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ABSTRACT

The creaming properties of human milk have not lveielely studied to date, and a
mechanism for this phenomenon is not known. Haeepatural creaming of human
milk, as affected by temperature and pre-treatmevds studied using dynamic light-
scattering. The creaming rate of human milk incedasith temperature in the range
5 °C to 40 °C. Freezing human milk at —20 °C arahing at room temperature had
little influence on creaming. Compared with bovinik, human milk showed a faster
creaming rate at 40 °C, but a slower rate at 5se@gesting a lack of cold
agglutination; the mechanisms of creaming were stigovn to differ in response to
heat treatment. This study expands the current ledge on milk creaming, and may
have potential application to storage and handdiinguman milk in hospitals or

homes, therefore supporting optimal nutrition dams.
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1. I ntroduction

Human milk is essential as our first natural fopahviding both nutrients and
immunity to infants. Infants, especially preterrfaimts, who receive no or limited
milk from their own mothers, can also be fed by harmilk from donors as a
substitute. Those milk donations are screenedivetepasteurised and stored in
human milk banks (Hartmann, Pang, Keil, Hartmanrgigamer, 2007). Moreover,
working mothers may store their milk in the frid@e°C) from 24 h to 8 d or in the
freezer (-18 °C) for even longer times (Hands, 20U8iss, 2005).

Natural creaming of milk occurs during storage lbsesof the lower density
of milk fat globules compared with milk serum, wihieads to fat rising to the top
under the influence of gravity. The most well sadisubject of creaming has been
bovine milk, since at least the work of Babcock848 Creaming properties of
caprine (EI-Ghannam, Attia, & Zeidanr 1986), bufféhbo-Elnaga, 1966), carabao
(Gonzales-Janolino, 1968) and camel (Farah & RUEg@1) milk have also been
studied, and all of these showed much slower cregunaites than bovine milk at
refrigeration temperature. Human milk has beenntedao cream more slowly than
bovine milk at body temperature (Whittlestone &riterl954), but overall the
creaming of human milk and the factors affecting firocess have not been
extensively studied to date.

The creaming rates, which is used to describe the creaming processlk
is described by Stokes’ Law (Walstra, 1995):

_ 2
v = g(pp—py)d (1)
18np
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whereg is acceleration due to gravityjs the diameter of the fat globujg, andp:are
the densities of the plasma and fat, respectialgy, is the viscosity of the plasma.

However, applying Stokes’ Law solely based on the ef individual milk fat
globules cannot exactly predict the real creamatg.r=or example, fresh bovine milk
creams much faster than predicted by Stokes’ Lasvoldttemperatures, which is
explained by a phenomenon called cold agglutinatansed by the flocculation of
fat globules (Sharp & Krukovsky, 1939). Cold agglation is facilitated by
agglutinins, which attach to the milk fat globulembrane (MFGM) and cause fat
globules to aggregate; these agents have beeifigidiais immunoglobulin M (IgM)
(Euber & Brunner, 1984; Payens, Koops, & Mogot,3)9and immunoglobulin A
(IgA) (D'Incecco et al., 2018; Honkanen-Buzalsks&ndholm, 1981) in bovine milk.
A homogenisation-labile component, termed the gkiitk membrane but now
sometimes referred to as exosomes or extracellakcles (Benmoussa et al., 2017),
was also reported to be involved in cold agglutora{Euber & Brunner, 1984). Other
factors that have been reported to influence tteeabicreaming of bovine milk
include the presence of bacteria (Jenness, Shighe®bon, 1974) and somatic cells
(Geer & Barbano, 2014), heating (>70 °C), and lpugFssure treatmernt400 MPa)
(Huppertz, Fox, & Kelly, 2003).

Moreover, techniques for measuring creaming hayeoned. Traditionally,
the creaming of milk was measured as the voluneeesEm produced from a specified
volume of milk in a glass tube, of specific dimems, at a stated temperature after
certain time intervals, usually up to 24 h (Dunk&pommer, 1944; Euber &
Brunner, 1984; Hammer, 1916; Kenyon, Jenness, &fsuh, 1966). More recently,
the Turbiscan instrument has used to study therarepbehaviour of milk, based on

multiple light-scattering principles; this givesonrmation on creaming properties
4
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even when nothing is visible to the naked eye dube opacity of milk samples,
therefore removing the ambiguity of visual obseora{Celia, Trapasso, Cosco,
Paolino, & Fresta, 2009; Juliano et al., 2011).

