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Abstract

Consider an operator A : H → K between Hilbert spaces and closed subspaces S ⊂ H and

T ⊂ K. If there exist projections E on H and F on K such that R(E) = S, R(F ) = T and

AE = F ∗A then A is called (S, T )−complementable. The origin of this notion comes from the

idea of T. Ando of de�ning Schur complements in terms of operators. In this paper we present

some characterizations of these triples (A,S, T ) and applications to bilateral Schur complements

and generalized Wiener-Hopf operators.

1 Introduction

Given a square block matrix

A =

(
B C
D E

)
,

where B and E are square and B is invertible, the Schur complement of B in A is E − DB−1C.
The name, due to E. Haynsworth [20], comes from the formula detA = detB det(E − DB−1C),
discovered by I. Schur [30]. By changing the inversion by generalized inverses, the notion is available
also for non-square block matrices and milder invertibility hypothesis. On the other side, there exists
an extensive theory on the so-called shorted operators. M. G. Krein [23], in his studies about self-
adjoint extensions of some operators on a Hilbert space de�ned, for a positive semide�nite operator
A on H and a closed subspace S of H, the shorted operator A/S by means of the existence of the
maximum of {B ∈ L(H) : 0 ≤ B ≤ A, R(B) ⊆ S}. See also Pekarev-�muljan [28] and Arlinskĭi
and E. Tsekanovskĭi [5]. This notion was rediscovered by Anderson and Trapp [2], who, among
many other results, proved that A/S coincides with the Schur complement. It is impossible to
record the di�erent situations, disciplines and applications which rely on these "complements".
We refer the reader to the excellent surveys by R. W. Cottle [13] and D. Carlson [8] and the
more recent book edited by F. Zhang [33]. We do mention a note by C. A. Butler and T. D.
Morley [7] which compares six di�erent extensions and generalizations of Schur complements. One
among them, due to T. Ando [3] is the origin of this note. Given an n × n complex matrix A
and a subspace S of Cn, A is called S−complementable if there exist matrices Mr,Ml such that
PSMr = Mr, MlPS = Ml, PSAMr = PSA and MlAPS = APS ; here PS denotes the orthogonal
projection onto S. The matrices AS := AMr and A/S := A− AS are called the Schur compression
of A to S and the generalized Schur complement of A with respect to S. Ando proved that if
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A =

(
B C
D E

)
, Cn = Cn1⊕Cn2 and the n1×n1 matrix B is invertible then Mr =

(
I B−1C
0 0

)
, and

Ml =

(
I 0

DB−1 0

)
, show that A is Cn1 × {0}−complementable and AS =

(
B C
D DB−1C

)
, A/S =(

0 0
0 E −DB−1C

)
, ( here S = Cn1×{0}, of course). Ando's de�nition have many advantages. We

only mention two. Firstly, it has a neat extension to Hilbert space operators (see [11]); secondly, it
can be easily extended, at least for matrices, to linear transformations between di�erent vector spaces
(i.e., non square matrices) with a �xed subspace on each. This extension is due to Mitra and Puri [26]
and, independently, to Carlson and Haynsworth [9]. Much later, Antezana et al. [4] extended this
idea to Hilbert space operators: for a bounded linear operator A : H → K between Hilbert spaces
and closed subspaces S ⊂ H, T ⊂ K, they gave appropriate de�nitions of complementability and a
weaker notion called weak complementability which allows the de�nition of a generalized bi-Schur
complement (or, bilateral shorted operator) A/S,T . Antezana et al. [4] applied this construction to
the extension of parallel sums of bounded linear operators. This study started with Anderson and
Du�n [1]; see also Filmore-Williams [18]. The present paper continues their research in di�erent
directions. On the one hand, we explore in more detail several features of the complementability.
On the other hand, we use them to get results on the operators TT ,S(A) = PT A|S : S → T which
Devinatz and Shinbrot [15] called general Wiener-Hopf operators.

It should be mentioned that the theory of compatibility between subspaces and selfadjoint
operators plays a signi�cant role in this paper, mainly through its methods. This theory, �rst
introduced by Hassi and Nordström [19], was later developed in a large series of papers (among
them, [10], [11], [12]). It should be noticed that a selfadjoint operator A and a closed subspace S
are compatible if and only if A is S−complementable (see [11]).

We brie�y describe the contents of the paper. In Section 2 we study complementable and weakly
complementable operators. The main results of this section are Propositions 2.4 and 2.15, where
we prove that the notion of complementable operators (resp. weakly complementable operators)
introduced by Antezana et al. in [4] is equivalent to the existence of certain bounded projections
(resp. densely de�ned projections). In addition, we fully describe those projections. In Section 3
we study the generalized invertiblity (or, invertiblity) of general Wiener-Hopf operators through the
notions of complementable and weakly complementable operators. For instance, under the condition
of weakly complementability, we obtain a formula of the Moore-Penrose inverse of this kind of
operators by means of the projections associated to this condition. The main contributions of this
section are Theorems 3.2, 3.6 and 3.7. Finally, in Section 4 we study bilateral shorted operators.
As we mentioned before, this class of operators was introduced in [4] under the hypothesis of
weakly complementability. Here, we present a formula of this operator by means of the projections
associated to the weakly complementability, see Theorem 4.2. Moreover, in Theorem 4.6 we provide
a variational characterization of the bilateral shorted operator which extends a result given in [4].

2 Complementable and weakly-complementable operators

Throughout this paper G,H,K denote complex Hilbert spaces. L(H,K) is the space of all bounded
linear operators from H to K and the algebra L(H,H) is abbreviated by L(H). Given T ∈ L(H,K)
its range is denoted by R(T ), its nullspace by N(T ) and its adjoint by T ∗. We denote by T †

the Moore-Penrose inverse of T . Along this article we shall deal with not necessarily bounded
projections. A densely de�ned operator E, with domain D(E), is a called projection if R(E) ⊆ D(E)
and E(Ex) = Ex for all x ∈ D(E). In this case, D(E) = R(E)

.
+N(E), see [27]. The set of bounded

(oblique) projections in L(H) is denoted by Q(H) and the set of orthogonal projections in L(H) by
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P(H), i.e., Q(H) = {E ∈ L(H) : E2 = E} and P(H) = {P ∈ Q(H) : P = P ∗}. To simplify the
notation, we will often omit the Hilbert space and just write Q,P when no confusion arises. For
two �xed closed subspace S, T of H such that H = S

.
+ T , denote by QS//T the element in Q with

R(QS//T ) = S and N(QS//T ) = T and by PS the element in P with R(PS) = S. The next result
will be frequently applied along this note, see [14, Theorem 22] for its proof.

