
u n i ve r s i t y o f co pe n h ag e n

Learning what to share between loosely related tasks

Ruder, Sebastian; Bingel, Joachim; Augenstein, Isabelle; Søgaard, Anders

Published in:
arXiv

Publication date:
2017

Document version
Early version, also known as pre-print

Citation for published version (APA):
Ruder, S., Bingel, J., Augenstein, I., & Søgaard, A. (2017). Learning what to share between loosely related
tasks. arXiv.

Download date: 27. May. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Copenhagen University Research Information System

https://core.ac.uk/display/323212202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning what to share between loosely related tasks

Sebastian Ruder12∗, Joachim Bingel3, Isabelle Augenstein4∗, Anders Søgaard3

1Insight Research Centre, National University of Ireland, Galway
2Aylien Ltd., Dublin, Ireland

3Department of Computer Science, University of Copenhagen, Denmark
4Department of Computer Science, UCL, UK

sebastian@ruder.io, {bingel|soegaard}@di.ku.dk, augenstein@di.ku.dk

Abstract

Multi-task learning is motivated by the obser-
vation that humans bring to bear what they
know about related problems when solving
new ones. Similarly, deep neural networks can
profit from related tasks by sharing parameters
with other networks. However, humans do not
consciously decide to transfer knowledge be-
tween tasks. In Natural Language Processing
(NLP), it is hard to predict if sharing will lead
to improvements, particularly if tasks are only
loosely related. To overcome this, we introduce
SLUICE NETWORKS, a general framework for
multi-task learning where trainable parameters
control the amount of sharing. Our framework
generalizes previous proposals in enabling shar-
ing of all combinations of subspaces, layers,
and skip connections. We perform experiments
on three task pairs, and across seven different
domains, using data from OntoNotes 5.0, and
achieve up to 15% average error reductions
over common approaches to multi-task learn-
ing. We show that a) label entropy is predictive
of gains in sluice networks, confirming find-
ings for hard parameter sharing and b) while
sluice networks easily fit noise, they are robust
across domains in practice.

1 Introduction

Existing theory mainly provides guarantees for multi-
task learning (MTL) of homogeneous tasks, such
as pure regression or classification tasks (Baxter,
2000; Ben-David and Schuller, 2003). These guar-
antees, however, do not hold for the heterogeneous

?Work done during a visit at the University of Copenhagen.

tasks to which multi-task learning is most often ap-
plied to in NLP, which only share a common set
of input variables (Collobert and Weston, 2008; Sø-
gaard and Goldberg, 2016). To compensate for the
lack of theory in the case of these loosely related
tasks, researchers have started to explore multi-task
learning from a more experimental point of view,
correlating performance gains with task properties
to achieve a better understanding of when models
can profit from auxiliary tasks (Bingel and Søgaard,
2017; Martínez Alonso and Plank, 2017). While such
works have shed partial light on the effectiveness of
particular approaches to multi-task learning, it re-
mains hard to predict what parts of networks benefit
from sharing, and to what extent they do so.

Our limited understanding of multi-task learning is
also a practical problem: With hundreds of potential
sharing structures, an exhaustive exploration of the
search space of multi-task learning for specific prob-
lems is infeasible. Existing work (Kumar and Daumé
III, 2012; Maurer et al., 2013) uses sparsity to share
task predictors, but has only been applied to homoge-
neous tasks. Previous work in multi-task learning of
heterogeneous tasks only considers at most a couple
of architectures for sharing (Søgaard and Goldberg,
2016; Peng and Dredze, 2016; Martínez Alonso and
Plank, 2017). In contrast, we present a framework
that unifies such different approaches by introducing
trainable parameters for the components that differ-
entiate multi-task learning approaches. We build on
recent work trying to learn where to split merged
networks (Misra et al., 2016), as well as work try-
ing to learn how best to combine private and shared
subspaces (Bousmalis et al., 2016; Liu et al., 2017).

ar
X

iv
:1

70
5.

08
14

2v
2

 [
st

at
.M

L
]

 1
6

Ja
n

20
18

Figure 1: A SLUICE NETWORK with one main task
A and one auxiliary task B. It consists of a shared
input layer (shown left), two task-specific output lay-
ers (right), and three hidden layers per task, each
partitioned into two subspaces. α parameters control
which subspaces are shared between main and aux-
iliary task, while β parameters control which layer
outputs are used for prediction.

Contributions Our architecture (shown in Figure
1) is empirically justified and deals with the dirtiness
(Jalali et al., 2010) of loosely related tasks. It goes
significantly beyond previous work, learning both
what layers to share, and which parts of those layers
to share, as well as using skip connections to learn a
mixture model at the architecture’s outer layer. We
show that it is a generalization of various multi-task
learning algorithms such as hard parameter sharing
(Caruana, 1998), low supervision (Søgaard and Gold-
berg, 2016), and cross-stitch networks (Misra et al.,
2016), as well as transfer learning algorithms such
as frustratingly easy domain adaptation (Daumé III,
2007). Moreover, we study what task properties pre-
dict gains, and what properties correlate with learning
certain types of sharing, as well as the inductive bias
of the resulting architecture.

