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Abstract
When recruiting job candidates, employers rarely observe their underlying skill level directly. Instead,
they must administer a series of interviews and/or collate other noisy signals in order to estimate
the worker’s skill. Traditional economics papers address screening models where employers access
worker skill via a single noisy signal. In this paper, we extend this theoretical analysis to a multi-test
setting, considering both Bernoulli and Gaussian models. We analyze the optimal employer policy
both when the employer sets a fixed number of tests per candidate and when the employer can set
a dynamic policy, assigning further tests adaptively based on results from the previous tests. To
start, we characterize the optimal policy when employees constitute a single group, demonstrating
some interesting trade-offs. Subsequently, we address the multi-group setting, demonstrating that
when the noise levels vary across groups, a fundamental impossibility emerges whereby we cannot
administer the same number of tests, subject candidates to the same decision rule, and yet realize
the same outcomes in both groups. We show that by subjecting members of noisier groups to more
tests, we can equalize the confusion matrix entries across groups, seemingly eliminating any disparate
impact concerning outcomes.
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1 Introduction

Consider an employer seeking to hire new employees. Clearly, the employer would like to
hire the best employees for the task, but how will she know which are best fit? Typically, the
employee will gather information on each candidate, including their education, work history,
reference letters, and for many jobs, they will actively conduct interviews. Altogether, this
information can be viewed as the signal available to the employer.
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1:2 Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

Suppose that candidates can be either skilled or unskilled. If the firm hires an “unskilled”
candidate, it will incur a significant cost on account of lost productivity. For this reason,
the employer would like to minimize the number of False Positive mistakes, instances where
unskilled candidates are hired. On the other hand, the employer desires not to overspend on
the hiring process, limiting the number of interviews per hired candidate (either on average,
or absolutely). However, fewer interviews weakens the signal, causing the employer to make
more mistakes. At the heart of our model is this inherent trade-off between the quality of
the signal and the cost of obtaining the signal. This marks a departure from the classical
economics literature, in which the signal is commonly regarded as a given.

Complicating matters, hiring efficiency is not the only desiderata at play. In society,
candidates belong to various demographic groups, and we may strive to design policies that
are in some sense fair vis-a-vis group membership. While fairness can be an elusive notion,
regulators must translate it to concrete rules and laws. In the United States, a body of
anti-discrimination law dating to the Civil Rights act of 1964, subjects decisions that result
in disparate outcomes (as delineated by race, age, gender, religion, etc.) to extra scrutiny:
employers must not only show that preference for some groups over others did not drive
the decision (disparate treatment doctrine) but also justify that any observed disparities
arise from a business necessity (disparate impact doctrine), whether or not those disparities
were intentional.

In this paper, we seek to understand how a complex hiring process would interact with
the requirements of fairness. We extend the theory on candidate screening and statistical
discrimination, addressing the setting in which employers can subject employees to multiple
tests, which we assume to be conditionally independent given the worker’s skill level and
group membership. To build intuition, most of our analysis focuses on a Bernoulli model of
both worker skill and screening. Additionally, we extend the traditionally-studied Gaussian
skill and screening models to the multi-test setting (Section 5).

Unlike the classical papers, in which an employer’s hiring policy is given by a simple
thresholding rule, our setting requires greater care to derive the optimal employer policy. In
our setting, we imagine that the employer wishes to minimize the number of tests performed
subject to a constraint upper-bounding the false positive rate. We characterize the optimal
policy in this case as a randomized threshold policy. Subsequently, we show that this is
not always an optimal policy and consider the setting in which employers can allocate tests
dynamically. Namely, employers decide after each result whether to (i) hire the candidate;
(ii) reject the candidate and move on to the next one; or (iii) administer a subsequent
test. In the Bernoulli case, the optimal policy consists of administering tests until each
candidate’s posterior likelihood of being a high-skilled worker either dips below the prior
or rises above a threshold determined by the tolerable false positive rate. We reduce the
analysis of this process to a random walk over the log posterior odds and derive the solution
via the corresponding Gambler’s ruin problem.

We consider the ramifications for fairness within our model when employees, despite
possessing similarly-distributed skills, are evaluated with differing noise levels. We show
impossibility results, as well as, a solution to equalize confusion matrix entries by adjusting
the number of tests according to group parameters. Finally, we present a simple way to
estimate group parameters without knowing the true skill levels (i.e., unsupervised learning),
and give bounds in terms of the number of candidates from a group for good estimation.
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1.1 Related work

The classical economics literature on discrimination in employment can broadly be divided
into two focuses. The taste-based discrimination model due to [4] models the market outcomes
in a setting where employers express an explicit preference for hiring members of one group,
acting as if an employee’s demographic membership provides utility. This preference for
certain groups induces a sorting of employees from the disadvantaged group towards those
employers who discriminate the least with wages ultimately determined by the marginal
discriminator. Subsequently, [17] suggested a statistical mechanism by which similarly-skilled
employees from different groups might experience differential outcomes: the comparative
difficulty of screening from one group vs. another. Many subsequent works extend this
analysis, typically focusing on Gaussian models of worker quality and conditionally-Gaussian
test scores [2, 1]. These papers consider the setting where workers are assessed via a single
test characterized by a group-dependent noise level. Our work is differentiated from these by
considering richer mechanisms for acquiring signal.

In the more recent literature on fairness in machine learning, researchers often focus
on binary classification, with employees characterized by a protected characteristic (group
membership), and other (non-protected) covariates [16, 13, 14]. There, the predictor is
presumably used to guide a consequential decision, such as allocating some economic good
(loans, jobs, etc.) [8] or assessing some penalty (e.g. risk scores to guide bail decisions)
[6]. Papers then focus on various interventions for ensuring accurate prediction subject to
various constraints such as demographic parity (outcomes independent of group membership),
blindness (model cannot observe group membership), and equalized false negative and/or
false positive rates [11]. Several simple impossibility results preclude simultaneously satisfying
several combinations of these parities [5, 6, 15]. More recently, a number of papers have drawn
inspiration from economic modeling, extending the literature on fairness in classification to
consider longer-term dynamics, equilibria, and the emergence of feedback loops [12, 11, 9].
Finally, [3, 19] provide a survey of definitions from the algorithmic fairness literature.
Unrelated to fairness, [18] consider a model that is somehow resembles to ours in the context
of A/B testing. They minimize the expected time per discovery (which can be viewed as
hire) from an infinite pool of hypotheses (which can be viewed as candidates) with a bounded
false discovery rate.

2 The Bernoulli Model

We formalize our problem as follows. An employer accesses an infinite pool of candidates
(indexed by i ∈ N+), each of which has some (hidden) skill level yi ∈ {0,+1}, which denote
unskilled and skilled, respectively. Underlying worker skill levels yi are sampled independently
from a Bernoulli distribution with parameter p. An employer can access information about
the i-th candidate through a sequence of τ tests, which are conditionally independent given
yi. Each test result, ŷi,j ∈ {0,+1} disagrees with the ground truth skill with probability
Pr[ŷi,j 6= yi] = 1−σ

2 , where σ ∈ (0, 1), i.e., ŷi,j = yi ⊕Br( 1−σ
2 )1. For convenience, we denote

the noise level as η = 1−σ
2 ∈ (0, 1

2 ). We say that a test result ŷi,j is flipped if ŷi,j 6= yi, and the
number of flipped results for a given candidate is denoted by Zητ is Zητ =

∑τ
j=1 I(ŷi,j 6= yi),

where I(·) is the indicator function.

