
u n i ve r s i t y  o f  co pe n h ag e n  

Whole-Brain Exploratory Analysis of Functional Task Response Following
Erythropoietin Treatment in Mood Disorders
A Supervised Machine Learning Approach

Nielsen, Søren Føns Vind; Madsen, Kristoffer H; Vinberg, Maj; Kessing, Lars Vedel; Siebner,
Hartwig Roman; Miskowiak, Kamilla Woznica

Published in:
Frontiers in Neuroscience

DOI:
10.3389/fnins.2019.01246

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Nielsen, S. F. V., Madsen, K. H., Vinberg, M., Kessing, L. V., Siebner, H. R., & Miskowiak, K. W. (2019). Whole-
Brain Exploratory Analysis of Functional Task Response Following Erythropoietin Treatment in Mood Disorders:
A Supervised Machine Learning Approach. Frontiers in Neuroscience, 13, [1246].
https://doi.org/10.3389/fnins.2019.01246

Download date: 27. maj. 2020

https://doi.org/10.3389/fnins.2019.01246
https://curis.ku.dk/portal/da/persons/maj-vinberg(c42cfaf1-2554-44d1-bb45-c0fccac79e8c).html
https://curis.ku.dk/portal/da/persons/lars-vedel-kessing(93a97a97-e9d8-464b-8eed-1244a0a9ee56).html
https://curis.ku.dk/portal/da/persons/hartwig-roman-siebner(d9ed8669-a16b-429a-86ed-353ef481bb72).html
https://curis.ku.dk/portal/da/persons/kamilla-woznica-miskowiak(dda4b898-6856-41f8-8add-6c5b26319e3f).html
https://curis.ku.dk/portal/da/publications/wholebrain-exploratory-analysis-of-functional-task-response-following-erythropoietin-treatment-in-mood-disorders(c1813bd9-79fb-47ee-95e5-ba3cb99b5cbf).html
https://curis.ku.dk/portal/da/publications/wholebrain-exploratory-analysis-of-functional-task-response-following-erythropoietin-treatment-in-mood-disorders(c1813bd9-79fb-47ee-95e5-ba3cb99b5cbf).html
https://curis.ku.dk/portal/da/publications/wholebrain-exploratory-analysis-of-functional-task-response-following-erythropoietin-treatment-in-mood-disorders(c1813bd9-79fb-47ee-95e5-ba3cb99b5cbf).html
https://doi.org/10.3389/fnins.2019.01246


fnins-13-01246 November 19, 2019 Time: 14:39 # 1

ORIGINAL RESEARCH
published: 20 November 2019

doi: 10.3389/fnins.2019.01246

Edited by:
Hector J. Caruncho,

University of Victoria, Canada

Reviewed by:
Wan-Ling Tseng,

Yale University, United States
Pauline Favre,

Institut National de la Santé et de la
Recherche Médicale (INSERM),

France

*Correspondence:
Søren F. V. Nielsen

sfvnielsen@gmail.com

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Neuroscience

Received: 20 March 2019
Accepted: 05 November 2019
Published: 20 November 2019

Citation:
Nielsen SFV, Madsen KH,

Vinberg M, Kessing LV, Siebner HR
and Miskowiak KW (2019)

Whole-Brain Exploratory Analysis
of Functional Task Response

Following Erythropoietin Treatment
in Mood Disorders: A Supervised

Machine Learning Approach.
Front. Neurosci. 13:1246.

doi: 10.3389/fnins.2019.01246

Whole-Brain Exploratory Analysis of
Functional Task Response Following
Erythropoietin Treatment in Mood
Disorders: A Supervised Machine
Learning Approach
Søren F. V. Nielsen1,2* , Kristoffer H. Madsen3,4, Maj Vinberg1, Lars V. Kessing1,
Hartwig R. Siebner3,5 and Kamilla W. Miskowiak1,2

1 Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark, 2 Department of Psychology, University of Copenhagen, Copenhagen, Denmark,
3 Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research,
Copenhagen University Hospital Hvidovre, Hvidovre, Denmark, 4 Section for Cognitive Systems, Department of Applied
Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark, 5 Department
of Neurology, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark

A core symptom of mood disorders is cognitive impairment in attention, memory
and executive functions. Erythropoietin (EPO) is a candidate treatment for cognitive
impairment in unipolar and bipolar disorders (UD and BD) and modulates cognition-
related neural activity across a fronto-temporo-parietal network. This report investigates
predicting the pharmacological treatment from functional magnetic resonance imaging
(fMRI) data using a supervised machine learning approach. A total of 84 patients
with UD or BD were included in a randomized double-blind parallel-group study in
which they received eight weekly infusions of either EPO (40 000 IU) or saline. Task
fMRI data were collected before EPO/saline infusions started (baseline) and 6 weeks
after last infusion (follow-up). During the scanning sessions, participants were given
an n-back working memory and a picture encoding task. Linear classification models
with different regularization techniques were used to predict treatment status from both
cross-sectional data (at follow-up) and longitudinal data (difference between baseline
and follow-up). For the n-back and picture encoding tasks, data were available and
analyzed for 52 (EPO; n = 28, Saline; n = 24) and 59 patients (EPO; n = 31, Saline;
n = 28), respectively. We found limited evidence that the classifiers used could predict
treatment status at a reliable level of performance (≤60% accuracy) when tested using
repeated cross-validation. There was no difference in using cross-sectional versus
longitudinal data. Whole-brain multivariate decoding applied to pharmaco-fMRI in small
to moderate samples seems to be suboptimal for exploring data driven neuronal
treatment mechanisms.