Theorem 2.1. If A,B ∈ L(H) have closed ranges, then AB has closed range if and only if R(B) +
N(A) is closed.

Along this article, A ∈ L(H,K) and S ⊆ H and T ⊆ K are closed subspaces.

2.1 Complementability

In what follows we study complementable operators. This notion was introduced by T. Ando [3] in
�nite dimensional spaces with the aim of studying the Schur compression and Schur complement of
matrices. Later this concept was generalized for two subspaces by Mitra and Puri [26] and Carlson
and Haynsworth in [9], and extended to in�nite dimensional Hilbert spaces by Antezana et al. in
[4]. Although our next de�nition of complementability di�ers from the one considered in [4], we
show in Proposition 2.4 that both de�nitions coincide.

De�nition 2.2. An operator A ∈ L(H,K) is (S, T )−complementable if there exist two projections
E ∈ Q(H), F ∈ Q(K) with R(E) = S, R(F ) = T such that AE = F ∗A.

In other words, A ∈ L(H,K) is (S, T )−complementable if there exist two bounded projections
E,F onto S, T respectively, such that F is an A-adjoint of E, i.e., 〈Ex, y〉A = 〈x, Fy〉A , for all
x ∈ H, y ∈ K where 〈x, y〉A := 〈Ax, y〉 . When H = K and S = T we say that A ∈ L(H)
is S−complementable when A is (S,S)−complementable. We denote by P(A,S, T ) the set of
projections arising from 2.2, i.e.,

P(A,S, T ) := {(E,F ) ∈ Q×Q : R(E) = S, R(F ) = T , AE = F ∗A}.

Clearly, the set P(A,S, T ) is not empty if and only if A is (S, T )−complementable.

Remarks 2.3. The next properties are straightforward:

1. A is (S, T )−complementable if and only if A∗ is (T ,S)−complementable. In this case,
(E,F ) ∈ P(A,S, T ) if and only if (F,E) ∈ P(A∗, T ,S).

2. A selfadjoint operator A ∈ L(H) is S-complementable if and only if there exists a projection
E with R(E) = S such that AE = E∗A. In fact, if A is S-complementable, there exist two
projections E,F ∈ Q with R(E) = R(F ) = S such that AE = F ∗A then E∗AE = E∗F ∗A =
E∗A is selfadjoint and so AE = E∗A as desired. The converse is straightforward. Therefore,
if A is a selfadjoint operator then A is S−complementable if and only if (A,S) is compatible
in the sense of [10].

Let us start by proving that our de�nition of (S, T )−complementability is equivalent to the
de�nition given by Carlson and Haynsworth in [9].

Proposition 2.4. The following conditions are equivalent:

1. A is (S, T )−complementable.
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2. Given Qs ∈ Q(H) and Qt ∈ Q(K) with R(Qs) = S and N(Qt) = T ⊥ there exist operators
Mr ∈ L(H),Ml ∈ L(K) such that MlQt = Ml, QsMr = Mr, MlAQs = AQs and QtAMr =
QtA.

Proof. 1 ⇒ 2. Assume that A is (S, T )−complementable and let E,F be two projections with
R(E) = S and R(F ) = T such that AE = F ∗A. Consider two projections Qs, Qt with R(Qs) = S
and N(Qt) = T ⊥. Then, F ∗Qt = F ∗, QsE = E, F ∗AQs = AEQs = AQs and QtAE = QtF

∗A =
QtA. Hence, item 2 holds, with Mr = E and Ml = F ∗.

2 ⇒ 1. Let Qs, Qt be two projections with R(Qs) = S and N(Qt) = T ⊥ and Mr,Ml be two
operators such that MlQt = Ml, QsMr = Mr, MlAQs = AQs and QtAMr = QtA. De�ne E :=
Qs +Mr(I −Qs) and F := Q∗t +M∗l (I −Qt)

∗. Thus, from QsMr = Mr and MlQt = Ml, we obtain
that E2 = E, F 2 = F and R(E) = R(Qs) = S and R(F ) = R(Q∗t ) = T . We claim that AE = F ∗A.
In fact, F ∗AE = (Qt + (I −Qt)Ml)AE = QtAE + (I −Qt)MlAQsE = QtAE + (I −Qt)AE = AE,
where we use that MlAQs = AQs and QsE = E. In a similar way F ∗AE = F ∗A.

In the next result we present equivalent conditions to the notion of complementability in terms
of ranges of operators and Hilbert spaces decompositions. In the sequel, we will frequently use that
(AS)⊥ = (A∗)−1(S⊥).

Proposition 2.5. The following conditions are equivalent:

1. A is (S, T )−complementable.

2. R(PSA
∗PT ) = R(PSA

∗) and R(PT APS) = R(PT A).

3. H = S + (A∗T )⊥ and K = T + (AS)⊥.

Proof. 1⇒ 2. Let E,F be two bounded projections with R(E) = S and R(F ) = T such that AE =
F ∗A. To prove item 2 it su�ces to prove that R(PSA

∗) ⊆ R(PSA
∗PT ) and R(PT A) ⊆ R(PT APS).

Let us see the second inclusion: PT A = PT AE+PT A(I−E) = PT APSE+PT (I−F ∗)A = PT APSE
because PT F

∗ = PT . Then R(PT A) ⊆ R(PT APS). Similarly, R(PSA
∗) ⊆ R(PSA

∗PT ).
2 ⇒ 3. Let y = Ax ∈ R(A). Then, Ax = PT Ax + PT ⊥Ax = PT As + PT ⊥Ax, for some

s ∈ S because R(PT APS) = R(PT A). Thus, Ax = As− PT ⊥As + PT ⊥Ax ∈ AS + T ⊥. Therefore,
R(A) ⊆ AS + T ⊥. Then H = A−1(AS + T ⊥) = S + A−1(T ⊥). The proof of the second equality is
similar.

3⇒ 1. If H = S + (A∗T )⊥ and K = T + (AS)⊥ then there exist bounded projections E and F
with R(E) = S , N(E) ⊆ (A∗T )⊥, R(F ) = T and N(F ) ⊆ (AS)⊥. We claim that AE = F ∗A. In
fact, F ∗As = As = AEs for all s ∈ S and F ∗Ax = 0 = AEx for all x ∈ N(E).