1 ⊕ is the XOR operation between two binary random variables, and therefore ŷi,j is also a random
variable.

FORC 2020



1:4 Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

The employer decides weather or not to hire the current candidate, but unlike the secretary
problem she can hire as many as she desires. A selection criterion is a mapping between test
results of a single candidate to actions: Select(ŷi,1, . . . , ŷi,τi) ∈ {0, 1}, where 0 means reject
and 1 means accept (hire). A policy π sets the selection criteria based on σ, p and other possible
constraints such as probability to hire, error probability, etc. A randomized threshold policy
is a policy π with parameters (τ, θ, r) such that π(ŷi,1, . . . , ŷi,τi) = 1 for Sτ :=

∑τ
i=1 ŷi,j > θ,

π(ŷi,1, . . . , ŷi,τi) = 0 for Sτ < θ, and for Sτ = θ the probability that π(ŷi,1, . . . , ŷi,τi) = 1 is r.
We call a policy π a threshold policy if r = 1. In a dynamic policy, rather than setting a fixed
number of tests per candidate, the employer may decide after each test whether to accept,
reject, or to perform an additional test, i.e., π(ŷi,1, . . . , ŷi,τi) ∈ {0, 1, more}. Note that for a
dynamic policy, the number of tests τ is a random variable determined based on the tests’
outcomes. When designing a policy, one must carefully consider the balance between the
following desiderata:
1. Minimize False Discovery Rate (FDR) – the fraction of unskilled workers among

the accepted candidates, i.e., FDR := Pr[yi = 0|π(ŷi,1, . . . , ŷi,τ ) = +1].
2. Minimize False Omission Rate (FOR) – the fraction of skilled workers among the

rejected candidates, i.e., FOR := Pr[yi = +1|π(ŷi,1, . . . , ŷi,τ ) = 0].
3. Minimize False Negatives (FN) – the amount of skilled workers classified as unskilled.
4. Minimize False Positives (FP) – the amount of unskilled workers classified as skilled.
5. Ratio of accept probability and number of tests – the number of tests performed

per candidate hired, using a parameter B > 1, we have τ
B ≤ Pr[π(ŷi,1, . . . , ŷi,τ ) = +1].

For any fixed number of tests τ , increasing the threshold θ of a threshold policy decreases
FDR while increasing FOR.
Loss: To handle the trade-off between the false positives, (i.e., when an unskilled candidate
is accepted) and false negatives (i.e., when a skilled candidate is rejected), we introduce an
α-loss, paramaterized by α ∈ [0, 1] and defined as follows:

`α(b1, b2) = α · I[b1 = 0, b2 = 1] + (1− α) · I[b1 = 1, b2 = 0]

where I[·] is the indicator function and b1, b2 ∈ {0, 1}. The expected loss of a policy π is,

lα(π) = E[`α(yi, π(ŷi,1, . . . , ŷi,τ ))] (1)

where the expectation is over the type of the candidates yi, the test results ŷi,j , and the
decisions of π.

3 Analysis of the Bernoulli Model with One Group

To begin, we analyze this hiring model for a single group of candidates. The employer’s goal
is to minimize the expected loss, lα(π), while maintaining a given acceptance probability.
For brevity, we relegate all proofs to the Appendix.

3.1 The Simple Threshold Policy (Equal Number of Tests)

Consider the setting where the employer must subject all candidates to an equal number of
tests τ and threshold θ (these parameters are chosen by the employer but thereafter constant
across candidates). For a given threshold, we can relate the flip probability (error rate) of
the test to the probability that a candidate is accepted as follows:
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Recall that ŷi,j = yi ⊕ Br(η), Sτ =
∑τ
j=1 ŷi,j , that Zητ =

∑τ
t=1 I(ŷi,j 6= yi), and that

τ and θ are the only parameters of the threshold policy, π. Informally, Sτ is the number
of passed tests and Zητ is the number of flips (tests in error). The probability of hiring an
unskilled candidate is given by:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = Pr[Sτ ≥ θ|yi = 0] = Pr[Zητ ≥ θ].

Since Zητ is a binomial random variable with parameters τ and η, we can calculate this
probability precisely as:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = Pr[Zητ ≥ θ] =
τ∑
k=θ

(
τ

k

)
ηk(1− η)τ−k,

and the probability of rejecting a skilled candidate is the probability that they encounter
more than τ − θ flips, thus:

Pr[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] = Pr[Sτ < θ|y = +1] = Pr[Zητ > τ − θ]

=
τ∑

k=τ−θ+1

(
τ

k

)
ηk(1− η)τ−k.

Similarly, given a candidate’s skill level, we can calculate the probability that they obtain
exactly k positive tests out of τ , i.e,

Pr[Sτ = k|yi = 0] = Pr[Zητ = k] =
(
τ

k

)
ηk(1− η)τ−k.

Pr[Sτ = k|yi = +1] = Pr[Zητ = τ − k] =
(
τ

k

)
ητ−k(1− η)k.

Given these observations, we can now analyze the employer’s choices.

Optimal solution for any ratio α ∈ (0, 1)

The next theorem shows that for threshold policies, the expected loss lα(π) = lα(θ) is
minimized at θ∗p,α such that |θ∗p,α − τ/2| ≤

log( 1
p )+log( 1

α )
2 log(1+ 2σ

1−σ ) .

I Theorem 1. The loss function lα(θ) is quasi-convex and a threshold of

θ∗p,α = arg min
θ
lα(θ) =

⌈
τ

2 −
log( 1

p − 1) + log( 1
α − 1)

2 log(1 + 2σ
1−σ )

⌉

minimizes loss for any values of α, p, σ ∈ (0, 1).

Next, we bound the number of tests required to guarantee that the probability of
classification error by the majority decision rule (i.e., θ = d τ2 e) does not exceed a specified
quantity δ.

I Theorem 2. For every δ, p, α ∈ (0, 1), performing τ = Ω(α+p−2pα
σ2 ln( 1

δ )) tests per candidate
and using majority as a decision rule (i.e., θ = τ/2) guarantees lα(π) ≤ δ.

FORC 2020



1:6 Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

Equal cost for false positives and false negatives (α = 1
2)

Consider the simple loss consisting of the classification error rate (false positives and false
negatives count equally), expressed via our loss function by setting α = 1

2 . When skilled
and unskilled candidates occur with equal frequency, i.e., p = 1/2, we can derive that the
majority decision rule minimizes the classification error for any number of tests.

I Corollary 3. Assume p = 1/2 and α = 1/2. For any number of tests τ , the majority
decision rule minimizes loss lα. Namely, arg minθ l 1

2
(θ) = d 1

2τe. In addition, for every
δ ∈ (0, 1), performing τ = Ω( 1

σ2 ln( 1
δ )) tests per candidate and using majority as a decision

rule guarantees classification error with probability of at most δ.

