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Thesis summary 

Variation among and within populations accounts for a considerable portion of 

phenotypic diversity produced in nature, and is instrumental to the structure 

and function of ecosystems. Understanding how, and why, intraspecific 

diversity persists is essential for predicting and managing the effects of global 

change, particularly because intraspecific variation may mediate diverse 

responses to changes in the environment. Alternative phenotypes – i.e. discrete 

phenotypic variation – can arise from a combination of proximate and ultimate 

mechanisms. Proximate mechanisms reflect how environmental factors shape 

phenotypic variation via intermediate physiological processes, which can 

themselves vary and be decomposed into genetic versus environmental 

components. Ultimate mechanisms concern the evolutionary function of a 

given phenotype. In this thesis, I explore how proximate and ultimate factors 

contribute to a particularly striking example of intraspecific diversity: 

alternative migratory tactics in brown trout Salmo trutta.  

Brown trout are iconic for the variety of migratory life histories they exhibit; yet 

fundamental knowledge gaps remain regarding how environmental, 

physiological, and genetic factors integrate to underpin life history decisions 

among and within populations. In Chapter 2, I assessed how food restriction 

and population background influences the expression of migratory tactics in 

offspring from two populations that naturally differ in anadromy (i.e. sea-

migration). Food restriction affected traits related to size and condition, and 

resulted in a higher frequency of anadromy in both populations, though 

populations varied in their responses according to the timing of food restriction 

treatments. While anadromy was overall more frequent in offspring from the 

naturally anadromous population, the expression of anadromous phenotypes in 

offspring from a non-anadromous population indicated that migratory tactics 

might emerge in response to unfavourable environmental conditions causing 

energetic limitation. In Chapter 3, I further considered proximate mechanisms 

by exploring how multiple environmental factors (food and temperature) 
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influence migration. Antagonistic effects of food restriction and increased 

temperature on condition and size-related traits were not translated at the level 

of migration tactics, where effects of food restriction and temperature were 

additive, but opposing (food restriction increased anadromy, whereas 

temperature decreased anadromy).  

I explored how components of metabolic rate – a fundamental determinant of 

physiological status – varied according to food restriction and population 

background in Chapter 4. Standard metabolic rate (SMR) was lower in food-

deprived fish, while SMR, maximum metabolic rate, and aerobic scope (AS) 

were higher in offspring from a naturally anadromous population compared to 

a non-anadromous population. Population-specific effects of food restriction on 

AS also emerged. I further addressed the causes and consequences of metabolic 

rate variation in Chapter 5, where I found metabolic traits varied according to 

both population background and temperature, with important consequences 

for growth rates (a key fitness-related trait that can shape life histories).  

Collectively, these results contribute to our knowledge of how environmental 

and genetic factors underpin life-history diversity in terms of migratory tactics 

and physiology. Changes in environmental conditions will likely alter patterns 

of life-history diversity (mediated by changes in individual physiology) in ways 

that will also depend on population-specific factors. While predicting the 

impacts of multi-faceted environmental change will be complex, knowledge of 

the links between physiology, environment, and ultimately, life history, is 

crucial for conserving important biodiversity within brown trout, a species that 

is already in widespread decline due to pervasive global change.  
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Thesis structure 

The data chapters within this thesis are intended for publication in peer-

reviewed journals and are thus written and formatted as standalone 

manuscripts. For ease of reading, figures and tables are embedded within the 

text and chapters are cross-referenced where appropriate, though each chapter 

can be read in isolation. I have indicated where chapters have already been 

submitted or published in peer-reviewed journals, and author contributions are 

listed at the beginning of each chapter.  
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Chapter 1  

General Introduction 

Much of the widespread diversity we observe in nature can be attributed to 

intra-specific phenotypic variation (Roff 1996). This intra-specific variation can 

be either continuous in kind, or discontinuous, i.e. discrete variation in 5 

morphological, behavioural or life history traits referred to as ‘alternative 

phenotypes’. Alternative phenotypes are often underpinned by developmental 

plasticity as polyphenisms (Suzuki and Nijhout 2008), and have attracted 

considerable attention in evolutionary biology, e.g. in the context of speciation, 

or evolution by genetic accommodation (West-Eberhard 2003; Crispo 2007; 10 

Oliveira et al. 2008). Alternative phenotypes also play key roles in community 

ecology (Bolnick et al. 2011) and have applied relevance for conservation and 

ecosystem management (Naish and Hard 2008).  

A fundamental goal of evolutionary ecology is to determine the relationship 

between ecologically relevant phenotypic variation and underlying genetic 15 

variation, and in doing so understand how and why divergent phenotypes and 

life histories arise and persist (Debat and David 2001). This challenge is 

especially important in the context of pervasive global change, where predicting 

the outcomes of environmental change on natural populations is made more 

complex by the occurrence of alternative phenotypes. Phenotypic variation 20 

among individuals and populations may mediate diverse responses to 

environmental change, and understanding the effects of phenotypic diversity is 

crucial to successful management and conservation of natural populations 

(Schindler et al. 2010, 2015).  

The phenomenon of facultative migration  25 

Considerable phenotypic diversity can stem from migration, a spectacular, yet 

relatively common phenomenon evident in all major animal taxa (Swingland 

and Greenwood 1984). Optimal breeding and feeding habitats are often 
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separated in space and time, and thus migration is a pivotal factor shaping the 

temporal and spatial distribution of animals, with important consequences for 30 

ecosystem function and structure (Polis et al. 2004; Janetski et al. 2009). In 

addition to considerable inter-specific variation in migratory patterns, 

encompassing obligate migratory and non-migratory lifestyles, strikingly 

different migratory phenotypes are also evident within species (Dingle and 

Drake 2007), with migration usually occurring at specific life stages to exploit 35 

alternative foraging opportunities or to avoid unfavourable abiotic conditions 

(Chapman et al. 2011a). Intraspecific variation in migratory tendency can span 

populations that may be entirely migratory, others that may be solely resident, 

and others again that may be “partially migratory” and comprise a mix of 

migratory and resident phenotypes (Lack 1943; Lundberg 1987; Kaitala et al. 40 

1993; Chapman et al. 2011a). Alternative phenotypes among and within 

populations might be determined purely by genetics, plasticity, or reflect a mix 

of genetic and environmental factors, thus appearing somewhat “flexible”. 

Facultative migration – where individuals show flexibility in tactic expression – 

is common among taxa (Chapman et al. 2011c, b), with well documented 45 

examples in birds (Lundberg 1988; Pulido et al. 1996; Newton 2008), ungulates 

(Ball et al. 2001; Cagnacci et al. 2011; Hebblewhite and Merrill 2011), 

zooplankton (Hansson and Hylander 2009), and fishes (Chapman et al. 2012; 

Dodson et al. 2013). However, despite the widespread occurrence of facultative 

migration, and its importance in ecosystem processes (Brodersen et al. 2008), 50 

the causes and consequences of the migration versus residency decision remain 

largely unresolved (Dingle and Drake 2007; Pulido 2011).  

Proximate and ultimate drivers of migration  

The origin and persistence of intra-specific variation in migratory behaviour can 

be understood in terms of proximate and ultimate factors. Ultimate factors refer 55 

to the evolutionary reasons for, or phylogenetic patterns underpinning, 

migration, whereas proximate factors reflect how migration is triggered in 

response to environmental cues and the ontogeny of its expression. The 

proximate mechanisms underpinning migration are themselves evolvable, and 
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may be subject to selection in response to environmental factors. As such, 60 

alternative migratory phenotypes are likely underpinned by a complex genotype 

to phenotype mapping, where similar phenotypes can arise from different 

genotypes, or the same genotype can produce dramatically different 

phenotypes, via plasticity mediated by environmental cues (Via et al. 1995).  

Facultative migration is often considered as a threshold trait (Roff 1996). As 65 

such, environmentally-triggered alternative migratory “tactics” are produced by 

a conditional strategy, where the optimal tactic for a given environment is 

conditional on intrinsic or extrinsic cues. Under the framework of the 

“environmentally cued threshold model” (Tomkins and Hazel 2007), 

expression of alternative tactics is determined by the relationship between an 70 

environmentally-sensitive “status” trait (that may itself be influenced by genes 

e.g. physiological condition, or energy status) and a genetically variable 

threshold for said status trait. The inherited threshold can be thought of as a 

switch point. If an individual’s status trait exceeds the switch point during an 

assessment period (or “decision window”), it remains resident and undergoes 75 

maturation. If the threshold for residency is not met, a migratory trajectory is 

adopted (though the timing of actual migration may be controlled by similar 

threshold mechanisms). Since environmental conditions are assumed to 

strongly influence potential status traits, environmentally-induced variation in 

the status trait may cause alternative migratory tactic to arise from similar 80 

genetic thresholds via life-history plasticity. The context-dependent status trait 

can thus be considered as an environmental “cue”, related to the expression of 

alternative tactics by a “threshold reaction norm” (Tomkins and Hazel 2007; 

Piche et al. 2008; Pulido 2011; Buoro et al. 2012). Alternatively, since the 

underlying threshold is evolvable (i.e. an ultimate mechanism), population or 85 

individual-level genetic variation in the threshold may result in similar 

environments producing different migratory phenotypes, as shown in blackcaps 

Sylvia atricapilla (Pulido et al. 1996) and Atlantic salmon Salmo salar (Piche et 

al. 2008).  
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The environmentally cued threshold model provides a useful framework for 90 

understanding how the frequency of migration versus residency for a given 

population depends on both the distribution of the status trait, and the 

distribution of the threshold values in the population (Tomkins and Hazel 

2007). The prevalence of a given migratory phenotype can vary in the short 

term in response to environmental conditions, and can shift over longer periods 95 

through evolution of the underlying threshold (Piche et al. 2008). In practice, 

however, it is not yet clear how environmental variation is translated into 

internal physiological signals, upon which individuals then base migratory 

decisions. Understanding the proximate determinants of phenotypic diversity 

i.e. how genetic and environmental factors interactively shape life histories via 100 

intermediary physiological processes, is thus the overarching theme of this 

thesis.  