Keywords: erythropoietin, functional magnetic resonance imaging, machine learning, mood disorders, cognitive
dysfunction
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INTRODUCTION

Cognitive impairment in attention, memory and executive
functions is a core symptom of unipolar disorder (UD)
and bipolar disorder (BD) that often persists after clinical
remission from mood symptoms (Bortolato et al., 2015;
Kaser et al., 2017). However, there are no available effective
treatments for these cognitive symptoms with well-understood
neuronal mechanisms. Drug development for neuropsychiatric
disorders is expensive and time-consuming, and biomarker
models of the early drug effect are important (Borsook
et al., 2013; Nathan et al., 2014). Functional magnetic
resonance imaging (fMRI) of participants undergoing
pharmacotherapy provide insight into treatment-related
changes in cognition-relevant neural circuits and may thus aid
the development of reliable biomarkers of treatment efficacy
(Nathan et al., 2014). Application of fMRI in randomized
controlled trials (RCTs) targeting cognition is therefore
a key recommendation by the International Society for
Bipolar Disorders (ISBD) Targeting Cognition Task Force
(Miskowiak et al., 2017).

The growth factor erythropoietin (EPO) has been shown
to be a promising pharmacological treatment of cognitive
impairments across neuropsychiatric disorders including mood
disorders (Ehrenreich et al., 2007a,b; Miskowiak et al., 2014a,b).
In particular, EPO and its receptor are expressed in the brain
and play and important role in neurodevelopment as well as
in neuroprotection and neuroplasticity in preclinical models of
acute neural damage and chronic neurodegenerative conditions
(Sirén et al., 2009). The neuronal correlates of the beneficial
effects of EPO on cognition in humans was investigated using
fMRI in two parallel identical RCTs in UD and BD, respectively
(Miskowiak et al., 2016a,b). Specifically, participants in the trials
were given a working memory (WM) and picture encoding task
during fMRI before and after EPO vs. saline treatment. Analysis
of the changes in neuronal activity within task-positive neural
networks indicated increased dorsal prefrontal and parietal
activity across both tasks in participants given EPO vs. saline,
which correlated with improved task performance. However,
due to the hypothesis-driven approach, these reports rendered
no insight into any unforeseen changes in the patterns of
neural activity in response to EPO vs. saline. Furthermore,
the extracted between-group differences in brain activity found
in these studies do not necessarily provide any understanding
of the models predictive capabilities in a held-out sample
(Bzdok et al., 2018).

Machine learning methods have attracted great recent
research interest because of their ability to identify variables
in a given dataset that are relevant or irrelevant to an outcome
of interest, while conventional statistical analyses rely on
investigator specified variables of relevance to a particular
analysis (Bzdok and Meyer-Lindenberg, 2018). A recent
systematic review identified eight structural or fMRI studies
investigating baseline neuroimaging features that informed
algorithms predicting treatment efficacy in depression (Lee
et al., 2018). Two studies found that predictors of treatment
response to electroconvulsive therapy were baseline subgenual

and cingulate volume (Redlich et al., 2016) and resting state
connectivity in the dorsomedial PFC and ACC (van Waarde
et al., 2014), respectively. Other studies found that treatment
response to antidepressant drugs was predicted by baseline
middle frontal and angular gyrus volume (Korgaonkar et al.,
2015), white and gray matter volume (Liu et al., 2012), lower
WM integrity in the salience network and lower FC in the
dorsal default mode network (Patel et al., 2015) or neural
activity during a WM task (Marquand et al., 2008). Finally, one
study investigated baseline predictors of response to cognitive
behavioural therapy (CBT) which revealed neural activity to
emotional stimuli as significant predictors (Costafreda et al.,
2009). However, no study to date has used machine learning
algorithms to investigate the neural correlates of treatment effects
using longitudinal data sets.

Expanding the mass-univariate analyses already carried
out in Miskowiak et al. (2016a,b), we adopted a supervised
machine learning approach to explore the predictive value of
the fMRI data from the spatial n-back and picture encoding
paradigms. We pooled data from our two parallel identical
trials in treatment-resistant depression and BD for the present
analysis because of the similar abnormalities in neural activity
during WM and spatial memory encoding across unipolar and
BDs (Miskowiak and Petersen, 2019) and similar effects of
EPO on cognitive function and neural activity across these
groups (Miskowiak et al., 2016a,b; Ott et al., 2016). We
applied a whole-brain multivariate supervised machine learning
approach inspired by Barron and colleagues (Barron et al.,
2018) to investigate whether the administration of EPO can
be predicted (reverse inference) by the fMRI blood oxygen
level dependent (BOLD) response during these tasks after
treatment completion (primary aim). Furthermore, we compare
the predictive ability of the model when applied to the cross-
sectional post-treatment data or when using the longitudinal
change data (follow-up minus baseline). Intra-subject variability
stemming from between-session sources of variance has an
influence on the reliability of the fMRI task response (Lund
et al., 2005; Gonzalez-Castillo et al., 2017). By comparing
the cross-sectional data to the longitudinal data, we seeked
insight into the role of intra-subject fMRI task response
variability in drug trials.

