

UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks!

Title	Factors affecting the creaming of human milk
Author(s)	Meng, Fanyu; Uniacke-Lowe, Therese; Lanfranchi, E.; Meehan, G.; O'Shea, C. A.; Fox, Patrick F.; Huppertz, T.; Ryan, C. Anthony; Kelly, Alan L.
Publication date	2020-05-06
Original citation	Meng, F., Uniacke-Lowe, T., Lanfranchi, E., Meehan, G., O'Shea, C. A., Fox, P. F., Huppertz, T., Ryan, C. A. and Kelly, A. L. (2020) 'Factors affecting the creaming of human milk', International Dairy Journal. doi: 10.1016/j.idairyj.2020.104726
Type of publication	Article (peer-reviewed)
Link to publisher's version	http://dx.doi.org/10.1016/j.idairyj.2020.104726 Access to the full text of the published version may require a subscription.
Rights	© 2020, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. https://creativecommons.org/licenses/by-nc-nd/4.0/
Embargo information	Access to this article is restricted until 12 months after publication by request of the publisher.
Embargo lift date	2021-05-06
Item downloaded from	http://hdl.handle.net/10468/9948

Downloaded on 2021-11-27T12:22:32Z

Coláiste na hOllscoile Corcaigh

Factors affecting the creaming of human milk

F. Meng, T. Uniacke-Lowe, E. Lanfranchi, G. Meehan, C.A. O'Shea, P.F. Fox, T. Huppertz, C.A. Ryan, A.L. Kelly

PII: S0958-6946(20)30096-0

DOI: https://doi.org/10.1016/j.idairyj.2020.104726

Reference: INDA 104726

To appear in: International Dairy Journal

Received Date: 6 December 2019

Revised Date: 1 April 2020

Accepted Date: 6 April 2020

Please cite this article as: Meng, F., Uniacke-Lowe, T., Lanfranchi, E., Meehan, G., O'Shea, C.A., Fox, P.F., Huppertz, T., Ryan, C.A., Kelly, A.L., Factors affecting the creaming of human milk, *International Dairy Journal*, https://doi.org/10.1016/j.idairyj.2020.104726.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

1	Factors affecting the creaming of human milk
2	
3	
4	
5	
6	F. Meng ^a , T. Uniacke-Lowe ^a , E. Lanfranchi ^a , G. Meehan ^b , C. A. O'Shea ^b , P. F. Fox ^a ,
7 8	T. Huppertz ^{c,d} , C. A. Ryan ^e , A. L. Kelly ^a *
9	
10	
11	
12	^a School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
13	^b Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
14	^c FrieslandCampina, Amersfoort, The Netherlands
15	^d Wageningen University and Research, Wageningen, The Netherlands
16	^e Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
17	
18	
19	
20	
21	*Corresponding author: Tel.: +353 21 4903405
22	Email address: a.kelly@ucc.ie (A. L. Kelly)

24 ABSTRACT

25

26	The creaming properties of human milk have not been widely studied to date, and a
27	mechanism for this phenomenon is not known. Here, the natural creaming of human
28	milk, as affected by temperature and pre-treatments, was studied using dynamic light-
29	scattering. The creaming rate of human milk increased with temperature in the range
30	5 °C to 40 °C. Freezing human milk at -20 °C and thawing at room temperature had
31	little influence on creaming. Compared with bovine milk, human milk showed a faster
32	creaming rate at 40 °C, but a slower rate at 5 °C, suggesting a lack of cold
33	agglutination; the mechanisms of creaming were also shown to differ in response to
34	heat treatment. This study expands the current knowledge on milk creaming, and may
35	have potential application to storage and handling of human milk in hospitals or
36	homes, therefore supporting optimal nutrition of infants.
37	

38 1. Introduction

39

40	Human milk is essential as our first natural food, providing both nutrients and
41	immunity to infants. Infants, especially preterm infants, who receive no or limited
42	milk from their own mothers, can also be fed by human milk from donors as a
43	substitute. Those milk donations are screened, received, pasteurised and stored in
44	human milk banks (Hartmann, Pang, Keil, Hartmann, & Simmer, 2007). Moreover,
45	working mothers may store their milk in the fridge (4 $^{\circ}$ C) from 24 h to 8 d or in the
46	freezer (-18 °C) for even longer times (Hands, 2003; Weiss, 2005).
47	Natural creaming of milk occurs during storage because of the lower density
48	of milk fat globules compared with milk serum, which leads to fat rising to the top
49	under the influence of gravity. The most well studied subject of creaming has been
50	bovine milk, since at least the work of Babcock (1889). Creaming properties of
51	caprine (El-Ghannam, Attia, & Zeidanr 1986), buffalo (Abo-Elnaga, 1966), carabao
52	(Gonzales-Janolino, 1968) and camel (Farah & Rüegg, 1991) milk have also been
53	studied, and all of these showed much slower creaming rates than bovine milk at
54	refrigeration temperature. Human milk has been reported to cream more slowly than
55	bovine milk at body temperature (Whittlestone & Perrin, 1954), but overall the
56	creaming of human milk and the factors affecting this process have not been
57	extensively studied to date.
58	The creaming rate, v , which is used to describe the creaming process in milk,

-0

59 is described by Stokes' Law (Walstra, 1995):

60
$$v = \frac{g(\rho_p - \rho_f)d^2}{18\eta_p}$$
 (1)

61	where g is acceleration due to gravity, d is the diameter of the fat globule, ρ_p and ρ_f are
62	the densities of the plasma and fat, respectively, and η_p is the viscosity of the plasma.
63	However, applying Stokes' Law solely based on the size of individual milk fat
64	globules cannot exactly predict the real creaming rate. For example, fresh bovine milk
65	creams much faster than predicted by Stokes' Law at cold temperatures, which is
66	explained by a phenomenon called cold agglutination, caused by the flocculation of
67	fat globules (Sharp & Krukovsky, 1939). Cold agglutination is facilitated by
68	agglutinins, which attach to the milk fat globule membrane (MFGM) and cause fat
69	globules to aggregate; these agents have been identified as immunoglobulin M (IgM)
70	(Euber & Brunner, 1984; Payens, Koops, & Mogot, 1965), and immunoglobulin A
71	(IgA) (D'Incecco et al., 2018; Honkanen-Buzalski & Sandholm, 1981) in bovine milk.
72	A homogenisation-labile component, termed the skim milk membrane but now
73	sometimes referred to as exosomes or extracellular vesicles (Benmoussa et al., 2017),
74	was also reported to be involved in cold agglutination (Euber & Brunner, 1984). Other
75	factors that have been reported to influence the rate of creaming of bovine milk
76	include the presence of bacteria (Jenness, Shipe, & Sherbon, 1974) and somatic cells
77	(Geer & Barbano, 2014), heating (>70 °C), and high pressure treatment (≥400 MPa)
78	(Huppertz, Fox, & Kelly, 2003).
79	Moreover, techniques for measuring creaming have improved. Traditionally,
80	the creaming of milk was measured as the volume of cream produced from a specified
81	volume of milk in a glass tube, of specific dimensions, at a stated temperature after
82	certain time intervals, usually up to 24 h (Dunkley & Sommer, 1944; Euber &

Brunner, 1984; Hammer, 1916; Kenyon, Jenness, & Anderson, 1966). More recently,

84 the Turbiscan instrument has used to study the creaming behaviour of milk, based on

85 multiple light-scattering principles; this gives information on creaming properties

