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Comparación de técnicas de clasificación deductivas para estimar la distribución
potencial de insectos cuarentenarios

RESUMEN. El objetivo de este trabajo fue comparar el desempeño de los criterios de
clasificación nítidos y difusos en la construcción de modelos deductivos de la distribución
potencial de insectos exóticos. Considerando criterios de clasificación binaria nítida y difusa,
de capas ráster de temperatura máxima, media y mínima diaria, se generó un índice de
riesgo bioclimático relativo, considerando el número de días con condiciones óptimas para el
desarrollo de Bactrocera oleae (Gmelin) (Diptera: Tephritidae) y Cerotoma arcuatus (Olivier)
(Coleoptera: Chrysomelidae). Se realizaron análisis de sensibilidad de los modelos. Los
modelos deductivos de distribución potencial de especies realizados mediante clasificación
difusa, serían más robustos y menos restrictivos en la determinación de áreas de riesgo
fitosanitario potencial que aquellos realizados con criterios de clasificación nítidos. Estos
últimos serían más sensibles y tendrían mayor capacidad de discriminar áreas con diferentes
perfiles de riesgo ambiental.

PALABRAS CLAVE. Distribución potencial. Insectos exóticos. Lógica difusa.

ABSTRACT. The objective of this paper was to evaluate the performance of crisp and fuzzy
classification criteria in the construction of deductive potential distribution models of exotic
insects. As case studies, Bactrocera oleae (Gmelin) (Diptera: Tephritidae) and Cerotoma
arcuatus (Olivier) (Coleoptera: Chrysomelidae) were selected. Considering crisp and fuzzy
classification for raster layers of maximum, average and minimum daily temperature, a relative
bioclimatic risk index was generated. The number of days with optimal conditions for pests’
development was considered. Sensitivity analyses of both models were performed.
Considering each case evaluated and the variables used, deductive pest distribution models
made by fuzzy classification was more robust and less conservative in the determination
of potential phytosanitary risk areas than those made with crisp classification criteria. This
last case was more sensitive and would have a greater capacity to discriminate areas with
different environmental risk profiles.
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overlap corresponds to the transition from one state to 
the next, such as fuzzy boundaries in natural spaces 
(Adriaenssens et al., 2004). Velásquez & Hester (2013) 
argue that fuzzy logic theory provides a mathematical 
basis to construct decision rules for invasive species risk 
assessment.

The application of tools derived from fuzzy logic to 
natural resources is relatively new. The general areas of 
application include the classification of remote sensors 
images (Shabnam & Zhang, 2013), analysis of 
environmental risks (Camastra et al., 2015), floristic 
diversity (Ibrahim et al., 2015) and ecosystem analysis 
(Olivero et al., 2013). The aim of this study was to 
compare the performance of the classification criteria 
crisp and fuzzy, in the construction of deductive models 
for potential distribution of exotic insects in Argentina.

Two quarantine insect species absent from Argentina 
were selected as a case study to perform a deductive 
analysis of potential geographic distribution: Bactrocera 
oleae (Gmelin) (Diptera: Tephritidae) and Cerotoma 
arcuatus (Olivier) (Coleoptera: Chrysomelidae).

Bactrocera oleae is the most important olive pest 
worldwide. Its geographic distribution includes the 
Mediterranean Region, North America, Western Asia and 
Eastern and Southeastern Africa. It is a multivoltine 
species, whose larvae feed on the fruit pulp. Usually it 
overwinters as pupa buried a few centimeters from the 
soil surface. Considering a base temperature of 8 °C, 
a generation of B. oleae is completed at 491 degrees 
day (Hanife & James, 2008; Gutiérrez et al., 2009). The 
optimum temperature of development is between 23 and 
29 °C; while the maximum development temperature is 
35 °C (Ordano et al., 2015).

Cerotoma arcuatus is considered one of the major 
chrysomelid pests of legumes, mainly soybeans and 
beans. Considering a base temperature of 10 °C, a 
generation of C. arcuatus is completed at 489 degrees 
day. Optimal development temperature is between 22 
and 27, while the maximum development temperature is 
32 °C (Nava & Postali Parra, 2003).

