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Preface

This thesis consists, for the most part, of a collection of manuscripts both published and

unpublished, which have acted as the subject of my work as a PhD student in the Tyndall

National Institute for the past 4 years from October 2015 until December 2019, under the

supervision of Prof Eoin O’Reilly and Dr Stefan Schulz. In the formulation of this thesis the

published papers have been revised and reformatted with minor corrections and alterations

made with respect to the journal versions including the replotting of some of the figures,

restructuring of the sections of text, etc., as appropriate to bring those papers in line with the

thesis layout, but remain in content basically the same.

The unpublished manuscripts have been included in a format more appropriate for a work of

this kind than for a final journal paper, and will likely undergo further modifications that are

normal to the peer-reviewing process.

In addition to the research chapters, this thesis also contains the standard introductory chapter,

Chapter 1, where the work is motivated and outlined, a theoretical methods chapter, Chapter 2,

which provides a basic introduction to some of the fundamental theory and techniques utilised

in this work but not appropriate to include within individual chapters and a conclusions chapter,

Chapter 6, where I attempt to detail the relavance of the work and to outline the important

results, and future avenues of study which relate to this project.

At the beginning of each chapter there is a short abstract in the style of journal papers which

summarises the contents of the chapter and acts to preface the work contained therein. An

overall outline of the thesis layout is given at the end of the introduction in Chapter 1.
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Abstract

The key aim of silicon (Si) photonics is the development of photonic components which are

compatible with established complementary metal-oxide semiconductor (CMOS) processing in-

frastructure, to deliver step-changes in device performance and capabilities, either via on-chip

integration with microelectronics or by facilitating optical interconnection between optoelec-

tronic chips. While significant progress has been made in the development of passive photonic

components such as waveguides and modulators, the development of Si photonics is currently

limited by the lack of direct-gap materials suitable for application as CMOS-compatible semi-

conductor lasers and light-emitting diodes.

While elemental group-IV semiconductors silicon and germanium (Ge) form a mainstay of

current microelectronics, their indirect band gaps makes them intrinsically inefficient emitters

and absorbers of light. The alloying of germanium with other group IV elementary materials

such as carbon, tin or lead, holds the potential to bring about a direct band gap, in a material

which can be grown directly on silicon substrates, and would allow for the realization of active

Si-based components such as light emitting diodes and lasers.

Due primarily to the small difference of ≈ 150 meV between the indirect (fundamental) L6c-

Γ8v and direct Γ7c-Γ8v band gaps of Ge, there has recently been a strong surge of interest

in engineering the conduction band (CB) structure of Ge via strain or alloying in order to

bring about a direct fundamental band gap. Much of this attention has focused on Ge1−xSnx

alloys, where it has been predicted that incorporation of 6 – 11% Sn is sufficient to bring

about a direct band gap. Experimental confirmation of the emergence of a direct band gap in

Ge1−xSnx – culminating in initial demonstrations of optically and electrically pumped lasing

- has stimulated more intense interest in this alloy. In addition to applications in CMOS-

compatible light-emitting devices, research interest in (Si)Ge1−xSnx alloys has been driven by

potential applications in tunneling field-effect transistors and in multi-junction solar cells.

In this thesis we use density functional theory calculations in the Vienna Ab-inito Simulation

Package framework to investigate the mechanism by which the Ge band structure evolves from

indirect to direct gap with the addition of small quantities of Sn to the alloy. By investigating a

series of ordered and disordered supercells with varying % Sn contents we attempt to quantify

band mixing and ordering effects in such alloys and the implications they hold for the materials

optical and transport properties. Through these calculations we explicitly demonstrate that

Sn atoms act when incorporated in small % quantities to germanium strongly perturb the

electronic structure of the alloy conduction band while having a much lesser impact on the

valence band structure of the alloy. We identify and quantify the mechanism by which the

germanium band structure evolves from indirect to direct gap with the addition of small %

xi



Contents xii

quantities of Sn to the alloy. Our analysis is reinforced by detailed comparisons to the results

of experimental measurements.

From these density functional calculations a tight-Binding model has been parameterised al-

lowing for extension of the investigation of the alloy supercells from the order of 103 atoms up

to scales of 105 − 106 atoms and providing a multiscale modelling approach which is ideally

suited to the study of the electronic and optical properties of these Ge1−xSnx alloys

Finally in the latter part of this thesis we utilise the models which were developed in the

investigation of GeSn alloys to investigate the electronic and optical properties and mixing

effects of another less explored Group-IV alloy Ge1−xPbx, from which we deduce a transition

to direct gap emission for x ≈ 3 - 4 %.
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Chapter 1

Introduction and overview

In this introductory chapter we begin in Section 1.1 and 1.2 by giving a brief overview of the

background of and motivation for our research on germanium-tin and related alloys. Following

this, in Section 1.3 we outline the structure of the remaining chapters of this thesis, describing

the content of those chapters and providing an overview of the primary results that have been

achieved during the course of this work.

1.1 Background and Motivation

The worldwide consumption of data is growing exponentially, driven by an assortment of ap-

plications ranging from social and streaming media to cloud based computing and data storage

as well as an ever expanding range of connected devices within the ”Internet of Things”. While

these new services and technologies offer the means for people to connect and interact world-

wide on an unprecedented level, the increased data usage comes with the expense of increased

power consumption. In 2018 it was estimated that the world’s data centres were consumed an

estimated 198 TWh or ≈ 1% of the global demand for electricity [1]. As data consumption

continues to rise and new data centres are built to meet demand, this power consumption must

be addressed. Additionally, other difficulties are beginning to arise from the increased date

rates offered by new technologies which are now meeting or exceeding the limits of conven-

tional interconnect technologies. The major limiting factor for conventional interconnects is

that data transmission requires the system be charged and discharged, using up both time and

energy. While the amount of energy consumed in a single cable may be quite small, such costs

quickly begin to stack up in server farms where thousands of cables are connected across mul-

tiple devices. Keeping temperatures down in such systems is both a source of major expense

and energy consumption (≈ 40% of total energy used in a data centre [2]), and originates from

1
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this charging and discharging of wires. Many of these issues could be resolved or mitigated if

cables and switches could be replaced with optical rather than electronic components.

The vast complementary metal-oxide-semiconductor framework, developed to support the sili-

con microelectronics industry offer unparalleled levels of fabrication complexity and high man-

ufacturing volumes and yield. However the seamless integration of optoelectronics on to a

silicon based platform remains one of the outstanding goals of photonics. Many of the passive

components needed for optoelectronic integrated circuits have already been developed includ-

ing avalanche photodiodes (APDs), modulators [3–8], waveguides [8–10], vertical couplers and

wavelength-division multiplexers [11]. The development of silicon compatible active photonic

components (including electrically pumped lasers and LEDs) however, remains a challenge.

The development of active photonics components from silicon is hindered by the fundamen-

tally indirect nature of the silicon band gap [12] which renders it a poor emitter and absorber

of light. There have been multiple attempts to engineer the band gap of silicon to bring about

a direct band gap including through defect engineering [13–16], through nanostructures includ-

ing porous silicon [17, 18] and nanostructured crystalline silicon [19–22] and through Si and

SiO2 superlattices [23]. To date however, the output power and efficiency of active components

developed from Si with these methods remains too low to meet the requirements of CMOS

photonics.

Realisation of the vast potential of CMOS technologies therefore requires that new materials

be developed. To leverage the advanced manufacturing infrastructure of existing CMOS tech-

nologies and to integrate monolithically with exisitng CMOS chipsets these new materials must

be silicon compatible and feature a growth process that is compatible with the existing CMOS

workflow.

1.2 Group-IV alloys

Given the requirement that new materials must be compatible with existing CMOS chipsets,

the ideal solution would be to use materials which already exist within the CMOS workflow.

As such there has in recent years been a growing interest in germanium and other group-IV

elements which are already in wide usage in existing CMOS device workflows. The lattice

parameters and band gaps of some of these group-IV elements are shown in Table 1.1. Of the

group-IV elements Ge in particular is of note as it has been predicted to offer the benefit of

significantly higher hole mobility than Si, and while Ge is an indirect band gap material, the

direct band gap in Ge lies only ≈ 150 meV above the indirect conduction band minimum at

L. As a result it is possible to engineer the band gap of Ge so as to bring about a direct gap

in a material that is compatible with existing CMOS technologies. Recent research efforts on

the band engineering of Ge to bring about a direct band gap have focused primarily on two
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Element a0 EΓ
g ELg

(Å) (eV) (eV)

Si 5.431 4.20 1.12
Ge 5.648 0.89 0.74
α-Sn 6.489 −0.41 0.18

Table 1.1: Lattice constants and band gap energies for the group-IV elementary materials
Si, Ge, α-Sn. Values of lattice constant and band gap for Si and Ge and lattice constant of
α-Sn are from Ref. [32] while the band gap of α-Sn is taken from [33].

methods, the tensile staining of bulk Ge and the alloying of Ge with other group-IV elementary

materials.

It has been reported that tensile straining of germanium reduces the energy of the Γ valley more

rapidly than the L valley [24–28] and at sufficiently high strain brings about a fundamentally

direct band gap semiconductor. Small amounts of biaxial tensile strain, as low as 0.25% tensile

strain have been noted to decrease the energy difference between the Γ and L valleys compared

to unstrained Ge, but are insufficient to bring about a fundamentally direct band gap [29].

To achieve a direct gap n-type doping is then used to compensate for the energy difference

between the Γ and L valleys [25]. For high biaxial tensile strain of 2% or greater, theoretical

calculations suggest that the band gap should transition from indirect to direct gap [26–28].

High tensile strain in Ge-on-Si materials has been demonstrated as a proof of concept using

suspended Ge microstructures, which were grown through multi-step lithography [30, 31]. The

low-throughput of the fabrication process and the complex device structure, have however made

these materials difficult to use for practical applications. Finally while lasing has been reported

for highly strained Ge, optical excitation is currently limited to cryogenic temperatures with

heat dissipation in the material proving a particular challenge.

Alloying of Ge with other group IV elements such as tin (Sn) or lead (Pb) at sufficiently high

levels, reduces the Γ valley below the L valley and holds the potential to bring about a tunable

direct band gap, in a material which can be grown directly on silicon substrates [34, 35] , and

would allow for the realization of active Si-based components such as light emitting diodes and

lasers. Significantly GeSn alloys also offer the potential to realise an efficient infrared light

source on Si [25, 36, 37] with applications in optical interconnects [38] and lab-on-chip trace

gas detection [39, 40].

Recent research efforts have suggested that incorporation of 6 – 11% Sn [41–44] or compositions

of ≈ 3.5% Pb [45] is sufficient to bring about a direct band gap. Experimental confirmation

of the emergence of a direct band gap in Ge1−xSnx which culminated in initial demonstrations

of optically and electrically pumped lasing [46–48] has stimulated more intense interest in

this alloy. In addition to applications in CMOS-compatible light-emitting devices, research

interest in (Si)Ge1−xSnx alloys has been driven by potential applications in tunneling field-

effect transistors [49, 50] and in multi-junction solar cells [51].
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1.3 Structure of the thesis and overview of primary results

The remainder of the thesis focuses on developing the theory of the electronic structure of the

group-IV alloys germanium-tin, which is the focus of chapters 3 and 4, and germanium-lead

alloys, which chapter 5 is focused on, using ab-inito density functional theory methods. In

Chapter 2 of this thesis we detail and develop the relevant theoretical background for the work

that follows in the remaining chapters. This background primarily focuses on developing the

fundamental theoretical framework for density functional theory including detailed descriptions

of the functionals which are utilised in later chapters to simulate the electronic band structures

of group-IV alloys. Also included in Chapter 2 are details of the fundamental theory of electronic

band structure and relevant fundamental theory relating to group-IV optoelectronics.

The investigation of the electronic optical and material properties of germanium tin alloys

begins in Chapter 3 where we develop the theory of the electronic structure of Ge1−xSnx

alloys and provide an investigation of the implications of band mixing effects on the evolution

of the electronic band structure of Ge1−xSnx alloys with increasing Sn composition using a

series of ab-inito density functional theory calculations. Recent theoretical and experimental

investigations of Ge1−xSnx alloys have indicated that incorporation of Sn into bulk Ge causes a

strong reduction in the direct band gap of the alloy, bringing about an indirect to direct band

gap transition for ≈ 10% Sn content [52]. Existing literature would suggest that this transition

from an indirect to a direct band gap in Ge1−xSnx alloys should be sharp in nature. This is to

say that up to a certain critical composition of Sn the band gap will be purely indirect (L-like)

in nature, while at this critical Sn composition and above it the band gap will be purely direct

(Γ-like) in nature.

In Chapter 3 we challenge this existing assertion of the nature of the band gap transition in

Ge1−xSnx alloys, using a combination of experimental photovoltage measurements carried out

by collaborators on a series of Ge1−xSnx photodiodes of varying compositions of x between 0

and 10% and a theoretical density functional theory (DFT) based investigation of the alloy

electronic band structure. Rather than a sharp transition from an indirect to a direct band

gap, results from experimental photovoltage measurements and theoretical hydrostatic pressure

calculations of the electronic alloy band structure indicate a continuous evolution of Γ character

at the conduction band gap edge, as the band gap narrows as a function of Sn concentration.

This monotonic increase of Γ character at the conduction band edge, whose pressure coefficient

appears to asymptotically approach that of Γ in pure Ge, is indicative of band mixing effects

in the alloy which have not generally been accounted for in the contemporary literature. This

presence of band mixing effects in the alloy causes the distinction between direct and indirect

band gaps to break down. As such, we conclude that simple models like the virtual crystal

approximation (VCA), which neglects effects related to band mixing and alloy disorder are

insufficient to accurately describe the electronic band structure of Ge1−xSnx alloys. Atomistic
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calculations which explicitly account for the differences in size and chemical properties between

Ge and Sn are required to provide quantitative insight into the properties of real Ge1−xSnx

alloys.

Having performed a preliminary investigation of the band structure of Ge1−xSnx alloys in Chap-

ter 3 with hybrid functional Heyd-Scuseria-Ernzerhof (HSE) DFT, we expand our investigation

in chapter 4 using valence force field (VFF), modified Becke Johnson (mBJ) DFT and a tight

binding (TB) model parameterised by collaborators. Using hybrid functional calculations as a

reference, we quantify the accuracy of structural relaxations and electronic structure calcula-

tions carried out for a series of ordered and disordered Ge1−xSnx alloy supercells using the LDA

+ mBJ and VFF + TB models. Our results suggest that (i) Sn incorporation can be expected

to primarily impact the CB structure in Ge1−xSnx alloys while leaving the valence band rela-

tively unperturbed, (ii) the LDA + mBJ model offers first principles calculations of the alloy

properties which are in good quantitative agreement with, and come at significantly reduced

computational cost and time compared to HSEsol calculations, and (iii) the semi-empirical

VFF + TB model offers an accurate and computationally inexpensive approach to calculate

the structural and electronic properties, describing well the alloy electronic structure close in

energy to the CB and valence band (VB) edges. That is, in the regions of the band structure

which are typically of interest to calculate technologically relevant material properties such as

optical transition strengths, carrier mobility and band-to-band tunneling rates.

VFF structural relaxations are found to be in excellent quantitative agreement with the results

of full HSEsol calculations. This suggests that the valence force field potential can be used to

circumvent the requirement to carry out first principles structural relaxations – i.e. the relaxed

positions obtained from a VFF structural relaxation can be reliably used as input to first prin-

ciples electronic structure calculations, thereby offering significant reductions in computational

expense and time. For equivalent system sizes we typically find that the computational expense

associated with mBJ calculations is reduced by approximately an order of magnitude compared

to equivalent HSEsol calculations, while semi-empirical VFF + TB calculations come at neg-

ligible computational expense. mBJ calculations allow access to larger system sizes in first

principles calculations than those accessible to HSEsol hybrid functional methods due to their

reduced computational expense but are still limited in scope to systems containing . 103 atoms.

The semi-empirical VFF + TB model parameterised from the HSEsol DFT is highly scalable,

and can readily be extended to systems containing ∼ 105 atoms, with potential applications

including direct atomistic calculations of the electronic structure of disordered Ge1−xSnx alloys

and realistically-sized nanostructures.

Having benchmarked the mBJ-DFT approach and ascertained its accuracy by comaprison with

HSEsol DFT, we turn our attention to the investigation of disordered alloy supercells and the

impact of ordering of Sn atoms on the alloy electronic band structure. Investigations of the
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electronic band structure of Ge14Sn2 (x = 12.5%) and Ge62Sn2 (x = 3.125%) supercells as Sn

atoms are moved from fourth, to third, to second and finally to first nearest neighbour show

the dependence of the calculated values of Eg and
dEg

dP respectively on the relative position of

the two Sn atoms to one another in the supercell. Overall the results indicate the important

impact of disorder effects on the electronic band structure. We note that the impact of these

effects is likely overestimated due to long range periodic ordering effects arising from the small

size of the supercells investigated and so anticipate that as the supercell increases the impact

of disorder effects will be lessened.

Finally having established the important role short-range Sn-related structural disorder plays

in influencing the details of the alloy electronic structure for 16 and 64 atom supercells, we turn

our attention to investigate how the electronic structure evolves with x in realistic, disordered

Ge1−xSnx special quasi-random structures. Hydrostatic pressure calculations of 128 atoms

SQS supercells with x varied between 0 and 15% indicate an uptake in Gamma character in

the lowest conduction band state at compositions of ≈ 5.5% Sn content. At this ≈ 5.5% Sn

content the pressure coefficient of the conduction band edge remains primarily composed of

band character arising from the Ge L6c states having strong s-like orbital character at the

Sn lattice sites, but also contains an admixture of Ge Γ7c character. The level of Gamma

character in the conduction band edge pressure coefficient continues to increase monotonically

with conduction band edge, becoming primarily Gamma-like at ≈ 7% Sn, and continuing to

increase until ≈ 10% Sn content at which point the pressure coefficient begins to level off. The

band gap at 7.% Sn, when the alloy is anticipated to become direct gap in nature has a value

of Eg = 0.499eV indicating that the alloy remains a semiconducting material at the point of

indirect- to direct-gap transition.

Overall, our results indicate that electronic structure calculations for Ge1−xSnx alloys must

explicitly include band mixing and disorder effects to allow for accurate analysis of the impact

of Sn incorporation on key material parameters, including optical transition strengths, electron

mobility and band-to-band tunneling rates. Given the expected importance of these effects

in determining technologically relevant material properties, the development of appropriate

theoretical models enable predictive theoretical analysis of proposed Ge1−xSnx-based photonic,

electronic and photovoltaic devices. The theoretical models we have presented allow for the

treatment of larger systems than those accessible to hybrid functional DFT with minimal loss

of accuracy, providing a basis for direct atomistic calculations of the electronic, optical and

transport properties of disordered Ge1−xSnx alloys and realistically-sized nanostructures.

Having investigated the optical and electronic properties of Ge1−xSnx alloys in chapter 3 and

chapter 4, we shift our attention in chapter 5 to the investigation of another group-IV alloy

Ge1−xPbx. What little literature exists for Ge1−xPbx alloys suggests that incorporation of lead

(Pb) into bulk Ge will cause a reduction of the direct band gap of Ge which is similar, but
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more pronounced than that seen with equivalent % Sn incorporation. Using the HSE DFT and

mBJ DFT models which we paramaterised for Ge1−xSnx alloys in chapter 4 we investigate a

series of ordered and disordered Ge1−xPbx alloy supercells which vary in size from 16 to 128

atoms. Beginning with ordered alloy supercells, we demonstrate that Pb incorporation in a

Ge15Pb1 or Ge63Pb1 supercell split the degeneracy of the Ge L6c CB edge states, giving rise to

a (Kramers degenerate) singlet state, and to a (Kramers degenerate) triplet state lying slightly

higher in energy, with these singlet and triplet states respectively having purely s- and p-like

orbital character at the Pb lattice site. Calculated pressure coefficients demonstrate that this

singlet state which emerges at the conduction band edge retains primarily indirect (Ge L6c)

character and so does not represent the emergence of a direct band gap for Pb compositions as

low as x = 1.56% .

This result supports the requirement for more detailed calculations on disordered supercells,

both (i) to quantify the nature of the indirect- to direct-gap transition and (ii) seek to identify

the composition x at which Ge1−xPbx becomes a direct-gap semiconductor. To quantify the

impact of Pb-related alloy disorder we tracked the evolution of the alloy CB edge in a Ge62Pb2

supercell as the separation between the Pb atoms was reduced from fourth- to first-nearest

neighbours. Substituting two Pb atoms at successively closer lattice sites, we find strong

dependence of the alloy band gap and spin orbit splitting energy on the distance between the

two Pb atoms. As a result, we determine that disorder effects must be explicitly considered to

quantitatively analyse the alloy electronic structure, suggesting that as is the case for Ge1−xSnx

alloys, simple models such as the VCA are ill-suited to accurate analyse of Ge1−xPbx alloys.

Having established the importance of disorder effects in determining the details of the electronic

properties, we then analyse the evolution from an indirect to a direct band gap with increasing

x in the case of a randomly disordered alloy.

The calculated electronic structure evolution for disordered 128-atom Ge128−MPbM SQSs again

showed a (Kramers degenerate) singlet state at the CB edge, for even the lowest Pb composition

considered (x = 0.78%). Calculated pressure coefficients associated with the band gaps between

the VB edge and the five lowest energy (Kramers degenerate) CB states again show that the

CB edge retained primarily Ge L6c character until x ≈ 6 – 7%, at which composition the lowest

energy CB state acquired predominantly direct (Ge Γ7c) character. The SQS calculations

therefore indicate an indirect- to direct-gap transition in Ge1−xPbx alloys for x ≈ 6 – 7%,

near which composition the CB edge also passes through the VB edge, to give a zero-gap

semimetallic alloy.

Accounting however for finite-size effects in the SQSs considered, evidenced by a large ≈ 150

meV splitting of the four Ge L6c-derived states, which may lead to an overestimation of the

composition at which Ge1−xPbx becomes direct-gap, our results indicate that the CB state

with the greatest Ge Γ7c character passes through the weighted average energy of the four
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Ge6c-derived states in our SQS calculations for x ≈ 3 – 4%. This weighted average may

provide a more realistic estimate of the composition range in which Ge1−xPbx starts to become

a direct-gap semiconductor, at which composition the calculated alloy band gap is in the range

0.3 – 0.4 eV. Due to similarities in the impact of Pb and Sn incorporation on the Ge band

structure, we then compare and contrast results of equivalent 128 atom SQS investigations

of the Ge1−x(Sn/Pb)x alloy electronic band structure. In so doing we demonstrate that the

electronic structure evolution in Ge1−xPbx admits important quantitative differences compared

to that in Ge1−xSnx.

In an overall sense results in this chapter indicate the emergence of a direct band gap in

response to substitutional Pb incorporation in Ge, suggesting that binary Ge1−xPbx alloys

are potentially of interest for applications as active photonic devices operating at mid-infrared

wavelengths. However, the potential for application of Ge1−xPbx alloys in such devices may in

practice be limited by the presence of a low fundamental band gap.

Finally in Chapter 6 we summarise and conclude. We recapitulate the main results and find-

ings of the research presented in this thesis and provide an outlook of potential future research

directions which arise from the work detailed in this thesis, pertaining to group-IV optoelec-

tronics.



Chapter 2

Theoretical Methods

In this chapter we review and detail some of the fundamental principles and methodologies

which underline the objectives and methodologies of the research presented in later chapters

of this thesis. We begin in Section 2.1 by providing a general overview of the electronic band

structure and its features including high symmetry points and the atomic band character of

the conduction and valence bands. Then in Sections 2.2–2.4 we provide an overview of density

functional theory. We first introduce the density functional in Sec. 2.2 and then Kohn-Sham

theory in Sec. 2.3. Sec. 2.4 then provides details of a number of different functionals which will

be employed throughout this thesis in the investigation of the electronic band structure and the

optical and electronic properties of germanium based group – IV alloys. Section 2.5 provides

a brief overview of pseudopotential methods, focusing primarily on the projector augmented-

wave method which we will use in subsequent chapters. Finally in Sections 2.6 – 2.7 we provide

a brief overview of the VASP and BandUP software packages which we use to investigate the

electronic band structure of group-IV alloys in this thesis.

2.1 Electronic band structure

A major successes of quantum theory was its ability to explain the properties of bulk crystalline

semiconducting materials. Bloch’s theorem [53] establishes that the wave function ψnk (r) for

a bulk crystalline material can be expressed as the product of a plane wave and a function of

the same periodicity as the lattice:

ψnk(r) = eik·runk(r) , (2.1)

9
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where r is the position, n is the nth state associated with wavevector k, eik·r is a phase factor

which describes the extended nature of the state and unk denotes a periodic function of the

same periodicity as the crystal:

unk(r) = unk(r + R) , (2.2)

where R is a Bravais lattice vector. Electron wave functions of the form in Eq. 2.1 are known

as Bloch states. A full proof of Bloch’s theorem can be found in Ashcroft and Mermin [54].

In cases which satisfy Bloch’s theorem, as bulk crystalline materials do, any k-state which

possesses a wave vector which lies outside the first Brillouin zone can be translated back into

the Brillouin zone by adding a suitable reciprocal lattice vector G, so that all of the unique

crystal Bloch states are located within the first Brillouin zone.

Figure 2.1: The band structure of bulk germanium (Ge) for states which are close in energy
to the energy gap between the highest filled (valence) and lowest empty (conduction) bands,
calculated using density functional theory methods. The zero of energy here is taken at the
valence band edge.

Band theory indicates that in solids, electrons do not have discrete energy as is the case of free

atoms, but rather have values of energy only within certain specific ranges known as allowed

bands, which are separated by forbidden energy gaps. The behaviour of electrons in a solid

relates closely to the position of the atoms surrounding it and the band of energies permitted

in a solid is related to the discrete allowed energies (energy levels) of single, isolated atoms. In

bringing the atoms together to form a solid, these discrete energy levels become perturbed, and

the electrons occupy a band of levels in the solid called the valence band. The empty states
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also broaden into a band of levels that is called the conduction band. Just as electrons at one

energy level in an individual atom can move to higher empty energy levels, so too can electrons

in a solid become excited and transfer from the valence band to the conduction band, crossing

the intervening band gap. Using band theory, solids can be divided into three distinct groups

(i) metals where the conduction and valence bands overlap, (ii) semiconductors which feature

a small band gap which may be either indirect or direct in nature and (iii) insulators where

the gap between the conduction and valence bands is quite large.

Returning to Bloch’s theorem, we can associate a wavevector k with each energy state Enk of a

periodic solid. If we then plot a diagram of these energies Enk as a function of the wavevector

k we get the band structure of the solid.

Fig. 2.1 shows the band structure of bulk germanium and shows how energy bands may be

represented in k- (momentum) space, where k relates both to the plane wave modulation in the

Bloch equation and to the momentum of each state p = ~k, where p is the momentum and ~
is the reduced Planck’s constant. The critical symmetry points of the conduction band shown

in Fig. 2.1 at Γ, L and X represent k = [0, 0, 0], [πa ,
π
a ,

π
a ] and [2π

a , 0, 0] in k-space respectively,

where a denotes the lattice constant of bulk Ge [55].

As denoted in Fig 2.1 the valence band is split into three sub-bands near the valence band

maximum, referred to as the heavy hole (HH) band, the light hole (LH) band and the spin-

orbit split-off (SO) band. In an unstrained semiconductor the heavy hole and light hole bands

will be degenerate and the spin-orbit split-off band will be separated from them by the spin-

orbit splitting energy 4SO as a result of the spin-orbit interaction.

Throughout this thesis we will be concerned with calculations of the electronic band structure

of group-IV elements and diamond structured semiconductor alloys formed from them, which

are characterised by a fourfold tetrahedral coordination and sp3-hybridised covalent bonding.

In the next section of this chapter we will demonstrate how the electronic band structure of

these group-IV materials may be investigated.

2.2 Density Functional Theory

Density functional theory (DFT) is an extremely useful methodology which allows for compu-

tational quantitative calculation of many properties of materials in an ab inito manner, that is

to say without experimental inputs. As such DFT methods allow for the modelling of materi-

als that are either difficult to measure experimentally or for which no growth conditions have

yet been developed. Due to the ab inito nature of DFT methods they may also be used to

independently check and verify new experimental results in less developed material systems as

we detail for Ge1−xPbx alloys in chapter 5 of this thesis.
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2.2.1 Time independent Schrödinger Equation

Our goal in using DFT is to solve the time-independent Schrödinger equation to determine the

total energy of a system:

Ĥ|Ψ〉 = E|Ψ〉 , (2.3)

where E is a constant equal to the energy level of the system. For a non-relativistic system of n

interacting electrons and N nuclei, which are subject to a potential, the Hamiltonian operator

can be expressed as:

Ĥ = − ~2

2m

n∑
i

∇2
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1

4πε0

n∑
i
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ZIe
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(2.4)

where Ĥ is the single electron Hamiltonian, m denotes the mass of an electron, M denotes

the mass of the nucleus, Z is the charge of the nucleus expressed in units of the elementary

charge e and ~ is the reduced Planck’s constant, with ~ = h
2π . In this equation lower case i

and j subscripts denote electrons while uppercase I and J are used to denote nuclei. Following

Martin’s example [56],the Hamiltonian can can then be rewritten in the simpler form of:

Ĥ = T̂ + V̂ext + V̂int + T̂nuc + EII , (2.5)

where in Eq. 2.5 the first term T̂ describes the kinetic energy of the electrons, the second term

V̂ext describes the attractive electrostatic interaction between the nuclei and the electrons, the

third term V̂int describes the repulsive potential due to the electron-electron interactions, the

fourth term is the kinetic energy of the nuclei and the fifth term describes repulsive nucleus-

nucleus interactions.

2.2.2 Observables

The time-independent expression for any observable of an eigenstate, is the expectation value

of the operator Ô, which involves an integral over all coordinates.

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉

(2.6)
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By taking the expectation value of the density operator n̂(r) the density of particles n(r),

which is central to a lot of the theory of electronic band structure, can be obtained. Here n̂(r)

is defined as:

n̂(r) =
∑
I,N

δ(r− ri), (2.7)

and so the density of particles is:

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉

= N

∫
d3r2...d

3rN
∑
|Ψ(r1, r2, r3, ..., rN |2∫

d3r1, d3r2...d3rN |Ψ(r1, r2, r3, ..., rN |2
(2.8)

2.2.3 Born-Oppenheimer approximation

Using the Born–Oppenheimer or adiabatic approximation [57] we can approximate the mass

of the nuclei relative to the mass of the electrons as being infinite. This results in the kinetic

energy of the nuclei which is proportional to 1
MI

becoming zero. In effect we are saying that

relative to the speed of the electrons the movement of the nuclei is negligible. Hence, we treat

the electrons as moving in a field of fixed nuclei. In relation to Eq. 2.5 use of the Born–

Oppenheimer approximation results in the the fourth term T̂nuc which describes the kinetic

energy of the nuclei becoming zero and the fifth term EII which describes repulsive nucleus-

nucleus interactions becoming a constant term. As such the Hamiltonian of the system reduces

to:

Ĥ = T̂ + V̂ext + V̂int + Enuc (2.9)

The total energy of the system described in Eq. 2.9 can then be calculated as the expectation

value of the Hamiltonian,

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≡ 〈Ĥ〉 = 〈T̂ 〉+ 〈V̂int〉+

∫
drVext(r)n(r) + EII , (2.10)

where 〈T̂ 〉 is the kinetic energy of the electrons, V̂int is the potential energy due to the electron–

nucleus interaction and the third term, the expectation value of Vext which is the attractive

external potential, has been written as an integral over the density function.
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2.2.4 Variational Principle

The variational principle states that the total energy for a system calculated using a guessed

wavefunction Ψ is an upper bound of the true ground-state energy of the system E0. The true

ground state wavefunction Ψ0 and energy E0 of the system can then be calculated by fully

minimizing the functional E[Ψ] with respect to all allowed electron wave functions.