FDR minimization with limited number of tests per hire for balanced groups

Again, assuming balanced groups (i.e., p = 1/2), suppose that an employer would like to
minimize the false discovery rate, subject to the constraint of lower bounding the hiring
probability. We can model this optimization problem by introducing a budget parameter
B > 1 to bound any predetermined (fixed) number of tests per hired candidate as follows:

arg min
π

FDRπ = Pr[yi = 0|Pr[π(ŷi,1, . . . , ŷi,τ ) = 1]

subject to τπ
Pr[π(ŷi,1, . . . , ŷi,τ ) = 1] ≤ B

(2)

where τπ is the number of tests π performs. The following theorem shows that the optimal
policy is a randomized threshold policy.

I Theorem 4. There exists a randomized threshold policy π which is an optimal solution
for (2).

3.2 The Dynamic Policy (Adaptively-Allocated Tests)
Recall that under a dynamic policy, the employer can decide after each test whether to
accept, reject, or perform another test. In general, dynamic policies are more efficient than
those that must set a fixed number of tests. To build intuition, consider a candidate that has
passed 2 out of 3 tests. As seen above, under an optimally-constructed fixed-test policy, any
candidate that fails a single test might be rejected.2 However, the posterior probability that
this candidate is in fact skilled may still be greater than that of a fresh candidate sampled
from the pool. Thus we can improve on the fixed-test policy by dynamically allocating more
tests to candidates until their posterior odds either dip below the prior odds or rise above
the threshold for hiring. The following theorem formalizes this notion that it is better to
administer more tests to a candidate that passed the majority of previous tests than to start
afresh with a new candidate:

I Theorem 5. For any p, σ, τ , a candidate i that passed θ > τ
2 out of τ tests is more likely

to be a skilled than a freshly-sampled candidate i′ for whom no test results are yet available,
i.e., Pr[yi′ = +1] = p < Pr[yi = +1|Sτ = θ].

I Remark 6. If θ < τ
2 , the inequality would have been reversed.

2 For example, if B = 18 and η = 1
3 , the lowest false discovery rate is achieved by τ = θ = 3.
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The Greedy Policy

We now present a greedy algorithm that continues to test a candidate so long as the posterior
probability that yi = +1 is greater than ε′ and smaller than 1 − ε, rejects a candidate
whenever the posterior falls below ε′ (absent fairness concerns, employers will set ε′ = p for
all groups), and accepts whenever the posterior rises above 1− ε. Given parameters ε, ε′ > 0,
we show that the greedy policy solves the optimization problem of minimizing the mean
number of tests under these constraints, i.e.,

minimize
τ

E[τ ]

subject to ∀iπ(ŷi,1, . . . , ŷi,τ ) = 1 iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] ≥ 1− ε
∀iπ(ŷi,1, . . . , ŷi,τ ) = 0 iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] < ε′

Our analysis of this policy builds upon the observation that conditioned on a worker’s skill,
the posterior log-odds after each test perform a one-dimensional random walk, starting with
the prior log-odds log( p

1−p ) and moving, after each test result, either left (upon a failed test)
or right (upon a passed test). When (as in our model) the probability of a flip are equal
for skilled and unskilled candidates, our random walk has a fixed step size. Moreover, our
random walk has absorbing barriers corresponding to (when ε′ = p) falling below the prior
log odds (on the left) and exceeding the hiring threshold (on the right). Owing to the fixed
step size and absorbing barriers, our policy resembles the classic problem of Gambler’s ruin,
in which a gambler wins or loses a unit of currency at each step, and loses when crossing
a threshold on the left (going bankrupt) or on the right (bankrupting the opponent). We
formalize the random walk as follows where Xj is the position on the walk at time j:
1. X0 is the prior log-odds of the candidate, i.e., X0 = log p

1−p .

2. After each test result, ŷi,j is observed, Xj = Xj−1 + (2ŷi,j − 1) · log
(

Pr[ŷi,j=+1|yi=+1]
Pr[ŷi,j=+1|yi=0]

)
.

Let πGreedy be the policy that accepts a candidate if Pr[yi = +1|ŷi,1, . . . , ŷi,j ] ≥ 1− ε, rejects
if Pr[yi = +1|ŷi,1, . . . , ŷi,j ] < ε′, and otherwise conducts an additional test, i.e.,

πGreedy(ŷi,1, . . . , ŷi,j) =


0 if Pr[yi = +1|ŷi,1, . . . , ŷi,j ] < ε′

1 if Pr[yi = +1|ŷi,1, . . . , ŷi,j ] ≥ 1− ε
retest else

.

An employer will generally set the lower absorbing barrier to reject all candidates with
posterior log odds less than p since a fresh candidate from the pool is expected to be better.
However, when noise levels differ across groups, we may prefer in the interest of fairness to
set ε′ lower than p for members of the noisier group, allowing us to equalize the frequency of
false negatives across groups (see Section 4).

I Lemma 7. Let β, β′ ∈ R be the parameters that satisfy β
β+1 = 1− ε and β′

β′+1 = ε′ (i.e.,
β = 1−ε

ε and β′ = ε′

1−ε′ ). Then Xτ ≥ log β iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] ≥ 1 − ε (iff the
candidate is accepted) and Xτ < log β′ iff Pr[yi = +1|ŷi,1, . . . , ŷi,τ ] < ε′ (iff the candidate is
rejected).

I Corollary 8. The policy πGreedy can be described as follows.

πGreedy(ŷi,1, . . . , ŷi,τ ) =


0 if Xτ < log ε′

1−ε′

1 if Xτ ≥ log( 1−ε
ε )

retest else

FORC 2020



1:8 Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

Table 1 Confusion matrix for πgreedy assuming ε ≤ 1/4 and ε′ ≤ p ≤ 1/2.

General ε′ When ε′ = p

Skilled (yi = +1) Unskilled (yi = 0) Skilled Unskilled

accept TPR = Θ
(

1− ε′

p
(1− σ)

)
FPR = Θ (ε(p− ε′ + ε′σ)) Θ(σ) Θ(εpσ)

reject FNR = Θ
(
ε′

p
(1− σ)

)
TNR = Θ (1− ε(p− ε′ + ε′σ)) Θ(1− σ) Θ(1− εpσ)

We use the following parameters in the next theorems:

a =

 log( (1−ε)(1−ε′)(1+σ)
εε′(1−σ) )

log( 1+σ
1−σ )

� 1
σ

and z =

 log( p(1−ε′)(1+σ)
ε′(1−p)(1−σ) )
log( 1+σ

1−σ )


I Theorem 9 (Expected number of tests per type). The expected number of tests until a

decision (namely accept or reject) for skilled candidates is E[τs] = 1
σ

(
a · 1−( 1−σ

1+σ )z

1−( 1−σ
1+σ )a − z

)
≈

2a
1+σ −

z
σ and E[τu] = 1

σ

(
z − a · 1−( 1+σ

1−σ )z

1−( 1+σ
1−σ )a

)
≈ z

σ for unskilled candidates.

For the probabilities of the candidates to be accepted or rejected, conditioned on their true
skill level, we present the results in a form of confusion matrix in Table 1.

I Theorem 10. The expected number of tests until deciding whether to accept or reject a
candidate is E[τ |π(yi,τ ) ∈ {0, 1}] ≈ ap

σ , where a� 1
σ .

