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Abstract

Several studies have proposed different genetic markers of susceptibility to develop chronic

Chagas cardiomyopathy (CCC). Many genes may be involved, each one making a small

contribution. For this reason, an appropriate approach for this problematic is to study a large

number of single nucleotide polymorphisms (SNPs) in individuals sharing a genetic back-

ground. Our aim was to analyze two CCR2 and seven CCR5 SNPs and their association to

CCC in Argentina. A case-control study was carried out in 480 T. cruzi seropositive adults

from Argentinean Gran Chaco endemic region (Wichi and Creole) and patients from Buenos

Aires health centres. They were classified according to the Consensus on Chagas-Mazza

Disease as non-demonstrated (non-DC group) or demonstrated (DC group) cardiomyopa-

thy, i.e. asymptomatic or with CCC patients, respectively. Since, after allelic analysis, 2 out

of 9 studied SNPs did not fit Hardy–Weinberg equilibrium in the unaffected non-DC group

from Wichi patients, we analyzed them as a separate population. Only rs1800024T and

rs41469351T in CCR5 gene showed significant differences within non-Wichi population

(Creole + patients from Buenos Aires centres), being the former associated to protection,

and the latter to risk of CCC. No evidence of association was observed between any of the

analyzed CCR2-CCR5 gene polymorphisms and the development of CCC; however, the

HHE haplotype was associated with protection in Wichi population. Our findings support the

hypothesis that CCR2-CCR5 genes and their haplotypes are associated with CCC; how-

ever, depending on the population studied, different associations can be found. Therefore,

the evolutionary context, in which the genes or haplotypes are associated with diseases,

acquires special relevance.
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Author summary

Chagas disease caused by the infection with the protozoan Trypanosoma cruzi is endemic

in Latin America. In Argentina, it is estimated 1.5 million patients have Chagas disease

and 2.2 million people in risk of T. cruzi infection. The endemic area covers the north of

the country where the conditions, such as high levels of poverty and social exclusion and

low population density, mostly rural, favor T. cruzi infection. Most affected people

remains asymptomatic after infection for the rest of their lives, but around one third of

infected people may develop clinical symptoms of visceral damage. Chronic Chagas Car-

diomyopathy (CCC), the most frequent and severe consequence of the chronic infection

by T. cruzi, is manifested predominately as an arrhythmogenic cardiomyopathy. The

pathogenesis of CCC is not completely understood, but it is believed that the human

genetic variation may be a determinant factor of disease progression. We studied in Wichi
and in admixed populations from Argentina the CCR2-CCR5 genes, two CC chemokine

receptors involved in the trafficking of several immune cells and in the pathogenesis of

cardiovascular diseases. Our results showed that CCR2-CCR5 genes are associated with

CCC and highlight the relevance of the evolutionary context in which disease-associated

genes are found.

Introduction

About one third of Trypanosoma cruzi chronically infected people will develop chronic Chagas

cardiomyopathy (CCC). The clinical manifestations of CCC are ventricular arrhythmias, sud-

den cardiac death, chronic heart failure, thromboembolic phenomena and precordial chest

pain [1]. The causes behind CCC development remain unclear; however, host, parasitic and

environmental factors should be taken into account for a better understanding of the disease.

There is clinical manifestations heterogeneity according to the geographical region [2] and

the corresponding circulating T. cruzi genotypes [3]. In this context, several association studies

between parasite strain or lineages and CCC have been carried out with negative results [4, 5].

Regarding host genetic characteristics, genetic markers of CCC susceptibility have been pro-

posed [6]. In particular, research has focused on single nucleotide polymorphisms (SNPs), the

most represented type of polymorphism in the human genome. As immune response and

chronic inflammation are mechanisms involved in CCC, several studies have been focused on

different polymorphisms in chemokines and cytokines genes as genetic markers for suscepti-

bility to develop CCC. They have been carried out in endemic countries such as Peru [7],

Mexico [8, 9], Colombia [10–15], Brazil [16–19] and Bolivia [20]. In Argentina, where approx-

imately one million and a half people are infected (4% of the total population), with a preva-

lence in endemic areas greater than 60% [21], until now only there were association studies for

HLA class II DRB1 alleles with CCC [22, 23], but not for those immunological genes men-

tioned above.