We hypothesized that the whole-brain multivariate supervised
machine learning analysis would be able to predict which patients
had received EPO based on the post-treatment neural task
responses. As an exploratory analysis, we also investigate whether
treating the data as longitudinal vs. cross-sectionally yields a
difference in classification performance.

MATERIALS AND METHODS

Study Design and Participants
This report is based on the double-blind randomized placebo-
controlled trial described in Miskowiak et al. (2014a,b)
(clinicaltrials.gov, NCT00916552). Participants included in the
report were between 18 and 65 years of age and had a diagnosis
of either treatment resistant unipolar depression with moderate
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depression severity (Hamilton Depression Rating Scale 17-item
scale (HAMD-17) ≥ 17) or BD in partial or full remission
(HAMD-17 and Young Mania Rating Scale (YMRS) ≤ 14)
with moderate to severe cognitive complaints. Trial participants
received eight weekly intravenous infusions of EPO or saline
(NaCl 0.9%) and underwent whole-brain fMRI at baseline (pre-
infusions) and at week 14 (follow-up), 6 weeks after treatment
completion when blood parameters had normalized in the EPO
group. For more details on the study design, inclusion and
exclusion criteria see Miskowiak et al. (2014a,b).

Spatial n-Back Working Memory Task
The task was divided into blocks of three conditions with
increasing WM load (0-back, 1-back, and 2-back). Within each
condition, a yellow circle was shown for 300 ms in one of 25
locations distributed in a grid (5 × 5). The circle was followed
by an empty grid for 1200 ms, and this was repeated 14 times
per block. In 1-back and 2-back conditions, participants were
instructed to press a button whenever the circle appeared at the
same location as one trial or two trials back, respectively. During
the 0-back condition, participants pressed a button whenever the
circle appeared in one of the four grid corners. Each block had
an average of three target trials and were presented successively
five times for each condition, resulting in a total of 15 stimulus
blocks. After each block an 8 s fixation cross was shown, and the
total task length was 7 min 35 s.

Explicit Picture Encoding Task
In the second paradigm administered during scanning, pictures
were presented in blocks of 24 s interleaved with blocks of
24 s fixation crosses. Within each picture-block, six pictures
were presented for three seconds each with a 1 s fixation cross
in between. Participants were asked to look carefully at the
pictures and memorize them as they would be asked to recall
the pictures after then scan. After scanning, participants were
given a free recall test. A matched parallel version of the task was
administered at the follow-up scan to mitigate learning effects.
The total task duration was 4 min and 50 s.

fMRI Setup
The detailed fMRI protocol is described in Miskowiak et al.
(2016a,b) and the following is a short summary. Whole-brain
MRI was performed with a 3-T Siemens Trio MR scanner using
an eight-channel head array coil at the Danish Research Centre
for Magnetic Resonance. BOLD-sensitive fMRI involved a T2∗-
weighted echo-planar imaging (EPI) sequence with an echo time
(TE) of 30 ms, repetition time (TR) of 2.49 s and a flip angle of
20◦ to minimize physiological noise. For the spatial WM task,
a total of 184 brain volumes were acquired in a single fMRI
session, each consisting of 42 slices acquired in interleaved order
with a slice thickness of 3 mm and a field of view (FOV) of
192× 192 mm using a 64× 64 acquisition matrix. For the explicit
picture encoding task, a total of 117 brain volumes were collected.
High-resolution 3D structural T1-weighted images were obtained
after the first session of BOLD fMRI (TI = 800, TE = 3.04,
TR = 1550 ms, flip angle 9◦; 256× 256 FOV; 192 slices).

Preprocessing and Data Analysis
Preprocessing in FMRIB’s Software Library (FSL) package
version 5.0.2.21 included, B0 unwarping, motion correction
using MCFLIRT, spatial smoothing with a FWHM 5 mm
Gaussian kernel, high-pass filtering with cutoff at 1/100s and
linear registration to standard space (MNI152). We ran a first-
level analysis in FSL’s FEAT, where the standard and extended
motion parameters from MCFLIRT were entered as nuisance
regressors. Data from three participants were excluded due
to signal loss which was apparent from the estimated mask.
Contrast of parameter estimates (COPE) are obtained from
FSL. No thresholding was applied to any of the COPE maps
in the subsequent analyses. For the picture encoding task,
the picture-related contrast (i.e., average signal during picture
presentation) was used to examine encoding-related neural
activity. For the spatial WM task, the 2-back minus 0-back
contrast was used to explore the neural activity specifically
involved in WM performance.