2 An Architecture for Learning to Share

We introduce a novel architecture for multi-task learn-
ing, which we refer to as a SLUICE NETWORK,
sketched in Figure 1 for the case of two tasks. The
network learns to share parameters between deep
recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber, 1997). The recurrent networks could
easily be replaced with multi-layered perceptrons or
convolutional neural networks for other applications.

The two networks A and B share an embedding

layer associating the elements of an input sequence,
in our case English words, with vector representa-
tions via word and character embeddings. The two
sequences of vectors are then passed on to their re-
spective inner recurrent layers. Each layer is divided
into subspaces, e.g., for A into GA,1,1 and GA,1,2,
which allow the network to learn task-specific and
shared representations, if beneficial. The output of
the inner layer of network A is then passed to its sec-
ond layer, as well as to the second layer of network
B. This traffic of information is mediated by a set
of parameters α in a way such that the second layer
of each network receives a weighted combination of
the output of the two inner layers. The subspaces
have different weights. Importantly, these weights
are trainable and allow the model to learn whether
to share, whether to restrict sharing to a shared sub-
space, etc. Finally, a weighted combination of the
outputs of the outer recurrent layers G·,3,· as well as
the weighted outputs of the inner layers are mediated
through β parameters, which reflect a mixture over
the representations at various depths of the network.
In sum, sluice networks have the capacity to learn
what layers and subspaces should be shared, as well
as at what layers the network has learned the best
representations of the input sequences.

Matrix Regularization We cast learning what to
share as a matrix regularization problem, following
(Jacob et al., 2009; Yang and Hospedales, 2017). As-
sume M different tasks that are loosely related, with
M potentially non-overlapping datasetsD1, . . . ,DM .
Each task is associated with a deep neural network
with K layers L1, . . . LK . We assume that all the
deep networks have the same hyper-parameters at the
outset. With loosely related tasks, one task may be
better modeled with one hidden layer; another one
with two (Søgaard and Goldberg, 2016); some may
share many parameters, while others mostly rely on
task-specific representations. Our architecture is flex-
ible enough to learn this by allocating appropriate
subspaces and mediating weights starting from the
union of the a priori task networks.

Let W ∈ RM×D be a matrix in which each row i
corresponds to a model θi with D parameters. The
loss that sluice networks minimize, with a penalty
term Ω, is then as follows:

λ1L1(f(x; θ1), y1) + . . .+ λMLM (f(x; θM), yM) + Ω
(1)

The loss functions Li are cross-entropy functions
of the form −

∑
y p(y) log q(y) where yi are the la-

bels of task i. Note that sluice networks are not
restricted to tasks with the same loss functions, but
could also be applied to jointly learn regression and
classification tasks. The weights λi determine the
importance of the different tasks during training. In
all our experiments, we use the same weight for all
tasks.

We explicitly add inductive bias to the model via
the regularizer Ω, which we describe in Equation 4.
However, our model also implicitly learns regular-
ization through multi-task learning (Caruana, 1993)
mediated by the α weights, while the β weights are
used to learn the parameters of the mixture functions
f(·), as detailed in the following.

Learning Matrix Regularizers We now explain
how updating α parameters can lead to different ma-
trix regularizers. Each matrix W consists of M rows
where M is the number of tasks. Each row is of
length D with D the number of parameters. Subvec-
tors Lm,k correspond to the parameters of network
m at layer k. Each layer consists of two subspaces
with parameters Gm,k,1 and Gm,k,2.

Recall that our architecture is partly motivated by
the observation that for loosely related tasks, only
certain features in specific layers should be shared,
while many of the layers and subspaces may remain
more task-specific (Søgaard and Goldberg, 2016).
We want to learn what to share while inducing models
for the different tasks. For simplicity, we ignore
subspaces at first and assume only two tasks A and
B. The outputs hA,k,t and hB,k,t of the k-th layer
for time step t for task A and B respectively interact
through what Misra et al. (2016) refer to as cross-
stitch units α (see Figure 1). Omitting t for simplicity,
the output of the α layers is:

[
h̃A,k

h̃B,k

]
=

[
αAA αAB
αBA αBB

] [
hA,k

> , hB,k
>] (2)

where h̃A,k is a linear combination of the outputs
that is fed to the k+1-th layer of taskA, and

[
a>, b>

]

designates the stacking of two vectors a, b ∈ RD to
a matrix M ∈ R2×D.

Extending the α-layers to include subspaces, for 2
tasks and 2 subspaces, we obtain an αmatrix ∈ R4×4

that not only controls the interaction between the
layers of both tasks, but also between their subspaces:

h̃A1,k
...

h̃B2,k

 =

αA1A1 . . . αB2A1

...
. . .

...
αA1B2 . . . αB2B2

 [hA1,k
> , . . . , hB2,k

>]
(3)

where hA1,k is the output of the first subspace of
the k-th layer of task A and h̃A1,k is the linear com-
bination for the first subspace of task A. The input to
the k + 1-th layer of task A is then the concatenation
of both subspace outputs: hA,k =

[
h̃A1,k , h̃A2,k

]
.