Previously case-control studies conducted in Santander, Colombia, have identified SNPs

significantly associated with CCC severity in CCR2 and CCR5 loci [15, 24], which encode two

CC chemokine receptors involved in the trafficking of leukocytes and in cardiovascular dis-

eases pathogenesis [25]. It is essential to make replication studies of genotype–phenotype asso-

ciations for establishing their direct relationship with the disease [26].

Thus, the aim of this study was to analyse SNPs in CCR2 and CCR5 and their association

with CCC in patients who attend to health centers of Buenos Aires and populations from

endemic area as the Gran Chaco ecoregion, with a high prevalence of infection.
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Methods

Ethics statement

The research protocols followed the tenets of the Declaration of Helsinki and Guidelines

according to Resolution N˚1480/11 of the “Ministerio de Salud” from Argentina and were

approved by the Local Medical Ethics Committees named Committee of The Institute of

Regional Medicine of the Northeastern National University (UNNE), Resistencia, Chaco;

IDACH (Chaco Aboriginal Institute); Committees of Ramos Mejı́a and Pirovano Hospitals

from Buenos Aires, upon written informed consents of adult individuals.

Study populations

A case-control study has been carried out including 480 individuals serologically positive for

T. cruzi antigens inhabiting in endemic zone of the Provinces of Chaco and Formosa, i.e.

Argentinean Gran Chaco Region, and in patients of health centers of Buenos Aires from April

2012 to November 2017. They were classified according to the Consensus on Chagas-Mazza

Disease [27] as individuals with non-demonstrated cardiomyopathy (non-DC group) or with

demonstrated cardiomyopathy (DC-group). The non-DC group, which represents the control

group, were individuals with chronic infection but lacking clinical symptoms: they do not

show obvious pathological signs during the cardiovascular physical examination and the com-

plementary studies performed (electrocardiogram, stress test, etc.) were normal as established

for each practice. The DC-group, which represents the case group, was constituted by seroposi-

tive individuals with clinical symptoms and electrocardiography alterations.

Genotyping

Genomic DNA was isolated from 400 μL of EDTA anticoagulated peripheral blood sample

using the DNA extraction kit (High Pure PCR Template Preparation Kit, Roche) and SNPs

were determined by TaqMan 5´ allelic discrimination assay method performed by Applied

Biosystems. The SNPs studied were: rs1799864 and rs3138042 in CCR2 and rs2856758,

rs2734648, rs1799987, rs1799988, rs41469351, rs1800023 and rs1800024 in CCR5.

Statistical analysis

The control group (non-DC group) was tested for all markers on Hardy–Weinberg equilib-

rium (HWE) and a p-value <0.01 was considered as evidence of deviation from HWE. HWE,

frequencies, odds ratios (OR), their 95% confidence intervals (CIs) and the genetic effect of

each polymorphism in CCC, assessed by logistic regression model with cases or controls (DC
and non-DC groups, respectively) as the dependent variables were calculated using PLINK

V1.07 software [28]. As age and gender are possible confounding variables they were included

as additional covariates in the analysis and p-values were adjusted for multiple testing by Bon-

ferroni. Wright’s fixation coefficient to establish population’s structuring were determined by

the Arlequin 3.11 software [29]. Correspondence analyses were carried out using R statistical

package and pairwise linkage disequilibrium (LD), coefficient of linkage disequilibrium (D´)

and haplotypes were estimated with an expectation–maximization algorithm implemented the

Haploview 4.2 software [30]. The statistical power of our study was calculated with the Genetic

Power Calculator for one-stage case–control studies. (http://zzz.bwh.harvard.edu/gpc/) [31].
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Results

Population characterization

The samples included patients from Buenos Aires health centres and individuals from rural

endemic region localities: Rı́o Muerto, Las Hacheras, Misión Nueva Pompeya, Miraflores

(Chaco) and Las Lomitas, Pozo del Tigre, Laguna Yema, Estanislao del Campo (Formosa).

