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Abstract: In this study, the authors study a turbo-coding (TC) scheme, whose constituent codes are designed using convolutional
encoders. These encoders are finite-state sequence machines (FSSMs) operating over the Galois Field, GF(4). The scheme
includes encryption polynomials whose coefficients are selected every L steps, from the set of optimal polynomials of GF(4).
Two cases are considered for the polynomial selection: periodical and random. This kind of encoder was studied in a
previous study and a correspondence between the randomness of the encoded sequence and performance of the TC was
conjectured. The main contribution of this study is to systematically confirm this correspondence, by analysing the
randomness of the output and performance of the TC using several randomness quantifiers. Three of the quantifiers are
defined on the basis of recurrence plots. Other two quantifiers are defined on the basis of the information theory. All the
quantifiers allow one to justify why the proposed TC works better with random selection of the optimal polynomials and with
small values of L. In summary, it is shown that a random selection of polynomials and a small L produce FSSMs with
enhanced randomness properties and it is also shown that they produce the best quality of the TC, measured by means of the
corresponding bit error rate.

1 Introduction

Wireless data networks are specially useful for the
transmission of data over very noisy channels. In such
environments, the power level of the signal rapidly decays
and it could become strongly affected by the noise in the
channel. Under these circumstances, the performance of the
scheme can be measured by the bit error rate (BER).
Additionally, data must be encrypted to provide a security
level to the transmission and the strength of the encryption
for different attack strategies must be verified. In the design
of communication systems for wireless data transmission, it
is important the improvement of both the encryption and
the error-control coding.
Two main approaches may be used: the traditional

approach (TA) is a First-Encrypt-Then-Encode technique. It
applies a sequential execution of two separate procedures,
first cryptography and then error correcting techniques.
Cryptographic algorithms provide security but their
decryption counterparts normally need an errorless input for
a suitable performance. Furthermore, error-correcting
algorithms handle errors in the input data and are not
designed to provide security. The other approach, that is the
one addressed in this paper, is a crypto-coding-approach
(CCA), where encryption and error-correction techniques
are performed in a single step [1].
In previous works, [2] it was found that TA is quite

efficient, but some degradation is unavoidable, because the
encryption itself generates error propagation, specially in

those routines of the algorithm devoted to diffusion
operations. This issue was analysed in [3, 4] for the
particular case of the Advanced Encryption Standard (AES)
algorithm. A combination of an encryption algorithm and
an efficient error-control code like a low-density
parity-check (LDPC) code, diminishes the error propagation
effect, but a residual degradation still remains because it is
intrinsic to the encryption procedure.
Iterative decoded error-control codes such as LDPC [5] and

turbo-coding (TC) [6] may be combined properly with these
encryption algorithms to design a communication system
with both a good BER performance and security properties.
However, if the First-Encrypt-Then-Encode approach is
used even in these schemes, a loss in BER performance is
unavoidable.
One of the first papers on CCA and the use of error-control

coding for encryption purposes is [7]. A different scheme was
considered in [8]. In both papers, error-control coding use the
non-deterministic polynomial time problem (NP-problem)
characteristic of a complex error-control coding scheme, as
an encryption technique.
Finite-state sequence machines (FSSMs) were proposed in

[6] as constituent encoders of TC. Usually, these FSSMs can
operate over a Galois Field, GF(2n), with n≥ 1 a positive
integer number. TC that use FSSMs designed over GF(2n)
are suitable to be combined with encryption techniques
designed over the same extended field. That is the case of
the well-known AES algorithm, that has been designed
using operations over GF(28). However, for TC using

www.ietdl.org

IET Commun., pp. 1–8 1
doi: 10.1049/iet-com.2011.0861 & The Institution of Engineering and Technology 2013