4 Fairness Considerations in the Two-Group Setting

Two Groups – Threshold Policies

We now discuss the effects of a threshold policy when candidates belong to two groups,
G1 and G2 whose skill level is distributed identically, but whose tests are characterized by
different noise levels. Without loss of generality, we assume that η1 < η2, where ηi is the
probability that a test result of a candidate from Gi is different from his skill level. To begin,
we note the fundamental irreconcilability of equalizing either the false positive or the false
negative rates across groups with subjecting candidates to the same policy.

I Theorem 11 (Impossibility result). When noise levels differ between two groups with
identical skill level distribution, a single Threshold Policy π (with the same number of tests τ
and the same threshold θ for both groups) cannot have equality in either the false negative
rates or in the false positive rates across the groups. Particularly, there is a higher false
positive rate in the noisier group, as an unskilled candidate from G2 is more likely to be
accepted by the threshold policy than an unskilled candidate from G1:

FPRη1
θ,τ = Pr

η1
[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] < Pr

η2
[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] = FPRη2

θ,τ ,

and also a higher false negative rate, as a skilled candidate from G2 is more likely to be
rejected than a skilled candidate from G1:

FNRη1
θ,τ = Pr

η1
[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] < Pr

η2
[π(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] = FNRη2

θ,τ .
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Connection to Economics Literature. Aigner and Cain [1] discuss a similar case under a
Gaussian screening model where the variance (noise level) of the single test differs across the
two groups. Similarly, they note that qualified candidates fare worse in the noisy group but
that unqualified candidates fare better in the noisier group. Our work differs from theirs
in that we consider the effect of multiple tests and the ability to optimize over the number
of tests.

Two Groups–Dynamic policy

We now consider the (dynamic) hiring policy in the setting when employees belong to two
groups, G1 and G2 with identically-distributed skills but different noise levels η1 < η2. We
note that there are two ingredients that explain the differences among the groups: (i) The
step size, log

(
Pr[ŷi,j=+1|yi=+1]
Pr[ŷi,j=+1|yi=0]

)
= log

(
1−η
η

)
of G2 (the noisier group) is smaller than the

step size of G1. Thus these candidates must typically pass more tests before they are accepted;
and (ii) Skilled candidates in group G2 exhibit less drift to the right (they have a higher
probability of failing a test). Consequently, when an employer (rationally) sets ε′ = p for all
groups, a skilled candidate from G2 is more likely to be fail a test in step 1, at which point
the dynamic policy summarily rejects them. These two facts explain both the higher false
negative rates for G2 and the longer expected duration until acceptance. By setting ε′ < p

for members of the noisier group, we can equalize false negative rates. Precisely, setting
ε′ = η1

η2
p achieves the desired parity. The cost of this intervention is that it requires more

tests for candidates from the noisier group. Here, our random walk analysis can be leveraged
to determine exactly how many more. Once again, we cannot provide equality across the
groups in all desired ways – the same acceptance criterion, the same expected number of tests,
and the same false negative rates between groups – with the noise differs across groups.

5 Gaussian Worker Screening Model

In this section, we work out the analytic solutions for the conditional expectation of worker
qualities given a series of conditionally independent tests Y1, ...Yn s.t. ∀i, j, Yi ⊥ Yj |Q. We
assume that the worker quality Q normally distributed with mean µQ and variance σ2

Q, so
instead of binary skill level we have continuous quality of candidates. Conditioned on Q = q,
each test is generated according to the structural equation yi = q + η, where η is a normally
distributed noise term with mean 0 and variance σ2

η. Equivalently, we can say that the
conditional distribution for each test P (Y |Q = q) is Gaussian with mean q and variance σ2

η.
We refer the reader to the full version [7] for further details.

We show that we can equalize conditional variance between the two groups by giving
more interviews to noisier group, and that it yields the same conditional expectations.

I Theorem 12. For two groups, G1, G2 with the same worker quality Q, that differ only
in the variance of their noise σ2

η1
< σ2

η2
, the variance can be equalized by using n2 = σ2

η2
σ2
η1
n1

interviews (or tests) for G2, where n1 is the number of interviews for each candidate from
G1.

I Theorem 13. When equalizing conditional variances between G1, G2 by using n2 = σ2
η2
σ2
η1
n1,

we get the same conditional expectations, Eη1 [Q|Y1, ..., Yn1 ] = Eη2 [Q|Y1, ..., Yn2 ].
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6 Unsupervised Parameter Estimation

Now, under the assumption of realizable case, we explain how one can estimate the parameters
p and σ given tests results from a homogeneous population. Surprisingly, we discover that
parameter recovery in this model does not require any ground truth labels indicating whether
an employee is skilled or unskilled. We use Hoeffding’s inequality to bound the absolute
difference between the estimated parameters and the true parameters by choosing δ as the
wanted upper bound and solving for the number of samples or ε.

I Lemma 14 (Hoeffding’s inequality). Let y1, . . . , ym be σ2−sub–gaussian random variables.
Then, for any ε > 0,

Pr
[∣∣∣∣∣ 1
m

m∑
i=1

yi − E[yi]

∣∣∣∣∣ ≥ ε
]
≤ 2e−mε

2/2σ2
.

If y1, . . . , ym are Bernoulli random variables with parameter p,

Pr
[∣∣∣∣∣ 1
m

m∑
i=1

yi − p

∣∣∣∣∣ ≥ ε
]
≤ 2e−2mε2

.

We start by estimating σ and then use it to derive an estimate for p. The estimated
parameters are denoted by σ̂ and p̂. Notice that in order to have any information regarding
the true value of σ, we need to have candidates with at least two tests. Hence, from now on
we assume exactly that, i.e., ∀iπGreedy(ŷi,1) = more for dynamic policies and τ ≥ 2 for fixed
number of tests policies.

Now, in both policies we have showed that the optimal rule is to reject candidates that
fail their first test. Therefore inconsistencies between the first two tests are seen only in cases
where ŷi,1 = 1, ŷi,2 = 0.

Let c be the number of inconsistencies in the first two tests, i.e., c = |{(ŷi,1, ŷi,2) : yi,1 6=
yi,2}|, and let m be the number of candidates with at least two tests. Since c is generated by
sampling m times, the distribution Br(( 1+σ

2 )( 1−σ
2 )) = Br( 1−σ2

4 ) and we can estimate σ as
stated in the next theorem:

I Theorem 15. If we have results from m ≥ 1
2ε2 ln 2

δ candidates, by using σ̂ =
√

1− 4 c
m ,

then with probability 1− δ we have that |σ̂ − σ| ≤ ε.

Having an estimation of the parameter σ̂, we can calculate the estimated p as follows: Let
pŷ∗,1=1 :=

∑
i
I(ŷi,1=1)
m be the percentage of positive first tests. Since this number is generated

by the distribution Br( 1
2 (p(1 + σ) + (1− p)(1− σ))) = Br( 1

2 + (2p− 1)σ2 ), we can estimate p̂
using the estimated value of σ̂.

I Theorem 16. If we have results from m ≥ 1
2ε2 ln 2

δ candidates, by using p̂ = 2(py∗,1=1−1)+σ̂
σ̂ ,

we get that with probability 1− δ we have that |p̂− p| ≤ 2ε.