In this study, the natural creaming propertieswhhn milk under different
temperature conditions were analysed using thei3eab stability analyser and
compared with the creaming behaviour of bovine rtolkinderstand the reasons
behind any differences that might exist betweemtha addition, the influence of
different pre-treatments, such as freezing anchpaging, which may be used in

hospitals or milk banks to stabilise human milk tba creaming were studied.

2. Materials and methods

2.1. Human milk samples

Ethical approval for this study was granted by@haical Research Ethics
Committee of the Cork Teaching Hospitals, Corkiaind, and fresh human milk
samples (collected after the infant was satistied, hence being largely mid- to hind-
milk) were collected from Cork University Maternitjospital, Cork, Ireland. Full-
term individual fresh milk samples from healthy mets who were one week after
birth (i.e., first week of lactation) were colledtand used within 24 h. Fresh raw
bovine milk was obtained from a local market. Bbtiman and bovine milk were

stored at refrigeration temperatures until the imieg analysis.

2.2. Compositional analysis
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The fat, protein, lactose and total solids contémtuman milk was determined
with a human milk analyser (MIRIS, Uppsala, Swedsaged on mid-infrared (mid-
IR) transmission spectroscopy principles. Subsasnpiéresh human milk (n = 12)
were collected for compositional analysis were émat —80 °C, thawed at 4 °C,
warmed to 40 °C and homogenised using a sonicktiirIS) before analysis. The fat,
protein, lactose and total solids content of fAestine milk samples was measured

using a Milkoscan FT 120 (Foss Electric, Hiller@@&nmark).

2.3. Szedistribution of milk fat globules

The size distribution of milk fat globules (MFG) muman and bovine milk
samples was determined with a Mastersizer 3000 pesécle size analyser (Malvern
Instruments, Malvern, UK) equipped with a He—Netas = 633 nm). The refractive
indices of the fat globule and of the dispersaratén) at 25 °C were taken as 1.458
and 1.33, respectively, and the absorbance oldautes was taken as 0.01
(Michalski, Briard, & Michel, 2001). The surfaceearmean diameter D[3,2], the
volume-weighted mean diameter D[4,3], and the stethgdercentiles values, 10,

D,50 and Q90 were measured in triplicate, as described edMénard et al., 2010).

24. Measurement of density of milk fat and viscosity of skimmed milk

Bovine milk fat was obtained by melting commerdiatter and allowing to
stand, followed by recovery of the upper fat laygmman milk fat was obtained from
a sample of donor milk that was agitated at higtesgldo destabilise the emulsion and

recover a fat-rich phase, which was separatedrasefmaration of bovine milk fat
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from butter to obtain a fat sample. The densitthese human and bovine milk fat
samples was determined using a pycnometer (Scil&otd., Stoke-on-Trent, UK)

at 20 °C by following standard method ASTM D35055{\M, 2018). To obtain skim
milk, milk was centrifuged at 3000gfor 20 mins at 5 °C. Flow time of human skim
milk, bovine skim milk, and pure water were meadurg a U-shape glass viscometer
(VWR International Ltd., Dublin, Ireland) at 5 °Gliowing standard method ASTM

D445 (ASTM, 1997), and viscosities of human andihewskim milk were calculated
by:

_ bmilk Pmilk
Mmitk = 7 MH,0 (2
tHzO szO

wheret.,;;, and ty,, are the time (seconds) flow through the specifeaarf U-shape
viscometer of milk and water, respectively,,.;x IS the density of skimmed human
(1.03 x 16 kg m®; Neville et al., 1988) or skimmed bovine milk (4.8 1¢ kg m?>;

Ma & Barbano, 2000) at 5 °Gyy, o is the density of water at 5 °C, which is 1.00 x
10’ kg m® (Jones & Harris, 1992}, is the viscosity of water at 5 °C, which is
1.52 mPa ¢Kestin, Sokolov, & Wakeham, 1978). Fresh milk saaspkere measured

and each analysis was performed in triplicate.