Overview of life history variation in salmonines 

Fishes present many interesting examples of facultative migration, offering 

valuable opportunities to gain insight into the mechanisms underlying 105 

alternative migratory tactics (AMTs) (Jonsson and Jonsson 1993; Chapman et al. 

2012). Salmonines (salmons, trouts, and charrs) in particular display a 

multitude of diverse migratory life histories that vary among populations and 

individuals in terms of migration propensity, migration distance, and migration 

destination (Dodson et al. 2013; Sloat et al. 2014; Kendall et al. 2014; Ferguson 110 

et al. 2019). Alternative reproductive tactics (ARTs) within male salmonines 

(e.g. the sneaker versus ‘bourgeois’ tactics) represent another interesting class 

of alternative phenotypes that are conceptually distinct from, but nonetheless 

related to, AMTs (Gross 1985, 1991; Hutchings and Myers 1994; Fleming 1996). 

While freshwater spawning is obligate, a continuum of migration tactics is seen 115 

in salmonines, encompassing individuals that remain in natal streams/lakes for 

their entire life cycles (residency), to those that migrate to larger rivers (fluvial-

adfluvial migration), lakes (potomodromy), or to marine environments 

(anadromy) before returning to spawn in natal freshwater systems (Klemetsen 

et al. 2003; Ferguson et al. 2019; Nevoux et al. 2019). In several salmonines 120 
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(including brown trout Salmo trutta, the focal species of this thesis), 

populations may be dominated by either resident or migratory forms, but may 

also comprise a mixture of migratory phenotypes that can breed freely in 

sympatry (Chapman et al. 2012). Despite the considerable socioeconomic and 

cultural importance of various migratory phenotypes, (e.g. as a valued angling 125 

resource or a component of biodiversity), and their pivotal role in aquatic 

ecosystem dynamics (Naiman et al. 2002), the drivers of alternative life 

histories in salmonines remain largely unresolved (Harris and Milner 2008; 

Harris 2017). Such fundamental knowledge gaps limit our ability to manage and 

conserve these iconic species, which are in widespread decline due to 130 

anthropogenic pressures, most notably global change, in-stream barriers, and 

the development of aquaculture (Limburg and Waldman 2009).  

The threshold reaction norm concept has been applied to understand migration 

decisions (or ARTs) in salmonines because their life histories appear largely 

compatible with the model framework (Hutchings and Myers 1994; Thorpe et 135 

al. 1998; Thériault et al. 2007). While offspring tend to show similar migratory 

tactics to their parents, either migratory phenotype can be produced from a 

given parental life history (Zimmerman and Reeves 2000; Berejikian et al. 

2014). Since mounting evidence supports migration as a trait interactively 

determined by genotype and environment, i.e. under genotype-by-140 

environmental control (Hutchings 2011), research has focused on identifying 

potential status traits, with inconclusive results. Previous studies have linked 

numerous aspects of physiological condition to migration tactics with equivocal 

support, including: body size (Thériault and Dodson 2003), body condition 

(Hecht et al. 2015), growth rates (Jonsson 1985), growth efficiency (Forseth et 145 

al. 1999; Morinville and Rasmussen 2003), metabolic rates (Sloat and Reeves 

2014), and lipid stores (Jonsson and Jonsson 2005). Furthermore, the 

associations between these physiological traits and migration tendency have 

also been inconsistent. For example, fast growth and larger sizes have been both 

positively (Jonsson 1985; Acolas et al. 2012), and negatively (Morinville and 150 

Rasmussen 2003; McMillan et al. 2012) related to migration whilst others have 
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found no relationship (at a given age) (Thériault and Dodson 2003), or evidence 

for population-specific responses (Jonsson 1985).  

 

Figure 1: Overview of alternative migratory tactics in brown trout, with an 

andromous life history highlighted in red, and a resident life history in blue. 

The inset shows the threshold mechanism underpinning migration decisions. 

A normal distribution of status trait values in a given environment is shown 

for a hypothetical population that displays faculatative anadromy, with the 

mean threshold for residency represented by the dashed line. 

Inconsistent results could occur if there are discrepancies in the timing of trait 

measurements (often occurring around the time of migration) and when the 155 
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migration versus residency decision is actually made. Migration often requires 

considerable morphological and physiological adjustments (Tanguy et al. 1994), 

meaning the migration decision window likely occurs many months in advance 

of the actual migration event. For example, future migrants must reach 

sufficient sizes to successfully transition to the marine environment, where 160 

survival is size-dependent (Phillis et al. 2016; Armstrong et al. 2018). Thus, pre-

migrants often display accelerated growth in advance of the migration period 

(Metcalfe et al. 1995), while residents redirect energy reserves towards gonadal 

development and sexual maturation (Tocher 2003; Jonsson and Jonsson 2005). 

Fewer studies have explored when the migratory decision might occur, but it is 165 

increasingly clear that size at migration may not reflect size (or other aspects of 

physiological condition) at the time when the decision was made. Indeed, there 

is evidence that migrants and residents can differ in potential status traits 

including growth rates (Beakes et al. 2010), metabolic costs (Morinville and 

Rasmussen 2003), and condition (Hecht et al. 2015) up to a full year before 170 

migration takes place (Thorpe et al. 1998; Thorpe and Metcalfe 1998; 

Satterthwaite et al. 2009). The timing and nature of the decision window is 

largely unknown in brown trout (Ferguson et al. 2019), but is fundamental to 

our understanding of the pathways by which alternative tactics develop (Thorpe 

et al. 1998)  175 

While identification of underlying status traits has proved somewhat 

inconclusive, understanding the fitness costs and benefits of migration versus 

residency may help to clarify the factors that promote different migratory 

tactics. Since food abundance is often higher in the migratory destination 

(larger rivers, lakes or the sea) compared to food-limited natal streams (Imre et 180 

al. 2005), migration might be favoured as an optimal tactic if increased growth 

rates are achieved in the new habitat, translating into higher fecundity and 

ultimately fitness (Brönmark et al. 2013). Such a scenario is supported by 

latitudinal clines in the prevalence of anadromy, where at high latitudes, higher 

productivity of the marine environment relative to freshwaters has been linked 185 

to the evolution of the anadromous life history (Gross et al. 1988). However, any 
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feeding benefits must be traded off against the significant costs associated with 

migration, including considerable energetic expenditure (Stefansson et al. 

2003), physiological stress (Peiman et al. 2017; Birnie-Gauvin et al. 2017), and 

an increased risk of predation (Dieperink et al. 2002).  190 

The balance between migratory costs and benefits is not necessarily equal 

among individuals, and is particularly likely to vary between the sexes (Hendry 

et al. 2004). While larger females have larger eggs and are more fecund 

(Fleming 1996; Quinn 2018), male reproductive success is limited by access to 

mates (Fleming 1998), which is less size dependent because the success of ARTs 195 

(e.g. “sneaker” versus bourgeois, anadromous males) can be similar (Hutchings 

and Myers 1988; Foote et al. 1997; Young et al. 2013). Females thus often receive 

greater fitness benefits from migration (mediated by larger sizes at maturity) 

than males, reflected by general trends of female-biased migration (Nielsen et 

al. 2003; Rundio et al. 2012; Ohms et al. 2013; García-Vega et al. 2018; Kelson et 200 

al. 2019).  

This balance of trade-offs may show further variation due to intraspecific 

differences in energetic uptake and output, with accumulating evidence to 

suggest that migration occurs in response to energetic limitation in the natal 

environment (Forseth et al. 1999). The acquisition and allocation of energy 205 

resources in juveniles is strongly influenced by extrinsic environmental 

conditions, with the resulting individual energetic status (indicated by various 

potential status traits) determining life history trajectories in juveniles (Jonsson 

and Jonsson 1993). In particular, factors determining food availability have been 

much linked to the frequency of migrants (O’Neal and Stanford 2011; Jones et 210 

al. 2015), e.g. increased competition at high population densities has been 

shown to influence adfluvial migration in brown trout (Olsson et al. 2006; 

Wysujack et al. 2009). Temperature appears to be an important abiotic factor 

affecting migration (Kendall et al. 2014), and cooler temperatures have been 

found to increase maturation in lieu of migration in steelhead trout, perhaps 215 

due to changes in lipid deposition (Sloat and Reeves 2014). However, we 

currently lack a synthetic understanding of how variable environmental 
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conditions such as food and temperature might mediate migratory tactics 

among populations and individuals through effects on physiological condition 

or energetic status.  220 

The importance of energy metabolism  

As the fundamental process governing an individual’s energy budget, 

metabolism is likely to be profoundly linked to variation in migratory 

phenotypes. Standard metabolic rate (SMR) refers to the minimum energy 

required to sustain life, i.e. the costs of homeostasis and tissue maintenance in 225 

an inactive, unstressed, non-digestive organism (termed basal metabolic rate 

(BMR) in endotherms) (Chabot et al. 2016). Once size and age are accounted 

for, SMR can vary as much as three-fold among individuals of the same 

population (Burton et al. 2011; Konarzewski and Książek 2013). Such individual 

differences in SMR are integrally linked to variation in energy acquisition and 230 

allocation, making it a trait of particular interest in studies of life-history 

variation (Forseth et al. 1999; Burton et al. 2011; Metcalfe et al. 2016). Variation 

in SMR has been generally linked to differences in lifestyle among fishes (Killen 

et al. 2010), and intraspecific variation appears to be similarly linked to life-

history differences. For example, in brown trout, juveniles with relatively higher 235 

baseline energetic demands subsequently adopted migratory tactics (Forseth et 

al. 1999). Migrating Atlantic salmon S. salar smolts were found to have higher 

SMR values than non-smolts deferring migration to a later age (Seppänen et al. 

2010), and those with the highest recorded SMR also tended to migrate at 

younger ages (McCarthy 2000). Similarly, lower SMR was linked to a higher 240 

probability of freshwater maturation rather than migration in steelhead trout 

Oncorhynchus mykiss (Sloat and Reeves 2014).  

