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Abstract. In the western sector of the Neuquén Basin, the organic-rich shales of the 

Vaca Muerta Formation are intercalated with turbidite sandstone intervals and slump 

structures integrated in the Huncal Member. The age of the Huncal sandstones based on 

the integration of the ammonite faunas, calcareous nannofossils and U-Pb analysis is 

late Berriasian in their type locality. The origin of this deposit is probably related with 

two lobes of turbiditic sandstones linked with a progradational regressive phase. 

Sandstones are lithic arkoses and feldspathic litharenites derived from recycled orogenic 

and dissected arc sources. The U-Pb ages confirm a mixed sedimentary provenance 

from the south and southeastern margins of the basin, specifically from Paleozoic and 

Triassic–Jurassic rocks of the North Patagonian Massif and the Huincul High. The 

complex fold and fault system described in the sandstone levels was interpreted as the 

result of slump processes with a main transport direction to the SW and W. Sandstone 

deposits with slump structures assignable to the Huncal Member are present throughout 

the entire basin from the Tithonian to the Valanginian in the Vaca Muerta Formation. 

Therefore, the Huncal Member is a diachronic lithostratigraphic unit and its deposition 

probably depended on different factors such as relative sea level changes, the position in 

the ramp system or in the platform and slope configuration and internal 

morphostructural features of the Neuquén Basin.  
 

                                                 
1 In Memoriam of Marcio Pimentel for many years of fruitful collaborative field and lab 
works 
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1. Introduction 

The lower Tithonian to lower Valanginian Vaca Muerta Formation is a complex 

carbonate-siliciclastic marine succession and constitutes in the last years the most 

analyzed hydrocarbon shale play of South American basins. It is part of the infill of the 

retro-arc Neuquén Basin developed at the foothills of the Andes between 34º and 40º S 

latitude in Argentina (Figure 1). The paleogeographic configuration of the unit shows 

different depositional scenarios. Towards the southern and northern regions of the basin 

a ramp depositional model was described from studies in outcrops (Mitchum and 

Uliana, 1985; Spalletti et al., 2000; Scasso et al., 2005; Kietzmann et al., 2014a), while 

in the subsurface of the Neuquén Embayment a platform and slope model is interpreted 

(Arregui, 2014; Pose et al., 2014; Gangui and Grusem, 2014; Reijenstein et al., 2017). 

In the western region of the basin, shale deposits are associated with turbidite sandstone 

levels and large subaqueous gravity slumps integrated in the Huncal Member (Leanza et 

al., 2002, 2003, 2011; Spalletti et al., 2008). Two opposite models have been proposed 

to explain the origin of the sandstones and slump structures of the Huncal Member. 

Leanza et al. (2003) interpreted the sandstone levels as a turbidite succession 

associated with slump processes developed in the eastern platform during a highstand 

systems tract. However, Spalletti et al. (2008) interpreted the Huncal Member as 

turbidite sandstones related to large subaqueous gravity flows included in slope facies 

and linked with the western active margin of the basin. Although the stratigraphy, 

sedimentology, and bioestratigraphic features of the classical Vaca Muerta facies have 

been extensively studied through the years, the sandstones included in the Huncal 

Member have not yet been analyzed in detail. Their precise depositional age, possible 

correlations and extension, and if it was effectively related to a provenance from the 

eastern or western margin of the basin are still matters of debate. 

The objective of the present work is to characterize the sandstone deposits of the 

Huncal Member based on sedimentological, biostratigraphic and provenance studies 

(i.e.: outcrop analysis, ammonite biostratigraphy, calcareous nannofossils, sandstone 

petrography, and U-Pb zircon ages) in order to understand the regional context and 

better define the provenance of the sandstones and their complex internal structure. We 

discuss possible correlations with other sandstone levels recorded in the Vaca Muerta 

Formation in several localities throughout the basin. Particularity, we discuss the 
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possibility to correlate the slump structures described in the Huncal Member at its type 

locality with other slump structures also recognized in the surface and subsurface by 

seismic analysis in previous works (Figure 1) (Kietzmann and Vennari, 2013; 

Kietzmann et al., 2014b; Arregui, 2014; Pose et al., 2014; Gangui and Grusem, 2014; 

Reijenstein et al., 2017). The Vaca Muerta Formation is the largest hydrocarbon source 

rock of Argentina and is the third reservoir in the world of unconventional gas and oil 

(see review in González et al., 2016), thus studies in outcrops can be very useful as 

possible analogues of examples recorded in the subsurface. 

 

Figure 1. Regional map of the Neuquén Basin with exposures of the Vaca Muerta 
Formation. Localities with sandstone levels and slump type structures in outcrop 
sections and subsurface of the Vaca Muerta Formation are also shown. Numbers refer to 
localities mentioned in the text: 1) Huncal type locality (Leanza et al., 2003); 2) 
Rahueco (Spalletti et al., 2008); 3) Cerro Domuyo (Kietzmann and Vennari, 2013); 4) 
Sierra de la Vaca Muerta (Gulisano et al., 1984; Kietzmann et al., 2014b; Reijenstein et 
al., 2017); 5) Pampas de las Yeguas II (Gangui and Grausem, 2014; Pose et al., 2014); 
6) Sierra Chata (Arregui, 2014); 7) Aguada Pichana (Pose et al., 2014); 8) Loma 
Campana (Reijenstein et al., 2017); 9) Picún Leufú Anticline (Krim et al., 2017); and 
10) Pozo La Hoya (Santiago et al., 2014). 
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2. Geological Setting 

 Thick Meso-Cenozoic marine and continental successions with accurate 

biostratigraphic control characterize the Neuquén Basin. Many volcanic and 

volcaniclastic levels are exposed along its western sectors due to their retro-arc position 

(Digregorio et al., 1984; Ramos, 1988; Legarreta and Uliana, 1991). The stratigraphic 

and biostratigraphic frameworks have been studied through the years and a robust 

knowledge is presently available (Legarreta and Uliana, 1991, 1996; Uliana and 

Legarreta, 1993; Vergani et al., 1995; Aguirre-Urreta and Rawson, 1997; Aguirre-Urreta 

et al., 2005; and references therein).  

The infill of the basin began in the Late Triassic where continental and volcanic 

synrift deposits were accumulated in isolated depocenters (Franzese and Spalletti, 

2001). A long thermal subsidence retro-arc stage was developed between the Early 

Jurassic and Early Cretaceous and thick marine and continental successions with 

interbedded volcanogenic rocks characterized this period (Legarreta and Gulisano, 

1989). Since the Late Cretaceous, the basin was filled by typical red beds deposited in a 

foreland basin setting (Cobbold and Rossello, 2003; Tunik et al., 2010; Fennell et al., 

2017). 

The Vaca Muerta Formation represents a rapid and widespread marine 

transgression coming from the Paleo-Pacific Ocean during the retro-arc stage of the 

basin according to Legarreta and Uliana (1991). The unit is composed of organic-rich 

black shales, marls and limestones deposited between the early Tithonian and the early 

Valanginian (Weaver, 1931; Legarreta and Uliana, 1991; Spalletti et al., 2000; 

Kietzmann et al., 2014a). The sedimentary succession is more than 800 meters thick in 

the main Andes of Neuquén and is widely developed in the subsurface of the Neuquén 

Embayment (Figure 1).  

In the study area, shale-dominated distal facies of the Vaca Muerta Formation 

are exposed in the Agrio fold-and-thrust belt (Zamora Valcarce et al., 2006). The Huncal 

Member was defined by Leanza et al. (2003) in the inner zone of the belt, where 

turbidite sandstone intervals, in some cases with slump structures, are interbedded in the 

distal facies of the Vaca Muerta Formation (Figure 2). 

 

2.1 The Huncal Member 

 Several localities with sandstone-dominated intervals, in cases associated with 

slump structures were described in the Vaca Muerta Formation (Figure 1), but there is 
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no agreement on the precise age of these deposits along the basin. The Huncal section is 

the type locality of the member (Figure 2); according to Leanza et al. (2002, 2003, 

2011), the fossiliferous content of the mudstone facies, where the sandstones are 

interlayered, indicates an early Berriasian age for the Huncal sandstones. This relative 

age was based on the ammonites Substeueroceras sp. and Aceveidites sp. found 85 

meters below the Huncal Member and Argentiniceras noduliferum (Steuer) located 35 

meters above it (Leanza et al., 2003). Other sandstone intervals that crop out in the 

Arroyo Candelero, 50 km south of the Huncal locality (Figure 2), are interbedded with 

fossiliferous horizons with Berriasella callisto (d’Orbigny) an ammonite assigned to the 

late Berriasian/early Valanginian by Leanza and Wiedmann (1989). The Candelero 

sandstones were also included in the Huncal Member by Leanza and Hugo (2005). 

 

Figure 2. Geological map of the studied region based on Leanza et al. (2003, 2005, 
2006), Leanza and Hugo (2005) and Zamora Valcarce et al. (2006). The studied sections 
and locations of Figure 3 are also shown. A) Huncal type locality (section A); B) 
Section B; C) section C; D) section D. 
 

To the north of Huncal locality, in the Rahueco section (Figure 1), turbidite 

sandstone intervals are interbedded with mudstones of the Vaca Muerta Formation and 

were included in the Huncal Member by Spalletti et al. (2008). In the absence of fossils 

and due to their stratigraphic position, they were tentatively assigned to a late Berriasian 
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to early Valanginian age (Spalletti et al., 2008). In the area of Cerro Domuyo, located 

150 km to the north of the Huncal locality (Figure 1), an interval of mudstones and 

calcareous sandstones with slump structures were also include in the Huncal Member 

(Kietzmann and Vennari, 2013; Kietzmann et al., 2014a, 2016). Their ammonite content 

indicates a late Tithonian age (Kietzmann and Vennari, 2013).  