2.5. Sample preparation for creaming analysis

For creaming analysis, five different temperatugegumber of samples (n) =
11)], 20 (n = 10), 37 (n = 13), 40 (n = 11) and’@5(n = 3) were selected in
individual experiments for simulation of refrigaat, room temperature (RT),
mammalian body temperature, and higher temperatRefsigerated milk samples

were incubated in a water bath for 20 min to achidne target temperature, and each

7
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sample (3 mL) was then inverted at least 10 tinmelspdaced in the Turbiscan
immediately to make sure the back-scattering grdilthe first scan was a flat line,
and then scanned at each temperature for 10 htift@tvas chosen as a compromise
between the freshness and creaming duration ohilke and because, after this time,
the peak thickness in the cream layer of human rediches a plateau (as determined
in preliminary work).

In the experiment with pre-heating, fresh milk stespvere pre-heated in a
water bath at 70 °C for 10 min. In a separate axpart, bovine whey protein isolate
(WPI90, Carbery Group Ltd., Ballineen, Cork, Iredaiand immunoglobulins (Igs,
isolated as described by McGrath, 2014), was atiadman milk to achieve 1 g'L
final Igs (average level of human and bovine Igmitk). In a ‘phase-reversal’
experiment, human and bovine milk cream and serene &separated at 45 °C, which
can concentrate agglutinins from the whole milkh® milk cream layer, and

recombined with the opposite fraction as descripedennes and Parkash (1971).

2.6. Creaming analysis

The Turbiscai®™ (Formulaction, Ramonville St. Agne, France) with&D0
nm near infrared (NIR) light source was used tagfparticle migration (creaming) in
milk samples. The Turbiscan is based on multigletiscattering theory, where NIR
photons are transmitted or back-scattered fronsdneple to transmission (T) or
backscattering (BS) detectors (Carrentero, VilleBiunel, & Carries, 2005).

Parameters quantified to describe creaming weré&uhigiscan stability index
(TSI), the mean value (BS, %), the peak thicknessH), and the migration rate.

The TSI was calculated by summing up the changBsSiat all measured positions,
8
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based on a scan-to-scan difference, over total lean@ight or a selected zone
(Carrentero et al., 2005). In this study, the gelzone is the area where the cream
layer forms; when the TSI value increases, thelgiabf the system decreases. The
mean value represents changes in the concentaatobsize of particles, i.e., signal
variation ofABS (%). It was calculated at the cream layer andhHe bottom layer
(lowest 20% of total height) of samples, andAlitmeasures the depth of the cream
layer (represented by a peak in back-scatter tlahforms. A threshold value was
set as 2% BS. The slope of the curve of thél as a function of time reflects the
migration of the fat globules moving upwards witsamples; the migration rate,
calculated as the slope of the initial linear pdrthe AH plot, was taken to represent

the creaming rate.

2.7. Satistical analysis of data

Data were analysed using Minifap18 (Minitab Inc., State College, PA,
USA). Prior to analysis, data were tested for nditsnasing the Anderson-Darling
test. All TSI data, which were not normally distribd, were transformed according to
a Box-Cox analysis. GLM ANOVA or one-way ANOVA follved by a paired
multiple comparison test (Tukey’s test) were used@propriate. Human and bovine
fat globule size distribution parameters were asedyusing a 2-sample T-test. For all

statistical analysis, the level of significanagywas set at 0.05.
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3. Results

3.1. Composition, size distribution and density of milk fat globules of human and

bovine milk

The averaged composition of fresh human milk sashaiel fresh bovine milk
samples tested in this study is reported in Talfldetails for the composition of milk
samples from individual mothers are shown in Supplgtary material Table S1).
Compared with fresh bovine milk, human milk had éoWevels of lipids and protein,
but a higher level of carbohydrate and solids-abbntent.

