0 achieved previously, from the double- cover

approach arises a spurious channel givenby A4 (1,2, 3,4) (373 2

up to its mirrored configuration. At leading order, this
configuration is expanded as

A_4 1 1

PT*(1,2,3,4)33 =
' 2 (G%PMG%PM) (G%PBGA%PU)

’

25

A(123)A(123]4)[13 )
- = F (61363P240P241)

53

2.4

1
X <—) (UP13262464P|3)2v (38)

2
P13

025014-4
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(yo),
115

TP RS

a=1 a
2 p2
@ P13 (6‘1 : 63)(62 ' 64) . (61P2463P24)(62P130-4P13)
2 2 -
2 0130'24 013024
€k €1 ks T
0 —a 0pyy3 o3 _C33
24 3
( 1) a6154'k3 0 L €5, e
- OPy3 N OPy3
X2 E —=xPf .
2 6P241 €1 k3 €1 €y 0 €63
013 O1Pyy 013
L
€36 €3-€
C33 o3p, 031 0
24 .
- L
€3 ke € ky
0 —og s —o% ~Cu
13
efyka 0 €€ €fy-€s
« (_1) < Pf Opi34 ) OPi32 O34
GPBZ € - ky €2 €5 0 €€y
024 02P 3 024
L
€4°€p3 €4°€) 0
L C44 04py3 042
_ (01p,,03p,,)(02p,,04p,,) 5% (- I)Pf[(q,3)P24 ]
- : : Pyl
013024 " Op,,1 #
(=1) P2
13
X Pf[(‘P3)P]32]’ (39)
Op;;2
with 6p . = 6p,, =0, and ), means a sum over longi-

tudinal degree of freedoms, namely,

Pt pY

ZLﬂLv: i
P; - P;

(40)

Considering the above expansions we are able to integrate the
measure du}) = 21 ”ﬁ{\, so it is straightforward to see that

Ag(1,2,3,4)]37 + Ay(1,2,3,4)[33

A3(P34, 1,2 XA%(P12’3 4)
=-2x ZL

(41)
P

243

Therefore, the double-cover approach gives us the four-point
factorization relation

As(P5),2,3) x A3(PSy, 4, 1)

Ay(1.2,3.4)=>"

W P34
A3(P§y.1.2) x A3(P5;.3.4)
+ Z P2
M 12
A3 P34,1 2) XA;(P12,3 4)
—2x ZL P2 ’
12 23
(42)

where the subamplitudes are given in the single-cover
approach with reduced matrices satisfying Eq. (37).

V. A NEW RELATION FOR YANG-MILLS
AMPLITUDES

We now generalize the new factorization realization
obtained from double-cover formalism in the previous
section. As will be shown in great detail elsewhere [14],
by integrating the double-cover representation of an
ordered Yang-Mills amplitude, one is led to the following
general formula which factorizes arbitrary n-point Yang-
Mills amplitudes into a product of (single-cover) CHY
representations of lower-point amplitudes:

.n, 1)

An(], ”.,n) _ ZA3(PZM1,2,3) XA”_](PSA:/I:;,“',

€n

meira (P i+ 1, 1, 2)A (P 0,3,
DI 2

i+1:2

€L
1<Pi+l:2’3’

n—i+3 3:i’i+17'~1,2)Ai_
DM 2

To be clear, this factorized form of Yang-Mills amplitudes
is a conjecture. What the double-cover formalism produces
directly are the first two terms plus contributions that come
from linking amplitudes together with scalar degrees of
freedom. Miraculously, it appears that these scalar con-
tributions can be exactly represented by gluing two Yang-
Mills amplitudes together with longitudinal polarizations
only. The technical details of how these manipulations arise
will be presented elsewhere [14]. Needless to say, in the

(43)

i+1:2

factorized form on the right-hand side, the two amplitudes
each have one external leg off shell (although still dressed
with the corresponding unphysical polarization vector).
Gluing these two amplitudes together proceeds through the
polarization sums as described in Eqgs. (33) and (40). It
should also be stressed that the above expression comes
from the double-cover formalism with Mobius and scale-
invariance gauge choices (pgr|m) = (123]4) and reduced
matrix (W)13.