FSSMs over GF(2n), decoding complexity increases
enormously for n = 8.
We consider in this paper a TC scheme whose constituent

codes are designed using convolutional encoders with
time-varying coefficients. These encoders are FSSMs that
operate over the Galois Field, GF(q). The scheme includes an
encryption polynomial whose coefficients are changed
periodically by means of a user key. The trellis-coding
procedure thus hops from one trellis to another, following a
random sequence taken over a set of subtrellises which
correspond to different convolutional encoders. A
trellis-hopping TC using FSSMs defined over finite fields GF
(4) was first proposed in [9]. It was conjectured that these
FSSMs have a pseudo random output and this randomness
produces a trellis-hopping TC with better cryptographic
properties tested by means of differential cryptoanalysis [10]
and also by brute-force attacks. The proposed schemes have
also better BER, showing that encryption and error correction
are not in a strong trade-off and consequently, they can be
jointly improved. In [11] it was shown that for a given field GF
(2n) there exists a set of several polynomials that are optimal in
the sense they produce maximum output sequence length for
the all-zero-input.
The main objective in this paper is to systematically study the

influence of both, the randomness of the FSSM output and the
length L of the trellis-hopping scheme, over the BER of a
hopping-TC whose constituent encoders are FSSMs operating
over GF(4). The above-mentioned conjecture was tested
previously by means of the linear autocorrelation function but
conclusive results were not obtained. In this paper randomness
of the FSSM output is measured using two kind of quantifiers:
information theory quantifiers and recurrence plots (RP)
quantifiers. The ability of each quantifier and the coherence
between results with different quantifiers, to predict the
behaviour of the TC is analysed. Some of these quantifiers
have been successfully used in other applications: pseudo
random number generators (PRNGs) [12–14], electromagnetic
interference improvement [15, 16], distinguishing chaotic and
stochastic processes [17], and so on.
To our knowledge this is the first time this issue is

systematically studied using statistical tools. We have used
a Monte Carlo approach instead of an analytical study
because we are interested in a real highly non-linear system
and finite length series typical for application purposes.
Analytical results are possible only for infinite time series
and for quasi-linear systems.
The length of the hopping procedure L, the signal-to-noise

ratio, S/N, and both periodic and random hopping are
explored. The optimum value of L for cryptographic
strength previously determined in [9] is here confirmed but
now based on randomness analysis of the FSSM output.
The BER of the TC is also evaluated showing that the
methodology proposed here also decreases the BER.
The paper is organised in four sections following this

introduction. In Section 2, we review the FSSM used as
encoder and decoder, and the TC using this FSSM. In
Section 3, the new quantifiers considered in this paper are
presented. Results for the complete hopping-TC are reported
in Section 4. Finally, Section 5 deals with conclusions.

2 FSSM over Galois Fields

Let us first review the FSSM defined over a Galois Field
considered in this paper. Fig. 1 shows the block diagram of
a FSSM operating as encoder, and its corresponding FSSM

decoder. The corresponding 1/2-rate systematic TC is
shown in Fig. 2, where the rate 1/2 is obtained by a proper
use of puncturing of the outputs of the FSSMs.
As pointed out in [9], a non-systematic structure should be

used in order to avoid elementary attacks over the message
information. Then, coefficients of the FSSM are changed
during transmission every L steps, following a given rule,
which can be considered as a user key. This is done in
order to increase the privacy levels of the scheme described
in Fig. 2.
When a sequence of input values of elements of GF(2n), {u

(k)} (see Fig. 1) is an ‘all-zero input’, the output {e(k)} is an
oscillating sequence of length l. The selected polynomial in
GF(2n) determines the value of l. Among all possible
polynomials in GF(4), those having the form g(X ) = a0 + a1
X, with determined values of coefficients a0 and a1 produce
the maximum length sequence (l = Lmax) for the
all-zero-input [18]. These are the ‘optimal polynomials’ as
described in Table 1. The value of Lmax of an FSSM
defined over GF(q) is given by