Differences in fat globule size between human amdrg milk were minor,
with fat globules in human milk having a slightbywer average D[3,2] (2.3 = 013n)
and higher average D[4,3] (4.1 £ u&) than those in bovine milk (2.4 + Qufn and
3.7 £ 0.3um, respectively) (Table 2). In case of the sizéridhistion of human MFGs,
10% of particles were below 1.1 + QuB, and 50% of particles below 3.5 = Qun,
both of which are lower than the values preserwetdvine milk; however, the
average [P0 of human MFGs (7.1 £ 16n) was higher than that in bovine milk (6.6
+ 0.36um). Overall, statistical analysis of human and heWIFG size distribution
parameters showed no significant differerfee>(0.05) between the parameters
measured for the two types of milk.

The densities of human and bovine milk fat at 26v&2e 0.88 x 1D+ 0.46 kg
m>and 0.88 x 1+ 0.61 kg i, respectively. The viscosity of skimmed human milk
at 5 °C was measured as 2.53 + 0.08 mPa s, whisHomeer than that of skimmed

bovine milk at 5 °C (3.45 + 0.02 mPa s).

10



232 3.2, Creaming profiles of human and bovine milk at different temperatures

233

234 The formation of the layer of fat droplets (creag)irs illustrated in the back-
235  scattering profiles of the samples (Supplementaatenal Fig. S1) as an increase in
236  ABS at the top of samples over time, while a deerefshe back-scattering is

237 indicative of clarification in the middle and lowehases of samples. As calculated
238  from the backscattering profiles, the TSI valuesream layers (TQkan) in both

239  types of milk increased with time (Fig. 1). In humailk, the TS{eamincreased with
240 temperature from 5 to 40 °C, and there were sicgnifi differencesR < 0.05)

241  between TSleamat 5 °C and TSleamat 40 °C at each time point.

242 Bovine milk held at 5 °C had a lower t&im i.€., a higher stability, than that
243 at 40 °C during the first hour; however, instagilitcreased dramatically between 1
244  and 4 h of measurement. The average&shalues of human milk were lower at
245 5 °C but higher at 40 °C, compared with those ofifo® milk at each time point

246 during 10 h. However, no significant differené&X 0.05) of TSeamwas found

247  between bovine and human milk at 10 h at eitheptzature.

248 The mean value afBS in cream layer (M¥ean), Which can be estimated
249  from ABS profiles (Supplementary material Fig. S2), iased with temperature for
250  human milk (Fig. 2A), i.e., the higher the temparaf the more rapidly the fat

251  globules concentrated in the human milk cream lalee averages of MM.amfor

252 human milk ranged from 9.5% to 16.3% after 10 Imfi® °C to 40 °C. The average
253 MV eamfor bovine milk after the same time at 5 °C and@0vere similar to each
254  other (Fig. 2B). However, the time for bovine cretmmeach the maximumBS

255 decreased from 6 h at5 °C to 3 h at 40 °C. Theeohincrease iABS for milk from

256  both species started to decrease after around€amag at all temperatures;
11
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however, this decrease in rate was more signififtarttovine milk than for human
milk.

The mean value in the bottom layers (MM of the milk samples decreased
from over time due to the fat globules moving updgaffig. 2C,D). In the bottom
layer, human milk held at 20, 37, and 40 °C showiedlar initial behaviour, while
milk held at 5 °C had a lower initial rate of the/ihwomcurve. Interestingly, human
milk held at 20 °C had a higher decrease ofyM¥, i.e., a more complete
clarification, compared with that at 5 °C. Moreqgverthe bottom layer of both
human and bovine milk, the clarification was maxeeasive at 5 °C than at 40 °C.

The peak thicknesaH) of human milk cream layer varies due to creaming
temperature at different time points. As seen fiiable 3, there were significant
differences P < 0.05) inAH among temperatures at 0.5 and 4 h, whereas\wes@®o
significant differenceR > 0.05) inAH among temperatures at 10 h creaming.
Compared with bovine milk (Fig. 3\H values of human milk cream increased
steadily to a maximum at the end of 10 h, wheregsached a plateau for bovine milk
after 2 h at 5 °C. There was a lag phase for bavile cream formation at 5 °C,
which was not seen 40 °C, while human milk statteckeam earlier than bovine milk
at both 5 °C and 40 °C. The finaH value of the human milk cream layer at 5 °C
was lower than that at 40 °C, whereas it was ngtaigiher for bovine milk at 5 °C
than at 40 °C.