 In the Sierra de la Vaca Muerta, 100 km to the south of the studied region 

(Figure 1), marls and packstones intervals with slump structures were described in the 

Los Catutos and Mallín de los Caballos sections (Gulisano et al., 1984; Kietzmann et 

al., 2014b; Reijenstein et al., 2017).  

On the other hand, core samples from the La Hoya well (locality 10 in Figure 1) 

in the southern Neuquén Basin, show subarcosic sandstones interbedded in the typical 

black shales of the Vaca Muerta Formation (Santiago et al., 2014). These sandstone beds 

could be integrated to the Huncal Member.  

 Finally, complex structures interpreted as slump have been described in the 

subsurface of the Neuquén Embayment (Arregui, 2014; Gangui and Grausem, 2014; 

Pose et al., 2014; Reijenstein et al., 2017). These slump deposits were identified both 

seismically as well as from well profiles in different oil fields (see Figure 1). It is 

important to note that they were mainly recorded in late Tithonian to early Berriasian 

sequences and were compared with the slump structure of the Huncal Member (Arregui, 

2014; Gangui and Grusem, 2014). 

 

3. Methods 

Four sections of the Huncal Member distributed in an east-west transect (Figures 

2 and 3) were analyzed in order to obtain information about depositional settings, 

ammonite biostratigraphy, calcareous nannofossils, sandstone petrography, and U-Pb 

provenance. The sections were logged in detail at 1:100 and for the estimation of 

thickness a tape measure was used that represent one of the most precise tool for 

fieldwork measures. In addition, a structural section was measured at the Huncal 

locality along a northeast striking section of 1,200 meters to show the vergence of the 

structures (Figures 2 and 4). 

In the four sedimentary profiles surveyed, the ammonite levels have been 

recognized. They are mostly represented in the shaly facies with moderate to good 

preservation as impressions and only in few horizons within calcareous nodules. Only 

on top of the Huncal Member, the ammonites are preserved as internal molds and are 
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frequently deformed. In many horizons, it was not possible to get precise systematic 

identifications up to the species level. The specimens were photographed, and initial 

identifications were done in the field which were later corroborated using appropriate 

literature in the laboratory. 

 

Figure 3. Measured stratigraphic profiles in an east - west transect, Huncal Member of 
the Vaca Muerta Formation (see location in Figure 2). 
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In the present study, 48 samples were analyzed for calcareous nannofossils, of 

which 21 were fertile. These samples are distributed as follow: in the section B 

(Northern profile) 16 samples were taken but only 3 were fertile, in the section C 

(Western profile) 14 samples were fertile of 25, and in the section D (La Silla profile) 4 

samples of 7 were fertile. The micropaleontological samples were prepared following 

the smear slide or smear technique of Edwards (1963). The observations and 

photographs were made with a Leica DMLP polarization microscope with an increase 

of 1000X and accessories such as 1 λ plaster sheet and blue filter. The distribution 

charts for the calcareous nannofossil species recognized are presented in the 

Supplementary Material (Tables 1, 2 and 3). The material studied is deposited in the 

Repository of the Facultad de Ciencias Exactas y Naturales, Universidad de Buenos 

Aires, under the abbreviations BAFC-NP Nº: 4124 - 4139 (section B), BAFC-NP Nº: 

3955 - Nº3979 (section C), and BAFC-NP Nº: 4140-4146 (section D). 

Twelve standard thin sections of very fine to fine-grained sandstones of the 

Huncal Member were prepared and carefully analyzed under a Leica DM750P 

petrographic microscope fitted with a Leica MC120 HD camera. Modal composition of 

the different detrital grains was quantified by point counting on 300–500 points per thin 

section. Petrographic composition for the Huncal sandstones is presented in the 

Supplementary Material (Table 4). 

In the upper part of the Huncal Member a fine-grained, greenish-gray sandstone 

was collected to analyze the detrital zircons by U-Pb laser ablation (sample VM-01, 

Figure 3). The zircon separation was performed by standard techniques of concentration 

of heavy minerals in the Departamento de Ciencias Geológicas, Universidad de Buenos 

Aires (Argentina). SEM (Secondary Electron Microscopy) images and U-Pb age 

determinations were conducted at the Laboratório de Geocronologia, Instituto de 

Geociências da Universidade de Brasília (Brazil). The analytical methods (LAM-MC-

ICP-MS) and the age measurements of zircon grains are available in the Supplementary 

Material (Table 5). 

 

4. Results 

4.1. Outcrop analysis of the Huncal sections 

 The Huncal type locality is the most eastern outcrop (section A) and there, 

deformational features include several tight folds and faults that repeat and overlap 

various levels of sandstones and shales. Section A is between 13 and 25 meters thick 
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(Leanza et al., 2003; Spalletti et al., 2008) representing only the upper levels of the 

Huncal Member (Figures 2 and 3). Due to the high deformation, we decided to 

concentrate our sedimentological, biostratigraphic and provenance analysis in other 

sections where the sandy and shale intervals can be well distinguished (sections B, C 

and D). In the type locality of the Huncal Member it is more interesting to study the 

structural features and vergence of the deformation, which are described and analyzed 

in the next section. 

The section B (GPS: 37º56´39.4´´S and 70º23´07.5´´W) of the Huncal Member 

is located west of the Huncal type locality and is 40 meters thick. The succession of the 

Vaca Muerta Formation here is characterized by the predominance of marls and black 

shales with two green, fine- to medium-grained, sandstone-dominated intervals (Figures 

2 and 3). The lower sandstone-dominated interval is 7 meters thick, composed of 

lenticular to tabular amalgamated sandstones, ranging from 0.5 to 1.0 m thick units. 

Generally, sandstone beds have erosive bases and intercalate with cm-thick muddy 

siltstones. Sandstone beds are massive or exhibit parallel lamination and mud intraclasts 

represent a common feature in the base of beds. Towards the top of this interval 

synsedimentary structures are evident (Figure 4a). The section continues with 22 meters 

of shales with parallel lamination where two levels with ammonites were identified 

(Figure 3), the lower one carries Negreliceras fraternun (Steuer) and the second one 

“Neocomites” wichmanni Leanza. Above the shales, the upper sandstone-dominated 

interval is 17 meters thick, integrated by fine to medium-grained amalgamated massive 

sandstone beds. In these deposits it is common the occurrence of abundant plant debris 

such as leaves (Figure 4b). On its top, the third level with ammonites 

(“Thurmanniceras” sp. cf. "T." keideli and “Thurmanniceras” sp.) is registered. Along 

the section, 16 samples of black shales were obtained for nannofossils analysis (see 

below). 

The section C was measured in the western flank of the Cerro Mulichinco 

(38º00´00.1´´S - 70º26´08.7´´W), 10 km southwest of the type locality (Figures 2 and 

3). The logged section is composed of 130 meters of black shales and marls interbedded 

with very thin calci-mudstones and wackestones. In the lower 45 meters of the section, 

two thin mudstone levels record the ammonite “Neocomites" regularis Leanza. The 

Huncal Member is also characterized by two sandstone-dominated intervals separated 

by 50.5 meters thick shales (Figure 4c). The lower interval is 15 meters thick, while the 

upper one is 18 meters thick. Internally, both intervals contain tabular and lenticular 
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amalgamated massive beds, ranging from 1 to 5 meters thick (Figure 4d), in some cases 

with parallel lamination. Quartz and white mica are the main component in addition to 

mud intraclasts frequently observed towards the base of sandstone beds. High 

carbonaceous content and leaves characterize the deposits. In the upper interval some 

red sandstones show small scale synsedimentary deformation features. The shales 

intercalated between the two sandstone-dominated intervals record three levels with the 

ammonite Pseudoblanfordia australis (Burkhardt) well preserved in calcareous nodules. 

In the top of the sandstones of the upper interval, molds of deformed ammonites 

(“Thurmanniceras” sp. cf. "T." keideli and “Thurmanniceras” sp.) and bivalves are 

common. Along the 130 meters of the section, 25 samples of black shales were obtained 

for nannofossil analysis (see below). 

 

Figure 4. Photographs of the Huncal Member (Vaca Muerta Formation) outcrops; a) 
lower sandstone interval with synsedimentary structures at section B; b) detail of plant 
debris in sandstones from the Huncal Member; c) regional view of the two sandstone 
intervals  of the Huncal Member in the section C; d) Massive sandstones with tabular 
and lenticular amalgamated beds; and e) sedimentary structures include horizontal 
lamination and low-angle lamination. 
 

In the southern sector of the studied area, a third section was logged of the 
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Huncal Member (section D in Figure 2). However, as the exposures are poor, it was not 

possible to log it in detail. The two sandstone-dominated intervals are also recognized, 

being intercalated approximately by 30 meters of laminated shales. Sandstone beds are 

massive in some cases, but several sedimentary structures have been recognized 

including parallel to low-angle lamination (Figure 4e). In addition, flute casts, 

longitudinal scours, mud intraclasts and small scale soft-sediment deformation 

structures are exhibited. Many leaves were identified in the top of the sandstones; the 

ammonite Pseudoblanfordia australis (Burckhardt) was identified in lower and middle 

levels within the shales where seven samples were obtained for nannofossil analysis 

(see below). 

 

4.1.1 Structural features in the Huncal type locality 

 The best developed folds and faults of the Huncal Member are exposed almost 

along the dirty road that goes northwards from Huncal to Pichaihue Arriba (see location 

in Figure 5). The exposed succession corresponds to the upper part of the Vaca Muerta 

section, near the tectonic contact with the Mulichinco Formation. A north-striking 

normal fault suppressed the uppermost levels of Vaca Muerta Formation as can be seen 

along the road to Pichaihue Arriba. The study section is bounded along the top and at 

the base by gentle dipping non-deformed black shales, which clearly show that the 

intense deformation is concentrated within an interval of few tens of meters.  