Lmax = qs − 1 (1)

where s is the number of states of the FSSM (for GF(4)
Lmax = 15).
In the FSSM studied here, only coefficients of optimal

polynomials (see Table 1 for GF(4)) are used. The
commuting procedure changes the trellis structure of the
coding scheme; that is why the proposed transmission is
called ‘trellis-hopping TC’.
Two properties are essential for the TC: error correcting

ability and cryptographic strength; the first is measured by
means of the bit error transmission rate (BER); the second
is studied by means of ‘differential crypto-analysis’ [10]
and ‘brute-force attack’.
By making a ‘differential crypto-analysis’ a maximum

value of the length of the hop L is determined to be 3 or 4,
depending on the structure (non-systematic or systematic) of
the trellis-hopping-TC-scheme used [9]. A ‘brute-force
attack’ was also considered in [9]. The number of
possibilities over which the eavesdropper should perform
this attack for the time-invariant coefficients case is equal to
q2(s +m + 1) Pm(NN). Here, Pm(NN) is the number of different
permutations of the random interleaver and is equal to NN!,
NN is the size of the interleaver of the TC, s is the number
of states of each FSSM, and m is the degree of the

Fig. 1 FSSM defined over a Galois Field
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encryption polynomial g(x). The use of time-varying
coefficients increases this amount by the number of hops.
Then the number of possibilities over which the
eavesdropper should perform the brute-force attack with a
hop each L steps is q2(s +m + 1)Pm(NN)((NN)/L), [9].

3 Randomness of the FSSM and
performance of the TC

Randomness is an extensively studied issue in the context of
PRNGs widely used in applications in different fields
[19–21]. An ideal PRNG is a ‘source of numbers’ from a
finite ‘alphabet’ with two basic properties:

† Equal probability: all the members of the alphabet must be
equally likely, that is the sequence of numbers must have a
uniform histogram;
† Statistical independence: it is impossible to predict the next
value in the sequence as a function of the previous ones.

Equal probability is easier to be tested than statistical
independence. In fact, statistical independence can only be
proved in a few cases. A useful representation to discover
hidden patterns produced by non-linear correlations, and the
consequent failure of statistical independence, are
two-dimensional and three-dimensional embeddings. Let xi
be an embedding vector with two or three components
given by successive values of the time series, tha is: xi = (xi,
xi + 1) in the case of a two-dimensional-embedding and xi =
(xi, xi + 1, xi + 2) in the case of a three-dimensional-
embedding. For a random sequence, {xi} must uniformly
fill the complete two-dimensional or three-dimensional
space meaning that any combination of two or three
successive values appears the same number of times. Two-
and three-dimensional embeddings allows one to easily
discard non-random signals. Unfortunately, to assure

statistical independence it is required to extend the
procedure to infinite dimensions and this is drawback of
visual tools because graphic representations are not possible
for dimensions higher than 3.
Different quantifiers were proposed in the literature to

define a distance between a given time series and the ideal
statistical independence [22–24].
Each quantifier tests the statistical independence from a

different point of view and consequently several must be
used and all of them must give coherent results.
We study here two groups of quantifiers: the first group is

based on the information theory and are referred here as
information theory quantifiers; the second group are
measures over a RP and are referred here as recurrence plot
quantifiers (RPQ).

3.1 Information theory quantifiers

Information theory quantifiers have been successful to
classify systems in three categories: deterministic,
pseudo-chaotic and stochastic [25]. They are appropriate
functionals of the probability distribution function (PDF).
Let {xi} be the time series under analysis, with length M.
There are infinite possibilities to assign a PDF to a given
time series, a subject that will be given because of
consideration below. In the meantime, suppose that the PDF
is discrete and is given by P = {pi; i = 1,…, N}. Then the
normalised Shannon entropy is defined as follows.
Let S[P] be the Shannon entropy

S[P] = −
∑N
i=1

pi ln pi
( )

(2)

It is well known that the maximum Shannon entropy, Smax =
ln(N ), is obtained for a uniform PDF, Pe = {1/N,…, 1/N}. A
‘normalised’ entropy H[P] can also be defined in the fashion

H[P] = S[P]/Smax (3)

P itself is not a uniquely defined object and several
approaches have been employed in the literature so as to
‘extract’ P from the given time series. Just to mention some
frequently used extraction procedures: (a) time series

Table 1 Optimal polynomials in GF(4)