The following is a necessary condition for complementability.

Lemma 2.6. If A is (S, T )−complementable then (AS)⊥ ∩ T = N(A∗) ∩ T and (A∗T )⊥ ∩ S =
N(A) ∩ S.

Proof. Assume that A is (S, T )−complementable and let E,F be projections onto S, T respectively,
such that AE = F ∗A. Thus, if x ∈ (AS)⊥ ∩ T then, using that (AS)⊥ = (A∗)−1(S⊥), A∗x ∈ S⊥
and x ∈ T , and so 〈A∗x, y〉 = 〈A∗Fx, y〉 = 〈E∗A∗x, y〉 = 〈A∗x,Ey〉 = 0 for all y ∈ H. Therefore,
A∗x = 0 and so x ∈ N(A∗)∩T . Since (AS)⊥∩T ⊇ N(A∗)∩T always holds, the equality is proved.
Similarly, it can be proved that (A∗T )⊥ ∩ S = N(A) ∩ S.
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Corollary 2.7. A is (S, T )−complementable if and only if R(A) = AS
.

+ T ⊥ ∩R(A) and R(A∗) =
A∗T

.
+ S⊥ ∩R(A∗).

Proof. For any A ∈ L(H,K), the equality (A∗T )⊥∩S = N(A)∩S holds if and only if AS∩T ⊥ = {0}.
In fact, suppose that AS ∩ T ⊥ = {0} and let x ∈ (A∗T )⊥ ∩ S then Ax ∈ AS ∩ T ⊥ = {0}. Then
x ∈ N(A). The converse is similar.

If A is (S, T )−complementable then, by Proposition 2.5, K = T + (AS)⊥ and, by Lemma 2.6,
(AS)⊥ ∩T = N(A∗)∩T . Thus, R(A∗) = A∗T +S⊥ ∩R(A∗) and A∗T ∩S⊥ = {0} by the previous
comment. The proof of the second equality is similar.

For the converse, suppose that R(A) = AS
.

+T ⊥ ∩R(A). Hence, H = A−1(AS
.

+T ⊥ ∩R(A)) =
S + N(A) + A−1(T ⊥) = S + A−1(T ⊥). Analogously, from R(A∗) = A∗T

.
+ (S⊥ ∩ R(A∗)), we get

that K = T + (AS)⊥, and the proof is complete.

By Proposition 2.5, if A = I ∈ L(H) and S, T are two closed subspaces of H then A is
(S, T )−complementable if and only if H = S

.
+ T ⊥. By [6, Theorem 1], H = S

.
+ T ⊥ if and only if

||PS −PT || < 1. More generally, if A has closed range or A is invertible, the complementability can
be characterized as follows:

Proposition 2.8. Given A ∈ L(H,K) with closed range, the following conditions are equivalent:

1. A is (S, T )−complementable.

2. H = S + (A∗T )⊥, A∗(T ) is closed and (A∗T )⊥ ∩ S = N(A) ∩ S.

3. K = T + (AS)⊥, A(S) is closed and (AS)⊥ ∩ T = N(A∗) ∩ T .

Proof. 1 ⇔ 2. Assume that A is (S, T )−complementable. We only need to prove that A∗(T ) is
closed. Now, by Corollary 2.7, R(A∗) = A∗(T )

.
+ S⊥ ∩ R(A∗) and, since R(A∗) is closed, we get

that A∗(T ) is closed because of [32, Theorem 5.10].
Conversely, suppose that H = S + (A∗T )⊥, A∗(T ) is closed and (A∗T )⊥ ∩S = N(A)∩S =: N .

We shall prove that K = T + (AS)⊥. Now, H = (S 	 N )
.

+ (A∗T )⊥ or, equivalently, H =
(S 	 N )⊥

.
+ A∗T . Therefore, if y ∈ R(A∗), then y = s + A∗t for some s ∈ (S 	 N )⊥ and t ∈ T ;

and so s ∈ (S 	 N )⊥ ∩ R(A∗). Hence, R(A∗) = (S 	 N )⊥ ∩ R(A∗)
.

+ A∗T . From this, K =
(A∗)−1((S 	N )⊥) +T = (A(S 	N ))⊥+T = (AS)⊥+T . Therefore, A is (S, T )−complementable.

The equivalence 1⇔ 3 can be proved similarly.

Corollary 2.9. Let A ∈ L(H,K) be an invertible operator. The next conditions are equivalent:

1. A is (S, T )−complementable

2. H = S
.

+ (A∗T )⊥

3. K = T
.

+ (AS)⊥.

4. ||PS − P(A∗T )⊥ || < 1.

5. ||PT − P(AS)⊥ || < 1.

The next result shows some equivalent conditions for complementability when A = PM, where
M is a a closed subspace of H.

Proposition 2.10. LetM⊆ H be a closed subspace. The next conditions are equivalent:

1. PM is (S, T )−complementable
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2. M = (S +M⊥) ∩M
.

+ T ⊥ ∩M, and T +M⊥ is closed.

3. H = S +M⊥ + T ⊥ ∩M = T +M⊥ + S⊥ ∩M.

4. The subspaces PMS and PMT are closed and the Grammian operator G : PMS → PMT ,
G := PPMT |PMS is invertible.

Proof. It always holds that PMS = (S +M⊥) ∩M: if x ∈ PMS, there exists s ∈ S such that
x = PMs. Then s = x+PM⊥s, or x = s−PM⊥s ∈ S+M⊥. Then x ∈ (S+M⊥)∩M. Conversely,
if x ∈ (S+M⊥)∩M then x = s+m⊥, for some s ∈ S,m⊥ ∈M⊥. Then x = PMx = PMs ∈ PMS.

1 ⇒ 2. If PM is (S, T )−complementable then, by Corollary 2.7 and [32, Theorem 5.10], PMS
and PMT are closed and M = PMS

.
+ T ⊥ ∩M. Then, M = (S +M⊥) ∩M

.
+ T ⊥ ∩M and

T +M⊥ is closed because of Theorem 2.1.
2 ⇒ 3. If M = (S +M⊥) ∩M

.
+ T ⊥ ∩M then H = (S +M⊥) ∩M

.
+ T ⊥ ∩M +M⊥ ⊆

S +M⊥ + T ⊥ ∩M, as desired. To prove the second equality it su�ces to check that by taking
orthogonal complement in the Hilbert spaceM in the equalityM = PMS

.
+T ⊥∩M, and using that

T +M⊥ is closed, we get thatM = (PMS)⊥ ∩M
.