For studying longitudinal changes, we obtained contrast maps
of change in neural response taking the COPE difference between
baseline and follow-up scans for each participant separately. Both
the cross-sectional and longitudinal changes COPES maps were
normalized by dividing by the participant mean image. The
normalized maps formed the input to the subsequent whole-
brain machine learning method along with the label “EPO” or
“Saline” according to the treatment received. The group mask
(intersection) of the included subjects was constructed for each
task separately, yielding 199602 and 199820 voxels for picture
encoding and n-back task, respectively.

Shen Parcellation
To investigate the differences between using whole-brain cope
maps and a parcellation, we use the Shen parcellation (Shen et al.,
2013) inspired by the approach used by Barron et al. (2018).
The features for the subsequent machine learning analysis were
extracted by averaging the COPE maps in each parcel. For the
cross-sectional analysis, we chose to map the Shen parcellation
from standard space to each subjects native space, using the
transformation estimated in the FSL pipeline. In the case of the
longitudinal analysis, all COPE maps were already in MNI space
and thus we just naturally used the parcellation in MNI. In both
types of analyses, we remove parcels without any signal in them,
i.e., parcels that are outside the mask estimated by FSL. This
resulted in 231 parcels for both tasks.

Whole-Brain Multivariate Decoding
Using Logistic Regression
For decoding what treatment (EPO or Saline) the participant has
received based on the neural response maps, x ∈ Rv, we use
logistic regression. We model the probability of the treatment to
participant n being EPO given xn, p(yn = 1 |xn), by

p(yn = 1| xn) = φ
(

wTxn + w0

)
=

1
1+ e−wT xn+w0

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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in which w is the weight vector estimated during training and
w0 is the intercept. Participants given the placebo treatment have
yn = 0. Since we have very few observations (N) compared to the
number of voxels in the difference maps (v), we use a regularizer,
θ(w, w0), to prevent overfitting such that the cost-function of
model becomes,

E (w, w0) = −

N∑
n=1

[
yn ln φ

(
wTxn + w0

)
+ (1− yn) ln

(
1− φ

(
wTxn + w0

))]
+ θ(w, w0)

This cost-function is minimized on a subset of the data,
denoted the training set, and afterward the trained models
ability to discriminate is evaluated on a held-out subset,
denoted the test set.

We investigate two different regularization approaches. First,
we use a regularized logistic regression model where θ(w, w0)
is a combination of total variation (TV) and a sparsity prior
(L1) (Baldassarre et al., 2012; Dohmatob et al., 2014). The TV-
penalty promotes spatial smoothness of the solution, whereas
the L1-penalty promotes parsimonious solutions. This model is
implemented in the decoding module in the Python package
Nilearn (Abraham et al., 2014) under the name SpaceNet. The
second approach we test is a logistic regression with L2-penalty
following a dimensionality reduction using principal component
analysis (PCA), denoted pcalogreg in the results section. We
choose to retain 95% of the explained variance in PCA analysis.
In both regularization methods, we tune the regularization
strength using 5-fold cross-validation in a nested fashion to avoid
circularity bias.

For comparison, we also used the Shen parcellation as a way
to generate our features for the machine learning analysis. We
use a standard logistic regression with L2-penalty (denoted shen-
logreg) and a linear support vector machine using the standard
parameters from scikit-learn (denoted shen-svm).

Evaluation Metrics
For both regularization approaches we use repeated (10 times)
5-fold stratified cross-validation, as suggested as a better practice
compared to the leave-one-subject-out procedure in Varoquaux
et al. (2017). This estimates the generalization accuracy and the
area under the receiver operation characteristic (AUC-ROC) of
the methods. The ROC is a curve that describes performance of
a binary classifier that gives a score to each datum. The score
is thresholded to yield a decision of which class to put the
particular datum in. In the case of logistic regression described
above the scores are the evaluation of φ

(
wTxn + w0

)
and the

natural threshold is 0.5, i.e., the datum xn is classified as class
1 if the probability of class 1 exceeds 0.5. The ROC relates the
true positive rate (TPR) to the false positive rate as a function
of the threshold applied to the scoring function of the classifier.
Integrating the ROC over all the thresholds yields the area-under-
the-ROC, i.e., AUC-ROC. Compared to accuracy, it measures
how data points are ranked according to the scoring function
and not the actual value of the scores. The interpretation of the
AUC-ROC is the probability that a randomly datum from class

1 is ranked higher than a randomly selected datum from class
0. Other metrics to assess classifier performance exist such as
sensitivity, specificity and F1-score. We opted to use classification
accuracy as it is easily interpretable, and the AUC-ROC due to the
invariance toward class imbalance.

Validation of the Machine Learning
Models
To validate that our machine learning models work, we first
evaluated their ability to discriminate the neural response from
different task-contrasts within the WM task. We extracted the
2-back vs. 0-back and the 2-back vs. 1-back contrast maps
from all participants from the follow-up scanning session and
trained the machine learning models distinguish between the two
contrast maps across participants. We evaluated the classification
using repeated stratified cross-validation (Varoquaux et al.,
2017). The performance of the two classifiers for each test-set
(Nreps × Nfolds = 10 × 5 = 50) is plotted in Figure 1. As a
reference model, we compared to the simplest possible model,
namely the one that always predicts the largest class in the
training set. This is equivalent to random guessing if the class
proportions are balanced. This reference model was also used in
the experiments on real data.