Different α weights correspond to different matrix
regularizers Ω, including several ones that have been
proposed previously for multi-task learning. We re-
view those in Section 3. For now just observe that if
all α-values are set to 0.25 (or any other constant),
we obtain hard parameter sharing (Caruana, 1993),
which is equivalent to a heavy L0-regularizer.

Adding Inductive Bias Naturally, we can also add
inductive bias to sluice networks by partially con-
straining the regularizer or adding to the learned
penalty. Inspired by work on shared-space com-
ponent analysis (Salzmann et al., 2010), we add a
penalty to enforce a division of labor and discourage
redundancy between shared and task-specific sub-
spaces. While the networks can theoretically learn
such a separation, an explicit constraint empirically
leads to better results and enables the sluice net-
works to take better advantage of subspace-specific
α-values. This is modeled by an orthogonality con-
straint (Bousmalis et al., 2016) between the layer-
wise subspaces of each model:

Ω =
M∑

m=1

K∑
k=1

‖Gm,k,1
>Gm,k,2‖2F (4)

where M is the number of tasks, K is the number
of layers, ‖ · ‖2F is the squared Frobenius norm, and
Gm,k,1 and Gk,2,m are the first and second subspace
respectively in the k-th layer of m-th task model.

Learning Mixtures Many tasks have an implicit
hierarchy that informs their interaction. Rather
than predefining it (Søgaard and Goldberg, 2016;
Hashimoto et al., 2017), we enable our model to
learn hierarchical relations by associating different
tasks with different layers if this is beneficial for
learning. Inspired by advances in residual learning
(He et al., 2016), we employ skip-connections from
each layer, controlled using β parameters. This layer
acts as a mixture model, returning a mixture of expert
predictions:

h̃>A =

βA,1

· · ·
βA,k

> [hA,1
> , . . . hA,k

>] (5)

where hA,k is the output of layer k of model A,
while h̃A,t is the linear combination of all layer out-
puts of model A that is fed into the final softmax
layer.

Complexity Our model only adds a minimal num-
ber of additional parameters compared to single-task
models of the same architecture. In our experiments,
we add α parameters between all task networks. As
such, they scale linearly with the number of layers
and quadratically with the number of tasks and sub-
spaces, while β parameters scale linearly with the
number of tasks and the number of layers. For a
sluice network with M tasks, K layers per task, and
2 subspaces per layer, we thus obtain 4KM2 addi-
tional α parameters and KM β parameters. Training
sluice networks is not much slower than training hard
parameter sharing networks, with only an 5–7% in-
crease in training time.

3 Prior Work as Instances of Sluice
Networks

The architecture is very flexible and can be seen as
a generalization over several existing algorithms for
transfer and multi-task learning, including (Caruana,
1998; Daumé III, 2007; Søgaard and Goldberg, 2016;
Misra et al., 2016). We show how to derive each of
these below.

Hard Parameter Sharing in the two networks ap-
pears if all α values are set to the same constant
(Caruana, 1998; Collobert and Weston, 2008). This

is equivalent to a mean-constrained `0-regularizer
Ω(·) = | · |w̄i

0 and
∑

i λiLi < 1. If the sum of
weighted losses are smaller than 1, the loss with
penalty is always the highest when all parameters are
shared.

Group Lasso The `1/`2 group lasso regularizer is∑G
g=1 ||G1,i,g||2, a weighted sum over the `2 norms

of the groups, often used to enforce subspace sharing
(Zhou et al., 2010; Świrszcz and Lozano, 2012). Our
architecture learns a `1/`2 group lasso over the two
subspaces (with the same degrees of freedom), when
all αA,B and αB,A-values are set to 0. When the
outer layer α-values are not shared, we get block
communication between the networks.

Frustratingly Easy Domain Adaptation The ap-
proach to domain adaptation in (Daumé III, 2007),
which relies on a shared and a private space for each
task or domain, can be encoded in sluice networks by
setting all αA,B- and αB,A-weights associated with
Gi,k,1 to 0, while setting all αA,B-weights associated
with Gi,k,2 to αB,B , and αB,A-weights associated
with Gi,k,2 to αA,A. Note that Daumé III (2007) dis-
cusses three subspaces. We obtain this space if we
only share one half of the second subspaces across
the two networks.

Low Supervision Søgaard and Goldberg (2016)
propose a model where only the inner layers of
two deep recurrent works are shared. This is ob-
tained using heavy mean-constrained L0 regular-
ization over the first layer Li,1, e.g., Ω(W) =∑K

i ||Li,1||0 with
∑

i λiL(i) < 1, while for the aux-
iliary task, only the first layer β parameter is set to
1.

Cross-Stitch Networks Misra et al. (2016) intro-
duce cross-stitch networks that have α values control
the flow between layers of two convolutional neural
networks. Their model corresponds to setting the α-
values associated with Gi,j,1 be identical to those for
Gi,j,2, and by letting all but the β-value associated
with the outer layer be 0.