+ (T +M⊥)∩M. But (PMS)⊥ = N(PSPM) =
(M∩ S⊥) ⊕M⊥. Therefore, M = S⊥ ∩M

.
+ (T +M⊥) ∩M. Proceeding as before, we get that

H = T +M⊥ + S⊥ ∩M.
3⇒ 1. Assume thatH = S+M⊥+T ⊥∩M. Now,M⊥+T ⊥∩M = N(PT PM) = R(PMPT )⊥ =

(PMT )⊥. Thus, H = S + (PMT )⊥. The equality H = T + (PMS)⊥ follows in the same way from
H = T +M⊥ + S⊥ ∩M.

2 ⇔ 4. Suppose that M = (S +M⊥) ∩ M
.

+ T ⊥ ∩ M, and T +M⊥ is closed. From this,
PMS and PMT are closed subspaces. Let us prove that G is invertible. Consider y ∈ PMT . Then,
y ∈ M and so y = x1 + x2 for some x1 ∈ (S +M⊥) ∩M = PMS and x2 ∈ T ⊥ ∩M. Hence, since
T ⊥ ∩M ⊆ (PMT )⊥ we get that Gx1 = PPMT x1 = PPMT y = y. Thus, G is surjective. On the
other side, let x ∈ PMS such that Gx = 0. Then, x ∈ (PMT )⊥ ∩PMS = (T ⊥ ∩M)∩PMS = {0}.
Therefore G is injective, so that G is invertible.

Conversely, assume that PMS and PMT are closed subspaces and G := PPMT |PMS is invertible.
Then, by [24, Proposition 2.1], (PMT )⊥

.
+PMS = H. Hence,M = PM((PMT )⊥)

.
+PMS. Now, as

PMT = (T +M⊥) ∩M a simple computation shows that PM((PMT )⊥) = T ⊥ ∩M. The proof is
complete.

By the proof of Proposition 2.5, the set P(A,S, T ) can be characterized in the following way:

Proposition 2.11. Let A be (S, T )−complementable. Then

P(A,S, T ) = {(E,F ) ∈ Q×Q : R(E) = S, N(E) ⊆ (A∗T )⊥, R(F ) = T and N(F ) ⊆ (AS)⊥}.

If A is (S, T )−complementable, consider N = S ∩N(A) and N ∗ = T ∩N(A∗). By Lemma 2.6,
H = S

.
+ (A∗T )⊥ 	N and K = T

.
+ (AS)⊥ 	N ∗ and the corresponding projections

Ẽ = QS//(A∗T )⊥	N and F̃ = QT //(AS)⊥	N ∗ (1)

are such that (Ẽ, F̃ ) ∈ P(A,S, T ). Moreover, the set P(A,S, T ) is an a�ne manifold as the next
corollary shows:

Corollary 2.12. Let A be (S, T )−complementable. Then

P(A,S, T ) = (Ẽ, F̃ ) + L(S⊥,N )× L(T ⊥,N ∗),
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where Ẽ and F̃ are the projections given by (1) and L(S⊥,N ), L(T ⊥,N ∗) are viewed as subspaces
of L(H), L(K), respectively. In particular, P(A,S, T ) = {(Ẽ, F̃ )} if and only if S ∩ N(A) = {0}
and T ∩N(A∗) = {0}.

Given two closed subspaces S, T of H,K, respectively, we identify each A ∈ L(H,K) with the
matrix

A =
T
T ⊥

(
A11 A12

A21 A22

)
S
S⊥ (2)

where A11 = PT A|S , A12 = PT A|S⊥ , A21 = PT ⊥A|S , A22 = PT ⊥A|S⊥ . The next result provides
a characterization of the (S, T )-complementability in terms of the matrix representation of A and
A∗. The �rst part of the following result can be also found in [4, Proposition 3.2]

Corollary 2.13. Consider the matrix representation (2). Then, A is (S, T )−complementable if
and only if R(A12) ⊆ R(A11) and R(A∗21) ⊆ R(A∗11). In this case,

P(A,S, T ) = {(E,F ) : E =

(
1 X
0 0

)
S
S⊥ and F =

(
1 Y
0 0

)
T
T ⊥ with A11X = A12, A

∗
11Y = A∗21}.

Proof. From Proposition 2.5, A is (S, T )−complementable if and only if R(PSA
∗PT ) = R(PSA

∗)
and R(PT APS) = R(PT A). But these last equalities hold if and only if R(PSA

∗PT ⊥) ⊆ R(PSA
∗PT )

and R(PT APS⊥) ⊆ R(PT APS), which proves the assertion. In this case, by Douglas' inclusion
operator range theorem [17, Theorem 1], there exist X ∈ L(S⊥,S) and Y ∈ L(T ⊥, T ) such that

A11X = A12 and A∗11Y = A∗21. De�ne E =

(
1 X
0 0

)
and F =

(
1 Y
0 0

)
; clearly, E,F are projections

onto S, T , respectively and it is straightforward that AE = F ∗A. Therefore, (E,F ) ∈ P(A,S, T ).
The other inclusion follows in a similar way.

2.2 Weak complementability

By considering the adjoints of E and F in De�nition 2.2, the de�nition of complementability can be
rewritten in the following way: A ∈ L(H,K) is (S, T )−complementable if there exist two bounded
projections E,F with N(E) = S⊥ and N(F ) = T ⊥ such that EA∗ = (FA)∗. Motivated by this
fact, we introduce now a weaker notion:

De�nition 2.14. An operator A ∈ L(H,K) is called (S, T )−weakly complementable if there exist
two densely de�ned projections E,F with N(E) = S⊥ and N(F ) = T ⊥ such that:

a) E|PT APS |1/2 and F |PSA∗PT |1/2 are bounded operators;

b) FA ∈ L(H,K), EA∗ ∈ L(K,H) and EA∗ = (FA)∗.

The concept of weakly complementability was �rst de�ned by Antezana et al. in [4] with
the purpose of extending the notion of shorted operator to bounded linear operators between two
di�erent Hilbert spaces. Their de�nition relies on the matricial form of A in terms of S and T as
in (2). Next, we prove that our de�nition coincides with that of [4].