MATERIAL AND METHODS

Input data
Mean daily records of maximum and minimum air 

temperature (°C), from the period 1991-2014, were 
interpolated at spatial resolution of 2 km, according to 
the methodology proposed by Heit et al. (2013). 
Records from 124 weather stations of the National 
Weather Service (SMN) and the National Institute of 
Agricultural Technology (INTA) were used. Digital terrain 
model of the Shuttle Radar Topography Mission (SRTM) 
was used as external drift variable for Kriging algorithm 
(Aalto et al., 2013). These raster layers were validated by 
generalized cross validation (Haylock et al., 2008).

INTRODUCTION

Agriculture, forestry, trade and other human activities 
have a determining role in the voluntary or accidental 
dispersion of species towards areas that they could not 
have reached without human assistance (Hlasny & 
Livingston, 2008). Strong increase in international trade 
in last decades has generated an increase in the 
probability that many species can be established 
outside their natural range. For that reason, countries 
worldwide make great efforts to avoid dispersion of 
invasive species, regulating the phytosanitary condition 
of plant products on international trade (Levine & 
D'Antonio, 2003; Brenton-Rule et al., 2016).

Although qualitative risk assessments often provide 
sufficient technical solutions to perform pest risk 
analysis for a particular route of import, there are 
situations in which the use of species distribution 
models can help in decision-making, in order to identify 
areas at risk of invasion or to design monitoring 
protocols in the field in support of eradication programs 
for a new quarantine pest (Baker, 2012; Cardador et al., 
2016).

The challenge of estimating spatial distribution 
patterns of species has been addressed through 
different methodological approaches, which have been 
described and compared in several bibliographic 
reviews (Venette et al., 2010; Zimmermann et al., 2010; 
Mateo et al., 2011). Venette et al. (2010) grouped the 
sets of techniques into two differential methodological 
approaches, called "deductive" or "inductive" 
approaches, the latter require information on the 
presence sites of the species.

Deductive approaches use detailed knowledge about 
the biology of a species, to infer the areas of 
environmental suitability. These models, due to inherent 
characteristics of their design, may incorporate biases 
to the classification output. One is the selection criteria 
of input variables, mainly because of the variability of 
published information on the biology of studied species. 
Another dilemma is the difficulty of defining adjusted 
cut-off criteria for each factor that influence pest 
populations’ development. In this sense, it is possible 
that the variability of these factors and the uncertainty of 
the classification criteria used can be solved through the 
application of classification tools from fuzzy logic theory 
(Siler & Buckley, 2005).

Fuzzy logic theory provides a method to reduce the 
complexity of a system through a compatibility 
calculation. In traditional sets, an element of the 
population may or may not belong to a class, and 
therefore the membership of an element in a set is clear, 
"crisp". The fuzzy set theory recognizes that certain sets 
have imprecise limits, in which the transition of 
belonging to the same is not abrupt but gradual (Castillo 
& Melin, 2014). These classes can overlap and this
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Fig. 1. Fuzzy classification criteria for input variables. Tb:
base temperature of development of the species; Toi:
optimum temperature of development-lower threshold;
Cough: optimal temperature of development-upper
threshold; Txd: maximum temperature of development of the
species; Tnr: minimum temperature of the raster layer; Th:
temperature of the agrometeorological frost; Txr: maximum
temperature of the raster layer.

study, from a minimum to a maximum level. The outputs 
from fuzzy prepositions were combined by using a set 
of rules, total fulfillment of the conditions was 1 IF (Toi>= 
(Tm) =<Tos) AND (Tn>Tb) AND (Tx<tb). Total fulfillment 
of the condition that minimize potential risk of pest 
establishment were 0 IF (Tb<Tm>Txd) AND (Tn<Th) 
AND (Tx>Txd).