 

Figure 5. Detailed geological map with the location of the slump bed between A-B. 
 

The deformed succession at Huncal is exposed along a northeast striking section 
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of 1,200 m. The section is described from east to west as seen in Figure 6. West of the 

normal fault, the upper part of the Vaca Muerta Formation is flat dipping 12ºNE. A tight 

anticline and a syncline are developed in the black shales, with their axial planes 

dipping to the east. The first yellow-greenish sandstone of 4 m thickness is interbedded 

in the gently folded black shales. This succession is overriding heavily deformed 

sandstones of the Huncal Member, in decametric folds, with their axial planes dipping 

to the east (Figure 6b). This deformed area is truncated by a low angle back-thrust 

verging N80ºE (Figure 6b). The back-thrust could be near horizontal if tilt corrected by 

the present Andean dip to the east of the succession. 

 

Figure 6: Cross-section of the fold and thrust system surveyed in the type locality of the 
Huncal Member. For location and map unit references, see Figure 5. 
 

A second area of intense deformation is illustrated in the Figure 6c. These 

structures have been described by Leanza et al. (2003) and Spalletti et al. (2008). The 

footwall of the structure is characterized by an overturned syncline plunging 10 to 

12ºW.  The hanging wall structure is a double-vergent anticline, subparallel to the 

footwall syncline. The tectonic contact is interpreted as a back-thrust with an apparent 

vergence of N82ºE. However, if these structures are corrected by the Andean tilting (~ 

12ºE), the axial planes of the folds are subhorizontal with a gentle dip to the north. 
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Based on this fact, the general structure is interpreted as transported in a S62ºW 

direction. The structure further west is characterized by another double-vergent anticline 

with subhorizontal axial planes, which when corrected has a gentle dipping to the east. 

The last isolated structures are secondary folds developed in the westernmost sector 

with clear west vergence. 

As a whole, the described section shows some kind of chaotic structures, with 

apparent vergence in several directions, but with the main transport direction to the 

southwest. However, the vergence in some areas is very complex as shown by the 

orientation of the sole marks to the north and east reported by Spalletti et al. (2008), as 

well as some east vergence structures further to the north. 

 

4.2. Ammonite biostratigraphy  

In all the sections surveyed in this study several levels with ammonites have 

been identified. Representative species are illustrated in Figure 7. 

In section C, within the western profile, the lowermost ammonite found is 

“Neocomites” regularis Leanza preserved in thin mudstone levels below the sandstones 

of the Huncal Member. The most common species recorded in the shales in between the 

two sandstones packages is Pseudoblanfordia australis (Burkhardt), an Andean 

endemic ammonite of late Berriasian age which was identified in the southern La Silla 

profile and in the western profile (sections C and D; see Figures 2 and 3). In the section 

B, the ammonites registered in the shales between the sandstones are Negreliceras 

fraternun (Steuer) below and “Neocomites” wichmanni Leanza, above. On the top 

surface of the Huncal Member, numerous molds of “Thurmanniceras” sp. and 

“Thurmanniceras” sp. cf. “T”. keideli have been documented. 

The age of this fauna is late Berriasian, representative of the Spiticeras damesi 

biozone. It should be noted here that, although “Neocomites” wichmanni has been 

considered an index species of early Valanginian age, its precise systematic position and 

age are presently under study. 

Other ammonite species have been described and illustrated from the upper part 

of the Vaca Muerta Formation in a locality 8 km to the southwest of Huncal (very close 

to our section C) by Leanza and Wiedmann (1989). These correspond to 

Thurmanniceras huncalense and Killianella primaeva Leanza and Wiedmann spp. and 

Protancyloceras sp. and were recorded in the Spiticeras damesi zone of the late 

Berriasian. 
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Figure 7. Field photographs of ammonites of the Huncal Member. A) "Neocomites" 
regularis Leanza, B) Pseudoblanfordia australis (Burckhardt), C) "Neocomites" 
wichmanni Leanza, D-E) “Thurmanniceras” sp. cf. "T." keideli. A, B, D and E from 
section C, C from section B. Scale bar 1 cm. 
 

4.3. Calcareous nannofossils: bioevents and paleoecological indicators 

In the section C, 21 species of calcareous nannofossil assignable to the 

Berriasian have been recognized with a moderate diversity and preservation. The taxa 

examined are Cruciellipsis cuvillieri (Manivit) Thierstein, Cyclagelosphaera margerelli 

Noël, Diazomatolithus lehmanii Nöel, Eiffellithus primus Applegate and Bergen, 

Ethmorhabdus gallicus Noël, Ethmorhabdus hauterivianus (Black) Applegate et al. 

(1989), Helenea chiastia Worsley, Manivitella pemmatoidea (Deflandre) Thierstein, 

Micrantholithus hoschulzii (Reinhardt) Thierstein, Micrantholithus obtusus Stradner, 

Micrantholithus sp., Retecapsa surirella (Deflandre and Fert) Grün, Rhagodiscus asper 

(Stradner) Reinhardt, Staurolitites sp., Tegumentum stradneri Thierstein, Tranolithus 
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gabalus Stover, Umbria granulosa Bralower and Thierstein, Watznaueria barnesiae 

(Black) Perch-Nielsen, Watznaueria biporta Bukry, Watznaueria fossacincta (Black) 

Bown, Zeugrhabdotus embergeri (Noël) Perch-Nielsen, Zeugrhabdotus howei Bown, 

Zeugrhabdotus xenotus (Stover) Burnett. Representative species are illustrated in Figure 

8. 

Four biomarker species are recognized: Umbria granulosa, Eiffellithus primus, 

Rhagodiscus asper and Cruciellipsis cuvillieri which first occurrences (FO) are defined 

in the Tethys as close to the Jurassic/Cretaceous boundary. In this study, based on the 

joint presence of these species and in particular the FO of Cruciellipsis cuvillieri 

recognized in the basal profile levels (BAFC-NP 3957) a Berriasian age is assigned to 

the nannoflora recognized in the western profile (Bralower et al., 1989; Ogg et al., 

2004). The absence of species of the genus Nannoconus Kampter prevents refining the 

age of this nannoflora within the Berriasian. In the Neuquén Basin, the FO of C. 

cuvillieri has been correlated, with doubts, with the Argentiniceras noduliferum 

ammonite biozone (Aguirre-Urreta et al., 2005) but its presence has been used in 

different regions of the basin as a Berriasian sensu lato biomarker (Gatto, 2007; 

Lescano and Concheyro, 2014). 

Only few nannofossil genera have been found in the section C, but some present 

paleoecological relevance. Species of the genera Watznaueria Reinhardt and 

Micrantholithus Deflandre constitute more than 90% of the recognized taxa. 

Watznaueria spp. (W. fossacincta, W. barnesiae, W. biporta) is the most abundant group 

in all the samples. These species are considered resistant to diagenesis (Roth and 

Krumbach, 1986; Premoli-Silva et al., 1989; Williams and Bralower, 1995; Pittet and 

Mattioli, 2002) and are defined as ecologically robust forms that constitute the first 

species to be established in new biotopes (Mutterlose, 1991). 

In oceanic environments Watznaueria barnesiae presents peaks in its abundance 

in oligotrophic conditions, whereas in restricted basins, as can be considered the 

"Western Interior" (USA) the peaks of Watznueria barnesiae are recorded in eutrophic 

environments (Cobianchi, 2002; Lees et al., 2004). These restricted basins are 

considered to have a higher nutrient level than the ocean, and runoff plays a very 

important role. In this study, W. fossacincta is more common in most samples than W. 

barnesiae, while W. biporta is rare (see range chart in supplementary material). 
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Figure 8. Representative calcareous nannofossils from the Vaca Muerta Formation at 
the section C (western profile). a. Watznaueria fossacincta (Black) Bown; b-c. 
Watznaueria biporta Bukry;  d. Cyclagelosphaera margerelii Noël; e. Rhagodiscus 
asper (Stradner) Reinhardt; f. Diazomatolithus lehmanii Noël; g. Tegumentum stradneri 
Thierstein; h. Eiffellithus primus Applegate and Bergen; i. Umbria granulosa Bralower 
and Thierstein; j. Zeugrhabdotus xenotus (Stover) Burnett;  k. Zeugrhabdotus embergeri 
(Noël) Perch-Nielsen; l. Rhagodiscus infinitus (Worsley) Applegate; m. Manivitella 
pemmatoidea (Deflandre) Thierstein; n. Cruciellipsis cuvillieri (Manivit) Thierstein; ñ-
o. Micrantholithus hoschulzii (Reinhardt) Thierstein; p-s. Micrantholithus obtusus 
Stradner. Scale bar = 1 µm. 
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Micrantholithus spp. (Micrantholithus sp., M. hozchulzii, M. obtusus) represent 

the second most common group in the analyzed samples. Micrantholithus is interpreted 

as a taxon of warm waters and appears to have had a neritic distribution with a broad 

latitudinal range between 50ºN – 50ºS. Species are common in coastal environments 

and infrequent in pelagic environments (Applegate et al., 1989; Street and Bown, 2000). 

Micrantholithus is virtually absent in the Pacific and Indian oceans (Bown, 2005). 