In our experiments, we include hard parameter
sharing, low supervision, and cross-stitch networks
as baselines. We do not report results for group lasso
and frustratingly easy domain adaptation, which were
consistently inferior on development data by some
margin.

Domains
Broadcast Broadcast Magazines (mz) Newswire (nw) Pivot corpus (pc) Telephone Weblogs (wb)conversation (bc) news (bn) conversation (tc)

sent # words # sent # words # sent # words # sent # words # sent # words # sent # words # sent # words
Train 11846 173289 10658 206902 6905 164217 34944 878223 21520 297049 11274 90403 16734 388851
Dev 2112 29957 1292 25271 641 15421 5893 147955 1780 25206 1367 11200 2297 49393
Test 2206 35947 1357 26424 779 17874 2326 60756 1869 25883 1306 10916 2281 52225

Table 1: Number of sentences and words for the splits of each domain in the OntoNotes 5.0 dataset.

WORDS Abramov had a car accident

CHUNK O B-VP B-NP I-NP I-NP
NER B-PERSON O O O O
SRL B-ARG0 B-V B-ARG1 I-ARG1 I-ARG1
POS NNP VBD DT NN NN

Table 2: Example annotations for CHUNK, NER,
SRL, and POS.

4 Experiments

Data We want to experiment with multiple loosely
related NLP tasks, but also study performance across
domains to make sure our architecture is not prone to
overfitting. As testbed for our experiments, we there-
fore choose the OntoNotes 5.0 dataset (Weischedel
et al., 2013), not only due to its high inter-annotator
agreement (Hovy et al., 2006), but also because it
enables us to analyze the generalization ability of
our models across different tasks and domains. The
OntoNotes dataset provides data annotated for an ar-
ray of tasks across different languages and domains.
We present experiments with the English portions of
datasets, for which we show statistics in Table 1.1

Tasks In multi-task learning, one task is usually
considered the main task, while other tasks are
used as auxiliary tasks to improve performance on
the main task. As main tasks, we use chunking
(CHUNK), named entity recognition (NER), and
a simplified version of semantic role labeling (SRL)
where we only identify headwords2, and pair them
with part-of-speech tagging (POS) as an auxiliary
task, following (Søgaard and Goldberg, 2016). Ex-
ample annotations for each task can be found in Table
2.

Model We use a state-of-the-art BiLSTM-based
sequence labeling model (Plank et al., 2016) as the

1Note that not all sentences are annotated with all tasks.
2We do this to keep pre-processing for SRL minimal.

building block of our model. The BiLSTM consists
of 3 layers with a hidden dimension of 100. At every
time step, the model receives as input the concate-
nation between the 64-dimensional embedding of
a word and its character-level embedding produced
by a Bi-LSTM over 100-dimensional character em-
beddings. Both word and character embeddings are
randomly initialized. The output layer is an MLP
with a dimensionality of 100. We initialize α pa-
rameters with a bias towards one source subspace
for each direction and initialize β parameters with a
bias towards the last layer3. We have found it most
effective to apply the orthogonality constraint only
to the weights associated with the LSTM inputs.

Training and Evaluation We train our models
with stochastic gradient descent (SGD), an initial
learning rate of 0.1, and learning rate decay4. During
training, we randomly and uniformly sample from the
data for each task. We perform early stopping with
patience of 2 based on the main task and hyperpa-
rameter optimization on the in-domain development
data of the newswire domain. We use the same hy-
perparameters for all comparison models across all
domains. We train our models on each domain and
evaluate them both on the in-domain test set (Table
3, top) as well as on the test sets of all other domains
(Table 3, bottom) to evaluate their out-of-domain
generalization ability5.

Baseline Models As baselines, we compare
against i) a single-task model only trained on chunk-
ing; ii) the low supervision model (Søgaard and
Goldberg, 2016), which predicts the auxiliary task

3We experimented with different initializations for α and β
parameters and found these to work best.

4We use SGD as Søgaard and Goldberg (2016) also employed
SGD. Adam yielded similar performance differences.

5Due to this set-up, our results are not directly comparable
to the results in Søgaard and Goldberg (2016) who only train on
the WSJ domain and use OntoNotes 4.0.