86	even when nothing is visible to the naked eye due to the opacity of milk samples,
87	therefore removing the ambiguity of visual observation (Celia, Trapasso, Cosco,
88	Paolino, & Fresta, 2009; Juliano et al., 2011).
89	In this study, the natural creaming properties of human milk under different
90	temperature conditions were analysed using the Turbiscan stability analyser and
91	compared with the creaming behaviour of bovine milk to understand the reasons
92	behind any differences that might exist between them. In addition, the influence of
93	different pre-treatments, such as freezing and pre-heating, which may be used in
94	hospitals or milk banks to stabilise human milk, on the creaming were studied.
95	
96	2. Materials and methods
97	
98	2.1. Human milk samples
99	
100	Ethical approval for this study was granted by the Clinical Research Ethics
101	Committee of the Cork Teaching Hospitals, Cork, Ireland, and fresh human milk
102	samples (collected after the infant was satisfied, and hence being largely mid- to hind
103	milk) were collected from Cork University Maternity Hospital, Cork, Ireland. Full-
104	term individual fresh milk samples from healthy mothers who were one week after
105	birth (i.e., first week of lactation) were collected and used within 24 h. Fresh raw
106	bovine milk was obtained from a local market. Both human and bovine milk were
107	stored at refrigeration temperatures until the creaming analysis.
108	
109	2.2. Compositional analysis
110	

111	The fat, protein, lactose and total solids content of human milk was determined
112	with a human milk analyser (MIRIS, Uppsala, Sweden) based on mid-infrared (mid-
113	IR) transmission spectroscopy principles. Subsamples of fresh human milk ($n = 12$)
114	were collected for compositional analysis were frozen at -80 °C, thawed at 4 °C,
115	warmed to 40 °C and homogenised using a sonicator (MIRIS) before analysis. The fat,
116	protein, lactose and total solids content of fresh bovine milk samples was measured
117	using a Milkoscan FT 120 (Foss Electric, Hillerød, Denmark).
118 119 120	2.3. Size distribution of milk fat globules
121	The size distribution of milk fat globules (MFG) in human and bovine milk
122	samples was determined with a Mastersizer 3000 laser particle size analyser (Malvern
123	Instruments, Malvern, UK) equipped with a He–Ne laser ($\lambda = 633$ nm). The refractive
124	indices of the fat globule and of the dispersant (water) at 25 °C were taken as 1.458
125	and 1.33, respectively, and the absorbance of fat globules was taken as 0.01
126	(Michalski, Briard, & Michel, 2001). The surface area mean diameter D[3,2], the
127	volume-weighted mean diameter D[4,3], and the standard percentiles values, $D_v 10$,
128	$D_v 50$ and $D_v 90$ were measured in triplicate, as described earlier (Ménard et al., 2010).
129	
130	2.4. Measurement of density of milk fat and viscosity of skimmed milk
131	
132	Bovine milk fat was obtained by melting commercial butter and allowing to
133	stand, followed by recovery of the upper fat layer. Human milk fat was obtained from
134	a sample of donor milk that was agitated at high speed to destabilise the emulsion and
135	recover a fat-rich phase, which was separated as for separation of bovine milk fat

136 from butter to obtain a fat sample. The density of these human and bovine milk fat samples was determined using a pycnometer (SciLabware Ltd., Stoke-on-Trent, UK) 137 at 20 °C by following standard method ASTM D3505 (ASTM, 2018). To obtain skim 138 139 milk, milk was centrifuged at $3000 \times g$ for 20 mins at 5 °C. Flow time of human skim milk, bovine skim milk, and pure water were measured by a U-shape glass viscometer 140 (VWR International Ltd., Dublin, Ireland) at 5 °C following standard method ASTM 141 D445 (ASTM, 1997), and viscosities of human and bovine skim milk were calculated 142 by: 143

144
$$\eta_{milk} = \frac{t_{milk} \rho_{milk}}{t_{H_20} \rho_{H_20}} \eta_{H_20}$$

145 where t_{milk} and t_{H_20} are the time (seconds) flow through the specific area of U-shape 146 viscometer of milk and water, respectively; ρ_{milk} is the density of skimmed human 147 $(1.03 \times 10^3 \text{ kg m}^{-3}; \text{Neville et al., 1988})$ or skimmed bovine milk $(1.04 \times 10^3 \text{ kg m}^{-3};$ 148 Ma & Barbano, 2000) at 5 °C; ρ_{H_20} is the density of water at 5 °C, which is $1.00 \times$ 149 10^3 kg m^{-3} (Jones & Harris, 1992); η_{H_20} is the viscosity of water at 5 °C, which is 150 1.52 mPa s (Kestin, Sokolov, & Wakeham, 1978). Fresh milk samples were measured 151 and each analysis was performed in triplicate.

152

153 2.5. Sample preparation for creaming analysis

154

155 For creaming analysis, five different temperatures, 5 [number of samples (n) =

156 [11], 20 (n = 10), 37 (n = 13), 40 (n = 11) and 45 $^{\circ}$ C (n = 3) were selected in

157 individual experiments for simulation of refrigeration, room temperature (RT),

mammalian body temperature, and higher temperatures. Refrigerated milk samples

159 were incubated in a water bath for 20 min to achieve the target temperature, and each

sample (3 mL) was then inverted at least 10 times and placed in the Turbiscan
immediately to make sure the back-scattering profile of the first scan was a flat line,
and then scanned at each temperature for 10 h. That time was chosen as a compromise
between the freshness and creaming duration of the milk, and because, after this time,
the peak thickness in the cream layer of human milk reaches a plateau (as determined
in preliminary work).

In the experiment with pre-heating, fresh milk samples were pre-heated in a 166 water bath at 70 °C for 10 min. In a separate experiment, bovine whey protein isolate 167 (WPI90, Carbery Group Ltd., Ballineen, Cork, Ireland) and immunoglobulins (Igs, 168 isolated as described by McGrath, 2014), was added to human milk to achieve 1 g L⁻¹ 169 170 final Igs (average level of human and bovine Igs in milk). In a 'phase-reversal' experiment, human and bovine milk cream and serum were separated at 45 °C, which 171 can concentrate agglutinins from the whole milk to the milk cream layer, and 172 recombined with the opposite fraction as described by Jennes and Parkash (1971). 173

174

175 2.6. Creaming analysis

176

The Turbiscan^{LAB™} (Formulaction, Ramonville St. Agne, France) with an 800 177 nm near infrared (NIR) light source was used to study particle migration (creaming) in 178 milk samples. The Turbiscan is based on multiple light scattering theory, where NIR 179 photons are transmitted or back-scattered from the sample to transmission (T) or 180 backscattering (BS) detectors (Carrentero, Villepin, Brunel, & Carries, 2005). 181 Parameters quantified to describe creaming were the Turbiscan stability index 182 (TSI), the mean value (of Δ BS, %), the peak thickness (Δ H), and the migration rate. 183 The TSI was calculated by summing up the changes in BS at all measured positions, 184