Under the Gaussian screening model, the parameter estimation is also straightforward
(assuming realizability) without access to the true skill level of the employees. We start by
looking at a single candidate, i. Each of his test results, ŷi,j is generated from a conditional
distribution P (Yi|Qi = qi) which is a Gaussian with mean qi and variance σ2

η. Since this
variance is common among all the candidates, we can simply average the estimated variance
of every candidate to get an approximation for σ2

η. Suppose ŷi,1, . . . , ŷi,n is a sequence of n
i.i.d tests of candidate i, and let yi = 1

n

∑n
j=1 yi,j be the empirical mean of candidate i’s tests.
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The following theorem is a result from Hoeffding’s Inequality, in which we use to bound
the error of our estimated parameters.

I Theorem 17. By using the following as estimators for Gaussian parameters µ̂Q =
1
m

∑m
i=1 yi, σ̂2

η = 1
m

∑m
i=1

1
n

∑n
j=1(yi,j − yi)2 and σ̂2

Q = 1
m

∑m
i=1(µ̂Q − yi)2 (notice that

E[σ̂2
η] = σ2

η and E[σ̂2
Q] = σ2

Q), the difference between each parameter and it’s estimator is

bounded by O(
√

1
m ln( 1

δ )).

7 Discussion and Future Work

Consider two groups with identically-distributed skills and characterized by different noise
levels in screening. Our results demonstrate that if a regulatory body (e.g., policymakers
or a regulator) insists on the same number of tests and the same decision rule for both
groups, this would yield higher false positive rates in any threshold policy. As a result, hired
candidates from the noisier group would suffer higher rates of firing. In turn, this might
lead employers to erroneously conclude that this group’s skill level is lower than it actually
is. This paper presents a policy that handles this problem by minimizing the false positive
rates of both groups, in the form of a greedy policy. Moreover, the greedy policy is efficient,
minimizing the expected number of tests per hire among all policies that achieve a specified
false positive rate and continue testing every candidates that appear better than the a new
one. However, the dynamic policy will still suffer (as does the simple threshold policy) from
higher false negative rates for the noisier group, violating a notion of fairness dubbed equality
of opportunity in the recent literature on fairness in machine learning [11]. We addressed this
problem by modifying the greedy policy to reject candidate iff Pr[yi = +1|ŷi,1 . . . ŷi,τ ] < ε′

by setting ε′ < p. Our greedy policy can be made forgiving and equalize false negative rates
across groups.

Implications for Fairness

When it comes to ”business justification”, Civil Rights regulation in the United States might
be open to more than one interpretation regarding group-based disparities. In disparate
impact doctrine, the statistical disparity of interest, e.g., in the famous 4/5 test concerns the
decisions itself. In our model, if one were to apply a uniform hiring policy, administering
the same number of tests to all applicants and applying the same threshold, a disparate
impact might emerge. By subjecting members of noisier groups to more tests, we can equalize
the confusion matrix entries across groups, seemingly eliminating any disparate impact
concerning outcomes.

However, in this case, both the number of tests administered, and the inferences drawn
from the results depend explicitly on group membership, potentially raising concerns about
disparate treatment and procedural fairness. Another interesting question might be to
consider what disparate doctrine might have to say about disparities not in outcomes but in
testing procedures.

Our setup motivates a new dimension to the discussion – even when members of the
two groups have statistically identical outcomes, and even putting aside concerns about
group-blindness, members of the more heavily-tested group may experience adversity. For
example, perhaps these candidates, subject to more interviews, would not be able to interview
with as many employers, thus lowering their overall likelihood of finding employment.

FORC 2020
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It would be interesting to introduce strategic behavior to our setting and understand the
implications. For example, the candidates might have a utility that depends on whether they
received the job, and disutility associated with how long their interview process was. Their
overall utility can simply the difference between the two. Such a strategic model will cause
some candidates not to apply, and the stream of candidates applying would have significant
different characteristics than the overall population. Such a strategic setting would pose
additional fairness challenges, since the mechanism would also control applies and not only
who is hired.

References
1 Dennis J Aigner and Glen G Cain. Statistical theories of discrimination in labor markets. ILR

Review, 30(2):175–187, 1977.
2 Kenneth Arrow et al. The theory of discrimination. Discrimination in labor markets, 3(10):3–33,

1973.
3 Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning.

fairmlbook.org, 2019. URL: http://www.fairmlbook.org.
4 Gary S Becker. The economics of discrimination chicago. University of Chicago, 1957.
5 Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in

criminal justice risk assessments: The state of the art. Sociological Methods & Research, 2018.
6 Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism

prediction instruments. Big data, 5(2):153–163, 2017.
7 Lee Cohen, Zachary C. Lipton, and Yishay Mansour. Efficient candidate screening under

multiple tests and implications for fairness. CoRR, abs/1905.11361, 2019. arXiv:1905.11361.
8 Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical

review of fair machine learning. arXiv preprint, 2018. arXiv:1808.00023.
9 Danielle Ensign, Sorelle A. Friedler, Scott Neville, Carlos Scheidegger, and Suresh Venkata-

subramanian. Runaway feedback loops in predictive policing. In Conference on Fairness,
Accountability and Transparency (FAT*), 2018.

10 William Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
January 1968.

11 Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of opportunity in supervised learning.
In Advances in neural information processing systems (NeurIPS), 2016.

12 Lily Hu and Yiling Chen. A short-term intervention for long-term fairness in the labor market.
In World Wide Web Conference (WWW), 2018.

13 Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree
learning. In International Conference on Data Mining (ICDM), 2010.

14 Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through
regularization approach. In ICDM Workshops, 2011.

15 Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the
fair determination of risk scores. In Innovations in Theoretical Computer Science Conference
(ITCS), 2017.

16 Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. In
Knowledge Discovery in Databases (KDD), 2008.

17 Edmund S Phelps. The statistical theory of racism and sexism. The american economic review,
pages 659–661, 1972.

18 Sven Schmit, Virag Shah, and Ramesh Johari. Optimal testing in the experiment-rich regime.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

19 Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the International
Workshop on Software Fairness, FairWare ’18, 2018.

20 Ward Whitt. Uniform conditional stochastic order. Journal of Applied Probability, 17(1):112–
123, 1980.

http://www.fairmlbook.org
http://arxiv.org/abs/1905.11361
http://arxiv.org/abs/1808.00023


L. Cohen, Z. C. Lipton, and Y. Mansour 1:13

A Technical Proofs

A.1 Proofs from Section 3
Proof of Theorem 1. To prove the theorem, we show that the loss function lα(τ, θ), as a
function of θ is quasi-convex and achieves its minimum value at

⌈
1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
.

Namely, we show that the loss is monotone increasing for
⌈

1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
≤ θ ≤

τ − 1, i.e., increasing θ increases the loss: lα(θ) < lα(θ + 1).
Similarly, we show that for 1 ≤ θ ≤

⌈
1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
, we have lα(θ) < lα(θ − 1).