E0 = minΨE[Ψ] = minΨT̂ + 〈Ψ|V̂ext + V̂int + Enuc|Ψ〉 (2.11)

2.3 Kohn-Sham DFT

The primary objective of most of the rest of the calculation, is the solution of 〈V̂int〉. In

classical mechanics this would be achieved by taking a space integral involving the electron

charge density for the system. In the quantum picture however the quantum nature of electrons

complicates solution of V̂int. In order to simplify the problem therefore we split 〈Ψ|V̂int|Ψ〉 into

the sum of the classical electrostatic energy and the difference between the energies of the

quantum-mechanical and classical electron-electron interactions, which we term the exchange-

correlation energy. Denoting the electronic charge density n(r) as:

n(r) = |ψ(r)|2 , (2.12)

the total energy can be expressed as a function of the integrals of the density as:

E = 〈T̂ 〉+

∫
drVext(r)n(r) +

1

8πε0

∫ ∫
drdr′

n(r)n(r)′

|r− r′|
+ EXC︸ ︷︷ ︸

〈V̂int〉

+EII , (2.13)

where the energy of the classical electrostatic electron–electron interaction is given as the double

integral over the charge density. Thomas [58] and Fermi [59] attempted to solve Eq. 2.13 by

assuming the kinetic energy of the electrons was a functional of the density 〈T̂ 〉 = T [n(r)], the

explicit form of which was described by the kinetic energy of a non-interacting homogeneous

electron gas as:

TTF =
3~2

10me
(3π2)

2
3

∫
dr[n(r)]

5
3 , (2.14)

Unfortunately the Thomas-Fermi model provides a poor approximation for the kinetic energy,

which ultimately leads to a larger error that simply neglecting the exchange correlation term
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entirely would. To solve this problem, and overcome the limitations imposed by the approxima-

tion of the kinetic energy functional, Kohn and Sham [60], building on the work of Hohenberg

and Kohn [61], proposed to calculate the exact kinetic energy of a non-interacting reference

system of the same density as the real interacting one. In this approach the density is calculated

as a set of independent wave functions:

n(r) =
N∑
i=1

|ψi(r)|2 , (2.15)

where i runs over all occupied states from 1 to N and ψi are the eigenstates of the non-

interacting system. As the many body effects in the Kohn-Sham approach are all contained in

the exchange correlation functional, the kinetic energy can then be expressed using Eq. 2.15

as:

TKS = − ~2

2me

N∑
i=1

〈ψi|∇2
i |ψi〉 , (2.16)

The overall energy of the system using the Kohn-Sham formalism can then be expressed as:

EKS = − ~2

2me

N∑
i=1

〈ψi|∇2
i |ψi〉+

∫
drVext(r)n(r)+

1

8πε0

∫ ∫
drdr′

n(r)n(r)′

|r− r′|
+EXC [n(r)]+EII ,

(2.17)

As EII is a constant there is an explicit solution to each term in Eq. 2.17 except for the

exchange correlation energy EXC . Solution of the exchange correlation is non-trivial and acts

in practice to limit the accuracy of DFT methods. Expressing EXC as the difference between

the many-body interacting system and the non-interacting reference system we get:

EXC = 〈T̂ 〉 − TKS + 〈Vint〉 − EHartree (2.18)

By now applying the variational principle to the energy EKS and asking what condition must

the orbitals ψi fulfill so as to minimize the energy under the constraint of orthonormality for

the wave functions 〈ψi|ψi〉 = δij , one arrives at the Kohn-Sham equations:

ĤKSψi = εiψi(r), ĤKS = − ~2

2me
∇2 + V̂KS(r) , (2.19)

where the effective Kohn-Sham potential V̂KS is given by:
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V̂KS = V̂ext(r) +
δEHartree
δn(r)

+
δEXC
δn(r)

(2.20)

2.4 Exchange-correlation Functionals

It is clear from Eq. 2.18 that accurate solution of the Kohn-Sham Hamiltonian is largely reliant

on finding accurate functionals for the exchange correlation energy. It this section we will detail

three of the main approaches to approximating the exchange correlation energy of a system.

These approaches are the local density approximation, the general gradient approximation and

Heyd-Scuseria-Ernzerhof hybrid functionals.

2.4.1 Local density approximation

The local density approximation (LDA) is the most straightforward approximation for the

exchange correlation energy of a system. In the local density approximation the exchange

correlation per particle at each spatial point is approximated as the exchange correlation per

particle from a homogeneous electron gas (HEG) with a density equivalent to the density at

this same point. To begin we write the exchange-correlation energy of the LDA in the form:

ELDAXC [n(r)] =

∫
dr n(r) εHEGXC (n(r)), (2.21)

where εHEGXC (n(r)) is the exchange-correlation energy per particle of a homogeneous electron

gas of density n(r). The εHEGXC (n(r)) here contains a weighted probability n(r) that there exists

an electron at position (r). Separating this exchange-correlation energy into exchange and

correlation contributions then gives:

εHEGXC (n(r)) = εHEGX (n(r)) + εHEGC (n(r)) (2.22)

A HEG consists of Ne interacting electrons in a volume, V , which has a positive background

charge which keeps the overall charge of the system neutral. Usefully the homogeneous gas

approach allows for representation of effects in solids that arise from the mutual repulsive

interactions of electrons without needing to explicitly introduce the atomic lattice and structure

making up a real solid. For a homogeneous electron gas of charge density n, the Wigner-Seitz

radius rS , can be expressed as the radius of a sphere whose volume is equal to the volume for

a single electron:
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V

Ne
=

4π

3
r3
s =

1

n
, (2.23)

which can then be re-expressed as:

rs =

(
3

4πn

) 1
3

(2.24)

Using Eq. 2.24, for a system of Ne electrons, the exchange energy per electron for the HEG

εHEGX can then be expressed as:

EHEGX

Ne
= εHEGX = − 1

4πε0

3e2

4π

(
9π

4

) 1
3 1

rs
, (2.25)

where EHEGx is the exchange energy for the HEG. By replacing the constant charge density n

of the HEG in Eq. 2.25 with the local charge density n(r) the LDA Exchange Energy can then

be determined as:

ELDAX [n(r)] =

∫
dr n(r) εHEGX (n(r)) = −3

4

(
3

π

) 1
3
∫
n(r)

4
3dr (2.26)

While the integrand in Eq. 2.26 allows for an analytic solution of the exchange energy con-

tributions εX , no such explicit expression exists for the correlation contributions εC . Instead

εC is typically parameterised using numerical data from highly accurate numerical quantum

Monte-Carlo simulations of the homogeneous electron gas. The most common parametrisation

in use for εC is that of Perdew and Zunger [62], implemented by Ceperley and Alder [63] on

homogeneous electron gases at various densities.

Returning to Eq. 2.21 and Eq. 2.22 the total exchange correlation energy ELDAXC , of the LDA

can be expressed as:

ELDAXC [n(r)] =

∫
dr nr (εHEGX (n(r)) + εHEGC (n(r))) (2.27)

The analytic solution of εHEGX (n(r)) is given in Eq. 2.26 while εHEGC (n(r)) has no analytic

solution it can be parameterised using numerical quantum Monte-Carlo simulations.
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2.4.2 General Gradient Approximation

Using the LDA approach equation 2.27 gives the exact exchange correlation energy for a system

of constant charge density. In a real system however the charge density will not remain constant

but will change with position. The logical progression from the LDA therefore, is to make use

of not only the density n(r) at a particular point, but also the successive spatial derivatives

of the density, starting with the gradient ∇n(r), in order to account for the non-homogeneity

of electron density in a real material.[64, 65] By assuming that εXC(r) is a functional of both

n(r) and the first order gradient |∇n (r)| we can write the exchange-correlation energy in the

following form, which is termed the generalized gradient approximation (GGA) [66]:

EGGAXC [n(r)] =

∫
dr n(r) εGGAXC (n(r), |∇n(r)| ) (2.28)

Many GGAs exist, with three forms seeing particularly wide use, those being the Becke (B88)

[67], Perdew and Wang (PW91) [68] and Perdew, Burke and Enzerhof (PBE) [66] forms. As

Martin notes, on pg. 156 of [69] one must be careful in the implementation of the GGA so as to

avoid inconsistencies in calculations arising from the approximation in Eq. 2.28. Depending on

the properties of the system being investigated either LDA or GGA can lead to better agreement

with experimental values. While the LDA tends to overbind [70] leading to theoretical bond

lengths and lattice parameters which are too short compared to experiment the GGA suffers

from the opposite problem, tending to underbind [71, 72] which leads to bond lengths and lattice

parameters which are too large compared to experimental values. A major issue for both the

LDA and GGA methods is that both methods are seen to underestimate the band gaps of

semiconductors and insulators [73]. This underestimation of the band gap of semiconductors is

corrected in the modified Becke-Johnson and hybrid functional approaches which are detailed

in the next two sections, and which will be used later in the thesis.

2.4.3 Modified Becke-Johnson approximation

The modified Becke Johnson approximation [74, 75] is a meta-GGA exchange potential which,

when used in combination with the LDA-correlation [68], yields band gaps with an accuracy

similar to that of hybrid functional methods (detailed in Sec. 2.4.4) but at a fraction of the

computational expense. In effect the modified Becke-Johnson potential is a local approximation

to an atomic exact-exchange potential with an added screening term and is expressed as:

V mBJ
X (r) = c V BR

X (r) + (3c− 2)
1

π

√
5

12

√
2τ

n(r)
, (2.29)
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where V mBJ
X (r) is the modified Becke-Johnson exchange potential, V BR

X (r) is the Becke-Roussel

potential [76], n(r) is the electron density and τ(r) is the kinetic energy density given by:

τ(r) = −1

2

∑
i

|∇Ψi|2 (2.30)

The Becke-Roussel potential in 2.29 is introduced to mimic the Coulomb potential created by

the exchange hole and can be expressed as:

V BR
X (r) = − 1

b(r)
( 1− e−x(r) − 1

2
x(r)e−x(r)) , (2.31)

where x is determined from an equation explicitly involving n(r), ∇n(r), ∇2n(r) and τ , and

where the function b is given by the equation:

b = (
x3e−x

8π n(r)
)

1
3

, (2.32)

Finally the parameter c in the expression of the modified Becke-Johnson exchange potential in

Eq. 2.29 depends linearly on the square root of the average of |∇n(r′)|
n(r′) and is expressed as:

c = α+ β(
1

Vcell

∫
cell

|∇n(r′)|
n(r′)

d3r′)

1
2

, (2.33)

where α and β are two free parameters and Vcell is the unit cell volume. Minimization of the

mean absolute relative error for the band gap over a series of solids gives optimal values of

α = −0.012 and β = 1.023. c is left as a tunable free parameter which can then be tuned to

the band gap of the material being studied. For c = 1 the calculated band gap in all cases is

found to be lower than experimental values [77], but increasing the value of c leads in all cases

to a monotonic increase in the band gap. For solids with small band gaps the optimal value

of c when compared to experimental values was found to lie in the range of 1.1–1.3 [75], while

the optimal c for materials with larger band gaps was found to be in the range of 1.4–1.7 [75].

2.4.4 Hybrid functionals

While the mBJ approach discussed in the previous section gives excellent agreement to ex-

perimental values when parameterised so as to best fit a known band gap, it is limited to

material systems where the fundamental band structure has already been well established. As

such highly accurate computational DFT methods are still required for the investigation of

emerging materials. One such method is the hybrid functional DFT.
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Hybrid functionals are a class of approximations for the exchange-correlation energy functional

that incorporate a portion of exact exchange from Hartree-Fock theory, with the rest of the

exchange-correlation energy being determined by ab initio or empirical methods. In the hybrid

functional approximation the exact exchange energy functional is expressed not in terms of the

density but rather in terms of the Kohn-Sham states. As such it is termed an implicit density

functional.

A hybrid exchange—correlation functional is usually constructed as a linear combination of the

Hartree-Fock exact exchange functional:

EHFx = −1

2

∑
i<j

∫ ∫
ψ∗i (r)ψ∗j (r

′)
1

|r− r′|
ψj(r)ψi(r

′)drdr′ , (2.34)

and any number of exchange and correlation explicit density functionals. In most hybrid

functional schemes the parameters determining the weight of each individual functional are set

by fitting the functional’s predictions to experimental or accurately calculated thermochemical

data.

2.4.5 Heyd-Scuseria-Ernzerhof hybrid functionals

One such scheme, which we will be making use of throughout this thesis, is the Heyd-Scuseria-

Ernzerhof screened-exchange-correlation functional [78, 79] which uses a screened Coulomb

potential to calculate the exchange energy of the system. Within the HSE approximation the

screened Coulomb potential is only applied to the exchange interaction, in order to screen the

long-range part of the Hartree-Fock (HF) exchange. All other Coulomb interactions of the

Hamiltonian, including the Coulomb repulsion interaction of electrons in the system, do not

use a screened potential. In order to apply the screening potential in this manner the Coulomb

operator is split into short-range (SR) and long-range (LR) components:

1

|r− r′|
=
erfc(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

(SR)

+
erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

(LR)

, (2.35)

where erfc(ω|r − r′|) = 1 - erf(ω|r − r′|) and where ω is a tunable screening parameter.

Using the HSE approximation, the exact exchange mixing is only performed for short-range

interactions in both HF and DFT, allowing the exchange hole to become delocalized among

the near neighbours of a reference point, but not beyond. As such in the HSE scheme only a

portion of the short range exchange is from HF, with the rest of the exchange coming from

the Perdew-Burke-Ernzerhof (PBE) [66, 70, 80–82] functional. Schematically, the exchange-

correlation functional of the HSE, EHSEXC can be expressed as:
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EHSExc = aEHF,SRx (ω) + (1− a)EPBE,SRx (ω) + EPBE,LRx (ω) + EPBEc , (2.36)

where a is the mixing parameter which determines how much exact exchange is included in the

calculation, and ω is an adjustable parameter which controls the range of the interaction.

The Hartree Fock short-range exchange energy, EHF,SRx from Eq. 2.36 can be determined from:

EHF,SRx (ω) = − 1

4πε0

∑
i<j

∫ ∫
ψ∗i (r)ψ∗j (r

′)
erfc(ω|r− r′|)
|r− r′|

ψj(r)ψi(r
′)drdr′ (2.37)

The standard values of a and ω used in Eq. 2.36 are 1.4 and 0.2 respectively (usually referred to

as HSE06) which for most systems give good agreement with experimentally measured values

[83, 84].

2.5 Pseudopotentials

In this section we will give a brief overview of the fundamental theory underlying pseudopo-

tentials and the projector augmented wave method which we will implement within the VASP

framework in later chapters of this thesis. A more complete description of these topics can be

found in Blöchl’s original paper [85].

A pseudopotential is an effective potential which is designed to replicate the effect of core

electrons and the nucleus of an atom (all-electron potential) such that the ”core” states, which

consist of the nucleus and inner electrons and which are highly localized around the nucleus, are

effectively eliminated and the Coulomb interaction between the core and the valence electrons

is replaced by a smoother matching potential. This is done to ensure that the use of plane

waves to expand the electron wavefunctions is possible, as such a calculation involving both

core and valence electrons and the full Coulombic potential of the nuclei, would be prohibitively

time consuming. Replacing valence states with pseudo wavefunctions which can be described

with far fewer Fourier modes, simplifies the calculation and makes a plan-wave expansion far

more practical to use.

The core concept of pseudopotentials is that the majority of physical properties of solids depend

solely upon the valence electrons. The core states which lie much lower in energy, only negligibly

interact with these valence states. As such it is possible to partition the electrons between core

and valence states [86–88]. A notable exception to this general rule are elements with semi-core

states which are high enough in energy to influence the chemical properties of the element. In

such elements, ZnS or GaN for instance where the semi-core 3d states of Zn or Ga are close in
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energy to the valence states, the semi-core states must be explicitly included as valence states

for accurate calculations [89, 90].

The most common types of pseudopotentials are norm conserving [91], ultrasoft (US) [92] and

projector augmented-wave method potentials (PAW) [85, 93]. In this thesis we focus on the

use of PAW pseudopotentials, which are introduced in the next section.

2.5.1 Projector augmented-wave method

In this section we will give a brief description of the projector augmented-wave method. A

more full description of this method can be found in the original Blöchl paper [85] while its

implementation in the VASP software package is detailed at length in [93]. We start from the

linear transformation T which relates the all electron wave function |ψ〉 to the auxiliary smooth

pseudo-wavefunction |ψ̃〉:

|ψ〉 = T |ψ̃〉 (2.38)

Next we define ΩR as a spherical radius around the atom R, known as the augmentation

region. In the context of pseudopotentials the augmentation region ΩR relates to the region

encompassing the nucleus and core electrons. In order to have |ψ̃〉 and |ψ〉 differ only in this

spherical augmentation regions ΩR, we denote T as:

T = 1 +
∑
R

|TR〉 , (2.39)

where TR is a transformation operator which is chosen to be non-zero only within ΩR. As

a result, outside of the augmentation region ΩR, |ψ̃〉 and |ψ〉 are equivalent. Within the

augmentation regions we then expand the true all-electron wavefunction ψ in to the partial

waves φi and we can similarly expand the pseudo-wavefunction ψ, in to the smooth partial

waves φ̃i such that:

|φi〉 = (1 + TR)|φ̃i〉 , (2.40)

TR|φ̃i〉 = |φi〉 − |φ̃i〉 , (2.41)

with, |φi〉 = |φ̃i〉 outside the augmentation region ΩR. Provided that the smooth partial waves

form a complete set inside the augmentation sphere, we can expand the smooth pseudo wave

functions as:
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|ψ̃〉 =
∑
i

ci|φ̃i〉 within ΩR, (2.42)

where ci are for now, undetermined expansion coefficients. Since |φi〉 = T |φ̃i〉 we can similarly

expand the true all-electron wave functions as:

|ψ〉 = T |ψ̃〉 =
∑
i

ci|φi〉 within ΩR, (2.43)

with identical expansion coefficients, ci. Since the operator T is linear, the coefficients ci can

be determined as an inner product with the projector functions, |pi〉 :

ci = 〈pi|φ̃i〉 , (2.44)

with 〈pi| satisfying the condition,

∑
i

|φ̃i〉〈pi| = 1 within ΩR, and 0 outside (2.45)

Finally, the transformation T can be expressed as:

T = 1 +
∑
i

TR|φ̃i〉〈pi| = 1 +
∑
i

(|φi〉 − |φ̃i〉)〈pi| (2.46)

Using Eq. 2.46 the all electron wavefunction can be determined from the psuedo-wavefunction

as

|ψ〉 = |ψ̃〉+
∑
i

(|φi〉 − |φ̃i〉)〈pi|ψ̃〉 (2.47)

Further technical details for the practical implementation of the PAW method for use in the

VASP framework can be found in [93].

2.6 The Vienna ab inito Simulation Package

VASP, the Vienna Ab initio Simulation Package [85, 93–96], is a computational tool used for

atomic scale materials modelling, including the calculation of electronic band structure and

quantum mechanical molecular dynamics, from first principles methods.
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Figure 2.2: Flux diagram of the basic steps in VASP to find the self-consistent solution for
the electronic ground state of a system of atoms.

VASP is used to self consistently compute an approximate solution to the many-body Schrödinger

equation, for a system of atoms. In this thesis we will primarily use VASP within the DFT

framework, to solve the Kohn-Sham equations for a system of atoms from first principles. This

involves the iterative optimization of the charge density, as detailed in Fig. 2.2. In this iterative

process the charge density is calculated and used to determine the Kohn-Sham Hamiltonian for

the system. The Kohn-Sham Hamiltonian may then in turn be used to determine the single

particle eigenstates from which a new charge density, which acts as part of the input charge

density for the next iterative step, can be calculated. Over a series of iterative steps the differ-

ence between new and old charge densities is converged to within a desired precision, giving a

final charge density which can be used to accurately determine the Kohn-Sham equations for

the system.

In VASP, central quantities, like the one-electron orbitals, the electronic charge density, and the

local potential are expressed in plane wave basis sets. The interactions between the electrons

and ions can be described using norm-conserving or ultrasoft pseudopotentials, or the projector-

augmented-wave method.

2.7 Band Unfolding

Calculations involving the simulation of realistic systems frequently utilize a supercell (SC)

approach, involving the approximation of a solid as a large periodically repeating cell. For a

sufficiently large cell the quantum mechanics of the system should give a good approximation of

those of a realistic solid. We note however that the application of periodic boundary conditions

can impose an artificial periodicity on interactions in the system. While the primitive cell (PC)

and the supercell descriptions of a perfectly periodic material are equivalent, the supercell

description suffers from having complicated band structures which arise from the folding of

the bands into the smaller supercell Brillouin zone and which occurs even for relatively small
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supercell sizes. To properly interpret the band structure in such cases it is necessary first

to unfold the bands back. Here we have opted to use the BandUp programme following the

procedure laid out in [97, 98] to recover an effective primitive cell picture of the band structure

from the folded supercell band structure.

We begin by defining VPCBZ and VSCBZ as the volumes of the primitive cell and supercell

Brillouin zones respectively. For each wave vector K of the supercell Brillouin zone (VSCBZ)

there exist Nunfold ≡ VPCBZ/VSCBZ wavevectors ki of the primitive cell Brillouin zone such

that

ki = K + GK−→ki , i = 1, 2, 3, ....., Nunfold, (2.48)

where GK−→ki are vectors belonging to the supercell reciprocal lattice. The unfolding vector

GK−→ki unfolds K onto ki and has a reverse operation

K = k−Gk−→K , (2.49)

which folds k into K with folding vector Gk−→K . For any given ki there is only one K that

satisfies this relationship.

Next we denote an eigenstate of the Hamiltonian in the supercell Brillouin zone representation

as |ψSCK 〉 and denote a set of wave vectors ki in the primitive cell Brillouin zone as {k̃i}. These

wavevectors relate to K as detailed in Eq. 2.48 and correspond to primitive cell eigenstates

|ψPCki
〉 which are of the same eigenvalue as |ψSCK 〉. The relation of the eigenstates |ψSCK 〉 and

|ψPCki
〉 is detailed in [99, 100] as,

|ψSCK 〉 =
∑
ki∈K

a(ki; K)|ψPCki
〉 . (2.50)

The probability of eigenstate |ψSCK 〉 having the same character as a primitive cell Bloch state

of wave vector ki is then given in [99, 100] by a spectral weight PK(k), defined as

PK(k) ≡
∑
|〈ψSCK |ψPCk 〉|2 =

∑
|CSCK (g + k−K)|2 , (2.51)

where g is an element of the primitive cell reciprocal lattice and CSCK are coefficients of the plane

waves that span the eigenstates of the supercell. Eq. 2.51 shows that the spectral weight can

be determined entirely from coefficients CSCK – no knowledge of the primitive cell eigenstates

is necessary [99]. Finally a spectral function is defined in [99] as
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A(k; ε) ≡
∑

PK(k)δ(ε− εm(K)) , (2.52)

where ε denotes the energy. From eq. 2.52 it is evident that only (k, K) pairs where K unfolds

onto k need to be included. We can define a cumulative probability function Sk(ε), where

dSk(ε) = A(k; ε)dε. dSk(ε) represents the weight of primitive cell bands at a given primitive

cell wave vector k and can be used within the region of interest in the supercell cell Brillouin

zone to map the supercell states onto a primitive cell grid at energy intervals of size δε, and

thereby assign a weight to each primitive cell point denoting the number of supercell bands at

that point.

In chapter 4 of this thesis we apply the BandUp code within the VASP framework to unfold a

series of disordered Ge1−xSnx alloy supercell band structures. Unfolding of the supercell band

structure provides a clear qualitative indication of which critical point each of the alloy high

symmetry conduction band states arises from and helps clarify how Sn incorporation impacts

the alloy band structure.



Chapter 3

Experimental and theoretical

investigation of GeSn alloys

3.1 Overview

In this chapter we present the details of our study of the nature of the band gap in GeSn alloys

for use in silicon-based lasers. This work involved a combination of theoretical density functional

theory and experimental methodologies, where the experimental side of the investigation of the

band gap of germanium-tin alloys haven been undertaken by our collaborators Dr. Tim D.

Eales and Prof. Stephen J. Sweeney of the University of Surrey. This experimental study

involved the use of photovoltage measurements as a function of hydrostatic pressure on a

series GeSn p-i-n photodiodes, with different Sn compositions (between 0− 10%) grown by low

temperature chemical vapour deposition, by the Fisher Yu group at the University of Arkansas.

[101] By extracting the absorption edge from these photovoltage measurements and measuring

the energy shift of the band gap under pressure the pressure coefficient of the direct band gap

could be determined and compared with theoretically determined values.

Special attention was paid in this study to the investigation of Sn-induced band mixing effects.

We demonstrate from both experiment and ab-initio theory that the (direct) Γ character of the

GeSn band gap changes continuously with alloy composition and has significant Γ character

even at low (6%) Sn concentrations. The evolution of the Γ character is due to Sn-induced

conduction band mixing effects, in contrast to the sharp indirect-to-direct band gap transition

obtained in conventional alloys such as Al1−xGaxAs. Understanding the band mixing effects

is critical not only from a fundamental and basic properties viewpoint but also for designing

photonic devices with enhanced capabilities utilizing GeSn and related material systems.

27
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3.2 Introduction

In the field of photonics, it is a long-held goal to realise all-silicon based technologies. While sil-

icon (Si) has been instrumental to the development of electronics, its use in photonics has been

limited to passive components such as waveguides and devices such as photodetectors and mod-

ulators. The fundamental limitation of Si is its indirect band gap which significantly decreases

the probability of light emission compared to direct band gap semiconductors such as GaAs.

[102] Various strategies have been developed to overcome this fundamental limitation, such as

direct epitaxial growth and heterogeneous integration of conventional III-V semiconductors on

Si. [103–107] Germanium-tin (GeSn) offers the potential to engineer the first tunable group IV

semiconductor alloy with a fundamentally direct band gap. [34, 35] In recent years this ma-

terial system has received considerable attention as a viable pathway for the next generation

of Si-compatible optoelectronic devices. Most significantly GeSn offers the potential to realise

an efficient infrared light source on Si [25, 36, 37] with applications in optical interconnects

and lab-on-chip trace gas detection. In addition narrow band gap semiconductors on Si offer

opportunities for tunnelling enhancement in devices such as tunnelling-field effect transistors

(TFETs) [49, 50] for which GeSn is considered as a potential candidate system. [108, 109]

Also, Si has demonstrated enhanced nonlinear effects which is important for nonlinear THz

applications, [110] and these nonlinear effects are expected to get stronger in narrow band gap

materials such as GeSn and its alloys. [111] Due to recent advances in the growth of high

crystalline quality GeSn and the diverse nature of its applications, the focus on GeSn alloys

has gathered enormous pace. [46, 112–116] Critical to the development of these materials is

obtaining a detailed understanding of the band structure evolution of GeSn and the influence

of Sn concentration on its electronic and optical properties.

Germanium (Ge) is fundamentally an indirect band gap semiconductor. The indirect energy

gap, Eg(L) = 664 meV at 300 K is between the highest valence band (VB) state at Γ and

the lowest conduction band (CB) states at L. The lowest conduction band Γ state lies 136

meV above the L conduction band minimum. [29] A schematic band structure of bulk Ge

is illustrated in Figure 3.1. The present discussion in the literature regarding the band gap

evolution of GeSn alloys is based on the assumption that with increasing Sn composition there is

a sharp transition from GeSn being an indirect band gap material to a direct one. [46, 112, 117–

119] However, there is a large degree of uncertainty for the Sn concentration at which this

transition occurs, with typical values ranging from ∼ 6 − 11% Sn. [41–44] Moreover, this

analysis neglects alloy induced band mixing effects, which could render the assumption of a

sharp direct to indirect band gap invalid. For an alloy with strong band mixing effects, rather

than labelling a semiconductor as “direct” or “indirect” it is more appropriate to consider the

fractional Γ character of the conduction band edge (CBE). Thus, the fractional Γ character

describes what proportion of the lowest conduction states have Γ - like (direct) character.
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Figure 3.1: Schematic illustration of the pure bulk Ge band structure at 300K with the Γ, X
and L energy gaps and pressure coefficients calculated by Wei and Zunger [123] indicated with
respect to the valence band edge at the Γ-point.

Both the optical gain in a laser [120] and the tunnelling rate in a TFET at the band edge

[121] depend directly on the square of the Kane momentum matrix element, | P |2, which

describes the coupling between the lowest conduction and highest valence states. This, in turn,

is directly proportional to the fractional Γ character of the lowest conduction band states. [122]

Therefore, understanding the conduction Γ-L state mixing in GeSn is of central importance

from a fundamental physics perspective, but also for designing the next generation of group IV

electronic and optoelectronic devices.

In this work we show from both experiment and ab-initio theory that there is not a sharp

direct to indirect transition in GeSn. Instead, the evolution of the GeSn optical and electronic

properties is determined by band mixing effects between the Γ and L conduction band states.

It is therefore more appropriate to discuss the nature of the GeSn band gap in terms of the

fractional Γ character of the alloy fundamental band gap Eg rather than in the widely accepted

frame of a sharp indirect to direct gap transition. In earlier theoretical studies these features

have been neglected either through the choice of supercell, [124] or through insensitivity of the

model to these effects (e.g. treating the material in the virtual crystal approximation). [125]

Previous experimental works such as those based on photoreflectance are also insensitive to

indirect transitions [126–128]. Using high hydrostatic pressure measurements, we address the

question of the fractional Γ character of the conduction band edge in GeSn alloys. The direct
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and indirect band gaps in Ge have distinctly different pressure dependencies, as illustrated in

Figure 3.1. The value of the pressure coefficient may therefore be used to distinguish between

direct and indirect band gap transitions in GeSn alloys. GeSn p-i-n diode samples with Sn

concentrations of 6.1%, 6.4% and 9.2% (± 0.3%) are investigated using pressure dependent

photovoltage spectroscopy measurements of the absorption edge in Sec. 3.5. As discussed in

detail below, with only 6% Sn, the pressure coefficient of the GeSn absorption edge, at 9.2

meVkbar−1, is intermediate between that of the indirect L gap (4.3 meVkbar−1) and that of

the direct Γ gap (12.9 meVkbar−1), providing clear evidence of the substantial Γ character

of Eg below what is typically predicted as the indirect-direct band gap crossover in GeSn

alloys. [41–44] Furthermore, we show that with increasing Sn concentration, the pressure

coefficient increases monotonically, approaching that of the direct Γ gap. The intermediate

value pressure coefficient for 6% Sn is analogous to that observed previously in dilute-nitride

GaInNxAs1−x systems, where the reduced pressure coefficient was used to identify a band anti-

crossing interaction between the GaInAs host matrix Γ CBE and N-related localised states

lying above the CBE. [129, 130]

These experimental measurements are accompanied by hybrid functional density functional

theory studies of Ge1−xSnx, in structures that allow for Γ- and L-state mixing effects and

account for alloy induced features on a microscopic level. The significant Γ character and tran-

sitional behaviour in the pressure coefficient observed in the experiment indicates band mixing

effects between the CB states. The experimental findings are supported by our atomistic, first-

principles calculations detailed in Sec. 3.6. The pressure dependent band edge calculations

reveal very similar trends when compared to the experimental results, supporting the Γ-L state

mixing effect. Moreover, our theoretical calculations give insight into the origin of the mixing

between the different conduction band states.