185	based on a scan-to-scan difference, over total sample height or a selected zone
186	(Carrentero et al., 2005). In this study, the selected zone is the area where the cream
187	layer forms; when the TSI value increases, the stability of the system decreases. The
188	mean value represents changes in the concentration and size of particles, i.e., signal
189	variation of ΔBS (%). It was calculated at the cream layer and for the bottom layer
190	(lowest 20% of total height) of samples, and the ΔH measures the depth of the cream
191	layer (represented by a peak in back-scatter data) that forms. A threshold value was
192	set as 2% Δ BS. The slope of the curve of the Δ H as a function of time reflects the
193	migration of the fat globules moving upwards within samples; the migration rate,
194	calculated as the slope of the initial linear part of the ΔH plot, was taken to represent
195	the creaming rate.
196	
196 197	2.7. Statistical analysis of data
	2.7. Statistical analysis of data
197	 2.7. Statistical analysis of data Data were analysed using Minitab[®] v18 (Minitab Inc., State College, PA,
197 198	
197 198 199	Data were analysed using Minitab [®] v18 (Minitab Inc., State College, PA,
197 198 199 200	Data were analysed using Minitab [®] v18 (Minitab Inc., State College, PA, USA). Prior to analysis, data were tested for normality using the Anderson-Darling
197 198 199 200 201	Data were analysed using Minitab [®] v18 (Minitab Inc., State College, PA, USA). Prior to analysis, data were tested for normality using the Anderson-Darling test. All TSI data, which were not normally distributed, were transformed according to
197 198 199 200 201 202	Data were analysed using Minitab [®] v18 (Minitab Inc., State College, PA, USA). Prior to analysis, data were tested for normality using the Anderson-Darling test. All TSI data, which were not normally distributed, were transformed according to a Box-Cox analysis. GLM ANOVA or one-way ANOVA followed by a paired
197 198 199 200 201 202 203	Data were analysed using Minitab [®] v18 (Minitab Inc., State College, PA, USA). Prior to analysis, data were tested for normality using the Anderson-Darling test. All TSI data, which were not normally distributed, were transformed according to a Box-Cox analysis. GLM ANOVA or one-way ANOVA followed by a paired multiple comparison test (Tukey's test) were used as appropriate. Human and bovine

207 **3.** Results

208

209 3.1. Composition, size distribution and density of milk fat globules of human and
210 bovine milk

211

The averaged composition of fresh human milk samples and fresh bovine milk 212 samples tested in this study is reported in Table 1 (details for the composition of milk 213 samples from individual mothers are shown in Supplementary material Table S1). 214 215 Compared with fresh bovine milk, human milk had lower levels of lipids and protein, but a higher level of carbohydrate and solids-not-fat content. 216 Differences in fat globule size between human and bovine milk were minor, 217 218 with fat globules in human milk having a slightly lower average D[3,2] $(2.3 \pm 0.3 \,\mu\text{m})$ and higher average D[4,3] (4.1 \pm 0.9 μ m) than those in bovine milk (2.4 \pm 0.5 μ m and 219 $3.7 \pm 0.3 \mu m$, respectively) (Table 2). In case of the size distribution of human MFGs, 220 10% of particles were below $1.1 \pm 0.3 \,\mu\text{m}$, and 50% of particles below $3.5 \pm 0.7 \,\mu\text{m}$. 221 both of which are lower than the values presented for bovine milk; however, the 222 average $D_v 90$ of human MFGs (7.1 ± 1.6 µm) was higher than that in bovine milk (6.6 223 \pm 0.36 µm). Overall, statistical analysis of human and bovine MFG size distribution 224 parameters showed no significant difference (P > 0.05) between the parameters 225 226 measured for the two types of milk. The densities of human and bovine milk fat at 20 °C were $0.88 \times 10^3 \pm 0.46$ kg 227 m^{-3} and $0.88 \times 10^3 \pm 0.61 \text{ kg m}^{-3}$, respectively. The viscosity of skimmed human milk 228 at 5 °C was measured as 2.53 ± 0.08 mPa s, which was lower than that of skimmed 229 bovine milk at 5 °C (3.45 ± 0.02 mPa s). 230

231

3.2. Creaming profiles of human and bovine milk at different temperatures 232

234	The formation of the layer of fat droplets (creaming) is illustrated in the back-
235	scattering profiles of the samples (Supplementary material Fig. S1) as an increase in
236	ΔBS at the top of samples over time, while a decrease of the back-scattering is
237	indicative of clarification in the middle and lower phases of samples. As calculated
238	from the backscattering profiles, the TSI values of cream layers (TSI_{cream}) in both
239	types of milk increased with time (Fig. 1). In human milk, the TSI_{cream} increased with
240	temperature from 5 to 40 °C, and there were significant differences ($P < 0.05$)
241	between TSI_{cream} at 5 °C and TSI_{cream} at 40 °C at each time point.
242	Bovine milk held at 5 °C had a lower TSI _{cream} , i.e., a higher stability, than that
243	at 40 $^{\circ}$ C during the first hour; however, instability increased dramatically between 1
244	and 4 h of measurement. The average TSI_{cream} values of human milk were lower at
245	5 °C but higher at 40 °C, compared with those of bovine milk at each time point
246	during 10 h. However, no significant difference ($P > 0.05$) of TSI _{cream} was found
247	between bovine and human milk at 10 h at either temperature.
248	The mean value of ΔBS in cream layer (MV _{cream}), which can be estimated
249	from ΔBS profiles (Supplementary material Fig. S2), increased with temperature for
250	human milk (Fig. 2A), i.e., the higher the temperature, the more rapidly the fat
251	globules concentrated in the human milk cream layer. The averages of MV_{cream} for
252	human milk ranged from 9.5% to 16.3% after 10 h from 5 °C to 40 °C. The average
253	MV_{cream} for bovine milk after the same time at 5 $^{\circ}C$ and 40 $^{\circ}C$ were similar to each
254	other (Fig. 2B). However, the time for bovine cream to reach the maximum ΔBS
255	decreased from 6 h at 5 °C to 3 h at 40 °C. The rate of increase in Δ BS for milk from
256	both species started to decrease after around 2 h creaming at all temperatures;

however, this decrease in rate was more significant for bovine milk than for humanmilk.

259	The mean value in the bottom layers (MV_{bottom}) of the milk samples decreased
260	from over time due to the fat globules moving upwards (Fig. 2C,D). In the bottom
261	layer, human milk held at 20, 37, and 40 $^{\circ}$ C showed similar initial behaviour, while
262	milk held at 5 °C had a lower initial rate of the MV_{bottom} curve. Interestingly, human
263	milk held at 20 °C had a higher decrease of MV_{bottom} , i.e., a more complete
264	clarification, compared with that at 5 °C. Moreover, in the bottom layer of both
265	human and bovine milk, the clarification was more extensive at 5 $^{\circ}$ C than at 40 $^{\circ}$ C.
266	The peak thickness (ΔH) of human milk cream layer varies due to creaming
267	temperature at different time points. As seen from Table 3, there were significant
268	differences ($P < 0.05$) in ΔH among temperatures at 0.5 and 4 h, whereas there was no
269	significant difference ($P > 0.05$) in ΔH among temperatures at 10 h creaming.
270	Compared with bovine milk (Fig. 3), ΔH values of human milk cream increased
271	steadily to a maximum at the end of 10 h, whereas it reached a plateau for bovine milk
272	after 2 h at 5 °C. There was a lag phase for bovine milk cream formation at 5 °C,
273	which was not seen 40 °C, while human milk started to cream earlier than bovine milk
274	at both 5 °C and 40 °C. The final ΔH value of the human milk cream layer at 5 °C
275	was lower than that at 40 °C, whereas it was notably higher for bovine milk at 5 °C
276	than at 40 °C.
277	The average creaming rate, i.e., the migration rate of MFGs, or clusters thereof,
278	of human milk increased with temperature (Table 4); there was a significant
279	difference ($P < 0.05$) between rates at 5 °C and 40 °C. The rate was lower than that of
280	bovine milk at 5 °C, whereas it was higher than that of bovine milk at 40 °C,
281	suggesting different mechanisms of creaming in the milk of the two species. However,

there was no significant difference (P > 0.05) in creaming rate between bovine and human milk at 5 °C or at 40 °C.