After genotype frequencies analysis in the control group (non-DC), two out of 9 genotyped

loci, rs1799864 and rs1800024, did not fit HWE (p<0.002 and 0.005, respectively) and the Fst

fixation coefficient showed moderate genetic differentiation of the population (Fst = 0.102). As

in the endemic surveyed region co-habit different communities and two of them (Native

American Wichis and Creoles) were included in this study, we decided to divide our popula-

tion in three potential subpopulations: patients from Buenos Aires (n = 202), Native American

Wichis (n = 144) and Creoles (n = 134).

We performed allele frequencies comparison, considering both DC and non-DC groups,

among the three subpopulations (Creole, Wichi and patients from Buenos Aires centres) by

Chi-square test of homogeneity. This test demonstrated that allele frequencies were the same

for Creole and patients from Buenos Aires centres, but they all differ from Wichi subpopula-

tion (p-values<0.05). Fig 1A shows the minor allele frequency (MAF) for the three potential

subpopulations. Moreover, the correspondence analysis also indicated population structure

(Fig 1B), as the first dimension explained 83.39% of the variance. In concordance with the pre-

vious results this analysis showed that genotype frequencies of the Gran Chaco Wichi popula-

tion differ to the Creole population from the same endemic region and also to the Buenos

Aires patients (non-endemic). However, these last two groups (Creoles and patients that lived

Fig 1. (A) Minor allele frequencies for SNPs in CCR2-CCR5 gene region in three subpopulations from Argentina: Patients from Buenos Aires

centres (non-endemic), and two populations from endemic region, Creole and Wichi. (B) Correspondence analysis. Genotypes for each polymorphic

site and populations are represented in a two dimensional plot.

https://doi.org/10.1371/journal.pntd.0007033.g001
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in Buenos Aires), which share a Caucasian genetic background and have similar genotype fre-

quencies, were considered as a same population that was named as “non-Wichi population”

(n = 336). Thus, the subsequent association analyses between non-DC and DC groups were car-

ried out independently in these two subpopulations: non-Wichi and Wichi.
Ages in non-DC and DC groups within non-Wichi or Wichi populations were similar

(p = 0.0642 and 0.249, respectively), while significant differences were observed between popu-

lations (p<0.0001) (Table 1). Regarding to gender, populations were homogeneous samples

(p = 0.08 and 0.2837, non-Wichi or Wichi samples, respectively) (Table 1).

Regarding the clinical characteristics of these populations, Wichi patients presented normal

vital signs, regular pulse, although episodes of dizziness and normal systolic blood pressure or

hypotension were observed. In general, they were asymptomatic patients, and only the pres-

ence of palpitations or dyspnea were found in aborigines over 60 years of age. The EKG

showed a heart rate of less than 60 beats per minute; therefore sinus bradycardia and left ante-

rior hemiblock could be detected. Instead, non-Wichi patients presented paroxysmal palpita-

tions, dyspnea on exertion, paroxysmal nocturnal dyspnea and syncope. A higher prevalence

of chronic decompensated heart failure and dilated cardiomyopathy as well as hypertensive

patients were observed, with systolic blood pressure greater than 140 mmHg and diastolic

blood pressure greater than 90 mmHg. In the EKG, these patients presented ventricular extra-

systoles, with a greater presence of complete right bundle branch block than left anterior hemi-

block and also bifascicular block with ventricular premature beats. These intraventricular

disorders appeared at younger ages compared to aboriginal patients.

Allelic and genotypic association analysis

In non-Wichi population the only SNPs with significant differences (Table 2) in the allelic anal-

ysis were: rs1800024T, p = 0.041; OR = 0.69 (0.49–0.99), with a lower frequency of 0.218 in DC
compared to 0.286 in non-DC group; and rs41469351T with frequencies of 0.038 and 0.008 in

DC and non-DC groups, respectively (p = 0.028; OR = 4.88 (1.03–23.24)) (Table 2). No differ-

ences were observed in genotype frequencies between groups.

No association was found in none of the studied SNPs in allele frequencies within the Wichi
population (Table 2). The association test could only be implemented in rs1799864 and

rs1800024.

Haplotype analysis

To evaluate linkage disequilibrium between pairs of SNPs in CCR2-CCR5 region, an analysis

using Haploview was performed. Both populations showed linkage disequilibrium among

studied SNPs (Fig 2).