Based on its similarities with the extant Braarudosphaera bigelowi, the ecology of 

Micrantholithus is probably related to neritic factors such as reduced salinity (Street and 

Bown, 2000; Bown, 2005). In addition, during the Cretaceous, the peaks in abundance 

of this genus are associated with low salinity values of surface waters. The increase in 

the abundance of Micrantholithus is associated with hypohaline conditions linked with 

the entry of freshwater flows in hotter and more humid conditions (Bersezio et al., 

2002). 

Another species with recognized paleoecological value is Rhagodiscus asper. 

This is a characteristic taxon of warm waters (Erba, 1987; Mutterlose, 1992; Erba et al., 

1992; Street and Bown, 2000; Melinte and Mutterlose, 2001; Herrle et al., 2003; 

Mutterlose et al., 2005). 

In the fossil record, the genus Nannoconus has been interpreted as an indicator 

of the lower part of the photic zone (Erba, 1994; Coccioni et al., 1992; Bersezio et al., 

2002) and the changes registered in the abundance of the nannoconids and other 

nannoliths have been used to reconstruct the fertility of surface waters and to 

characterize the dynamics of nutrition. In the intervals in which the water presented a 

greater stratification, a high abundance of nannoconids would be observed accompanied 

by a decrease in the number of other nannofossils, and from this situation an increase in 

the productivity of the lower part of the photic zone is inferred (Erba, 2004). In 

addition, it has also been observed that a rise in nutrition (associated, for example, with 

an increase in seasonal winds) would generate a greater transfer of nutrients to surface 

waters. This would be reflected in an increase in the abundance of nannofossils and a 

decrease in the number of nannoconids (Erba, 2004). 

In sections B and D the calcareous nannofossil assemblages recognized show 

moderate diversity and preservation (Tables 2 and 3 of the Supplementary Material). 

The nannofossil markers have not been found and therefore it has not been possible to 

identify a precise age for this interval. 
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4.4. Provenance analysis 

4.4.1. Sandstone petrography 

Modal composition of the detrital grains is plotted in the sandstone classification 

diagram of Folk et al. (1970), being classified as lithic arkose and feldspathic litharenite 

(Figure 9a). According to compositional QFL and QmFLt provenance triangles 

(Dickinson et al., 1983; Dickinson, 1985) sandstone samples plot near the boundary 

between the mixed (recycled orogenic) and dissected arc provenance fields (Figure 9b 

and c). Petrographic analysis indicates that the coarser grained sandstones typically tend 

to be better sorted than the finer grained sediments which in some cases are poorly 

sorted. The grain shape is mainly subangular, but well-rounded grains are also found; 

additionally, grain contacts are point-shaped to elongated (Figure 9d). Detrital quartz 

(29–46 vol.%) is mainly monocrystalline and, less commonly, polycrystalline grains 

show granoblastic and microcrystalline textures (Figures 9d and e). Detrital feldspars 

(21–34 vol.%) are dominated by plagioclases (oligoclase - andesine) but also include 

alkali feldspars, represented by orthoclase, and in lower proportion, sanidine and 

microcline are also present (Figure 9e). In general, feldspars are corroded; plagioclases 

show dissolution features being partially replaced by spar calcite, while alkali feldspars 

are incipiently altered to illite/mica. The rock debris (13–26 vol.%) are dominated by 

volcanic rock fragments exhibiting felsitic, hyaloplitic, and pilotaxitic textures. In minor 

proportion (<5% vol.%) there are also mica-rich metamorphic and plutonic rock 

fragments as well as illite-rich sedimentary lithics. The latter are deformed among more 

rigid crystal grains and form part of a pseudomatrix (e.g., Worden and Morad, 2003). 
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Figure 9. Petrographic characterization of the Huncal Member sandstones. a) Modal 
composition (QmFLt) according to the classification diagram of Folk et al. (1970); b 
and c) Provenance QFL and QmFLt triangles after Dickinson et al. (1983); d and e) 
Optical photomicrographs under parallel and crossed nicols respectively. Representative 
example with major framework grains: Qm (monocrystalline quartz), Plg (Ca-Na 
feldspars), Kfs (K-Na feldspars), Lv (volcanic lithic), Ms (muscovite); f and g) Detail 
microphotographs showing glass shard (Gs) with remnants of bubble walls in (f); and, 
organic particles that represents land-derived plant fragments in (g), both pictures taken 
under parallel nicols. Scale bars: 200µm in d, e and g; and 100µm in f. 
 

The matrix is composed of phyllosilicates (mainly illite/mica and minor chlorite) 

and silt-sized quartz grains. Due to the similar composition between sedimentary lithics 

and the matrix it is possible that illite-rich lithics represent shaly intraclasts derived 

from the erosion of interbedded fine-grained rocks (Dickinson, 1985). 

Interestingly, two samples have shown pyroclastic fragments (<1% vol.%) 

represented by both, glass shards and pumice fragments (Figure 9f). These components 

indicate that explosive volcanism processes were active during the sedimentation of the 

Huncal Member.  Thin sections also exhibit organic particles (Figure 9g) that represent 

the carbonaceous particles described during fieldwork. 

 

4.4.2. U-Pb data 

Most of the separated zircons of the sample VM-01 are characterized by a long 

prismatic habit with an elongation greater than 3, pyramidal faces preserved and 

idiomorphic to subidiomorphic forms (Figure 10a). A subordinate population has 

rounded to subrounded forms. The SEM images of the idiomorphic to subidiomorphic 

zircon population showed typical oscillatory zoning indicating the igneous origin of the 

grains (Figure 10b). Rounded zircons presented complex internal structures suggesting a 

metamorphic origin. Also, in many of the zircon grains xenocrystal cores were 

observed. 

Ninety-two zircons were analyzed by U-Pb but 20 analyses were rejected due to 

high discordance (more than 20%), large uncertainties, and/or Pb loss. The 72 

concordant ages are between ca. 139 Ma and 1,229 Ma. The pattern of detrital zircon 

ages has a multimodal distribution with main peaks in the Late Jurassic at 145 Ma 

(10%), in the Early-Middle Jurassic at 173 Ma and 181 Ma (35%), in the Triassic at 225 

Ma (14%) and in the Permian at 278 Ma (29%). Several single ages also appear in the 

Early Paleozoic (11%) and Late Mesoproterozoic (1%) (Figure 10 c). 

The weighted average of the three youngest ages overlapping their error on one-
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sigma is 144.8 ± 3.6 Ma; this value is coherent with the youngest peak in the total 

probability diagram at ca. 145 Ma (Figures 10 c and d). 

 

Figure 10. Microscope (a) and SEM images (b) of the analyzed detrital zircons from the 
VM-1 sample, Huncal Member. In the SEM images are included the laser spot positions 
and their age. Frequency histogram and relative probability plots of the analyzed zircons 
are shown in (c). Weighted average of the 3 youngest ages overlapping their error on 
one sigma is added in (d). 
 

5. Discussion 

5.1. Origen and age of the Huncal Member 

The Huncal sandstone is a particular facies among the most common shale, 

mudstone and carbonate facies of the Vaca Muerta Formation. The sandstones in the 

type locality contain sets of sedimentary structures that allowed previous contributions 

to interpreting them as turbidite deposits (Leanza et al., 2003; Spalletti et al., 2008). 

They include massive sandstones that show flutes and small scale soft-sediment 

deformation features followed by fine-grained sandstones with parallel to low-angle 

laminated beds (Figure 4e). These vertical changes fit with models of turbidites (e.g., 

Bouma, 1963; Lowe, 1982; Mutti et al., 1999; Talling et al., 2012), and as observed to 

the north of the studied localities, fining-upward cycles were interpreted as the record of 
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repeated emplacement of short-lived turbidity flows (Spalletti et al., 2008). Moreover, 

other authors recognized combined-flow structures such as hummocky cross-

stratification (Leanza et al., 2003). Also important is the abundance of plant fragments, 

recognized in outcrop descriptions as well as under microscopic analysis (Figures 4b, 

9g). 

In the western profiles two sandstone packages were recognized, which are 

separated by shales of variable thickness (Figure 3). The lower sandstone package 

disappears near the Huncal locality, while the upper level continues a few kilometers to 

the east. Therefore, it is possible to interpret that two independent turbiditic lobes were 

involved in the sedimentation of the Huncal Member. 

The ammonites, mostly represented in the shaly facies between the sandstone 

intervals, are representative of the Spiticeras damesi biozone. The age assigned to the 

Huncal Member according to this ammonite fauna is late Berriasian. Despite the 

moderate diversity and preservation of the calcareous nannofossils recognized in the 

shaly facies of the Huncal Member, a Berriasian age is assigned to the nannoflora 

recognized, due to the first occurrence of Cruciellipsis cuvillieri documented 30 meters 

below of the first sandstone interval of the section C (see Figure 3). The peak of 

youngest U-Pb ages at ca. 145 Ma, compatible with the weighted average of the 3 

youngest ages overlapping their error on 1 sigma (144.8 ± 3.6 Ma), is the best value to 

represent the maximum depositional age of the Huncal Member. However, this value is 

older than the late Berriasian age based on the biostratigraphic data. We interpret that 

these youngest zircons (ca.145 Ma) were recycled from the Tordillo Formation or from 

volcanic sources older than the sediments of Huncal Member. In addition, we conclude 

that the contribution of primary volcanic zircons from a volcanism coeval with the 

sedimentation has been no significant in the sampled level. 

According to the new sequence stratigraphic framework for the Vaca Muerta 

Formation (Kietzmann et al., 2014a, 2016), the upper Berriasian Huncal sandstones can 

be included in the progradational regressive phase of the fourth transgressive-regressive 

composite sequence. Thus, the deposition of the turbidite sandstones at Huncal could be 

linked with the late stages of a prograding wedge that developed in response to relative 

sea-level changes. In addition, the increase in abundance of the nannofossil genus 

Micrantholithus in the shales recorded between the two sandstone packages, suggests 

changes in salinity, which could be associated with marginal environments affected by 

the entry of fresh water. These observations can also explain why the genus 
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Nannoconus has not been registered in the studied Huncal sections, but it has been 

recognized in more basinal localities, under normal marine conditions as Las Loicas in 

southern Mendoza (see Vennari et al., 2014). 