The same biological parameters were used to classify 
the environmental aptitude for the development of the 
species for both criteria of classification. The theoretical 
assumptions of the models were: first, biotic interactions 
are not important on a regional scale or are constant 
in time and space. Second, genetic and phenotypic 
composition of the species is constant in space and 
time. Third, there are no limitations to the dispersal of the 
species (Urban et al., 2007).

Raster masks of distribution area of susceptible 
vegetation for each pest species were applied to 
bioclimatic risk indexes output. The potential distribution 
of susceptible crops was obtained on the basis of the 
2002 National Agricultural Census (National Institute of 
Statistics and Census) presented by political 
subdivisions (Departmental). Vector layer were 
rasterized to a grid of 1 km wide.

In addition, United Nations Land Cover Classification 
System (UN-LCCS, GLOBCOVER-ESA, 300 m spatial 
resolution), was used to select in each Department those 
pixels associated with the host crop (Bicheron et al., 
2006). Finally, the average monthly vegetation index 
MOD13Q1 of the 2009-2012 series (250 m spatial 
resolution) was used to discard cells with a high 
percentage of bare soil (NDVI<0.3).

Sensitivity analysis
Sensitivity analysis was performed to assess the 

robustness and sensitivity of the model to systematic 
changes of input variables to the system. The selection 
criteria of the input variables to the model were 
systematically increased or reduced to assess relative 
changes in the model results (Ferraro, 2010). Two
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A widespread problem in the construction of 
meteorological data interpolation algorithms in a 
mountainous area is the lack of meteorological stations 
at sites of high altitude above sea level. Some regional 
studies have supplemented missing observations at 
high altitudes with information from remote sensors 
(Stahl et al., 2006). This study supplemented the lack of 
data from meteorological stations located in high altitude 
sites, based on surface temperature values of 30 
randomly selected points along the Andean mountain 
range, monthly average 2008-2012, from the information 
generated by the National Oceanic and Atmospheric 
Administration's (NOAA) meteorological satellite.

Bioclimatic risk indexes
In order to establish comparisons of bioclimatic risk 

between the different Argentine regions, a relative risk 
index was generated based on the comparison of the 
score obtained by each pixels of the Argentine territory, 
in relation to those that obtained the highest absolute 
value. Considering criteria of binary (Crisp) and fuzzy 
(Fuzzy) classification, the number of days with optimum 
conditions of development of each one of the species 
was calculated, between September 1st and March 31st. 
Thus, the relative bioclimatic risk index (IRB) has values 
that range from 0: no risk, to 1: maximum risk.

Binary classification (Crisp) was based on the 
methodology proposed by Heit et al. (2013). Pixels were 
classified as follows: EITHER 1 IF (Tn> Th) OR 0 
OTHERWISE; AND EITHER 1 IF (Tx< txd) OR 0 
OTHERWISE; AND EITHER 1 IF (Toi>= (Tm) =<Tos) OR 
0.5 IF (Tb> (Tm) <Toi) OR 0.5 IF (tos> (Tm) <Txd) OR 0 
OTHERWISE.

Where (Tx): maximum temperature, (Tm): average 
temperature, (Tn): minimum temperature, Txd: maximum 
temperature of development of the species, Tb: base 
temperature of development of the species, Toi: 
optimum temperature of development-threshold lower, 
Tos: optimum development temperature-upper 
threshold, Th: temperature of agrometeorological frost. 
Agrometeorological frost is defined as any thermal 
decrease equal to or lower than 3 ºC, measured in the 
meteorological shelter, which would be equivalent to 0 
ºC, or less, to the surface outdoors (Gusta & Wisniewski, 
2013).

The classification criteria of the input variables to the 
model using fuzzy logic (fuzzy), are shown in Figures 1a 
and 1b. Membership function could take any value from 
the interval (0,1) representing the full or null degree to 
which each proposition occurs, respectively. In our 
case, 1 (one) represents the total fulfillment of the 
conditions that determine the maximum risk of pest 
presence. Otherwise, 0 (zero) represent the total 
fulfillment of the condition that minimize potential risk of 
pest establishment, based on knowledge available in 
the literature. Linear membership functions were used 
and monotonic linear transitions from one state to 
another shows continuous changes of the variable under
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risk of establishment for this species.
On the other hand, the fuzzy classification estimated

that 67.7% of the area occupied with the main plant
hosts for C. arcuatus could be considered as a high risk
of establishment; 32.2% with moderate risk and 0.1%
with low risk of establishment of the species.