In-domain results

System bc bn mz nw pt tc wb Avg
B

as
el

in
es Single task 90.80 92.20 91.97 92.76 97.13 89.84 92.95 92.52

Hard parameter sharing 90.31 91.73 92.33 92.22 96.40 90.59 92.84 92.35
Low supervision 90.95 91.70 92.37 93.40 96.87 90.93 93.82 92.86
Cross-stitch network 91.40 92.49 92.59 93.52 96.99 91.47 94.00 93.21

Ours Sluice network 91.72 92.90 92.90 94.25 97.17 90.99 94.40 93.48

Out-of-domain results

B
as

el
in

es Single task 85.95 87.73 86.81 84.29 90.91 84.55 73.36 84.80
Hard parameter sharing 86.31 87.73 86.96 84.99 90.76 84.48 73.56 84.97
Low supervision 86.53 88.39 87.15 85.02 90.19 84.48 73.24 85.00
Cross-stitch network 87.13 88.40 87.67 85.37 91.65 85.51 73.97 85.67

Ours Sluice network 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 3: Accuracy scores on in-domain and out-of-domain test sets for chunking (main task) with POS
tagging as auxiliary task for different target domains for baselines and Sluice networks. Out-of-domain
results for each target domain are averages across the 6 remaining source domains. Average error reduction
over single-task performance is 12.8% for in-domain; 8.9% for out-of-domain. In-domain error reduction
over hard parameter sharing is 14.8%.

at the first layer; iii) an MTL model based on
hard parameter sharing (Caruana, 1993); and iv)
cross-stitch networks (Misra et al., 2016). We com-
pare these against our complete sluice network with
subspace constraints and learned α and β param-
eters. We implement all models in DyNet (Neu-
big et al., 2017) and make our code available at
http:anonymized.com.

Our assumption is that MTL particularly helps to
generalize to data whose distribution differs from the
one seen during training. We thus first investigate
how well sluice networks perform on in-domain and
out-of-domain test data compared to state-of-the-art
multi-task learning models by evaluating all models
on chunking with POS tagging as auxiliary task.

Results We show results on in-domain and out-of-
domain tests sets in Table 3. On average, sluice
networks significantly outperform all other model
architectures on both in-domain and out-of-domain
data. Single task models and hard parameter shar-
ing achieve the lowest results. We see that single
task learning is comparatively most useful in the in-
domain setting, where the distribution of the test data

is the same as during training. On out-of-domain data,
hard parameter sharing performs better, demonstrat-
ing the regularizing effect of MTL, which improves
the model’s generalization ability.

Both models are consistently outperformed by low
supervision, which is only slightly better than hard pa-
rameter sharing in the out-of-domain setting. Cross-
stitch networks provide another significant perfor-
mance improvement. Finally, sluice networks per-
form best for all domains, except for the telephone
conversation (tc) domain, where they are outper-
formed by cross-stitch networks. The performance
boost is particularly significant for the out-of-domain
setting, where sluice networks add more than 1 point
in performance compared to hard parameter sharing
and almost .5 compared to the strongest baseline on
average, demonstrating that sluice networks are par-
ticularly useful to help a model generalize better.

In summary, this shows that our proposed model
for learning which parts of multi-task models to share,
with a small set of additional parameters to learn, can
achieve significant and consistent improvements over
strong baseline methods.

http:anonymized.com

Named entity recognition

System nw (ID) bc bn mz pt tc wb OOD Avg
B

as
el

in
es Single task 95.04 93.42 93.81 93.25 94.29 94.27 92.52 93.59

Hard parameter sharing 94.16 91.36 93.18 93.37 95.17 93.23 92.99 93.22
Low supervision 94.94 91.97 93.69 92.83 94.26 93.51 92.51 93.13
Cross-stitch network 95.09 92.39 93.79 93.05 94.14 93.60 92.59 93.26

Ours Sluice network 95.52 93.50 94.16 93.49 93.61 94.33 92.48 93.60

Simplified semantic role labeling

B
as

el
in

es Single task 97.41 95.67 95.24 95.86 95.28 98.27 97.82 96.36
Hard parameter sharing 97.09 95.50 95.00 95.77 95.57 98.46 97.64 96.32
Low supervision 97.26 95.57 95.09 95.89 95.50 98.68 97.79 96.42
Cross-stitch network 97.32 95.44 95.14 95.82 95.57 98.69 97.67 96.39

Ours Sluice network 97.67 95.64 95.30 96.12 95.07 98.61 98.01 96.49

Table 4: Test accuracy scores for different target domains with nw as source domain for named entity
recognition (main task) and simplified semantic role labeling with POS tagging as auxiliary task for baselines
and Sluice networks. ID: in-domain. OOD: out-of-domain.

System CHUNK NER SRL POS

Single task 89.30 94.18 96.64 88.62
Hard param. 88.30 94.12 96.81 89.07
Low super. 89.10 94.02 96.72 89.20

Sluice net 89.19 94.32 96.67 89.46

Table 5: All-tasks experiment: Test accuracy scores
for each task with nw as source domain averaged
across all target domains.

Performance across Tasks We now compare
sluice nets across different combinations of main
and auxiliary tasks. In particular, we evaluate them
on NER with POS tagging as auxiliary task and sim-
plified semantic role labeling with POS tagging as
auxiliary task. We show results in Table 4. Sluice
networks outperform the comparison models for both
tasks on in-domain test data and successfully general-
ize to out-of-domain test data on average. They yield
the best performance on 5 out of 7 domains and 4 out
of 7 domains for NER and semantic role labeling.

