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Abstract. We have studied the coefficient of friction between a rigid parabolic indenter and a visco-elastic Kelvin 
foundation under step-wise change of sliding velocity. We have obtained analytical estimations for normal and tangential 
forces in a contact and their limiting values during transition process that occurs after a jump of sliding velocity. The 
results of numerical simulation are in good agreement with analytical estimates.  

Since Coulomb [1] it has been known that non-stationary regime of sliding may result in a non-linear time 
dependence of forces acting to contacting bodies. In his famous works Dieterich reported a time-dependent static 
friction law [2] and later formulated his law of non-stationary sliding for geological materials [3], introducing an 
internal “parameter of state”. Basing on these results, Ruina has analyzed the area of applicability of single-
parametrical rate-and-state law, and suggested a number of differential equations that can describe experimental data 
[4, 5]. At present time, rate-and-state laws are being used in wide range of studies, including the analysis of 
earthquake generation and seismic cycle [6], simulation of friction of lubricated surfaces [7], fracture propagation 
[8] etc.  

In the works mentioned above the contacting bodies are considered as elastic or elastic-plastic. At that, a detailed 
study of the role of viscosity of a material and, more widely, a role of time-dependent mechanical response of 
contacting bodies in non-stationary sliding still remains of interest, despite a number of experimental works in this 
field (see, for example [9, 9]. In the present paper, we consider a non-stationary tangential contact between a visco-
elastic body and rigid parabolic indenter at constant indentation depth that is a governing parameter [11]. We use the 
“single-asperity” approach, assuming that contact patches are situated far enough from each other and do not interact. 
The latter allows to essentially simplify the problem and to obtain analytical expressions for contact forces, shape of 
the contact area and, thus, for a coefficient of friction.  

We use the following assumptions: (a) the elastomer represents a simple incompressible Kelvin body, which is 
characterized by its static shear modulus and viscosity, (b) the surface of the elastomer is assumed to be initially 
plane and friction-less, (c) we consider a contact between single parabolic asperity, that is absolutely rigid, and 
Kelvin foundation, (d) no adhesion or capillarity effects are taken into account, (e) we consider a one-dimensional 
model. Despite these simplifications, the developed model allows us to provide a number of analytical estimations 
and observe non-trivial behavior in non-stationary regime of sliding.  

We use the method of dimensionality reduction (MDR) for simulation [12, 13]. Following this method, the 
elastomer was modeled as a row of independent elements with a small spacing ,x  each element consisting of a 

spring with normal stiffness 4k G x    and a dashpot having the damping constant 4 ,d x    where G  is the 

shear modulus and   is the viscosity of the elastomer [13].  

Recently, Popov and Hess [13] have obtained a complete analytic solution of the contact problem between a 
conical indenter and visco-elastic foundation in stationary regime of sliding. Basing on their approach, we start our 
analysis from obtaining the estimates for a contact area and contact forces and then continue with the consideration 
of a transitional process.  
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(a) (b) 

FIGURE 1. (a) Initial 3-dimensional profile of a parabolic indenter, (b) schematic of the contact  
between one-dimensional sliding indenter and Kelvin’s foundation 

 
Let us consider a rigid parabolic indenter 2( ) 2 ,z f r r R   where z  is the coordinate normal to the contact 

plane, and r  is the in-plane polar radius (Fig. 1a). 
The one-dimensional MDR-image of this profile, according to the rules of the MDR is  

 
2( ) .z g x x R   (1) 

Following the methodology of the work [13], we suggest the profile being pressed into a visco-elastic foundation 
to a constant depth of d and moved tangentially with the velocity v  so that its form is described at time t by the 
equation  

 ( ) ( ).z g x vt g x     (2) 

As stated above, we assume that the elastomer is a simple visco-elastic material (Kelvin’s body), which can be 
modeled as parallel-connected springs and dashpots (Fig. 1b). If the three-dimensional medium is characterized by 
the shear modulus G and the viscosity η, then the stiffness zk  and the damping coefficient   of an element of the 

visco-elastic foundation must be chosen as follows [12]:  