The average creaming rate, i.e., the migrationoghMFGs, or clusters thereof,
of human milk increased with temperature (Tablglgre was a significant
difference P < 0.05) between rates at 5 °C and 40 °C. Thewatelower than that of
bovine milk at 5 °C, whereas it was higher thart tfdovine milk at 40 °C,

suggesting different mechanisms of creaming imtiik of the two species. However,
12
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there was no significant differend@ ¥ 0.05) in creaming rate between bovine and

human milk at 5 °C or at 40 °C.

3.3.  Influence of freezing-thawing and preheating on creaming

The TSI cream values of individual human milk saespdfter different pre-
treatments as a function of time are shown in &idrefrigeration for 1 week resulted
in a lower TS{eamat each time point, whereas a 9-month frozen aaa¢d milk had
a higher TS}eamat each time point. As seen in Fig. 4, short-tenoedn storage (one
week) has less impact on the physical stabilitiuwhan milk than refrigerated
storage and longer term frozen storage. Howevesjgroficant differencel > 0.05)
was found among T§lamVvalues for fresh milk, one-week refrigerated mdke-
week frozen milk, and 9-month frozen milk at athé points.

The effect of preheating on human milk creaming alae studied. Compared
with the control, the TSI of human milk cream lageicreased significantly?(< 0.05)
after preheating (Supplementary material Fig. $B8¢ final peak thickness of the
cream layer was lower after preheating at 70 °CL@min; combined with the fact
that ABS also decreased significantRy € 0.05) compared with the control, which

suggests that preheating human milk led to imparedming capacity.

3.4. Mechanistic studies of creaming of human milk

When human and bovine milk were mixed in a ratid.af (v/v), the mixture
behaved in a manner closer to bovine milk tharutmdn milk (Fig. 5A), with a lag in

time before creaming commenced as observed abov#)dn the migration rate
13



307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

increased rapidly. When the cream from human mak mixed with bovine skimmed
milk, and vice versa, the recombined milk prepdrganixing human cream and
bovine skim milk had higher T&dam(from 10 to 50 min, Fig. 5B), M¥{eam(0 to 7 h,
Fig. 5C), finalAH of the cream layer, and initial creaming rateath time point,
compared with fresh bovine milk, fresh human makmilk recombined from
skimmed human milk and bovine cream (Fig. 5D).

After the addition of bovine WPI (0.83%, w/v) torhan milk, both the peak
thickness and the me@BS increased slightly. The initial creaming ratésaman
milk also increased after addition of both bovin®Mgnd bovine Igs, and the addition
of bovine Igs had a higher impact on human millaorang than the addition of WPI.
However, the increases due to addition of bovind ¥ Igs were not significanP (>

0.05) in the case of T&dam(Supplementary material Fig. S4) at each timetpoin

4. Discussion

To our knowledge, this is the first detailed stashycreaming behaviour of
human milk, which contributes to knowledge of plogschemical properties of
human milk, specifically its creaming and cold adglation behaviour. A similar or
even higher creaming rate of human milk than th&ioeine milk at warm
temperature (40 °C) is inconsistent with the oelyart on human milk creaming,
which suggested that the rate of creaming of humidiawas lower than that in
bovine milk at 37 °C (Whittlestone & Perrin, 195%is inconsistency may be due to
the high individual variation of human milk samplesore advanced analytical
methodologies, and data coming from a larger sasip&ein our study. In this study,

fresh human milk samples were obtained in the esidges of lactation (one week
14
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post-partum), when milk contains a lower fat cohtard a higher protein content
than in mature human milk (Gidrewicz & Fenton, 203 lactational effect was
noticed and samples at 8 and 24 weeks post-pagperaato have higher values of
peak thickness than samples at 1 week post-padata (ot shown). Mid- to hind-
milk, which was collected after the babies havenbesisfied in this study, may
contain a higher level of fat than foremilk (Mizuabal., 2009); however, the milk fat
globule size is not expected to be significantedent (Mizuno et al., 2009). The
content of macronutrients of human and bovine méasured was, however,
consistent with the literature values (Andersorkidgon, & Bryan, 1981; Bauer &
Gerss, 2011; Gidrewicz & Fenton, 2014; Guo & Hecklj 2008). The lower average
fat content and a higher average solids-not-fatesdnn human milk than in bovine
milk samples may slow fat separation in the milkefW & Hall, 1935), and may
partly explain the observed slower creaming rateushan milk than bovine milk at
5°C.