All classifiers performed significantly better than the reference
model over the test folds. The sparse model (SpaceNet) had
a slight advantage over the standard PCA model; however,
we did not test this statistically as this was not in the scope
of this analysis.

FIGURE 1 | Performance plot of the different classifiers on the
working-memory task-response classification (2v0 vs. 2v1 contrast). Two
different evaluation measures are used, namely classification accuracy and
area-under the receiver operating characteristic (AUC-ROC). The classifiers
were evaluated using repeated (10 times) 5-fold cross-validation and each dot
in the plot corresponds to the performance measured on one test set. The
solid black line indicates the reference classifier of always predicting the
largest class in the training set. One-sided t-test was used to test if the
distribution of the performance over all folds was equal to or worse than the
reference classifier (∗p < 0.05, ∗∗p < 0.01).
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RESULTS

Participant Flow and Characteristics
The demographic and clinical characteristics of participants
included in the analyses of the two fMRI paradigms are displayed
in Tables 1, 2, respectively. The tables were created using the

TABLE 1 | Demographics and clinical characteristics for patients included in
analysis of n-back task.

Variable Level Saline
(Group = 1)

EPO
(Group = 2)

P-value

n 24 28

Diagnosis, n (%) UD 9 (37.5) 13 (46.4) 0.713

BD 15 (62.5) 15 (53.6)

Gender, n (%) Male 10 (41.7) 8 (28.6) 0.486

Female 14 (58.3) 20 (71.4)

Age, mean (sd) 40.5 (12.0) 38.5 (9.7) 0.518

Education, mean (sd) 14.9 (2.5) 15.2 (4.2) 0.749

BDI Baseline, mean (sd) 20.7 (10.2) 27.5 (11.5) 0.030

BDI Followup, mean (sd) 18.6 (12.7) 20.3 (12.1) 0.626

HAMD Baseline, mean
(sd)

11.6 (6.8) 14.8 (6.7) 0.099

HAMD Followup, mean
(sd)

9.7 (7.3) 11.3 (6.3) 0.414

YMRS Baseline, mean
(sd)

2.1 (1.9) 2.1 (1.6) 0.917

YMRS Followup, mean
(sd)

2.1 (2.7) 1.7 (2.2) 0.651

No. Prior depressions,
mean (sd)

5.5 (3.7) 6.3 (4.6) 0.537

No. Previous
(hypo)mania, mean (sd)

3.7 (2.3) 5.1 (6.6) 0.470

Bipolar subtype, n (%) 1 7 (29.2) 5 (17.9) 0.612

2 8 (33.3) 10 (35.7)

NA 9 (37.5) 13 (46.4)

Lithium, n (%) 0 17 (70.8) 19 (67.9) 0.945

1 7 (29.2) 9 (32.1)

Anticonvulsants, n (%) 0 12 (50.0) 12 (42.9) 0.597

1 12 (50.0) 15 (53.6)

2 1 (3.6)

Antidepressants, n (%) 0 11 (45.8) 11 (39.3) 0.458

1 12 (50.0) 17 (60.7)

2 1 (4.2)

Antipsychotics, n (%) 0 16 (66.7) 19 (67.9) 0.837

1 8 (33.3) 9 (32.1)

Benzodiazepines, n (%) 0 17 (70.8) 22 (78.6) 0.205

1 7 (29.2) 4 (14.3)

2 2 (7.1)

Melatonin, n (%) 0 22 (91.7) 22 (78.6) 0.262

1 2 (8.3) 6 (21.4)

No medication, n (%) 0 23 (95.8) 28 (100.0) 0.462

1 1 (4.2)

Number of medications,
mean (sd)

2.1 (1.1) 2.4 (1.2) 0.400

EPO, Erythropoietin; UD, Unipolar disease; BD, bipolar disease; SD, standard
deviation; HAMD, Hamilton Depression Rating Scale; BDI, Beck Depression
Inventory; and YMRS, Young Mania Rating Scale.

TABLE 2 | Demographics and clinical characteristics for participants included in
analysis of picture encoding task.

Variable Level Saline
(Group = 1)

EPO
(Group = 2)

P-value

n 28 31

Diagnosis, n (%) UD 13 (46.4) 13 (41.9) 0.933

BD 15 (53.6) 18 (58.1)

Gender, n (%) Male 9 (32.1) 10 (32.3) 0.788

Female 19 (67.9) 21 (67.7)

Age, mean (sd) 42.8 (11.9) 39.9 (10.7) 0.328

Education, mean (sd) 14.3 (3.0) 15.0 (4.0) 0.418

BDI Baseline, mean (sd) 24.0 (12.0) 25.8 (11.9) 0.572

BDI Followup, mean (sd) 21.1 (13.7) 18.7 (11.7) 0.480

HAMD Baseline, mean
(sd)

12.9 (7.2) 14.0 (7.0) 0.564

HAMD Followup, mean
(sd)