Galois Field g(x) Coefficients

GF(4) αp + α X p = 0, 1, 2
GF(4) αp + α2 X p = 0, 1, 2

Fig. 2 Systematic non-linear TC over GF(4)
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histogram [26], (b) binary symbolic-dynamics [27], (c)
Fourier analysis [28], (d) wavelet transform [29, 30], (e)
partition entropies [31], (f) permutation entropy [32, 33],
(g) discrete entropies [34], and so on. There is ample liberty
to choose among them. De Micco et al. [13] proposed two
probability distribution as relevant for testing the uniformity
of the PDF and the mixing constant: (a) a P based on time
series’ histograms and (b) a P based on ordinal patterns
(permutation ordering) that derives from using the Bandt–
Pompe method [35].
For extracting P via the histogram divide the interval [0,1]

into a finite number Nbin of non-overlapping subintervals Ai:
[0, 1] = ⋃Nbin

i=1 Ai and Ai

⋂
Aj = Ø∀i = j. Note that N in (2)

is equal to Nbin. Of course, in this approach the temporal
order of the time-series plays no role at all. The quantifiers
obtained via the ensuing PDF are called in this paper Hhist

and Chist. Let us stress that for time series within a finite
alphabet it is relevant to consider an optimal value of Nbin

(see that is [13]).
For extracting P by recourse to the Bandt–Pompe method

the resulting probability distribution P is based on the
details of the attractor-reconstruction procedure. ‘Causal
information’ is, consequently, duly incorporated into the
construction-process that yields P. The quantifiers obtained
via the ensuing PDF are called in this paper HBP and CBP.
A notable Bandt–Pompe result consists in getting a clear
improvement in the quality of information theory-based
quantifiers [12, 14, 17, 25, 36–39].
The extracting procedure is as follows. For the time-series

{xt: t = 1,…, M} and an embedding dimension D > 1, one
looks for ‘ordinal patterns’ of order D ([33, 35, 40])
generated by

(s) 7! xs−(D−1), xs−(D−2), . . . , xs−1, xs

( )
(4)

which assign to each ‘time s’ a D-dimensional vector of
values pertaining to the times s, s − 1,…, s − (D − 1).
Clearly, the greater the D-value, the more information on
‘the past’ is incorporated into these vectors. By the ‘ordinal
pattern’ related to the time (s) we mean the permutation π =
(r0, r1,…, rD− 1) of (0, 1,…, D − 1) defined by

xs−rD−1
≤ xs−rD−2

≤ . . . ≤ xs−r1
≤ xs−r0

(5)

In order to obtain a unique result we consider that ri < ri− 1 if
xs−ri

= xs−ri−1
. Thus, for all the D! possible permutations π of

order D, the probability distribution P = {p(π)} is defined by

p(p) = # s|s ≤ M − D+ 1; (s) has type p
{ }

M − D+ 1
(6)

In the last expression the symbol # stands for ‘number’.
The advantages of the Bandt–Pompe method reside in (a)

its simplicity, (b) the associated extremely fast
calculation-process, (c) its robustness in presence of
observational and dynamical noise, and (d) its invariance
with respect to non-linear monotonous transformations. The
Bandt–Pompe’s methodology is not restricted to time series
representative of low dimensional dynamical systems but
can be applied to any type of time series (regular, chaotic,
noisy or reality based), with a very weak stationary
assumption (for k =D), the probability for xt < xt + k should
not depend on t [35]. One also assumes that enough data
are available for a correct attractor-reconstruction. Of

course, the embedding dimension D plays an important role
in the evaluation of the appropriate probability distribution
because D determines the number of accessible states D!.
Also, it conditions the minimum acceptable length M≫D!
of the time series that one needs in order to work with a
reliable statistics. In relation to this last point Bandt and
Pompe suggest, for practical purposes, to work with 3≤
D≤ 7 with a time lag t = 1. This is what we do here (in the
present work D = 6 is used) [35].
Based on previous works [12–14, 24, 41] we use in

this paper two entropies as randomness quantifiers:
the normalised permutation entropy HBP [35] and the
histogram normalised entropy, Hhist. The former detects the
presence of ordering patterns in a time series and the latter
measures uniformity of the histogram. These patterns
represent an unwanted behaviour if statistical independence
is required because they are the hallmark of linear or
non-linear correlations between consecutive values. For a
truly random time series the ideal values are HBP = 1 and
Hhist = 1.