Influence of freezing-thawing and preheating on creaming 3.3.

287	The TSI cream values of individual human milk samples after different pre-
288	treatments as a function of time are shown in Fig. 4. Refrigeration for 1 week resulted
289	in a lower $\mathrm{TSI}_{\mathrm{cream}}$ at each time point, whereas a 9-month frozen and thawed milk had
290	a higher TSI _{cream} at each time point. As seen in Fig. 4, short-term frozen storage (one
291	week) has less impact on the physical stability of human milk than refrigerated
292	storage and longer term frozen storage. However, no significant difference ($P > 0.05$)
293	was found among TSI _{cream} values for fresh milk, one-week refrigerated milk, one-
294	week frozen milk, and 9-month frozen milk at all time points.
295	The effect of preheating on human milk creaming was also studied. Compared
296	with the control, the TSI of human milk cream layer decreased significantly ($P < 0.05$)
297	after preheating (Supplementary material Fig. S3). The final peak thickness of the
298	cream layer was lower after preheating at 70 °C for 10 min; combined with the fact
299	that ΔBS also decreased significantly ($P < 0.05$) compared with the control, which
300	suggests that preheating human milk led to impaired creaming capacity.
301	
302	3.4. Mechanistic studies of creaming of human milk
303	
304	When human and bovine milk were mixed in a ratio of 1:1 (v/v), the mixture
305	behaved in a manner closer to bovine milk than to human milk (Fig. 5A), with a lag in
306	time before creaming commenced as observed above, but then the migration rate

307	increased rapidly. When the cream from human milk was mixed with bovine skimmed
308	milk, and vice versa, the recombined milk prepared by mixing human cream and
309	bovine skim milk had higher TSI_{cream} (from 10 to 50 min, Fig. 5B), MV_{cream} (0 to 7 h,
310	Fig. 5C), final ΔH of the cream layer, and initial creaming rate at each time point,
311	compared with fresh bovine milk, fresh human milk, or milk recombined from
312	skimmed human milk and bovine cream (Fig. 5D).
313	After the addition of bovine WPI (0.83% , w/v) to human milk, both the peak
314	thickness and the mean ΔBS increased slightly. The initial creaming rates of human
315	milk also increased after addition of both bovine WPI and bovine Igs, and the addition
316	of bovine Igs had a higher impact on human milk creaming than the addition of WPI.
317	However, the increases due to addition of bovine WPI and Igs were not significant ($P >$
318	0.05) in the case of TSI_{cream} (Supplementary material Fig. S4) at each time point.
319	
320	4. Discussion

321

To our knowledge, this is the first detailed study on creaming behaviour of 322 human milk, which contributes to knowledge of physico-chemical properties of 323 324 human milk, specifically its creaming and cold agglutination behaviour. A similar or even higher creaming rate of human milk than that of bovine milk at warm 325 326 temperature (40 °C) is inconsistent with the only report on human milk creaming, 327 which suggested that the rate of creaming of human milk was lower than that in bovine milk at 37 °C (Whittlestone & Perrin, 1954). This inconsistency may be due to 328 329 the high individual variation of human milk samples, more advanced analytical 330 methodologies, and data coming from a larger sample size in our study. In this study, fresh human milk samples were obtained in the early stages of lactation (one week 331

332	post-partum), when milk contains a lower fat content and a higher protein content			
333	than in mature human milk (Gidrewicz & Fenton, 2014). A lactational effect was			
334	noticed and samples at 8 and 24 weeks post-partum appear to have higher values of			
335	peak thickness than samples at 1 week post-partum (data not shown). Mid- to hind-			
336	milk, which was collected after the babies have been satisfied in this study, may			
337	contain a higher level of fat than foremilk (Mizuno et al., 2009); however, the milk fat			
338	globule size is not expected to be significantly different (Mizuno et al., 2009). The			
339	content of macronutrients of human and bovine milk measured was, however,			
340	consistent with the literature values (Anderson, Atkinson, & Bryan, 1981; Bauer &			
341	Gerss, 2011; Gidrewicz & Fenton, 2014; Guo & Hendricks, 2008). The lower average			
342	fat content and a higher average solids-not-fat content in human milk than in bovine			
343	milk samples may slow fat separation in the milk (Webb & Hall, 1935), and may			
344	partly explain the observed slower creaming rate of human milk than bovine milk at			
345	5 °C.			

The range of MFG size of human and bovine milk was similar to those 346 reported by Rüegg and Blanc (1981), although some studies reported a higher MFG 347 size of human milk than bovine milk (Lopez, Cauty & Guyomarc'h. 2015; Ma, Zhang, 348 349 Wu, & Zhou, 2019). It has previously been noted that the human milk expressed from the fourth day to the first month of lactation, as for samples in this study, can have a 350 351 lower average size than that of colostrum or mature milk from the first month until the end of lactation (Michalski, Briard, Michel, Tasson, & Poulain, 2005). According to 352 Stokes' Law, the creaming rate rises when the diameter of MFG increases. A small 353 354 extent of fat globule clustering, which increases the effective diameter of MFGs, was found in human milk at 5 °C, as the average MFG size of human milk cream layer 355

356	decreased after dilution with 1% SDS (Supplementary material Table S2), which has
357	also been reported in bovine cream (Boode, 1992; D'Incecco et al., 2018).
358	Considering the average diameter D[3,2] of human MFGs during the first
359	week of lactation (2.27 $\mu m)$ and the average of bovine MFG diameter (2.35 $\mu m),$ the
360	creaming rate for individual MFGs can be predicted by Stokes' Law [Equation (1)]. In
361	this estimation, it is assumed that densities of human and bovine milk serum at 5 $^{\circ}C$
362	are 1.03×10^3 kg m ⁻³ and 1.04×10^3 kg m ⁻³ , respectively (Neville et al., 1988; Ma &
363	Barbano, 2000), and, based on measurements in this study, densities of human and
364	bovine milk fat are both 0.88×10^3 kg m ⁻³ , and viscosities of human and bovine milk
365	at 5 °C are 2.53 mPa s and 3.45 mPa s, respectively. On this basis, the calculated
366	creaming rates of human and bovine milk are 0.60 mm h^{-1} and 0.51 mm h^{-1} ,
367	respectively. The predicted creaming rates for human and bovine milk are thus both
368	lower than the measured averages (0.84 mm h^{-1} for human milk and 1.75 mm h^{-1} for
369	bovine milk) at 5 °C, especially for bovine milk, which may reflect the occurrence of
370	cold agglutination in bovine milk.
371	IgM and IgA are reported as major agglutinins to accelerate bovine milk
372	creaming during cold storage (D'Incecco et al., 2018; Hansen, Larsen, & Wiking,
373	2019), but remain in skim milk after separation at 45 °C (Jennes & Parkash, 1971).
374	Although the protein content of human milk was lower than that of bovine milk,
375	human milk is reported to contain a higher percentage of Igs (approximately 16% of
376	total whey proteins) than bovine milk (approximately 10% of total whey proteins;
377	Guo & Hendricks, 2008). Also, human milk has IgA-dominated Igs, whereas bovine
378	milk Igs are IgG-dominated (Hurley & Theil, 2011). The level of IgA has been
379	reported to be 0.13 kg m ⁻³ and 1 kg m ⁻³ for bovine and human milk, respectively,
380	whereas the level of IgM is 0.04 kg m ⁻³ and 0.1 kg m ⁻³ for bovine and human milk, 16

respectively (Hurley, 2003), i.e., human milk contains higher levels of agglutinins
(IgA and IgM). However, the cream volume and the creaming rate of human milk at
5 °C were lower than that of bovine milk (Fig. 3, Table 4), which may result from a
higher extent of agglutinins being associated with bovine milk fat globules than
human milk. This is supported by the fact that the creaming ability of human milk was
increased after mixing with bovine skim milk.