Proposition 2.15. If A has the matrix representation given by (2), then the following conditions
are equivalent:

1. A is (S, T )−weakly complementable.
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2. R(A12) ⊆ R(|A∗11|1/2) and R(A∗21) ⊆ R(|A11|1/2).

Proof. 1⇒ 2. Suppose that A is (S, T )−weakly complementable and let E,F two densely de�ned
projections with N(E) = S⊥ and N(F ) = T ⊥ such that conditions a) and b) of De�nition 2.14 hold.

Hence, if E =

(
I 0
X 0

)
S
S⊥ and F =

(
I 0
Y 0

)
T
T ⊥, then from condition a) the operators X|A11|1/2

and Y |A∗11|1/2 are bounded. On the other hand, by condition b), we obtain that XA∗11 = A∗12 and
(Y A11)∗ = A∗21. Let A∗11 = U∗|A∗11| be the polar decomposition of A∗11 where U is the partial
isometry with N(U) = N(A11). Then, A∗12 = XA∗11 = X|A11|1/2U∗|A∗11|1/2 ∈ L(T ,S⊥) and since
Z := X|A11|1/2U∗ ∈ L(S, T ⊥), we have that A12 = |A∗11|1/2Z∗ and so R(A12) ⊆ R(|A∗11|1/2). In a
similar way, from A21 = Y A11 = Y |A∗11|1/2U |A11|1/2 ∈ L(S, T ⊥) we get that R(A∗21) ⊆ R(|A11|1/2)
as desired.

2 ⇒ 1. Assume that R(A12) ⊆ R(|A∗11|1/2) and R(A∗21) ⊆ R(|A11|1/2). Then, by Douglas'
theorem [17, Theorem 1], there exist operators B,C such that A12 = |A∗11|1/2B, R(B) ⊆ R(A11)
and A∗21 = |A11|1/2C and R(C) ⊆ R(A∗11). Therefore,

A =
T
T ⊥

(
|A∗11|U |A∗11|1/2B

C∗|A11|1/2 A22

)
S
S⊥,

where A∗11 = U∗|A∗11| = |A11|U∗ is the polar decomposition of A∗11.

De�ne: E0 =
S
S⊥
(

I 0

B∗U(|A11|1/2)† 0

)
S
S⊥ and F0 =

T
T ⊥

(
I 0

C∗U∗(|A∗11|1/2)† 0

)
T
T ⊥. Then,

E0, F0 are two densely de�ned projections, D(E0) = D((|A11|1/2)†)+S⊥ andD(F0) = D((|A∗11|1/2)†+
T ⊥, with N(E0) = S⊥ and N(F0) = T ⊥ . Thus, since |PT APS | = |A11| and |PSA∗PT | = |A∗11| then

E0|PT APS |1/2 =

(
|A11|1/2 0

B∗UP
R(|A11|1/2)

0

)
∈ L(H), F0|PSA∗PT |1/2 =

(
|A∗11|1/2 0

C∗U∗P
R(|A∗11|1/2)

0

)
∈ L(K)

and E0A
∗ =

(
A∗11 A∗21

A∗12 B∗UC

)
= (F0A)∗ ∈ L(H,K), where we used that U∗|A∗11|1/2 = |A11|1/2U∗.

Therefore, A is (S, T )−weakly complementable.

Notice that every positive operator in L(H) is S−weakly complementable for every closed sub-

space S of H: in fact, if A =

(
A11 A12

A∗12 A22

)
S
S⊥ is the matrix representation of A then A11 ≥ 0 and

R(A12) is always contained in R(A
1/2
11 ).

Remark 2.16. Taking into account the proof of the above result we observe that ifA =

(
A11 A12

A21 A22

)
is (S, T )−weakly complementable then

A =

(
|A∗11|U |A∗11|1/2B

C∗|A11|1/2 A22

)
, (3)

where A∗11 = U∗|A∗11| is the polar decomposition of A∗11, B = (|A∗11|1/2)†A12 and C = (|A11|1/2)†A∗21.
Moreover,

E0 =

(
I 0

B∗U(|A11|1/2)† 0

)
S
S⊥ (4)

and

F0 =

(
I 0

C∗U∗(|A∗11|1/2)† 0

)
T
T ⊥, (5)
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are two densely de�ned projections with D(E0) = D((|A11|1/2)†)+S⊥ and D(F0) = D((|A∗11|1/2)†+
T ⊥, that verify the conditions of De�nition 2.14. We remark that these projections are not closed,
in general, but they are semiclosed operators in the sense given by Kaufman in [22]. He de�ned
that an operator C is semiclosed if there exists a bounded operator B on H, with range the domain
of C, such that CB is bounded. In our case, if we consider Γ := |A11|1/2PS + PN(|A11|) + PS⊥ then
Γ ∈ L(H), R(Γ) = D(E0) and it is easy to check, using the formula for E0, that E0Γ ∈ L(H), i.e.,
E0 is semiclosed. Similarly, it can be proved that F0 is semiclosed.

Finally, we highlight that if A is (S, T )−complementable then E∗0 and F ∗0 , are the projections
de�ned by (1).

3 Complementability and general Wiener-Hopf operators

If A ∈ L(H) and S is closed subspace of H then the operator PSA|S , has been called by Devinatz
and Shinbrot [15] a general Wiener-Hopf operator. It must be pointed out that this operator emerges
as a generalization of the classical integral operator g(x) =

∫∞
0 K(x− y)f(y)dy studied by Wiener,

Hopf and others. Here, we shall consider the following more general de�nition:

De�nition 3.1. Given two closed subspaces S, T of H,K respectively, the general Wiener-Hopf
operator of A ∈ L(H,K), TT ,S(A) : S → T is de�ned as

TT ,S(A) = PT A|S .

Using the matrix representation (2), it is clear that TT ,S(A) = A11. There is an extensive liter-
ature concerning to the invertibility of the general Wiener-Hopf operator PSA|S see [15], [21],[29],
[31], among others. Our aim in this section is to apply the previous results about complementabil-
ity and weakly complementability to the study of the generalized invertibility (or, invertibility) of
TT ,S(A) and to obtain a formula for TT ,S(A)† (or, TT ,S(A)−1) in terms of the projections associated
to these notions. Recall that for A ∈ L(H,K), the Moore-Penrose inverse of A is the (non neces-
sarily bounded) operator A† : R(A) ⊕ R(A)⊥ → H, de�ned as A†(Ax + y) = x where y ∈ R(A)⊥

and x ∈ N(A)⊥.
Let us begin with the following result:

Theorem 3.2. If A is (S, T )−weakly complementable, then

TT ,S(A)† = (APS)†F0PR(TT ,S(A))
|D(TT ,S(A)†), (6)

where F0 is the densely de�ned projection given by (5).