Haplotypes were constructed based on the evolution of linked CCR2 and CCR5 mutations,

including only the rs1799864 for CCR2 and the seven CCR5 SNPs, as it was previously defined

Table 1. Characterization of the populations studied.

Variables non-Wichi Wichi
DC non-DC DC non-DC

Age (years) Median [rank] 56 [17–85] 52.5 [17–81] 36 [16–82] 32 [17–81]

Mean ± SD 54.14 ± 12.76 51.30 ± 15.15 38.40 ± 14.72 35.43 ± 14.04

Gender (n) Male (n/%) 93/54.7 75/45.2 26/57.7 47/47.5

Female (n/%) 77/45.3 91/54.8 19/42.2 52/52.5

Total (n) 170 166 45 99

https://doi.org/10.1371/journal.pntd.0007033.t001
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Table 2. Relative genotype and allele frequencies for non-Wichi and Wichi populations.

SNP non-Wichi Wichi
DC

n = 170

non-DC
n = 166

padjusted DC
n = 45

non-DC
n = 99

padjusted

CCR2 rs1799864 AA 0.082 0.062 0.359 0.534 0.394 0.241

AG 0.324 0.395 0.332 0.384

GG 0.594 0.543 0.134 0.222

A 0.244 0.259 0.653 0.7 0.586 0.064

G 0.756 0.741 0.3 0.414

rs3138042 GG 0.077 0.073 0.994 - - NA

GA 0.423 0.423 0.1 0.038

AA 0.5 0.504 0.9 0.962

G 0.288 0.285 0.937 0.05 0.02 0.187

A 0.712 0.715 0.95 0.98

CCR5 rs2856758 GG 0.01 0.008 NA - - NA

GA 0.144 0.179 - 0.064

AA 0.846 0.813 1 0.936

G 0.082 0.098 0.568 - 0.032 0.106

A 0.918 0.902 1 0.968

rs2734648 TT 0.124 0.054 0.083 0.022 - NA

TG 0.412 0.44 0.089 0.051

GG 0.465 0.506 0.888 0.949

T 0.329 0.274 0.128 0.067 0.025 0.089

G 0.671 0.726 0.933 0.975

rs1799987 GG 0.173 0.106 0.319 - - NA

GA 0.423 0.48 0.074 0.064

AA 0.404 0.415 0.926 0.936

G 0.385 0.346 0.398 0.038 0.032 0.827

A 0.615 0.654 0.962 0.968

rs1799988 TT 0.182 0.103 0.096 0.022 - NA

TC 0.412 0.485 0.067 0.092

CC 0.406 0.412 0.911 0.908

T 0.388 0.345 0.251 0.054 0.045 0.712

C 0.612 0.655 0.946 0.955

rs41469351 TT - - NA - - NA

TC 0.077 0.016 - -

CC 0.923 0.984 1 1

T 0.038 0.008 0.028� - - NA

C 0.962 0.992 1 1

rs1800023 GG 0.106 0.048 0.141 0.022 - NA

GA 0.418 0.44 0.089 0.051

AA 0.476 0.512 0.888 0.949

G 0.315 0.268 0.184 0.067 0.025 0.089

A 0.685 0.732 0.933 0.975

rs1800024 TT 0.065 0.078 0.071 0.511 0.414 0.258

TC 0.306 0.416 0.377 0.363

CC 0.629 0.506 0.112 0.222

T 0.218 0.286 0.041� 0.7 0.596 0.09

C 0.782 0.714 0.3 0.404

NA: not applicable

�p < 0.05

https://doi.org/10.1371/journal.pntd.0007033.t002
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for HIV-1 studies association [32]. As the SNP rs3138042 does not take part of the haplotypes

already described by Mummidi et al. [32], it was excluded for this analysis.

HHE and HHC were the most represented haplotypes in non-Wichi population and none

described haplotypes showed significant differences between DC and non-DC groups

(Table 3). Among Wichi, HHF�2 was the most frequent haplotype followed by HHE, with a

higher frequency in non-DC than DC group (p = 0.022; OR = 0.49 (0.29–1.23)) (Table 3).