There are two possible reasons why human milk contains high levels of 387 agglutinins, but has a lower creaming rate than bovine milk at 5 °C. Firstly, although 388 389 hydrophobic interactions will be weakened at low temperatures, bovine milk has been reported to have the most hydrophobic secretory IgA among species, including 390 humans, which can result in a higher level of bovine IgA associated with fat globules 391 392 (Honkanen-Buzalski & Sandholm, 1981). Secondly, competition between soluble antigens and MFGM antigens to capture IgM may occur in human milk (Euber & 393 Brunner, 1984). It is known that the interaction of IgM with MFG is specific and 394 395 involves carbohydrate moieties (Euber & Brunner, 1984); therefore, milk oligosaccharides and κ -casein molecules containing carbohydrate moieties may be 396 involved in the interaction of IgM. The oligosaccharides have not been considered as 397 a factor in bovine milk due to their low concentration (Euber & Brunner, 1984), but 398 399 should be considered in human milk due to their higher levels (Kunz & Rudloff, 400 1993). Moreover, the content of sialic acid, which has been demonstrated to inhibit milk creaming (Euber & Brunner, 1984), is much higher in human milk than in 401 bovine milk (Wang & Brand-Miller, 2003; Wang, Brand-Miller, McVeagh, & Petocz, 402 403 2001). Further research on the reasons behind the difference of creaming between bovine and human milk appears warranted. 404

405	Human milk was stable following short-term freezing, which is consistent with
406	an unchanged size distribution of human MFG before and after freezing (data not
407	shown). It has been reported that no significant change in concentration occurs for
408	IgA, the major agglutinin in mature human milk, at -20 °C for 1 month (Evans, Ryley,
409	Neale, Dodge, & Lewarne, 1978) or 3 months (Reynolds et al., 1982). In contrast, a
410	decrease in IgA level after 4 weeks at -20 °C has also been reported (Akinbi et al.,
411	2010), and Ramírez-Santana et al. (2012) reported a decrese in IgA concentration in
412	human colostrum when the frozen storage period was increased to 12 months,
413	indicating that IgA can be temperature labile. Moreover, although the MFG can be
414	resistant to lipolysis as long as its structure remains intact, slow freezing or long-term
415	freezing can lead to the destruction of MFGM and allow access of lipases to the core
416	of MFG, i.e., to triglycerides (Berkow et al., 1984; Munkwitz, Berry, & Boyer, 1933).
417	Pre-heating human milk at 70 $^{\circ}$ C for 10 min slowed cream separation and
418	decreased the volume fraction of milk fat in cream layer, which has also been found
419	for bovine milk (Caplan, Melilli, & Barbano, 2013). One possible reason could be that
420	heat treatment increased the viscosity of the serum phase and thereby reduced the rate
421	of creaming. Also, it has been hypothesised that heat-induced denaturation of proteins
422	can result in interactions with milk fat globules and therefore increase their density
423	(Caplan et al., 2013). A thinner cream layer can be thus formed after preheating
424	(Supplementary material Fig. S3), shown as a lower ΔH of cream layer in preheated
425	human milk than the untreated sample.
176	

5. Conclusion

429	The creaming behaviour of human milk was affected by temperature and pre-
430	treatments, including freezing-thawing and preheating. The creaming capacity of
431	human milk was correlated with the temperature in the range 5 to 40 $^\circ$ C. Short-term
432	freezing-thawing had no effect on creaming while heating at 70 °C for 10 min slowed
433	the creaming of human milk. Similarities and differences of human and bovine milk
434	creaming behaviour at low temperature are discussed, and may be caused by the fat
435	content, the properties of MFGM, the presence of agglutinins (IgA and IgM), and
436	competition for attachment of agglutinins in milk serum. This study provides the
437	information for both mothers and human milk banks in terms of handling and storing
438	human milk and feeding infants with optimal methods in terms of ensuring
439	proportionate levels of fat alongside other constituents.
440	
441	Acknowledgement
442	
443	The authors would like to acknowledge the funding provided by Department
444	of Agriculture, Food and the Marine, Ireland.
445	
446	References
447	
448	Abo-Elnaga, I. G. (1966). Factors affecting creaming of cows' and buffaloes' milk.
449	Milchwissenschaft, 21, 429–433.
450	Akinbi, H., Meinzen-Derr, J., Auer, C., Ma, Y., Pullum, D., Kusano, R., et al. (2010).
451	Alterations in the host defense properties of human milk following prolonged 19

	Journal Pre-proof
452	storage or pasteurization. Journal of Pediatric Gastroenterology and Nutrition,
453	51, 347–352.
454	Anderson, G. H., Atkinson, S. A., & Bryan, M. H. (1981). Energy and macronutrient
455	content of human milk during early lactation from mothers giving birth
456	prematurely and at term. American Journal of Clinical Nutrition, 34, 258–265.
457	ASTM (1997). Standard method for kinematic viscosity of transparent and opaque
458	liquids. ASTM International Method D445-97. West Conshohocken, PA, USA:
459	ASTM International.
460	ASTM (2018). Standard test method for density or relative density of pure liquid
461	chemicals. ASTM International Method D3505-18. West Conshohocken, PA,
462	USA: ASTM International.
463	Babcock, S. M. (1889). The constitution of milk, and some of the conditions which
464	affect the separation of cream. University of Wisconsin Agricultural
465	Experiment Station Bulletin, 18, 3–35.
466	Bauer, J., & Gerss, J. (2011). Longitudinal analysis of macronutrients and minerals in
467	human milk produced by mothers of preterm infants. Clinical Nutrition, 30,
468	215–220.
469	Benmoussa, A., Ly, S., Shan, S. T., Laugier, J., Boilard, E., Gilbert, C., et al. (2017).
470	A subset of extracellular vesicles carries the bulk of microRNAs in
471	commercial dairy cow's milk. Journal of Extracellular Vesicles, 6, Article
472	1401897.
473	Berkow, S. E., Freed, L. M., Hamosh, M., Bitman, J., Wood, D. L., Happ, B., et al.
474	(1984). Lipases and lipids in human milk: effect of freeze-thawing and storage.
475	Pediatric Research, 18, 1257–1262.

	Journal Pre-proof
476	Boode, K. (1992). Partial coalescence in oil-in-water emulsions. PhD thesis.
477	Wageningen, Netherland: Wageningen University.
478	Caplan, Z., Melilli, C., & Barbano., D. M. (2013). Gravity separation of fat, somatic
479	cells, and bacteria in raw and pasteurized milks. Journal of Dairy Science, 96,
480	2011–2019.
481	Carrentero, A., Villepin, R., Brunel, L., & Carries, J. (2005). Turbiscan ^{LAB} user guide.
482	Formulaction, France.
483	Celia, C., Trapasso, E., Cosco, D., Paolino, D., & Fresta. M. (2009). Turbiscan Lab®
484	Expert analysis of the stability of ethosomes® and ultradeformable liposomes
485	containing a bilayer fluidizing agent. Colloids and Surfaces B: Biointerfaces,
486	72, 155–160.
487	D'Incecco, P., Ong, L., Pellegrino, L., Faoro, F., Barbiroli, A., & Gras. S. (2018).
488	Effect of temperature on the microstructure of fat globules and the
489	immunoglobulin-mediated interactions between fat and bacteria in natural raw
490	milk creaming. Journal of Dairy Science, 101, 2984–2997.
491	Dunkley, W., & Sommer, H. H. (1944). The creaming of milk. Research Bulletin
492	(Agricultural Experiment Station of the University of Wisconsin, Madison),
493	151, 1–56.
494	El-Ghannam, M., Attia, I., & Zeidanr, I. (1986). Creaming property of goat's milk.
495	Alexandria Science Exchange, 13, 108–115.
496	Euber, J., & Brunner, J. (1984). Reexamination of fat globule clustering and creaming
497	in cow milk. Journal of Dairy Science, 67, 2821–2832.
498	Evans, T. J., Ryley, H. C., Neale, L. M., Dodge, J. A., & Lewarne, V. M. (1978).
499	Effect of storage and heat on antimicrobial proteins in human milk. Archives
500	of Disease in Childhood, 53, 239–241.