Overall, the combined experimental and theoretical work presented in this chapter provides

evidence of substantial Γ (direct-gap) character in GeSn, even at compositions where the band

gap is expected to be indirect. The dominant Γ character, present even with 6% Sn concen-

trations is indicative of CB mixing effects. The analysis and conclusions presented here are

fundamentally different to the usual assumption of a sharp indirect-to-direct band gap tran-

sition in GeSn alloys. Such band mixing can therefore lead to improved optical properties at

lower Sn concentrations than would otherwise be expected, as well as opening an efficient tun-

nelling path in TFETs. But, at the same time the intrinsic alloy fluctuations may lead to an

inhomogeneous broadening of the band edges, which impacts the TFET turn-on rate, reduces

electron mobility and broadens the gain spectrum thereby reducing the peak gain. Therefore,

a higher carrier density for transparency and threshold may be required in lasers. Although

the composition dependence of mixing effects on broadening is uncertain, mixing is likely to

be strongest near the indirect/direct band gap “crossover” and to become less important with

increasing Sn content.
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Figure 3.2: Schematic illustration of the experimental setup used to perform the photovoltage
measurements under high hydrostatic pressure generated by Dr. Tim Eales [131]

.

3.3 Experimental methods

3.3.1 Sample Fabrication

The samples were fabricated, by Fisher Yu’s group in the University of Arkansas, into circular

mesa structures with diameters of 100, 250 and 500 µm using photo lithography and wet

etching processes. The wet chemical etch (HCl: H2O2: H2O = 1:1:20 at room temperature)

showed a stable etching rate of 100 nm/min regardless of Sn composition. A 100-nm-thick SiO2

passivation layer was then deposited by plasma-enhanced chemical vapour deposition followed

by the openings made for the metal contacts. The p- and n-type metal contacts consist of 10

nm Cr and 200 nm Au defined by metal deposition and liftoff processes.



Experimental investigation of GeSn alloys 32

3.3.2 Experimental Setup

Figure. 3.2 shows the experimental setup that was used to perform photovoltage measurements

on the GeSn photodiodes under high hydrostatic pressure. For these photovoltage measure-

ments light from a broadband source was selected using a Bentham TMc300 Triple Grating

Monochromator. The spectrometer steps then through wavelengths from 2µm - 2.5µm using

an internal optical chopper to modulate the output so as to vary the absorption depth of the

photons. The GeSn samples being investigated were mounted on transistor outline headers

using thermoconductive epoxy as an adhesive and the transistor outline pins were contacted

to the mesa’s n and p contacts with gold wire bonding. A Stanford Research Systems SR830

lock-in amplifier was placed in parallel with the device to measure photovoltage from the sam-

ple. The device was loaded into a non-magnetic CuBe high pressure cell. Hydrostatic pressure

was applied with a gas compression system (UniPress) using helium gas as an inert hydrostatic

pressure medium. Optical access was provided through a small sapphire window in the high

pressure cell and the light was focused onto the mesa.

3.3.3 Surface Photovoltage

Surface photovoltage (SPV) is defined as the illumination-induced change in the surface po-

tential. The underlying principle of photovoltage measurements is that the depletion region in

the p-n junction of a semiconductor has an internal electric field sue to the ionization of donors

and acceptors at the junction. By directing modulated light on the depletion region of the p-n

junction, one can induce the formation of free carriers, as photons from the light are absorbed

creating electron hole pairs. These carrier separate out due to the internal electric field of the

p-n junction and can be detected as photovoltage. [132] From these measurements and the

Beer Lambert Law the absorption coefficient can then be extracted. [133]

3.4 Theoretical Framework

The band structure calculations in this chapter are undertaken using density functional theory

(DFT) in the Heyd Scusceria Ernzerhof (HSE) hybrid functional scheme. [78, 79, 134] The

details of our HSE-DFT calculations, implemented in the Vienna ab-initio software package

(VASP) [95, 96] are given in Sec. 3.4.1 below. However, before presenting the details, it is useful

to discuss briefly theoretical approaches to analyse the evolution of the band structure and

potential (conduction) band mixing effects in an alloy such as GeSn. A widely used approach

to address this question is band unfolding, where the bands of the supercell are folded back to

the larger original primitive first Brillouin zone. [97, 99, 135] From the resulting unfolded band

structure, the k character of the energetically lowest lying CB state in the Brillouin zone (e.g.
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at the Γ and/or the L point) can be identified. Analysing the spectral weights of this state at

different k-points can then give insight into band mixing effects. However, depending on how

many states are involved in the band mixing, it can be difficult to identify these contributions

easily and clearly. For example, because there are 4 L states in the unfolded band structure,

and the lowest state at Γ can mix with all 4 of them, only a small fraction (25%) of this L

character is associated with the one L point typically shown in an unfolded band structure.

A quick visual inspection of the unfolded band structure can then significantly underestimate

the amount of mixing present. Here we employ a different approach to study the evolution

of the CBE character in GeSn alloys, namely performing hydrostatic pressure dependent DFT

calculations. In doing so we obtain the same information as from the band unfolding, but with

the additional benefits that we can (i) identify band mixing effects more clearly, given the large

differences in Γ, L and X pressure coefficients and (ii) directly compare our theoretical results

to the experimental data.

3.4.1 Density Functional Theory

All our density functional theory (DFT) studies have been performed within the Heyd Scuse-

ria Ernzerhof (HSE) hybrid functional scheme, using the projector augmented-wave (PAW)

method. [85, 93] More specifically we apply here the HSEsol scheme. [95] The calculations have

been carried out in the framework of the plane-wave-based ab initio package VASP. [93, 95]

For an accurate description of the CB and VB structures of both Ge and α-Sn we have used

the following settings: the screening parameter µ was set to 0.2 Å−1 while the exact exchange

mixing parameter is 0.3. To avoid artefacts from Pullay stresses when performing structural

relaxations and connected electronic structure calculations, a large plane wave cut-off energy

of 400 eV was used. For the bulk calculations, the underlying Γ-centered k-point grid is 6x6x6.

For the supercell calculations (16 atom face centred cubic cell, and 64 atom cubic cells) a 3x3x3

Γ-centered k-point mesh was applied. Our calculations include spin-orbit coupling (SOC) to

achieve an accurate description of the α-Sn band structure at the Γ point. The semi-core

d-states in Ge and Sn were treated as core electrons, since several studies have reported that

unfreezing them has a negligible effect on the electronic structure. [124, 136] Within this theo-

retical framework the conduction band splitting between the Γ and L states in Ge is 143 meV,

which is in very good agreement with the literature data. Furthermore, for α-Sn we calculate

a spin orbit splitting energy (4ESO) of 4ESO = 0.751 eV and a negative band gap of Eg(Γ) =

−0.373 eV. Again these numbers are in good agreement with the experimental (4ESO = 0.8

eV [137]; Eg(Γ) = – 0.413 eV [137]) and theoretical literature data (4ESO = 0.681 eV [136];

EgΓ= –0.519eV [136]) data. We conclude that the DFT approach used is ideally suited to in-

vestigate GeSn alloys on a first-principles level and can form the basis for developing empirical

(atomistic) models.
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3.4.2 Hydrostatic pressure coefficients

States originating from different wave vectors k in the Brillouin zone of the primitive unit

cell of the underlying diamond lattice are folded back to the zone centre (K = 0) in supercell

calculations. It can therefore be difficult to identify the character of individual zone-centre

states in the band structure of a Ge1−xSnx supercell, and hence to deduce the composition

at which the alloy becomes a direct-gap semiconductor. To address this issue, we investigate

how the alloy CB structure changes as hydrostatic pressure is applied to the alloy supercell.

The pressure coefficients
dEg

dP for the indirect L6c-Γ8v and X9c-Γ8v and direct Γ7c-Γ8v band gaps

of Ge have respective values of 4.66, -1.60 and 13.33 meVkbar−1 in our HSEsol calculations.

These values are again in good agreement with experimentally calculated values of Γ and L.

[138–140] For α-Sn the pressure coefficients of Γ and L are comparable to those in Ge, having

calculated values of 15.7 meVkbar−1 and 4.42 meVkbar−1 respectively. [123] As such it is

expected that the pressure coefficients of the dilute Ge1−xSnx samples analysed in this work

will not significantly differ from those of Ge.

Due to the significant difference in the pressure coefficients of the Γ and L states in Ge, contri-

butions from direct and indirect-like states can be readily identified in dilute GeSn alloys. In

this manner the calculation or measurement of
dEg

dP for the fundamental band gap then allows

one to identify the character of the band gap, and hence to track the evolution of the character

of the CB edge states and band gap with increasing Sn composition x.

3.5 Experimental Results

In this section we discuss the results of the experimental investigation of the optical properties

of the GeSn p-i-n photodiodes which was carried out by Prof. S. Sweeney and Dr. T.D. Eales

on samples grown by the Fisher Yu group in Arkansas. We start in Sec. 3.5.1 by reviewing

how the GeSn p-i-n photodiodes were grown. In the following sections we then discuss the

results obtained by subjecting these GeSn samples to high hydrostatic pressure and taking

photovoltage measurements from which the pressure coefficient of the samples conduction band

edge was then determined.

3.5.1 Sample synthesis

The optical properties of GeSn are investigated using GeSn p-i-n photodiodes grown with low-

temperature Chemical Vapour Deposition (CVD). The Double Heterostructure (DHS) p-i-n

photodiodes were grown on a Si substrate using a thick strain relaxed, p-doped, Ge buffer as a

virtual substrate. This was followed by the deposition of a 200nm unintentionally doped GeSn
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film and an n-doped Ge cap layer. The Sn concentrations in the GeSn layer were measured

as 6.1%, 6.4% and 9.2% using X-ray diffraction, with residual compressive strains of -0.5%,

-0.4% and -0.5% respectively. The high crystal quality of the GeSn layers was confirmed

using cross-sectional transmission electron microscopy. Further details of the growth can be

found elsewhere. [141] The Sn concentrations correspond to the range of values where the

contemporary literature predicts the indirect to direct band gap crossover to occur in GeSn.

[41–44] As we explain below, due to band mixing effects it is more appropriate to discuss the

band gap character rather than the indirect or direct nature of the band gap over a critical

composition range. An important metric is the fractional Γ character, which describes here the

proportion of the CBE state that projects onto Γ-like bulk Ge states. The band edge optical

recombination rate, tunnelling rate and optical gain are all expected to increase monotonically

with increasing Γ character. [120, 121, 129]

3.5.2 Absorption Coefficient and absorption edge

The absorption coefficient (α) describes the intensity attenuation of the light passing through

a material and can be expressed as a summation of the absorption cross-sections per unit

volume of a material for a given optical process. The higher the absorption coefficient α is,

the shorter is the distance that the light penetrates into the material before it is absorbed.

The absorption coefficient of a semiconductor is traditionally expressed using the relationship

between absorption coefficient α and the photon energy hν for the fundamental band gap of

Eg as

α ≈ (hν − Eg)n

where n has a value of 1/2 for a direct band gap transition and a value of 2 for indirect band

gap transitions. [133] Using this relationship and the data from the photovoltage measurements

undertaken on the Ge1−xSnx photodiodes the absorption edge for each cell could be determined

from a plot such as that shown in Fig. 3.3. For this investigation of GeSn photodiodes

absorption in the thin 50 nm Ge cap layer was assumed to be negligible and therefore neglected.

The band edge character of GeSn is determined here by measuring the pressure coefficient of

the effective band edge. For the purpose of this work, the effective band edge refers to the

aggregate effect of the low energy CB states, which determines the optical properties of GeSn.

The pressure coefficient was determined by extracting the absorption spectrum from photo-

voltage measurements and measuring the energy shift of the band edge under high pressure.

Photovoltage spectra were obtained using a lock-in-amplifier and a Bentham grating-based

monochromator with an integrated light source to select wavelengths. The monochromated
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Figure 3.3: (a) Electroluminescence and the square of the absorption coefficient measured
at atmospheric pressure for the Ge0.936Sn0.064 photodiode. (b) Absorption spectra (α2) under
hydrostatic pressure, measured at room temperature.

light was modulated using an optical chopper. The linewidth for each wavelength measure-

ment was 10 nm. For the high-pressure measurements, the GeSn photodiodes were housed

inside a CuBe pressure cell with light focused through a sapphire window onto the device. Hy-

drostatic pressures of up to 5 kbar were applied using a compression system with helium gas as

the pressure medium. It is essential to have a strong band edge feature in the absorption spec-

trum which can be consistently measured under pressure. Taking the square of the absorption

spectrum, plotted as a function of photon energy, and extrapolating the falling slope to the en-

ergy axis (Tauc equation [142]) gives good agreement with the peak of the electroluminescence

spectrum measured at ambient pressure shown in Fig.3.3(a).
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Due to the small aperture window in the high pressure cell, it was not possible to obtain electro-

luminescence under pressure owing to the low signal-to-noise ratio; however, this extrapolation

procedure provides a strong and consistent method to establish the pressure coefficient of the

effective band edge. Extrapolation of α2 has been used previously in the literature to deter-

mine the compositional dependence of the direct band gap of GeSn. [101, 133] However, as

revealed by the high pressure measurements detailed below, the compositional dependence of

the absorption edge is somewhat more complex, and we find from the pressure coefficients that

what is measured as direct gap absorption can actually be absorption from states with mixed

Γ (direct) and L (indirect) character.

Figure 3.4: (a) The energy shift of α2 as a function of pressure from atmospheric pressure
for Ge and Ge1−xSnx photodiodes. The gradients of the pressure dependence give the pressure
coefficients of the band edge, which are plotted as a function of Sn concentration in (b). The
sigmoid plot is a guide to the eye.

3.5.3 Pressure coefficients

The method for determining the pressure coefficient of the effective band edge is illustrated in

Figure 3.3(b). With increasing pressure, the absorption edge shifts to higher energies, due to

the positive pressure coefficients associated with the Γ- and L- conduction band minima. At

each pressure, we observe a strong linear region in the α2 data. The measured relative shifts of

the band edge as a function of pressure for the three GeSn photodiodes are presented in Figure

3.4(a). In each case, there is a strong linear relationship between the shift of the absorption

edge and the applied pressure value. A pressure coefficient can therefore be reliably determined

for each sample. For comparison, the movement of the absorption edge of a commercial Ge

photodiode is presented. As can be seen from Figure 3.4(a) the pressure coefficient of 4.3

meVkbar−1, derived for the Ge photodiode, is in good agreement with the pressure coefficient of

the L conduction minima in pure Ge. The derived pressure coefficients of the GeSn photodiodes
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are 9.2 meVkbar−1, 10.4 meVkbar−1 and 12.5 meVkbar−1 for the 6.1%, 6.4% and 9.2% Sn

samples, respectively.

There are a number of notable features in these results. Firstly, the pressure coefficient of

9.2 meVkbar−1 for the 6.1 % Sn sample is just over midway between the L-point value (4.3

meVkbar−1) and the Γ direct gap value (12.9 meVkbar−1) of pure Ge. This provides evidence

for substantial Γ character at the band edge in GeSn, even at a composition where the band

gap is generally predicted to be indirect. The dominant Γ character of the band edge, even

with such a low Sn concentration is, as we show below, evidence of CB mixing effects. Secondly,

with increasing Sn concentration, there is a monotonic increase in the pressure coefficient of

the band edge. Significantly, there is no sharp transition in the pressure coefficient with Sn

concentration, as would be expected in conventional alloys such as GaAs [143], AlGaAs [144],

InGaSb [145] and AlInAs [146]. Instead, we observe a continuous increase in the Γ character

with Sn concentration. This evolution is illustrated in Figure 3.4 (b), which plots the pressure

coefficient as a function of Sn concentration, illustrating the asymptotical approach of the GeSn

pressure coefficient to that of the Γ conduction band minimum of Ge.

3.6 Density Functional Theory analysis

In this section we present the results of the DFT analysis undertaken on a series of ordered

and disordered Ge1−xSnx supercells of varying Sn contents. This analysis is divided into two

distinct segments; Section 3.6.1, where we analyze the dependence of the band gap in free-

standing GeSn alloys, to gain insight into the fundamental electronic structure properties of

these systems and section 3.6.2, where we analyze the pressure dependence of the conduction

band edge states of Ge1−xSnx with varying composition x to gain insight into the key role of

band mixing effects on the evolution of the band structure in Ge1−xSnx alloys with increasing

% Sn content.

3.6.1 Band structure calculations: Pressure dependence of band gap

To analyze the pressure dependence of the band gap in free-standing GeSn alloys and to gain

insight into the fundamental electronic structure properties of these systems from theory, we

proceed in the following way. First, and key to this study, 16- and 64-atom supercells (SCs)

have been chosen, for both of which the bulk Ge conduction band L and X states fold to the

supercell Γ point. With these states folding back in this way, band mixing can then occur

between Γ and the high symmetry L and X conduction band states. This is in contrast to

previous DFT calculations where supercells have been chosen so as to exactly avoid this mixing,

[124] or where mixing effects have not been considered in the analysis of the band structure.
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[125] Moreover, and in line with the experimental considerations, it is important to understand

how the electronic structure and therefore the Γ – L conduction state mixing evolves with Sn

content. Taking these two factors into account, Sn composition and Γ – L conduction band state

mixing, the following cells have been investigated in our theoretical analysis. To study very low

Sn contents a 64 atom supercell has been constructed where one Ge atom is replaced by a Sn

atom (Ge63Sn1). This leaves us with a system of only 1.56% Sn (Ge0.9844Sn0.0156). Given that

the experimental data, Figure 3.4 (a), shows clear indication of Γ – L state mixing for GeSn

alloys with 6% Sn, we have primarily targeted this composition in the calculations. To analyze

the importance of the alloy microstructure on the results for this composition, two different

cells with nominally the same Sn content (6.25% Sn) have been generated. The first supercell is

again a 64 atom supercell. Here, 4 Ge atoms have been substitutionally replaced at random by

4 Sn atoms (Ge60Sn4). In addition, we have considered a 16 atom supercell (face centred cubic

(fcc) cell) with one Sn atom substitutionally replacing a Ge atom (Ge15Sn1). In this case, due

to the small supercell size and the periodic boundary conditions, a very ordered arrangement

of the Sn atoms has been constructed. Below we discuss in more detail the impact of the

supercell size on the results. Using these cells, we have studied the composition and pressure

dependence of the band gap energy Eg of the different systems. To do so, the structures have

been initially relaxed (cell shape, volume and internal degrees of freedom of the atoms) to find

the equilibrium lattice constant. To mimic the effect of pressure on the cell, the equilibrium

lattice constant has been reduced and the internal atomic positions have been relaxed again at

each pressure. Figure 3.5 shows the results of these calculations.

Following the experimental approach, we have calculated here the relative band gap change

4Eg with pressure, meaning that the band gap shift with respect to the zero pressure data

(equilibrium structure) is displayed. As a reference, we have performed the same calculation

for a two atom, pure Ge cell. Again, this procedure is similar to the experimental setup. From

the pure Ge cell the pressure dependence of the Ge band gap at the Γ-point, 4EGeΓ (Bulk) (red

filled squares), and the fundamental band gap, 4EGeL (Bulk) (green filled diamonds), between

the valence band edge (Γ8v-state) and the conduction band edge at the L-point (L6c-state),

have been extracted. The pressure coefficient (dEdP (Γ) )theory for 4EGeΓ (Bulk) is found to have a

value of (dEdP (Γ) )theory = 13.3 meVkbar−1. For the indirect band gap 4EGeL (Bulk) a pressure

coefficient of (dEdP (L) )theory = 4.66 meVkbar−1 is calculated. These numbers are in very good

agreement with the values (dEdP (Γ) )exp = 12.9 meVkbar−1, (dEdP (L))exp = 4.34 meVkbar−1)

given above. Starting with the 1.56% Sn data (Ge0.9844Sn0.0156, blue open circles) we find that

the pressure dependence of the band gap energy at this very low Sn content (4.75 meVkbar−1)

is extremely close to the pressure coefficient of the indirect band gap of pure Ge (green filled

diamonds in Fig. 3.4), confirming an indirect band gap at very low Sn content. However,

when turning to the 6.25% Sn systems (magenta and black open triangles in Figure 3.5), the

calculated band gap pressure dependence of the GeSn alloy shows very similar results when
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Figure 3.5: The relative band gap 4 Eg as a function of the applied pressure from hybrid-
functional density functional theory calculation. Calculations have been performed for GeSn
supercells with different Sn contents. As a reference, calculated data for pure Ge bulk systems
are also given.

compared to the experimental data, cf. Figure 3.4 (a). A closer inspection of the 6.25% Sn

system reveals that even though the 16 (magenta open triangles in 3.5) and the 64 (black open

triangles) atom supercells have nominally the same Sn content, they exhibit clearly different

pressure coefficients of 10.5 meVkbar−1 and 8.2 meVkbar−1, respectively. This highlights that

the alloy microstructure and the supercell size noticeably affect the electronic structure of this

system. This effect will be investigated and discussed further below, when band mixing effects

are investigated in more detail.

Overall, the theoretical and experimental data show that by 6% Sn the alloy conduction band

edge has strong Γ character ( > 50% Γ in experiment and the 16-atom supercell; > 40% in the

64-atom supercell considered). Consequently, when accounting for the CB Γ-L state mixing

in the calculations, our theoretical results are consistent with the experimental observation

of a continuous transition from an indirect-to-direct band gap material. This aspect has been

widely neglected in previous literature studies and sheds new light on the evolution of band gap

in GeSn alloys with Sn content, clearly modifying the previous perception of a sharp indirect

to direct band gap transition. [42, 124, 147, 148]
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Figure 3.6: (a) Pressure dependence of the 11 energetically lowest zone centre conduction
band (CB) states in Ge0.9844Sn0.0156 (64 atom supercell with 1 Sn and 63 Ge atoms, Ge63Sn1)
with respect to the valence band (VB) edge energy. (b) Change in energies in conduction band
states shown in (a) with pressure. Additionally, the pressure dependence of the pure Ge Γ-
(red dashed), L- (black solid) and X- (blue dashed-dotted) gaps are also shown. (c) Same as
(a) but for Ge0.9375Sn0.0625 (64 atom supercell with 4 Sn and 60 Ge atoms; Sn atoms randomly
distributed; Ge60Sn4). (d) Same as in (b) for the Ge0.9375Sn0.0625 64 atom supercell.

3.6.2 Band structure calculations: Band mixing effects

To further support this finding, we have studied the pressure dependence with respect to the

VB edge of the first 11 CB states of the two 64 atom supercells considered here. The results of

this study are displayed in Figure 3.6. The first row, Figure 3.6 (a) and (b), shows data for the

1.56% Sn system (Ge63Sn1). In Figure 3.6 (a) the energy separation of the energetically lowest

11 conduction band states with respect to the VB edge energy at each pressure is displayed.

Figure 3.6 (b) depicts the relative energy shift of the conduction band states with applied
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pressure. The results of the same analysis, but this time for the 6.25% Sn system, carried out

with a random distribution of 4 Sn atoms in a 64 atom supercell (Ge60Sn4), are depicted in

Figure 3.6 (c) and (d).

3.6.2.1 Band structure calculations: Band mixing effects at low Sn contents

We start with the analysis of the 1.56% Sn system (Figure 3.6 (a) and (b)). When looking at the

relative energy positions of the different CB states with respect to the VB edge at each pressure,

Figure 3.6 (a), we find that the first three conduction band states (4ECB1 , 4ECB2 , 4ECB3 ) are

degenerate in energy. When looking at their pressure dependence, Figure 3.6 (b), these states

exhibit the pressure dependence of the conduction band L-state in pure Ge (black solid line in

Figure 3.6 (b)), consistent with the band gap data in Figure 3.5 for 1.56% Sn. Before turning to

4ECB4 , and 4ECB5 (triangles in Figure 3.6 (a)), we first look at 4ECB6 to 4ECB11 . Again, these

states are almost degenerate in energy. Furthermore, they are energetically clearly separated

from 4ECB1 to 4ECB5 . We attribute 4ECB6 to 4ECB11 to X-like states. This is confirmed by

their pressure dependence, cf. Figure 3.6 (b), which follows closely the pressure dependence

of the Ge bulk X CB states (blue dashed dotted line). A closer inspection of the pressure

dependence of 4ECB11 (light blue stars) reveals a slightly larger pressure coefficient than the

other X-like states 4ECB6 to 4ECB10 . Before looking at this behaviour in detail, we examine

the pressure dependence of 4ECB4 and 4ECB5 first. Here, these two states exhibit pressure

coefficients which are intermediate between the pressure coefficients of Ge bulk CB L (black

solid) and Γ states (red dashed). In the supercells considered here, one expects in general

4 L-like states, with three having p-like symmetry about the Sn atom and one having s-like

symmetry. Therefore 4ECB4 and 4ECB5 are a mixture of Γ and L states with s-like symmetry

on the Sn site. Additionally, given that 4ECB11 shows a slight deviation from the pure Ge X-like

bulk pressure dependence we expect also a contribution from this X-like state to 4ECB4 and

4ECB5 . The predicted mixing of the different states is further supported by the observation

that the sum of the pressure coefficients of 4ECB4 , 4ECB5 and 4ECB11 is within 1 meVkbar−1

of the sum of the pressure coefficients of the bulk Ge Γ, L and X states. Consequently, our data

clearly indicate band mixing effects between s-like L, Γ and X conduction band states. However,

for the Sn content of 1.56% the mixed states lie above the conduction band minimum, and the

conduction band edge is still made up of states that are L-like in character. To understand the

effect of increasing Sn content on band mixing effects and, thus, the connected consequences for

the band gap of GeSn alloys, we turn now to the 64 atom supercell with a random distribution

of 4 Sn atoms.
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3.6.2.2 Band structure calculations: Band mixing effects at higher Sn contents

In comparison to the 1.56% Sn case, cf. Figure 3.6 (b), the striking difference in the 6.25% Sn

case is that the lowest CB state (4ECB1 , green squares), Figures 3.6 (c,d), has a pressure coef-

ficient intermediate between the Ge bulk CB Γ (red dashed line) and L state (black solid line),

with a second state, 4ECB5 (green triangles) also having an intermediate pressure coefficient.

Again, this indicates Γ-L state mixing due to Sn incorporation in the supercell. Looking now

at the other CB states, Figure 3.6 (c), 4ECB2 to 4ECB4 are all L state related, as confirmed

by their pressure dependence, Figure 3.6 (d). Due to alloy disorder, their degeneracy is lifted.

4ECB6 to 4ECB11 are again X-like in character, with some mixing from Γ- and L-like states, as

can be seen from their pressure dependence, Figure 3.6 (d). Our results on the 16 atom fcc SC

with just 1 Sn atom, but nominally the same Sn content, give similar trends in the pressure

dependence of the band gap as the 64-atom random alloy SC (cf. Figure 3.5). But, as one can

infer from Figure 3.5, a higher pressure coefficient of the band gap is observed in the 16 atom fcc

SC. We attribute this to the small SC size and the resulting long-range correlations (ordering)

introduced by the periodic boundary conditions, which leads to increased Γ character for the

lowest conduction state in the 16 atom fcc SC compared to the 64-atom random structure con-

sidered. This comparison highlights that further studies are required to understand the impact

of the SC size on the CB mixing effects in full detail. To do so, systems with several hundred

to thousands of atoms would need to be studied, in order to minimize the influence of long

range ordering arising from the periodic boundary conditions of the simulation cell. However,

systems of such size are beyond the capabilities of standard DFT approaches. Consequently,

empirical models, such as the tight-binding or empirical pseudopotential method are required.

However, these empirical methods have to be benchmarked against, for example, DFT results

to obtain reliable results. Therefore, our presented HSE-DFT calculations not only provide

new insight into the electronic structure of GeSn alloys, they can now also serve as a starting

point for developing empirical models to study the electronic and optical properties of these

systems. Overall, even without using these very large SCs, our calculations support that band

mixing effects in GeSn alloys lead to a continuous evolution of the material from being an

indirect band gap system to a direct one.

3.7 Chapter Summary

There are a number of interesting features arising from these results that are worth discussing.

In this work we investigated the compositional dependence of the band gap character of GeSn

alloys both from theory and experiment. On the experimental side, three GeSn alloy photodi-

odes were studied with Sn concentrations between 6%− 10%. The experimental approach uses
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hydrostatic pressure to reversibly modify the electronic band structure of GeSn. The substan-

tial difference in the conduction band pressure coefficients of Γ and L allow their contributions

to the effective band edge to be determined under pressure. Measuring the effect of hydrostatic

pressures on the absorption edge, we derived pressure coefficients of the effective band edge, as

a function of Sn composition. Conventionally in Group IV and III-V binary and ternary alloy

supercells the pressure coefficient of the conduction band edge is found to be purely composed

of band gap character arising from a single conduction band critical point, such as Γ, L or X.

In sharp contrast, the results of this investigation of dilute Ge1−xSnx alloys show that the pres-

sure coefficients measured experimentally for the ≈ 6% Sn photodiodes is intermediate between

those of Γ and L in pure Ge, as shown in Fig. 3.3. The pressure coefficients measured for the

two GeSn photodiode samples with x ≈ 6-7% are in sharp contrast to the existing literature,

which suggests there should be a sharp transition from a purely L-like (indirect gap) pressure

coefficient to a purely Γ-like (direct gap) pressure coefficient after some critical Sn composition.

The results indicate instead continuous evolution of Γ-character in the conduction band gap

edge, as the band gap narrows as a function of Sn concentration. This monotonic increase of

Γ character at the conduction band edge ,whose pressure coefficient appears to asympotically

approach that of Γ in pure Ge, is indicative of band mixing effects in the alloy which have not

generally been accounted for in the contemporary literature.

As a result of the presence of strong band mixing effects in the alloy the distinction between

direct and indirect band gaps breaks down. It becomes instead more appropriate to discuss the

nature of the band gap in terms of the fractional Γ character of the conduction band edge states.

This fractional Γ character describes the extent to which the band edge state is composed of

states arising from the Γ states of bulk Ge.

Further investigation of the impact of band mixing on the electronic properties of GeSn was

performed here by calculating the band structure using hybrid functional DFT. These calcula-

tions further supported the experimentally observed band mixing effects and thus a continuous

evolution of the band gap from being indirect to direct.