The range of MFG size of human and bovine milk siaslar to those
reported by Riegg and Blanc (1981), although sduotkes reported a higher MFG
size of human milk than bovine milk (Lopez, Cauty&&yomarc'h. 2015; Ma, Zhang,
Wu, & Zhou, 2019). It has previously been noted tha human milk expressed from
the fourth day to the first month of lactation fassamples in this study, can have a
lower average size than that of colostrum or matuitke from the first month until the
end of lactation (Michalski, Briard, Michel, Tass@&Poulain, 2005). According to
Stokes’ Law, the creaming rate rises when the dianté MFG increases. A small
extent of fat globule clustering, which increades ¢ffective diameter of MFGs, was

found in human milk at 5 °C, as the average MF@ sizhuman milk cream layer
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decreased after dilution with 1% SDS (Supplementaaterial Table S2), which has
also been reported in bovine cream (Boode, 1998¢&cco et al., 2018).

Considering the average diameter D[3,2] of humarGslBuring the first
week of lactation (2.2jdm) and the average of bovine MFG diameter (2u39, the
creaming rate for individual MFGs can be predidtgdStokes’ Law [Equation (1)]. In
this estimation, it is assumed that densities ofitnu and bovine milk serum at 5 °C
are 1.03 x 1dkg m® and 1.04 x 1bkg m*, respectively (Neville et al., 1988; Ma &
Barbano, 2000), and, based on measurements isttiig, densities of human and
bovine milk fat are both 0.88 x 1Rg m®, and viscosities of human and bovine milk
at 5 °C are 2.53 mPa s and 3.45 mPa s, respect®glthis basis, the calculated
creaming rates of human and bovine milk are 0.60hmnd 0.51 mmh,
respectively. The predicted creaming rates for huara bovine milk are thus both
lower than the measured averages (0.84 mrfohhuman milk and 1.75 mni*tfor
bovine milk) at 5 °C, especially for bovine milkhigh may reflect the occurrence of
cold agglutination in bovine milk.

IgM and IgA are reported as major agglutinins toederate bovine milk
creaming during cold storage (D'Incecco et al..82®#ansen, Larsen, & Wiking,
2019), but remain in skim milk after separatiodat’C (Jennes & Parkash, 1971).
Although the protein content of human milk was lowen that of bovine milk,
human milk is reported to contain a higher peragata Igs (approximately 16% of
total whey proteins) than bovine milk (approximgt&0% of total whey proteins;
Guo & Hendricks, 2008). Also, human milk has IgAadoated Igs, whereas bovine
milk Igs are IgG-dominated (Hurley & Theil, 201The level of IgA has been
reported to be 0.13 kgfrand 1 kg rit for bovine and human milk, respectively,

whereas the level of IgM is 0.04 kg*rand 0.1 kg rif for bovine and human milk,
16
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respectively (Hurley, 2003), i.e., human milk consahigher levels of agglutinins
(IgA and IgM). However, the cream volume and thesaoning rate of human milk at
5 °C were lower than that of bovine milk (Fig. &ble 4), which may result from a
higher extent of agglutinins being associated Wwakiine milk fat globules than
human milk. This is supported by the fact thatdreaming ability of human milk was
increased after mixing with bovine skim milk.