While SMR defines the minimum energy demands, or metabolic “floor”, 

maximum metabolic rate (MMR) defines the upper limits of metabolism as the 

highest rate of aerobic metabolism (oxygen transport and ATP production) that 245 

can be achieved (Norin and Clark 2016). An individual’s aerobic scope (AS) is 

bounded by SMR and MMR, and reflects the potential energy that can be 

directed towards key competing functions (e.g. activity/locomotion, growth, 
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digestion) once baseline energy requirements have been met (Guderley and 

Pörtner 2010). MMR and AS appear to show similar levels of intraspecific 250 

variation to SMR (Metcalfe et al. 2016), but the reasons behind this variation are 

somewhat unclear. Previous studies in salmonines have linked variation in 

MMR and AS to swimming performance (Tudorache et al. 2007) and migration 

distance and effort (Eliason et al. 2011), supporting it as a trait of ecological 

relevance in facultatively migratory species. As such, MMR and AS may have 255 

implications for life histories, and could contribute to the emergence and 

persistence of alternative phenotypes. However, despite their relevance for life 

history and phenotypic diversity (Metcalfe et al. 2016; Biro et al. 2018), MMR 

and AS are relatively under-researched traits in relation to facultative migration. 

We know surprisingly little about how variation in, or indeed covariation 260 

between, these metabolic traits relates to patterns of alternative migratory 

tactics.  

Since metabolic traits are strongly influenced by environmental conditions such 

as temperature (Clarke and Johnston 1999; Brown et al. 2016), it is crucial to 

also consider environmental factors when investigating the causes and 265 

consequences of metabolic rate variation in facultatively migratory species. For 

example, although empirical evidence suggests SMR is positively associated 

with migration because of its influence on energy status (McCarthy 2000), this 

relationship may be context-dependent (Burton et al. 2011), i.e. energetic 

limitation may only occur at warm temperatures, or if there is insufficient food 270 

to meet metabolic needs. Additionally, individuals or populations may also 

differ in their metabolic responses to changing extrinsic conditions (Metcalfe et 

al. 2016; Norin and Metcalfe 2019), further complicating the links between 

metabolism, environment, and life history. Moreover, since metabolic rates are 

partly determined by genetics (Pettersen et al. 2018) and are thus evolvable 275 

(Wone et al. 2015; Sadowska et al. 2015), metabolic trait variation between 

migratory phenotypes may arise due to the demands of a given life history. For 

example, in populations that have a high incidence of migration (where the 

thresholds for residency have presumably evolved to be relatively high), 
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selection may favour higher metabolic rates that improve migration 280 

performance (Dalziel et al. 2012a, b). 

While metabolic components are assumed to have important implications for 

fitness, and thus shape life histories, empirical evidence linking metabolism to 

fitness-rated traits has provided mixed results. For example, higher metabolic 

rates have been positively (McCarthy 2000) and negatively linked to growth 285 

rates (Norin and Malte 2011), whereas others again have found the optimal 

metabolic rate to vary depending on food availability (Reid et al. 2011; Auer et 

al. 2015a, b) and habitat (Reid et al. 2012). Thus, it seems increasingly likely that 

the benefits of a given metabolic phenotype may be context-specific, and 

dependant on environmental conditions, or intrinsic factors related to 290 

population background and life history (Álvarez and Nicieza 2005; Robertsen 

et al. 2014). Further investigation into the links between metabolic trait 

variation, environmental conditions, and fitness will help to illuminate how 

these factors integrate to shape life histories.  

Objectives and overview of the thesis 295 

The overarching objective of this thesis was thus to explore the nexus between 

physiology, environment, and alternative life history tactics in a facultatively 

migratory species. In Chapter 2, I specifically aimed to investigate how 

expression of migratory tactics is mediated by interactions between food 

availability and population background, and is underpinned by various aspects 300 

of physiological condition. I also explored whether the timing of food restriction 

influences migration, in order to better clarify when in early life the migratory 

decision might be undertaken, and to assess if populations varied in their 

responses to the timing of food restriction.  

In Chapter 3, I extend the study of the proximate drivers of life history variation 305 

by exploring how co-occurring environmental factors collectively influence 

migratory tactics. Here, I aimed to test if food restriction and increased 

temperature interactively influence traits associated with physiological 
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condition, and to investigate whether these effects scale up to affect migratory 

tactics in a similar fashion, in a facultatively migratory population.  310 

Chapter 4 explores how intrinsic and extrinsic factors influence variation in 

metabolic traits in facultatively migratory populations. Specifically, I aimed to 

assess (i) how SMR, MMR, and AS vary in brown trout offspring from two 

populations (that naturally differ in migration tendency); and (ii) to test how 

metabolic traits respond to long-term conditions of food restriction. I also 315 

explored if metabolic responses to food restriction are dependent on population 

background and sex.  

The objectives of Chapter 5 were to explore the causes and consequences of 

variation in metabolic traits in response to increased temperature. Specifically, 

I aimed to assess whether populations that differ in migratory tactics might also 320 

show variable metabolic responses to temperature increases. I then explored the 

implications of metabolic trait variation (in terms of differences between 

populations, and variation within populations driven by plastic responses to 

warming) for growth rates, a key-fitness related trait.  

Chapter Six synthesises the results of the studies described above, and discusses 325 

their contribution towards developing an integrated understanding of the links 

between physiology, environment, and life history.  

Additional reseach 

In addition to the chapters presented in this thesis, I have also been involved in 

the following research during my studies: 330 

Archer LC, Sohlström EH, Gallo B, Jochum M, Woodward G, Kordas RL, Rall 

BC, and O’Gorman EJ. 2019. Consistent temperature dependence of functional 

response parameters and their use in predicting population abundance. Journal 

of Animal Ecology In Press. https://doi.org/10.1111/1365-2656.13060. 
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Abstract 

Many species are capable of facultative migration, but the relative roles of 

extrinsic versus intrinsic factors in generating diverse migratory tactics remain 

unclear. Here we explore the proximate drivers of facultative migration in 

brown trout in an experimental laboratory setting. The effects of reduced food, 5 

as a putative environmental cue, were examined in two populations: one that 

exhibits high rates of anadromy (sea-migration) in nature, and one that does 

not exhibit anadromy in nature. Juveniles derived from wild-caught parents 

were reared for two years under four environmental treatments: low food in 

years 1 and 2 (Low-Low); high food in years 1 and 2 (High-High), low food in 10 

year 1 and high in year 2 (Low-High), and vice versa (High-Low). Food 

restriction had a significant effect on migratory tactics, with the frequency of 

smolts (juveniles choosing migration) highest in the Low-Low treatment in 

both populations. No individuals became smolts in the High-High treatment, 

and intermediate smolting rates were observed in the Low-High and High-Low 15 

treatments. Higher overall smolting rates in the naturally anadromous 

population suggested an inherited component to anadromy/migration 

decisions, but both populations showed variability in migratory tactics. 

Importantly, some fish from the naturally non-anadromous population became 

smolts in the experiment, implying the capacity for migration was lying 20 

‘dormant’, but they exhibited lower hypo-osmoregulatory function than smolts 

from the naturally anadromous population. Tactic frequencies in the naturally 

anadromous population were more affected by food in the 2nd year, while food 

in the 1st year appeared more important for the naturally non-anadromous 

population. Migratory tactics were also related to sex, but underpinned in both 25 

sexes by growth in key periods, size and energetic state. Collectively these 

results reveal how migration decisions are shaped by a complex interplay 

between extrinsic and intrinsic factors, informing our ability to predict how 

facultatively migratory populations will respond to environmental change.  
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Introduction 30 

Intraspecific phenotypic variation accounts for much of the diversity of form 

and function in nature (Roff 1996). Understanding the mechanisms generating 

and maintaining divergent phenotypes and life histories within and among 

populations is thus a fundamental goal of evolutionary ecology, with applied 

relevance to conservation and wildlife management (Naish and Hard 2008). A 35 

particularly striking example of alternative phenotypes is the phenomenon of 

facultative migration, whereby individuals within a population vary in their 

migratory tendencies. Facultatively migratory populations can comprise a 

mixture of migrant and resident individuals (sometimes called ‘partial 

migration’), with migration at specific life stages occurring typically to take 40 

advantage of alternative foraging opportunities or avoid adverse abiotic (e.g. 

climatic) conditions (Chapman et al. 2011a). Despite its widespread occurrence 

across taxa and regions, fundamental gaps still exist in our understanding of 

proximate and ultimate drivers of facultative migration. In particular, there is a 

dearth of studies addressing how facultatively migratory species respond to 45 

environmental change (Doswald et al. 2009; Chapman et al. 2011b), limiting our 

ability to generalise about the impacts of anthropogenic factors on migratory 

species and to effectively manage their populations.  

Polymorphisms such as facultative migration are potentially underpinned by a 

complex mapping between genotype and phenotype, i.e. phenotypic similarity 50 

can arise from different genotypes, or the same genotypes can produce 

dramatically different phenotypes through plasticity mediated by 

environmental cues (Roff 1996). As such, migration and residency have often 

been considered as environmentally-triggered alternative phenotypes/tactics 

produced by an evolvable conditional strategy, where optimal tactic choice in a 55 

given context is conditional on extrinsic or intrinsic cues (Chapman et al. 