Band mixing effects have important implications for the viability of future electronic and pho-

tonic devices based on GeSn alloys. One consequence of band mixing is improved optical

properties at lower Sn concentrations than would otherwise be expected. However, mixing and

random alloy fluctuations may lead to an intrinsic inhomogeneous broadening of band edges.

This would broaden the gain spectrum, requiring a higher carrier density for transparency

and threshold. Interband tunnelling could likewise be enhanced at lower Sn concentrations

but with inhomogeneous broadening reducing the rate at which current increases with voltage.

In addition, strong mixing effects will increase electron scattering in conventional electronic

devices, thereby reducing electron mobility compared to that expected using a virtual crystal
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approximation. The composition dependence of mixing effects is not yet known and will be

further investigated in the next chapter.





Chapter 4

Electronic and optical properties of

GeSn alloys

4.1 Overview

In this chapter we present a theoretical analysis of electronic structure evolution in the group-

IV alloy Ge1−xSnx with increasing content of x. We outline the theoretical density functional

theory methods we use to investigate the alloy electronic stucture in ordered and disordered

supercells of Ge1−xSnx. We find that Sn incorporation primarily impacts the conduction band

(CB) structure while leaving the valence band relatively unperturbed. We demonstrate that,

in addition to producing a strong reduction in the band gap and increase in the spin-orbit split-

ting energy per % Sn replacing Ge, Sn incorporation drives hybridisation of Ge states lying

close in energy to the CB edge. The importance of alloy disorder in determining the details

of the electronic structure is highlighted by tracking the character of the alloy CB edge eigen-

states in response to the formation of a Sn-Sn nearest neighbour pair. Having established the

requirement to explicitly consider alloy disorder, we analyse the electronic structure evolution

in realistic (disordered) alloy supercells using a special quasi-random structure approach. In

Ge1−xSnx alloys this analysis shows the continuous evolution of a direct band over a range of

Sn compositions x . 10% due to strong Sn-induced band mixing.

In our work, we calculate that Sn incorporation results in a strong reduction of the fundamental

band gap, by ≈ 34 meV per % Sn replacing Ge. Secondly, the band gap becomes direct in

character with increasing x, but the alloy CB edge eigenstates in our supercell calculations

are in general neither purely indirect nor direct in character, but predominantly contain an

admixture of indirect (Ge L6c) and direct (Ge Γ7c) character.

Based on the HSE calculations, a semi-empirical valence force field (VFF) potential and sp3s∗

tight-binding (TB) Hamiltonian were parametrised by colleagues. Comparing the HSE, mBJ

47
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and TB models, and using the HSE results as a benchmark, we demonstrate that: (i) mBJ

calculations provide an accurate first principles description of the electronic structure at re-

duced computational cost, (ii) the VFF potential is sufficiently accurate to circumvent the

requirement to perform first principles structural relaxation, and (iii) TB calculations provide

a good quantitative description of the alloy electronic structure in the vicinity of the band

edges. Our results also emphasise the importance of Sn-induced band mixing in determining

the nature of the conduction band structure of Ge1−xSnx alloys. The theoretical models and

benchmark calculations we present inform and enable predictive, computationally efficient and

scalable atomistic calculations for disordered alloys and nanostructures. This provides a suit-

able platform to underpin further theoretical investigations of the properties of this emerging

semiconductor alloy.

The remainder of this chapter is organised as follows. In Sec. 4.2 we describe the first prin-

ciples framework used to calculate the structural and electronic properties of Ge1−xSnx alloy

supercells, as well as the generation of the special quasi-random structures (SQSs) used in our

analysis of disordered alloys. We also describe in this section how we use calculations of the

band structure as a function of hydrostatic pressure to determine the hybridised character of

the CB edge states. This is followed by an analysis of structural relaxation using our different

models in Sec. 4.3. The results of our calculations are then presented, beginning in Sec. 4.4 with

an analysis of the impact of Sn incorporation on the electronic structure of ordered Ge1−xSnx

alloy supercells. In Sec. 4.5 we quantify the importance of Sn clustering, via analysis of the

impact of nearest-neighbour Sn-Sn pair formation on the electronic structure. Then, in Sec. 4.6

we analyse the evolution of the electronic structure with x in realistic, disordered (SQS) alloy

supercells. Finally, in Sec. 4.7 we summarise and conclude.

4.2 Theoretical Models

4.2.1 Summary of theoretical methods

In this section we outline the theoretical methods we utilise in this study of germanium-tin

alloys, beginning by outlining the density functional theory (DFT) methods we have used,

including a summary of how we have parameterised the DFT and which functionals have been

utilised in this study. We then proceed to detail how the VFF and TB models developed by

colleagues to investigate Ge1−xSnx alloys allow to extend from supercells containing only 102

atoms for HSE or mBJ DFT, up to systems of sizes as large 104 to 106 atoms. Following this we

outline our choice of supercells and their impact on mixing effects in the alloy before detailing

the special quasi random structures we have used for our investigation of the disordered alloy

supercells.
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4.2.2 First principles: hybrid functional and modified Becke-Johnson DFT

Our analysis of the Ge1−xSnx electronic structure is based on DFT calculations employing

two distinct exchange-correlation (XC) functionals: (i) the Heyd-Scuseria-Ernzerhof (HSE)

hybrid XC functional [78, 79] modified for solids (HSEsol), [134] and (ii) the modified Becke-

Johnson (mBJ) XC functional. [75] The semi-core d states of Ge are treated as core electron

states, since unfreezing these states has been demonstrated to have a negligible impact on

the calculated electronic structure. [124] We therefore employ pseudopotentials in which the

(4s)2(4p)2 orbitals of Ge and (5s)2(5p)2 orbitals of Sn are explicitly treated as valence states.

Due to the large relativistic and consequent spin-orbit coupling effects associated with Sn

[149], and to a lesser extent with Ge, all calculations explicitly include spin-orbit coupling.

All DFT calculations were performed using the projector augmented-wave method, [85, 93] as

implemented in the Vienna Ab-initio Simulation Package (VASP) [95, 96].

Since Sn incorporation is found to strongly impact the Ge band structure close in energy to the

CB edge, and as we are interested in examining the transition from an indirect to direct band

gap in Ge1−xSnx at low Sn compositions x . 10%, we prioritise the accuracy of the description

of the Ge band structure close in energy to the CB edge. For the HSEsol calculations we

therefore treat the exact exchange mixing α as an adjustable parameter, the value of which is

chosen to reproduce the 146 meV low temperature separation in energy between the measured

0.744eV fundamental indirect L6c-Γ8v and 0.890eV direct Γ7c-Γ8v band gaps of Ge. Similarly

for the mBJ calculations the relative weight c of the conventional Becke-Johnson exchange

potential is also treated as an adjustable parameter and chosen to reproduce the Γ7c-L6c energy

difference. A screening parameter of µ = 0.2 Å−1 was used in all of the HSEsol calculations.

For primitive unit cells we utilise a Γ-centred 6×6×6 Monkhorst-Pack k-point grid for Brillouin

zone integration, which is downsampled appropriately for larger supercells in order to preserve

the resolution of the Brillouin zone sampling. A plane wave cut-off energy of 400 eV is used for

all calculations, which is chosen to be sufficiently high to minimise Pulay stress and allow for

accurate structural relaxation. Structural relaxation is achieved via free energy minimisation,

by allowing the lattice vectors and ionic positions to relax freely, subject to the additional

criterion that the maximum force on any atom in the supercell does not exceed 0.01 eV Å−1.

To generate relaxed atomic positions for HSEsol (mBJ) electronic structure calculations, the

HSEsol (LDA) XC functional is used to perform structural relaxations. Due to the large

relativistic effects associated with Sn [149], and to a lesser extent with Ge, spin-orbit coupling

is explicitly included in the computation of the lattice free energy for all structural relaxations.

Using this Γ-centred 6 × 6 × 6 Monkhorst-Pack k-point grid for Brillouin zone integration in

calculations for a Ge primitive unit cell, it was found that α = 0.3 (i.e. 30% exact exchange

mixing) produces indirect and direct band gaps of 0.765 and 0.908 eV. While these values
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Figure 4.1: Band structure of (a) Ge, (b) α-Sn, and (c) zincblende GeSn (zb-GeSn), cal-
culated via DFT, using the HSEsol (solid black lines) and mBJ (dotted red lines) exchange-
correlation functionals, and via a semi-empirical sp3s∗ TB Hamiltonian (dashed green lines).
All calculations include spin-orbit coupling. For comparative purposes, the zero of energy has
been chosen to lie at the energy of the Γ8v VB edge in all cases.

overestimate the measured band gaps by ≈ 20 meV, the corresponding Γ6c-L6c splitting of

143 meV is in excellent agreement with experiment. The calculated VB spin-orbit splitting

energy for Ge is 0.322 eV, which again overestimates the measured value of 0.296 eV by 26

meV. Using the same settings for α-Sn we calculate a direct band gap of −0.382 eV compared

to the measured value of −0.413 eV, and a spin-orbit splitting energy of 0.750 eV, which

underestimates by 50meV, but is in good agreement with the measured valence band splitting

of 0.800 eV.

For the mBJ calculations the same plane wave cut-off energy and k-point grids were employed

as for the HSEsol calculations, in order to allow the two approaches to be compared on an

equal basis. In the mBJ calculations we again prioritise the description of the lowest CB

in Ge: the parameter c in the mBJ exchange-correlation functional is treated as adjustable,

and again chosen to reproduce the experimentally measured Γ6c-L6c splitting. Setting c =

1.2 produces indirect Γ8v-L6c and direct band gaps of 0.724 and 0.868 eV. While these band

gaps are approximately 20 meV smaller than those measured experimentally, we note that

the corresponding Γ6c-L6c splitting of 144 meV is in excellent agreement with experiment. The

calculated VB spin-orbit splitting for Ge is 0.274 eV, underestimating the measured value by 22

meV. Using the same settings for α-Sn we calculate a direct band gap of −0.401 eV, within 12

meV of the measured value and a spin-orbit splitting energy of 0.651 eV which underestimates

the measured value by 149meV. These values are again in reasonably good agreement with

measured values.

The HSEsol- and mBJ-calculated band structures of Ge, α-Sn and zb-GeSn are shown, using

solid black and dotted red lines respectively, in Figs. 4.1(a), 4.1(b) and 4.1(c). We note that,

compared to the HSEsol XC functional, the mBJ XC functional tends to (i) overestimate the

zone-centre effective mass of the lowest energy CB, (ii) underestimate the magnitude of the VB
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spin-orbit splitting energy, and (iii) underestimate the energies of higher lying zone centre CB

states.

4.2.3 Semi-empirical: valence force field potential and tight-binding Hamil-

tonian

The semi-empirical description of the structural and elastic properties of Ge1−xSnx alloys is

based on a nearest-neighbour VFF potential. The VFF potential employed here is that origi-

nally introduced by Musgrave and Pople, [150] and later modified by Martin. [56] This potential

is considered in its non-polar form, whereby the contribution to the lattice free energy associ-

ated with an atom located at site i is given by
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where the indices j and k describe the four nearest-neighbour atoms of atom i. The unstrained

(equilibrium) and relaxed bond lengths between atoms i and j are denoted respectively by

r
(0)
ij and rij ; θ

(0)
ijk and θijk respectively denote the unstrained and relaxed angles between the

nearest neighbour bonds formed by atoms i and j, and i and k. The first and second terms in

Eq. (4.1) respectively describe contributions to the free energy associated with bond stretching

(changes in rij) and bond-angle bending (changes in θijk), while the third and fourth terms are

“cross terms” which respectively describe the impact of changes in rik on rij , and the impact

of changes in θijk on both rij and rik.

By firstly re-casting the lattice free energy calculated via Eq. (4.1) in terms of macroscopic

and internal strains, and secondly inverting the associated derived expressions for the elastic

constants C11, C12 and C44, and Kleinman (internal strain) parameter ζ, it has recently been

demonstrated that the force constants kr, kθ, krr and krθ of this potential can be determined

analytically. This circumvents the conventional requirement to perform numerical fitting to

determine the force constants, and provides an exact description of the static lattice properties

of the constituent materials Ge, α-Sn and zinc blende GeSn (zb-GeSn) in the linear elastic

limit. The derivation of these analytical relationships is outlined in Tanner et al. [151]. The

parameters used in the VFF structural relaxations are provided in Table 4.1. Full details of the



Electronic and optical properties of GeSn alloys 52

Table 4.1: Equilibrium bond lengths r(0), and force constants kr, kθ, krr and krθ, used
to implement structural relaxations using the VFF potential of Eq. (4.1) for Ge1−xSnx al-
loy supercells. Force constants have been computed analytically based on HSEsol calculated
structural properties for Ge, α-Sn and zb-GeSn.[151, 152]

Parameter Unit Ge α-Sn zb-GeSn

r(0) Å 2.445 2.813 2.632
kr eV Å−2 7.0414 6.5920 7.7970
kθ eV Å−2 rad−2 0.5104 0.2594 0.3375
krr eV Å−2 0.2416 −0.1246 −0.2369
krθ eV Å−2 rad−1 0.3005 0.0430 −0.0753

parametrisation of Eq. (4.1) based on HSEsol calculations are provided in [152]. To perform

structural relaxations for Ge1−xSnx alloy supercells this VFF potential was implemented using

the General Utility Lattice Program (GULP) where, as in the DFT calculations described

above, the structural relaxation proceeds by minimising the lattice free energy.

The semi-empirical electronic structure calculations for Ge1−xSnx alloys are based on a nearest-

neighbour sp3s∗ TB Hamiltonian, and include spin-orbit coupling. The unstrained band struc-

tures of Ge, α-Sn and zb-GeSn are parametrised based on those calculations using the HSEsol

formalism described in Sec. 4.2. As with the HSEsol and mBJ DFT calculations, the priority in

generating a TB fit to the Ge band structure is to provide an accurate description of the lowest

CB, in terms of the energies of the CB edge states at the L, Γ and X points in the Brillouin

zone. For this, the fitting procedure outlined in [153], which relates the TB parameters to the

energies at the Γ and X points, is followed and then the resulting parameters are adjusted

to achieve an exact fit to the energies of the L6c, Γ6c and X6c CB edge states. For the α-Sn

band structure the fitting procedure of [153] is applied without modification, which is found to

provide a good overall fit to the HSEsol band structure.

Key to describing the impact of Sn incorporation on the electronic structure of Ge1−xSnx alloys

is the TB fit to the band structure of a zb-GeSn primitive unit cell. Such a fitting allows for

an accurate description of the interaction between orbitals situated on neighbouring Ge and

Sn atoms in alloy supercell calculations. To generate a suitable set of TB parameters for zb-

GeSn we again begin with the procedure outlined in [153]. Following this procedure provides a

good overall fit to the HSEsol-calculated zb-GeSn band structure, but it was found that these

parameters tend to underestimate the impact of Sn incorporation in Ge1−xSnx alloy supercell

calculations. To rectify this the differences in the free atomic orbital energies, which are used to

determine the Ge and Sn atomic orbital energies in the zb-GeSn TB Hamiltonian are adjusted.

[153] In doing so, a more accurate description of the impact of Sn incorporation is obtained

compared to first principles calculations, while simultaneously maintaining a good overall fit

to the HSEsol-calculated zb-GeSn band structure.
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Table 4.2: Lattice constant a, direct Γ7c-Γ8v band gap Eg and VB Γ8v-Γ7v spin-orbit splitting
energy ∆SO for Ge, diamond-structured Sn (α-Sn) and zinc blende GeSn (zb-GeSn), calculated
via DFT using the HSEsol (with α = 0.3), and LDA (for a) or mBJ (with c = 1.2, for Eg
and ∆SO) XC functionals, and compared to low-temperature experimental measurements and
previous first principles theoretical calculations. For Ge the fundamental (indirect) L6c-Γ8v

band gap is listed in parentheses.

a (Å) Eg (eV) ∆SO (eV)
Material HSEsol LDA Reference HSEsol mBJ Reference HSEsol mBJ Reference

Ge 5.653 5.649 5.657a, 5.648b 0.908 (0.765) 0.868 (0.724) 0.890 (0.744)c 0.322 0.274 0.296c

α-Sn 6.496 6.483 6.489a −0.382 −0.401 −0.413d 0.750 0.651 0.800d

zb-GeSn 6.079 6.074 6.127e, 6.032f 0.040 0.007 0.085f 0.460 0.424 0.480g

aMeasured average Ref. [32] , bCalc. average [32], cRef. [155] , dRef. [137] , eCalc. average Refs. [33, 156–158], fRef. [33]

4.2.4 Primitive Ge, Sn and zincblende-GeSn DFT benchmarks

Table 4.2 summarises the results of the DFT calculations for the three constituent crystalline

materials relevant to Ge1−xSnx – diamond-structured semiconducting Ge (x = 0), diamond-

structured [154] α-Sn (x = 1), and the fictitious semimetallic zinc blende-structured IV-IV

compound GeSn (zb-GeSn; x = 0.5). The table lists calculated lattice constants a, direct

band gaps Eg, and valence band (VB) spin-orbit splitting energies ∆SO, compared to (low

temperature) experimental measurements and previous theoretical calculations. The band

structures of Ge, α-Sn and zb-GeSn, calculated using the HSEsol (solid lines) and mBJ (dashed

lines) XC functionals, are also shown respectively in fig 4.1. We note that zb-GeSn – equivalent

to an ordered Ge0.5Sn0.5 alloy – is close to semimetallic, with a very small predicted direct band

gap of 0.040 eV (0.007 eV) in the HSEsol (mBJ) calculation, suggesting that the band gap in

Ge1−xSnx alloys can be expected to close for some Sn composition near or below 50% and that

the indirect to direct band gap transition should occur at a much lower % Sn composition.

4.2.5 Choice of alloy supercells

Emerging theoretical [124] and experimental [131, 159] evidence suggests the possibility of

strong Sn-induced hybridisation of the Ge Γ7c and L6c CB edge states in Ge1−xSnx. In a

real alloy, all states that can (by symmetry) mix will mix: this physical effect will manifest in

electronic calculations regardless of the choice of supercell. For example, Eckhardt et al. [124]

noted the presence of strong Sn-induced Γ7c-L6c mixing, but subsequently chose to analyse

supercells in which the L points do not fold to the supercell zone centre (K = 0), to block

this mixing and simplify their interpretation of the indirect- to direct-gap transition. However,

unfolded band structures presented by Polak et al. [135] for the same supercells revealed clear

signatures of Sn-induced band mixing, occurring instead with states along the Λ direction which

did fold to K = 0. That is, the choice to specifically neglect Γ7c-L6c mixing does not remove

Sn-induced mixing of Ge states lying close in energy to the CB edge.
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In the case of Ge1−xSnx, we note that (i) the alloy CB edge originates from the Ge L6c states,

and (ii) we are interested in the acquisition of direct Ge Γ7c character by the alloy CB edge.

These observations suggest that there does not exist sufficient physical justification to explicitly

neglect Γ7c-L6c mixing – which can be expected to be pronounced based on the small separation

in energy of these states – in the analysis of the Ge1−xSnx electronic structure. We therefore

choose supercells in which the L points in the primitive unit cell Brillouin zone of the underlying

diamond lattice fold to the supercell zone centre K = 0. This is the case in n×n×n face-centred

cubic (FCC) and simple cubic (SC) supercells for even values of n. As such, we employ 2×2×2

FCC (16-atom) and SC (64-atom) supercells in our alloy electronic structure calculations.

We note that in supercells where L and X do not fold back to the origin, such as in the 54

atom case, L and Γ do not mix with each other. Points close to L and X will however fold back

to the origin, with states two-thirds of the way from Γ to L and from Γ to X folding back in

the 54 atom case. Supercell calculations carried out by a colleague (Amy Kirwan) show that

the pressure coefficients of these states are very close to those of the states at the L and X

point. These states will still provide the lowest energy conduction states at Γ in the 54-atom

supercell and are therefore available to mix with the Γ state, to which they are close in energy.

Consequently, a very similar pressure coefficient analysis could be undertaken in such supercells

to analyse the character of the lowest conduction band states in the alloy. However, the Γ state

is the lowest conduction state at the zone centre in the 54-atom Ge supercell, with the states

which are two thirds of the way to L and to X lying higher in energy. This inversion of the

order of the direct and indirect gap states may then have a quantitative impact on the results

and analysis of mixing in small supercells where L and X do not fold back to the origin.

4.2.6 Generation of special quasi-random structures

To investigate the electronic structure of more realistic, disordered Ge1−xSnx alloys we employ

a series of 128-atom (4×4×4 FCC) SQSs, containing up to 19 Sn atoms i.e. Sn compositions up

to x = 14.8%. The SQSs are generated stochastically, using a Monte Carlo simulated annealing

procedure – implemented in the Alloy Theoretic Automated Toolkit (ATAT) [160, 161] using the

mcsqs routine [162]. This routine optimises the supercell lattice correlation functions associated

with pairs and triplets up to third nearest-neighbour distance about each lattice site, with

respect to the target lattice correlation functions for a randomly disordered, diamond-structured

alloy of a specified Sn composition x [163, 164]. Analysis of the evolution of the number of

Sn-Sn pairs in the supercell with increasing Sn composition is presented in Sec.4.6.
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4.2.7 Hydrostatic pressure coefficients

States originating from different wave vectors k in the Brillouin zone of the primitive unit

cell of the underlying diamond lattice are folded back to the zone centre (K = 0) in supercell

calculations. It can therefore be difficult to identify the character of individual zone-centre

states in the band structure of a Ge1−xSnx supercell, and hence to deduce the composition at

which the alloy becomes a direct-gap semiconductor. To address this issue, we investigate how

the alloy CB structure changes as hydrostatic pressure is applied to the alloy supercell. As

noted in chapter 3 the pressure coefficients
dEg

dP for the indirect L6c-Γ8v and direct Γ7c-Γ8v band

gaps of Ge are significantly different to one another, having respective values 4.66 and 13.33

meVkbar−1 in our HSEsol calculations, and 4.07 and 13.23 meVkbar−1 in our mBJ calculations.

Calculation of
dEg

dP for the fundamental band gap in a given alloy supercell then allows to identify

the character of the band gap, and hence to track the evolution of the character of the CB edge

states and band gap with increasing Sn composition x.

4.3 Ordered and disordered alloy supercells

4.3.1 Summary of content

Having outlined the theoretical models we have established to calculate the structural and

electronic properties of Ge1−xSnx alloys, we now turn our attention to the application of these

models in alloy supercell calculations. We compare and contrast the results of calculations car-

ried out using all three models, reaffirming key features of the alloy properties and establishing

the accuracy of the models. We begin in Sec. 4.3 by considering structural relaxation, before

considering key features of ordered and disordered alloy supercell band structures in Sec. 4.4.

In Sec. 4.5 we investigate how the separation of Sn atoms in disordered alloy supercells impacts

the alloy electronic band structure. Then in Sec. 4.6 we consider how the electronic structure

evolves with x in realistic, disordered Ge1−xSnx special quasi-random structures. Finally in

Sec. 4.7 we summarise the main findings of this chapter.

4.3.2 Structural relaxation - Alloy lattice constant

Using the HSEsol calculations described in Sec. 4.2.2 we calculate (unstrained) lattice constants

a = 5.646, 6.496 and 6.079 Å for Ge, α-Sn and zb-GeSn, respectively. The calculated lattice

constant for Ge is in exact agreement with that determined via x-ray diffraction measurements,

is slightly lower than the average value of 5.657 Å obtained by compiling a range of experimental

data, and lies within the range of values 5.535 – 5.760 Å computed using various first principles

approaches. For α-Sn the calculated lattice constant is close to the value of 6.489 Å determined
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via x-ray diffraction measurements. The calculate lattice constant for the fictitious IV-IV

compound zb-GeSn lies within the range of values 6.054 – 6.200 Å calculated using various

first principles approaches. [33, 156–158] The LDA-calculated lattice constants for Ge, α-Sn

and zb-GeSn are 5.647, 6.483 and 6.074 Å. These lattice constants for Ge and α-Sn are in

good quantitative agreement with those obtained from HSEsol calculations. We note that the

LDA is generally known to overbind systems compared to more advanced exchange-correlation

functionals, leading in general to smaller equilibrium lattice constants, reflected here in the

slightly smaller calculated lattice constants for α-Sn and zb-GeSn compared to the HSEsol

values.

The physical properties, including band gaps and lattice constants, of many binary semicon-

ductor alloys AxB1−x vary in a non-linear manner as a function of the alloy composition x,

which can often be described by a second-order polynomial of the form shown below in equation

4.2.

aSnxGe1−x = xaSn + (1− x)aGe + bx(1− x) (4.2)

In equation 4.2 b is the bowing parameter and a is the lattice constant. By replacing the

lattice constant a in equation 4.2 with the direct band gap Eg, a similar expression can then

be obtained for the optical gap.

Recent first principles calculations suggested the presence of an unusual negative bowing pa-

rameter for the lattice constant [124] – i.e. that the alloy lattice constant is larger than that

obtained by interpolating linearly between the lattice constants of Ge and α-Sn. We find here

that the HSEsol-calculated zb-GeSn lattice constant is slightly in excess of, but extremely close

to, the average value 6.071 Å of those calculated for Ge and α-Sn. This appears to suggest

that the Ge1−xSnx lattice constant possesses a small, negative bowing parameter. However,

we note that such bowing parameters have to date only been extracted on the basis of calcu-

lations performed on small, ordered alloy supercells at low Sn compositions x . 10% and have

not included alloy disorder effects. Further analysis which considers alloy disorder effects to

quantitatively describe the evolution of the structural properties across the full Sn composition

range is provided later in this chapter in Sec. 4.6.
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Table 4.3: Relaxed lattice constant a and Ge-Sn nearest-neighbour bond length rGe-Sn, for a
series of ordered and disordered Ge1−xSnx alloy supercells relaxed via DFT using HSEsol and
LDA XC functionals, and via the semi-empirical VFF potential of Eq. (4.1) (parametrised using
HSEsol-calculated lattice and elastic constants for Ge, α-Sn and zb-GeSn). The equilibrium
lattice constant of Ge – calculated using the HSEsol and LDA approaches, and taken as input
to the VFF potential – are provided for reference. For the disordered Ge60Sn4 supercell rGe-Sn

refers to the average length of all relaxed Ge-Sn bonds; values listed in parentheses are the
standard deviations associated with these averaged values.

a (Å) rGe-Sn (Å)
Supercell x (%) Description HSEsol LDA VFF HSEsol LDA VFF

Ge —– Pure Ge 5.646 5.647 5.646 —– —– —–
Ge63 Sn1 1.56 Ordered SC 5.661 5.664 5.658 2.574 2.578 2.558
Ge15 Sn1 6.25 Ordered FCC 5.702 5.703 5.694 2.554 2.554 2.544
Ge60 Sn4 6.25 Disordered SC 5.701 5.700 5.694 2.583 (0.010) 2.584 (0.010) 2.563 (0.010)

4.3.3 Internal relaxation: ordered supercells

Table 4.3 compares the relaxed supercell lattice constants a and relaxed bond length rGe-Sn

between nearest-neighbour Ge and Sn atoms obtained via HSEsol, LDA and VFF relaxations

of a number of specific Ge1−xSnx alloy supercells of varying %x content. Specifically, we

consider three distinct 2 × 2 × 2 SC and FCC supercells: (i) an ordered 64-atom Ge63Sn1 SC

supercell having x = 1.56%, (ii) an ordered 16-atom Ge15Sn1 FCC supercell having x = 6.25%,

and (iii) a disordered 64-atom Ge60Sn4 SC supercell having x = 6.25%. The four Sn atoms in

the Ge60Sn4 were substituted at randomly selected sites on the lattice of the Ge64 host matrix

supercell. We note that this disordered supercell contains a Sn-Sn “pair” – i.e. two Sn atoms

which are nearest neighbours. The ordered Ge15Sn1 and disordered Ge60Sn4 supercells have the

same Sn composition, thereby allowing the importance of alloy disorder effects in determining

the material properties to be inferred via comparison of the results of calculations carried out

for each.

We note that the A1-symmetric relaxation about the Sn lattice site in the ordered supercells

produces four Ge-Sn nearest-neighbour bonds of equal length. Due to the presence of multiple

Ge-Sn nearest-neighbour bonds and broken symmetry in the disordered Ge60Sn4 supercell, it

is not possible to unambiguously assign a single value to rGe-Sn. We instead assign rGe-Sn as

the average of all of the relaxed Ge-Sn bond lengths in the supercell, and quantify deviations

from this average using the standard deviation σ(rGe-Sn) of the relaxed Ge-Sn bond lengths

(listed in parentheses in Table 4.3). A more general comparison of the HSEsol, LDA and VFF

relaxations for this disordered supercell is provided in Fig. 4.2.

Beginning with the ordered Ge63Sn1 and Ge15Sn1 supercells, the HSEsol relaxation results in

respective increases of 0.015 and 0.056 Å in the lattice constant compared to that of unstrained

Ge (cf. Table 4.3). In both cases these relaxed lattice constants a slightly exceed those calculated

based on a linear interpolation of the HSEsol-calculated Ge and α-Sn lattice constants, again
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Figure 4.2: Comparison of first principles and semi-empirical relaxations of the atomic po-
sitions for a disordered Ge60Sn4 (x = 6.25%) supercell containing a Sn-Sn nearest-neighbour
pair. Top row: relaxed nearest-neighbour bond lengths r obtained from (a) HSEsol, (b) LDA,
and (c) VFF minimisations of the lattice free energy. Bottom row: relaxed bond angles –
formed by adjacent pairs of nearest-neighbour bonds – obtained from (d) HSEsol, (e) LDA,
and (f) VFF minimisations of the lattice free energy. Relaxed bond lengths and angles have
been sorted into bins of width ∆r = 0.01 Å and ∆θ = 0.2◦ respectively.

suggesting the presence of a small, negative bowing parameter for a. Relaxing these supercells

in the LDA yields respective increases of 0.017 and 0.056 Å in a for the Ge63Sn1 and Ge15Sn1

supercells. While the calculated increase in a for the Ge15Sn1 supercell precisely matches

that obtained from the HSEsol calculation, the LDA relaxation overestimates the increase

in a due to Sn incorporation in the larger Ge63Sn1 supercell. This behaviour is somewhat

surprising: the LDA-calculated zb-GeSn lattice constant is smaller than that obtained from

HSEsol calculations, upon which basis it could be expected that nearest-neighbour Ge-Sn bonds

relax to shorter lengths in LDA calculations. In spite of this, the LDA-relaxed lattice constants

show very close agreement with the HSEsol values: the differences between the LDA and HSEsol

relaxed lattice constants are, respectively, only 0.05 and 0.02% for the Ge63Sn1 and Ge15Sn1

supercells. Relaxing these same supercells using the VFF potential of Eq. (4.1), parametrised

based on HSEsol-calculated lattice and elastic constants, the corresponding calculated increases

in a for Ge63Sn1 and Ge15Sn1 are 0.012 and 0.048 Å. These values are in excellent agreement

with the HSEsol relaxation: for Ge63Sn1 and Ge15Sn1 the respective differences between the

VFF and HSEsol relaxed lattice constants are only 0.05 and 0.14 %. Overall, for these ordered

supercells we note that the LDA and VFF structural relaxations faithfully reproduce a obtained

from a HSEsol relaxation but, nevertheless, the LDA (VFF) relaxation tends to overestimate

(underestimate) the increase in a associated with substitutional Sn incorporation.
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Considering now the relaxed Ge-Sn nearest-neighbour bond lengths (cf. Table 4.3), we calcu-

late rGe-Sn = 2.574 and 2.554 Å in HSEsol relaxations of the Ge63Sn1 and Ge15Sn1 supercells.