Indeed,

lα(θ + 1, τ)− lα(θ, τ) = −αPr[y = 0, Sτ = θ] + (1− α) Pr[y = +1, Sτ = θ]

= −αPr[Sτ = θ|y = 0] Pr[y = 0] + (1− α) Pr[Sτ = θ|y = +1] Pr[y = +1]

Since Pr[y = 0] = 1− p and Pr[y = +1] = p, we have

l 1
2
(θ + 1, τ)− l 1

2
(θ, τ) = −(1− p)αPr[Sτ = θ|y = 0] + p(1− α) Pr[Sτ = θ|y = +1].

The above expression is positive iff

(1− p)αPr[Sτ = θ|y = 0] < p(1− α) Pr[Sτ = θ|y = +1] (3)

Since Pr[Sτ = θ|y = 0] is the probability of exactly θ flips, and Pr[Sτ = θ|y = +1] is the
probability of exactly τ − θ flips, we can calculate those probabilities as follows:

Pr[Sτ = θ|y = 0] =
(
τ

θ

)
(1− σ

2 )θ(1 + σ

2 )τ−θ

Pr[Sτ = θ|y = +1] =
(

τ

τ − θ

)
(1− σ

2 )τ−θ(1 + σ

2 )θ

Substituting expression in (3), we get

(1− p)α
(
τ

θ

)
(1− σ

2 )θ(1 + σ

2 )τ−θ < p(1− α)
(

τ

τ − θ

)
(1− σ

2 )τ−θ(1 + σ

2 )θ.

Rearranging, we get

(1− σ
1 + σ

)2θ < (1− σ
1 + σ

)τ ( p

1− p )(1− α
α

).

Applying log on both sides gets us

2θ log(1− σ
1 + σ

) < τ log(1− σ
1 + σ

) + log( p

1− p ) + log(1− α
α

).

Solving for θ, we find that the inequality holds if

θ >
τ log( 1−σ

1+σ ) + log( p
1−p ) + log( 1−α

α )
2 log( 1−σ

1+σ )
=
⌈

1
2(τ −

log( 1
p − 1) + log( 1

α − 1)
log(1 + 2σ

1−σ )
)
⌉

For θ ≥
⌈

1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
, we have

(1− p)αPr[Sτ = θ|y = 0] < p(1− α) Pr[Sτ = θ|y = +1],
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and for θ ≤
⌈

1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
, we have

α(1− p) Pr[Sτ = θ|y = 0] > (1− α)pPr[Sτ = θ|y = +1].

This implies that the maximum is θ∗p,α =
⌈

1
2 (τ − log( 1

p−1)+log( 1
α−1)

log(1+ 2σ
1−σ ) )

⌉
. J

Proof of Theorem 2. We start with a skilled candidate. The expected number of tests that
a skilled candidate passes is E[Sτ |y = +1] = τ( 1+σ

2 ) > τ
2 .

By using Hoeffding’s inequality for Bernoulli distributions, for every ε > 0,

Pr[E[Sτ ]− Sτ ≥ ε|y = +1] = Pr[τ(1 + σ

2 )− Sτ ≥ ε|y = +1] ≤ e−2ε2τ < δ.

Choosing ε = σ
2 yields Sτ ≤ τ

2 < d τ2 e (as τ is odd), which holds iff a majority threshold
policy would predict that this is an unskilled candidate (false negative). Solving for τ , we
get τ > 1

σ2 ln( 1
δ ).

We now repeat the process for an unskilled candidate. The expected number of tests that
an unskilled candidate passes is E[Sτ |y = 0] = τ( 1−σ

2 ) < τ
2 .

By using Hoeffding’s inequality again, we have

Pr[Sτ − E[Sτ ] ≥ ε|y = 0] = Pr[Sτ − τ(1− σ
2 ) ≥ ε|y = 0] ≤ e−2ε2τ < δ

Choosing ε = σ
2 yields Sτ > τ

2 , which holds iff a majority threshold falsely predicts that this
is a skilled candidate (false positive). Solving for τ again, we get τ > 1

σ2 ln( 1
δ ).

Overall, τ > α(1−p)
σ2 ln( 1

δ ) + p(1−α)
σ2 ln( 1

δ ) = Ω(α+p−2pα
σ2 ln( 1

δ )). J

Proof of Theorem 4. Let π′ be any optimal policy for (2) (not necessarily threshold) with
a fixed number of tests, τ . We will show, in two steps, how to transform it into an optimal
randomized threshold policy. The first step is to symmetrize π′. Let rk = Pr[π(ŷ) = 1|Sτ = k].
Define a policy π′′, which performs τ tests, and accepts with probability rk where k = Sτ .
Clearly, both π′ and π′′ have the same accept probability. In addition, since condition on
Sτ = k, any sequence of outcomes is equally likely. Furthermore, and the probability that
y = 1 given any sequence of outcomes with Sτ = k, is identical. (Technically, Sτ is a sufficient
statistics.) This implies that the false discovery rate is also unchanged.

This yields that π with the randomization vector r is also optimal.
The second step is to suppose – for sake of contradiction – that π′′ is not a randomized

threshold policy. We will show that we can improve the FDR of π′′ while keeping the
probability of acceptance unchanged. This will contradict the hypothesis that π′ is optimal.

If π′′ is not a randomized threshold policy, then there is no θ and k, such that

rk = Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|Sτ = k 6= θ] =
{

0, if k < θ

1 if k > θ
.

Now, let k be the minimal value such that rk > 0 and let 0 < i < τ − k be the minimal value
for which 0 < rk+i < 1. Clearly, the FDR is lower at Sτ = k + i than at Sτ = k. Intuitively,
we can shift some probability mass, εk > 0 from rk to rk+i in a way that maintains the
acceptance probability of π and decreases the false positive rates.

Let εk+i > 0 be such that εk · rk = εk+i · rk+i. Let r′ be a modified randomization
vector for π such that r′k = rk(1 − εk), r′k+i = rk+i(1 + εk+i) and for every l /∈ {k, k + i}
r′l = rl. Since Pr[π(ŷi,1, . . . , ŷi,τ ) = 1] =

∑τ
l=1 rl =

∑
l/∈{k,k+i} rl + r′k + r′k+i, the acceptance

probability remains the same. As for the false discovery rate, since Pr[yi = 0|Sτ = k + i] <
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Pr[yi = 0|Sτ = k], Pr[Sτ = k + i] is higher with r′ than with r, Pr[Sτ = k] is lower with
r′ than with r and for any l /∈ {k, k + i}, Pr[Sτ = l] with r′ is the same as with r, the
false discovery rate with r′ is lower, which contradicts the optimality of π with r as the
randomization vector. J

Proof of Theorem 5. Using Bayes’ theorem, the conditional probability can be decom-
posed as

Pr[yi = +1|Sτ = θ] = Pr[yi = +1] Pr[Sτ = θ|yi = +1]
Pr[Sτ = θ] =

p
(
τ
θ

)
( 1−σ

2 )τ−θ( 1+σ
2 )θ

p
(
τ
θ

)
( 1−σ

2 )τ−θ( 1+σ
2 )θ + (1− p)

(
τ
τ−θ
)
( 1+σ

2 )τ−θ( 1−σ
2 )θ

.