2011b). This interplay between proximate and ultimate drivers of conditional 

strategies has been formalised as the so-called ‘environmentally cued threshold 

model’ (Tomkins and Hazel 2007). Within this framework, alternative tactics 

are controlled by an environmentally-sensitive status trait (e.g. physiological 60 
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condition, energy state) and an inherited threshold, or ‘switch point’, which is 

assumed to be genetically variable. An individual assesses their status trait and, 

for example, adopts a resident tactic if it exceeds their inherited switch point, 

otherwise it switches to a migratory tactic. Individual physiological 

condition/energy state is strongly influenced by the environment, and so the 65 

assessed status trait can vary relative to the intrinsic threshold depending on 

external conditions; for this reason, the status trait can be thought of as an 

‘environmental cue’ and the step function relating tactic expression to cue as a 

‘threshold reaction norm’ (Tomkins and Hazel 2007; Piche et al. 2008; Pulido 

2011; Buoro et al. 2012). There is some evidence for genetic variation in 70 

thresholds for alternative tactics, e.g., in blackcaps Sylvia atricapilla (Pulido et 

al. 1996) and Atlantic salmon Salmo salar (Piche et al. 2008), but detailed 

understanding of how external environmental variation is translated into 

internal physiological signals, on which migratory decisions are then based, is 

lacking.  75 

Salmonine fishes (salmons, trouts and charrs) are excellent models for 

disentangling causes of facultative migration as they display wide variation 

across a continuum of migratory strategies, coupled with obligate freshwater 

spawning (Klemetsen et al. 2003; Ferguson et al. 2019). Individuals can remain 

in freshwater post hatching for their entire life cycle, either staying in their natal 80 

stream or lake (residency tactic) or undertaking an adfluvial migration that 

takes them to a larger river or lake (potamodromous tactic) (Dodson et al. 2013; 

Ferguson et al. 2019). Facultative anadromy is an extreme form of this 

conditional migration strategy, where some individuals adopt the residency 

tactic whilst others from the same population undertake a marine migration 85 

(involving anywhere from tens to thousands of kilometres of directed 

movement between freshwater and saltwater). This is followed by a period of 

marine or estuarine feeding and growth (from months to years), before 

returning to spawn in natal streams (Jonsson and Jonsson 1993). Populations 

can contain both resident and migratory (anadromous or potamodromous) 90 

forms, or be dominated by one life history type (Chapman et al. 2012). Both 
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forms can breed freely in sympatry, and although offspring tend to track the 

tactics of their parents, either life history can be produced from a given 

migratory phenotype (Zimmerman and Reeves 2000; Berejikian et al. 2014). 

Such flexibility indicates an interplay between genetic predisposition and 95 

environmental conditions experienced i.e., genotype by environment 

interactions, underpinning facultative migration (Hutchings 2011).  

The threshold reaction norm framework has been useful in understanding 

migratory decisions in salmonines (Hutchings and Myers 1994; Thorpe et al. 

1998; Thériault et al. 2007). If during a key decision window, an individual’s 100 

status trait exceeds their predetermined threshold, the fish adopts a residency 

tactic leading to maturation in freshwater; if not, maturation is deferred in 

favour of migration (Dodson et al. 2013; Kendall et al. 2014; Ferguson et al. 

2017). However, the proximate factors on which individuals base the migration 

decision remain unclear. Previous studies have focused on a range of aspects of 105 

physiological state/energy status that may influence migratory tactics such as 

body size (Thériault and Dodson 2003), lipid reserves (Jonsson and Jonsson 

2005), body condition (Hecht et al. 2015), growth (Jonsson 1985), growth 

efficiency (Forseth et al. 1999; Morinville and Rasmussen 2003), and 

metabolism (Sloat and Reeves 2014). While body size is often used as a 110 

surrogate for, or argued to itself be, the status trait triggering alternative 

migratory tactics, the associations here have been varied and inconclusive. 

Larger sizes and faster growth rates have been associated with early age at 

migration (Jonsson 1985), whereas others have found no size-based differences 

between migrants and non-migrants at a given age (Thériault and Dodson 115 

2003), or conversely found larger sizes (and higher lipid reserves) to be 

associated with freshwater maturation in lieu of anadromy (McMillan et al. 

2012). These inconsistencies could reflect species’ specific responses, and thus 

require further exploration to establish potential status traits for a given species. 

Studies might also be inconclusive because size is typically measured sometime 120 

after the migratory decision itself, perhaps at the parr-to-smolt transformation 

stage, and size at migration may not accurately reflect size when the decision 
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was made. For example, residents may have meanwhile diverted energy into 

maturation and gonadal development at the expense of somatic growth (Tocher 

2003), while migrants may undergo accelerated growth as the migration itself 125 

approaches (Metcalfe 1998).  

Moreover, there may be at least two separate threshold decisions: an early one 

determining whether a fish will migrate per se or not, and a later one 

determining whether fish on a migratory trajectory actually migrate this year or 

defer migration to an older age (Ferguson et al. 2019). Size may be the cue used 130 

for the second decision, given that survival on entry to the sea or a lake is 

typically positively related to size (Klemetsen et al. 2003; Phillis et al. 2016). Yet, 

size at the migration point may be unrelated to, or inconsistently related to, the 

status trait triggering the initial migration decision, which could occur 

considerably earlier than the point at which migrants and resident become 135 

phenotypically distinguishable (Beakes et al. 2010). Identifying the key 

proximate drivers of migration is therefore complicated by the fact that the 

exact time windows for each of these putative decisions may not be known a 

priori, while correlations among physiological, energy status and growth traits 

may be variable across ontogeny or contexts. In the particular case of facultative 140 

anadromy, sea-migration requires a suite of adjustments in preparation for life 

in saltwater and therefore the physiological remodelling process, which 

includes changes in osmoregulation, colouration, and body shape (Tanguy et al. 

1994), is likely to begin sometime in advance of the migratory period. The 

existence of early ‘decision windows’ that initiate divergent life-history 145 

trajectories in salmonine fishes (Thorpe et al. 1998; Thorpe and Metcalfe 1998) 

has some empirical support; for example, body condition of anadromous 

Oncorhynchus. mykiss was found to be significantly lower than resident 

counterparts within a year of hatching and a full 12 months prior to emigration 

(Hecht et al. 2015).  150 

Although the proximate drivers of migration in salmonines are unresolved, 

there is some consensus that potamodromous or anadromous migratory tactics 

are promoted by energetic limitation in natal rivers, which prevents fish 
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reaching the inherited physiological threshold for maturation as residents 

(Kendall et al. 2014). Energetic limitation can arise through an interplay 155 

between environmental factors and intrinsic physiological state; for example, if 

freshwater food resources are insufficient to support growth rates or metabolic 

demands, then migration could be triggered that takes the fish to a better 

feeding environment such as the sea or a large lake (O’Neal and Stanford 2011; 

Sloat and Reeves 2014; Jones et al. 2015). Food limitation arising from 160 

competition at high population densities has also been shown to increase the 

proportion of adfluvial migratory brown trout, whereas low population 

densities have been associated with residency and maturation (Olsson et al. 

2006; Wysujack et al. 2009). It remains largely unknown, however, during 

which ontogenetic stages food limitation is most important to migration 165 

decisions.  

Brown trout (Salmo trutta) are an interesting model for understanding 

facultative migration as they exhibit highly variable strategies, with some 

individuals/populations remaining resident in their natal stream their entire 

lives, while others migrate to a larger river, a lake, an estuary, or the sea (Jonsson 170 

and Jonsson 1993; Klemetsen et al. 2003; Cucherousset et al. 2005; Ferguson et 

al. 2019). Here we present the results of an experimental laboratory study of 

brown trout that involved F1 progeny of wild-caught parents from two 

populations that exhibit divergent migratory life-histories in nature. Our 

primary aim was to explore the interaction between intrinsic proximal factors 175 

(which may encompass both inherited and non-inherited variation) and the 

extrinsic environment in generating alternative migratory tactics in brown 

trout. Specifically, we aimed to: (i) assess the relative importance of food 

availability and inherited differences between populations in determining 

alternative migratory tactics; (ii) determine whether food restriction was more 180 

important in the first year or second year of freshwater rearing; (iii) test for 

differences between our two populations in their response to food restriction 

and its timing, which may be indicative of genotype-by-environment 

interactions influencing tactic frequencies, and (iv) explore associations 
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between status traits (length, weight, condition factor) and migratory tactics. 185 

We expected that food restriction would increase the frequency of the migratory 

tactic overall. While we expected migratory tactic frequencies to vary overall 

between fish from our two population backgrounds, we also anticipated that 

the naturally non-anadromous stock might produce migratory phenotypes 

when subjected to reduced food, given that migration may only be expressed 190 

under certain environmental conditions (Roff 1996; Pulido 2011). 

Materials and methods 

Study populations 

Wild-origin brown trout brood stock were obtained by seine netting from the 

Burrishoole (53° 57´ N: 09° 35´ W) and Erriff (53° 37´ 0.00" N: 09° 40´ 17.10" 195 

W) catchments in the west of Ireland in November 2015. Burrishoole brood 

stock were caught in Lough Bunaveela (46 ha, Figure S1) in the headwaters of 

the catchment. A local population of non-anadromous trout remain resident in 

Lough Bunaveela for most of their lifecycle, bar very short-distance directed 

movements (on the order of 10s to 100s of metres) between the lake and two 200 

spawning rivers (one inflowing to the lake, the other outflowing). No obvious 

genetic structure at neutral microsatellite markers is evident between these 

spawning rivers, implying trout from Lough Bunaveela comprise a single 

panmictic population (R. Finlay, pers. comm.). A large run of sea trout (typically 

2000+ anadromous recruits annually) occurred in the Burrishoole catchment 205 

up to 30 years ago. The Burrishoole anadromous trout run collapsed in the late 

1980s, coinciding with sea-lice outbreaks following the establishment of salmon 

aquaculture farms in the downstream estuary. The exact spawning locations of 

the historic anadromous individuals within the Burrishoole catchment remain 

uncertain, and we cannot exclude the potential for some anadromous fish 210 

having contributed to the Bunaveela population before the anadromous 

population collapse. Nevertheless, despite Bunaveela spawning streams being 

accessible to anadromous migrants, there is little to no evidence that the 

Bunaveela population produced anadromous trout historically or recently 
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(Poole et al. 2007; Magee 2017) and we thus consider it a population that rarely, 215 

if ever, expresses anadromy. 