Performance with all Tasks To the best of our
knowledge, most of the existing work in multi-task

learning for NLP employs two tasks, typically pairing
a main task with an auxiliary task. Existing studies
(Bingel and Søgaard, 2017; Martínez Alonso and
Plank, 2017) also only evaluate pair-wise interac-
tions between tasks. (Hashimoto et al., 2017) is the
only model we are aware of that learns from multiple
stand-alone NLP tasks, but uses a task-specific archi-
tecture to do so, while our model can be applied to
any task combination. We use one sluice network to
jointly learn our four tasks on the newswire domain
and show results comparing it to the baseline models
in Table 56.

Discussion For MTL with four tasks, the low-level
POS tagging and simplified SRL tasks are the only
ones that benefit from hard parameter sharing. This
is consistent with results in Table 3 and previous
work (Søgaard and Goldberg, 2016). These results
highlight that hard parameter sharing by itself is not
sufficient for doing effective multi-task learning with
semantic tasks. We rather require task-specific layers
that can be used to transform the shared, low-level
representation into a form that is able to capture more
fine-grained task-specific knowledge.

6For the low supervision model, we predict the two high-level
tasks, CHUNK and NER at the final layer.

Task sharing Layer sharing bc bn mz nw pt tc wb Avg

constant α (hard)
Concatenation 86.70 88.24 87.20 85.19 90.64 85.33 73.75 85.29
Skip-connections (β = 1) 86.65 88.10 86.82 84.91 90.92 84.89 73.62 85.13
Mixture (learned β) 86.59 88.03 87.19 85.12 90.99 84.90 73.48 85.19

learned α (soft)

Concatenation 87.37 88.94 87.99 86.02 91.96 85.83 74.28 86.05
Skip-connections 87.08 88.62 87.74 85.77 91.92 85.81 74.04 85.85
Mixture 87.10 88.61 87.71 85.44 91.61 85.55 74.09 85.73
Mixture + subspaces 87.95 88.95 88.22 86.23 91.87 85.32 74.48 86.15

Table 6: Ablation analysis. Accuracy scores on out-of-domain (OOD) test sets for Chunking (main task) with
POS tagging as auxiliary task for different target domains for different configurations of sluice networks.
OOD scores for each target domain are averaged across the 6 remaining source domains.

With sluice networks, we are able to outperform
the single task models for all tasks except chunking
in the all-tasks setting. Generally, MTL with more
than two stand-alone tasks is little explored in NLP
and the best choices for hyperparameters such as the
sampling ratio, when to start, and stop training for
each task and whether to freeze or continue training
already learned parameters remain to be discovered.

5 Analysis

Task Properties and Performance Bingel and Sø-
gaard (2017) correlate meta-characteristics of task
pairs and gains from hard parameter sharing across
a large set of NLP task pairs. Inspired by this study,
we correlate various meta-characteristics with error
reductions and α, β values in sluice networks, as well
as in hard parameter sharing. Most importantly, we
find that a) multi-task learning gains, also in sluice
networks, are higher when there is less training data,
and b) sluice networks learn to share more when there
is more variance in the training data (cross-task αs
are higher, intra-task αs lower). Generally, α val-
ues at the inner layers correlate more highly with
meta-characteristics than α values at the outer layers.

Ablation Analysis Different types of sharing may
be more important than others. In order to analyze
this, we perform an ablation analysis in Table 6. We
investigate the impact of i) the α parameters; ii) the β
parameters; and iii) the division into subspaces with
an orthogonality penalty. We also evaluate whether
concatenation of the outputs of each layer is a reason-
able alternative to our mixture model.

Overall, we find that learnable α parameters are
preferable over constant α parameters. Learned β
parameters marginally outperform skip-connections
in the hard parameter sharing setting, while skip-
connections are competitive with learned β values
in the learned α setting. In addition, modeling sub-
spaces explicitly helps for almost all domains. To
our knowledge, this is the first time that subspaces
within individual LSTM layers have been shown to
be beneficial7. Being able to effectively partition
LSTM weights opens the way to research in inducing
more structured neural network representations that
encode task-specific priors. Finally, concatenation of
layer outputs is a viable form to share information
across layers as has also been demonstrated by recent
models such as DenseNet (Huang et al., 2017).

Analysis of α values Figure 2 presents the final α
weights in the sluice networks for Chunking, NER,
and SRL, trained with newswire as training data. We
see that a) for the low-level simplified SRL, there is
more sharing at inner layers, which is in line with
(Søgaard and Goldberg, 2016), while Chunking and
NER also rely on the outer layer, and b) more infor-
mation is shared from the more complex target tasks
than vice versa.

Analysis of β values Inspecting the β values for
the all-tasks sluice net in Table 5, we find that all
tasks place little emphasis on the first layer, but prefer
to aggregate their representations in different later
layers of the model: The more semantic NER and

7Liu et al. (2017) induce subspaces between separate LSTM
layers.

Figure 2: Heat maps of learned α parameters in trained sluice networks across (top to bottom): Chunking,
NER, and SRL. We present inner, middle, and outer layer left to right.

chunking tasks use the second and third layer to a
similar extent, while for POS tagging and simplified
SRL the representation of one of the two later layers
dominates the prediction.