 

5.2. Sedimentary provenance 

Lower Jurassic and Permian igneous rocks were the main source area of 

sediment supply according to the obtained ages on the detrital zircons from the Huncal 

sandstones. Subordinate detrital zircon age groups in the Late Jurassic, Late Triassic and 

Paleozoic, plus single ages from the Early Cretaceous and Mesoproterozoic.  

The best candidate to be the source region of provenance of the older detrital 

zircons (Lower Jurassic, Triassic, Paleozoic and Precambrian) is the North Patagonian 

Massif, located in the southern and eastern margin of the Neuquén Basin (Figure 11). 

The main group composed by volcanic zircons of the Lower Jurassic (main peak at ca. 

181 Ma; 35%) could be related to volcanic rocks of the Marifíl Formation and 

equivalents (see Naipauer et al., 2018). The Permian detrital zircons (main peak at ca. 

278 Ma; 29%) reflect a sediment supply from the western and central part of the North 

Patagonian Massif where Permian igneous rocks are widely distributed (e.g.: La 

Esperanza Plutonic Complex and Dos Lomas Volcanic Complex; see Naipauer and 

Ramos, 2016 for a review). The isolated early Paleozoic and Precambrian oldest ages 

suggest a provenance from rocks exposed in the eastern border of the North Patagonian 

Massif, where Lower Paleozoic igneous-metamorphic rocks are described in the 

Tardugno Granodiorite and the Nahuel Niyeu and El Jagüelito formations (Pankhurst et 

al., 2006, 2014) (Figure 11). 

This interpretation is coherent with the fact that petrography of sandstones in the 

ternary graphs (QmFLt, QtFL, Dickinson et al., 1983; Dickinson, 1985) indicates mixed 

(recycled orogenic) and dissected arc provenances (Figures 9b and c). Acidic and 

intermediate volcanic rock fragments are the main component of lithics as was also 

observed by Marchese (1971), while metamorphic rock fragments are subordinate, 

mainly represented by polycrystalline quartz. The phyllosilicate assemblage is 

dominated by detrital illita/mica and minor chlorite that suggests low to medium grade 

metamorphic rocks as other source rocks. Therefore, the detrital components of the 

Huncal sandstones could have been supplied from North Patagonian Massif rocks and 

not significantly from the contemporary volcanic arc. 

Our interpretation that the main source region for the clastic sediments was 
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located towards the southeast of the basin is supported by the regional depositional dip 

as well as the progradation of clinoforms defined by seismic interpretation in the Vaca 

Muerta Formation to the northwest (e.g. Gulisano et al., 1984; Legarreta and Uliana, 

1991; Kietzmann et al., 2014a; Reijenstein et al., 2017).  

On the other hand, the youngest detrital zircon ages (ca. 145 Ma) are more 

difficult to explain from the southeastern margin of the Neuquén Basin because rocks 

with those ages are absent in the North Patagonian Massif. The zircon group of the Late 

Jurassic (peak at ca. 145 Ma) should be a recycling of the underlying Tordillo 

Formation, as this unit has a typical most prominent peak at ca. 144 Ma (Naipauer et al., 

2012, 2015). In that sense, geochemical studies conducted by Spalletti et al. (2014) also 

demonstrate the participation of the detritus from the Tordillo Formation in the 

sedimentation of the Vaca Muerta Formation during the transgressive process. 

The Tordillo Formation could have been exhumed during the Early Cretaceous 

along the Huincul deformation zone (Naipauer et al., 2012). The Huincul High is an 

east-west oriented morphostructural feature that extends at depth for hundreds of 

kilometers across the southern Neuquén Basin (Figures 11). Several works have 

demonstrated a complex compressive system developed along the Huincul deformation 

zone and its tectonic activity during the Middle Jurassic to the Late Cretaceous (Freije et 

al., 2002; Mosquera and Ramos, 2006; Pángaro et al., 2009; Naipauer et al., 2012; 

Gangui and Grusem, 2014). This structural feature possibly constituted a positive 

element during the late Kimmeridgian and the Early Cretaceous (Mosquera and Ramos, 

2006; Naipauer et al., 2012). Thus, the population of detrital zircon ages at ca. 145 

possibly reflects a sediment supply from the Huincul High (Figure 11). 

Alternatively, youngest zircons (ca. 145 Ma) could come from Late Jurassic 

volcanic rocks related to the Andean arc. Widely exposures of the Rio Damas 

Formation, located towards the northwest of the study area, are characterized by a thick 

volcanic sequence with U-Pb ages at ca. 146 Ma (Rossel et al., 2014) (Figure 11). 

 

5.3. Slump structures at the Huncal locality 

We interpret the complex fold and fault system described in the upper sandstone 

levels of the Huncal Member as the result of submarine slumps processes (Figures 5 and 

6). The main features that support our interpretation are: (1) the deformed sandstone 

levels occur in a restricted area between undisturbed shales and (2) the structure system 

has a wide range of deformational style and variable vergence; although we defined a 
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main transport direction to the SW and W. In addition, the presence of these complex 

slump structures is not recorded westward in the studied region. In the western profiles 

(sections B and C) only small levels, few meters thick, show synsedimentary 

deformation. The distribution of the slumps is concentrated on the southern edge of the 

outcrops and can be recognized only in the upper sandstone levels. The lower sandstone 

levels of the Huncal Member disappear 5 km to the west of the type locality (section A) 

and were not intensely affected by slumping processes (Figures 3 and 5).  

 

Figure 11. Simplified paleogeographic map with tectonic elements and major sediment 
dispersal directions for the Early Cretaceous. References of the absolute ages of the 
basement areas are cited in the text.  
 

Previous works have proposed two opposite models to explain the origin of the 

slump structures in the Huncal Member. Leanza et al. (2003) suggested a vergence 

towards the NE for the slump structures (see figure 6 in Leanza et al., 2003). They 

highlighted that this direction is coherent with the sedimentary progradation in the inner 

platform setting for the Vaca Muerta Formation and its development in a highstand 
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system tract during the Berriasian (Mitchum and Uliana, 1985; Legarreta and Uliana, 

1991). On the other hand, Spalletti et al. (2008) suggested that the Huncal Member 

represented submarine sediment deposits as a consequence of gravity-driven processes 

that pushed semi-lithified rocks into the mud-dominated outer ramp to basinal settings. 

These authors showed a main direction of transport towards the NE (see their Figure 6 b 

and c) based on the axial plane of the folds. However, they suggested a depositional 

scenario for the Huncal Member characterized by an abrupt slope zone towards the 

west, close to the volcanic arc. 

The main slump vergence towards the SW combined with structures with 

opposite vergence (NE) that were interpreted as backfolds and backthrusts do not 

suggest an origin from the western margin of the basin (Figure 11). In addition, the 

sedimentary supply from sources located to the southeast, in the North Patagonian 

Massif, would also not agree with a simple western origin of the Huncal sandstones. 

Due to the localized position of the slump, we suggest that its origin may be 

linked with an internal morphostructural high of the basin. The Chihuidos High, or 

Cerro Arenas High (according to Dominguez et al., 2017), is a subsurface structure 

located 50 kilometers east of Huncal (Figure 11). Its structure has undergone a 

differential subsidence and conforming an internal morphostructural high during the 

Early Cretaceous (Arregui, 2014; Dominguez et al., 2017; and references cited therein). 

Possible vertical movements concentrated in this structure might be the causes to 

destabilize previously deposited sandstones and the development of the slumping 

deposits in the Huncal locality. 

On the other hand, the time span between the deposition of the sandstones and 

the generation of slump structures is controversial. There are many variables involved in 

the triggering process: climate-driven factors such as sea-level fluctuations and changes 

in sedimentation rate that impact in the pore pressure within the sediment column as 

well as in the hydrostatic pore water pressure. In addition to seismic shaking generated 

by earthquakes, among other factors (e.g. Lewis, 1971; Hampton et al., 1996; Urlab et 

al., 2013; Talling et al., 2012). Despite these uncertainties, the combined effect of 

regression during a relative fall of sea level and tectonic earthquakes due to retro-arc 

position of the Neuquén Basin could have promoted the instability of the deposits in the 

slope or ramp system of the Vaca Muerta Formation (Mitchum and Uliana, 1985; 

Legarreta and Uliana, 1991; Kietzmann et al., 2014a; 2016). The occurrence of tectonic 

earthquakes during the Late Jurassic and Early Cretaceous in the Neuquén Basin is also 
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supported by several soft-sediment deformation structures recorded in the base of the 

Vaca Muerta Formation that were attributed to a seismic origin (Martin-Chivelet et al., 

2011; Kietzmann and Vennari, 2013; Gangui and Grusem, 2014). 

 

5.4. Extension of the Huncal Member in the Neuquén Basin 

It is important to note that there are several records of sandstone levels 

interlayered with shales in the Vaca Muerta Formation but not all of them are related to 

slump structures as in the Huncal locality. For instance, this is the case of the turbidite 

sandstones described in Rahueco by Spalletti et al. (2008) that were assigned to the 

upper Berriasian – lower Valanginian, and thus they could be correlated in age and 

lithology with the Huncal Member. Moreover, two levels of fine sandstones with leave 

remains were found in the Rahueco section, which support their correlation. In addition, 

the sandstone intervals that crop out in the Arroyo Candelero (Leanza and Hugo, 2005) 

can be correlated based on the late Berriasian age of the Huncal Member assigned in the 

present work. However, it is necessary to enhance the study of the composition and 

structure of these sandstones. In the Picún Leufú sub-basin, south of the Huincul High 

(Figure 11), Santiago et al. (2014) described two packages of massive fine sandstones 

between shale facies of the Vaca Muerta Formation. The study is based on the 

description of two core of the La Hoya well referred to the middle section of the Vaca 

Muerta Formation but there is not a precise temporal control. Although it is possible to 

establish a comparison based on the presence of the sandstone levels with the Huncal 

Member. 