Compared to the unstrained Ge nearest-neighbour bond length r
(0)
Ge = 2.445 Å, these bond

lengths represent respective increases of 0.129 and 0.109 Å. This result is initially surprising:

the relaxed lattice constants obtained from the HSEsol relaxation exhibit the opposite trend,

with the increase in a for the Ge63Sn1 supercell exceeding that calculated for Ge15Sn1. Further

analysis reveals that this behaviour arises from the significantly smaller volume of the Ge15Sn1

supercell, in which Sn incorporation is accommodated by an increase in the average relaxed

Ge-Ge bond length rGe-Ge. For the Ge63Sn1 and Ge15Sn1 supercells we respectively calculate

rGe-Ge = 2.448 and 2.457 Å. The LDA relaxations of these ordered supercells produce respec-

tive relaxed Ge-Sn bond lengths which are increased by 0.133 and 0.109 Å compared to the

corresponding LDA-calculated equilibrium Ge bond length. The corresponding increases in the

VFF relaxations of these supercells are 0.113 and 0.099 Å. Using the HSEsol-calculated values

as a reference, the computed differences in the LDA-relaxed values rGe-Sn for the Ge63Sn1 and

Ge15Sn1 supercells are, respectively, 0.15 and 0.01%. The corresponding differences between

the HSEsol and VFF relaxed Ge-Sn nearest-neighbour bond lengths for these supercells are 0.6

and 0.4%.

4.3.4 Internal relaxation: disordered supercell

Turning to the disordered Ge60Sn4 supercell, we note that the relaxed lattice constants obtained

from the HSEsol and LDA relaxations are slightly lower than those computed for the ordered

Ge15Sn1 supercell having the same Sn composition. This slight reduction in relaxed lattice

constant in the presence of alloy disorder is likely related to the volume effect described above,

whereby the larger surrounding Ge matrix in a 64-atom supercell provides more surrounding

volume for expansion to accommodate the local strain introduced by Sn incorporation. The

average relaxed Ge-Sn nearest-neighbour bond length rGe-Sn = 2.583±0.010 Å for this disordered

supercell is significantly larger than that calculated for either of the ordered supercells. This

is in part a result of the presence of a Sn-Sn nearest-neighbour pair in the supercell, the

large local expansion of the lattice associated with which leads to larger relaxed Ge-Sn bond

lengths about these two Sn atoms. Examining Table 4.3, we note that this general trend

is also observed in the LDA and VFF relaxations. However, the averaged nearest-neighbour

bond lengths presented in Table 4.3 are insufficient in general to quantify the lattice relaxation

in a disordered supercell. Thus, we present in Fig. 4.2 a more comprehensive view of the

HSEsol, LDA and VFF relaxations of the Ge60Sn4 supercell. The top (bottom) row of Fig. 4.2

shows the relaxed bond lengths (angles) in the Ge60Sn4 supercell, sorted into bins of width

∆r = 0.01 Å (∆θ = 0.2◦). Panels (a) and (d), (b) and (e), and (c) and (f) respectively show

the distributions of relaxed bond lengths and angles obtained from the HSEsol, LDA and VFF

relaxations.
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Examining firstly the HSEsol results in Figs. 4.2(a) and (d), we note the distribution of bond

lengths brought about the the presence of alloy disorder. The three distinct peaks in the

distribution of relaxed bond lengths in Fig. 4.2(a) describe, in order of increasing bond length,

relaxed Ge-Ge, Ge-Sn and Sn-Sn bonds. The width of the distribution of Ge-Ge bonds is

strongly enhanced compared to that in the ordered Ge63Sn1 supercell: the computed standard

deviation of the relaxed Ge-Ge bond lengths in the Ge60Sn4 supercell is 0.014 Å, compared to

0.006 Å in the Ge63Sn1 supercell. As described above, the reduction in symmetry associated

with the presence of alloy disorder also generates a distribution of relaxed Ge-Sn bond lengths,

the standard deviation of which we compute to be 0.01 Å. The single Sn-Sn bond in the

supercell has a relaxed bond length rSn-Sn = 2.704 Å, an increase of 0.259 Å compared to r
(0)
Ge .

However, this relaxed Sn-Sn bond length is significantly lower than the equilibrium α-Sn bond

length r
(0)
Sn = 2.813 Å. We attribute this compression of the Sn-Sn bond to the lower bulk

modulus of α-Sn compared to that of either Ge or zb-GeSn – i.e. the relatively soft Sn-Sn bond

is compressed by the comparatively harder surrounding Ge-Ge and Ge-Sn bonds.

Figure 4.2(d) shows the corresponding HSEsol-calculated distribution of relaxed bond angles in

the Ge60Sn4 supercell. Since the equilibrium tetrahedral bond angle θ(0) = 109.5◦ is equal for

all tetrahedrally-bonded constituent materials – and hence the constituent materials Ge, α-Sn

and zb-GeSn – the bond angle distribution provides, in general, less insight into the details of

the lattice relaxation. We find that the relaxed bond angle distribution to be centred at θ(0),

with the lattice relaxation tending to produce a normal-like distribution of bond angles about

this value. We note however the presence of a single outlying bond angle on the low side of the

peak. This smallest angle describes a single Sn-Ge-Sn nearest-neighbour configuration, which

has been highly distorted by the asymmetric relaxation of its local atomic environment.

Considering the corresponding LDA-calculated bond length distribution of Fig. 4.2(b), we note

excellent qualitative and quantitative agreement with the corresponding HSEsol distribution.

Relative to the HSEsol-relaxed supercell we calculate a maximum difference of 0.14% in the

LDA-relaxed length of an individual nearest-neighbour bond, and an average error of only

0.04% across all nearest-neighbour bonds in the supercell. However, evident in Fig. 4.2(b) is

a slight decrease in the width of the peak in the distribution of relaxed Ge-Sn bond lengths.

We interpret this result as further confirmation that the LDA disproportionately overbinds

Ge-Sn bonds compared to Ge-Ge or Sn-Sn bonds, as reflected in the differences between the

HSEsol- and LDA-calculated lattice constants. Qualitatively, the VFF-calculated bond length

distribution of Fig. 4.2(c) is in excellent agreement with the HSEsol distribution of Fig. 4.2(a):

the VFF relaxation reproduces faithfully the width and relative number of relaxed Ge-Sn bonds

having slightly different bond lengths. The maximum individual and overall average differences

in relaxed bond length between the HSEsol and VFF relaxations are, respectively, 0.9 and 0.7%.

Finally, we note that the LDA- and VFF-calculated bond angle distributions of Figs. 4.2(e)
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and (f) display no significant qualitative or quantitative deviations from the corresponding

HSEsol-calculated distribution of Fig. 4.2(d).

On the basis of these detailed comparisons, we conclude overall that both the LDA and VFF

relaxations of a given Ge1−xSnx alloy supercell are in excellent quantitative agreement with the

results of the significantly more computationally expensive HSEsol relaxation. This indicates

that either LDA-DFT or the semi-empirical VFF potential of Eq. (4.1) can be used to reliably

perform structural relaxations, offering high accuracy in conjunction with significantly reduced

computational cost compared to HSEsol-DFT.

4.4 Supercell band structure

4.4.1 Band gap and spin-orbit splitting energy

Turning our attention to the electronic structure, we begin by considering the band structures

calculated for the ordered Ge63Sn1 (x = 1.56%) and Ge15Sn1 (x = 6.25%) alloy supercells.

The results of these calculations are shown in Fig. 4.3, where the top (bottom) row shows the

band structure calculated for Ge63Sn1 (Ge15Sn1) using, from left to right, the HSEsol ((a) and

(d)), LDA + mBJ ((b) and (e)), and VFF + TB ((c) and (f)) where the TB calculations were

carried out by Dr Christopher Broderick. In each band structure plot the left- and right-hand

panels respectively show the supercell band dispersion calculated along the (111) and (001)

directions in the supercell Brillouin zone. The supercell wave vector K is specified in units

of π
A , where A = 2a (A = a) is the lattice constant associated with the chosen 2 × 2 × 2 SC

(FCC) supercells. Recalling that the 64- and 16-atom supercells respectively possess SC and

FCC lattice vectors, we note that the zone boundary along the (001) direction lies at π
A in

the 64-atom supercells. we recall that the supercells considered here have been chosen so that

L-points from the Brillouin zone of the primitive unit cell are folded to the supercell zone centre

at K = 0. As such, the lowest energy CB states in Ge64 and Ge16 supercells are the degenerate

L6c CB minima, folded to K = 0 from k = π
a (1, 1, 1) and equivalent points in the Brillouin zone

of the primitive unit cell.

Examining the results of the HSEsol band structure calculations for Ge63Sn1 and Ge15Sn1 in

Figs. 4.3(a) and 4.3(d), we note firstly that Sn incorporation gives rise to a strong reduction of

the supercell band gap Eg with increasing x. For Ge63Sn1 and Ge15Sn1 we respectively calculate

Eg = 0.681 and 0.388 eV, representing respective decreases of 85 and 378 meV compared to

the indirect (fundamental) 0.766 eV Γ8v-Γ7c band gap of Ge. We note also a moderate increase

of the VB spin-orbit splitting energy ∆SO with increasing x. The respective values ∆SO = 0.334

and 0.379 eV calculated for the ordered 64- and 16-atom alloy supercells are 12 and 57 meV

larger than that calculated for Ge.
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Figure 4.3: First principles and semi-empirical calculations of the band structure of two
ordered Ge1−xSnx alloy supercells: a 64-atom 2 × 2 × 2 SC Ge63Sn1 supercell (top row) and
a 16-atom 2× 2× 2 FCC Ge15Sn1 supercell (bottom row), having respective Sn compositions
x = 1.56 and 6.25%. The left- and right-hand panel of each plot respectively shows the band
structure calculated along the (111) and (001) directions in the supercell Brillouin zone. The
band structures calculated via DFT, using HSEsol ((a) and (d)) and mBJ ((b) and (e)) XC
functionals, and via a semi-empirical sp3s∗ TB Hamiltonian ((c) and (f)). The atomic positions
used in the HSEsol, mBJ and sp3s∗ TB band structure calculations were respectively obtained
from HSEsol, LDA and VFF supercell relaxations. For comparative purposes, the zero of
energy has been chosen to lie at the VB edge in all cases.

The values of Eg and ∆SO calculated using the HSEsol, LDA + mBJ and VFF + TB models

are summarised in Table 4.4. Considering the mBJ-calculated values, we note slight under-

estimation of both the decrease in Eg and increase in ∆SO compared to HSEsol calculations.

The mBJ-calculated Ge63Sn1 and Ge15Sn1 band gaps of 0.660 and 0.356 meV represent re-

spective decreases of 64 and 368 meV compared to the indirect (fundamental) Ge band gap

of 0.724 eV. The corresponding VB spin-orbit splitting energies ∆SO = 0.282 and 0.316 eV

represent respective increases of 8 and 42 meV compared to the Ge spin-orbit splitting energy

∆SO = 0.274 eV. For the Ge63Sn1 supercell the VFF + TB model predicts a 92 meV decrease

in Eg, which is slightly larger than the HSEsol- and mBJ-calculated 85 and 64 meV decrease.

For the Ge15Sn1 supercell the TB-calculated band gap Eg = 0.392 eV is in excellent agreement

with the HSEsol-calculated value Eg = 0.388 eV.

Considering the values of Eg calculated using the three models for the disordered Ge60Sn4
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Table 4.4: Band gap Eg and VB spin-orbit splitting energy ∆SO for the Ge1−xSnx alloy
supercells of Table 4.3, calculated via DFT, using the HSEsol and mBJ XC functionals, and
via a semi-empirical sp3s∗ TB Hamiltonian. The corresponding calculated values of the direct
Γ8v-Γ7c and indirect (fundamental) Γ8v-L6c band gaps of Ge are provided for reference, with
the latter listed in parentheses.

Eg (eV) ∆SO (eV)
Supercell x (%) Description HSEsol mBJ sp3s∗ TB HSEsol mBJ sp3s∗ TB

Ge —– Pure Ge 0.909 (0.766) 0.868 (0.724) 0.909 (0.766) 0.322 0.274 0.322
Ge63 Sn1 1.56 Ordered SC 0.681 0.660 0.674 0.334 0.282 0.330
Ge15 Sn1 6.25 Ordered FCC 0.388 0.356 0.392 0.379 0.316 0.353
Ge60 Sn4 6.25 Disordered SC 0.429 0.425 0.442 0.372 0.322 0.365

supercell we note that, in all cases, Eg is significantly larger than in the ordered Ge15Sn1 su-

percell having the same Sn composition (x = 6.25%). This strong dependence of the calculated

band gap on the alloy microstructure provides initial evidence that alloy disorder and related

band mixing effects play an important role in determining the details of the alloy electronic

structure. The corresponding differences between the values of ∆SO calculated for the disor-

dered Ge60Sn4 and ordered Ge15Sn1 supercells are significantly smaller, and further suggest

that alloy disorder effects can be expected to primarily impact the CB structure in Ge1−xSnx

alloys. Overall, we note that the trends in Eg and ∆SO vs. x calculated using all three models

are in good quantitative agreement with previously published values. [124, 135]

4.4.2 Impact of Sn incorporation on conduction band structure

In addition to the respective strong decrease and moderate increase of Eg and ∆SO with in-

creasing x, we note key qualitative changes in the nature of the alloy CB edge states compared

to those in pure Ge. The lowest energy supercell CB states at the zone centre in the equivalent

SC Ge64 and FCC Ge16 supercells are the eightfold degenerate L6c CB minima: the result of

Kramers-degenerate bands folding back to K = 0 from the four equivalent L points in the

Brillouin zone of the primitive unit cell. The degeneracy of these folded L6c states is lifted

in the ordered alloy supercell calculations of Fig. 4.3. Examining the HSEsol-calculated CB

eigenstates of the Ge63Sn1 supercell we find that the lowest energy CB eigenstates at K = 0

are sixfold (threefold and Kramers) degenerate, and possess purely T2 symmetry (p-like orbital

character) at the Sn lattice site. The second lowest energy CB eigenstate lies 22 meV above the

CB edge in energy, is twofold (Kramers) degenerate, and possesses A1 symmetry (s-like orbital

character) at the Sn lattice site. The next highest energy CB state in the HSEsol calculation is

again twofold degenerate, lies 178 meV above the CB edge, and possesses A1 symmetry (s-like

orbital character) at the Sn lattice site. The corresponding energy differences in the mBJ and

TB calculations – between the CB edge and the second- and third-lowest energy sets of K = 0

alloy CB states – are, respectively, 23 and 174 meV, and 54 and 120 meV. The discrepancies in

the TB-calculated energies of the higher lying CB states is a consequence of the chosen TB fit
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to the HSEsol-calculated zb-GeSn band structure (cf. Sec. 4.2.3), during which the primary aim

was to describe the alloy band gap and hybridised character of the alloy CB edge eigenstates.

This splitting of the folded L6c states of Ge into distinct sets of states which are T2- and A1-

symmetric (p- and s-like) at the Sn lattice site indicates Sn-induced mixing of the supercell zone-

centre eigenstates of the Ge64 host matrix semiconductor, driven by (i) A1 symmetric lattice

relaxation about the Sn lattice site, and (ii) interactions between the (4s)2 valence orbitals of

Ge and the (5s)2 valence orbitals of α-Sn. We note similar features in the HSEsol-calculated

band structure of the Ge15Sn1 supercell (cf. Fig. 4.3). In this case the CB edge eigenstate is

twofold (Kramers) degenerate and possesses purely A1 symmetry (s-like orbital character) at

the Sn lattice site, while the second lowest energy CB eigenstates lie 127 meV above the CB

edge, are sixfold (threefold and Kramers) degenerate and possess purely T2 symmetry (p-like

orbital character) at the Sn lattice site. The corresponding energy differences in the mBJ and

TB calculations are, respectively, 100 and 104 meV. We note that the T2-symmetric (p-like)

triplet in the HSEsol and mBJ calculations splits into a singlet and higher lying doublet –

separated by 21 meV – in the TB calculation. This is a result of the large spin-orbit coupling

associated with the substitutional Sn atom, combined with the manner in which the atomic

spin-orbit coupling is parametrised in the TB method. [165] This ordering of the lowest and

second-lowest energy CB states is reversed compared to that in the Ge63Sn1 supercell. Further

analysis of the CB edge eigenstates, presented below, shows that the direct nature of the

Ge1−xSnx alloy CB edge states evolves continuously with increasing x, and that this evolution

is driven by the aforementioned Sn-induced mixing. This band mixing, which acts to hybridise

the L6c and Γ7c CB edge states of Ge, leads to the emergence of a strongly hybridised alloy

CB edge in Ge1−xSnx alloys. [124] By comparison, the impact of Sn incorporation on the VB

is minimal: the alloy VB edge states in all supercells retain primarily Ge Γ8v character.

While the TB model describes well the impact of Sn incorporation on the CB and VB edge

states at K = 0 compared to the DFT calculations we note, in both the 64- and 16-atom

calculations of Figs. 4.3(c) and 4.3(f), (i) overestimation of electron effective masses, and (ii)

the presence in the CB dispersion of additional folded bands within the range of energies

displayed in Fig. 4.3. These features represent a typical TB fit to the band structure. Firstly,

fitting the TB parameters to the energies of the lowest CB at the L, Γ and X points is known

to lead to overestimation of CB edge effective masses in a nearest-neighbour sp3s∗ model. [166]

Secondly, the TB structure described by the sp3s∗ model is dispersionless between the X and

W points in the Brillouin zone: [153, 167] energies of W-point CB states generally lie at higher

energies than those at X in first principles calculations, leading to more bands folding back

to the supercell zone centre at lower energies in the TB calculations. We emphasise however

that these well-known features of the sp3s∗ TB model do not impede the description of the

character, hybridisation and localisation of zone-centre alloy band edge states. The TB method

allows for accurate descriptions of the impact of localised impurities, as has been demonstrated
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previously for highly-mismatched III-V-N [122, 168] and III-V-Bi [169, 170] alloys, as well as

III-N semiconductor alloys. [171, 172] We emphasise that both the mBJ and TB calculations

qualitatively and quantitatively describe the behaviour revealed by the HSEsol calculations,

providing a key confirmation of their suitability to perform accurate analysis of the Ge1−xSnx

electronic structure.

4.4.3 Sn-induced band mixing: band gap pressure coefficient

To quantify the Sn-induced band mixing and its impact on the nature of the alloy CB edge

states, we have used all three models to calculate the pressure coefficient
dEg

dP of the fundamental

band gap. To do so we proceed by applying hydrostatic pressure to the supercell and relaxing

the internal degrees of freedom before computing the electronic structure. The results of these

calculations are summarised in Table 4.5. HSEsol calculations predict
dEg

dP = 4.66 and 13.33

meV kbar−1 for the indirect Γ8v-L6c and direct Γ8v-Γ7c band gaps of Ge. These calculated

values are in good quantitative agreement with the respective measured values of 4.3 and 12.9

meV kbar−1. [131, 159] The corresponding LDA + mBJ-calculated values 4.07 and 13.23 meV

kbar−1 are in good quantitative agreement with both the HSEsol calculations and experiment.

Using the VFF + TB model we calculate indirect- and direct-gap pressure coefficients of 4.69

and 13.52 meV kbar−1 for Ge. The TB parameters are fitted exactly to the HSEsol band edge

hydrostatic deformation potentials. We note the small (< 1.5%) errors in the TB-calculated

pressure coefficients reflects the use of a harmonic VFF potential to relax the internal degrees

of freedom under applied pressure. While the VFF potential of Eq. (4.1) describes exactly

the bulk moduli B of Ge, α-Sn and zb-GeSn, it does not describe the pressure dependence

of B – which are captured implicitly in the DFT calculations – leading to minor errors at

experimentally relevant pressures.

Given the large differences in the pressure coefficients associated with the direct and indirect

(Γ8v-L6c and Γ8v-X5c) band gaps of Ge, calculations and experimental measurements of
dEg

dP

constitute a key experimental signature of band mixing effects: hybridised CB edge states

possess a pressure coefficient intermediate between those of the band gaps associated with the

Table 4.5: Band gap pressure coefficients for the Ge1−xSnx alloy supercells of Tables 4.3
and 4.4, calculated using the HSEsol, LDA + mBJ and VFF + TB models described in Sec. 4.2.
The calculated pressure coefficients of the direct Γ8v-Γ7c and indirect (fundamental) Γ8v-L6c

band gaps of Ge are provided for reference, with the latter listed in parentheses.

dEg

dP (meV kbar−1)
Supercell x (%) HSEsol mBJ sp3s∗ TB

Ge —– 13.33 (4.66) 13.23 (4.07) 13.52 (4.69)
Ge63 Sn1 1.56 4.75 4.19 4.73
Ge15 Sn1 6.25 10.00 9.50 10.00
Ge60 Sn4 6.25 8.32 7.57 9.39
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constituent (hybridising) states. HSEsol calculations predict respective pressure coefficients
dEg

dP = 4.75 and 10.00 meV kbar−1 for the ordered Ge63Sn1 and Ge15Sn1 supercells. The first of

these values is very close to the indirect-gap pressure coefficient of Ge, reflecting that the CB

edge states in Ge63Sn1 are largely derived from the L6c CB edge states of the corresponding

Ge64 host matrix semiconductor. The second of these values is intermediate between those

calculated for the indirect (fundamental) Γ8v-L6c and direct band gaps of Ge, confirming the

presence of Sn-induced Γ7c-L6c mixing. That is, as x increases to 6.25% the calculated pressure

coefficient increases significantly, towards that of the Ge direct band gap. We note that the

calculated values of
dEg

dP for the Ge15Sn1 supercell are in good agreement with the measured

value of 9.2 meV kbar−1 for a Ge0.94Sn0.06 (x = 6%) photodiode. [131, 159] These calculated

and measured values of
dEg

dP suggest that the hybridised nature of the alloy CB edge states in

Ge1−xSnx depends strongly on Sn composition x, and suggests that the CB edge states in the

ordered Ge15Sn1 supercell are primarily Ge Γ7c-derived, with the alloy having primarily (but

not purely) direct-gap character.

For the disordered Ge60Sn4 supercell we calculate
dEg

dP = 8.32 meV kbar−1. This value is

reduced compared to that calculated for the ordered Ge15Sn1 supercell having the same Sn

composition, further emphasising that alloy disorder has a strong impact on the nature of the

hybridised Ge1−xSnx CB edge states. This calculated variation of
dEg

dP at fixed x highlights that

important quantitative differences can result in the character of the Ge1−xSnx CB edge states,

resulting from an interplay of band mixing and alloy disorder effects. Examining the data of

Table 4.5 we note that the LDA + mBJ and VFF + TB models correctly capture the increase

in
dEg

dP vs. x obtained from HSEsol calculations, suggesting that both models accurately capture

the nature of the hybridised CB edge states and their evolution with increasing x.

Based on this analysis we reach three conclusions. Firstly, the calculated (and measured) values

of
dEg

dP being intermediate between those of the direct and Γ8v-L6c band gaps of Ge indicates

that the Ge1−xSnx alloy CB edge states consist of a strong admixture of Ge Γ7c and L6c

states in the supercell calculations. Secondly, this band mixing is driven by the differences in

covalent radius and chemical properties between Ge and Sn. Thirdly, this band mixing evolves

continuously with increasing x, transferring Ge Γ7c character to the alloy band edge. This

final conclusion is in accordance with the measurements of [131] and [159] described in Chapter

3, which found
dEg

dP = 4.33, 9.2, 10.4 and 12.9 meV kbar−1 for the fundamental band gap in

Ge1−xSnx photodiodes having x = 0, 6, 8 and 10%.

This suggests that the indirect- to direct-gap transition in Ge1−xSnx proceeds continuously

rather than occurring abruptly at some critical Sn composition. Combined, these results would

suggest significant implications for the interpretation of the Ge1−xSnx band structure. The

strongly hybridised nature of the Ge1−xSnx CB edge states could have significant consequences

for technologically relevant material properties. The LDA + mBJ and VFF + TB models
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established and benchmarked here provide quantitatively accurate descriptions of band mixing

effects in alloy supercell calculations. It should be noted however that the supercells used here

have strong medium range order due to their small size. Larger supercells are therefore required

to investigate the evolution of the band structure as the medium range order is reduced. Such

calculations are not feasible using DFT approaches, but are currently underway by colleagues

using the tight-binding method.

4.5 Impact of Sn local environment on germanium-tin alloy

electronic structure

Having quantified the impact of Sn incorporation on the band structure of ordered Ge1−xSnx

alloy supercells, we now turn our attention to the investigation of how the separation of Sn

atoms in disordered alloy supercells impacts the alloy electronic band structure. We begin by

taking a Ge15Sn1 supercell and substituting a second Sn atom in to the supercell in place of a

Ge atom to form four distinct Ge14Sn2 (x = 12.5%) supercells in which the two Sn atoms are

located at fourth-, third-, second- and first-nearest lattice sites respectively. We then repeat

this same substitution with the Ge63Sn1 supercell to form four distinct Ge62Sn2 (x = 3.13%)

supercells in which the two Sn atoms are located at fourth-, third-, second- and first-nearest

lattice sites respectively. In this manner, we can investigate how the electronic properties of

Ge14Sn2 and Ge62Sn2 supercells vary as the separation between two Sn atoms decreases until

they form a nearest-neighbour Sn-Sn pair. For each case we calculate the electronic structure

and quantify the dependence of the fundamental band gap Eg, and its pressure coefficient
dEg

dP ,

on the relative position of the two Sn atoms in the supercell.

We note that incorporation of > 1 substitutional Sn atoms breaks the cubic symmetry of the

underlying diamond lattice, which was preserved in the ordered supercell calculations of Sec. 4.6.

As a result of this reduction in symmetry the fourfold (twofold and Kramers) degeneracy of

the zone-centre VB edge states is lifted, giving rise to two distinct sets of Kramers degenerate

states. The precise value of the VB edge splitting in a disordered supercell is in general a

non-monotonic function of Sn composition x, but instead depends on the precise short-range

disorder present in a given alloy supercell. In this section, as well as in Sec. 4.6 below, we

therefore calculate band gaps in disordered supercells with respect to the average energy of the

split VB edge states.

Schematic illustrations of the different configurations of the 16 atoms supercell for the 4th –

1st nearest neighbout Sn pairs are shown in Fig. 4.4. In all cases one Sn atom is positioned on

the corner of the cell at the (0,0,0) site while the position of the second Sn atom is varied for

different nearest neighbour configurations. To achieve a 4th nearest neighbour configuration in

the Ge14Sn2 supercell the second Sn atom is positioned on the (1,1,1) site. As a result of the
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(a) (b)

(c) (d)

Figure 4.4: Schematic of the 16 atom Ge supercell structure with two Sn atoms (coloured in
green and blue respectively) positioned at nearest neighbour distances varying from (a) fourth,
(b) third, (c) second, and (d) first nearest neighbours (NNs) to one another.

periodic repetition of the supercell each Sn atom in this configuration will have 12 separate 4th

nearest Sn neighbours. By then moving this Sn atom (+1
4 , +1

4 , +1
4) to the (5

4 ,5
4 ,5

4) site a 3rd

nearest neighbour supercell is formed. We note that in moving to this third nearest neighbour

configuration irrespective of which direction one moves from the (1,1,1) site the atom to which

one moves will always lie outside of the cubic cell used in in Fig. 4.4. Each Sn atom in this

configuration will have three 3rd nearest neighbour Sn atoms. For the 2nd nearest neighbour

case the second Sn atom is positioned on the (0,1
2 ,1

2) lattice sites. Periodic repetition of the

supercell means that the Sn atom will have two 2nd nearest neighbouring Sn atoms in this

configuration. Finally for the 1st nearest neighbour Ge14Sn2 cell the second Sn atom is set up

on the (1
4 ,1

4 ,1
4) lattice site. Each Sn atoms in the cell will have a single nearest neighbouring Sn

atom as well and three 3rd nearest neighbouring Sn atoms arising from the periodic repetition

of the supercell.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Calculated CB structure of disordered, 16-atom (2 × 2 × 2 SC) Ge14Sn2 (x =
3.125%) supercells in which the two Sn atoms are (a) fourth, (b) third, (c) second, and (d)
first nearest neighbours (NNs). (e) Calculated variation of the fundamental band gap Eg of
the Ge14Sn2 supercells of (a) – (d) with respect to the relative position of the two Sn atoms.

(f) same as (e), but for the pressure coefficient
dEg

dP of the fundamental band gap Eg.

The results of the calculations – utilizing the mBJ XC functional – for disordered Ge14Sn2

supercells are summarised in Figure 4.5, where Figures 4.5(a), 4.5(b), 4.5(c) and 4.5(d) re-

spectively show the calculated conduction band structure for the fourth-, third-, second- and

first-nearest neighbour Sn-Sn atom pair respectively. Figures 4.5(e) and 4.5(f) show the de-

pendence of the calculated values of Eg and
dEg

dP on the relative position of the two Sn atoms

respectively.

In an overall sense the band structures shown in Figures 4.5(a)–(d), are in good qualitative

agreement with each other. In each of the four supercells Γ7c from pure Ge has reduced in
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energy sufficiently to come below the (Kramers degenerate) triplet state which arises from L6c

of pure Ge to form a direct band gap. This feature is perhaps unsurprising given the high 12.5%

Sn content present in these supercells and the transition to a direct gap by 12.5% Sn content

is in agreement with existing literature predictions. However despite qualitative similarities in

the calculated band structures, Sn clustering produces significant quantitative differences in

the calculated electronic properties of supercells with fixed Sn composition x.

Starting with the Ge14Sn2 supercell in which the two Sn atoms are fourth-nearest neighbours

we calculate a fundamental band gap Eg = 0.205 eV, which is reduced by 519 meV com-

pared to the fundamental band gap of Ge, by 455 meV compared that of the ordered Ge63Sn1

(1.56%) supercell and by 0.151 meV compared that of the ordered Ge15Sn1 (6.25%) supercell.