 4 ,zk G x    4 ,x    (3) 

where x  is the spatial size of an element of the foundation. In order to simplify the analysis, it is useful to 
introduce the coordinate x  in the frame of reference that moves with the rigid indenter. Thus, the coordinates of the 
boundary of the contact area are 1x a   and 2x a  (Fig. 1a). Vertical displacements zu  in the entire contact area 

are determined by the purely geometric condition 

 ( , ) ( ) ( ).zu x t d g x vt d g x       (4) 

The vertical velocities are  

 
( , ) ( )

( )zu x t g x vt
vg x

t t

      
 

  (5) 

and the normal force acting on a single element is  

 ( ) 4[ ( ( )) ( )] .N z z zf x k u u G d g x vg x x            (6) 

The left boundary of the contact area is determined by the condition 1( ) 0zu a   and the right boundary by the 

condition of zero normal force 2( ) 0.Nf a   Under the conditions of stationary sliding with constant velocity v the 

coordinates of the contact are can be determined as follows [13]: 

 1 ,a Rd  
2 2

2 ,a v Rd v      (7) 

where we introduce the relaxation time 

 .G    (8) 
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Changes of sliding velocity lead to variation of the distance of detachment 2 2 ( ).a a t  In that case the total 

normal force is a function of time: 
2 2

1 1

( ) ( )
2( ) 4 [ ( ( )) ( )]d 4 ( 2 )d

a t a t

N
a a

F t G d g x vg x x G d x R vx R x
 

              

 

3 3 2 2
1 2 1 2 1 2

1
4 ( ( )) ( ( )) ( ( )) .

3

v
G d a a t a a t a a t

R R

        
 (9) 

The time dependence of the total tangential force can be written as follows: 
2 2

1 1

( ) ( ) 3 2

2 2

2
( ) 4 ( )[ ( ( )) ( )]d 8 d

a t a t

x
a a

xd x vx
F t g x G d g x vg x x G x

R R R 

        
 

 
      

 

 

2 2 4 4 3 3
1 2 1 2 1 22

8 1 2
( ( )) ( ( )) ( ( )) .

2 2 3

G Rd v
a a t a a t a a t

R

        
 (10) 

For a stationary sliding with constant velocity v  the distance of detachment 2 ( ) consta t   is determined by the 

Eq. (7). Obviously, a time dependence of the coefficient of friction is completely determined by the relation of 
tangential and normal forces, 
 ( ) ( ) ( ),x Nt F t F t   (11) 

which, in turn, are determined with a distance of detachment 2 ( ).a t  As one can see from the Eq. (7), the distance of 

detachment tends to zero with increase of sliding velocity but never achieves it. Nevertheless, it is possible to obtain 
estimations of normal and tangential forces assuming that 2 0a   at .v   From that point of view,  

 inf 1 2 3 22
4 ,

3NF G R d vd     
 (12) 

 
2

inf 34
4 .

2 3x
d

F G v d R
 

   
 

 (13) 

The value of coefficient of friction inf  that is achieved at v   is: 

 inf inf inf 4
.

3x NF F d R    (14) 

It is also useful to estimate the values of force jumps at the step-wise change of the sliding velocity. Let us 
suggest that in the moment of a velocity change 0t t  the distance of detachment still remains the same as before 

2 2
2 0( ) ,a t t v Rd v       but the sliding proceeds with a new velocity 1.v  After simple transformations of the 

Eq. (9) we have a maximal value of normal force that occurs immediately after the velocity change: 

 

jump 3 3 2 21
0 1 1 2 0 1 2 0 1 2 0

1
( , ) 4 ( ( )) ( ( )) ( ( )) .

3NN
v

F F t v v G d a a t a a t a a t
R R

          
 (15) 

Applying the same approach to the tangential force (see the Eq. (10)) we have: 

 

jump 2 2 4 4 3 31
0 1 1 2 0 1 2 0 1 2 02

28 1
( , ) ( ( )) ( ( )) ( ( )) .