Journal 110-proof
Farah, Z., & Rüegg, M. (1991). The creaming properties and size distribution of fat
globules in camel milk. Journal of Dairy Science, 74, 2901–2904.
Geer, S., & Barbano, D. (2014). The effect of immunoglobulins and somatic cells or
the gravity separation of fat, bacteria, and spores in pasteurized whole milk.
Journal of Dairy Science, 97, 2027–2038.
Gidrewicz, D. A., & Fenton, T. R. (2014). A systematic review and meta-analysis of
the nutrient content of preterm and term breast milk. BMC Pediatrics, 14,
Article 216.

- 509 Gonzales-Janolino, V. T. (1968). The creaming properties of carabaos' milk. Part I. A comparison of the creaming properties of cows' milk and carabaos' milk. 510
- Milchwissenschaft, 23, 21–23. 511

502

503

504

505

506

507

508

- 512 Guo, M. & Hendricks, G. M. (2008). Chemistry and biological properties of human milk. Current Nutrition & Food Science, 4, 305–320. 513
- Hammer, B. W. (1916). Studies on the creaming ability of milk. Research Bulletin 514 515 (Iowa Agriculture and Home Economics Experiment Station), 3, 1.
- Hands, A. (2003). Safe storage of expressed breast milk in the home. MIDIRS 516 Midwifery Digest, 13, 378–385. 517
- Hansen, S. F., Larsen, L. B., & Wiking, L. (2019). Thermal effects on IgM-milk fat 518
- globule-mediated agglutination. Journal of Dairy Research, 86, 108–113. 519
- Hartmann, B. T., Pang, W. W., Keil, A. D., Hartmann, P. E., & Simmer, K. (2007). 520
- Best practice guidelines for the operation of a donor human milk bank in an 521 Australian NICU. Early Human Development, 83, 667–673. 522
- Honkanen-Buzalski, T., & Sandholm, M. (1981). Association of bovine secretory 523 immunoglobulins with milk fat globule membranes. Comparative Immunology, 524
- Microbiology and Infectious Diseases, 4, 329–342. 525

cells on

	Journal 110-proof
526	Huppertz, T., Fox, P. F., & Kelly, A. L. (2003). High pressure-induced changes in the
527	creaming properties of bovine milk. Innovative Food Science & Emerging
528	Technologies, 4, 349–359.
529	Hurley, W. L. (2003). Immunoglobulins in mammary secretions. In P. F. Fox, & P. L.
530	H. McSweeney (Eds.), Advanced dairy chemistry. Vol. 1. Proteins (pp. 421-
531	447). Boston, MA, USA: Springer.
532	Hurley, W. L. & Theil, P. K. (2011). Perspectives on immunoglobulins in colostrum
533	and milk. Nutrients, 3, 442–474.
534	Jennes, R., & Parkash. S. (1971). Lack of a globule clustering agent in goat's milk.
535	Journal of Dairy Science, 54, 123–126.
536	Jenness, R., Shipe, W.F., & Sherbon J.W. (1974). Physical equilibria in milk: the
537	lipid phase. In B. H. Webb, A. H. Johnson, & J. A. Alford (Eds.),
538	Fundamentals in dairy chemistry (2nd edn, pp. 402-441). Westport,
539	Connecticut, USA: The AVI Publishing Company.
540	Jones, F. E., & Harris, G. L. (1992). ITS-90 density of water formulation for
541	volumetric standards calibration. Journal of Research of the National Institute
542	of Standards and Technology, 97, 335–340.
543	Juliano, P., Kutter, A., Cheng, L. J., Swiergon, P., Mawson, R., & Augustin, M. A.
544	(2011). Enhanced creaming of milk fat globules in milk emulsions by the
545	application of ultrasound and detection by means of optical methods.
546	Ultrasonics Sonochemistry, 18, 963–973.
547	Kenyon, A. J., Jenness, R., & Anderson, R. K. (1966). Role of milk immunoglobulins
548	in fat globule clustering and the ring test phenomenon. Journal of Dairy
549	Science, 49, 1144–1148.

	Journal 110-proof
550	Kestin, J., Sokolov, M., & Wakeham, W. A. (1978). Viscosity of liquid water in the
551	range –8 °C to 150 °C. Journal of Physical and Chemical Reference Data, 7,
552	941–948.
553	Kunz, C., & Rudloff, S. (1993). Biological functions of oligosaccharides in human
554	milk. Acta Paediatrica, 82, 903–912.
555	Lopez, C., Cauty, C., & Guyomarc'h, F. (2015). Organization of lipids in milks,
556	infant milk formulas and various dairy products: role of technological
557	processes and potential impacts. Dairy Science & Technology, 95, 863-893.
558	Ma, Y., & Barbano, D. M. (2000). Gravity separation of raw bovine milk: fat globule
559	size distribution and fat content of milk fractions. Journal of Dairy Science, 83,
560	1719–1727.
561	Ma, Y., Zhang, L., Wu, Y., & Zhou, P. (2019). Changes in milk fat globule membrane
562	proteome after pasteurization in human, bovine and caprine species. Food
563	Chemistry, 279, 209–215.
564	McGrath, B. A. 2014. Generation and characterisation of biologically active milk-
565	derived protein and peptide fractions. PhD Thesis. Cork, Ireland: University
566	College Cork.
567	Ménard, O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F., & Lopez, C.
568	(2010). Buffalo vs. cow milk fat globules: Size distribution, zeta-potential,
569	compositions in total fatty acids and in polar lipids from the milk fat globule
570	membrane. Food Chemistry, 120, 544-551.
571	Michalski, M. C., Briard, V., & Michel, F. (2001). Optical parameters of milk fat
572	globules for laser light scattering measurements. Lait, 81, 787–796.