Proof. Assume thatA is (S, T )−weakly complementable and let F0 be the densely de�ned projection
given by (5). Observe that, in this case, TT ,S(A)† is not necessarily a bounded operator. Let us
prove formula (6). For this, consider the matrix representations of A and F0 given in Remark

2.16 and T := PT APS =

(
A11 0
0 0

)
. Therefore, a simple matrix computation shows that APS =

F0APS = F0PTAPS = F0T , where F0T is well de�ned since R(A11) ⊆ D((|A∗11|1/2)†). From
this and noting that R(T †) = N(PT APS)⊥ ⊆ N(APS)⊥, it follows that T † = PN(APS)⊥T

† =

(APS)†APST
† = (APS)†F0TT

† = (APS)†F0PR(T )
|D(T †). Finally, notice that T †|T = TT ,S(A)†,

that R(T ) = R(TT ,S(A)) and D(T †) ∩ T = D(TT ,S(A)†). The result is proved.

Given T ∈ L(H,K), T † ∈ L(K,H) if and only if R(T ) is closed. Hence, in what follows we
provide conditions in terms of complementability that guarantee that R(TT ,S(A)) is closed. For
this purpose, we start with the next result.
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Lemma 3.3. N(TT ,S(A)) = S ∩N(A) if and only if A(S) ∩ T ⊥ = {0}.

Proof. The result follows noticing that N(TT ,S(A)) = S ∩A−1(T ⊥) and applying the remark at the
beginning of the proof of Corollary 2.7.

The following result follows by Theorem 2.1:

Proposition 3.4. If TT ,S(A) has closed range then AS+T ⊥ is closed. If AS is closed, the converse
holds.

Corollary 3.5. TT ,S(A) has closed range and is injective if and only if A(S)
.

+ T ⊥ is closed and
S ∩N(A) = {0}.

Proof. The nullspace of TT ,S(A) is N(TT ,S(A)) = S ∩A−1(T ⊥).
Suppose that TT ,S(A) has closed range and is injective. Then, by Proposition 3.4, AS + T ⊥ is

closed. Since S ∩N(A) ⊆ S ∩A−1(T ⊥) = {0}, then S ∩N(A) = S ∩A−1(T ⊥) = {0}. Also, by the
proof of Corollary 2.7, this implies that AS ∩ T ⊥ = {0} so the sum is direct.

Conversely, suppose that A(S)
.

+T ⊥ is closed and S∩N(A) = {0}. Then, by [32, Theorem 5.10],
A(S) is closed. Applying Proposition 3.4, the range of TT ,S(A) is closed. Since A(S) ∩ T ⊥ = {0}
then, by Lemma 3.3, TT ,S(A) is injective.

Theorem 3.6. The following conditions are equivalent:

1. A is (S, T )−complementable and A(S), A∗(T ) are closed subspaces.

2. TT ,S(A) has closed range, N(TT ,S(A)) = S ∩N(A) and N(TS,T (A∗)) = T ∩N(A∗).

Proof. Assume that A is (S, T )−complementable and A(S), A∗(T ) are closed subspaces. Thus,
H = S + (A∗T )⊥ and K = T + (AS)⊥ or, equivalently, S⊥

.
+ A∗T and T ⊥

.
+ AS are closed

subspaces. Hence, by Proposition 3.4 and Lemma 3.3 we obtain item 2.
Conversely, suppose that item 2 holds. Then as TT ,S(A) has closed range and N(TT ,S(A)) =

S ∩N(A) we get that A(S)
.

+ T ⊥ is closed. Then AS is closed and H = T + (AS)⊥. Similarly, but
considering that TS,T (A∗) has also closed range and N(TS,T (A∗)) = T ∩N(A∗), we get that A∗T
is closed and K = S + (A∗T )⊥. Therefore, A is (S, T )−complementable.

We devote the remain of this section to study the relationship between the invertibility of
TT ,S(A) and the notion of complementability. For that, in the following result we collect some
equivalent conditions to the invertibility of TT ,S(A).

Proposition 3.7. The next conditions are equivalent:

1. TT ,S(A) is invertible

2. H = A(S)
.

+ T ⊥ and N(A) ∩ S = {0}.

3. H = (AS)⊥
.

+ T , N(A) ∩ S = {0} and A(S) is closed.

Proof. 1⇒ 2. Clearly, if TT ,S(A) is invertible then R(PT APS) = T . Thus, H = P−1
T (R(PT APS)) =

P−1
T (PT (A(S))) = A(S) + T ⊥. Then, the result follows by Corollary 3.5.

2⇒ 1. IfH = A(S)
.

+T ⊥ then T = PT (H) = PT (A(S)) = R(PT APS), i.e., TT ,S(A) is surjective.
The proof is complete by considering Corollary 3.5.

The equivalence 3⇔ 1 follows from the fact that H = AS
.

+ T ⊥ if and only if H = (AS)⊥
.

+ T
and AS is closed, see [14, Theorem 15].
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We refer the reader to [15, Theorem 1 and Lemma 3] and [21, Theorems 1 and 2] for some other
equivalent conditions to the invertibility of TT ,S(A).

Corollary 3.8. TT ,S(A) is invertible if and only if TS,T (A∗) is invertible.

Proof. By Proposition 3.7, TT ,S(A) is invertible if and only ifR(PT APS) = R(PT ) andN(PT APS) =
N(PS) or, equivalently, N(PSA

∗PT ) = N(PT ) and R(PSA
∗PT ) = R(PS), i.e., applying again

Proposition 3.7, TS,T (A∗) is invertible.

Corollary 3.9. If TT ,S(A) is invertible then A is (S, T )−complementable.

Proof. Assume that TT ,S(A) is invertible. Then, by Proposition 3.7, N(A)∩S = N(TT ,S(A)) = {0}
and N(TS,T (A∗)) = T ∩N(A∗) = {0}. Then, by Theorem 3.6, A is (S, T )−complementable.