On the other hand, several deposits assigned to the Vaca Muerta Formation 

associated with slump structures have been registered throughout the basin. However, 

the age and composition of these deposits are variable (Figure 12). In the Cerro 

Domuyo area, an interval of approximately 60 meters of mudstones and calcareous 

sandstones with slump structures were included in the Huncal Member (Kietzmann and 

Vennari, 2013). Its ammonite content indicates a late Tithonian age, which is not in 

agreement with the late Berriasian age of the Huncal Member in its type locality. 

Another difference is the composition of the sandstones, while those from the Huncal 

locality are siliciclastic in composition; the sandstones from the Cerro Domuyo are 

calcareous. 

South of the study region, in the Sierra de la Vaca Muerta (Figure 1), slump 

structures with NW vergence were described in marls and packstones associated with 
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internal and external ramp facies (Gulisano et al., 1984; Kietzmann et al., 2014b; 

Reijestein et al., 2017). The slump structures were related to tectonic activity in the 

Huincul High during the middle and late Tithonian (Kietzmann et al., 2014b). It should 

be noted that the composition of the slump beds of the Sierra de la Vaca Muerta locality 

is different from the typical sandstone facies of the Huncal Member. This difference in 

composition of the slump beds difficult their inclusion in the Huncal Member (Figure 

12). 

In the Picún Leufú Anticline, the Vaca Muerta Formation records sandstones 

beds associated with several slump structures assignable to the lower Tithonian (Figures 

11 and 12) (Krim et al., 2017). These deposits could possibly be included in the Huncal 

Member taking into account their composition and structures.  

 

Figure 12. Chronostratigraphic chart of the early Tithonian-early Valanginian of the 
Neuquén Basin with the sandstones and slump beds mentioned in the text and included 
in the Huncal Member (modified from Spalletti et al., 2000; Krim et al., 2017).  
 

On the other hand, recent works in the subsurface of the Neuquén Embayment 

have shown very large slump structures prograding to the NW associated with the Vaca 

Muerta Formation (Pose et al., 2014; Gangui and Grusem, 2014; Reijenstein et al., 

2017) (Figure 11). The slump structures described in the subsurface of the basin are 

recorded in late Tithonian – early Berriasian sequences and are include in slope facies 

(Arregui, 2014; Pose et al., 2014; Gangui and Grusem, 2014). The sizes of the slumps 
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that have been interpreted in seismic scale range from small displacements of seismic 

reflectors to deformed packages that extend for several kilometers and have thicknesses 

of up to 100 meters (Arregui, 2014; Gangui and Grusem, 2014). The smaller structures 

can be compared in size with the slumps described in surface of the Huncal Member. 

Therefore, it is also possible to include the slump beds of the subsurface in the Huncal 

Member (Arregui, 2014; Gangui and Grusem, 2014).  

According to the above discussion, the available evidence points out that 

sandstones levels and slumping processes occurred recurrently from the Tithonian to the 

Valanginian and that they are present throughout the entire Neuquén Basin. Therefore, it 

should be noted that the Huncal Member is a diachronic lithostratigraphic unit. In 

addition, it is important to note that the vergence of the slump structures is variable and 

probably depends on variable factors as internal morphostructural features (e.g.: 

Huincul and Chihuidos highs) and position in the ramp system or in the platform-slope 

configuration. A common point among all of them is that the sandstones and slump are 

developed during a progradational regressive phase, except the slump described in the 

Sierra de la Vaca Muerta that is related to a transgressive systems tract (Kietzmann et 

al., 2014b). Therefore, the deposition of turbidite sandstones and slump structures in the 

Vaca Muerta Formation occurred during regressive phases probably related to episodes 

of relative sea-level fall (Krim et al., 2017). 

 
6. Conclusions 

The age of the Huncal Member in the type locality, based on the integration of 

the ammonite faunas, calcareous nannofossils and U-Pb analysis, is late Berriasian. The 

origin of these deposits was probably related to two lobes of turbiditic sandstones linked 

with a progradational regressive phase. However, a more detailed analysis of 

sedimentary facies must be done. The analyzed sandstones are lithic arkoses and 

feldspathic litharenites derived from recycled orogenic and dissected arc sources. The 

U-Pb ages confirm a mixed sedimentary provenance from the south and southeastern 

margins of the basin, specifically from Paleozoic and Triassic–Jurassic rocks of the 

North Patagonian Massif and the Huincul High. A contribution from the Early 

Cretaceous active volcanic arc in the western margin was subordinated.  

The complex fold and fault system described in the upper sandstone levels of the 

Huncal locality was interpreted as the result of slump processes with a main transport 

direction to the SW and W. The combined effect of a regression during the relative fall 

of sea level and tectonic earthquakes due to the retro-arc position of the Neuquén Basin 

could have promoted the instability of previously deposited sandstones and the 

development of the slumps. Possible vertical movements linked with the Chihuidos 

High could also have triggered the instability of the sediments.  
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Sandstone deposits with slump beds are present throughout the entire basin from 

the Tithonian to the Valanginian in the Vaca Muerta Formation. Therefore, the Huncal 

Member is a diachronic lithostratigraphic unit and its deposition probably depended on 

different factors such as the relative sea level changes, the position in the ramp system 

or in the platform and slope configuration and internal morphostructural features of the 

Neuquén basin.  

Finally, this study demonstrates that the combination of biostratigraphic, 

structural and provenance analysis provides a better understanding of a particular 

stratigraphic interval within the Vaca Muerta Formation, an analogy that can be used in 

the analysis of other source rock and unconventional units worldwide. 
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3979                                                     

3978   98.0         0.3                       0.3       0.3     1.0 

3977   38.8 5.6   53.1 0.6             0.6               0.6   0.6       

3976   64.7 29.4                                           5.9   

3975   100                                                 

3974                                                     

3973                                                     

3972   87.5 12.5                                               

3971                                                     

3970                                                     

3969                                                     

3968   74.6 19.3 0.9 1.8 1.8   1.8                                     

3967                                                     

3966                                                     

3965                                                     

3964   58.4 18.3 3.7 11.2 2.9 0.5   0.5       2.1     0.5     0.5   0.5   0.5 0.5     

3963   70.8       29.2                                         

3962   87.4 7.6 1.0 0.2 0.6   1.5 0.6                 0.4 0.4     0.3         

3961                                                     

3960   91.2 1.2   3.2 0.7 0.5   0.4       1.8         0.3   0.4 0.3           

3959   63.0 32.8 1.0 0.6     1.0 0.6                   1.0               
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3958                                                     

3957   87.9 4.9 0.5 2.7 0.5 0.5             0.5 0.5 0.5 0.5 0.5                 

3956   83.1 1.7 2.4 10.7 0.3 1.7                                       

3955   69.4 9.5 2.9 13.5 0.9 0.5 0.5 0.5 0.8 0.5 0.5 0.5                           

Table 2 of the Supplementary material, section B 
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4139                   

4138   56.8 2.9 40.3           

4137   53.8 3.9 26.8 3.9 3.9 7.7     

4136   25.0 52.0 3.6 7.0   7.0 3.6 1.8 

4135                   

4134                   

4133   43.5   43.5           

4132                   

4131                   

4130                   

4129   77.5   22.5           

4128                   

4127                   

4126                   

4125   98.0 2.0             

4124                   

 
Table 3 of the Supplementary material, section D 
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4146   82.5   10.3 7.2     

4145   75.7 22.5     1.8   

4144               

4143               

4142               

4141     100.0         

4140   58.4 37.4 3.2   0.5 0.5 
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Table 4 of the Supplementary material, petrographic data 
 

SAMPLE 

Qtz 

m 
Qtz p Plg Kfs Lv Ls Lpyr Lp/m Mi CCar Cqtz CChl COx Ma 

pnh-5 39.15 3.18 23.61 3.23 19.63 0.30     2.00 0.50 0.70 3.50 1.50 2.70 

pnh-4 32.15 4.48 26.94 4.97 16.31 2.17     1.60 4.33 0.50 2.80   3.75 

pnh-3 35.42 4.32 22.33 3.07 19.23 1.42     1.30 6.03 1.12 1.67 1.20 2.89 

pnh-2 46.26 3.12 18.43 3.11 15.19 1.18     1.28 6.19 1.20 1.15 1.20 1.69 

pnh-1 41.31 3.82 24.14 4.38 14.22 1.35     1.18 1.12 1.41 4.09 1.11 1.87 

lsh-2 36.41 3.12 24.11 4.52 26.11 0.31     1.00     1.15 2.10 1.17 

lsh-1 34.55 3.02 24.66 4.12 18.72 3.13 0.80   1.25 2.15   2.19   5.41 

H2-S1 33.11 1.92 30.51 4.11 17.19 1.12 0.75   1.18 2.25 1.41 2.15 2.15 2.15 

VM1-M6 44.96 2.11 15.82 5.63 18.31 2.13     1.01 5.12 2.12 1.02 0.45 1.32 

HSE-3 46.25 1.87 21.08 1.18 15.69 1.25   1.74 1.25 4.41 1.13 0.82 1.15 2.18 

HSE-2 45.65 3.21 24.61 3.27 10.75 2.13     2.14 1.24   1.71 1.12 4.17 

HSE-1 29.49 4.83 24.00 4.50 24.29     1.25 2.11 1.32 0.71 1.14 1.15 5.21 

 
 