11.2 (7.2) 10.6 (6.2) 0.697

YMRS Baseline, mean
(sd)

2.1 (1.9) 2.6 (3.0) 0.532

YMRS Followup, mean
(sd)

1.8 (2.4) 2.1 (2.6) 0.720

No. Prior depressions,
mean (sd)

5.6 (4.0) 6.7 (5.4) 0.370

No. Previous
(hypo)mania, mean (sd)

4.4 (3.7) 4.9 (6.0) 0.778

Bipolar subtype, n (%) 1 7 (25.0) 7 (22.6) 0.851

2 8 (28.6) 11 (35.5)

NA 13 (46.4) 13 (41.9)

Lithium, n (%) 0 21 (75.0) 22 (71.0) 0.956

1 7 (25.0) 9 (29.0)

Anticonvulsants, n (%) 0 16 (57.1) 14 (45.2) 0.313

1 12 (42.9) 15 (48.4)

2 2 (6.5)

Antidepressants, n (%) 0 10 (35.7) 11 (35.5) 0.565

1 17 (60.7) 20 (64.5)

2 1 (3.6)

Antipsychotics, n (%) 0 19 (67.9) 23 (74.2) 0.804

1 9 (32.1) 8 (25.8)

Benzodiazepines, n (%) 0 17 (60.7) 24 (77.4) 0.218

1 10 (35.7) 5 (16.1)

2 1 (3.6) 2 (6.5)

Melatonin, n (%) 0 25 (89.3) 25 (80.6) 0.477

1 3 (10.7) 6 (19.4)

No medication, n (%) 0 27 (96.4) 31 (100.0) 0.475

1 1 (3.6)

Number of medications,
mean (sd)

2.2 (1.2) 2.3 (1.2) 0.808

EPO, erythropoietin; UD, unipolar disease; BD, bipolar disease; SD, standard
deviation; HAMD, Hamilton Depression Rating Scale; BDI, Beck Depression
Inventory; and YMRS, Young Mania Rating Scale.

Python package tableone (Pollard et al., 2018). CONSORT
diagrams for participant flow from inclusion to analysis
can be seen in the Appendix (Appendix Figures A1, A2).
For details on reasons for exclusions and dropouts see
Miskowiak et al. (2016a,b). In addition to the excluded
participants in previously published reports (Miskowiak
et al., 2016a,b), three participants were excluded after
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FIGURE 2 | Performance plot of the different classifiers on the working-memory data, both cross-sectional after followup (left plot) and longitudinal increase from
baseline to followup (right plot). The classifiers were trained to distinguish participants by pharmacological treatment (EPO vs. Saline). Two different evaluation
measures are used, namely classification accuracy and area-under the receiver operating characteristic (AUC-ROC). The classifiers were evaluated using repeated
(10 times) 5-fold cross-validation and each dot in the plot corresponds to the performance measured on one test set. The solid black line indicates the reference
classifier of always predicting the largest class in the training set. One-sided t-test was used to test if the distribution of the performance over all folds was equal to or
worse than the reference classifier (∗p < 0.05).

inspecting the brain mask from the first-level analysis as they did
not cover the entire brain. Consequently, data were included for
52 participants in the n-back task (EPO: n = 28, Saline: n = 24)
and 59 participants in the picture encoding task (EPO: n = 31,
Saline: n = 28).

Prediction Based on the Spatial Working
Memory Paradigm
Results from the prediction of the pharmacological treatment
(EPO vs. Saline) from subject–level 2-back vs. 0-back contrast
maps can be seen in Figure 2 and in the performance summary
in Table 3. In contrast with our hypothesis, the supervised
machine learning models were unable to produce a robust
prediction of whom had received EPO (vs. saline) based on
the whole-brain task-related fMRI data from the post-treatment
scan. However, the ‘pcalogreg’ model, reflecting non-sparse
distributed patterns of activity, was able to predict EPO group
membership better than the reference classifier, i.e., always
predicting the largest class. Using the ‘pcalogreg’ model, we
obtained a mean accuracy over folds of about 56%, however,
there was a large variability over folds with a portion of test
folds falling below the reference model, equivalent to random
guessing. We found similar low prediction performance of the
classifiers in both cross-sectional and the longitudinal data sets.
The ‘pcalogreg’ model was not able to achieve better classification
than the reference when utilizing baseline data, which could point
toward cross-sectional n-back data being more informative for
predicting pharmacological treatment. We compared the two
whole-brain approaches (spacenet and pcalogreg) to using the
Shen parcellation (shen-logreg and shen-svm), which produced
comparable performance.

Prediction Based on the Explicit Picture
Encoding Paradigm
Results from the supervised machine learning prediction of
treatment status based on the picture encoding data can be
seen in Figure 3 and in the performance summary in Table 3.
Pertaining to our main hypothesis, we found no evidence that
the pharmacological status could be classified better than the
reference model from the post-treatment brain response as
measured by classification accuracy. Regarding the difference
between cross-sectional and longitudinal analysis, the SpaceNet
classifier, reflecting highly localized features of the brain response,
was able to achieve significantly better than random guessing
in longitudinal data. However, as with the n-back data there
was quite a large variability over test folds and the estimated
generalization performance did not exceed chance level by a large
margin (around 59% mean accuracy). As with the WM paradigm,
we also did the analysis using the Shen parcellation and found
similar results, as shown in Figure 3 and Table 3.