Erriff brood stock were caught in Tawnyard Lough, a small upland lake (56 ha) 

on the western side of the Erriff catchment (the National Salmonid Index 

catchment) that is fed by a primary inflowing stream, the Glendavoch River and 

a number of smaller tributaries (Figure S1). The vast majority of trout spawned 220 

in the Glendavoch River are believed to disperse as fry or parr to Tawnyard 

Lough (a distance of a few hundred metres to a few kilometres, depending on 

how far up the Glendavoch River spawning occurred), although a small fraction 

remain permanently resident in the natal stream (P. Gargan, pers. comm.). A 

large run of out-migrating anadromous juveniles (in the range of five hundred 225 

to three thousand smolts per year over the last 30 years) is enumerated annually 

in a trap at the outflow of Tawnyard Lough (Gargan et al. 2016). The remaining 

fish never go to sea but instead spend several years growing in the lake, before 

returning to spawn in the Glendavoch River and smaller tributaries once 

mature. Brood stock from the Tawnyard population used in this experiment 230 

putatively comprised a mix of anadromous and non-anadromous fish, assumed 

to represent naturally occurring frequencies of anadromous and non-

anadromous tactics (see Table S1 for details of brood stock), with local expertise 

indicating that the Tawnyard population in general shows high rates of 

anadromy (P. Gargan, pers comm.). In summary, we consider the Tawnward 235 

population to have a strong migratory/anadromous background, and the 

Bunaveela population to have essentially no (recent) anadromous background 

and to exhibit only limited local movements. For ease of reading, juveniles 

derived from Tawnyard parents are hereafter referred to simply as the 

“anadromous-background” population and juveniles from Bunaveela parents as 240 

the “non-anadromous background” population.  

Fish rearing 

Females were stripped of eggs, and the eggs of each female were divided into 

two batches, each fertilised by the milt of a single male from the same source 

population (i.e. Tawnyard or Bunaveela; see Table S1 for full details on crossing). 245 
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Fertilised eggs were then incubated in standard Heath trays in a hatchery facility 

located within the Burrishoole catchment. Surviving unfed fry (two to three 

weeks prior to exogenous feeding) were transferred to a rearing facility at 

University College Cork (Aquaculture and Fisheries Development Centre). 

While transitioning to exogenous feeding, fry were held in 100L growth tanks 250 

on a recirculating aquaculture system (RAS) with bio filtration, and fed ad 

libitum to satiation using commercially available trout pellets (Skretting Ltd, 

Norway). The populations were kept separately in two 100L tanks during this 

initial rearing phase and maintained under a natural temperature regime 

regulated by a single conditioning unit. Once the fry had transitioned to 255 

exogenous feeding (June 2016), they were fed ad libitum with commercial trout 

pellets for a period of two months. All fish experienced the same constant 

photoperiod regime (12 hours of light and 12 of dark) during this initial rearing 

phase.  

In September 2016, fish were randomly allocated into four 100L tanks in the 260 

same RAS as described above (two tanks for Tawnyard and two tanks for 

Bunaveela), at which point the experimental phase began and food 

manipulations were initiated (see next section for experimental treatments). A 

random subset of fish (n = 200 per population) were given individual identifier 

tags using unique colour combinations of visible implant elastomer tags 265 

(Northwest Marine Technology Ltd., USA). To facilitate growth, in December 

2016 the fry were transferred (within their experimental groups) to 520L growth 

tanks in a larger RAS in the same aquaculture facility. Continuous through flow 

of water prevented any waste accumulation in tanks, with returning water 

passed to a central holding sump and treated via mechanical filtration, protein 270 

skimming, bio filtration, and ozone and UV sterilisation. Water quality in the 

system was monitored weekly, and levels of pH, nitrate, nitrite, and ammonia 

were within acceptable ranges for optimal fish health. During the experimental 

phase, the fish experienced a seasonally-changing photoperiod and temperature 

regime typical of the west of Ireland, simulated via an automated lighting 275 

system of LED lights (BioLumen, UK) above each tank and a single conditioning 
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unit. Negligible natural mortality occurred during the experimental phase but 

to maintain total biomass in the RAS at acceptable levels from a water quality 

perspective, fish were randomly culled (n = 120 in total across all tanks) over 

the course of the two years of tank rearing, with equal fish densities maintained 280 

between food treatments. Fish that were prematurely culled were excluded from 

all analyses. Full details on the stripping, crossing and rearing procedures are 

given in Supplementary Information. 

Experimental design 

The experimental phase ran for a 22 month period, from September 2016 to 285 

June 2018, with all fish humanely euthanized at the end of the experiment under 

licence (the study and all associated procedures were carried out with ethical 

approval from Health Products Regulatory Authority (HPRA) Ireland, under 

HPRA project license AE19130/P034, and HPRA individual licenses 

AE19130/1087, AE19130/I200, AE19130/I201 and AE19130/I202).  290 

To investigate the relative importance of the extrinsic environment (food 

supply) and intrinsic inherited factors (population-of-origin) in determining 

migratory tactics, juveniles from the anadromous and non-anadromous 

background populations were divided evenly and allocated randomly across 

four tanks receiving water from the same recirculating source, each 295 

experiencing a different feeding regime over the experimental phase. 

Populations were kept separately for the duration of the study (n = 90 per 

feeding treatment per population, at the beginning of the experimental phase). 

Great care was taken to ensure that all measured variables other than feeding 

regime (fish densities, temperature, photoperiod, lux, flow rates) were constant 300 

across the tanks. The four feeding regime treatments were designed to test the 

effects of food restriction in the early versus late periods of this experimental 

phase, with each period corresponding to approximately 11 months (chosen 

because similar periods of c. 9 months have been reported to alter adfluvial 

migration rates in trout (Olsson et al. 2006)). These four food regimes were as 305 

follows: (i) High-High treatment: fish fed recommended daily pellet rations for 

optimal growth in both periods, calculated as a percentage of their body weight 
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and adjusted for seasonally-changing temperatures (Skretting Ltd, Norway); (ii) 

Low-Low treatment: fish fed 25% of recommended optimal rations in both 

periods; (iii) High-Low treatment: fish fed 100% of optimal daily rations in the 310 

first period and 25% of optimal daily ration in the second period; and (iv) Low-

High treatment: fish fed 25% of optimal daily rations in the first period and 

100% of optimal daily ration in the second period. A value of 25% of optimum 

levels was chosen for the Low feeding regime because similar reductions have 

previously been shown to reduce the frequency of the resident tactic in adfluvial 315 

brown trout (Wysujack et al. 2009). Rations were reduced down to 25% of 

optimal gradually over a four-week period, to minimise stress. Within each food 

treatment, absolute rations were adjusted according to manufacturer’s 

instructions (see Table S2) on a monthly basis to account for changes in body 

mass and temperature (i.e. there was no variation in daily rations within 320 

months, within groups).  

Life history determination and data collection 

In the spring of 2017 and 2018 (March – June in year one and year two of the 

experimental phase of the study), fish were routinely assessed for morphological 

indicators of ‘smoltification’: the series of morphological, physiological and 325 

behavioural changes that is generally considered a precursor to downstream 

migration of juvenile salmonids (Tanguy et al. 1994). Here we use ‘smolt’ to 

simply mean a fish showing external morphological features consistent with 

preparing for a migration, and we used saltwater tolerance tests (see below) to 

further assess physiological aspects of smoltification. We visually assessed 330 

morphological smoltification (silvered flanks/loss of parr marks, pronounced 

lateral line, colourless fins and fusiform shape) according to Tanguy et al. 

(1994). No fish matched the morphological criteria of smolts in the spring of 

2017, the very earliest point at which we expected any smoltification (Poole et 

al. 2007; Gargan et al. 2016). Individuals that matched the morphological 335 

criteria for smolts in spring 2018 were transferred to saltwater at 30 ppt for 24 

hours to assess their hypo-osmoregulation as a further indicator of anadromy 

capacity. We used 30 ppt salinity [following Tanguy et al. (1994)] because trout 
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often spend large amounts of time in brackish water/estuaries when migrating, 

hence trout smolts are typically less saltwater tolerant than other salmonids e.g. 340 

Atlantic salmon (Urke et al. 2010). After the 24-hour immersion in saltwater, a 

period proposed to induce hypo-osmoregulation in euryhaline species (Schultz 

and McCormick 2012), fish were euthanised with an overdose of MS-222 and a 

blood sample was taken from the caudal vasculature using a 21G needle and a 

2.6ml heparinised syringe. Blood samples were transferred to 2 ml epindorphs 345 

and centrifuged at 8000 rpm for 3 minutes. The plasma aliquot was then 

siphoned off and stored at -80 °C before being measured for plasma chloride 

concentration as an indicator of hypo-osmoregulatory ability.  

All fish, whether identified morphologically as smolts or non-smolts, were 

dissected to visually determine sex and maturation status according to gonad 350 

development. Males were classed as sexually mature if they had enlarged white 

testes or had running milt. Males that had visible testes that were moderately 

enlarged but not running milt were classed as maturing. Females were classed 

as mature or maturing if the body cavity contained identifiable eggs. Fish with 

immature gonads, or that could not be identified as either male or female by 355 

visual inspection were classed as immature at the time of sampling, and their 

genotypic sex was later determined using a microsatellite sex marker (P. 

Prodöhl, unpublished). In the wild, the natural spawning period for these brown 

trout populations is in late autumn/early winter, and the migratory period is in 

the spring (Poole et al. 2007; Gargan et al. 2016). Fish showing signs of maturity 360 

in freshwater without having first gone to sea, were considered to be on a non-

anadromous trajectory, while smolts migrating to sea in a given spring were all 

immature. Fish in our experiment were thus classed as smolts (migratory tactic) 

if they were morphologically assessed as smolts and were immature, and were 

classed as mature (freshwater maturation tactic) if they were mature or 365 

maturing at the time of sampling. Fish that were classed as immature, but did 

not have morphological indicators of smoltification, were considered to have an 

unknown life history tactic at the time of sampling. A small number of fish (n = 

12) had significant skin/fin damage at the time of sampling, and were excluded 
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from the analysis. Whole body lipid content (%) was measured for all smolts, 370 

and for a random sample of mature fish (n = 111), using a SMART Trac 5 system 

(CEM GmnH, Kamp-Lintfort, Germany) of integrated microwave heating and 

nuclear resonance on homogenised samples. 