Theorem 3.10. The next conditions are equivalent:

1. TT ,S(A) is invertible.

2. P(A,S, T ) has a unique element and A(S) is closed.

Moreover, if the above conditions hold then

TT ,S(A)−1 = (AP )†QAS//T ⊥ |T . (7)

Proof. 1⇒ 2. Suppose that TT ,S(A) is invertible. By Corollary 3.9, A is (S, T )−complementable or,
equivalently, P(A,S, T ) is not empty. Moreover, by Proposition 3.7, AS is closed and (A∗)−1(S⊥)∩
T = {0}. Applying again Proposition 3.7 to TS,T (A∗) (which is also invertible because of Corollary
3.8) we obtain that A−1(T ⊥) ∩ S = {0}. Therefore, by Corollary 2.12, P(A,S, T ) has a unique
element.

2⇒ 1. Suppose that P(A,S, T ) has a unique element and AS is closed. Then, by Corollary 2.12,
H = (A∗)−1(S⊥)

.
+T and S∩A−1(T ⊥) = {0}. Now, N(A)∩S ⊆ S∩A−1(T ⊥), i.e., N(A)∩S = {0}.

Therefore, by Proposition 3.7, TT ,S(A) is invertible. Finally, formula (7) follows by Theorem 3.2,
noticing that if P(A,S, T ) = {(E,F )} then F = QT //(AS)⊥ or, equivalently, QAS//T ⊥ = F ∗.

4 Bilateral shorted operator

As mentioned in the introduction, the bilateral shorted operator de�ned in [4] extends to Hilbert
spaces the matricial analogue introduced by Mitra and Puri [26] and Carlson and Haynsworth [9].
Next, we recall the de�nition given in [4], where we have interchanged S, T and S⊥, T ⊥ to maintain
notational consistency with the previous concepts. In what follows, we consider the matrix form of
an operator A ∈ L(H,K) given in (2).

De�nition 4.1. If A is (S, T )−weakly complementable, the bilateral shorted operator of A to the
subspaces S, T is the operator

A/S,T :=

(
0 0
0 A22 − C∗U∗B

)
(8)

where B = (|A∗11|1/2)†A12, C = (|A11|1/2)†A∗21, and A∗11 = U∗|A∗11| is the polar decomposition of
A∗11.
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The aim of this section is to provide new characterizations of A/S,T by means of the densely
de�ned projections given by the weakly-complementability of A. In this direction, our �rst result
is a formula for A/S,T in terms of the semiclosed projections E0, F0 given by (4) and (5):

Theorem 4.2. If A is (S, T )−weakly complementable then,

A/S,T = (I − F0)A and A∗/T ,S
= (I − E0)A∗,

where E0, F0 are the densely de�ned projections given by (4) and (5), respectively.

Proof. Let A be (S, T )−weakly complementable. Then, by Remark 2.16,

A =
T
T ⊥

(
|A∗11|U |A∗11|1/2B

C∗|A11|1/2 A22

)
S
S⊥, (9)

where A∗11 = U∗|A∗11| is the polar decomposition of A∗11, B = (|A∗11|1/2)†A12, and C = (|A11|1/2)†A∗21.

Then, a simple computation shows that (I−F0)A =

(
0 0
0 A22 − C∗U∗B

)
= A/S,T and (I−E0)A∗ =(

0 0
0 A∗22 −B∗UC

)
= A∗/T ,S

, where E0 and F0 are given by (4) and (5), respectively.

For a positive operator A ∈ L(H), Krein [23] proved that the shorted operator A/S turns out
to be the maximum of all positive operators which are smaller than A with respect to the Lowner
order (i.e., A ≤ B if 〈Ax, x〉 ≤ 〈Bx, x〉 ∀x ∈ H) and which have range lying in the �xed subspace
S⊥. See also Anderson and Trapp [2], Pekarev-�muljan [28] and Arlinskĭi and E. Tsekanovskĭi [5].
For A ∈ L(H) non positive, Mitra [25] proved (for matrices in Cm×n) that a similar result can be
obtained if the minus order is considered. More precisely, he proved that

A/S,T = max
≤̄
{C ∈ Cm×n : C≤̄A, R(C) ⊆ T ⊥ and R(C∗) ⊆ S⊥},

where A≤̄B if R(A)∩R(B−A) = {0} and R(A∗)∩R(A∗−B∗) = {0}. Later, in order to extend this
result for bounded operators on in�nite dimensional Hilbert spaces, Antezana et al. [4] introduced
the next generalization of the minus order: given A,B ∈ L(H,K), A≤̄B if R(A)

.
+ R(B −A) and

R(A∗)
.

+R(B∗ −A∗) are closed subspaces, or equivalently, there are bounded (oblique) projections
P and Q such that A = PB and A∗ = QB∗, see [4, Proposition 4.13]. See also [16], where it was
proved that A≤̄B if and only if R(B) = R(A)

.
+ R(B − A) and R(B∗) = R(A∗)

.
+ R(B∗ − A∗). If

A is (S, T )−complementable then

A/S,T := max
≤̄
{C ∈ L(H,K) : C≤̄A,R(C) ⊆ T ⊥, R(C∗) ⊆ S⊥}, (10)

see [4, Theorem 4.15]. This result extends Mitra's result under the hypothesis of complementability.
Our goal now is to extend, under the condition of weakly-complementability, the variational

characterization (10) of the bilateral shorted operator. For this, we de�ne a partial order in L(H,K)
that extends the minus order:

De�nition 4.3. Given two operators A,B ∈ L(H,K), we shall write A ≺ B if there exist two
densely de�ned projections Q,P with closed ranges such that A = QB and A∗ = PB∗.

Lemma 4.4. Let A,B ∈ L(H,K). The next conditions are equivalent:
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1. A ≺ B.

2. R(A) ∩R(B −A) = {0} and R(A∗) ∩R(B∗ −A∗) = {0}.

Proof. Assume that A ≺ B, and let Q,P be two densely de�ned projections with closed ranges
such that A = QB and A∗ = PB∗. Without loss of generality, we can assume that R(Q) = R(A)
and R(P ) = R(A∗). Hence, Q(B − A) = 0, i.e., R(B − A) ⊆ N(Q) and so R(A) ∩ R(B − A) =
{0}. Similarly, R(A∗) ∩ R(B∗ − A∗) = {0}. Conversely, suppose that R(A) ∩ R(B − A) = {0}
and R(A∗) ∩ R(B∗ − A∗) = {0}. Hence, QA,B := Q

R(A)//R(B−A)
.
+(R(A)+R(B−A))⊥

and QA∗,B∗ =

Q
R(A∗)//R(B∗−A∗)

.
+(R(A∗)+R(B∗−A∗))⊥ are two densely de�ned projections with closed ranges and a

simple computation shows that A = QA,BB and A∗ = QA∗,B∗B
∗. Therefore, A ≺ B.