DISCUSSION

In this exploratory fMRI report based on our published EPO
RCTs (Miskowiak et al., 2014a,b), we applied a supervised
machine learning algorithm to explore the EPO-associated
changes in neural activity during spatial WM and picture
encoding in a sample (n = 56–59) of patients with mood
disorders. Complementary to the classical hypothesis testing
approach already presented in previously published papers,
we here used a supervised machine learning method in
line with (Barron et al., 2018) using COPES as input to
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TABLE 3 | Summary of all analyses.

Accuracy AUC-ROC

N-back Cross-sectional

pcalogreg 0.5617∗ 0.5541∗

spacenet 0.4523 0.4099

shen-logreg 0.5212 0.5211

shen-svm 0.4986 0.5190

N-back Longitudinal Increase

pcalogreg 0.4336 0.2951

spacenet 0.2859 0.2411

shen-logreg 0.4657 0.4157

shen-svm 0.4697 0.4229

Picture Encoding Cross-sectional

pcalogreg 0.4694 0.4031

spacenet 0.5178 0.5472∗

shen-logreg 0.4750 0.4878

shen-svm 0.4433 0.4423

Picture Encoding Longitudinal Increase

pcalogreg 0.4944 0.4408

spacenet 0.5898∗∗ 0.5989∗∗

shen-logreg 0.4501 0.4836

shen-svm 0.3953 0.3826

We report the performance (accuracy and AUC-ROC) of each of the classifiers
applied to all the data sets. Classifier performance was assessed using repeated
5-fold cross-validation, and the value reported is the mean over all 50-folds. One-
sided t-test was used to test if the distribution of the performance over all folds was
equal to or worse than the reference classifier (∗p < 0.05, ∗∗p < 0.01).

the algorithm. In contrast with our hypothesis, we found
no task-related patterns of neural activity that could predict
held-out participants treatment status at a reliable level of
performance (≤60% accuracy). However, in some of the cases,

the algorithms performed significantly better than random
guessing, albeit with classification accuracies reaching only
around 60% and with large variability over cross-validation folds.
Further, comparison of the performance of the machine learning
algorithms applied to cross-sectional post-treatment data sets
and longitudinal (follow-up minus baseline) data sets showed
comparable (low) performance.

The supervised multivariate machine learning algorithms
failed to predict which participants had received EPO (vs.
placebo) with high reliability. In the cases where the models
performed significantly better than chance, the accuracy was
low, with only 60% of participants being correctly classified
as having received EPO. As a sanity check, we therefore took
a step back and trained the two machine learning models on
the easier problem of distinguishing contrasts from different
experimental conditions in the spatial n-back WM data follow-
up data. This step was successful in terms of classification
accuracy, which in the case of the SpaceNet model reached
an average of over 80% over test folds. This model validation
step gave an indication of what classification performance
that could be expected in a best-case scenario, indicating that
the models were trainable in this high-dimensional problem.
Nevertheless, the poor predictive value of machine learning
algorithms in characterizing the pharmacological effects on
neural activity using task-related fMRI paradigms aligns well
with the observations in a recent machine learning study
of the profile of pharmacological effects on neural activity
(Barron et al., 2018). Specifically, we observed comparable
performance in terms of within-study classification accuracy,
however on a larger sample size than each of the individual
studies analyzed in Barron et al. (2018).

FIGURE 3 | Performance plot of the different classifiers on the picture encoding data, both cross-sectional after followup (left plot) and longitudinal increase from
baseline to followup (right plot). The classifiers were trained to distinguish participants by pharmacological treatment (EPO vs. Saline). Two different evaluation
measures are used, namely classification accuracy and area-under the receiver operating characteristic (AUC-ROC). The classifiers were evaluated using repeated
(10 times) 5-fold cross-validation and each dot in the plot corresponds to the performance measured on one test set. The solid black line indicates the reference
classifier of always predicting the largest class in the training set. One-sided t-test was used to test if the distribution of the performance over all folds was equal to or
worse than the reference classifier (∗p < 0.05, ∗∗p < 0.01).
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The machine learning models used were statistically tested
using a t-test on the scores obtained from the cross-validation
procedure against a reference model, that always predicted the
largest class in the training set. We acknowledge that this is
not the best way to test the significance of the classification
performance, and one should optimally have used permutation
testing (Ojala and Garriga, 2010). However, due to computational
complexity of the SpaceNet classifier this was not feasible. We do
not expect this to dramatically change the results, due to the poor
performance of the classifiers.