There are two possible reasons why human milk contagh levels of
agglutinins, but has a lower creaming rate thanrsomilk at 5 °C. Firstly, although
hydrophobic interactions will be weakened at lomperatures, bovine milk has been
reported to have the most hydrophobic secretorydg®ng species, including
humans, which can result in a higher level of bevgA associated with fat globules
(Honkanen-Buzalski & Sandholm, 1981). Secondly, petition between soluble
antigens and MFGM antigens to capture IgM may oattwuman milk (Euber &
Brunner, 1984). It is known that the interactiongi¥ with MFG is specific and
involves carbohydrate moieties (Euber & BrunneB4)9therefore, milk
oligosaccharides andcasein molecules containing carbohydrate moietiag be
involved in the interaction of IgM. The oligosacdidas have not been considered as
a factor in bovine milk due to their low concentat(Euber & Brunner, 1984), but
should be considered in human milk due to theihéridevels (Kunz & Rudloff,
1993). Moreover, the content of sialic acid, whings been demonstrated to inhibit
milk creaming (Euber & Brunner, 1984), is much l@gm human milk than in
bovine milk (Wang & Brand-Miller, 2003; Wang, Braiiller, McVeagh, & Petocz,
2001). Further research on the reasons behindffeestice of creaming between

bovine and human milk appears warranted.
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Human milk was stable following short-term freezimdnich is consistent with
an unchanged size distribution of human MFG beéme after freezing (data not
shown). It has been reported that no significaange in concentration occurs for
IgA, the major agglutinin in mature human milk 20 °C for 1 month (Evans, Ryley,
Neale, Dodge, & Lewarne, 1978) or 3 months (Reyseldal., 1982). In contrast, a
decrease in IgA level after 4 weeks at —20 °C s laeen reported (Akinbi et al.,
2010), and Ramirez-Santana et al. (2012) reporteti@ese in IgA concentration in
human colostrum when the frozen storage period im@eased to 12 months,
indicating that IgA can be temperature labile. My, although the MFG can be
resistant to lipolysis as long as its structureamm intact, slow freezing or long-term
freezing can lead to the destruction of MFGM andvakccess of lipases to the core
of MFG, i.e., to triglycerides (Berkow et al., 1984unkwitz, Berry, & Boyer, 1933).

Pre-heating human milk at 70 °C for 10 min slowsghm separation and
decreased the volume fraction of milk fat in crdager, which has also been found
for bovine milk (Caplan, Melilli, & Barbano, 2013pne possible reason could be that
heat treatment increased the viscosity of the sgrumse and thereby reduced the rate
of creaming. Also, it has been hypothesised that-lieluced denaturation of proteins
can result in interactions with milk fat globulesdatherefore increase their density
(Caplan et al., 2013). A thinner cream layer cathioe formed after preheating
(Supplementary material Fig. S3), shown as a loxt¢iof cream layer in preheated

human milk than the untreated sample.
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5. Conclusion

The creaming behaviour of human milk was affédy temperature and pre-
treatments, including freezing-thawing and prelmgati he creaming capacity of
human milk was correlated with the temperaturdnenrange 5 to 40 °C. Short-term
freezing-thawing had no effect on creaming whilathrgy at 70 °C for 10 min slowed
the creaming of human milk. Similarities and diffieces of human and bovine milk
creaming behaviour at low temperature are discyssetimay be caused by the fat
content, the properties of MFGM, the presence gfudmins (IgA and IgM), and
competition for attachment of agglutinins in milkrsm. This study provides the
information for both mothers and human milk barkgerms of handling and storing
human milk and feeding infants with optimal methodgerms of ensuring

proportionate levels of fat alongside other coustits.
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Figurelegends

Fig. 1. Turbiscan stability index (TSI) distribution ofeltcream layer for fresh human milk
(A) and fresh bovine milk (B) at 5 °C1), 20 °C 3 ), 37 °CIl ), and 40 "#@) as a

function of time. Horizontal lines inside boxesicate the median value. Lines extending
vertically from the boxes indicate variability owls the upper and lower quartiles. Mild
outliers O, values that lie between 1.5 and 3 times theauitile range below the first
guartile or above the third quartile) and extreradliers (X, values that lie more than 3 times

the interquartile range below the first quartileabove the third quartile) are indicated.