2 2 3x x
vG Rd

F F t v v a a t a a t a a t
R

          
 (16) 

In order to demonstrate the behavior of the developed model we have calculated the contact forces, the 
coefficient of friction and the distance of detachment 2 ( )a t  numerically. We have considered the “start-stop” test, 

when the initial value of the velocity v  is high enough 2( 0)a   and the value of the velocity after the step-wise 

change is close to zero, 4
1 10v v    2 1( ).a a  Such test allows obtaining the limiting values of the forces so that 

any values of initial and final sliding velocities will lead to the forces between mentioned limiting values. In the 
Figs. 2a and 2b the time dependencies of normal and tangential forces, acting on the indenter, are shown. It is seen 
that a step-wise change of the sliding velocity leads to an immediate jump of a force, followed by a “relaxation” to a 
new stable value. It is interesting to note that the coefficient of friction doesn’t have the same jump (see Fig. 2c). 
While the coefficient of friction changes from its maximal value determined by the Eq. (14), the distance of 

detachment 2 ( )a t  goes from a value near zero to the 2 1( 0)a v Rd a    (Fig. 2d). 
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(a) (b) 

  
(c) (d) 

FIGURE 2. Evolution of a contact under step-wise change of the sliding velocity: (a) the normal force,  
(b) the tangential force, (c) the coefficient of friction, (d) the distance of detachment 

 
The results of numerical simulation show that the forces in contact and the coefficient of friction demonstrate a 

complicated, non-linear behavior under a variation of the sliding velocity even in simplest conditions: a parabolic 
indenter sliding on a linear Kelvin’s foundation. We have obtained the analytical estimates for the values 
characterizing the evolution of the coefficient of friction: stationary and peak values of reaction forces and the size 
of contact area. Comparison of the analytical estimates with the result of direct numerical simulation of the contact 
problem has shown very good quantitative agreement between them.  

ACKNOWLEDGMENTS 

The authors thank the Russian Science Foundation (Project 14-19-00718) for financial support. 

REFERENCES 

1. C. A. Coulomb, Theorie des machines simple (Bachelier, Paris, 1821). 
2. J. H. Dieterich, Trans. Am. Geophys. Union 51, 423 (1970). 
3. J. H. Dieterich, J. Geophys. Res. 84, 2161–2168 (1979). 
4. A. Ruina, J. Geophys. Res. 88, 10359–10370 (1983). 
5. J. R. Rice  and A. L. Ruina, J. Appl. Mech. 50, 343–349 (1983). 
6. C. Marone, Nature 391, 69–72 (1997). 
7. J. M. Carlson and A. A. Batista, Phys. Rev. E 53, 4153–4165 (1996). 
8. A. Bizarri and M. Cocco, J. Geophys. Res. 117, B02314 (2012). 
9. J. H. Dieterich and B. D. Kilgore, Pure Appl. Geophys. 143, 283–302 (1994). 
10. H. Zeng, Polymer Anhesion, Friction and Lubrication (John Wiley & Sons, Hoboken, 2013). 
11. V. L. Popov, Phys. Mesomech. 19(2), 115–122 (2016). 
12. V. L. Popov and M. Hess, Facta Universit. Mech. Engng. 12, 1–14 (2014). 
13. V. L. Popov and M. Heß, Method of Dimensionality Reduction in Contact Mechanics and Friction (Springer, 

Berlin, 2014). 

020041-4

http://dx.doi.org/10.1029/JB084iB05p02161
http://dx.doi.org/10.1029/JB088iB12p10359
http://dx.doi.org/10.1115/1.3167042
http://dx.doi.org/10.1038/34157
http://dx.doi.org/10.1103/PhysRevE.53.4153
http://dx.doi.org/10.1007/BF00874332
http://dx.doi.org/10.1134/S1029959916020016