Since τ − θ < θ and
(
τ
θ

)
=
(
τ
τ−θ
)
, we get

p(1 + σ)2θ−τ

p(1 + σ)2θ−τ + (1− p)(1− σ)2θ−τ =
p( 1+σ

1−σ )2θ−τ

p( 1+σ
1−σ )2θ−τ + 1− p

.

Since ( 1+σ
1−σ ) > 1 it holds that ( 1+σ

1−σ )2θ−τ > 1,

(1 + σ

1− σ )2θ−τ (1− p) > 1− p.

So,

(1 + σ

1− σ )2θ−τ > p(1 + σ

1− σ )2θ−τ + 1− p,

And finally,

Pr[yi′ = +1] = p <
p( 1+σ

1−σ )2θ−τ

p( 1+σ
1−σ )2θ−τ + 1− p

= Pr[yi = +1|Sτ = θ]. J

Proof of Lemma 7. Let S′τ =
∑τ
j=1(2ŷi,j − 1), and let sτ ∈ {−τ, . . . , τ} be any of the

possible values of S′τ . Note that

Pr[ŷi,j = 1|yi = 1]
Pr[ŷi,j = 1|yi = 0] = 1 + σ

1− σ .

Since the ŷi,j are i.i.d., we have

Xτ =X0 +
τ∑
j=1

(2ŷi,j − 1) · log(Pr[ŷi,j = +1|yi = +1]
Pr[ŷi,j = +1|yi = 0] )

= log( p

1− p ) + Sτ log(1 + σ

1− σ )

= log(( p

1− p )(1 + σ

1− σ )Sτ ).

Since

Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0] = (1 + σ

1− σ )sτ ,
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we have

Xτ = log(( p

1− p )(Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0])). (4)

Since

Pr[Sτ = sτ |yi = 1] = Pr[Sτ = sτ ] · Pr[yi = 1|Sτ = sτ ]
Pr[yi = 1]

and

Pr[Sτ = sτ |yi = 0] = Pr[Sτ = sτ ] · Pr[yi = 0|Sτ = sτ ]
Pr[yi = 0] ,

assigning Pr[yi = 0] = 1− p and Pr[yi = 1] = p, we get

Pr[Sτ = sτ |yi = 1]
Pr[Sτ = sτ |yi = 0] = (1− p) · Pr[yi = 1|Sτ = sτ ]

p · Pr[yi = 0|Sτ = sτ ] . (5)

Applying (5) in (4) and adding Xτ ≥ log β gives us

Xτ = log
(

Pr[yi = 1|Sτ = sτ ]
Pr[yi = 0|Sτ = sτ ]

)
= log

(
Pr[yi = 1|Sτ = sτ ]

1− Pr[yi = 1|Sτ = sτ ]

)
≥ log β

Pr[yi = 1|Sτ = sτ ]
1− Pr[yi = 1|Sτ = sτ ] ≥ β

Pr[yi = 1|Sτ = sτ ] ≥ β(1− Pr[yi = 1|Sτ = sτ ])

Pr[yi = 1|Sτ = sτ ] ≥ β

1 + β

Applying (5) in (4) and adding Xτ < log β′ gives us

Pr[yi = 1|Sτ = sτ ]
1− Pr[yi = 1|Sτ = sτ ] < β′

Hence

Pr[yi = 1|Sτ = sτ ] < β′

1 + β′
J

Proof of Theorem 9. First recall that given a skilled candidate, for every test j,

Pr[ŷi,j = +1|yi = +1] = 1 + σ

2

Pr[ŷi,j = 0|yi = +1] = 1− σ
2

Hence

Pr[ŷi,j = 0|yi = 1]− Pr[ŷi,j = +1|yi = 1] = −σ.

The lower absorbing barrier is reached when a candidate’s posterior skill level is lower than
the prior of the skill level, i.e.,

log ε′

1− ε′ − log
(

1 + σ

1− σ

)
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and the starting point is just one step away from the lower absorbing barrier:

X0 = log p

1− p .

According to Corollary 8, the upper absorbing barrier is in

log(1− ε
ε

).

To derive the results for the expected duration of the random walk for skilled and unskilled
candidates, we shift the locations of the absorbing points so that the lower barrier would be
in 0 and also divide them by a step size (so now we have that every step is of size 1). The
new upper absorbing barrier is at

a =
⌈

log( 1−ε
ε )− (log ε′

1−ε′ − log( 1+σ
1−σ ))

log( 1+σ
1−σ )

⌉
=

 log( (1−ε)(1−ε′)(1+σ)
εε′(1−σ) )

log( 1+σ
1−σ )

 .
And we also shift the starting point:

z =
⌈

log p
1−p − (log ε′

1−ε′ − log( 1+σ
1−σ ))

log( 1+σ
1−σ )

⌉
=

 log( p(1−ε′)(1+σ)
ε′(1−p)(1−σ) )
log( 1+σ

1−σ )


As stated in [10], the expected duration of a random walk with absorbing barriers of 0

and a from z = 1 is (equation 3.4, chapter XIV [page 348]):

E[τs] = E[Dz=1] = 1
q − p

(
z − a ·

1− ( qp )z

1− ( qp )a

)
= 1
−σ

(
z − a ·

1− ( 1−σ
1+σ )z

1− ( 1−σ
1+σ )a

)
.

Hence,

E[τs] = 1
σ

(
a ·

1− ( 1−σ
1+σ )z

1− ( 1−σ
1+σ )a

− z

)
.

As for unskilled candidates, the absorbing points and the starting point are the same, the
only difference is that

Pr[ŷi,j = +1|yi] = 1− σ
2

and

Pr[ŷi,j = 0|yi = +1] = 1 + σ

2 .

Therefore,

Pr[ŷi,j = 0|yi = 0]− Pr[ŷi,j = +1|yi = 0] = σ

and we deduce

E[τu] = 1
σ

(
z − a ·

1− ( 1+σ
1−σ )z

1− ( 1+σ
1−σ )a

)
. J
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Deviations for the confusion matrix (Table 1). We split the claim in the confusion matrix
(Table 1) into two parts. First, using equation (2.4) from chapter XIV [page 345] in [10],
we get

FNR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 0|yi = +1] =
( 1−σ

1+σ )a − ( 1−σ
1+σ )z

( 1−σ
1+σ )a − 1

and

TNR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 0|yi = 0] =
( 1+σ

1−σ )a − ( 1+σ
1−σ )z

( 1+σ
1−σ )a − 1

.

The second part follows from the fact the gambler’s ruin must end in case of absorbing
barriers.

TPR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 1|yi = +1] = 1−
( 1−σ

1+σ )a − ( 1−σ
1+σ )z

( 1−σ
1+σ )a − 1

=

( 1−σ
1+σ )z − 1

( 1−σ
1+σ )a − 1

=
ε′(1−p)(1−σ)
p(1−ε′)(1+σ) − 1
ε′ε(1−σ)

(1−ε′)(1−ε)(1+σ) − 1
=

µ(1−p)
p − 1
εµ

(1−ε) − 1 = (1− ε)(µ(1− p)− p)
p(εµ− (1− ε)) ,

Where µ := ε′(1−σ)
(1−ε′)(1+σ) . For ε ≤ 1/4 and p < 1/2 we get 0 ≤ µ ≤ 1/3 and µ = Θ(ε′(1− σ)),

therefore

TPR = Θ
(
p− µ
p

)
= Θ

(
1− ε′

p
(1− σ)

)
.