Figure 4 shows the sensitivity analysis of test 1 for
B. oleae, broken down by classification criteria. Therein,
it shows that the crisp classification method is more
sensitive to changes in input variables to the fuzzy
classification system (χ2(9, 0.05): 57.39, p<0.001). For crisp
classification criteria, a negative correlation was
observed between output risk areas and systematic
change of climate variables input. Greater relative
change in the risk areas where found in the lower range
limit of systematic change of the input variables, and
the smaller relative changes in risk area on the upper
range limit, Spearman's correlation coefficient (ρ): -0.94,
p: 0.0048 for high risk class and ρ: -0.89, p: 0.007 for
moderate risk class. In Fuzzy classification criteria, no
linear correlation was observed between the change in
risk area and the systematic change of variables for
high risk class (ρ: -0.41, p: 0.2232), and moderate risk
class (ρ: -0.14, p: 0.6758). No significant differences
in sensitivity among risk categories, due to systematic
changes in input variables were observed considering
crisp classification criteria (χ2(18, 0.05): 3.46, p>0.9) or
fuzzy classification criteria (χ2(18, 0.05): 12.64, p: 0.8127).

Sensitivity tests 1 for C. arcuatus, differentiated by
classification criteria, are shown in Figure 5. The same
patterns of variability are observed as for the case study
of B. oleae, although the differences between both are
significantly higher (χ2(9, 0.05): 100.35, p<0.0001). No
significant differences in test 1 sensitivity analysis
among different risk categories due to systematic
changes in input variables were observed considering
crisp classification criteria (χ2(18, 0.05): 21.96, p: 0.234) or
fuzzy classification criteria (χ2(18, 0.05): 5.84, p: 0.996).

A negative correlation criterion between output risk
areas and systematic change of climate variables input
was observed for crisp classification, from -50 %
systematic change to + 50 systematic change of input
variables, (ρ): -0.99, p: 0.003 for high risk class and
ρ: -0.89, p: 0.0075 for moderate risk class. No linear
correlation was observed between systematic change of
variables and risk area considering Fuzzy classification
criteria, for high risk class (ρ: -0.57, p: 0.084), and
moderate risk class (ρ: -0.39, p: 0.266). This difference
is primarily attributable to the wide geographic extent
of the potential range of the main host crops (soybean,
bean, etc.), relative to olive cultivation in Argentina.

Figures 6 and 7 show the sensitivity analysis of test
2, for B. oleae and C. arcuatus, for each of the
classification criteria. In the sensitivity test 2, in addition
to varying the climatic classification criteria, systematic
changes were made in the potential surface implanted
with the host crops of the pest in analysis.
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specific tests were evaluated:
TTestest 11: For each of the evaluated months, the 

selection ranges of climate variables input to the model 
were independently increased, or decreased, by 10%
to reach 50% change. The results of sensitivity, both 
of increase or reduction of the selection ranges, were 
calculated using a base scenario, such as 0 (minimum 
risk) or 1 (maximum risk).

TTestest 22: all input variables to the system were 
simultaneously increased, or decreased, by 20 or 50%. 
Sensitivity results were calculated using the same base 
scenarios in test 1.

Since the delimitation of susceptible areas depended 
largely on the classification of qualitative variables, the 
estimated percentages of relative change was 
performed considering the following classification 
criteria: a) to estimate the percentage reduction in the 
area potentially planted / implanted by the host crop, 
the agricultural area of the departments was reduced 
by 20% and 50%, based on the INDEC statistics; b) To 
estimate the percentage increase in the area potentially 
planted / implanted by the reference host crops, the 
agricultural surface of the departments was increased 
by 20 and 50%; considering as the maximum area, the 
total area of the departments with an NDVI>0.3 (in order 
to discard areas with a high percentage of bare soil). R 
software (gstat, gdal and automap libraries), QGIS 2.12 
(Quantum GIS Development Team, 2015), IDRISI Selva 
and "Infostat estudiantil" were used for the treatment of 
the information.