U-Pb Analytical methods 
 
Sample VM-01 (Laboratório de Geocronologia, Instituto de Geociências da 
Universidade de Brasília, Brasil): 
 
 The zircon grains were radon selected and set in epoxy resin mounts. The mount 
surface was polished to expose the grain interiors. Backscattered electron images of 
zircons were obtained using an SEM JEOL JSM 5800 at Universidade de Brasilia 
(UnB), Brazil. The samples were loaded into a New Wave UP213 Nd:YAG laser 
(λ=213 nm), linked to a Thermo Finnigan Neptune Multi-collector ICPMS. Helium was 
used as the carrier gas and mixed with argon before entering the ICP. The laser was run 
at a frequency of 10 Hz and energy of 34% and the diameter with a spot size of 30 µm. 
Laser induced fractionation of the 206Pb/238U ratio was corrected using the linear 
regression method (Kosler et al., 2002). Two international zircon standards were 
analyzed throughout the U-Pb analyses. The zircon standard GJ-1 (Jackson et al, 2004) 
was used as the primary standard in a standard-sample bracketing method, accounting 
for mass bias and drift correction. The resulting correction factor for each sample 
analysis considers the relative position of each analysis within the sequence of 4 
samples bracketed by two standard and two blank analyses each (Albarède et al, 2004). 
Analyses were performed using spot size of 30 µm. The Temora 2 standard (Black et al, 
2004) was run at the start and the end of each analytical session, yielding accuracy 
around 2% and precision in the range of 1 %. The errors of sample analyses were 
propagated by quadratic addition of the external uncertainty observed for the standards 
to the reproducibility and within-run precision of each unknown analysis. The 
instrumental set-up and further details of the analytical method applied are given by 
Buhn et al (2009). Masses 204, 206 and 207 were measured with ion counters, and 
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238U was analyzed on a Faraday cup. 202Hg signal was monitored by an ion counter 
for correction of the isobaric interference between 204Hg and 204Pb. The signals 
during ablation were taken in 40 cycles of 1 sec each. For data evaluation, only coherent 
intervals of signal response were considered. Data reduction was performed with an in-
house Excel spreadsheet, which considers blank values, zircon standards composition 
and errors, and error propagation. The 204Pb signal intensity was calculated and 
corrected using a natural 202Hg/204Hg ratio of 4.346. Common Pb correction was 
applied for zircons with 206Pb/204Pb lower than 1000, applying the common lead 
composition following the Stacey and Kramers (1975) model. Plotting of U-Pb data was 
performed using ISOPLOT v.3 (Ludwig, 2003) and errors for isotopic ratios are 
presented at the 2σ level. Because of the statistical treatment applied in calculating 
Concordia Ages, those are more precise than any individual U-Pb or Pb-Pb ages 
(Ludwig, 2003) and, in the present study, always correspond to less than the 2% 
accuracy obtained from the intercalibration of the standards. Consequently, the Isoplot 
calculated errors were modified in order to incorporate this uncertainty level and, hence, 
represent a more realistic age in terms of the analytical limitations of the method. The 
age probability plots (Ludwig, 2003) used in this study were constructed using the 
206Pb/238U age for young (<1.0 Ga) zircons and the 206Pb/207Pb age for older (>1.0 
Ga) grains 
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Table 5 of the Supplementary material, U-Pb data 
 

Summary of analytical results by MC-ICPMS-LA U-Pb zircons data.  

Data analyzed in the Universidade de Brasilia (UnB), Brazil 

SAMPLE VM-01 - Huncal Member  (GPS: 37º59´36,6´´ S - 70º25´56,9´´ N) 

Spot f(206) Th/U 6/4. 7/6. 1s 7/5. 1s 6/8. 1s Rho 7/6. 1s 7/5. 1s 6/8. 1s Conc  Conc 

  %   ratio ratio (%) ratio (%) ratio (%)   age (%) age (%) age (%) (%) 

 

(%)* 

010-Z05B 0.05 0.35 40334.4 0.05 0.66 0.15 1.18 0.02 0.97 0.81 170 16 144 2 139 1 81 96 

078-Z50B 0.06 0.35 17146.9 0.05 0.75 0.15 1.00 0.02 0.67 0.62 71 18 144 1 144 1 202 100 

069-Z45N 0.09 0.44 20664.1 0.05 0.68 0.16 0.95 0.02 0.67 0.65 157 16 149 1 144 1 92 97 

077-Z50N 0.08 0.27 22589.5 0.05 0.75 0.15 1.12 0.02 0.83 0.71 53 18 144 2 145 1 272 101 

067-Z43 0.20 1.02 9390.5 0.05 0.82 0.18 1.07 0.03 0.68 0.59 38 20 168 2 173 1 456 103 

088-Z57 0.03 0.37 47104.3 0.05 0.64 0.19 1.06 0.03 0.84 0.77 120 16 174 2 173 1 144 99 

076-Z49 0.06 1.10 31074.9 0.05 0.67 0.19 0.92 0.03 0.62 0.63 128 16 175 1 174 1 136 99 

028-Z16B 0.22 0.72 5208.8 0.05 1.19 0.19 1.44 0.03 0.82 0.54 103 29 174 2 174 1 168 100 

058-Z37 0.17 0.31 18443.9 0.05 0.60 0.19 0.83 0.03 0.57 0.63 48 15 172 1 177 1 370 102 

016-Z09 0.35 0.84 5295.3 0.05 1.17 0.19 1.44 0.03 0.84 0.55 49 29 174 2 178 1 367 102 

046-Z29 0.03 1.03 55958.2 0.05 0.73 0.20 1.04 0.03 0.74 0.67 131 18 181 2 180 1 137 99 

074-Z47 0.08 0.32 11084.2 0.05 0.89 0.20 1.11 0.03 0.67 0.55 170 21 185 2 181 1 106 98 

073-Z46 0.04 0.96 50334.5 0.05 0.56 0.19 0.94 0.03 0.75 0.78 104 14 180 2 181 1 174 100 

023-Z13B 0.09 0.48 21163.3 0.05 1.05 0.18 1.30 0.03 0.77 0.56 -47 26 170 2 181 1 -381 106 

075-Z48 0.03 0.20 70076.1 0.05 0.60 0.20 0.88 0.03 0.64 0.68 168 15 185 1 181 1 107 98 

085-Z54 0.32 1.04 5678.7 0.05 0.82 0.20 1.11 0.03 0.75 0.64 192 20 187 2 182 1 95 97 

030-Z18 0.07 0.99 25597.4 0.05 0.93 0.20 1.15 0.03 0.67 0.53 125 23 184 2 184 1 147 100 

086-Z55 0.07 1.26 27347.9 0.05 0.55 0.20 1.03 0.03 0.87 0.83 89 13 183 2 186 2 209 101 

037-Z22 0.05 0.43 39899.3 0.05 0.64 0.21 0.97 0.03 0.74 0.73 115 15 191 2 192 1 167 100 

065-Z41 0.11 0.75 16275.2 0.05 1.05 0.22 1.33 0.03 0.82 0.58 142 25 199 2 198 2 140 100 

079-Z51 0.06 0.90 30341.5 0.05 0.63 0.23 0.92 0.03 0.67 0.69 199 15 211 2 206 1 103 98 

019-Z12 0.03 0.66 61162.5 0.05 0.74 0.24 1.03 0.04 0.72 0.66 122 18 222 2 225 2 184 101 

053-Z33 0.18 0.53 10001.4 0.05 0.61 0.24 0.92 0.04 0.69 0.71 119 15 222 2 225 2 189 102 

038-Z23 0.02 0.52 90284.9 0.05 0.54 0.27 0.79 0.04 0.58 0.67 248 13 241 2 233 1 94 97 

045-Z28 0.07 0.45 26071.6 0.05 0.67 0.26 1.09 0.04 0.86 0.77 168 16 235 2 235 2 140 100 

064-Z40 0.05 0.50 50630.6 0.05 0.52 0.27 1.22 0.04 1.10 0.90 159 12 239 3 240 3 151 101 

005-Z02N 0.01 0.74 172959.9 0.05 0.52 0.29 0.91 0.04 0.75 0.80 272 12 260 2 252 2 93 97 

006-Z02B 0.02 0.73 112250.1 0.05 0.37 0.28 0.86 0.04 0.77 0.88 158 9 251 2 254 2 160 101 

090-Z59 0.05 0.48 34506.5 0.05 0.87 0.29 1.12 0.04 0.70 0.59 142 21 258 3 263 2 185 102 

039-Z24 0.02 0.59 86163.7 0.05 0.41 0.30 1.06 0.04 0.98 0.92 226 10 268 3 265 3 117 99 

089-Z58 0.02 0.37 93254.4 0.05 0.57 0.30 1.52 0.04 1.41 0.92 190 14 268 4 269 4 141 100 

008-Z04 0.02 0.25 16868.2 0.05 0.49 0.32 0.86 0.04 0.70 0.79 295 11 282 2 272 2 92 97 

087-Z56 0.01 0.44 250305.5 0.05 0.48 0.31 0.71 0.04 0.52 0.65 192 12 275 2 277 1 144 101 

040-Z25 0.00 0.50 534739.0 0.05 0.54 0.31 0.89 0.04 0.70 0.76 161 13 272 2 278 2 173 102 
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048-Z30B 0.14 0.10 36390.5 0.05 0.87 0.32 1.16 0.04 0.78 0.63 265 20 284 3 279 2 105 98 