Hence FNR = Θ( ε
′

p (1− σ)).

FPR = Pr[πGreedy(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0] =
( 1+σ

1−σ )z − 1
( 1+σ

1−σ )a − 1
=

p(1−ε′)(1+σ)
(1−p)ε′(1−σ) − 1

(1−ε′)(1−ε)(1+σ)
ε′ε(1−σ) − 1

=

=
p

(1−p)µ − 1
(1−ε)
εµ − 1

ε(p− (1− p)µ)
(1− p)(1− ε− εµ) = Θ (ε(p− µ)) = Θ (ε(p− ε′ + ε′σ))

Hence TNR = Θ (1− ε(p− ε′ + ε′σ)). J

Proof of Theorem 10.
E[τ ] = E[τs]p+ E[τu](1− p) =

= 1
σ

(
a ·

1− ( 1−σ
1+σ )z

1− ( 1−σ
1+σ )a

− z

)
p+ 1

σ

(
z − a ·

1− ( 1+σ
1−σ )z

1− ( 1+σ
1−σ )a

)
(1− p) =

≈ 1
σ

(
a · (1− ε′

p
(1− σ))− z

)
p+ 1

σ
(z − a(ε(p− ε′ + ε′σ)))(1− p) ≈ ap

σ
J
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A.2 Proofs from Section 4
The next lemma aids in the proof of Theorem 11.

I Lemma 18. Let Zηn be a Binomial random variable with parameters n ∈ N and η ∈ (0, 1).
Given a number of successes, k ∈ {0, . . . , n}, we know that the probability mass function of
Zηn is fk(η) := Pr[Zηn = k] =

(
n
k

)
ηk(1− η)n−k. Let L(η|k) be the likelihood function of the

event Zηn = k. Then the maximum likelihood of fk(η) is η = k
n . I.e.,

L(η|k) = argmaxηfk(η) = argmaxη
(
n

k

)
ηk(1− η)n−k = k

n
.

Proof of Lemma 18. We notice that
(
n
k

)
does not depend on η, thus

argmaxηfk(η) = argmaxη
(
n

k

)
ηk(1− η)n−k = argmaxηηk(1− η)n−k

The log-likelihood is particularly convenient for maximum likelihood estimation. Logarithms
are strictly increasing functions, as a result, maximizing the likelihood is equivalent to
maximizing the log-likelihood, i.e.,

argmaxηηk(1− η)n−k = argmaxη ln(ηk(1− η)n−k) = argmaxηk ln(η) + (n− k) ln(1− η)

Differentiating (with respect to η) and comparing to zero we get

d ln(fk(η))
dη

= k

η
− n− k

1− η = 0.

And after refactoring,

k(1− η) = (n− k)η

The function ln(fk(η)) is a strictly concave as its second derivative is negative,

d2 ln(fk(η))
dη2 = − k

η2 −
n− k

(1− η)2 < 0,

And since the derivative of a strictly concave function is zero at k
n , then η̂ = k

n is a global
maximum. Therefore, η̂ = k

n obtains absolute maximum in fk(η). J

Proof of Theorem 11. Let Zηiτ be a random variable that represents the number of flips out
of a τ -tests sequence with a noise level of ηi, i.e., Zηiτ is the number of times when yj 6= y for
1 ≤ j ≤ τ . We use Zηiτ to express Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0, η = ηi] as the probability
that at least θ flips,

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = 0, η = ηi] = Pr[Zηiτ ≥ θ]

and the probability of Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|q = +1, η = ηi] as at most τ − θ flips, thus

Pr[π(ŷi,1, . . . , ŷi,τ ) = 1|yi = +1, η = ηi] = Pr[Zηiτ ≤ τ − θ].

From Lemma (18) and since probability density function (pdf) are is monotone increasing,
we derive that the pdf of Zη2

n satisfies monotone likelihood ratio property over the pdf of
Zη1
n . This implies that the pdf of Zη2

n also has first-order stochastic dominance over Zη1
n by

Theorem 1.1 in [20]. From stochastic dominance, we can derive the desired inequalities

FP η1
θ,τ = Pr[θ ≤ Zη1

n ] < Pr[θ ≤ Zη2
n ] = FP η2

θ,τ

and

FNη1
θ,τ = Pr[Zη1

n ≤ τ − θ] < Pr[Zη2
n ≤ τ − θ] = FNη2

θ,τ . J
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A.3 Proofs from Section 5
Proof of Theorem 12. First, recall that

Var[Q|Y1, ..., Yn] = 1
1
σ2
Q

+ n
σ2
η

=
σ2
Qσ

2
η

σ2
η + nσ2

Q

.

Solving for n2 in the equation Var1[Q|Y1, ..., Yn1 ] = Var2[Q|Y1, ..., Yn2 ],

σ2
Qσ

2
η1

σ2
η1

+ n1σ2
Q

=
σ2
Qσ

2
η2

σ2
η2

+ n2σ2
Q

we get

σ2
η1

(σ2
η2

+ n2σ
2
Q) = σ2

η2
(σ2
η1

+ n1σ
2
Q)

and hence

σ2
η1
n2 = σ2

η2
n1.

Extracting n2, we find that n2 = σ2
η2
σ2
η1
n1. J

Proof of Theorem 13. First, recall that

E[Q|Y1, ..., Yn] = µQ +

 1
σ2
η

σ2
Q

+ n
, . . .

 · (y− µy) = µQ +
[

σ2
Q

σ2
η + nσ2

Q

, . . .

]
· (y− µy)

Now,

E1[Q|Y1, ..., Yn1 ]−E2[Q|Y1, ..., Yn2 ] =[
σ2
Q

σ2
η1

+ n1σ2
Q

, . . .

]
· (y1 − µy)−

[
σ2
Q

σ2
η2

+ n2σ2
Q

, . . .

]
· (y2 − µy)

=
σ2
Q

σ2
η1

+ n1σ2
Q

n1(ȳ1)−
σ2
Q

σ2
η2

+ n2σ2
Q

n2(ȳ2)

=
σ2
Qn1

σ2
η1

+ n1σ2
Q

(ȳ1)−
σ2
Qn2

σ2
η2

+ n2σ2
Q

(ȳ2)

=
σ2
Qn1

σ2
η1

+ n1σ2
Q

(ȳ1)−
σ2
Q

σ2
η2
σ2
η1
n1

σ2
η2

+ σ2
η2
σ2
η1
n1σ2

Q

(ȳ2)

=
σ2
Qn1

σ2
η1

+ n1σ2
Q

(ȳ1)−
σ2
Qn1

σ2
η1

+ n1σ2
Q

(ȳ2) J


	Introduction
	Related work

	The Bernoulli Model
	Analysis of the Bernoulli Model with One Group
	The Simple Threshold Policy (Equal Number of Tests)
	The Dynamic Policy (Adaptively-Allocated Tests)

	Fairness Considerations in the Two-Group Setting
	Gaussian Worker Screening Model
	Unsupervised Parameter Estimation
	Discussion and Future Work
	Technical Proofs
	Proofs from Section 3
	Proofs from Section 4
	Proofs from Section 5