RESULTS AND DISCUSSION

Figure 2 shows the relative bioclimatic risk index 
(RBRI) for the potential establishment of B. oleae in 
Argentina, considering both classification criteria. It can 
be observed that the RBRI differs significantly between 
the crisp and fuzzy classification criteria.

The relative bioclimatic risk index for B. oleae, based 
on the binary classification (Crisp), estimates that 3.1%
of the area potentially implanted with its main host 
(olive), would have a high establishment risk for this 
species; 21.1% of the area had a moderate risk and 
the remaining 75.8% would have a low establishment 
risk for B. oleae. Furthermore, based on fuzzy logic 
classification, 11% of this area could be classified as 
high risk of establishment; 13.6% with a moderate risk 
and 75.4% of the potentially implanted area with olive 
would have a low risk of establishment for B. oleae.

The relative bioclimatic risk index in the potential area 
of susceptible hosts for the development of C. arcuatus 
populations is shown in Figure 3. Similar to what was 
observed for B. oleae, it can be observed that RBRI 
differs between the two classification criteria evaluated. 
The Crisp classification estimates that 14.8% of the area 
potentially planted with its main hosts (soybeans and 
beans) was classified as high establishment risk; 77% of 
moderate risk and the remaining 8.1% as areas of low



Fig. 2. Relative bioclimatic risk index for Bactrocera oleae, considering the potential distribution of susceptible hosts. 
a. crisp classification; b. fuzzy logic

Test 2 of sensitivity analysis for crisp classification
criteria showed greater variability on risk area
delimitation, due to systematic changes of all the
classification variables, than fuzzy classification criteria.
Crisp classification method is more sensitive to changes
in input variables to the fuzzy classification criteria in
test 2 sensitivity analysis for B. oleae (χ2(3, 0.05): 55.71,
p<0.001). When comparing the sensitivity analysis of
test 2 against test 1 in B. oleae according to crisp
classification criteria, variation of estimated area
classified as high and moderate bioclimatic risk differed
between 20 and 50%, when decreasing systematic
variations of the input variables were made. While there
were decreasing variations, from 1 to 15% of the risk
area, when incremental systematic variations in the
criteria for the classification of the input variables to the
system were made.

Area classified as “low risk” showed the lowest
relative variations between both tests. Sensitivity
analyzes of classifications based on fuzzy logic showed
similar behavior in both tests, but different magnitude.
Being the variations of the surface estimated as high or
moderate risk, 30% higher than those observed in test
1, regardless of the percentage of systematic change
made.

Significant differences in test 2 sensitivity analysis

between classification criteria were found (χ2(3, 0.05):
71.84, p<0.001). When comparing the sensitivity
analysis of test 2 against test 1 in C. arcuatus, using the
crisp classification criterion, surface variation estimated
as high and moderate risk bioclimatic differed between
60 and 110%, when decreasing systematic variations
of the input variables were made. While there were
decreasing variations of 10 to 30% due to incremental
variations in the criteria for classifying the input variables
to the system.

No significant differences in test 2 sensitivity analysis
among different risk categories due to systematic
changes in input variables were observed for both
classification criteria and species (p>0.05). No linear
correlation was observed between systematic change of
variables and risk area considering Fuzzy classification
criteria, for B. oleae and C. arcuatus (p>0.05). However,
a negative correlation criterion between output risk areas
and systematic change of climate variables input was
observed. Based on crisp classification, Spearman's
correlation coefficient, from -50% systematic change to
+ 50 systematic change of input variables, for high risk
class in B. oleae was -0.98 (p: 0.0194), and for C.
arcuatus ρ: -0.99 (p: 0.0133).

The area considered as low bioclimatic risk did not
show relative variations between the two evaluated tests.