Discussion

Population genetic structure is the consequence of previous demographic events and gene and

culture co-evolution [33–35], both with different rates and rules. A study in human mummies

Fig 2. LD plot across CCR2-CCR5 region. A high-resolution LD among SNPs studied in non-Wichi (A) and Wichi (B) populations. D´ values are reported in the boxes

and represented such a colour scale from red (higher D´scores) to white colour (lower D´ scores).

https://doi.org/10.1371/journal.pntd.0007033.g002

Table 3. Haplogroup frequencies.

Haplotype a1 3 4 5 6 7 8 9 non-Wichi Frequencies Wichi Frequencies
Total DC. non-DC p Total DC. non-DC p

HHA G A G G T C A C 0.056 0.049. 0.063 0.41 0.014 0.011. 0.016 0.768

HHB G A T G T C A C 0.004 0.001. 0.008 0.16 0 0 -

HHC G A T G T C G C 0.24 0.260. 0.219 0.214 0.024 0.044. 0.015 0.144

HHD G A T G T T A C 0.014 0.015. 0.013 0.819 0 0 -

HHE G A G A C C A C 0.278 0.278. 0.279 0.965 0.236 0.151. 0.275 0.022�

HHF�1 G A G A C C A T 0.031 0.028. 0.034 0.674 0.076 0.082. 0.073 0.786

HHF�2 A A G A C C A T 0.189 0.167. 0.213 0.131 0.543 0.595. 0.520 0.236

HHG G G G A C C A C 0.077 0.067. 0.086 0.365 0.015 0.000. 0.022 0.152

a) 1 = rs1799864; 3 = rs2856758; 4 = rs2734648; 5 = rs1799987; 6 = rs1799988; 7 = rs41469351; 8 = rs1800023; 9 = rs1800024

Grey boxes denote a base change in the haplogroup respect to the ancestral HHA haplotype.

�p < 0.05

https://doi.org/10.1371/journal.pntd.0007033.t003

CCR2-CCR5 genes polymorphisms and Chagas Cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007033 January 16, 2019 7 / 12

https://doi.org/10.1371/journal.pntd.0007033.g002
https://doi.org/10.1371/journal.pntd.0007033.t003
https://doi.org/10.1371/journal.pntd.0007033


showed that T. cruzi transmission among infected wild reservoirs was probably established in

the first moment of Andean coast human colonization [36], suggesting that T. cruzi and

humans co-evolved from over 9000 years and thus, south Amerindians may have developed a

peculiar way of dealing with T. cruzi infection [37]. Thus, host-pathogen interaction is another

factor to be taken into account for understanding population genetic evolution.

Wichi is one of the Argentinian native populations, with its own cultural patterns, that

inhabit the Impenetrable Chaqueño, a region with extreme climatic conditions and scarce

urban centres communication. This isolation results in a genetic differentiation from other

populations [37, 38]. In concordance with this data, our results in some T. cruzi seropositive

Argentinian populations showed that the Wichi community exhibits different allele frequen-

cies compared to the Impenetrable Chaqueño Creole population which is genetically similar to

patients from Buenos Aires centres (admixed populations) in the studied locus. Moreover, the

correspondence analysis indicated a clear genotype frequencies differentiation between Wichi
and the other sub-populations: in Wichi 4 out of 9 SNPs showed allele frequencies close to

zero and for the two SNPs located at both extremes of the gene region studied (rs1799864 and

rs1800024) the most represented alleles were not the ancestral. These results reinforced the

subdivision in Wichi and non-Wichi groups for genetic analysis and highlight the importance

of studying the different genetic backgrounds of Amerindian populations. Despite limitations

related to both Wichi and non-Wichi sample sizes and since the prevalence of Chagas disease

in endemic areas is greater than 60% [39], statistical power calculation of our study showed

that subdivision in two groups have a power of 80% (S1 Table).

Chemokines have been associated not only with the initial control of T. cruzi infection, but

also the maintenance of chronic inflammation resulting from the inability of immune system

to eliminate the parasite [40]. In different studies, common CCR5 SNPs were analysed individ-

ually with variable results. In Colombian population was found that rs2856758G, within the

CCR5 promoter region, was associated with a reduced risk of susceptibility to develop CCC

[24]. In our populations this allele has a very low frequency compared to that observed among

Colombians, suggesting a possible reason why the association is not replicated. In this work,

like in Flórez et al. [24], we found no evidence of association of both rs1799987 and rs1799988

variants which had been previously described in Peruvian and Venezuelan [41, 42]. This dis-

crepancy might be the result of lower size sample in the last reports (less than a hundred

patients), with a higher probability of positive false.