3.2 Quantifiers based on RP

RP were introduced by Eckmann et al. [42] so as to visualise
the recurrence of states during phase space-evolution. The RP
is a two-dimensional representation in which axes x and y are
both time-axes. The recurrence or not of a state at two given
times ti, tj is pictured in this graph by means of either black or
white dots, where a black dot signals a recurrence. Of course
only periodic continuous systems have exact recurrences. In
discrete systems one detects only approximate recurrences,
up to an error ε. The so-called recurrence function is
defined as follows

Rij(1) = Q 1− ‖x(i)− x(j)‖( )
(7)

with Rij(ε) and x(i) [ <, belong to the set of real numbers,
and i, j = 1,…, N. Being N the number of discrete states x(i)
considered, ‖.‖ is a norm, and Θ(.) is the Heaviside step
function, [35].
In the particular case analysed in this paper, {e(k)} is a

one-dimensional series but the recurrence function-idea can
be extended to D-dimensional phase spaces or even to
suitably reconstructed embedding phase spaces. Of course,
the visual impact produced by the RP is insufficient to
compare the quality of different random sequences, because
of the ‘small scale’ structures that may be present. Several
measures have been defined to quantify these small scale
structures [22], each measure being a functional of Rij(ε)
(7). In this paper, three RPQ are considered:

1. The recurrence rate (RR), given by

RR(1) = 1

N2

∑N
i, j=1

Rij(1) (8)

This is a measure based on the RP density. In the limit
N→∞, RR is the probability that a state recurs to its
ε-neighbourhood in phase space. For random series the
ideal value would be RR = 0. However, in practice, the zero
value is never obtained because if no points are found in
the RP, a larger ε is adopted in order that the quantifiers
may make sense.
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2. Two diagonal measures: they are measures related to the
histogram P(ε, l ) of diagonal line lengths (l ), given by

P(1, l) =
∑N
i,j=1

1− Ri−1, j−1(1)
[ ]

1− Ri+l, j+l(1)
[ ]

×
∏l−1

k=0

Ri+k, j+k(1) (9)

Processes with uncorrelated or weakly correlated behaviour
originate no (or just very short) diagonals, whereas
deterministic processes give rise to ‘long’ diagonals and
smaller amount of single, isolated RPs. The measures
considered here are:

(a) The average diagonal line length Ldiag

Ldiag =
∑N

l=lmin
lP(1, l)∑N

l=lmin
P(1, l)

(10)

lmin is the minimum length of diagonal lines. Here, we
consider lmin = 2; ε = 0.1. The randomness increases as Ldiag
diminishes because smaller values of Ldiag imply long time
statistical independence.

(b) The entropy of the distribution P(ε, l ) is denoted as
ENTR and is given by:

ENTR = −
∑N
l=lmin

P(1, l) lnP(1, l) (11)

Randomness does not require a high value of ENTR because
ENTR measures the histogram of diagonal lines and a high
value means all lengths of diagonal lines are present. In fact
the best situation for randomness is to have only very short
diagonal lines and consequently the histogram of diagonal
lines will have a delta-like aspect and a small value of
ENTR will be obtained. On the contrary a small value of
ENTR with large values of Ldiag implies that only long
diagonal lines are present. This is an unwanted behaviour in
a random time series. Consequently, the value of ENTR
must be considered in conjunction with the value of Ldiag.

4 Results

The aim of this work is to systematically test the relation
between the randomness of the output of the FSSM {e(k)}
(see Fig. 1) and the performance of the proposed TC for
which the FSSM is its constituent encoder. Consequently,
we need to measure the randomness of the output {e(k)} of
the FSSM of Fig. 1 and also the BER of the TC. The
analysis must be made for different S/N.
We have studied two options for the hopping procedure: (a)

periodic hopping, that is the first polynomial is used during L
steps, then the second polynomial, and so on. With this
procedure all the optimal polynomial are used in the
process and always in the same order. (b) random hopping,
that is the order of the polynomials is selected ‘at chance’

by means of a random variable. The ‘no-hopping’ scheme
was also evaluated for comparison.
In the evaluation of periodic hopping 720 realisations of a

time series {e(k)} with 16 000 values each, were evaluated for
L, because there are 720 possible orderings of the six optimal
polynomials. In the evaluation of random hopping 100
realisations of a time series {e(k)} with 16 000 values each
were analysed for L = 1, 2, 4, 8, 16. In the no-hopping
scheme six realisations were analysed, one for each optimal
polynomial. In all cases, HBP and Hhist were evaluated with
an embedding dimension D = 6. For every L the mean
value 〈HBP 〉 , 〈Hhist 〉 and the standard deviation σH over
the realisations were determined. With the number of
realisations used for each case σH/ 〈H 〉 ≤ 0.05.