025014-5
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This is important to remark since the above factorization
is a gauge-fixing-dependent expression. Of course, the final
result, the left-hand side, is the correct full n-point ampli-
tude, but the precise factorized form on the right-hand side
depends on that generalized gauge fixing. The three punc-
tures which must be fixed in the smaller off-shell Yang-Mills
amplitudes are given by the set {fixedpunctures} =
({all punctures} N {1,2,3,4}) U {off-shell puncture},
and their reduced matrices are obtained by removing
the rows or columns under the rule given in (37). We
denote sums of cyclically consecutive external momenta

|

(modulo the total number of external momenta) by
Pi.; =k +kiyy + -+ kj_y + k;. For expressions with
only two momenta involved (not necessarily consecutive),
we use the shorthand notation P;; = k; + k;.
We have denoted the polarization degrees of freedom
by €, and the longitudinal ones by ¢;. Using the simple

M T
identity Y _ye; el = D€ el + S ete e,
.

P
Tp, v _ v _ T j
ZTEI‘ €j =n P;-

transverse (T) and longltudmal (L) polarization vectors,

where

, we can rewrite (43) in terms of

A3(P2,3) A0 (PS4 1) Em A3 (P i+ 1, L2)A (P 5.3, 00)
A,(1,.n)=) & L + 2 > il
! 26; P i:§4,:€,. Piiin
- An—i+3(P§L:i’i+1 1 2)Al_1(Pfi1:2,3,...,i) - An—i+3(P§L:i’i+1 1 2)Ai_1(Pfi,:2,3,...,i)
-2 Z 2 + Z 2
o P L P’
i=4.ep i+1:2 263 i=her i+1:2

+ZA%(P4 1:2.3)A, 1 (PYis4, ..,

n,1)
P35 '

€L

(44)

Notice that the poles related to the longitudinal polarization contributions are not physical, and indeed these
unphysical poles are canceled by corresponding numerator factors. This is the way local four-point Yang-Mills

interactions appear in this formalism.

A. Feynman diagrams and Bern-Carrasco-Johansson (BCJ) numerators

We first consider how the double-cover representation relates to BCJ numerator identities [16]. From the formula (44),

we arrive at

A3(P(5.3,4) x A3 (P, 1,2 A3 (PSL.4,1) x A3 (P,2,3
A4(1234):Z 3(P13,3,4) X As(P3y )+Z 3(Py5.4.1) X A5(Py.2.3)

€r P%Z €r P‘2“
_ Z{A3 P15,3,4) x A3(P53,1,2) A3(P15,3,4) x A3 (P}, 1.2)  A3(Pst.4,1) x A3(P4f,2,3) '
Py, 263 2P}, 2P},
(45)
it is simple to chec.k that in the norm.ahzatlon conven.tlon n,— Z As(PS4.1) x Ay (PT.2,3)
a=+2 (corresponding to [12]), the first and second lines
just th tionall lized F di

zzlre _]311S e2 cor:ven ionally normalized Feynman diagrams Ay(P5.3,4) x Ay (PS5, 1,2)
>—< and I and the remainder represents the quartic +ZP p2
1 4 1 z; R 12 23
vertex, nam.ely 1><4: Finally, to ol')taln the BCJ numerators, Ag\ ) ( Pél 5.3,4) x Agl) ( PZ& 1,2) )
we reorganize (45) in the following way: + P . (

n, n
P
12 41

Ay(1,2,3,4) = with
n, _ZA3 P$1,3,4) x A5 (P, 1,2)

Aj P12,3 4)XA3(P§’;‘,1,2)
3| 23

€ 3 €
+A:(3)(P2§’4’1)XA_£7)(P4li’2’3):|’ (46)

2
P41

Using the above equation, it is simple to check that we
have n; —n, = n,, where n, can be obtained from n;
under the permutation (1,2,3,4) — (1, 3,2,4). Extending
such ideas to a higher number of points should be a
possible avenue and would be very interesting.