Ability to Fit Noise Sluice networks can learn to
disregard sharing completely, so we expect them to be
as good as single-task networks to fit random noise,
potentially even better. We verify this by computing
a learning curve for random relabelings of 200 sen-
tences annotated with syntactic chunking brackets, as
well as 100 gold standard POS-annotated sentences.
Figure 3 shows that hard parameter sharing, while
learning faster because of the smoother loss surface
in multi-task learning, is a good regularizer, confirm-
ing the findings in (Søgaard and Goldberg, 2016).
The sluice network is even better at fitting noise than
the single-task models. We believe the ability to fit
noise in practical settings (on datasets of average size,
with average hyper-parameters) is more informative
than Rademacher complexities (Zhang et al., 2017)
and we argue that this result suggests introducing
additional inductive bias may be beneficial.

Figure 3: Random noise learning curves. Note that
we only plot accuracies for hard parameter sharing
and sluice networks until they plateau.

6 Related Work

In the context of deep neural networks, multi-task
learning is often done with hard or soft parameter
sharing of hidden layers. Hard parameter sharing
was introduced by Caruana (1993). There, all hidden
layers are shared between tasks which are projected
into output layers specific to different tasks. This
multi-task learning approach is easy to implement,

reduces overfitting, but is only guaranteed to work
for (certain types of) closely related tasks (Baxter,
2000; Maurer, 2007).

Peng and Dredze (2016) apply a variation of hard
parameter sharing to multi-domain multi-task se-
quence tagging with a shared CRF layer and domain-
specific projection layers. Yang et al. (2016) also
use hard parameter sharing to jointly learn different
sequence-tagging tasks (NER, POS tagging, Chunk-
ing) across languages. They also use word and char-
acter embeddings and share character embeddings
in their model. Martínez Alonso and Plank (2017)
explore a similar set-up, but sharing is limited to the
initial layer. In all three papers, the amount of sharing
between the networks is fixed in advance.

In soft parameter sharing, on the other hand, each
task has separate parameters and separate hidden lay-
ers, as in our architecture, but the loss at the outer
layer is regularized by the current distance between
the models. In (Duong et al., 2015), for example, the
loss is regularized by the L2 distance between (selec-
tive parts of) the main and auxiliary models. Other
regularization schemes used in multi-task learning
include the `1/`2 group lasso (Argyriou et al., 2008)
and the trace norm (Ji and Ye, 2009).

Selective Sharing Kumar and Daumé III (2012)
and Maurer et al. (2013) enable selective sharing
by allowing task predictors to select from sparse pa-
rameter bases for homogeneous tasks. Several au-
thors have discussed which parts of the model to
share for heterogeneous tasks. Søgaard and Gold-
berg (2016) perform experiments on which hidden
layers to share in the context of hard parameter shar-
ing with deep recurrent neural networks for sequence
tagging. They show that low-level tasks, i.e. easy
natural language processing tasks typically used for
preprocessing such as part-of-speech tagging and
named entity recognition, should be supervised at
lower layers when used as auxiliary tasks.

Another line of work looks into separating the
learned space into a private (i.e. task-specific) and
shared space (Salzmann et al., 2010; Virtanen et al.,
2011) to more explicitly capture the difference be-
tween task-specific and cross-task features. To en-
force such behavior, constraints are enforced to pre-
vent the models from duplicating information. Bous-
malis et al. (2016) use shared and private encoders

regularized with orthogonality and similarity con-
straints for domain adaptation for computer vision.
Liu et al. (2017) use a similar technique for sentiment
analysis.

In contrast to all the work mentioned above, we
do not limit ourselves to a predefined way of sharing,
but let the model learn which parts of the network to
share using latent variables, the weights of which are
learned in an end-to-end fashion.

The work most related to ours is (Misra et al.,
2016), who also look into learning what to share in
multi-task learning. However, they only consider a
very small class of the architectures that are learn-
able in sluice networks. Specifically, they restrict
themselves to learning split architectures. In such
architectures, two n-layer networks share the inner-
most k layers with 0 ≤ k ≤ n, and they learn k
with a mechanism that is very similar to our α-values.
Our work can be seen as a generalization of (Misra
et al., 2016), including a more in-depth analysis of
augmented works.

7 Conclusion

We introduced SLUICE NETWORKS, a framework for
learning what to share in multi-task learning using
trainable parameters. Our approach is a generaliza-
tion of recent work, but goes well beyond this in
enabling the network to learn selective sharing of
layers, subspaces, and skip connections. In exper-
iments with NLP task pairs in Ontonotes 5.0, we
show up to 15% average error reduction over hard
parameter sharing at only a 5–7% increase in training
time. We provide an analysis of the ability of sluice
networks to fit noise, as well as what properties are
predictive of gains with sluice networks, seeing that
the effect size correlates highly with label entropy,
confirming previous findings for hard parameter shar-
ing (Martínez Alonso and Plank, 2017; Bingel and
Søgaard, 2017).