Statistical analysis 

To assess whether food treatment and population influenced life history tactics 375 

(Aims 1 and 2), we constructed generalized linear models (GLMs) with a logit 

link function and binary life-history response variables. One GLM was created 

to predict smolt status (binary response: 1 = smolt, 0 = non-smolt) using the 

brglm package in R (Kosmidis 2019) to account for separation in the data (no 

smolts recorded in the High-High treatment) (Heinze and Schemper 2002). A 380 

second GLM was created to predict maturation (binary response: 1 = mature or 

maturing, 0 = immature). Categorical explanatory variables in both of these 

GLMs included food treatment (High-High, Low-High, Low-Low, High-Low), 

population (anadromous-background versus non-anadromous-background), 

and sex (male or female) as predictors. We constructed a third GLM to test for 385 

treatment/population effects on likelihood of being classed as “unassigned” (i.e. 

not having expressed a migratory/resident phenotype by the end of the study 

(binary response: 1 = unassigned, 0 = smolt or mature). We included an 

interaction term between food treatment and population to determine if life 

history responses in each population were similar under the different food 390 

regimes (Aim 3). To test whether food restriction was more important in the 

early or late rearing periods (Aim 2), we conducted Tukey post-hoc tests (with 

Bonferroni correction applied for multiple tests) of all possible pairwise 

comparisons among the levels of food treatment using the emmeans package in 

R (Lenth 2019). Overall, one expects the strongest difference in life-history 395 

tactics to be found between the High-High and Low-Low treatments. If the 

effects of food restriction are additive and the timing of food restriction does 

not mater, then one expects life-history tactics in the Low-High and High-Low 

treatments to be intermediate between the High-High and Low-Low treatments, 

and not significantly different from each other. Conversely, if food restriction is 400 
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more important in the first period, then one expects tactic frequencies in the 

Low-High treatment to be closer to those in the Low-Low treatment (and the 

High-Low treatment should be more similar to the High-High treatment), while 

if food restriction is more important in the second period, the High-Low 

treatment should be closer to the Low-Low treatment and the Low-High 405 

treatment to the High-High. To further explore factors influencing variation in 

saltwater tolerance (Aims 1-3) – a key component of life-history tactics – we 

constructed a linear model (normal errors) with plasma chloride concentration 

as the continuous response, and population, food treatment, sex, and an 

interaction between population and food treatment included as predictors.  410 

To address Aim 4, we explored factors influencing variation in the length, 

weight and condition factor of fish at different measurement time points across 

the study period within a mixed-effects modelling framework [nlme package, 

(Pinheiro et al. 2019)]. Measurement time points were September and 

November in 2016, February, April, June, July, September, and December in 415 

2017, and April 2018. Condition factor was calculated as Fulton’s K where: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝐾) =
𝑚𝑎𝑠𝑠 (𝑔)

𝑓𝑜𝑟𝑘 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)3
 × 100 

For the subsequent analyses of status traits, we created a new categorical 

variable called ‘life-history tactic’ with two levels: migratory (i.e. immature 

smolts) or mature/maturing (hereafter simply called mature). Fish which were 420 

neither classified as migratory nor mature (unassigned fish) were not included 

in the status trait analyses, as it could not be determined which life history 

trajectory they might adopt (i.e. these fish could have displayed either migratory 

or mature tactics the following spring (a full three years after hatching), but the 

experiment was terminated the previous spring (two years after hatching)). In 425 

addition to life-history tactics, month (continuous variable), population 

(categorical variable with two levels), food treatment (categorical variable with 

four levels) and sex (categorical variable with two levels) were included as fixed 

effects, and individual identity was included as a random effect to account for 

multiple measurements on some individuals. We included an interaction 430 
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between life-history tactics and month (to test whether individuals on different 

life-history trajectories diverged through time in their length/weight/condition 

factor), an interaction between life-history tactics and population (to test 

whether average differences in length/weight/condition factor between the two 

tactics was similar across the two populations), and an interaction between 435 

population and food treatment (to test whether the effects of food regime were 

similar across populations). Temporal autocorrelation of the response variable 

was accounted for by modelling an autoregressive error structure as a first order 

lag function of month. Separate models were constructed each for length, 

weight and condition factor and normal errors were assumed in each case.  440 

We also explored factors influencing variation in final length, K and whole body 

lipids (i.e. the final measurements for these status traits at the end of the study) 

in a mixed effects modelling framework, where life-history tactics, food 

treatment, population and sex were included as fixed effects, and date of 

terminal sample (categorical variable with 11 sampling dates) was modelled as a 445 

random effect. We included two interaction terms (life-history tactics × 

population, and food treatment × population), to explore whether the patterns 

for each population were similar across tactics and food treatments, 

respectively. Separate models were constructed each for length, K and whole 

body lipids and normal errors were assumed in each case. Marginal R2 values 450 

for mixed effect models were calculated using the MuMIn package in R (Barton 

2018).  

For all of the above models, statistical significance at a 5% alpha level of 

predictor variables was assessed using likelihood ratio tests (LRT), and non-

significant interaction terms were omitted so the main effects could be 455 

interpreted. 

Finally, to assess whether variation in growth was associated with life-history 

tactics (Aim 4), we compared growth trajectories of migratory and mature fish 

by fitting three typical models of fish growth: the von-Bertelanffy growth curve, 

the Gompertz growth curve and a logistic growth curve. The logistic growth 460 

curve best described the data according to AIC (∆AIC = 0), and was used for all 
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further growth trajectory analysis. The logistic growth equation models 

asymptotic growth as: 

𝐿 =
𝐿∞

1 + 𝑒(−𝑔𝑖(𝑇− 𝐼))
  

Where L is fork length, L∞ is asymptotic fork length (cm), gi is the growth rate 465 

(cm/day), T is time (days) and I is the inflection point. The logistic model was 

fitted using non-linear least squares to length data collected on individually-

identifiable fish during the experiment, with separate models fitted for smolts 

and mature fish. As non-linear least squares regression is sensitive to starting 

values of parameters, the model was fitted using the nls_multstart function 470 

from the nls.multstart package in R (Padfield and Matheson 2018). This allowed 

for starting values for each parameter to be randomly selected from a bounded 

distribution over 1000 iterations of the model, with the best available model 

then selected by AIC. To determine the fit of the most parsimonious model to 

our data, we bootstrapped with replacement 10,000 times and constructed 95% 475 

confidence intervals from the bootstrapped fits. 

 All analysis was carried out in R version 3.5.3 (R Core Team 2019), and all 

statistical models were checked against assumptions of the given model 

(independence, non-normality of residuals, heteroscedasticity and 

multicollinearity). 480 

Results 

Life-history tactics 

By the end of the experimental phase, a total of 567 fish had been categorised 

as either smolts, i.e. putatively migratory (n=36 females and n=18 males) or non-

smolts (n=277 females and n=236 males). All of the smolts were by definition 485 

immature, and 15.52% of the non-smolt females and 28.39% of the non-smolt 

males were immature. See Table 1 for a full breakdown of life-history tactics by 

population background, food treatment and sex. The proportion of smolts 

varied according to food treatment and population (Figure 1). Highest 

proportions of smolts were seen in the Low-Low food treatment, in which 490 
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26.56% of the anadromous-background population, and 15.71% of the non-

anadromous background population, were classified as smolts. The lowest rates 

of smolting were found in the High-High food treatment, in which no fish from 

either population were categorised as smolts. Intermediate smolting rates were 

observed in the other two treatments, with 6.45% of fish from the anadromous-495 

background population and 13.75% of fish from the non-anadromous 

background population classified as smolts in the Low-High treatment, and 

15.87% and 1.22% of fish from each population, respectively, classified as smolts 

in the High-Low treatment.  

Table 1: Percentage of brown trout (n = 567, F1 offspring of wild trout from two 500 

population backgrounds) classed as smolts (i.e. migratory tactic) or non-smolts 

(mature or immature) after two years of experimental tank-rearing. Values 

correspond to percentages for each category, broken down by sex, of the total 

number of fish per tank (where each tank corresponds to a given population 

background by food treatment combination, i.e. a single row in the table). 505 

Sample size (n) given in brackets after the %.  

Treatment 
Population 

background 
% Smolts (n) 

% Non-smolts (n) 

Mature Immature 

  Female Male Female Male Female Male 

Low-Low Anadromous 23.44 
(15) 

3.13 
(2) 

25.00 
(16) 

35.94 
(23) 

3.10 
(2) 

9.38 
(6) 

Low-High Anadromous 4.84 
(3) 

1.61 
(1) 

50.00 
(31) 

32.26 
(20) 

1.61 
(1) 

9.68 
(6) 

High-Low Anadromous 11.11 
(7) 

4.76 
(3) 

39.68 
(25) 

34.92 
(22) 

4.76 
(3) 

4.76 
(3) 

High-High Anadromous 0.00 
(0) 

0.00 
(0) 

48.44 
(31) 

45.31 
(29) 

1.56 
(1) 

4.69 
(3) 

Low-Low Non-anadromous 2.86 
(2) 

12.86 
(9) 

44.29 
(31) 

14.29 
(10) 

1.43 
(1) 

24.29 
(17) 

Low-High Non-anadromous 10.00 
(8) 

3.75 
(3) 

42.50 
(34) 

28.75 
(23) 

7.50 
(6) 

7.50 
(6) 

High-Low Non-anadromous 1.22 
(1) 

0.00 
(0) 

35.37 
(29) 

17.07 
(14) 

20.73 
(17) 

25.61 
(21) 

High-High Non-anadromous 0.00 
(0) 

0.00 
(0) 

45.12 
(37) 

34.15 
(28) 

14.63 
(12) 

6.10 
(5) 
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The probability of smolting was described by a GLM retaining food treatment 

(χ2 = 44.57, df = 3, p < 0.001), population (χ2 = 3.46, df = 1, p = 0.063), sex (χ2 = 