4.1 Randomness of {e(k)}

Results are shown in Figs. 3 and 4, where the randomness of
{e(k)} for periodic hopping (Fig. 3) and random hopping
(Fig. 4) are compared with the no-hopping case.
The analysis of Fig. 3 shows that for periodic hopping:

Fig. 3 Mean value over 720 realisations of the permutation
entropy HBP and Hhist as a function of L for periodic hopping
between the optimal polynomials of GF(4)

Fig. 4 Mean value over 100 realisations of the permutation
entropy HBP and Hhist as a function of L for random hopping
between the optimal polynomials of GF(4)
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† Hhist decreases a little with the hopping procedure. This is
an unwanted behaviour because it means that {e(k)} has a less
uniform histogram. The situation is worse with small values
of L.
† HBP is extremely low without hopping, showing that some
ordering patterns in {e(k)} are more frequent than others.
Periodic hopping improves ordering patterns distribution, as
it is shown by the increase in HBP. However, HBP � 0.4
still a very low value.
† The best values of both HBP and Hhist are obtained for L =
16, a non-recommended value from cryptanalysis point of
view [9].

The conclusion of Fig. 3 is periodic hopping lightly
improve the randomness of {e(k)} for high values of L.
The analysis of Fig. 4 shows that for random hopping:

† Hhist increases a little with the hopping procedure and
remains almost equal to the ideal value Hhist = 1 in spite of
the value of L.
† HBP decreases as L incresases and it has a value
considerable higher as compared with its value without hops.
† The best values of both HBP and Hhist are obtained for L =
1, a recommended value from cryptanalysis point of view.

The conclusion of Fig. 4 is random hopping highly
improve the randomness of {e(k)} specially for small values
of L.
In Figs. 5 and 6 the RP quantifiers RR, Ldiag and ENTR are

shown for periodic and random-hopping procedures,
respectively. In order to show all of them in the same plot
each quantifier has been normalised as follows

x̃ = x− xmin

xmax − xmin
(12)

where x runs for Ldiag or RR or ENTR, respectively. The case
without hopping produces values for Ldiag, RR and ENTR
very far from the values for the cases with hopping. That is
the reason they are not represented in the same plot. These

values are: Ldiag = 3995, RR = 0.253 and ENTR = 6.27 (as
mentioned in the captions of Figs. 5 and 6).
The analysis of Fig. 5 shows that for periodic hopping:

† RR decreases as L increases and the smallest values are
obtained for L = 16, a non-recommended value from
cryptanalysis point of view.
† Ldiag also decreases as L increases and the smallest value is
obtained for L = 16.
† ENTR increases with L. It means that, despite of the
fluctuations of ENTR, in the area of our interest (small
values of L) many diagonal lines with a large Ldiag are
obtained in the RP, this is not a desirable behaviour.

The conclusion of Fig. 5 is again that periodic-hopping
sequence {e(k)} have bad statistical properties measured by
RP quantifiers (in spite they are much better than the
statistical properties of {e(k)} without hopping).
The analysis of Fig. 6 shows that for random hopping:

† RR is minimum for L = 1 and maximum for L = 16.
† Ldiag increases as L increases and the smallest value is
obtained for L = 2.
† ENTR decreases as L increases. It means that for small
values of L, diagonal lines of various lengths can be seen in
the RP.

In the random hopping case RR and Lmin both quantifiers
show that for large values of L the sequences present more
correlations. The conclusion of Fig. 6 is random-hopping
sequence {e(k)} have the best statistical properties for small
values of L. It is much better than {e(k)} without hopping
as measured by RP.