Fig. 2. Mean value of delta backscattering (%) of (A, B)am layer for fresh human milk
and the bottom layer (C, D) and cream layer fasHreuman milk (A, C) and fresh bovine
milk (B, D) at different temperatures as a functadriime. Temperature are 5 °OJ, 20 °C
(@), 37 °C @), and 40 °C@). Data points correspond to average mean valueaodbars

show the 95% confidence interval (ClI).

Fig. 3. Peak thickness of the cream layer for fresh humidia (A ,A) and fresh bovine milk
(@0,@®) at5°C &,@®) and 40 °C A ,@), respectively. Peak thickness profiles are from

individual samples but are representative of datan fothers.

Fig. 4. TSI profiles of human milk cream layer for millostd at (A) 4 °C for 1 week, (B)
milk frozen at —20 °C for 1 week (thawed at RT)Jd &€6) milk frozen at —20 °C for 9 months
(thawed at RT) compared with fresh human milk betoeatments. The Tglambefore

treatments (black symbols) and the J&hafter treatments (grey symbols) are shown. The



solid lines are averages of the J&lbefore and after treatmen®; A, @ represent three

individual samples in each treatment.

Fig. 5. The peak thickness profiles (A) of cream layerffesh human milk ¢), fresh bovine
milk (A), and bovine and mixed human milk (1:1, @) and the TSI (B), mean value (C),
and peak thickness (D) profiles of cream layeiffesh human milk, fresh bovine milk,
recombined milk of human cream and bovine ser@)) &nd recombined milk of bovine
cream and human seru®) held at 5 °C, as a function of time. The profdérom an

individual sample but is representative of datanfiathers.



Tablel

Levels of macronutrients in human milk and bovintksamples?

Type of milk Fat Crude protein Carbohydrate Total solids
Human milk 31 (1.04) 16 (0.18) 69 (0.25) 119 (1.16)
Bovine milk 40 (0.31) 35 (0.27) 45 (0.05) 130 (0.55

2Data (in g ') are means (human milk, n = 12; bovine milk, n)with standard
deviation in parenthesis.



Table?2

Particle size distribution parameters of milk fadmles.?

Size distribution parameters Human milk Raw bovimik
D [3,2] 2.27 (0.33) 2.35 (0.47)
D [4,3] 4.11 (0.92) 3.69 (0.32)
Dv10 1.09 (0.32) 0.97 (0.12)
DV50 3.53 (0.74) 3.63 (0.32)
Dv90 7.10 (1.56) 6.64 (0.36)

& Data (inum) are means (human milk, n = 7; bovine milk, n)w&h standard

deviation in parenthesis.



Table3

Pea
. k
Temperature n Time
thic
(°C) 0.5h 4 h 10 h )
ne
5 11 0.50 (0.37) 1.73 (0.50) 0.84 (0.82§
SS
20 10 0.76 (0.68) 2.22 (0.90% 1.65 (1.66§ f
0}
37 13 0.94 (1.6%5 2.36 (0.76% 1.78 (1.38§ )
um
40 11 1.17 (0.385 2.57 (0.53" 1.97 (1.59§
an
45 3 2.38 (0.65) 3.28 (1.10§ 3.29 (0.98§ |
mi

k cream layer at different temperatures and timatpd'

®Data (\H; in mm) are means with standard deviation in péresis; n is the number
of samples at each temperature. Different sup@tdetiers indicate statistically

significant differences & < 0.05 between temperatures within each column.
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Table4.

Creaming rates measured in the cream layer ancldh&cation layer of human and

bovine milk.

Temperature n Migration rate

(°C) Creaming zone Clarification zone
Bovine milk

5 3 2.37 (1.45) 1.34 (0.58)

40 3 2.38 (0.52) 2.69 (0.27)
Human milk

5 11 1.25 (0.95) 0.61 (0.14)

20 10 1.81 (1.85) 1.46 (1.80)

37 13 2.27 (1.61) 2.18 (1.31)

40 11 3.34 (2.11) 3.33 (3.00)

45 3 6.06 (1.69) 6.88 (3.82)

2 Data (in mm H) are means with standard deviation in parenthaessthe number of
samples at each temperature. Zones are as defilggpplementary material Fig. S1
(creaming, zoneyy clarification, zoney).
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