Correspondingly, spin orbit splitting of this supercell has a value of ∆SO = 0.335 eV, which is

increased by 61 meV compared to that in Ge, and by 53 meV and 19 meV compared to Ge63Sn1

and Ge15Sn1 supercells respectively. For the case of third-nearest neighbour Sn atoms we cal-

culate a band gap of Eg = 0.0751 eV , a reduction of 130 meV compared to the fourth-nearest

neighbour Sn atoms, and ∆SO = 0.342 eV, 7 meV higher than that calculated for fourth-nearest

neighbour Sn atoms. For the case of second-nearest neighbour Sn atoms we calculate a negative

band gap of Eg = - 0.001 eV , 204 meV lower than that of the fourth-nearest neighbour Sn

atoms, and ∆SO = 0.3552 eV, 20 meV higher than that calculated for fourth-nearest neighbour

Sn atoms. Finally for the ultimate case, where the two Sn atoms are positioned as a Sn–Sn

nearest neighbour pair we again calculate a negative band gap, this time with a value of Eg =

-0.142 eV, 866 meV lower than that of the fundamental band gap of Ge, and 347 meV lower

than the fundamental band gap in the case of fourth-nearest neighbour Sn atoms. Similarly,

we calculate ∆SO = 0.387 eV for the supercell containing a Sn-Sn nearest-neighbour pair, an

increase of 113 meV compared to that in bulk Ge, and an increase of 52 meV compared to the

case of fourth-nearest neighbour Sn atoms. Since these four disordered supercells have equal

Sn composition x = 12.5%, this calculated ≈ 347 meV variation in Eg is strongly indicative of

the impact that Sn-Sn clustering may have on the electronic properties of Ge1−xSnx alloys.

Figure 4.5(f) shows the calculated pressure coefficients
dEg

dP , associated with the fundamental

supercell band gap Eg, as a function of Sn-Sn separation for the same series of Ge14Sn2 super-

cells. In line with the ordered supercell calculations of Sec. 4.3.2, the calculated values of
dEg

dP

are intermediate between the values 4.07 and 13.23 meV kbar−1 associated with the L6c-Γ8v

and Γ7c-Γ8v band gaps of Ge (cf. Table 4.5). Again, this reveals the hybridised nature of the

alloy CB edge states in these supercells, which are primarily derived from a linear combination

of Ge L6c states having strong s-like orbital character at the Sn lattice sites, but which contain

an admixture of Ge Γ7c character. In all four cases – having fourth-, third-, second- and first-

nearest neighbour Sn atoms – the calculated value of
dEg

dP remains closest to that associated

with the state arising from the Γ7c state of pure Ge band , suggesting that the supercell band

gap is primarily direct in nature for compositions of x = 12.5% Sn. We note that the precise
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value of
dEg

dP varies non-monotonically with Sn-Sn separation. This non-monotonic change in

hydrostatic pressure with varying neighbour distance is however noted to be rather small, with

the difference of 0.4meV/kbar between the largest and smallest values representing only a 5%

change in mixing. We cannot identify why the pressure coefficient should decrease slightly

in the fourth neighbour case. It can be seen from Fig. 4.4(a) that this Ge14Sn2 supercell

is equivalent to a Ge7Sn1 cubic supercell, for which there will be no Γ-X mixing. It is not

clear however why the elimination of Γ-X mixing should lead to a reduction in the pressure

coefficient. Nevertheless, these results reveal that the details of the Sn-induced band mixing

are impacted by the specific short-range disorder present in a given alloy supercell.

This demonstrates more generally that the character of the CB edge states, and hence the

nature of the band gap, in real (disordered) Ge1−xSnx alloys, is sensitive to the presence of

short-range alloy disorder and Sn clustering. We note also that long range periodic ordering

effects arising from the small size of the supercell studied may impact here on the level of

mixing seen as the two Sn atoms in the supercell are moved closer together from fourth nearest

neighbours initially to eventually forming a Sn–Sn nearest neighbour pair. We expect that in

larger supercells the impact of long range periodic ordering should be lessened and the mixing

closer to that which might be seen in a real disordered alloy.

The unfolded band structures of the disordered, 16-atom (2× 2× 2 SC) Ge14Sn2 (x = 12.5%)

supercells in which the two Sn atoms are positioned as (a) fourth, (b) third, (c) second, and

(d) first nearest neighbours are shown in Fig 4.6 (a)–(d). These band structures, which were

unfolded using the BandUP software package [97] are all in generally good qualitative agreement

and agree well in terms of conduction and valence band energies with the folded band structures

shown in Fig. 4.5 (a) – (d). In each of unfolded bandstructures from fourth to first nearest

neighbour Sn pairs the lowest conduction band state lies at the Γ CBE critical point, which

again is in good agreement with hydrostatic pressure calculations, which indicated the presence

of strong Γ character in the lowest energy conduction band state. We note that because there

are 4 L states in the unfolded band structure, and the lowest state at Γ can mix with all 4 of

them, only a fraction (25%) of this L character is associated with the one L point shown in

the unfolded band structure. The L character of the lowest conduction state deduced from the

pressure calculations is then very difficult to observe in Fig. 4.5.
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(a) (b)

(c) (d)

Figure 4.6: Calculated unfolded band structure of disordered, 16-atom (2×2×2 SC) Ge14Sn2

(x = 12.5%) supercells in which the two Sn atoms are (a) fourth, (b) third, (c) second, and (d)
first nearest neighbours (NNs).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Calculated CB structure of disordered, 64-atom (2 × 2 × 2 SC) Ge62Sn2 (x =
3.125%) supercells in which the two Sn atoms are (a) fourth, (b) third, (c) second, and (d)
first nearest neighbours (NNs). (e) Calculated variation of the fundamental band gap Eg of
the Ge62Sn2 supercells of (a) – (d) with respect to the relative position of the two Sn atoms.

(f) same as (e), but for the pressure coefficient
dEg

dP of the fundamental band gap Eg.

Moving on from the Ge14Sn2 disordered alloy supercells, Figure 4.7 summarises the results of

the calculations examining the band structure of the larger Ge62Sn2 disordered alloy supercells

of 3.125 % Sn content with Figures 4.7(a) – 4.7(d) showing the calculated conduction band

structure for the fourth-, third-, second- and first-nearest neighbour Sn-Sn atom pair respec-

tively. Figures 4.7(e) and 4.7(f) show the dependence of the calculated values of Eg and
dEg

dP

respectively on the relative position of the two Sn atoms in the supercell. The band structures

shown in Figures 4.7(a), 4.7(b), 4.7(c) and 4.7(d) display, overall, high qualitative similar-

ity. Similarly to the ordered supercells described earlier in the chapter, the three (Kramers

degenerate) lowest energy CB states in each of these supercells possess primarily p-like orbital
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character at Sn lattice sites, with the next two (Kramers degenerate) CB states up in energy

possessing primarily s-like orbital character at Sn lattice sites. However while in the ordered

alloy supercells the three p-like Ge L6c-derived states form degenerate triplet states, here their

degeneracy is lifted in the disordered supercells due to the loss of the underlying cubic symmetry

of the lattice. However, as we describe below, despite qualitative similarities in the calculated

band structures, Sn clustering produces significant quantitative differences in the calculated

electronic properties in supercells having fixed Sn composition x.

Beginning with the Ge62Sn2 supercell in which the two Sn atoms are positioned as fourth-

nearest neighbours we calculate a fundamental band gap Eg = 0.609 eV, which is reduced

by 115 meV compared to the fundamental band gap of Ge ,in line with earlier predictions of

a 34meV decrease per % Sn incorporated, and by 72 meV compared to that of the ordered

Ge63Sn1 supercell considered above. Correspondingly, we calculate ∆SO = 0.289 eV for this

Ge62Sn2 supercell, which is increased by 15 meV compared to that in Ge, and by 7 meV

compared to that in Ge63Sn1. In line with the ordered supercell calculations of Sec. 4.4, these

results confirm that Sn incorporation in Ge leads to a strong decrease in Eg and increase in ∆SO

with increasing x. For the case of third-nearest neighbour Sn atoms we calculate Eg = 0.604

eV (∆SO = 0.289 eV), 5 meV lower than (equal to) that calculated in the case of fourth-nearest

neighbour Sn atoms. Ultimately, in the presence of a nearest-neighbour Sn-Sn pair we calculate

Eg = 0.591 eV, which is reduced by 133 meV compared to the fundamental band gap of Ge,

and by 18 meV compared to the case of fourth-nearest neighbour Sn atoms. Similarly, we

calculate ∆SO = 0.293 eV for the supercell containing a Sn-Sn nearest-neighbour pair, which is

increased by 19 meV compared to that in Ge, and by 4 meV compared to the case of fourth-

nearest neighbour Sn atoms. We emphasise again that the calculated decrease of Eg – shown in

Fig. 4.7(e) – and increase of ∆SO (not shown) as the two Sn atoms are brought closer together

is not a monotonic function of the Sn-Sn inter atomic distance, but depends on the specific

relative position of the two Sn atoms. Since these four disordered supercells have equal Sn

composition x = 3.125%, this calculated ≈ 18 meV variation in Eg – representing ≈ 3% of the

total band gap – indicates the non negligible impact that Sn-Sn clustering may have on the

electronic properties of Ge1−xSnx alloys.

Figure 4.7(f) shows the calculated pressure coefficients
dEg

dP , associated with the fundamental

supercell band gap Eg, as a function of Sn-Sn separation for the same series of Ge62Sn2 super-

cells. Similarly to the ordered supercell calculations of Chapter. 3, the calculated values of
dEg

dP

in these four primarily indirect gap supercells are all close to the value of 4.07 meV kbar−1

associated with the L6c-Γ8v band gap of Ge (cf. Table 4.5). This suggests that the supercell

band gap remains primarily indirect in nature at x = 3.125%. We also note that the precise

value of
dEg

dP varies non-monotonically with Sn-Sn separation, indicating again that the details

of the Sn-induced band mixing are impacted by the specific short-range disorder present in

a given alloy supercell. This demonstrates more generally that the character of the CB edge
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states, and hence the nature of the band gap, in real (disordered) Ge1−xSnx alloys, is likely to

be sensitive to the presence of short-range alloy disorder and Sn clustering.

Overall, these results demonstrate that the calculated values of Eg and
dEg

dP – the latter reflecting

the hybridised character of the alloy CB edge states – in Ge1−xSnx at fixed Sn composition

x display significant dependence on the precise short-range alloy disorder present in a given

alloy supercell. We note however that due to the small number of atoms in these supercells, the

importance of such short-range disorder effects may be somewhat overstated here in comparison

to the effects that would likely be noted in larger scale alloy supercell calculations. This issue

is discussed in more detail in Sec. 4.6 below. While our analysis in Chapter. 3 identified the

presence of Sn-induced band mixing in Ge1−xSnx, our calculations here indicate the sensitivity

of the Ge1−xSnx electronic structure to the presence of short-range alloy disorder (particularly

in the form of clustering of substitutional Sn atoms). From a theoretical perspective, our results

therefore suggest the breakdown of the virtual crystal approximation in Ge1−xSnx alloys, which

neglects effects related to band mixing and alloy disorder. We therefore conclude that atomistic

calculations which explicitly account for the differences in size and chemical properties between

Ge and Sn are required to provide quantitative insight into the properties of real Ge1−xSnx

alloys.

4.6 Disordered alloys: electronic structure evolution in germanium-

tin special quasi-random structures

Having already investigated the important role short-range Sn-related structural disorder plays

in influencing the details of the alloy electronic structure, we focus now on how the electronic

structure evolves with x in more realistic, disordered Ge1−xSnx special quasi-random struc-

tures. To begin, the suitability of these special quasi-random structures for use in electronic

structure calculations is assessed by comparing predicted and actual occurrences of clusters of

first nearest-neighbouring Sn atoms in randomly disordered substitutional Ge1−xSnx alloys of

increasing Sn composition x. The probability of occurrence of a Sn-Sn pair – i.e. the probabil-

ity that two Sn atoms substituted at randomly chosen lattice sites occupy neighbouring sites

– varies for small x as 2x2. As such, we would expect that a randomly disordered N -atom

supercell contains, on average, a total of ∼ N ×2x2 Sn pairs. Figure 4.8(a) shows the expected

(solid red line) and actual (solid green bars) number of Sn-Sn pairs in the 128-atom SQSs used

in our electronic structure calculations. The actual number of Sn-Sn pairs that occur in the

SQSs is in all cases equal to the expected number 128 × 2x2, rounded to the nearest whole

number. We note that the probability of occurrence of a larger cluster containing three neigh-

bouring Sn atoms is ∝ x3, which remains . 10−3 in the composition range considered. Hence

we expect, and find, that no Sn clusters containing more than two neighbouring Sn atoms occur



Electronic and optical properties of GeSn alloys 76

0.0

1.0

2.0

0 2 4 6 8

(a)

5.64

5.68

5.72

5.76

0 2 4 6 8 10 12 14

(b)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

()

2.0

4.0

6.0

8.0

0 5 10 15

(d)

0.25

0.30

0.35

0.40

0 5 10 15

(e)

N

o

.

S

n

-

S

n

p

a

i

r

s

Sn omposition, x (%)

Sn-Sn-pairs

128-atom SQS

128� 2x

2

a

(

� A

)

Sn omposition, x (%)

Lattie onstant

Linear

b = 0:083

�

A

B

a

n

d

g

a

p

,

E

g

(

e

V

)

Sn omposition, x (%)

Band gap

3

4

5

6

7

8

d

E

g

d

P

(

m

e

V

k

b

a

r

�

1

)

d

E

g

d

P

(

m

e

V

k

b

a

r

�

1

)

Sn omposition, x (%)

Pressure oeÆient

�

S

O

(

e

V

)

Sn omposition, x (%)

Spin-orbit splitting energy

Figure 4.8: (a) Expected (solid red line) and actual (solid green bars) occurrence of nearest-
neighbour Sn-Sn pairs in the 128-atom (4 × 4 × 4 FCC) SQSs used to analyse the electronic
structure evolution in disordered Ge1−xSnx alloys. (b) Variation of the relaxed lattice constant
a with Sn composition x (closed circles) for the SQSs of (a). The dashed grey line shows a
calculated by interpolating linearly between the lattice constants of Ge and diamond-structured
Sn (cf. Table 4.2). The solid black line shows the best fit to the calculated lattice constants,
having bowing parameter b = 0.076 Å. (c) Variation with x of the band gaps Eg, calculated
between the VB edge and the five lowest energy CB states at the supercell zone centre (closed

circles). The colour of the data points are weighted according to the pressure coefficient
dEg

dP

associated with the corresponding band gap Eg. (d) Variation of
dEg

dP with x for the fundamental
band gap of (c). (d) Variation of the VB spin-orbit splitting energy ∆SO with x.

in the SQSs employed in our analysis here. On this basis, we conclude that the 128-atom SQSs

considered here have appropriate distributions of Sn atoms to analyse the evolution of the alloy

properties with x.

The closed circles in Fig. 4.8(b) show the variation of the relaxed lattice constant a with x for the

series of SQSs investigated. Comparing the calculated values of a to the increase expected based

on Végard’s law (dashed grey line), we observe that the lattice constants calculated for SQSs

containing > 1 Sn atom are lower in value than those expected based on a linear interpolation

of the Ge and α-Sn lattice constants. This suggests a positive bowing coefficient b for the lattice

constant of disordered Ge1−xSnx. Fitting to the calculated lattice constants – depicted by the

solid black line in Fig. 4.8(b) – yields a best-fit bowing coefficient b = 0.083 Å. We note that

this is in contrast to the results of our calculations in Sec. 4.3.2, where relaxation of ordered

alloy supercells predicted a negative value of b, and likely reflects that the presence of Sn-Sn

pairs and disorder leads to larger local expansion of sections of the crystal lattice. Given that

(i) real Ge1−xSnx alloy samples will inevitably contain varying degrees of atomic-scale disorder,

and (ii) SQSs are generally found to accurately predict the evolution with composition of the

structural and elastic properties of randomly disordered alloys, [173] we expect that b = 0.083
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Å represents a realistic prediction of the lattice constant bowing in Ge1−xSnx alloys. We note

that this bowing parameter is similar to literature values of −0.17 Å calculated by D’Costa

et al. [174] and −0.21 Å calculated by Eckhardt et al. [124] for Ge1−xSnx alloys.

Turning our attention to the electronic structure evolution, Fig. 4.8(c) shows the calculated

variation with x of the band gaps between the alloy VB edge and the five lowest energy CB

states at the supercell zone centre. Here, we show the band gaps calculated for the five (Kramers

degenerate) lowest energy CB states in each SQS: for x = 0 the four lowest energy states are

the L6c CB minimum states of Ge, while the fifth is the Γ7c zone-centre CB edge state of Ge.

As in Sec. 4.6, due to the loss of cubic symmetry and associated lifting of the degeneracy of

the VB edge states, we calculate band gaps with respect to the average energy of the two

highest energy sets of Kramers degenerate VBs. At first glance, Fig. 4.8(c) seems to suggest

that the indirect- to direct-gap transition occurs for x ≈ 7%, around which composition we

observe four (Kramers degenerate) CB states lying within ≈ 100 meV of one another, with one

state lying ≈ 60 meV below these four higher energy states. In this figure we have weighted

the colour of each of the data points in Fig. 4.8(c) according to the corresponding calculated

pressure coefficient
dEg

dP : starting from yellow for
dEg

dP = 3 meV kbar−1 (close to that of the

Ge L6c-Γ8v fundamental band gap), and shifting towards red as
dEg

dP (i.e. direct character of

the band gap) increases. Considering then
dEg

dP associated with each band gap, we find that

the lowest conduction band state has taken on some Ge Γ7c character while the second to fifth

lowest energy CB states retain predominantly Ge L6c character for x ≈ 7%. As such, the alloy

band gap has become primarily direct in nature for x ≈ 7%.

Generally speaking the trends observed in Fig. 4.8(c) remain largely consistent with those

observed earlier in the chapter for the ordered supercells of Ge1−xSnx investigated in Sec. 4.4,

where we found that the CB states originating from the L6c states of Ge split into (Kramers

degenerate) triplet and singlet states, respectively possessing primarily p- and s-like orbital

character at Sn lattice sites, with the singlet states lying above the triplet state in energy.

Due to the loss of cubic symmetry in the disordered supercells considered here we observe a

breakdown of the degeneracy of the p-like Ge L6c-derived triplet states. These states otherwise

remain closely spaced in energy with increasing Sn composition x. We note additionally that

alloy CB states originating from the Γ7c states of Ge decrease in energy more rapidly with

increasing x than those originating from the Ge L6c states. As x increases the calculated CB

states originating from the Γ7c states of Ge firstly pass through the s-like Ge L6c-derived CB

state, at aound x ≈ 4.7%. As this occurs we note weak hybridisation between these two sets

of states, evidenced by the abrupt rise and subsequent fall in the values of
dEg

dP associated with

the s-like singlet CB states. As x increases further, we note the emergence of a direct band gap

for x ≈ 7.03%. This is evidenced by a notable increase in
dEg

dP associated with the fundamental
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band gap as the energy of the Ge Γ7c-derived CB states approaches that of the s-like Ge L6c-

derived singlet states. This increase in
dEg

dP describes the transition to the fundamental band

gap having primarily, but not purely, direct (Ge Γ7c) character.

Finally, Fig. 4.8(e) shows the calculated variation of ∆SO with x. As for the calculation of Eg

above, ∆SO is calculated with respect to the average VB edge energy. Still, we note deviations

from a smooth monotonic increase of ∆SO with x, likely reflecting the non-monotonic variation

with x of the VB edge splitting. Generally, we find that ∆SO increases steadily with increasing

x, and is in line with corresponding increase calculated in Sec. 4.3.2 for ordered alloy super-

cells. For example, the calculated value ∆SO = 0.316 eV for an ordered Ge15Sn1 (x = 6.25%)

supercell is only 7meV smaller than the value of 0.323 eV calculated for the SQS of the same

Sn composition Ge120Pb8 (x = 6.25%).

4.7 Conclusions

In summary, we have presented three atomistic models of the structural and electronic prop-

erties of Ge1−xSnx alloys. The first model uses HSEsol DFT to perform structural relaxation

and to calculate the electronic structure. This provides a highly accurate description of (i) the

constituent materials Ge, α-Sn and zb-GeSn, and (ii) the hybridised nature of the Ge1−xSnx

CB edge states. The second model uses LDA structural relaxation combined with mBJ elec-

tronic structure calculations. The third, semi-empirical model uses VFF structural relaxation

combined with sp3s∗ TB electronic structure calculations. Since the HSEsol DFT calculations

are in good quantitative agreement with experimental measurements, the results of these cal-

culations were taken as a reference to quantify the accuracy of the LDA + mBJ and VFF +

TB models.

The trends in the Ge1−xSnx alloy lattice constant, relaxed atomic positions, band gap and

VB spin-orbit splitting energy calculated using the LDA + mBJ and VFF + TB models were

found to be in good qualitative and quantitative agreement with the results of full HSEsol

calculations. Alloy supercell band structure calculations carried out using all three models

highlight the importance of Sn-induced band mixing and alloy disorder in determining the

hybridised nature of the Ge1−xSnx CB structure in the supercells considered. This supports

the suggestion that the evolution of a direct band gap in Ge1−xSnx occurs continuously with

increasing Sn composition. As it offers an experimentally measureable means by which to

quantify this hybridisation, the alloy band gap pressure coefficient was also calculated using

the three approaches. Again, the LDA + mBJ and VFF + TB calculations were found to

capture both qualitatively and quantitatively the trends observed in full HSEsol calculations.
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On the basis of these benchmark calculations we conclude that the LDA + mBJ model offers

an accurate description of Ge1−xSnx alloys at reduced computational expense compared to

HSEsol calculations, providing access to larger systems within a first principles framework.

Investigations of the impact of Sn-Sn separation on the alloy band structure indicate the im-

portant impact of disorder effects on the electronic band structure. We note that the impact

of these effects is likely overestimated due to long range periodic ordering effects arising from

the small size of the supercells investigated and so anticipate that as the size of the supercell

increases the impact of disorder effects will be lessened.

The results of the 128 atoms SQS supercells with x varied between 0 and 15% indicate an

uptake in Gamma character in the lowest conduction band state at compositions of ≈ 5.5% Sn

content. At this ≈ 5.5% Sn content the pressure coefficient of the conduction band edge remains

primarily composed of band character arising from the Ge L6c states having strong s-like orbital

character at the Sn lattice sites, but also contains an admixture of Ge Γ7c character.The level

of Gamma character in the conduction band edge pressure coefficient continues to increase

monotonically with the conduction band edge, becoming primarily Gamma-like at ≈ 7.03% Sn.

Overall, we conclude that electronic structure calculations for Ge1−xSnx alloys must explic-

itly include band mixing and disorder effects to allow for accurate analysis of the impact of

Sn incorporation on key material parameters, including optical transition strengths, electron

mobility and band-to-band tunneling rates. Given the potential importance of these effects in

determining technologically relevant material properties, the development of appropriate theo-

retical models represents an important step to enable predictive theoretical analysis of proposed

Ge1−xSnx-based photonic, electronic and photovoltaic devices. The theoretical models we have

presented allow for the treatment of larger systems than those accessible to hybrid functional

DFT with miniminal loss of accuracy, providing a basis for direct atomistic calculations of the

electronic, optical and transport properties of disordered Ge1−xSnx alloys and realistically-sized

nanostructures.





Chapter 5

Electronic and optical properties of

GePb alloys

5.1 Overview

Having investigated in previous chapters the optical and electrical properties of Ge1−xSnx

alloys, we turn our attention in this chapter to another group-IV element lead (Pb) and its

ability to bring about a direct band gap in germanium via alloying with low % compositions

of lead. In this chapter, we present a theoretical analysis of electronic structure evolution

in Ge1−xPbx alloys, using first principles DFT calculations. Our alloy supercell calculations

firstly demonstrate that Pb incorporation strongly impacts the CB structure. Our analysis

further reveals a strong Pb-induced reduction of the fundamental band gap and increase of

the VB spin-orbit splitting energy, as well as a strong sensitivity of the alloy CB structure to

the presence of atomic-scale alloy disorder (Pb clustering). From a theoretical perspective, the

presence of such alloying effects indicates a breakdown of the virtual crystal approximation

(VCA), upon which previous analysis [175] of the indirect- to direct-gap transition has been

based.

We then discuss our results in comparison to the results of equivalent calculations for Ge1−xSnx

alloys reported in chapter 4. We demonstrate that the electronic structure evolution in Ge1−xPbx

admits important quantitative differences compared to that in Ge1−xSnx. Confirming the

strong impact of Pb incorporation on the band structure, we firstly calculate that Pb incor-

poration results in a strong reduction of the fundamental band gap, by ≈ 100 meV per % Pb

replacing Ge. Secondly, the band gap becomes direct in character with increasing x, but the

alloy CB edge eigenstates in our supercell calculations are in general neither purely indirect nor

direct in character, but predominantly contain an admixture of indirect (Ge L6c) and direct

(Ge Γ7c) character. The indirect- to direct-gap transition instead proceeds via the downward

81
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shift in energy of CB states originating from the Ge Γ7c states, which pass through – and in

doing so hybridise weakly with – alloy CB states originating from the Ge L6c states. We find in

our 128-atom special quasi-random structure (SQS) calculations a relatively abrupt indirect-

to direct-gap transition, occurring in a narrow composition range centred about x ≈ 7% in our

calculations, close to the composition where we calculate that Ge1−xPbx becomes semimetallic.

We note however that finite-size effects observed in our calculations may lead to an overesti-

mate of this transition composition. Analysing these finite-size effects, we estimate the direct

gap to shift below the inhomogeneously broadened indirect gap in Ge1−xPbx for x ≈ 3 – 4%.

The remainder of this chapter is organized as follows. We begin in Section 5.1.1 with a brief

overview of existing literature on the experimental growth and theoretical investigation of

the properties of Ge1−xPbx alloys and detail the potential applications for direct band gap

Ge1−xPbx alloys in the photonics industry. Following this, in Section 5.2 we detail our first prin-

ciples theoretical approach to calculating the structural and electronic properties of Ge1−xPbx

alloy supercells, which is similar in methodology to the approach presented in Chapter 4 for

Ge1−xSnx alloys and which consists of performing density functional theory calculations on

large (up to N = 128 atom) Ge1−xPbx supercells in which the atomic positions in the supercell

are, as described previously in Chapter 4, allowed to relax to their equilibrium positions (those

at which the overall elastic energy in the supercell is minimised) and electronic structure and

hydrostatic pressure calculations are then employed on the relaxed structure to investigate the

electronic properties of the alloy at varying composition of lead. The generation of the special

quasi random structures used in our analysis of disordered alloys, and the calculation of the

alloy band structure as a function of hydrostatic pressure to determine the hybridised character

of the CB edge states are also reiterated briefly here.

The results of our calculations are presented in Sec. 5.3, beginning in Sec. 5.3.1 with an anal-

ysis of the impact of Pb incorporation on the electronic structure of ordered Ge1−xPbx alloy

supercells. In Sec. 5.3.2 we quantify the importance of the local environment around a substi-

tutional Pb atom, via analysis of the impact of nearest-neighbour Pb-Pb pair formation on the

electronic structure. Then, in Sec. 5.3.3 we analyse the evolution of the electronic structure

with x in 128-atom disordered (SQS) alloy supercells. We present a theoretical analysis of

electronic structure evolution and the indirect- to direct-gap transition in the group-IV alloy

Ge1−xPbx, based on density functional theory employing both Heyd-Scuseria-Ernzerhof (HSE)

hybrid functional and modified Becke-Johnson (mBJ) exchange-correlation functionals. Due to

similarities in the impact of Pb and Sn incorporation on the Ge band structure, we discuss in

Sec. 5.3.4 our results in comparison to the results of equivalent calculations for Ge1−xSnx alloys

described in Chapter 4. We demonstrate that the electronic structure evolution in Ge1−xPbx

admits important quantitative differences compared to that in Ge1−xSnx.

Finally, in Sec. 5.4 we summarise and conclude.
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5.1.1 Review of existing literature for GePb alloys

While Ge1−xSnx alloys have attracted significant theoretical interest, there have been few

reports to date regarding Ge1−xPbx alloys. Initial density functional theory (DFT) calculations

by Huang et al. [175] predicted (i) a strong band gap reduction in response to Pb incorporation,

(ii) that the indirect- to direct-gap transition occurs for Pb compositions as low as x ≈ 1%,

and (iii) that the alloy band gap closes for x ≈ 2%. However, these calculations possess

several shortcomings. Firstly, the conduction band (CB) minimum of Ge in Ref. [175] lies

along the ∆ direction in the Brillouin zone, rather than at the L point. Secondly, the use

of a local density approximation (LDA) exchange-correlation (XC) functional leads to band

gap underestimation. More recently, the same authors presented calculations based on a more

accurate GGA + U XC functional, and revised the predicted Pb composition for the transition

to a direct gap to x ≈ 3.5%. [45] However, little work has yet been undertaken to analyse the

indirect- to direct-gap transition, and its implications for the alloy electronic structure and for

device applications.

On the experimental side initial epitaxial growth of GePb films has been reported, involving

decomposition by sputtering of Ge and Pb and annealing via laser induced epitaxy [176–

178]. TEM images from these initial studies suggest that substitutional incorporation of up to

3% Pb content can be achieved by this method. Given the recent establishment of epitaxial

growth of Ge1−xPbx alloys, and experimental evidence for the emergence of a direct band gap,

[178] detailed theoretical insight into the alloy electronic structure is required to guide the

development of suitable materials for potential device applications.

5.2 Theoretical models

Our analysis of the Ge1−xPbx electronic structure is based on DFT calculations employing two

distinct exchange-correlation (XC) functionals: (i) the Heyd-Scuseria-Ernzerhof (HSE) hybrid

XC functional [78, 79] modified for solids (HSEsol), [134] and (ii) the modified Becke-Johnson

(mBJ) XC functional. [75] The semi-core d states of Ge are treated as core electron states,

unfreezing these states has been demonstrated to have a negligible impact on the calculated

electronic structure. [124] We adopt the same approximation for Pb. We therefore employ

pseudopotentials in which the (4s)2(4p)2 orbitals of Ge and (6s)2(6p)2 orbitals of Pb are ex-

plicitly treated as valence states. Since relativistic effects in Pb are sufficiently large to impact

the structural properties [179] – e.g. calculations neglecting spin-orbit coupling incorrectly pre-

dict that elemental Pb is diamond-structured rather than FCC-structured in equilibrium –

spin-orbit coupling is explicitly included in the computation of the lattice free energy for all
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structural relaxations. All DFT calculations were performed using the projector augmented-

wave method, [85, 93] as implemented in the Vienna Ab-initio Simulation Package (VASP).

[95, 96]

5.2.1 Density Functional Theory

Our DFT calculations are based closely on those we have established recently for Ge1−xSnx

alloys, full details of which can be found in the theoretical methods section in Chapter 2 and

Chapter 4 of this thesis. Since Pb incorporation is found to strongly impact the Ge band

structure close in energy to the CB edge, and since we are interested in the transition from

an indirect to direct band gap in Ge1−xPbx at low Pb compositions x . 10%, we prioritise

the accuracy of the description of the Ge band structure close in energy to the CB edge.

As before for the HSEsol calculations we therefore treat the exact exchange mixing α as an

adjustable parameter, the value of which is chosen to reproduce the measured separation in

energy between the fundamental indirect L6c-Γ8v and direct Γ7c-Γ8v band gaps of Ge. Similarly

for the mBJ calculations the relative weight c of the conventional Becke-Johnson exchange

potential is treated as an adjustable parameter, the value of which is chosen again to reproduce

the measured separation in energy between the fundamental indirect L6c-Γ8v and direct Γ7c-Γ8v

band gaps of Ge. We find for the HSE and mBJ exchange correlation functionals that setting

α = 0.3 in the HSEsol and c = 1.2 in the mBJ XC functionals respectively optimally reproduce

the measured 146 meV Γ7c-L6c energy difference. [155, 180] For the HSEsol calculations we

again use a screening parameter µ = 0.2 Å−1.