HEIT, G. et al. Potential spatial distribution of quarantine insects
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Fig. 3. Relative bioclimatic risk index for Cerotoma arcuatus, considering the potential distribution of susceptible hosts.
a. crisp classification; b. fuzzy logic.

Fig. 4. Sensitivity analysis for Bactrocera oleae (test 1). a. crisp classification; b. fuzzy logic
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When comparing the sensitivity analyzes of both types
of tests in the fuzzy classification criterion, it can be
noticed that with decreasing systematic variations in the
input variables, the estimated area classified as high
or moderate bioclimatic risk in test 2, varied from 15
to 50% in relation to the surface variations observed
in test 1. Furthermore, due to incremental changes to
the criteria for classification of the input variables to

the system, variations of the surface considered high
or moderate bioclimatic risk is about half the estimated
before decreasing variations of such variables. For this
reason, it can be considered that most of the variability
observed in test 2, in relation to that observed with test
1, it is based on the estimation of the area implanted with
susceptible crop/host to the pest.



Fig. 5. Sensitivity analysis for Cerotoma arcuatus (test 1). a. crisp classification; b. fuzzy logic

Fig. 6. Sensitivity analysis for Bactrocera oleae (test 2). a. crisp classification; b. fuzzy logic

Fig. 7. Sensitivity analysis for Cerotoma arcuatus (test 2). a. crisp classification; b. fuzzy logic
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provide assistance to policy makers in environmental
protection. Areas of higher agro-ecological vulnerability
should be protected over all others, and appropriate
trade regulations and surveillance systems should be
developed regarding environmental protection (Franklin,
2009). Although there is a growing number of scientific
studies comparing different methodological approaches
for species distribution models (Heikkinen et al., 2006;

Jeschke & Strayer, 2008), it is not possible to generate 
a unique protocol analysis to estimate the potential 
quarantine pests distribution for the majority of cases 
addressed by a National Plant Protection Organization. 
Comparison of species distribution models in terms of 
their assumptions, approaches and results provides a 
perspective on the uncertainty of the prediction and 
ultimately allows policymakers make better decisions 
(Schneiderman et al., 2015).

An important goal of pest risk assessment is to
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It should be noted that the accuracy of the risk 
mapping was dependent on different factors, like data 
quality, data processing criteria and selection of 
threshold for classification of factors. Uncertainties 
regarding data sources may introduce even larger 
uncertainties within environmental evaluations (Peche & 
Rodríguez, 2009).

Deductive models are highly dependent on the 
quality of the scientific literature on a pest. If literature 
does not indicate which factors are most influential in 
the distribution of the species, policymakers must 
choose the variables that, based on their own 
experience, have a significant effect in restrict the 
potential geographical distribution of the pest evaluated, 
at the cartographic scale study selected. This also 
represents a critical point for inductive models due that 
the modeler must select and prioritize system input 
variables, since they are the most relevant covariates for 
creating potential distribution maps (Dupin et al., 2011).

Sensitivity analyses indicated that results of the 
proposed deductive method approach are highly 
sensitive to the selection of threshold for classification of 
factors. In that sense, results provide evidences that the 
choice of the classification criteria can have statistically 
significant effects on spatial patterns of deductive 
species distribution model predictions.

Many authors have highlighted and compared the 
predictive power of correlative species distribution 
models (SDM) (Zimmermann et al., 2010; Mateo et al., 
2011; Kehlenbeck et al., 2012); while others have 
argued that this is unimportant, since many assumptions 
of the species distribution models are not reasonable 
and therefore their results lack scientific validity (Rose & 
Burton, 2010; Sinclair et al., 2010). It is therefore 
necessary to judge the merits of the SDMs according to 
the objectives for which they have been developed. In 
the case of using these models in the framework of pest 
risk analysis or phytosanitary surveillance tasks, they 
have a strategic role in the alerting to decision-makers 
about the scenarios that National Plant Protection 
Organization must face in case of an exotic pest 
invasion.

Deductive species distribution model carried out 
considering Fuzzy classification criteria, would be more 
robust and less restrictive in identifying areas of 
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