	Journal Pre-proof
573	Michalski, M. C., Briard, V., Michel, F., Tasson, F., & Poulain, P. (2005). Size
574	distribution of fat globules in human colostrum, breast milk, and infant
575	formula. Journal of Dairy Science, 88, 1927–1940.
576	Mizuno, K., Nishida, Y., Taki, M., Murase, M., Mukai, Y., Itabashi, K., et al. (2009).
577	Is increased fat content of hindmilk due to the size or the number of milk fat
578	globules? International Breastfeeding Journal, 4, Article 7.
579	Munkwitz, R. C., Berry, M. H., & Boyer, W. C. (1933). Some effects of freezing on
580	the physical and nutritional properties of milk. University of Maryland
581	Agricultural Experiment Station Bulletin, 344.
582	Neville, M. C., Keller, R., Seacat, J., Lutes, V., Neifert, M., Casey, C., et al. (1988).
583	Studies in human lactation: milk volumes in lactating women during the onset
584	of lactation and full lactation. American Journal of Clinical Nutrition, 48,
585	1375–1386.
586	Payens, T. A. J., Koops, J., & Mogot, M. K. (1965). Adsorption of euglobulin on
587	agglutinating milk fat globules. Biochimica et Biophysica Acta (BBA)-
588	Biophysics including Photosynthesis, 94, 576–578.
589	Ramírez-Santana, C., Pérez-Cano, F. J., Audí, C., Castell, M., Moretones, M. G.,
590	López-Sabater, M. C., et al. (2012). Effects of cooling and freezing storage on
591	the stability of bioactive factors in human colostrum. Journal of Dairy science,
592	95, 2319–2325.
593	Reynolds, G. J., Lewis-Jones, D. I., Isherwood, D. M., Meade, H. J., Brown, B. J., &
594	Fitzgerald, T. S. (1982). A simplified system of human milk banking. Early
595	Human Development, 7, 281–292.
596	Rüegg, M., & Blanc, B. (1981). The fat globule size distribution in human milk.
597	Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 666, 7–14. 25

	a** a a i
Journal Pre-1	

- 598 Sharp, P. F., & Krukovsky, V. N. (1939). Differences in adsorption of solid and liquid
- fat globules as influencing the surface tension and creaming of milk. *Journal of Dairy Science*, 22, 743–751.
- 601 Walstra, P. (1995). Physical chemistry of milk fat globules. Advanced Dairy
- 602 *Chemistry*, 2, 131–178.
- Wang, B., & Brand-Miller, J. (2003). The role and potential of sialic acid in human
 nutrition. *European Journal of Clinical Nutrition*, *57*, 1351–1369.
- Wang, B., Brand-Miller, J., McVeagh, P., & Petocz, P. (2001). Concentration and
- 606 distribution of sialic acid in human milk and infant formulas. *American*
- *Journal of Clinical Nutrition*, 74, 510–515.
- Webb, B. H., & Hall, S. A. (1935). Some physical effects of freezing upon milk and
 cream. *Journal of Dairy Science*, *18*, 275–286.
- 610 Weiss, P. P. (2005). *The storage of breast milk*. Birmingham, UK: International
- 611 Children Medical Research Association.
- 612 Whittlestone, W. G., & Perrin, D. R. (1954). Variations in the fat content of human
- 613 milk during suckling. *Journal of Dairy Research*, *21*, 204–206.

Figure legends

Fig. 1. Turbiscan stability index (TSI) distribution of the cream layer for fresh human milk (A) and fresh bovine milk (B) at 5 °C (\Box), 20 °C (\boxtimes), 37 °C (\blacksquare), and 40 °C (\blacksquare) as a function of time. Horizontal lines inside boxes indicate the median value. Lines extending vertically from the boxes indicate variability outside the upper and lower quartiles. Mild outliers (\bigcirc , values that lie between 1.5 and 3 times the interquartile range below the first quartile or above the third quartile) and extreme outliers (\times , values that lie more than 3 times the interquartile range below the first quartile or above the first quartile or ab

Fig. 2. Mean value of delta backscattering (%) of (A, B) cream layer for fresh human milk and the bottom layer (C, D) and cream layer for fresh human milk (A, C) and fresh bovine milk (B, D) at different temperatures as a function of time. Temperature are 5 °C (\bigcirc), 20 °C (\bullet), 37 °C (\bullet), and 40 °C (\bullet). Data points correspond to average mean value and error bars show the 95% confidence interval (CI).

Fig. 3. Peak thickness of the cream layer for fresh human milk $(\blacktriangle, \bigstar)$ and fresh bovine milk (\bullet, \bullet) at 5 °C $(\blacktriangle, \bullet)$ and 40 °C $(\blacktriangle, \bullet)$, respectively. Peak thickness profiles are from individual samples but are representative of data from others.

Fig. 4. TSI profiles of human milk cream layer for milk stored at (A) 4 °C for 1 week, (B) milk frozen at -20 °C for 1 week (thawed at RT), and (C) milk frozen at -20 °C for 9 months (thawed at RT) compared with fresh human milk before treatments. The TSI_{cream} before treatments (black symbols) and the TSI_{cream} after treatments (grey symbols) are shown. The

solid lines are averages of the TSI_{cream} before and after treatments; \blacklozenge , \blacktriangle , \blacklozenge represent three individual samples in each treatment.

Fig. 5. The peak thickness profiles (A) of cream layer for fresh human milk (\blacklozenge), fresh bovine milk (\triangle), and bovine and mixed human milk (1:1, v/v; \bullet) and the TSI (B), mean value (C), and peak thickness (D) profiles of cream layer for fresh human milk, fresh bovine milk, recombined milk of human cream and bovine serum (O), and recombined milk of bovine cream and human serum (\bullet) held at 5 °C, as a function of time. The profile is from an individual sample but is representative of data from others.

Journal Press

Table 1

Type of milk	Fat	Crude protein	Carbohydrate	Total solids
Human milk	31 (1.04)	16 (0.18)	69 (0.25)	119 (1.16)
Bovine milk	40 (0.31)	35 (0.27)	45 (0.05)	130 (0.55)

Levels of macronutrients in human milk and bovine milk samples.^a

^a Data (in g L^{-1}) are means (human milk, n = 12; bovine milk, n = 4) with standard deviation in parenthesis.

the milk,

Table 2

Size distribution parameters	Human milk	Raw bovine milk
D [3,2]	2.27 (0.33)	2.35 (0.47)
D [4,3]	4.11 (0.92)	3.69 (0.32)
Dv10	1.09 (0.32)	0.97 (0.12)
Dv50	3.53 (0.74)	3.63 (0.32)
Dv90	7.10 (1.56)	6.64 (0.36)

Particle size distribution parameters of milk fat globules. ^a

^a Data (in μ m) are means (human milk, n = 7; bovine milk, n = 3) with standard deviation in parenthesis.

, di

2

Table 3

Temperature	n	Time		
(°C)		0.5 h	4 h	10 h
5	11	$0.50 (0.37)^{a}$	1.73 (0.50) ^a	0.84 (0.82) ^a
20	10	$0.76 (0.63)^{b}$	2.22 (0.90) ^{ab}	1.65 (1.66) ^a
37	13	$0.94 (1.61)^{bc}$	2.36 (0.76) ^{ab}	1.78 (1.38) ^a
40	11	1.17 (0.38) ^{bc}	2.57 (0.53) ^{ab}	1.97 (1.59) ^a
45	3	$2.38(0.65)^{c}$	3.28 (1.10) ^b	3.29 (0.98) ^a

k cream layer at different temperatures and time points. ^a

Jur

^a Data (Δ H; in mm) are means with standard deviation in parenthesis; n is the number of samples at each temperature. Different superscript letters indicate statistically significant differences at *P* < 0.05 between temperatures within each column.

Dag

Table 4.

Creaming rates measured in the cream layer and the clarification layer of human and bovine milk.