For primitive unit cells we utilise a Γ-centred 6×6×6 Monkhorst-Pack k-point grid for Brillouin

zone integration, which is downsampled appropriately for larger supercells in order to preserve

the resolution of the Brillouin zone sampling. A plane wave cut-off energy of 400 eV is used for

Table 5.1: Lattice constant a, direct Γ7c-Γ8v band gap Eg and VB Γ8v-Γ7v spin-orbit splitting
energy ∆SO for Ge, diamond-structured Pb (d-Pb) and zinc blende GePb (zb-GeSn), calculated
via DFT using the HSEsol (with α = 0.3), and LDA (for a) or mBJ (with c = 1.2, for Eg
and ∆SO) XC functionals, and compared to low-temperature experimental measurements and
previous first principles theoretical calculations. For Ge the fundamental (indirect) L6c-Γ8v

band gap is listed in parentheses.

a (Å) Eg (eV) ∆SO (eV)
Material HSEsol LDA Reference HSEsol mBJ Reference HSEsol mBJ Reference

Ge 5.653 5.649 5.657a, 5.648b 0.908 (0.765) 0.868 (0.724) 0.890 (0.744)c 0.322 0.274 0.296c

d-Pb 6.907 6.852 6.673d, 7.074e −5.329 −4.605 —– 2.422 1.999 2.377f

zb-GePb 6.317 6.297 6.154d, 6.265g −2.695 −2.407 −2.250g 1.123 1.029 0.930g

aMeas. (avg.), Ref. Landolt and Börnstein [32] bCalc. (avg.), Ref. Landolt and Börnstein [32]
cCalc. (avg)., Ref. Landolt and Börnstein [155] dCalc., Ref. Wang and Ye [181]
eCalc. (avg.), Ref. Hermann et al. [154] fCalc., Ref. Herman et al. [64] gCalc.,
Ref. Hammou et al. [182]
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all calculations, chosen to be sufficiently high to minimise Pulay stress and allow for accurate

structural relaxation. Structural relaxation is achieved via free energy minimisation, by allowing

the lattice vectors and ionic positions to relax freely, subject to the additional criterion that the

maximum force on any atom in the supercell does not exceed 0.01 eV Å−1. To generate relaxed

atomic positions for HSEsol and mBJ electronic structure calculations, the HSEsol and LDA XC

functionals respectively are used to perform structural relaxations. Since relativistic effects in

Pb are sufficiently large to impact the structural properties [179] – e.g. calculations neglecting

spin-orbit coupling incorrectly predict that elemental Pb is diamond-structured rather than

FCC-structured in equilibrium – spin-orbit coupling is explicitly included in the computation

of the lattice free energy for all structural relaxations.

Table 5.1 summarises the results of our DFT calculations for the three constituent crystalline

materials relevant to Ge1−xPbx – diamond-structured semiconducting Ge (x = 0), diamond-

structured semimetallic [154] Pb (d-Pb; x = 1), and the fictitious semimetallic zinc blende-

structured IV-IV compound GePb (zb-GePb; x = 0.5). The table lists calculated lattice

constants a, direct band gaps Eg, and valence band (VB) spin-orbit splitting energies ∆SO,

compared to (low temperature) experimental measurements and previous theoretical calcu-

lations. The band structures of Ge, d-Pb and zb-GePb, calculated using the HSEsol (solid

lines) and mBJ (dashed lines) XC functionals, are shown respectively in Figs. 5.1(a), 5.1(b)

and 5.1(c). We note that zb-GePb – equivalent to an ordered Ge0.5Pb0.5 alloy – is semimetallic,

with a large negative direct band gap −2.695 eV (−2.407 eV) in the HSEsol (mBJ) calcula-

tion, suggesting that the band gap in Ge1−xPbx alloys can be expected to close for some Pb

composition significantly below 50%.
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Figure 5.1: Band structure of (a) Ge, (b) diamond-structured Pb (d-Pb), and (c) zinc blende
GePb (zb-GePb), calculated via DFT using the HSEsol (solid lines) and mBJ (dashed lines)
XC functionals. For comparative purposes, the zero of energy has been chosen to lie at the
energy of the Γ8v VB edge in all cases.
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5.2.2 Choice of supercells

States originating from different wave vectors k in the Brillouin zone of the primitive unit

cell of the underlying diamond lattice are folded back to the zone centre (K = 0) in supercell

calculations. It can therefore be difficult to identify the character of individual zone-centre

states in the band structure of a Ge1−xPbx supercell, and hence to deduce the composition at

which the alloy becomes a direct-gap semiconductor. To address this issue, we again investigate

how the alloy CB structure changes as hydrostatic pressure is applied. Calculation of the

pressure coefficient
dEg

dP for the fundamental band gap in a given alloy supercell then allows to

identify the character of the band gap, and hence to track the evolution of the character of the

CB edge states and band gap with increasing Pb composition x. Because the Ge1−xPbx alloy

CB edge states originate from the L6c CB edge states of Ge, for small x, we follow Ref. [180]

and restrict our attention to supercells in which mixing between L- and Γ-point eigenstates is

permitted to occur. That is, we restrict our attention to n × n × n face-centred cubic (FCC)

or simple cubic (SC) supercells having even values of n. In such supercells the L points in the

Brillouin zone of the underlying diamond primitive unit cell fold to the supercell zone centre

K = 0, with L-point eigenstates then being free to hybridise with those at Γ under the influence

of the structural and chemical changes associated with Pb incorporation.

quasi-random structures

5.2.3 Special quasi random structures

As detailed previously in Section 4.2 we employ special quasi random structures to seed our

disordered alloy supercells so as to best capture the electronic structure of the most probable

configuration of germanium and lead atoms in these supercells with varying % lead content.

Similarly to the Ge1−xSnx SQSs investigated in the previous chapter, a series of 128-atom

(4 × 4 × 4 FCC) SQSs are employed here for the investigation of Ge1−xPbx alloys up to 10

Pb atoms – i.e. Pb compositions up to x = 7.81%. The SQSs are generated stochastically,

using a Monte Carlo simulated annealing procedure – as implemented in the Alloy Theoretic

Automated Toolkit (ATAT) [160–162] – to optimise the supercell lattice correlation functions

up to third nearest-neighbour distance about each lattice site, with respect to the target lattice

correlation functions for a randomly disordered, diamond-structured alloy having a specified

Pb composition x [163, 164]. In practice, the SQS supercells used here have the same atomic

distribution as were used for Ge1−xSnx calculations in the previous chapter.
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5.3 Electronic properties of germanium-lead alloys

In this section we present the results of our theoretical analysis. We begin in Sec. 5.3.1 with

the impact of Pb incorporation on the electronic structure of ordered alloy supercells, and

demonstrate the transition to a direct band gap with increasing Pb composition x. We com-

pare the results of calculations undertaken using both the HSEsol and mBJ XC functionals,

establishing the accuracy of the latter for use in further analysis. In Sec. 5.3.2 we turn our

attention to disordered supercells, and illustrate the importance of alloy disorder in Ge1−xPbx

by tracking the evolution of the alloy CB edge as the separation between two Pb atoms reduces

from their being fourth-nearest neighbours, to their forming a nearest-neighbour Pb-Pb pair.

In Sec. 5.3.3 we use 128-atom SQSs to analyse the evolution of the electronic structure with Pb

composition x and to quantify the nature of the indirect- to direct-gap transition in realistic,

disordered supercells. Finally in Sec. 5.3.4 we compare these results for the Ge1−xPbx alloys

to the results of equivalent calculations for Ge1−xSnx alloys described in Chapter 4. We detail

the important quantitative differences in electronic structure evolution in Ge1−xPbx compared

to that in Ge1−xSnx.

5.3.1 Conduction band structure and Pb-induced band mixing in ordered

germanium-lead supercells

We begin our analysis by considering the structural and electronic properties of ordered Ge63Pb1

(x = 1.56%, 2×2×2 SC) and Ge15Pb1 (x = 6.25%, 2×2×2 FCC) alloy supercells. Considering

the data of Table 5.1, we note that the lattice constant of zb-GePb is lower than the average of

those calculated for Ge and Pb, using both the LDA and HSEsol XC functionals. This suggests

that the Ge1−xPbx alloy lattice constant deviates from that predicted based on Végard’s law

(linear interpolation), and possesses a positive bowing coefficient b, where a(x) = (1−x) a(Ge)+

x a(d-Pb) − b x (1 − x) is the Ge1−xPbx alloy lattice constant. Examining the alloy lattice

constants obtained via structural relaxation of the Ge63Pb1 supercell, we find that this is

indeed the case.

Using the LDA and HSEsol XC functionals we calculate lattice constants a = 5.666 Å and

a = 5.667 Årespectively, which are lower than the values of 5.668 Å and 5.673 Å obtained via

linear interpolation between the calculated lattice constants of Ge and Pb for LDA and HSEsol

respectively. On the basis of the LDA and HSEsol relaxed lattice constants we then compute

a bowing parameters of b = 0.13 Å and b = 0.39 Å. Similar trends are observed in the relaxed

lattice constants for the Ge15Pb1 supercell. Overall, our calculations suggest bowing in the

range b ≈ 0.1 – 0.4 Å for these ordered structures having low Pb compositions x ≤ 6.25%.

We will see in Sec. 5.3.3 below that this result is modified in the presence of alloy disorder,

producing a change in the sign of b.
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Table 5.2: Fundamental band gap Eg, VB spin-orbit splitting energy ∆SO, and band gap

pressure coefficient
dEg

dP for ordered Ge63Pb1 (x = 1.56%) and Ge15Pb1 (x = 6.25%) alloy
supercells, calculated via DFT using the HSEsol and mBJ XC functionals. The corresponding
calculated values of the direct Γ7c-Γ8v and indirect (fundamental) L6c-Γ8v band gaps of Ge
are provided for reference, with the latter listed in parentheses. The results of equivalent
calculations [180] for ordered Ge1−xSnx supercells are provided for comparative purposes.

Eg (eV) Eg (eV) ∆SO (eV) ∆SO (eV)
dEg

dP (meV kbar−1)
dEg

dP (meV kbar−1)
Supercell x (%) HSEsol mBJ HSEsol mBJ HSEsol mBJ

Ge —– 0.909 (0.766) 0.868 (0.724) 0.322 0.274 13.33 (4.66) 13.23 (4.07)
Ge63Pb1 1.56 0.616 0.596 0.381 0.334 6.24 5.68
Ge63Sn1 1.56 0.681a 0.660a 0.334a 0.282a 4.75a 4.19a

Ge15Pb1 6.25 0.020 −0.040 0.612 0.571 10.23 9.17
Ge15Sn1 6.25 0.388a 0.356a 0.379a 0.316a 10.00a 9.50a

aRef. O’Halloran et al. [180]

Turning our attention now to the calculated electronic structure of these supercells, Table 5.2

shows the calculated fundamental band gaps Eg, VB spin-orbit splitting energies ∆SO, and

fundamental band gap pressure coefficients
dEg

dP . The results of equivalent calculations [180] for

Ge1−xSnx supercells are provided for comparative purposes.

The HSEsol- (mBJ-) calculated band structures of the Ge63Pb1 and Ge15Pb1 supercells are

shown using solid (dashed) lines in Figs. 5.2(b) and 5.2(e), respectively. For reference, the

band structures of the corresponding Pb-free Ge64 and Ge16 supercells are shown in Figs. 5.2(a)

and 5.2(d). Since the 64-atom supercells have SC lattice vectors, we note that the zone bound-

ary along the (001) direction lies at supercell wave vector Kz = π
A , where A = 2a is the supercell

lattice constant for a 64-atom 2× 2× 2 SC supercell. The corresponding zone boundary lies at

Kz = 2π
A for a 16-atom 2× 2× 2 FCC supercell.

For the Ge63Pb1 supercell the HSEsol- (mBJ-) calculated band gap Eg = 0.616 eV (0.596 eV) is

reduced by 150 meV (128 meV) compared to the fundamental band gap of Ge. We also calculate

a strong increase in ∆SO of 59 meV (60 meV) due to Pb incorporation, with ∆SO increasing

from 0.322 eV (0.274 eV) in Ge, to 0.381 eV (0.334 eV) in Ge63Pb1. It is evident based on these

results that incorporation of Pb leads to a very strong decrease in Eg, of ≈ 80 – 100 meV per

% Pb, and a strong increase in ∆SO, of ≈ 40 meV per % Pb. Indeed, for the Ge15Pb1 supercell

the HSEsol- (mBJ-) calculated band gap Eg = 0.020 eV (−0.040 eV) indicates a closing of the

alloy band gap for Pb compositions as low as x = 6.25%. The corresponding VB spin-orbit

splitting energies ∆SO = 0.612 eV (0.571 eV) are far in excess of the band gap, suggesting a

crossover to a band structure in which ∆SO > Eg for low Pb compositions x . 5%. We note

that these values are significantly in excess of the changes in Eg and ∆SO associated with Sn

incorporation (cf. Table 5.2), reflecting the larger differences in size and chemical properties

between Ge and Pb than between Ge and Sn.
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Figure 5.2: Band structure of (a) Ge64 (2 × 2 × 2 SC), (b) Ge63Pb1 (x = 1.56%), (d)
Ge16(2×2×2 FCC), and (e) Ge15Pb1 (x = 6.25%), calculated via DFT using the HSEsol (solid
lines) and mBJ (dashed lines) XC functionals. (c) Calculated change in band gap ∆Eg with
applied hydrostatic pressure P for the Ge63Pb1 supercell of (b), calculated using the HSEsol
(upper panel) and mBJ (lower panel) XC functionals. Band gaps are calculated between the
VB edge and the first (circles), second, third and fourth (triangles), and fifth (squares) lowest
energy CB states. (f) As in (c), but for the Ge15Pb1 supercell of (e). The lower (upper)
dashed grey line in (c) and (f) denotes the variation with pressure of the indirect L6c-Γ8v

(direct Γ7c-Γ8v) band gap of Ge.

While the mBJ XC functional tends to underestimate Eg and ∆SO compared to the HSEsol XC

functional, we note that the changes in Eg and ∆SO in response to Pb incorporation calculated

using both approaches are in good quantitative agreement.

Considering now the calculated supercell band dispersion in Figs. 5.2(b) and 5.2(e), we note

that Pb incorporation has a significant impact on the CB structure, while the main impact

close in energy to the VB edge is, as noted above, to increase the spin-orbit splitting energy

∆SO. The evolution of the band structure close in energy to the VB edge can be described using

a conventional alloy approach (e.g. the VCA, with appropriate bowing coefficients for the VB

edge energy and ∆SO).

In Ge64 the CB states at the supercell zone centre K = 0 are, in order of increasing energy:

(i) the eightfold (fourfold and Kramers) degenerate folded L6c L-point CB minimum states,
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(ii) the twofold (Kramers) degenerate Γ7c zone-centre CB edge states, and (iii) the twelvefold

(sixfold and Kramers) degenerate folded X5c X-point CB edge states.

In Ge63Pb1 we note a downward shift in energy, and lifting of the degeneracy, of the alloy CB

edge states originating from the folded L6c states of the Ge host matrix. We also calculate a

significant reduction in energy of the alloy CB states originating from the Ge Γ7c host matrix

states, which is larger in magnitude than that associated with the alloy CB states originating

from the L6c states of Ge. We find that the lowest energy CB states in Ge63Pb1 are twofold

(Kramers) degenerate, and possess purely s-like orbital character (A1 symmetry) at the Pb

lattice site. The second lowest energy CB states in this supercell lie 14 meV (11 meV) higher

in energy in the HSEsol (mBJ) calculation, are sixfold (threefold and Kramers) degenerate and

possess purely p-like orbital character (T2 symmetry) at the Pb lattice site. The substitutional

incorporation of the Pb atom also allows mixing between different Ge host matrix states of the

same symmetry, so that the lowest energy CB state in Ge63Pb1 can be described in terms of

a linear combination of Ge host matrix states which lie close in energy to the CB edge and

possess A1 symmetry at the Pb lattice site. We note that the splitting of the alloy CB states

originating from the L6c states of Ge is qualitatively similar to that in a Ge63Sn1 supercell.

[180, 183] However, the ordering of these A1- and T2-symmetric Ge L6c-derived alloy CB edge

states is reversed in Ge63Pb1 compared to Ge63Sn1.

In Ge15Pb1 we note the same behaviour in terms of alloy CB state ordering, degeneracy and

symmetry of the CB edge states: the Kramers degenerate alloy CB edge again possesses purely

s-like orbital character at the Pb site, while the second lowest energy CB states are sixfold

(threefold and Kramers) degenerate and possess purely p-like orbital character at the Pb site.

We note however a significant increase of the separation in energy – 269 meV (260 meV) in the

HSEsol (mBJ) calculation – between these sets of A1- and T2-symmetric states.

Consideration of the alloy band structure therefore allows the presence of Pb-induced and

composition-dependent band mixing in the Ge1−xPbx CB, which is qualitatively similar to

that which we have previously observed in Ge1−xSnx alloys. [180] To further investigate this

band mixing, we have calculated the pressure coefficients associated with the band gaps between

the alloy VB edge and the five lowest energy alloy CB states (which originate predominantly

from the L6c and Γ7c states of Ge). Since we are concerned with low Pb compositions x < 10%,

it is expected that an alloy having an indirect (direct) band gap will have a pressure coefficient

close to that of the corresponding indirect L6c-Γ8v (direct Γ7c-Γ8v) band gap of Ge. In practice,

the band gap pressure coefficient
dEg

dP encapsulates quantitative information describing any

hybridisation of the alloy CB edge, providing an experimentally measurable signature of band

mixing effects. Before considering the calculated values of
dEg

dP for the alloy supercells of Fig. 5.2,

we note that our respective HSEsol- (mBJ-) calculated pressure coefficients
dEg

dP = 4.66 meV

kbar−1 (4.07 meV kbar−1) and 13.33 meV kbar−1 (13.23 meV kbar−1) for the indirect and
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direct band gaps of Ge (cf. Table 5.2) are in good quantitative agreement with the measured

values of 4.3 and 12.9 meV kbar−1.

To compute
dEg

dP we apply hydrostatic pressure by compressing the lattice vectors of a given

relaxed supercell, and then perform geometric (re-)optimisation by allowing only the internal

atomic degrees of freedom to relax. The results of our calculations of
dEg

dP are summarised in

Figs. 5.2(c) and 5.2(f), for the Ge63Pb1 and Ge15Pb1 supercells respectively. In each case the

upper (lower) panel shows the results obtained using the HSEsol (mBJ) XC functional. We

see in both cases that the pressure coefficient associated with the band gap between the sixfold

degenerate states having p-like orbital character at the Pb lattice site and the alloy CB edge is

very close to that of the Ge L6c-Γ8v fundamental band gap, confirming the Ge L6c-like character

of these states. For Ge63Pb1 the HSEsol- (mBJ-) calculated fundamental supercell band gap

pressure coefficient
dEg

dP = 6.24 meV kbar−1 (5.68 meV kbar−1) is increased by ≈ 1.6 meV

kbar−1 compared to that of the fundamental indirect band gap of Ge, suggesting the presence

of Pb-induced band mixing in the supercell between the A1-symmetric Ge L6c singlet, and the

Ge Γ7c zone-centre CB edge state (which has s-like orbital character at all lattice sites). The

presence of this Pb-induced hybridisation is confirmed by noting that
dEg

dP associated with the

band gap between the VB edge and the fifth highest energy CB state – which originates from

the Ge Γ7c states, denoted using circles in Figs. 5.2(c) and 5.2(f) – is reduced compared to that

of the Ge direct band gap, suggesting the acquisition of an admixture of Ge L6c (and possibly

also a minor admixture of Ge X5c character). This Γ7c-L6c mixing occurs in part due to the

small ≈ 145 meV separation in energy between these states in Ge. Considering the Ge15Pb1

pressure coefficients in Fig. 5.2(f), we see that the pressure coefficients associated with the band

gaps between the VB edge and the second to fourth lowest energy CB states are again very

close to that associated with the Ge L6c-Γ8v, but that the largest pressure coefficient of 10.23

meV kbar−1 (9.17 meV kbar−1) is now associated with the CB edge state (circles), indicating

the evolution to a band gap which is hybridised but primarily direct in nature (with some Ge

Γ7c character also associated with the fifth lowest energy CB states).

Overall, our analysis of idealised (ordered) alloy supercells demonstrates that the electronic

structure evolution and indirect- to direct-gap transition in Ge1−xPbx is qualitatively similar

to that in Ge1−xSnx [180], but with alloy band mixing effects being less pronounced in Ge1−xPbx

compared to Ge1−xSnx. Indeed, as we will demonstrate in Sec. 5.3.3 below, when alloy disorder

is taken into account the band mixing associated with Pb incorporation is significantly less

pronounced than the corresponding effects in Ge1−xSnx, and hence plays a less important

role in determining the nature and evolution of the alloy electronic structure with increasing

x. Finally, having established that the mBJ XC functional gives results in good quantitative

agreement with the more computationally expensive HSEsol XC functional, we employ the

mBJ XC functional for the remainder of our analysis.
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Figure 5.3: Calculated CB structure of disordered, 64-atom (2 × 2 × 2 SC) Ge62Pb2 (x =
3.125%) supercells in which the two Pb atoms are (a) fourth, (b) third, (c) second, and (d)
first nearest neighbours (NNs). (e) Calculated variation of the fundamental band gap Eg of
the Ge62Pb2 supercells of (a) – (d) with respect to the relative position of the two Pb atoms.

(f) as in (e), but for the pressure coefficient
dEg

dP of the fundamental band gap Eg.

5.3.2 Impact of Pb local environment on germanium-lead alloy electronic

structure

Having quantified the impact of Pb incorporation on the band structure of ordered Ge1−xPbx

supercells, we turn our attention now to the impact of Pb atom separation on the electronic

structure of disordered alloy supercells. We begin with a Ge63Pb1 supercell and substitute a

second Pb atom to form four distinct Ge62Pb2 (x = 3.125%) supercells in which the two Pb

atoms are located at fourth-, third-, second- and first-nearest lattice sites. In this manner,

we begin with a Ge62Pb2 supercell in which the Pb atoms are fourth-nearest neighbours, and

form a nearest-neighbour Pb-Pb pair by bringing the two Pb atoms closer together. In each

of these four cases we calculate the electronic structure and quantify the dependence of the

fundamental band gap Eg, and its pressure coefficient
dEg

dP , on the relative position of the two

Pb atoms in the supercell. As in chapter 4 for Sn, the incorporation of > 1 substitutional

Pb atoms breaks the cubic symmetry of the underlying diamond lattice, which was preserved

in the ordered supercell calculations of Sec. 5.3.1. As a result of this reduction in symmetry

the fourfold (twofold and Kramers) degeneracy of the zone-centre VB edge states is lifted,

giving rise to two distinct sets of Kramers degenerate states. The precise value of the VB edge

splitting in a disordered supercell is in general a non-monotonic function of Pb composition x,

but instead depends on the precise short-range disorder present in the given alloy supercell.

In this section, as well as in Sec. 5.3.3 below, we therefore calculate band gaps in disordered

supercells with respect to the average energy of the split VB edge states.

The results of our calculations – using the mBJ XC functional – for this set of disordered

Ge62Pb2 supercells are summarised in Fig. 5.3, where Figs. 5.3(a), 5.3(b), 5.3(c) and 5.3(d)
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respectively show the calculated CB structure in the case of having fourth-, third-, second- and

first-nearest neighbour Pb atoms. Figures 5.3(e) and 5.3(f) respectively show the dependence

of the calculated values of Eg and
dEg

dP on the relative position of the two Pb atoms. The band

structures shown in Figs. 5.3(a), 5.3(b), 5.3(c) and 5.3(d) display, overall, strong qualitative

similarity. As in the ordered supercells described above, the (Kramers degenerate) lowest

energy CB state in each supercell possesses primarily s-like orbital character at Pb lattice sites,

while the next three (Kramers degenerate) CB states possess primarily p-like orbital character

at Pb lattice sites. While in an ordered alloy supercell these p-like Ge L6c-derived states form

a degenerate triplet, their degeneracy is lifted in the disordered supercells considered here

due to the loss of the underlying cubic symmetry of the lattice. However, as we describe

below, despite qualitative similarities in the calculated band structures, Pb clustering produces

significant quantitative differences in the calculated electronic properties in supercells having

fixed Pb composition x.

Beginning with a Ge62Pb2 supercell in which the two Pb atoms are fourth-nearest neighbours

we calculate a fundamental band gap Eg = 0.472 eV, which is reduced by 252 meV compared

to the fundamental band gap of Ge, and by 124 meV compared to that of the ordered Ge63Pb1

supercell considered in section 5.3.1. Correspondingly, we calculate ∆SO = 0.377 eV for this

Ge62Pb2 supercell, which is increased by 103 meV compared to that in Ge, and by 43 meV

compared to that in Ge63Pb1. In line with the ordered supercell calculations of Sec. 5.3.1, these

results confirm that Pb incorporation in Ge leads to a strong decrease in Eg and increase in ∆SO

with increasing x. For the case of third-nearest neighbour Pb atoms we calculate Eg = 0.435 eV

(∆SO = 0.396 eV), which is 37 meV lower (19 meV higher) than that calculated in the case of

fourth-nearest neighbour Pb atoms. Ultimately, in the presence of a nearest-neighbour Pb-Pb

pair we calculate Eg = 0.406 eV, which is reduced by 318 meV compared to the fundamental

band gap of Ge, and by 66 meV compared to the case of fourth-nearest neighbour Pb atoms.

Similarly, we calculate ∆SO = 0.425 eV for the supercell containing a Pb-Pb nearest-neighbour

pair, which is increased by 151 meV compared to that in Ge, and by 48 meV compared to the

case of fourth-nearest neighbour Pb atoms. We emphasise that the calculated decrease of Eg –

shown in Fig. 5.3(e) – and increase of ∆SO (not shown) as the two Pb atoms are brought closer

together is not a monotonic function of the Pb-Pb interatomic distance, but depends on the

specific relative position of the two Pb atoms. Since these four disordered supercells have equal

Pb composition x = 3.125%, this calculated ≈ 70 meV variation in Eg – representing ≈ 15%

of the total band gap – indicates the significant impact that Pb-Pb clustering may have on the

electronic properties of Ge1−xPbx alloys.

Figure 5.3(f) shows the calculated pressure coefficients
dEg

dP , associated with the fundamental

supercell band gap Eg, as a function of Pb-Pb separation for the same series of Ge62Pb2

supercells. In line with the ordered supercell calculations of Sec. 5.3.1, the calculated values of
dEg

dP are intermediate between the values 4.07 and 13.23 meV kbar−1 associated with the L6c-Γ8v
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and Γ7c-Γ8v band gaps of Ge (cf. Table 5.2). Again, this reveals the hybridised nature of the

alloy CB edge states in these supercells, which are primarily derived from a linear combination

of Ge L6c states having strong s-like orbital character at the Pb lattice sites, but which contain

an admixture of Ge Γ7c character. In all four cases – having fourth-, third-, second- and first-

nearest neighbour Pb atoms – the calculated value of
dEg

dP remains closer to that associated

with the Ge fundamental (indirect) band gap, suggesting that the supercell band gap remains

primarily indirect in nature, but with some direct character, at x = 3.125%. This observation

is in contrast to previous theoretical analysis of Ge1−xPbx alloys, which have alternatively

predicted a band gap having purely indirect [175] or direct [45] character at this composition.

We also note that the precise value of
dEg

dP varies non-monotonically with Pb-Pb separation,

revealing that the details of the Pb-induced band mixing are impacted by the specific short-

range disorder present in a given alloy supercell. This demonstrates more generally that the

character of the CB edge states, and hence the nature of the band gap, in real (disordered)

Ge1−xPbx alloys, is sensitive to the presence of short-range alloy disorder and Pb clustering.

Overall, these results demonstrate that the calculated values of Eg and
dEg

dP – the latter reflecting

the hybridised character of the alloy CB edge states – in Ge1−xPbx at fixed Pb composition x

display significant dependence on the precise short-range alloy disorder present in a given alloy

supercell. We note however that due to the small number of atoms (N = 64) in these supercells,

the importance of such short-range disorder effects may be overstated here in comparison to

the effects that would likely be noted in larger scale alloy supercell calculations. This issue

is discussed in more detail in Sec. 5.3.3 below. While our analysis in Sec. 5.3.1 identified the

presence of Pb-induced band mixing in Ge1−xPbx, our calculations here indicate the sensitivity

of the Ge1−xPbx electronic structure to the presence of short-range alloy disorder (particularly

in the form of clustering of substitutional Pb atoms). From a theoretical perspective, our results

therefore emphasise the breakdown of the VCA in Ge1−xPbx alloys, which neglects effects

related to band mixing and alloy disorder. We therefore conclude that atomistic calculations

which explicitly account for the differences in size and chemical properties between Ge and Pb

are required to provide quantitative insight into the properties of real Ge1−xPbx alloys.

5.3.3 Disordered alloys: electronic structure evolution in germanium-lead

special quasi-random structures

Having established the importance of short-range Pb-related structural disorder in determining

the details of the alloy electronic structure, we turn our attention now to the evolution of the

electronic structure with x in realistic, disordered Ge1−xPbx SQSs. The special quasi random

structures generated here are the same in terms of atomic positioning as those already detailed

for the 128 atom SQS electronic structure calculations detailed in chapter 4. As such the
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Figure 5.4: (a) Expected (solid red line) and actual (solid green bars) occurrence of nearest-
neighbour Pb-Pb pairs in the 128-atom (4 × 4 × 4 FCC) SQSs used to analyse the electronic
structure evolution in disordered Ge1−xPbx alloys. (b) Variation of the relaxed lattice constant
a with Pb composition x (closed circles) for the SQSs of (a). The dashed grey line shows a
calculated by interpolating linearly between the lattice constants of Ge and diamond-structured
Pb (cf. Table 5.1). The solid black line shows the best fit to the calculated lattice constants,
having bowing parameter b = −0.15 Å. (c) Variation with x of the band gaps Eg, calculated
between the VB edge and the five lowest energy CB states (closed circles). The colour of

the data points are weighted according to the pressure coefficient
dEg

dP associated with the

corresponding band gap Eg. (d) Variation of
dEg

dP with x for the fundamental band gap of (c).
(d) Variation of the VB spin-orbit splitting energy ∆SO with x.

expected (solid red line) and actual (solid green bars) number of occurrence of clusters of Pb–

Pb for each % Pb composition, shown in Figure 5.4(a), are in all cases equal, rounding to the

nearest whole number. Again we note that the probability of occurrence of a larger cluster

containing three neighbouring Pb atoms is ∝ x3, which remains . 10−3 in the composition

range considered. Hence we expect, and find, that no Pb clusters containing more than two

neighbouring Pb atoms occur in the SQSs employed in our analysis here. On this basis, we

conclude that the 128-atom SQSs considered here have appropriate distributions of Pb atoms

to analyse the evolution of the alloy properties with x.