As pointed out by Barron et al. (2018), inter-participant
variability stemming from differences in brain anatomy
and functional localization is a confounding source for the
classification results obtained. One way to address this problem
would be to have a cross-over design in which each participant
would at some point get both treatments and would thus serve
as its own placebo control. This was suggested by Barron
et al. (2018) following results from a pain medication efficacy
study (Duff et al., 2015). We used the difference in the neural
response to task from baseline to follow-up to eliminate some
of the inter-participant variability. However, our data suggests
that the longitudinal approach does not sufficiently deals
with this problem as we observed no consistent differences in
the predictive power of the machine learning models when
applied to the longitudinal versus the cross-sectional and
longitudinal data sets. One possible explanation for this is the
large intra-participant variability stemming from motion effects
(Lund et al., 2005) and day-to-day variation from caffeine and
food consumption (Poldrack et al., 2015), that could mask the
true pharmacological difference effect between baseline and
follow-up. Disentangling intra- and inter-participant variability
is an active area of research that needs further investigation
(Gordon et al., 2017).

The fMRI data from the EPO trials have already been
analyzed for the picture encoding task in Miskowiak et al.
(2016a) and for the n-back task in Miskowiak et al. (2016b).
The poor classification results were somewhat surprising given
the moderate to large effect sizes of EPO versus placebo
on hippocampus-dependent memory and global cognition
across these patients (Miskowiak et al., 2015; Ott et al.,
2016) and our observation of EPO-associated changes in
dorsal prefrontal and parietal activity during the same fMRI
paradigms in the hypothesis-driven general linear modeling
analyses (Miskowiak et al., 2016a,b). One could therefore ponder
why the significant neuronal activity differences induced by
pharmacological treatment found in the previous papers are
not in the same way reflected in the results of the present
machine learning analyses. We underline here that there are
large methodological differences that relate to the difference
between encoding and decoding in neuroimaging (Varoquaux
and Poldrack, 2018) and the difference between explanation
and prediction in psychology (Yarkoni and Westfall, 2017).
In the classical statistics approach, we try to come up with
mechanistic explanations for the data generating process and
use data to estimate the parameters of that process. In contrast,
the machine learning approach involves the development of
a data-driven algorithm to produce the same predictions as

the data generating process which is validated using out-
of-sample estimates. These two approaches do therefore not
necessarily overlap in their conclusions as illustrated in this
report and as pointed out by others (Bzdok et al., 2018); highly
significant result (in the classical sense) provide no guarantees
on the (held-out) predictive capabilities of the model so it
cannot be excluded that a more marked difference between the
two groups (e.g., p-values ≤ 0.001) would have resulted in a
higher accuracy.

The sample size of studies using pharmaco-related fMRI have
been rather small, ranging from 12 to 42 patients (Iannetti
et al., 2005; Harmer et al., 2006; Murphy et al., 2009; Godlewska
et al., 2012; Wanigasekera et al., 2012; Harris et al., 2013;
Lee et al., 2013; Di Simplicio et al., 2014; Sanders et al.,
2015). Our data set considered 52 participants, resulting in
a larger sample size compared to the previous pharmaco-
related fMRI studies. Yet the risk of conducting a type II
error has still to be considered. The treatment groups were
comparable on diagnostic, clinical and demographic variables
as well as medication status. Nevertheless, the variability in
mood symptoms between patients and medication status may
have affected the ability to detect a clear signal in neural
activity patterns and thus contributed to the suboptimal
performance of the algorithm. Further, we applied the machine
learning models to multiple fMRI task paradigms to corroborate
what conclusion that can be drawn reliably from different
tests. It was a methodological strength that we used two
different machine learning methods, including a prominent
sparse model targeted for neuroimaging data, namely the
SpaceNet classifier (Gramfort et al., 2013). Furthermore, we
evaluated our models using repeated cross-validation, which is
considered a best practice within performance evaluation for
neuroimaging decoders (Varoquaux et al., 2017). However, the
gold-standard of evaluating the classifiers on a completely held-
out sample, as done in Browning et al. (2018), was not feasible.
A limitation was that the multivariate decoding methods used
estimate many more parameters compared to the number of
observations. Thus, regularization approaches are needed to
control overfitting, i.e., finding patterns that do not generalize
to a new population. In Barron et al. (2018) this was achieved
by mapping the participant level COPE values into a resting-
state based parcellation from Shen et al. (2013) with 268 parcels.
We compared our approach to using a parcellation and found
similar performance across all tasks. We acknowledge that
the search for the optimal regularization strength in logistic
regression is a difficult problem and has a large influence
on the final classification performance. However, since our
models were able to reasonably well predict the spatial n-back
WM task contrasts in the validation experiment, the choice of
regularization strength is unlikely to be the source of the relatively
poor classification performance.

CONCLUSION

In conclusion, we found no reliable evidence that
pharmacological treatment with EPO could be predicted
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from neural signatures extracted from task-based fMRI
with a supervised machine learning algorithm. While
one of the algorithms was able to predict treatment
status significantly better than the reference model, the
prediction accuracy was relatively low (≈60% accuracy).
This result suggests that we need larger sample sizes
to detect whole-brain patterns of activity that can
predict the administration of EPO and other potential
precognitive interventions.
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FIGURE A1 | CONSORT diagram for n-back task.

FIGURE A2 | CONSORT diagram for the picture encoding task.
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