060-Z39 0.06 0.43 29212.5 0.05 0.68 0.32 1.06 0.04 0.81 0.74 249 16 283 3 279 2 112 99 

035-Z20 0.08 0.26 22574.3 0.05 0.49 0.34 0.88 0.04 0.74 0.81 328 11 295 2 282 2 86 96 

018-Z11 0.03 0.34 33266.5 0.05 0.56 0.33 0.83 0.05 0.61 0.69 224 13 288 2 287 2 128 100 

013-Z06 0.02 0.52 98863.5 0.05 0.43 0.34 0.89 0.05 0.78 0.86 280 10 295 2 289 2 103 98 

056-Z35 0.11 1.48 16106.2 0.05 0.84 0.38 1.04 0.05 0.61 0.53 270 20 324 3 323 2 119 100 

025-Z15N 0.03 0.25 56793.6 0.06 0.86 0.42 1.19 0.05 0.82 0.66 406 20 353 4 336 3 83 95 

004-Z01 0.03 0.36 48436.37 0.05 0.76 0.43 1.15 0.06 0.86 0.73 338 18 365 4 359 3 106 98 

026-Z15B 0.08 0.20 23506.97 0.05 0.54 0.44 0.95 0.06 0.79 0.80 294 13 373 3 376 3 128 101 

049-Z31 0.05 0.29 37786.62 0.05 0.37 0.46 0.72 0.06 0.62 0.82 239 9 387 2 401 2 167 104 

036-Z21 0.06 0.24 27909.24 0.05 0.41 0.48 0.72 0.07 0.59 0.77 277 10 397 2 407 2 147 102 

007-Z03 0.03 0.95 52574.08 0.06 0.59 0.55 1.13 0.07 0.96 0.84 409 14 448 4 443 4 108 99 

068-Z44 0.01 0.13 212653.9 0.06 0.31 0.67 1.47 0.08 1.44 0.98 541 7 523 6 505 7 93 97 

016-Z68 0.03 0.45 68521.88 0.05 0.42 0.16 1.69 0.02 1.63 0.97 25 10 148 2 151 2 612 102 

017-Z69 0.03 0.39 56715.93 0.05 0.50 0.16 1.39 0.02 1.30 0.93 79 12 152 2 152 2 193 100 

015-Z67 0.16 0.36 11297.05 0.05 0.72 0.16 2.09 0.02 1.96 0.94 19 18 149 3 153 3 811 103 

047-Z88 0.14 1.04 12812.61 0.05 1.35 0.18 1.70 0.03 1.02 0.58 142 33 171 3 168 2 118 98 

048-Z89 0.06 0.46 29421.94 0.05 0.84 0.18 1.17 0.03 0.82 0.67 72 21 170 2 172 1 237 101 

030-Z78 0.05 1.05 40315.67 0.05 0.52 0.18 1.12 0.03 1.00 0.88 20 13 168 2 174 2 865 103 

034-Z79 0.06 0.71 42848.81 0.05 0.48 0.18 0.89 0.03 0.75 0.82 50 12 170 1 174 1 350 102 

004-Z60 0.05 0.24 24259.35 0.05 0.76 0.19 1.35 0.03 1.11 0.82 123 18 177 2 177 2 143 99 

028-Z76 0.04 0.80 20884.23 0.05 0.69 0.19 1.10 0.03 0.85 0.76 102 17 180 2 181 2 178 100 

042-Z85 0.18 0.57 10427.78 0.05 1.54 0.21 1.92 0.03 1.15 0.58 235 37 190 3 181 2 77 95 

036-Z81 0.08 1.12 22204.99 0.05 0.76 0.20 1.22 0.03 0.96 0.77 82 18 183 2 186 2 225 101 

039-Z82 0.05 0.29 36523.71 0.05 0.57 0.20 1.00 0.03 0.82 0.80 48 14 184 2 190 2 398 103 

021-Z71 0.06 0.68 30702.74 0.05 1.66 0.22 2.02 0.03 1.15 0.56 254 39 200 4 190 2 75 95 

011-Z65 0.09 0.72 20651.48 0.05 0.51 0.22 1.62 0.03 1.54 0.95 51 12 202 3 209 3 410 104 

027-Z75 0.06 0.84 31664.34 0.05 0.72 0.24 1.18 0.03 0.93 0.77 123 18 215 2 217 2 176 101 

012-Z66 0.11 0.80 15961.44 0.05 0.79 0.25 1.86 0.04 1.69 0.90 144 19 228 4 230 4 160 101 

054-Z92 0.03 0.63 68034.50 0.05 0.42 0.27 1.25 0.04 1.18 0.94 104 10 243 3 250 3 240 103 

041-Z84 0.04 0.67 50603.41 0.05 0.55 0.29 0.94 0.04 0.76 0.78 217 13 259 2 256 2 118 99 

018-Z70 0.01 0.10 227017.5 0.05 0.31 0.31 1.21 0.04 1.16 0.96 220 7 274 3 273 3 124 100 

023-Z73 0.01 0.10 173254.5 0.05 0.31 0.32 1.31 0.05 1.28 0.97 197 8 282 3 284 4 145 101 

053-Z91 0.04 0.30 49918.54 0.05 0.91 0.32 1.45 0.05 1.13 0.77 129 22 279 4 289 3 224 104 

005-Z61 0.04 0.44 40889.30 0.05 0.63 0.35 1.30 0.05 1.14 0.87 206 15 301 3 305 3 148 101 

024-Z74 0.01 0.14 196514.7 0.05 0.46 0.40 1.11 0.06 1.01 0.90 237 11 345 3 352 3 149 102 

045-Z86 0.03 0.18 55510.24 0.05 0.54 0.47 1.16 0.06 1.03 0.88 331 12 390 4 389 4 117 100 

010-Z64 0.07 0.24 39914.89 0.08 0.49 2.22 1.53 0.19 1.45 0.95 1229 10 1188 11 1136 15 92 96 

Rejected analysis                                   

015-Z08 0.24 0.50 7835.84 0.05 1.30 0.12 1.84 0.02 1.29 0.69 156 31 118 2 113 1 72 96 

055-Z34B 0.07 0.42 26193.10 0.05 0.59 0.14 1.09 0.02 0.92 0.82 90 14 131 1 130 1 143 99 

054-Z34N 0.33 0.45 12188.27 0.05 0.77 0.14 1.01 0.02 0.65 0.59 -13 19 131 1 135 1 

-

1062 103 

070-Z45B 0.20 0.0 9114.98 0.06 1.04 0.21 1.29 0.02 0.77 0.56 699 23 193 2 150 1 21 78 

044-Z27 1.93 0.00 2567.98 0.03 1.89 0.12 2.09 0.03 0.89 0.54 -993 55 114 2 167 1 -17 147 

059-Z38 0.58 1.48 3185.94 0.04 0.91 0.17 1.15 0.03 0.70 0.60 -167 23 161 2 179 1 -107 111 

083-Z53N 0.07 1.10 25417.09 0.05 1.32 0.21 1.55 0.03 0.82 0.49 262 31 190 3 179 1 68 94 
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050-Z32 0.11 1.52 16948.24 0.05 1.38 0.20 1.53 0.03 0.66 0.39 150 33 187 3 184 1 123 99 

024-Z14 0.37 0.71 4700.20 0.05 1.58 0.21 1.75 0.03 0.76 0.42 203 36 196 3 190 1 93 97 

057-Z36 0.55 0.53 3349.80 0.05 2.89 0.31 3.12 0.04 1.19 0.39 306 64 274 7 263 3 86 96 

066-Z42 0.07 0.29 26976.66 0.05 1.00 0.33 1.16 0.04 0.59 0.45 335 23 289 3 276 2 82 95 

029-Z17 0.10 0.11 18768.25 0.07 1.23 0.81 2.24 0.09 1.87 0.83 783 27 602 10 540 10 69 90 

043-Z26 0.01 0.20 118100.7 0.11 0.32 2.30 0.89 0.15 0.83 0.93 1740 6 1211 6 913 7 52 75 

006-Z62 0.11 1.53 17179.18 0.04 1.50 0.17 1.91 0.03 1.18 0.60 -157 38 162 3 180 2 -114 111 

022-Z72 0.15 0.90 33795.69 0.14 7.76 0.74 7.86 0.04 1.30 0.16 2154 139 560 34 245 3 11 44 

029-Z77 0.13 1.10 14033.99 0.04 3.27 0.16 3.46 0.03 1.14 0.32 

-

487.1 89.3 153.5 4.9 192 2 -39 125 

035-Z80 0.07 0.34 25860.48 0.05 0.97 0.16 1.26 0.02 0.80 0.60 -49.8 24.3 150.7 1.8 159 1 -320 106 

040-Z83 0.14 0.54 18153.58 0.05 2.59 0.34 2.95 0.05 1.40 0.47 229.3 61.6 294.0 7.5 294 4 128 100 

046-Z87 0.07 1.30 38748.05 0.05 3.94 0.16 4.05 0.02 0.94 0.22 100.7 96.0 154.2 5.8 153 1 152 99 

052-Z90 0.10 0.12 34434.97 0.06 1.12 0.35 1.80 0.05 1.42 0.78 395.7 25.8 308.0 4.8 288 4 73 94 

 
 
 
Conc (%): 6/8 - 7/6 
Conc (%)*: 6/8 - 7/5 
 
 



Highlights  

The age of the Huncal sandstones is late Berriasian in their type locality. 

The sedimentary provenance is from the North Patagonian Massif and the Huincul High. 

Sandstones and slump structures are present throughout the entire basin from the Tithonian to 

the Valanginian 

The Huncal Member is a diachronic lithostratigraphic unit.  
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