4.2 Error correction performance of the TC

In order to test the quality of the TC the BER of the whole
system was evaluated by means of a Monte Carlo
simulation involving the transmission of 10 rounds of 50
000 blocks of length 400 symbols each, for every choice in
L. In GF(4) there exist six different optimal polynomials

Fig. 5 Normalised mean value over 10 realisations of the RP
quantifiers as a function of L for periodic hopping between the
optimal polynomials of GF(4)

Without hopping the corresponding values are Ldiag = 3995, RR = 0.253 and
ENTR = 6.27
Normalisation constants are (see (12)): Lmin

diag = 2.4107, Lmax
diag = 2.4148,

RRmin = 0.25001, RRmax = 0.25003, ENTRmin = 0.6245, ENTRmax = 0.8527

Fig. 6 Normalised value over 10 realisations of the RP quantifiers
as a function of L for random hopping between the optimal
polynomials of GF(4)

Without hopping the corresponding values are Ldiag = 3995, RR = 0.253 and
ENTR = 6.27
Normalisation constants are (see (12)): Lmin

diag = 2.4107, Lmax
diag = 2.4148,

RRmin = 0.25001, RRmax = 0.25003, ENTRmin = 0.6245, ENTRmax = 0.8527
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(see Table 1) and each element {e(k)} is in the set {0, 1, α,
α2}. We are specially interested in determining the BER
performance of the scheme for small values of L, in view of
crypto-analysis and brut-force-attack-analysis previously
done [9].
The TC has a block interleaver of size 400. Additive white

Gaussian noise (AWGN) was added in the channel with
different S/N ratios. Decoding was performed using the
LogMap/BCJR algorithm [43] with 15 iterations.
Results are shown in Figs. 7–9 where the mean values over

all the rounds are depicted as functions of S/N and L. The
number of realisations guarantee σBER/≤ 0.05 in all cases.
Fig. 7 shows that the trellis-hopping procedure with small

values of L and random hopping, results into an
improvement in the BER performance over that obtained
with the non-hopping case. Note that the small values of L
are precisely those producing maximum randomness of {e
(k)} as measured by means of all the considered
randomness quantifiers (see Section 4.1).
Fig. 8 compares the BER performance as a function of S/N

for the no-hopping TC scheme and for periodic and random
hopping of the polynomials every L = 4 steps. It is clear that
the best results are obtained with the random hopping
choice [9]. For L≥ 4 any hopping procedure works fine but
these large values of L are not adequate for cryptographic
strength.

Fig. 8 compares the BER performances for S/N = 2.5 with
periodic-hopping, random-hopping and no-hopping schemes.
Note that for this low vaue of L the best performance is
obtained with the random-hopping option.

5 Conclusions

In summary, in the present work we have made a systematic
analysis of how the randomness of {e(k)}, the FSSM output,
is related to the BER performance of the TC. We can
summarise the main results as follows:

† We have verified the correspondence between the BER
performance of the trellis-hopping scheme and the
randomness of the output {e(k)} of the FSSM (presented as
a conjecture in previous works [9]).
† BER has been studied by means of a Monte Carlo
procedure and extensive simulations, not only as a function
of S/N but also as a function of L.
† Five randomness quantifiers, two of them from the
information theory and three of them from the Rps theory,
successfully detect the randomness of {e(k)}.
† Both (periodic and random) hopping procedures increase
randomness of {e(k)} and also the BER of theTC when
compared with those obtained for the no-hopping scheme.
† For small values of L (L≤ 4) and a reasonable value of S/
N, 2≲ S/N ≲ 3 random-hopping produces the best results.
† For higher values of L (L≥ 4) random- and
periodic-hopping produce similar results. However, large
values of L are not recommended for cryptographic strength.

The main conclusion is that the proposed random-hopping
TC can improve both security and reliability of the
transmission. The use of chaotic sources instead of random
ones in both the hopping procedure and the interleaver is
under study and will be published elsewhere.
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L = 4

Fig. 9 Mean value of BER as a function of L for periodic and
random hopping between the optimal polynomials of GF(4), with
S/N = 2.5
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