Our results also showed a significant rs1800024T decreased frequency in non-Wichi popu-

lation DC group suggesting protection to CCC, while Machuca et al. [15] observed in Colom-

bians that it correlated with CCC severity. Rs1800024T is the allele that characterizes the HHF

haplotype (HHF�1 and HHF�2) which is associated with higher levels of CCR5 expression [32]

as a consequence of a differential binding of T and G alleles to certain nuclear factors, espe-

cially factors of the NFkB family. Likewise, in-silico studies predict that the T allele, together

with other transcription factors such as IRF1 receptors, are involved in the expression of innate

immunity proteins which are important in parasite control and therefore less inflammation

related [32]. Taken together, these results could indicate that higher levels of CCR5 expression

might protect from cardiomyopathy development by decreasing the parasitic load or allowing

parasite control. Meanwhile in those individuals for whom this protection is insufficient, the

parasite and antigenic persistence would stimulate a chronic inflammation responsible for

more severe tissue damage. Something similar could happen in the case of rs2734648T which

binds to nuclear factors with more avidity than the G allele [32] and this might also alter CCR5

protein expression levels. Here we found in the case of non-Wichi population an association

between this SNP and CCC in subjects with 2 copies of this allele (rs2734648TT genotype,

recessive model, p = 0.026) while in Colombians it was associated with less severity [24].
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Regarding the rs41469351T, its frequency was very low both in Colombian and Argentinian

non-Wichi populations, and null among Wichis. In the non-Wichi population we found a

higher frequency of this allele in the DC group, although this significance might be taken care-

fully because of the low frequency values.

Previous studies have shown that several polymorphic changes in the CCR5 promoter, that

define the haplotypes, may influence differently both expression levels of CCR5 surface and pro-

portions of peripheral blood cells expressing this protein [32]. In our study, the HHE haplotype

was the most common haplotype in non-Wichi population followed by HHC and HHF�2. These

three haplogroups were also the most frequent in Colombian population [15, 24], although

none of them were associated with CCC in non-Wichi group. In contrast, in Wichi individuals

only the frequencies of two haplotypes were higher than 0.1, being HHF�2 haplotype the highest

frequent followed by HHE, the latter associated with protection from CCC. Interestingly, the

HHC frequency -one of the most frequent haplotypes in other populations- is considerably low

among Wichis. This haplogroup together with HHA have been associated with a decreased pro-

moter activity, while HHE and HHF are characterized by a higher activity. Therefore, a higher

expression level of CCR5 and CCR2 could favour a greater control of infection with T. cruzi and

thus would be less susceptible to develop CCC. These findings, together with the absence of

rs41469351T, could be some factors involved in a lower prevalence of right bundle branch

block, one of the anomalies mostly observed in the electrocardiograms of CCC patients,

reported in Wichi ethnicity compared to Creole (1.8% vs 10%, respectively, OR = 6.0) [39].

It is important to note that both in the Wichi and in the non-Wichi populations it is possible to

find individuals who manifest the disease at very young ages (Table 1). That is, the clinical onset

seems to be independent of the genetic background, but risk of susceptibility to developing CCC

would not be. Although our study presents some limitations in sample size our results are valuable

as they described a unique population with a large history of co-evolution with the parasite.

In summary, our findings support the hypothesis that CCR2-CCR5 genes and their haplo-

types are associated with CCC and this study also highlight the importance of considering the

evolutionary context in which disease-associated genes or haplotypes are found and to under-

line the possible impact of allele–allele interactions, especially among alleles with different evo-

lutionary histories.
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González.

CCR2-CCR5 genes polymorphisms and Chagas Cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007033 January 16, 2019 9 / 12

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007033.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007033.s002
https://doi.org/10.1371/journal.pntd.0007033


Data curation: Natalia Anahı́ Juiz, Elkyn Estupiñán.

Formal analysis: Natalia Anahı́ Juiz, Elkyn Estupiñán, Clara Isabel González.
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