Temperature	n	Migration rate		
(°C)		Creaming zone	Clarification zone	
Bovine milk				
5	3	2.37 (1.45)	1.34 (0.58)	
40	3	2.38 (0.52)	2.69 (0.27)	
Human milk				
5	11	1.25 (0.95)	0.61 (0.14)	
20	10	1.81 (1.85)	1.46 (1.80)	
37	13	2.27 (1.61)	2.18 (1.31)	
40	11	3.34 (2.11)	3.33 (3.00)	
45	3	6.06 (1.69)	6.88 (3.82)	

^a Data (in mm h⁻¹) are means with standard deviation in parenthesis; n is the number of samples at each temperature. Zones are as defined in Supplementary material Fig. S1 (creaming, zone r_1 ; clarification, zone r_2). our

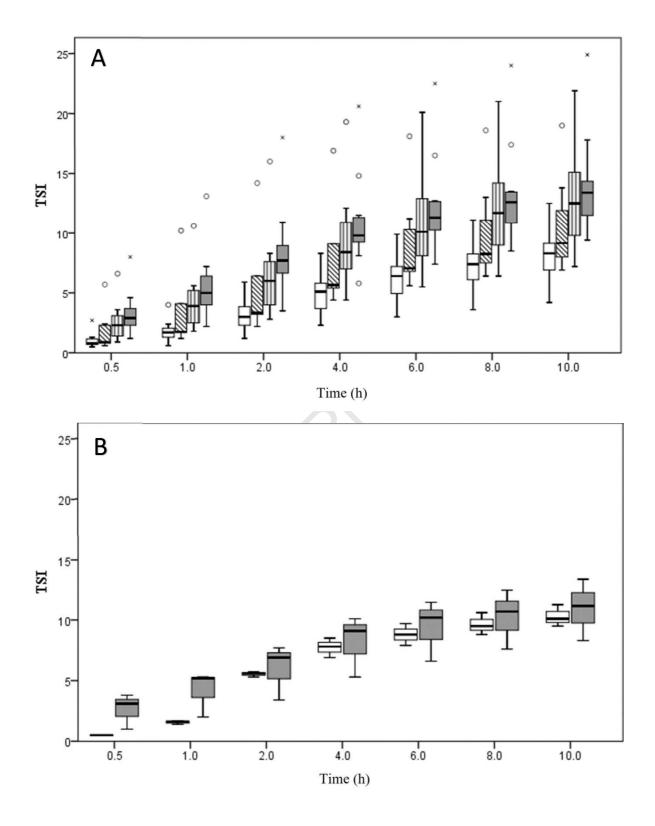


Figure 1

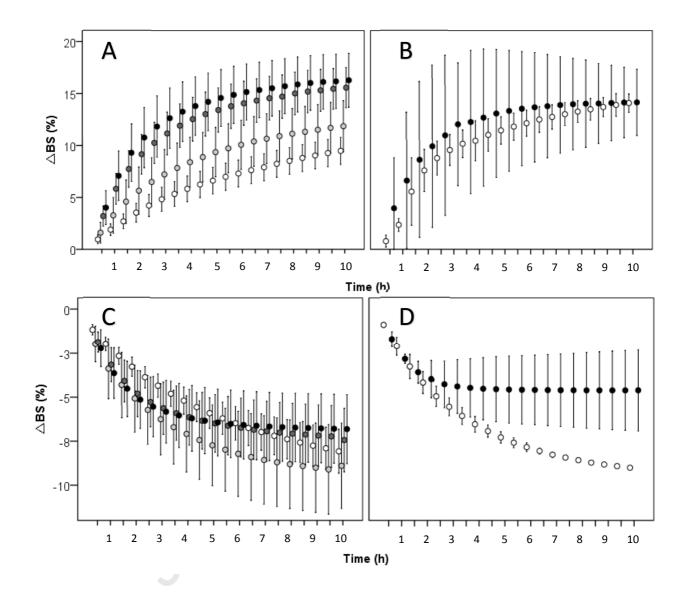
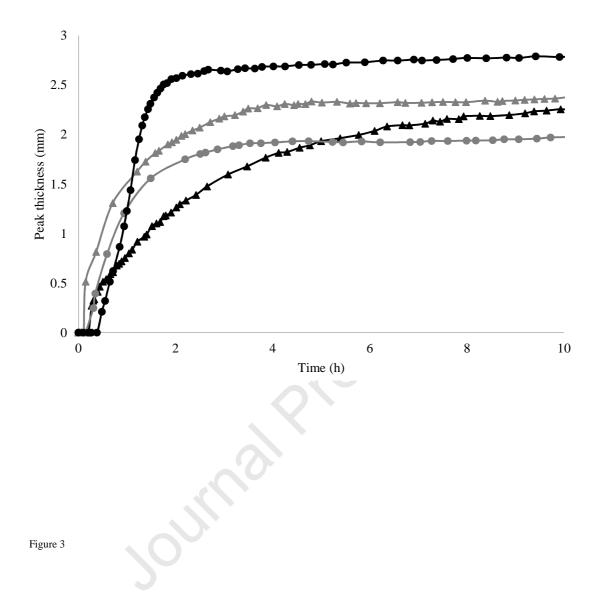
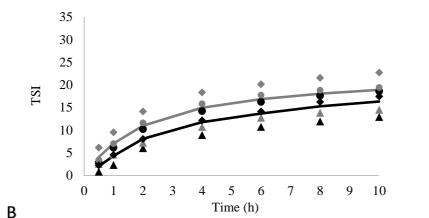
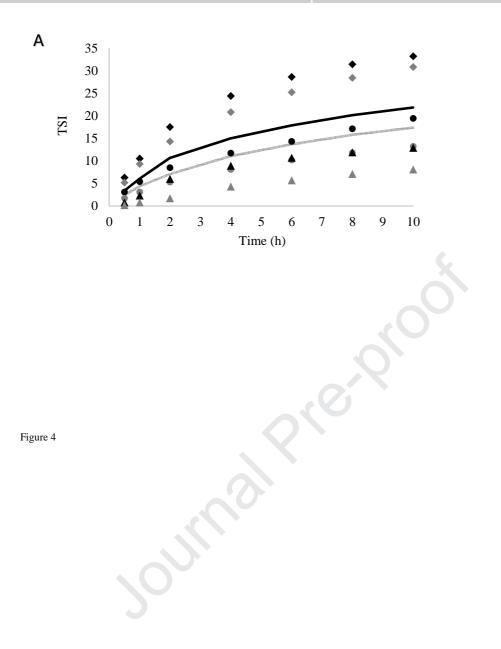
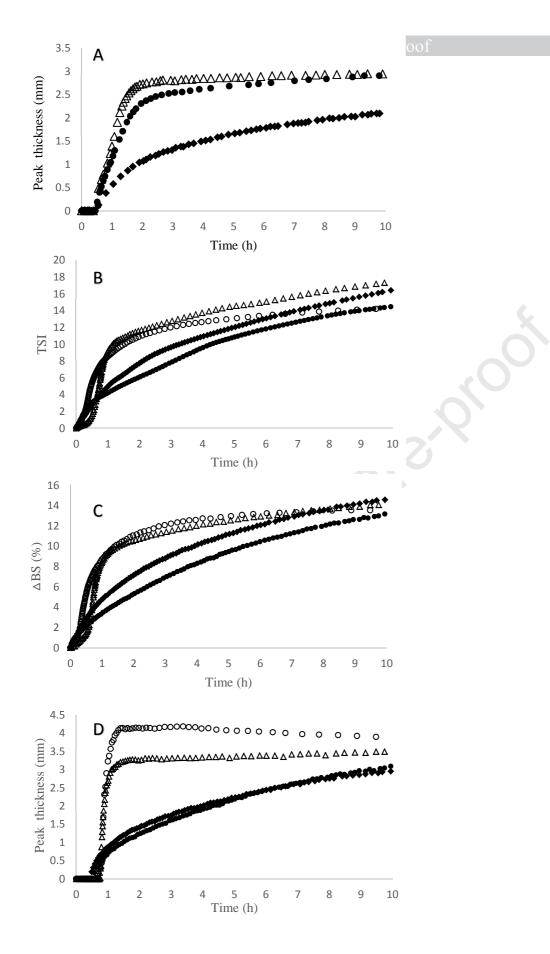






Figure 2