References

Andreas Argyriou, Theodoros Evgeniou, and Massimil-
iano Pontil. 2008. Convex Multi-Task Feature Learn-
ing. Machine Learning, 73(3):243–272.

Jonathan Baxter. 2000. A Model of Inductive Bias Learn-
ing. JAIR, 12:149–198.

Shai Ben-David and Reba Schuller. 2003. Exploiting Task
Relatedness for Multiple Task Learning. In Learning
Theory and Kernel Machines, pages 567–580. Springer.

Joachim Bingel and Anders Søgaard. 2017. Identifying
beneficial task relations for multi-task learning in deep
neural networks. In Proceedings of EACL.

Konstantinos Bousmalis, George Trigeorgis, Nathan Sil-
berman, Dilip Krishnan, and Dumitru Erhan. 2016.
Domain Separation Networks. In Proceedings of NIPS.

Rich Caruana. 1993. Multitask Learning: A Knowledge-
Based Source of Inductive Bias. In Proceedings of
ICML.

Rich Caruana. 1998. Multitask Learning. In Learning to
Learn, pages 95–133. Springer.

Ronan Collobert and Jason Weston. 2008. A Unified
Architecture for Natural Language Processing: Deep
Neural Networks with Multitask Learning. In Proceed-
ings of ICML.

Hal Daumé III. 2007. Frustratingly Easy Domain Adapta-
tion. In Proceedings of ACL.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low Resource Dependency Parsing: Cross-
lingual Parameter Sharing in a Neural Network Parser.
In Proceedings of ACL.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A Joint Many-Task
Model: Growing a Neural Network for Multiple NLP
Tasks. In Proceedings of EMNLP.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition. In
Proceedings of CVPR, pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation, 9(8):1735–
1780.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90 % Solution. In Proceedings of NAACL-HLT.

Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Lau-
rens van der Maaten. 2017. Densely Connected Con-
volutional Networks. In Proceedings of CVPR 2017.

Laurent Jacob, Jean-Philippe Vert, Francis R Bach, and
Jean-Philippe Vert. 2009. Clustered Multi-Task Learn-
ing: A Convex Formulation. In Proceedings of NIPS,
pages 745–752.

Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep K
Ravikumar. 2010. A Dirty Model for Multi-task Learn-
ing. In Proceedings of NIPS.

Shuiwang Ji and Jieping Ye. 2009. An Accelerated Gradi-
ent Method for Trace Norm Minimization. In Proceed-
ings of ICML.

Abhishek Kumar and Hal Daumé III. 2012. Learning
Task Grouping and Overlap in Multi-task Learning. In
Proceedings of ICML, pages 1383–1390.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial Multi-task Learning for Text Classification.
In Proceedings of ACL.

Héctor Martínez Alonso and Barbara Plank. 2017. When
is multitask learning effective? Semantic sequence pre-
diction under varying data conditions. In Proceedings
of EACL.

Andreas Maurer, Massimiliano Pontil, and Bernardino
Romera-paredes. 2013. Sparse coding for multitask
and transfer learning. In Proceedings of ICML, vol-
ume 28, pages 343–351.

Andreas Maurer. 2007. Bounds for Linear Multi Task
Learning. JMLR, 7:117–139.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-Stitch Networks for Multi-
Task Learning. In Proceedings of CVPR.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. 2017. Dynet: The dynamic neural
network toolkit. arXiv preprint arXiv:1701.03980.

Nanyun Peng and Mark Dredze. 2016. Multi-task Multi-
domain Representation Learning for Sequence Tagging.
CoRR, abs/1608.02689.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. 2016.
Multilingual Part-of-Speech Tagging with Bidirectional
Long Short-Term Memory Models and Auxiliary Loss.
In Proceedings of ACL.

Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun, and
Trevor Darrell. 2010. Factorized Orthogonal Latent
Spaces. JMLR, 9:701–708.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of ACL.

Grzegorz Świrszcz and Aurélie C. Lozano. 2012. Multi-
level Lasso for Sparse Multi-task Regression. In Pro-
ceedings of ICML.

Seppo Virtanen, Arto Klami, and Samuel Kaski. 2011.
Bayesian CCA via Group Sparsity. In Proceedings of
ICML.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini,
Mohammed El-Bachouti, Robert Belvin, and Ann
Houston. 2013. OntoNotes Release 5.0 LDC2013T19.
Linguistic Data Consortium.

Yongxin Yang and Timothy M. Hospedales. 2017. Trace
Norm Regularised Deep Multi-Task Learning. In Pro-
ceedings of ICLR - Workshop Track.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen.
2016. Multi-Task Cross-Lingual Sequence Tagging
from Scratch. CoRR, abs/1603.06270.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In Proceed-
ings of ICLR.

Yang Zhou, Rong Jin, and Steven Hoi. 2010. Exclusive
Lasso for Multi-task Feature Selection. In Proceedings
of AISTATS.

	1 Introduction
	2 An Architecture for Learning to Share
	3 Prior Work as Instances of Sluice Networks
	4 Experiments
	5 Analysis
	6 Related Work
	7 Conclusion