The closed circles in Fig. 5.4(b) show the variation of the relaxed lattice constant a with x for

the series of SQSs investigated. Comparing the calculated values of a to the increase expected

based on Végard’s law (dashed grey line), we observe that the lattice constants calculated for

SQSs containing > 1 Pb atom exceed those expected based on a linear interpolation of the

Ge and d-Pb lattice constants. This suggests a negative bowing coefficient b for the lattice

constant of disordered Ge1−xPbx. Fitting to the calculated lattice constants – depicted by the

solid black line in Fig. 5.4(b) – yields a best-fit bowing coefficient b = −0.15 Å. We note that

this is in contrast to the results of our calculations in Sec. 5.3.1, where relaxation of ordered

alloy supercells predicted a positive value of b in the range 0.1 – 0.4 Å, and likely reflects
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that the presence of Pb-Pb pairs and disorder leads to larger local expansion of the crystal

lattice. Given that (i) real Ge1−xPbx alloy samples will inevitably contain varying degrees of

atomic-scale disorder, and (ii) SQSs are generally found to accurately predict the evolution

with composition of the structural and elastic properties of randomly disordered alloys, [173]

we expect that b = −0.15 Å represents a realistic prediction of the lattice constant bowing in

Ge1−xPbx alloys.

Turning our attention to the electronic structure evolution, Fig. 5.4(c) shows the calculated

variation with x of the band gaps between the alloy VB edge and the five lowest energy CB

states. Here, we show the band gaps calculated for the five (Kramers degenerate) lowest energy

CB states in each SQS: for x = 0 the four lowest energy states are the L6c CB minimum states

of Ge, while the fifth is the Γ7c zone-centre CB edge state of Ge. As in Sec. 5.3.3, due to

the loss of cubic symmetry and associated lifting of the degeneracy of the VB edge states,

we calculate band gaps with respect to the average energy of the two highest energy sets of

Kramers degenerate VBs. At first glance, Fig. 5.4(c) seems to suggest that the indirect- to

direct-gap transition occurs for x ≈ 2%, around which composition we observe four (Kramers

degenerate) CB states lying within ≈ 100 meV of one another, with one state lying ≈ 150 meV

below these four higher energy states. However, we have weighted the colour of each of the

data points in Fig. 5.4(c) according to the corresponding calculated pressure coefficient
dEg

dP :

starting from yellow for
dEg

dP = 3 meV kbar−1 (close to that of the Ge L6c-Γ8v fundamental

band gap), and shifting towards red as
dEg

dP (i.e. direct character of the band gap) increases.

Considering then
dEg

dP associated with each band gap, we find that the four lowest energy CB

states retain predominantly Ge L6c character for x ≈ 2%, at which composition the fifth CB

state has the greatest Ge Γ7c character. As such, the alloy band gap remains primarily indirect

in nature for x ≈ 2%.

The general trends observed in Fig. 5.4(c) are largely consistent with those observed for ordered

supercells in Sec. 5.3.1, where we found that the CB states originating from the L6c states of

Ge split into (Kramers degenerate) singlet and triplet states, respectively possessing primarily

s- and p-like orbital character at Pb lattice sites, with the singlet states lying lower in energy.

Due to the loss of cubic symmetry in the disordered supercells considered here we observe

lifting of the degeneracy of the p-like Ge L6c-derived triplet states, which otherwise remain

closely spaced in energy with increasing Pb composition x. Additionally, we observe that the

alloy CB states originating from the Γ7c states of Ge decrease in energy more rapidly with

increasing x than those originating from the Ge L6c states. As x increases the calculated CB

states originating from the Γ7c states of Ge firstly pass through the p-like Ge L6c-derived CB

states, for x ≈ 2.5%. As this occurs we note weak hybridisation between these two sets of

states, evidenced by the abrupt rise and subsequent fall in the values of
dEg

dP associated with

the p-like triplet CB states. As x increases further, we note the emergence of a direct band gap

for x ≈ 7%. This is evidenced by a sharp increase in
dEg

dP associated with the fundamental band
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gap as the energy of the Ge Γ7c-derived CB states approaches that of the s-like Ge L6c-derived

singlet states. This sharp increase in
dEg

dP describes the transition to the fundamental band gap

having primarily, but not purely, direct (Ge Γ7c) character. We emphasise that this transfer

of Ge Γ7c character to the Ge L6c-derived states again occurs only when the two sets of states

become close in energy, suggesting relatively weak Pb-induced hybridisation of Ge L6c and Γ7c

host matrix states.

The alloy band gap becomes primarily direct in character by x = 7.81% in the current cal-

culations – i.e. for the Ge118Pb10 SQS – at which composition the band gap simultaneously

closes, describing a semiconducting to semimetallic transition that coincides with the indirect-

to direct-gap transition. The character of the indirect- to direct-gap transition in Ge1−xPbx

is emphasised in Fig. 5.4(d), which shows the variation with x of
dEg

dP associated with the

fundamental band gap of Fig. 5.4(c). Here, as x increases
dEg

dP initially remains close to that

associated with the fundamental (indirect) L6c-Γ8v band gap of Ge (cf. Table 5.2). However, as

x increases further we calculate an abrupt increase in
dEg

dP , towards that of the direct Γ7c-Γ8v

band gap of Ge (cf. Table 5.2), reflecting the onset of an alloy band gap having primarily direct

character over a narrow range of Pb compositions centred about x ≈ 7%.

While the calculated values of
dEg

dP in Fig. 5.4(d) illustrate the indirect- to direct-gap transition

in Ge1−xPbx, we note that these values are not suitable for direct comparison to experimental

measurements, and likewise that Fig. 5.4(c) may overestimate the Pb composition at which the

indirect- to direct-gap transition may occur. In a real alloy, all states that can (by symmetry)

mix will mix: this behaviour is not captured quantitatively in DFT supercell calculations

due to their limitation to structures containing . 102 atoms. In such small supercells only

a limited number of Ge host matrix states fold to K = 0 close in energy to the CB edge.

Since only states which fold to the same supercell wave vector K can hybridise in supercell

calculations, supercell size then limits the number of states that can undergo mixing in a given

alloy supercell. In practice, this limits the growth of
dEg

dP with increasing x. Additionally,

calculations for SQSs containing . 102 atoms suffer from finite-size effects, insofar as the SQSs

possess a higher degree of ordering than in a real disordered alloy. This stems from the use of

Born-von Karman boundary conditions, which creates artificial long-range ordering on a length

scale defined by the supercell lattice constant A (with A ∼ 1 nm in the 4 × 4 × 4 FCC SQSs

considered here). In our calculations this artificial long-range ordering allows the formation of

Ge L6c-derived alloy CB states having predominantly s-like orbital character on each of the

Pb lattice sites, hence enabling the large splitting of ≈ 150 meV observed between the s-like

singlet and p-like triplet Ge L6c-derived states in Fig. 5.4(c). Such a large splitting would not

be expected to occur in a real Ge1−xPbx alloy. Rather, the Ge L6c-related band edge will be

inhomogeneously broadened in energy due to the loss of both short- and long-range order. If

we assume that the Ge L6c-derived CB states in Fig. 5.4(c) are inhomogeneously broadened

about their average energy, then the Ge Γ7c-derived CB states would cross this average energy
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associated with the Ge L6c-derived CB states for x ≈ 3 - 4%. This then places an estimated

lower limit from our calculations on the Pb composition x at which Ge1−xPbx transitions from

indirect- to direct-gap. This uncertainty in transition composition could be reduced by using

larger alloy supercells containing & 103 atoms, as we have demonstrated for Ge1−xSnx alloys via

the use of a highly scalable semi-empirical tight-binding model. However, the trend predicted

by Fig. 5.4(d) – that the composition range in which the indirect- to direct-gap transition occurs

in Ge1−xPbx can be identified via an accompanying sharp increase in
dEg

dP – can be expected

to emerge in real alloys, and hence in experimental measurements.

Finally, Fig. 5.4(e) shows the calculated variation of ∆SO with x. As for the calculation of Eg

above, ∆SO is calculated with respect to the average VB edge energy. Still, we note deviations

from a smooth monotonic increase of ∆SO with x, likely reflecting the non-monotonic variation

with x of the VB edge splitting. Generally, we find that ∆SO increases strongly with increasing

x, although slightly less strongly than the corresponding increase calculated in Sec. 5.3.1 for

ordered alloy supercells. For example, the calculated value ∆SO = 0.571 eV for an ordered

Ge15Pb1 (x = 6.25%) supercell is larger by 45 meV than the value of 0.526 eV calculated for

the Ge119Pb9 (x = 7.03%) SQS, which is the largest value calculated for the series of SQSs

considered here.

Nonetheless, the overall increase of ∆SO with x is sufficiently strong that we find ∆SO > Eg

for Pb compositions as low as x ≈ 2.3%. We note that this behaviour is qualitatively similar

to that in the III-V dilute bismide alloy (In)GaAs1−xBix, where Bi incorporation results in

a simultaneous strong decrease of Eg and increase of ∆SO with increasing x, leading to a

band structure in which ∆SO > Eg. This unusual band structure condition is appealing from

a practical perspective since it offers the potential to suppress (i) hot-hole producing non-

radiative Auger recombination processes, and (ii) inter-valence band absorption involving the

spin-split-off band, both of which play a strong role in limiting the efficiency of long-wavelength

semiconductor lasers and light-emitting diodes [184].

5.3.4 Comparison to electronic structure evolution in GeSn

Equivalent analysis to that of Figs. 5.4(a)–(e), is detailed in chapter 4 for Ge1−xSnx alloys.

Comparing the results of these two alloys over equivalent series of 128-atom SQSs, reveals

quantitative differences in the evolution of the alloy band structures from indirect- to direct-

gap.

As can be seen in Figure 5.5 (a) incorporation of Pb into the Ge1−xPbx alloy causes a strong

reduction of the alloy fundamental band gap (≈ 100 meV per % Pb added), notably larger than

that of equivalent addition of Sn to Ge1−xSnx, (≈ 35 meV per % Sn added). Pb incorporation

is also seen to have a notable impact on spin-orbit splitting energy as seen in Figure 5.5 (c)
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Figure 5.5: (a) Variation with x of the band gaps Eg of Ge1−x(Sn,Pb)x alloys, calculated
between the VB edge and the lowest energy CB state. The coloured circles (squares) denote
the band gap with varying x in Ge1−xSnx (Ge1−xPbx) alloys. The colour of the data points

are weighted according to the pressure coefficient
dEg

dP associated with the band gap Eg at the

corresponding compositon x. (b) Variation of
dEg

dP with x for the fundamental band gap of
Ge1−x(Sn,Pb)x alloys from (a). (c) Variation of the VB spin-orbit splitting energy ∆SO with
x.

where the spin orbit splitting energy in Ge1−xPbx is seen to increase more rapidly than in

equivalent Ge1−xSnx alloys.

Figure 5.5 (b) shows the evolution of the pressure coefficient of the conduction band edge of

Ge1−x(Sn/Pb)x with increased % Sn/Pb. The calculated band mixing in Ge1−xPbx alloys

is weaker than in Ge1−xSnx evidenced by the more dramatic increase in pressure coefficient

noted in Ge1−xPbx alloys at ≈ 4% Pb content. For Ge1−xSnx we calculate that
dEg

dP increases

gradually with increasing x. This reflects the stronger role played by band mixing in the

Ge1−xSnx supercells: a hybridised alloy band gap having primarily direct character evolves

continuously over a comparatively wide composition range, driven by Sn-induced band mixing

which transfers Ge Γ7c character to the alloy CB edge.
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5.4 Chapter Summary

In summary, we have presented a theoretical analysis of electronic structure evolution and the

indirect- to direct-gap transition in the group-IV alloy Ge1−xPbx. We established DFT cal-

culations of the structural and electronic properties of the constituent materials (i) diamond-

structured semiconducting Ge, (ii) diamond-structured metallic Pb, and (iii) the fictitious

semimetallic IV-IV compound zb-GePb, using both the HSEsol and mBJ XC functionals.

Comparison of the calculated electronic structure of ordered alloy supercells (i) elucidated

the mechanism driving the indirect- to direct-gap transition with increasing Pb composition

x, and (ii) established the suitability of the mBJ XC functional to analyse Ge1−xPbx alloys.

The mBJ XC functional was therefore used to analyse the electronic structure evolution in

disordered alloy supercells using a SQS approach.

A Ge63Pb1 (x = 1.56%) or Ge15Pb1 (x = 6.25%) supercell partially lifts the degeneracy of the

Ge L6c CB edge states, giving rise to (i) a singlet possessing s-like symmetry at the Pb lattice

site, and (ii) a triplet possessing p-like symmetry at the Pb lattice site. The emergence of an

s-like singlet state at the CB edge could be interpreted as evidence of a direct band gap for Pb

compositions as low as x ≈ 1%. However, the calculated pressure coefficient associated with

the Ge63Pb1 supercell band gap demonstrated that the CB edge singlet state possesses only a

small admixture of direct (Ge Γ7c) character and retains primarily indirect (Ge L6c) character

at x = 1.56%. For a Ge15Pb1 (x = 6.25%) supercell, the band gap pressure coefficient was

calculated to be close to that of the Ge direct Γ7c-Γ8v band gap, indicating the emergence of

a direct band gap in the alloy with increasing Pb composition x, characterised by the transfer

of Ge Γ7c character to the alloy CB edge. This supported the requirement for further detailed

analysis of the electronic structure evolution in disordered alloy supercells, to quantify the

nature of the indirect- to direct-gap transition and therefore identify the Pb composition x at

which Ge1−xPbx becomes a direct-gap semiconductor.

To quantify the impact of Pb-related alloy disorder we tracked the evolution of the alloy CB

edge in a Ge62Pb2 supercell as the separation between the Pb atoms was reduced from fourth-

to first-nearest neighbours. Substituting two Pb atoms at successively closer lattice sites, we

found strong dependence of the alloy band gap on the distance between the two Pb atoms.

Having established the importance of the alloy microstructure in determining the details of the

electronic properties, we then analysed the emergence of a direct band gap with increasing x

for the realistic case of a randomly disordered alloy.

The calculated electronic structure evolution for disordered 128-atom Ge128−MPbM SQSs again

showed a (Kramers degenerate) singlet state at the CB edge, even for the lowest Pb composition

considered (x = 0.78%). However, the calculated pressure coefficients associated with the

band gaps between the VB edge and the five lowest energy (Kramers degenerate) CB states
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showed that the CB edge retained primarily Ge L6c character until x ≈ 6 – 7%, at which

composition the lowest energy CB state acquired predominantly direct (Ge Γ7c) character. The

SQS calculations therefore indicate an indirect- to direct-gap transition in Ge1−xPbx alloys for

x ≈ 6 – 7%, near which composition the CB edge also passes through the VB edge, to give

a zero-gap semimetallic alloy. We note however that finite-size effects in the SQSs considered

may lead to an overestimate of the composition at which Ge1−xPbx becomes direct-gap. Our

SQS calculations show large splitting of the four Ge L6c-derived states, with the singlet state

having primarily s-like orbital character at Pb atoms lying ≈ 150 meV below three states having

primarily p-like orbital character at Pb atoms. We expect that such a large splitting would not

be observed in calculations for larger supercells, or in real alloys, and arises in our calculations

due to the absence of long-range alloy disorder in the relatively small supercells to which DFT

calculations are limited. Rather, we anticipate that the Ge L6c character associated with alloy

CB states will experience inhomogeneous broadening about their mean energy in real alloys.

The CB state having greatest Ge Γ7c character passes through the weighted average energy of

the four Ge6c-derived states in our SQS calculations for x ≈ 3 – 4%. This weighted average

may then provide a more realistic estimate of the composition range in which Ge1−xPbx starts

to become a direct-gap semiconductor, at which composition the calculated alloy band gap is

in the range 0.3 – 0.4 eV.

Overall, we predict the emergence of a direct band gap in response to substitutional Pb incorpo-

ration in Ge, suggesting that binary Ge1−xPbx alloys are potentially of interest for applications

in CMOS-compatible active photonic devices operating at mid-infrared wavelengths. However,

the potential for applications of Ge1−xPbx alloys in such devices may in practice be limited by

the presence of a low fundamental band gap. Further investigations are now required to confirm

the emergence of a direct band gap in response to Pb incorporation, as well as to quantify the

implications of the band mixing and short-range alloy disorder effects identified by our analysis

for technologically relevant material properties including optical generation and recombination

rates, carrier mobilities, and band-to-band tunneling currents.





Chapter 6

Final Summation, conclusions, and

outlook

The work presented in this thesis aims from a theoretical perspective, and with experimental

support, to investigate the material, optical and electronic properties of germanium-based

group-IV alloys and the implications they hold for the future of CMOS compatible group-

IV optoelectronic devices. We focus in particular on two Ge-based group-IV alloys which

have potential applications in future Si-compatible CMOS devices, GeSn alloys (which are the

subject of chapter 3 and chapter 4) and GePb alloys (the properties of which are investigated

in chapter 5). This final chapter summarises the key findings and main conclusions of the

investigations into each of these materials and provides guidance for future work in each area.

6.1 Group-IV Optoelectronics

The realization of the full potential of CMOS technologies requires active components which

are built from Si compatible materials, so as to be easily integratable with existing chipsets.

Active photonic components, like LEDs, are intrinsically difficult to fashion from Si due to the

fundamentally indirect band gap of the material rendering it an inefficient emitter or absorber

of light. Aside from silicon, on which the vast majority of existing CMOS device technology is

based, germanium and other group-IV elements are also already in wide usage within existing

CMOS device workflows. Ge in particular is of note as it has been predicted to offer the benefit

of significantly higher hole mobility than Si, and because the direct band gap in Ge lies only

136meV above the indirect conduction band minima at L. As a result it is possible to engineer

the band gap of Ge so as to bring about a direct gap in a material that is compatible with

existing CMOS technologies.

103
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The work in this thesis focuses on the alloying of Ge with Sn or Pb to bring about a direct

bandgap Ge1−x(Sn/Pb)x alloy. Incorporation of Sn or Pb into the Ge lattice reduces the con-

duction band edge at the direct Γ point at a faster rate than it reduces the indirect conduction

band edges at other critical points like L and X. With sufficient Sn or Pb content the conduc-

tion band edge at Γ is shifted below L to bring about a direct band gap in the alloy. To date

however there remain discrepancies in the theoretical and experimental literature values for the

composition of Sn required to bring about a direct band gap in GeSn alloys, while the band

structure and properties of GePb alloys have remained largely unexplored in literature.

6.2 Optoelectronic properties of GeSn alloys

Chapter 3 detailed a combined theoretical and experimental investigation of the evolution of

the band gap in GeSn alloys carried out in collaboration with the University of Surrey. This

investigation primarily focused on the transition from an indirect to a direct band gap material

as the % Sn composition of the Ge1−xSnx alloy was increased from 0-10%. The experimental

side of this investigation consisted of a series of photovoltage measurements carried out on

hydrostatically strained Ge1−xSnx photodiodes of 6, 8 and 10% Sn content respectively. From

these measurements the hydrostatic pressure coefficient of the conduction band edge of each

sample was determined. In contrast to existing literature the results of these measurements,

particularly for the photodiode with ≈6% Sn indicated that the band edge pressure coefficient

was neither purely L-like (indirect) or Γ-like (direct) in nature but rather an admixture of

band gap character from these states. The theoretical investigation of the band structure

detailed in this chapter, which comprised of a series of DFT electronic structure and hydrostatic

pressure calculations on supercells of Ge1−xSnx with varying Sn composition, supported this

experimental finding with the 16 and 64 atom supercells of 6% Sn both showing a band gap

with band character which was intermediate between Γ and L.

Overall the results in this chapter indicate that there is a continuous evolution from indirect

to direct band gap in GeSn alloys which is driven by the band mixing effects which cause a

monotonic increase in Γ character in the conduction band gap edge, as the band gap narrows as

a function of Sn concentration. These band mixing effects could have important implications

for any future optoelectronic devices arising from GeSn alloys including potentially improving

optical properties at lower Sn concentrations than would otherwise be expected.

Chapter 4 of this thesis expands on the scope of the theoretical investigation of GeSn alloys

from chapter 3. In this chapter an extensive theoretical study of GeSn alloys and their material,

optical and electronic properties was performed using DFT methods in the VASP framework.

This study was primarily undertaken using Heyd-Scuseria-Ernzerhof hybrid functional and

modified Becke-Johnson DFT methods but also included the introduction of a valence force
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field (VFF) and tight-binding (TB), parameterised by collaborators. This model can be used

to expand the investigation to a series of larger supercells than would be possible with the more

accurate but computationally expensive DFT. Using HSE and mBJ DFT a series of ordered

and disordered supercells which ranged in size from 16 to 128 atoms were investigated, and the

evolution of the supercell band structure with increasing % Sn content was probed.

As HSEsol DFT calculations are found to be in good quantitative agreement with experimen-

tal measurements, the results of these calculations were taken as a reference to quantify the

accuracy of the LDA + mBJ and VFF + TB models. The trends in the Ge1−xSnx alloy lat-

tice constant, relaxed atomic positions, band gap and valence band spin-orbit splitting energy

calculated using the LDA + mBJ and VFF + TB models were all found to be in good quali-

tative and quantitative agreement with the results of full HSEsol calculations. Alloy supercell

band structure calculations carried out using all three models showed string Sn-induced band

mixing and alloy disorder effects in the Ge1−xSnx CB structure. These results emphasise and

reinforce the suggestion from Chapter 3 that the evolution of a direct band gap in Ge1−xSnx

occurs continuously with increasing Sn composition. The alloy band gap pressure coefficient

was calculated using each of the three approaches as it offers an experimentally measurable

means by which to quantify hybridisation of the conduction band edge. Again, the LDA +

mBJ and VFF + TB calculations were found to capture both qualitatively and quantitatively

the trends observed in full HSEsol calculations. The results of the benchmark calculations lead

to the following general conclusion. The LDA + mBJ model offers an accurate description of

Ge1−xSnx alloys at reduced computational expense compared to HSEsol calculations, providing

access to larger systems within a first principles framework.

With the suitability of the mBJ XC functional established for the investigation of GeSn alloys,

the impact of Sn-related alloy disorder in disordered alloy supercells was then investigated by

tracking the evolution of the alloy CB edge in Ge14Sn2 (12.5% Sn content) and Ge62Sn2 (3.125%

Sn content) supercells as the separation between the Sn atoms was reduced from fourth- to

first-nearest neighbours. The alloy band gap was found to have a strong dependence on the

distance between the two Sn atoms indicating that atomic-scale alloy disorder strongly impacts

quantitative analysis of the alloy electronic structure.

The evolution of the band gap from indirect to direct was then analysed for a randomly disor-

dered alloy using 128-atom Ge128−xSnx SQSs. Calculation of the pressure coefficients associated

with the band gaps between the VB edge and the five lowest energy CB states show that the CB

edge of GeSn retains primarily Ge L6c character until x ≈ 7%, at which composition the lowest

energy CB state acquired predominantly direct (Ge Γ7c) character. At this composition of ≈
7% Sn content the band gap has a value of 0.499eV, suitable for applications in semiconductor

devices.
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Overall the results of this chapter indicate the emergence of a direct band gap in response

to substitutional incorporation of x ≈ 7% Sn in Ge1−xSnx alloys, and that band mixing and

disorder effects in GeSn alloys strongly impact the evolution of the conduction band. As a

result electronic structure calculations for Ge1−xSnx alloys must explicitly consider band mixing

and disorder effects to allow for accurate analysis of the impact of Sn incorporation on key

material parameters, including optical transition strengths, electron mobility and band-to-band

tunneling rates. Given the expected importance of these effects in determining technologically

relevant material properties, the development of appropriate theoretical models represents an

important step to enable predictive theoretical analysis of proposed Ge1−xSnx-based photonic,

electronic and photovoltaic devices. The theoretical models we have presented allow for the

treatment of larger systems than those accessible to hybrid functional DFT with minimal loss

of accuracy, providing a basis for direct atomistic calculations of the electronic, optical and

transport properties of disordered Ge1−xSnx alloys and realistically-sized nanostructures.

6.3 Outlook, ongoing work and future work

Progress towards the realisation of efficient active photonic components from GeSn alloys has

already begun with recent effort culminating in the demonstration of lasing in group-IV GeSn

structures. [46, 185–189] Further development and improvement of such active group-IV pho-

tonic components will require continued study to better understand the impact of band mixing

and disorder effects will have on GeSn alloys, at a device scale level. Using the valence force

field and tight binding models parameterised and benchmarked in chapter 4 from HSE-DFT

calculations will allow for the investigation of supercells of the order of 105 – 106 atoms. At

this scale it should be possible to research the impacts of band mixing and disorder on a cell at

a scale where long range ordering of the supercell will not affect the calculation, allowing for

better simulation of a real alloy case.

Another obvious avenue for further research arising from the work presented in this thesis is

the extension of the mBJ-DFT approach used in chapters 3 and 4 to investigate the band

structure of ternary SiGeSn alloys. Understanding the mechanism by which the band structure

of SiyGe1−x−ySnx evolves with x and y is an important step towards the integration of active

GeSn photonic devices onto existing Si based CMOS technologies. DFT and tight binding

calculations should be capable of elucidating how the band structure evolves with varying Si

and Sn composition for application e.g. in photovoltaics. In this manner DFT calculations

could provide useful guideline for the fabrication of devices and their integration with existing

Si and photovoltaic technologies.
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6.4 Optoelectronic properties of GePb alloys

While Ge1−xSnx alloys have attracted significant theoretical interest, there have been few

reports to date regarding Ge1−xPbx alloys. In chapter 5 of this thesis a theoretical DFT-based

analysis of the alloy’s material, optical and electrical properties has been carried out. As is

the case for GeSn alloys, optoelectronic devices made from GePb alloys should be compatible

with CMOS technologies and easily integrable on to existing Si chip sets. The transition from

an indirect to a direct band gap in GePb alloys is predicted to occur at a lower composition

of Pb, than in equivalent GeSn alloys. The theoretical analysis of GePb alloys detailed in

chapter 5 provide a detailed DFT-based inspection of the structural and electronic properties

of the constituent materials; diamond-structured semiconducting Ge and diamond-structured

metallic Pb, and (iii) the fictitious semi-metallic IV-IV compound zb-GePb, using both the

HSEsol and mBJ XC functionals. Good agreement is found between the material properties,

including lattice constants and indirect and direct material band gaps, calculated using HSE

and mBJ DFT methods and the limited experimental data available, validating the suitability

of these methods in the investigation of GePb alloys.

Examination of the calculated electronic structure of ordered GePb alloy supercells indicates

that for both the Ge63Pb1 and Ge127Pb1 supercells analysed Pb incorporation splits the de-

generacy of the Ge L6c CB edge states into a (Kramers degenerate) singlet state, and lying

slightly higher in energy, a (Kramers degenerate) triplet state which have purely s- and p-like

orbital character at the Pb lattice site respectively. Hydrostatic pressure calculations carried

out on these supercells indicate that the emergence of this s-like singlet state at the CB edge

is not evidence of a direct band gap for Pb compositions as low as x = 1.56% as in both cases

the calculated pressure coefficient of this singlet state at the conduction band edge possessed

only a small admixture of direct (Ge Γ7c) character and retained primarily indirect (Ge L6c)

character. Additionally these calculations establish the suitability of the mBJ XC functional

in the analysis of Ge1−xPbx alloys. Using the mBJ XC functional the impact of Pb-related

alloy disorder was then investigated by tracking the evolution of the alloy CB edge in Ge62Pb2

supercells as the separation between the Pb atoms was reduced from fourth- to first-nearest

neighbours. Like in GeSn alloys, the alloy band gap here was found to have a strong dependence

on the distance between the two Pb atoms indicating that atomic-scale alloy disorder strongly

impacts quantitative analysis of the alloy electronic structure.

Finally the emergence of a direct band gap with increasing % Pb content for a randomly

disordered alloy was analysed using Ge128−xPbx SQSs where x was varied from 0 – 12%. The

calculated electronic structure evolution for these disordered 128-atom SQSs, in agreement

with earlier ordered supercell calculations, showed that a (Kramers degenerate) singlet state

emerges at the CB edge for even the lowest Pb composition considered (x = 0.78%). Calculated

pressure coefficients associated with the band gaps between the VB edge and the five lowest
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energy (Kramers degenerate) CB states showed however that the CB edge retained primarily

Ge L6c character until x ≈ 6 – 7%, at which composition the lowest energy CB state acquired

predominantly direct (Ge Γ7c) character. As such, SQS calculations indicated an indirect- to

direct-gap transition in Ge1−xPbx alloys for x ≈ 6 – 7%, near which composition the CB edge

also passes through the VB edge, to give a zero-gap semi-metallic alloy. However finite-size

effects in the SQSs, which arise from the absence of long-range alloy disorder in the relatively

small supercells to which DFT calculations are limited are evidenced by the notably large

splitting of the four Ge L6c-derived states (the singlet state lying ≈ 150 meV below triplet

states). We propose that these effects may lead to an overestimate of the composition at which

Ge1−xPbx becomes direct-gap. Rather than finding such a splitting, we anticipate that the

Ge L6c character associated with alloy CB states will experience inhomogeneous broadening

about their mean energy in real alloys. Plotting instead the weighted average of the four Ge

L6c-derived CB states we note the CB state which has the greatest Ge Γ7c character passes

through this weighted average energy for x ≈ 3 – 4%. This weighted average may then provide

a more realistic estimate of the composition range in which Ge1−xPbx starts to become a

direct-gap material, at which composition the calculated alloy band gap is in the range 0.3 –

0.4 eV.

Overall the results of the analysis of GePb alloys indicate the emergence of a direct band gap in

response to substitutional Pb incorporation in Ge1−xPbx alloys, and that band mixing effects

in GePb alloys have a notably weaker impact on the evolution of the conduction band than

in comparable GeSn alloys, suggesting the potential of these alloys for application as CMOS-

compatible active photonic devices operating at mid-infrared wavelengths. We note however

that the device applications of Ge1−xPbx alloys may in practice be limited by the presence of a

low fundamental band gap and that further theoretical and experimental investigation of GePb

alloys is still required for devices to be realised from this alloy.

6.4.1 Outlook, ongoing work and future work

The realisation of GePb alloys as a pathway to all group-IV CMOS devices will require a

great deal of further research activity both on the theoretical and experimental sides. There

remain a number of key issues for GePb alloys which must be overcome to create functional

optoelectronic devices. Experimentally, difficulties remain in the growth of GePb alloys due to

the large lattice mismatch between Ge and Pb and the tendency of Pb to energetically favour

clustering together rather than distributing evenly throughout the alloy. The low band gap

of direct gap GePb alloys predicted to lie in the range of 0.3 – 0.4 eV may also present a

barrier to the development of efficient active photonic components. This small band gap issue

may potentially be overcome by the introduction of silicon to the alloy to form the ternary

alloy SiyGe1−x−yPbx, though there is to date little to no existing literature that investigates
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this ternary alloy. DFT mBJ and tight binding methods like those detailed in chapter 4 of

this thesis appear to offer the ideal means to investigate the SiyGe1−x−yPbx ternary alloy and

identify the ideal y and x composition at which prospective devices might be made.
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