4.40, df = 1, p = 0.036), and an interaction between food treatment and 510 

population (LRT for the model with and without interaction term: χ2 = 11.66, df 

= 3, p = 0.009). Overall across the two populations, there appeared to be an 

additive effect of food treatment on the probability of smolting – that is, the 

percentages of smolts in the Low-High and High-Low treatments were similar, 

and approximately intermediate to the percentages in the Low-Low and High-515 

High treatments, when population was ignored (Figure 1). However, when 

population was taken into account, the life-history response to food treatment 

varied by population and appeared to be non-additive within each population 

(Table 2, Figure 1). Fish from the anadromous-background population exhibited 

a relatively high percentage of smolts (15.87%) under the High-Low treatment 520 

that was closer to the Low-Low treatment (26.56% smolts) than to the High-

High treatment (0% smolts) and post-hoc comparisons of High-Low against 

Low-Low were not significant (p = 0.377). The opposite was true for the 

anadromous-background population in the Low-High treatment (6.45% smolts) 

with significant post-hoc comparisons of Low-Low and Low-High (p = 0.016). In 525 

contrast, fish from the non-anadromous-background population exhibited a 

relatively high percentage of smolts (13.75%) under the Low-High treatment 

that was closer to the Low-Low treatment (15.71% smolts) than to the High-High 

treatment (0% smolts) (post-hoc contrasts between Low-High and Low-Low 

were non-significant, p = 0.994), while the opposite was true for this population 530 

in the High-Low treatment (1.22% smolts) (post-hoc contrasts between High-

Low and Low-Low were significant, p = 0.042). This implies that food restriction 

was more important in the second period for fish from the anadromous-

background population, while food restriction in the first period was more 

important for the non-anadromous-background fish.  535 

Maturation tactics in freshwater were also significantly affected by food 

treatment (χ2 = 33.03, df = 3, p < 0.001), population (χ2 = 12.14, df = 1, p < 0.001), 

sex (χ2 = 4.54, df = 1, p = 0.033) but there was no significant interaction between 
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food treatment and population (LRT for the model with and without interaction 

term: χ2 = 5.31, df = 3, p = 0.150). Food restriction had a negative effect on 540 

maturation probability, in direct contrast to food restriction effects on smolting 

rates. Fish in the Low-Low food treatment had the lowest probability of 

maturing, (p < 0.001, Table 2) and the highest rates of maturity were observed 

in the High-High food treatment, (p < 0.001, Table 2). Fish from the 

anadromous-background population were significantly more likely to mature 545 

than fish from the non-anadromous-background population in all food 

treatments (p = 0.001, Table 2). See Table 2 for all parameter estimates and 

associated standard errors. The probability of having been unassigned a life 

history showed similar patterns to maturation tactics, and was similarly 

significantly affected by food treatment (χ2 = 16.95, df = 3, p = 0.001), population 550 

(χ2 = 30.74, df = 1, p < 0.001) and sex (χ2 = 16.21, df = 1, p < 0.001), see Table 2. 

The interaction between food treatment and population was marginally not 

significant (LRT for the model with and without interaction term: χ2 = 7.75, df = 

1, p = 0.052).  

We found a significant effect of population on plasma chloride levels of fish 555 

classified as smolts (F = 9.47, df =1,48, p = 0.003), but the interaction term 

between population and food treatment was not significant (LRT for model with 

and without interaction term: F = 1.39, df = 2, p = 0.259). Fish from the 

anadromous-background population had significantly lower plasma chloride 

concentrations than non-anadromous-background fish (p = 0.003, Table 3, 560 

Figure 2). There was no significant effect of food treatment (F = 2.95, df = 2,48, 

p = 0.062) or sex (F = 0.01, df = 1,48, p = 0.991) on plasma chloride levels (Table 

3).   
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Figure 1: Proportion of brown trout (n = 567, F1 offspring of wild trout from 

two population backgrounds) classed as smolts after two years of tank rearing 

under varying food restriction treatments. Food treatment is denoted in the 

format “food in year one - food in year two”, where “high” refers to optimal 

food rations and “low” refers to 25% of optimal rations. P–values shown are 

Tukey post-hoc pairwise comparisons across all levels of food treatment for 

each population.  
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Table 2: Parameter estimates with associated standard errors (SE) for two 565 

binomial generalised linear models (GLM) predicting smolt (migratory) 

probability (dummy coded: smolt = 1, non-smolt = 0) and freshwater maturation 

(dummy coded: mature/maturing = 1, immature = 0) in brown trout (n = 567). 

The reference level of each factor is in brackets, i.e. effects in both models were 

contrasted against female fish from the anadromous-population background in 570 

the Low-Low food treatment. Statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

GLM of probability of smoltification:     

Intercept (Low-Low, female, Anadromous 
background) 

-0.71 0.31 -2.28 0.022 

Food:          Low-High -1.61 0.57 -2.83 0.005 

                    High-Low -0.66 0.44 -1.49 0.136 

                    High-High -3.87 1.45 -2.66 0.008 

Population: Non-anadromous background -0.63 0.43 -1.47 0.142 

Sex: Male -0.63 0.31 -2.06 0.039 

Low-High : Non-anadromous background 1.38 0.73 1.90 0.058 

High-Low: Non-anadromous background -1.75 0.99 -1.77 0.077 

High-High: Non-anadromous background 0.33 2.06 0.16 0.873 

GLM of probability of maturation:     

Intercept (Low-Low, female, Anadromous 
background) 

0.97 0.24 4.12 < 0.001 

Food:          Low-High 0.78 0.27 2.90 0.004 

                    High-Low 0.10 0.25 0.42 0.676 

                    High-High 1.43 0.30 4.78 < 0.001 

Population: Non-anadromous background -0.68 0.20 -3.43 0.001 

Sex: Male -0.41 0.19 -2.13 0.033 

GLM of probability of “unassigned” phenotype:     

Intercept (Low-Low, female, Anadromous 
background) 

-2.77 0.33 -8.29 < 0.001 

Food:          Low-High -0.44 0.34 -1.28 0.201 

                    High-Low 0.67 0.30 2.24 0.025 

                    High-High -0.36 0.33 -1.08 0.279 

Population: Non-anadromous background 1.32 0.25 5.18 < 0.001 

Sex: Male 0.92 0.23 4.01 < 0.001 
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Figure 2: Plasma chloride concentration (mmol/L) after 24 hr saltwater 

immersion of brown trout smolts (migratory tactic, n = 54) derived from two 

population backgrounds. The median is represented by the white horizontal 

lines in each box. 
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Table 3: Parameter estimates with associated standard errors (SE) for the linear 

model testing effects of population, sex and food treatment on plasma chloride 575 

concentration (mmol/L) of brown trout classified as smolts (n = 54). The 

reference level of each factor is in brackets, i.e. effects were contrasted against 

female fish from the anadromous-population background in the Low-Low food 

treatment. Note that no individuals were classed as having adopted the 

anadromous tactic in the High-High food treatment, and this category was 580 

dropped for this analysis. Statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Intercept (Low-Low, female, Anadromous 
background) 

148.81 3.85 38.68 < 0.001 

Population 17.22 5.60 3.08 0.003 

Food: Low-High -9.99 5.85 -1.71 0.094 

Food: High-Low 8.36 5.97 1.40 0.168 

Sex: Male 0.06 5.15 0.01 0.991 

 

Factors explaining variation in status traits at different time points 

At the time at which the food treatments were first applied, fish from both 

populations were in similar condition (F = 0.41, df = 1,137, p = 0.523), however, 585 

anadromous-background fish were heavier (F = 17.14, df = 1,137, p < 0.001) and 

longer (F = 16.31, df = 1,137, p < 0.001) than non-anadromous-background fish. 

A mixed model analysis indicated further divergence in these status traits over 

the study period that was related to life-history tactics, food treatment, and 

population effects (Table 4, Figure 3). The models for length (marginal R2 = 590 

0.77), weight (marginal R2 = 0.62), and K (marginal R2 = 0.35) retained a 

significant interaction between food treatment and population, and a 

significant interaction between life-history tactics and month (Table 4). Sex did 

not have a significant effect on length (χ2 = 0.024, df = 1, p = 0.877), weight (χ2 

= 0.050, df = 1, p = 0.823), or condition factor (χ2 = 0.082, df = 1, p = 0.774). 595 

After accounting for growth between measurement periods, (i.e. the fixed effect 

of measurement period), smolts tended to be shorter, lighter and have lower 

condition than mature fish (Table S3). The differences in length, weight and K 

were similar for both populations (an interaction between population and life-
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history tactics was not retained in any of the final models, see Table 4). The 600 

significant interaction between food treatment and population indicated that 

fish from the anadromous-background were larger, and heavier (but in similar 

condition) than fish from the non-anadromous-background under both High-

Low and High-High treatments (Table S3). However, in the Low-Low and Low-

High treatments, there were negligible differences in length, weight and K 605 

between populations (Table S3). The significant interaction between month and 

life-history tactics indicated that changes in length, weight and K through time 

varied between smolts and mature fish. Mature fish tended to increase in length 

and weight quicker (Figure 3b, Table S3), while smolts tended to be in worse 

condition (lower K) earlier (Figure 3C Table S3). See Table S3 for all model 610 

outputs.  