B. BCFW recursion

It is interesting to compare the factorizations above with
what one would obtain based on Britto-Cachazo-Feng-

025014-6
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Witten (BCFW) recursion [17]. To illustrate this, consider
the five-point amplitude As(1,2,3,4,5) and introduce the
momentum deformation

K(z) = ks +z2q",  Kij(z) =k;—z¢",  z€C,

(48)

where ¢* satisfies k, - g=k3 - g=¢q - q=0 and
q - g = 1. Additionally, the polarization vectors {e, €3}
must be deformed in order to keep the transversality,

ks o
© -, and €7 (z) = ¢; another
ky

option is €;(z) =¢ and €5(z) =g+ 2%
have momentum conservation for deformed momenta
ki + ky(z) + k3(z) + k4 + ks = 0 and the on-shell condi-
tion k3(z) = k3(z) = 0 and transversality remain valid, the
CHY approach is well defined. Thus, from (43) and using
Cauchy, one has

so we consider €5 (z) = g —z

Since we

As(1,2,3,4,5)

wA3(P.3.4)(z) x Ay (P5Y,5.1,2
:—Resp§4(z):0 [Z el 5:2 igf%)4(z)4( 34 )(Z)]
[ZMA3(P§A:45’ 1,2)(2)A4(PS4,3,4,5)( Z)]
5(=0 7P3.5(2)
[A5(1,2,3,4,5)(z)].

<

—Res,_

Obviously, the pole P3; does not depend on z, so this
physical factorization channel only contributes at infinity.
The most interesting observation is that the spurious poles
P2,,.5(2)|53 cancel out because the longitudinal contri-
butions 337y A, 3(P i+ 1, 1L2) X A (P,
3,4,...,i)|,..3 are proportional to them. Therefore, the
boundary contributions at z = oo are related to the unphys-
ical poles that appear in the double cover, Eq. (43). This
gives these poles a special significance in the context
of BCFW recursion and potentially a new recursive path
for dealing with such contributions.

C. Berends-Giele recursion and the double cover

Another natural question that arises concerns the
similarity of the factorized forms from the double-cover
method and Berends-Giele recursion [18]. In order to shed
light on this, we focus on the bi-adjoint ¢> theory in the
double-cover formalism. Because of the trivial numerator
factors of this case, it is far simpler to analyze.

The connection is well illustrated by considering the
five-point amplitude. The factorizations from the double-
cover method lead to

¢3 ¢3
A?(1,2,3,4,5) _A (P12,3,4,5) A (1,Px,4,5)

B 1 < 1 " 1)
P%:S P%:Z_P%Z Pzzls
+ 1 <1 + 1 )
P \P3  Pis— P
1 <1 1)
+ (=t ), (49)
Pi:l P%l P4215

where we have chosen the gauge fixing (pgr|m) =
(123]4). On the other hand, Berends-Giele recursion gives
(see, e.g., Ref. [19])

1<1+1>+ 1 +l<1+1> (50)
PLa\Py  P%)  PLPY, Py \PhL,  Ph)

On the support, k; + ky + k3 + k4 + ks = 0, and under
the on-shell condition ki2 =0, it is trivial to check that
the expressions obtained in (49) and (50) are identical.
However, the appearance of the unphysical poles in the
double-cover framework, (P%., — P3,)"! = (P}, — P%.5)~!
and (P3.5 — P3,)”", makes it clear that the two representa-
tions are not directly equal. Interestingly, these unphysical

poles are related to the physical channel ﬁ by use of the
3:57 34

partial fraction identity

1 1 1
pu— + .
P%:SP%AL P%:S(P%4 - P%:S) P%4(P%:5 _P§4)

(51)

As it happens with the linear propagators at loop level
[8,20-22], the CHY formalism is naturally built of linear
propagators that can relate to the usual Feynman propa-
gators by means of partial fractioning.

VI. CONCLUSIONS

We have presented a new set of factorization identities
for Yang-Mills theory that naturally arise from a double-
cover version of the CHY formalism. These factorizations
glue amplitudes together in what can be interpreted as the
covariant Feynman gauge, with the additional four-point
contact interactions coming from an explicit sum over
longitudinal polarizations. The factorizations are at the
conjectured level, but there are many hints that they
may also be derivable from Berends-Giele recursions.
Although spurious poles appear, simple checks show that
they cancel through repeated use of partial fraction
identities. It would be an interesting extension of this
work to derive these relations directly from off-shell
recursion relations.
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Factorizations of amplitudes grow out of the double-
cover formalism precisely because it is “double”: There are,
figuratively speaking, two CHY integrals involved. The
bridge between these two CHY integrals is an off-shell leg,
a propagator. In the double-cover formalism this off-shell
leg stems from one scattering equation that is not imposed
as a delta-function constraint.

These factorizations of Yang-Mills amplitudes are
just a small part of more general relations that follow
when the double-cover formalism of CHY is analyzed for
the known set of theories that can be represented in this

form. Details will be provided by one of us in a subsequent
paper [14].
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