From now on, given A,B ∈ L(H,K) we denote by

≺A,B:= {Q : Q is a densely defined projection with closed range s.t. A = QB}.

Thus, A ≺ B if and only if ≺A,B 6= ∅ and ≺A∗,B∗ 6= ∅. Moreover, if A,B ∈ L(H,K) verify that
R(A)∩R(B−A) = {0} then we shall denote by QA,B := Q

R(A)//R(B−A)
.
+(R(A)+R(B−A))⊥

. Therefore,
taking into account the proof of Lemma 4.4, if A ≺ B then QA,B ∈≺A,B and QA∗,B∗ ∈≺A∗,B∗ .

Let us prove that ≺ de�nes an order in L(H,K):

Lemma 4.5. The relation ≺ is a partial order in L(H,K).

Proof. In fact, the relation ≺ is:

1. Re�exive: for all A ∈ L(H,K), A = P
R(A)

A, and A∗ = P
R(A∗)A

∗ i.e., A ≺ A.

2. Antisymmetric: If A ≺ B and B ≺ A then A∗ = QA∗,B∗B
∗, so N(B∗) ⊆ N(A∗), and

B∗ = QB∗,A∗A
∗, so N(A∗) ⊆ N(B∗). Thus, N(A∗) = N(B∗) or, equivalently, R(A) = R(B).

Hence, A = QA,BB = B.

3. Transitive: Let A ≺ B and B ≺ C. Then, A = QABB = QA,BQB,CC. Let us prove
that QA,BQB,C is a densely de�ned projection with closed range. In fact, N(QB,C) ⊆
D(QA,BQB,C) and R(B) ⊆ D(QA,BQB,C). Thus N(QB,C) + R(B) ⊆ D(QA,BQB,C), and
so QA,BQB,C is densely de�ned. To see that QA,BQB,C is a projection, R(QA,BQB,C) ⊆
R(QA,B) = R(A) ⊆ R(B) ⊆ D(QB,C). Hence, QB,CQA,BQB,C = QA,BQB,C in D(QA,BQB,C)

and so QA,BQB,C = (QA,BQB,C)2. Finally, R(QA,BQB,C) ⊆ R(A). On the other hand, as
R(A) ⊆ R(B), then QB,CQA,B = QA,B. Thus, QA,BQB,CQA,B = QA,B and so R(A) =

R(QA,B) ⊆ R(QA,BQB,C). Therefore, R(QA,BQB,C) = R(A) is closed.

Similarly, A∗ = QA∗,B∗B
∗ = QA∗,B∗QB∗,C∗C

∗ and QA∗,B∗QB∗,C∗ is a densely de�ned projec-
tion with range R(A∗). Then, A ≺ C.

Clearly, the partial order ≺ extends the minus order, in the sense that if A≤̄B then A ≺ B.
Now we are in position to prove the last result of this paper. If A is (S, T )−weakly com-

plementable, consider the factorization given in (3) and let Γ1 :=

(
|A∗11|1/2 0

0 I

)
and Γ2 :=(

|A11|1/2 0
0 I

)
. Notice that A = Γ1A0Γ2 where A0 =

(
U B
C∗ A22

)
. Hence, de�ne

M≺(A,S, T ) = {C ∈ L(H,K) : C ≺ A, R(C) ⊆ T ⊥, R(C∗) ⊆ S⊥, ∃Q ∈≺C,A,∃P ∈≺C∗,A∗

s.t. QΓ1 ∈ L(K), PΓ2 ∈ L(H)}.
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Theorem 4.6. Let A be (S, T )−weakly complementable. Then,

A/S,T = max
≺
M≺(A,S, T ).

Proof. Let us start by showing that A/S,T ∈ M
≺(A,S, T ). By Theorem 4.2, A/S,T = (I − F0)A

and (A/S,T )∗ = (I −E0)A∗, where E0, F0 are given by (4) and (5), respectively. Thus, since I −E0

and I − F0 are two densely de�ned projections with closed ranges (R(I − F0) = N(F0) = T ⊥ and
R(I−E0) = N(E0) = S⊥), we get that A/S,T ≺ A, R(A/S,T ) ⊆ T ⊥ and R(A∗/S,T ) ⊆ S⊥. Moreover,

(I−F0)Γ1 = (I−F0)(|PSA∗PT |1/2 +PT ⊥) ∈ L(K) and (I−E0)Γ2 = (I−E0)(|PT APS |1/2 +PS⊥) ∈
L(H) because E0 and F0 verify the conditions of De�nition 2.14. Then, A/S,T ∈M

≺(A,S, T ).
Now, consider C ∈ M≺(A,S, T ). Then, C = QA = QΓ1A0Γ2. Therefore, as QΓ1 ∈ L(K), we

have that C∗ = Γ2A
∗
0(QΓ1)∗ = (I −E0)Γ2A

∗
0(QΓ1)∗, because R(C∗) ⊆ S⊥ = R(I −E0). Moreover,

(I − E0)Γ2 ∈ L(H). Hence, C = QΓ1A0((I − E0)Γ2)∗. We claim that A/S,T = Γ1A0((I − E0)Γ2)∗.
In fact, A/S,T = ((I − E0)A∗)∗ = ((I − E0)Γ2A

∗
0Γ1)∗ = Γ1A0((I − E0)Γ2)∗, as desired. Then,

C = QA/S,T .
On the other hand, C∗ = PA∗ = PΓ2A

∗
0Γ1. Hence, as PΓ2 ∈ L(H), we get that C =

Γ1A0(PΓ2)∗ = (I − F0)Γ1A0(PΓ2)∗, because R(C) ⊆ T ⊥ = R(I − F0). Then, C∗ = PΓ2A
∗
0((I −

F0)Γ1)∗. Now, (A/S,T )∗ = Γ2A
∗
0((I − F0)Γ1)∗ because A/S,T = (I − F0)A = (I − F0)Γ1A0Γ2 and

(I − F0)Γ1 ∈ L(K). Summarizing, C = QA/S,T and C∗ = P (A/S,T )∗, i.e., C ≺ A/S,T . The proof is
complete.
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