Factors explaining variation in final values for status traits 

At the end of the study, fish differed in length, condition and lipid content 

according to food treatment, life-history tactics and population (Figure 4). The 

model describing length (marginal R2 = 0.50) retained a significant interaction 615 

between food treatment and population (Table 5) but did not indicate a 

significant effect of life-history tactics (χ2 = 2.83, df = 1, p = 0.093), or sex (χ2 = 

0.005, df = 1, p = 0.947). The models describing condition (marginal R2 = 0.56) 

and whole body lipids (marginal R2 = 0.73, Table 5) each retained an interaction 

between population and food treatment (Table 5), and included a significant 620 

effect of life-history tactics on condition (χ2 = 64.58, df = 1, p < 0.001), and whole 

body lipids (χ2 = 7.71, df = 1, p = 0.005). Sex did not have a significant effect on 

condition (χ2 = 3.43, df = 1, p = 0.064) or whole body lipids (χ2 = 2.18, df = 1, p = 

0.140). Overall, smolts were of similar length to mature fish at the end of the 

study (Figure 4), but tended to be in poorer condition (p < 0.001, Table S4) and 625 

have slightly higher whole body lipids (p = 0.008, Table S4). We detected an 

interactive effect of food treatment and population, where fish from the 

anadromous-background population were larger than fish from the non-

anadromous-background population, but similar under Low-Low food 

conditions (Table S4). However, non-anadromous-background fish were overall 630 



Chapter 2 | Intrinsic and extrinsic factors 
 

46 
 

in better condition (p = 0.011, Table S4) and had higher whole body lipids (p < 

0.001, Table S4), and these differences between populations were strongest 

under conditions of Low-Low food (Table S4, Figure 4). The lack of significant 

interactions between life-history tactics and population in the models for 

length, K, and whole body lipids indicated that differences between populations 635 

were similar for both mature fish and smolts (Table 5). See Table S4 for all 

model outputs.  

Growth rate differences  

The somatic growth of fish during the experiment was well described by a 

logistic growth model. Initial model fitting indicated the most parsimonious 640 

model included separate growth parameters for smolts and mature fish. Mature 

fish had higher intrinsic growth rates (𝑔𝑖 = 0.0050, SE = 0.0006, p < 0.001), a 

smaller asymptotic size (𝐿∞= 25.44, SE = 0.86, p < 0.001), and a lower point of 

inflection (𝐼 = 172.7, SE = 13.8, p < 0.001) than smolts, where 𝑔𝑖 = 0.0039 ± SE 

0.0009 (p < 0.001), 𝐿∞ = 27.31 ± SE 4.13 (p < 0.001) and 𝐼 = 305.7 ± SE 89.9 (p = 645 

0.001). Mature individuals were relatively larger earlier in life than smolts, and 

had faster overall growth (Figure 5).  

Growth differences between the two populations were also identified, where 

fish from the anadromous-background population were relatively larger earlier 

in the study than fish from the non-anadromous-background population, and 650 

grew faster (Figure 6). Anadromous-background fish had higher intrinsic 

growth rates (𝑔𝑖 = 0.0045, SE = 0.0009, p < 0.001), similar asymptotic size (𝐿∞= 

26.83, SE = 1.68, p < 0.001), and a lower point of inflection (𝐼 = 184.1, SE = 26.9, 

p < 0.001 ) than non-anadromous-background fish, where 𝑔𝑖 = 0.0043 ± SE 

0.0007 (p < 0.001), 𝐿∞ = 26.45 ± SE 1.65 (p < 0.001), and 𝐼 = 236.3 ± SE 32.9 (p 655 

< 0.001).  
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Figure 3: Trajectories of (a) length, (b) mass, and (c) condition factor (K) of 

brown trout offspring (derived from wild-caught parents from two 

populations) that were classed as either smolt (migratory tactic) or freshwater 

maturing (non-migratory/resident) tactic. AB = anadromous-background 

population; non-AB = non-anadromous-background population. Mean values 

(with associated standard errors) are shown for measurements taken at key 

time points over the course of two years of tank rearing. 
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Table 4: Results of the mixed effect model analysis for length, weight and condition factor (K) trajectories of brown trout in the 

experiment with life-history classed as either smolts (i.e. migratory) or freshwater mature across the study period. The results of the 

model selection procedure on interaction terms are given, and the selected model for each response is highlighted in bold. The models 660 

included a random effect of individual identity and a first-order autoregressive correlation structure with respect to month was also 

modelled.  

Model df AIC logLik L-ratio p-value 

Length ~ month*life-history + population*life-history + population*food + sex 16 4277 -2122   

Length ~ month*life-history + population*food + sex 15 4276 -2123 1.52 0.218 

Length ~ month + life-history + population*food + sex 14 4279 -2125 4.31 0.038 

Length ~ month + life-history + population + food + sex 11 4306 -2142 33.31 < 0.001 

Weight ~ month*life-history + population*life-history + population*food + sex 16 10229 -5099   

Weight ~ month*life-history + population*food + sex 15 10228 -5099 0.51 0.474 

Weight ~ month + life-history + population*food + sex 14 10245 -5109 19.37 < 0.001 

Weight ~ month + life-history + population + food + sex 11 10263 -5120 23.45 < 0.001 

K ~ month*life-history + population*life-history + population*food + sex 16 -1524 778   

K ~ month* life-history + population*food + sex 15 -1525 778 0.86 0.354 

K ~ month + life-history + population*food + sex 14 -1514 771 12.77 < 0.001 

K ~ month + life-history + population + food + sex 11 -1488 755 331.89 < 0.001 
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Figure 4: Effects of food treatment on final (a) length, (b) condition factor (K), 

and (c) whole body lipids at the end of the experimental study (Spring 2018) 

of brown trout offspring classed as either smolts (migratory) or freshwater 

maturing (non-migratory/resident). Offspring were derived from wild-caught 

parents from an anadromous-background population (AB) and a non-

anadromous-background population (non-AB). The median is represented by 

the white horizontal lines in each box.  
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Table 5: Results of the mixed effect model analysis for length, condition factor (K), and whole body lipids of brown trout (life-history 665 

classed as either smolts or freshwater mature) at the end of the experimental study period. The results of the model selection procedure 

on interaction terms are given, and the selected model for each response is highlighted in bold. The models included a random effect 

of sample date.  

Model df AIC logLik L-ratio p-value 

Length ~life-history*population + population*food + sex 13 2074 -1024 
 

 

Length ~ life-history + population*food + sex 12 2076 -1026 3.87 0.05 

Length ~ life-history + population + food + sex 9 2093 -1037 22.98 < 0.001 

K ~ life-history *population + population*food + sex 13 -798 411.91 
 

 

K ~ life-history + population*food + sex 12 -800 411.90 0.01 0.922 

K ~ life-history + population + food + sex 9 -786 402.11 19.59 < 0.001 

Lipids ~life-history *population + population*food + sex 13 489 -231.4 
 

 

Lipids ~ life-history + population*food + sex 12 487 -231.6 0.46 0.500 

Lipids ~ life-history + population + food + sex 9 503 -242.6 21.94 < 0.001 
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Figure 5: Growth curves, based on length measurements spanning two years 

of experimental tank-rearing, of brown trout classed as either smolt 

(migratory) or freshwater maturing (resident) in Spring 2018. Fitted lines are 

based on the best-fitting parameters from the logistic growth model, fitted 

using non-linear least squares regression. Shaded areas represent the 95% 

confidence intervals constructed by bootstrapping for 10,000 iterations.  
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Figure 6: Growth curves, based on length measurements spanning two years 

of experimental tank rearing, of brown trout derived from two population 

backgrounds (anadromous or non-anadromous). Fitted lines are based on the 

best-fitting parameters from the logistic growth model, fitted using non-linear 

least squares regression. Shaded areas represent the 95% confidence intervals 

constructed by bootstrapping for 10,000 iterations. 

 670 

Discussion 

Salmonine fishes exhibit some of the most striking examples of animal 

migration, but uncertainty still surrounds the mechanisms by which alternative 

migratory tactics can be expressed, or inhibited, across salmonine populations. 
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A principle aim of our study was to assess the importance of food availability at 675 

different time points during early ontogeny in determining migratory/life-

history tactics in two populations of brown trout. Food reduction across almost 

two years led to increased rates of smolting (migratory tactic) in fish from both 

population backgrounds, whilst no fish were classed as having adopted the 

migratory tactic in either population after two years of experiencing high food, 680 

i.e. optimal rations (Figure 1). Migratory/life-history tactics were also influenced 

by population background, consistent with an inherited component to 

migratory/life-history decisions – fish derived from a naturally anadromous 

population were more often classed as smolts in our experiment, while offspring 

derived from a naturally non-anadromous population were more often classed 685 

as non-smolts, or having undergone freshwater maturation consistent with a 

residency tactic. Intriguingly, the populations responded differently to the 

timing of food restriction, with fish from an anadromous population 

background seemingly having been more affected by food restriction in their 

second year, whilst fish from a non-anadromous population background were 690 

more affected by food restriction in their first year. Females were more likely 

than males to become smolts under all food treatments. Collectively, these 

results indicate both extrinsic (food-driven) and intrinsic effects (related to 

population background, sex, and other individual-level attributes) on 

migratory/life-history tactics in brown trout, that may interact in complex ways 695 

and influence how populations respond in the wild to changing environmental 

conditions. 

Differences in growth and body condition were apparent from an early stage 

between fish adopting different life-history/migratory tactics, and were 

maintained across the full (almost two-year) duration of the study. These 700 

differences were in turn also driven by both extrinsic and intrinsic effects. 

Extrinsic effects were evidenced by the fact that large differences in fork length, 

mass, body condition, and whole body lipids were apparent between fish reared 

under different food treatments, which in turn contributed to fish adopting 

different life-history tactics via phenotypic plasticity. Intrinsic differences 705 
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among individuals in ‘status traits’ clearly also contributed to migratory/life-

history outcomes, given that differences in body size, condition, and lipids were 

apparent between populations, and between fish from each population that 

adopted different tactics within each food treatment – where the external 

environment was the same. Such intrinsic variation within and between 710 

populations could reflect inherited genetic effects, inherited non-genetic effects 

(e.g. parental effects, epigenetic inheritance), or non-inherited differences 

driven by early-life environmental influences that have a relatively long-lasting 

effect on phenotype (Burton and Metcalfe 2014). Expanding our approach to 

incorporate even earlier life stages (e.g. post-hatching/fry) could further 715 

illuminate how factors in early life influence life history.  

Extrinsic factors 

The observed increases in smolting in the face of food restriction, together with 

decreases in maturation, suggested that the reduction in food supply prevented 

individuals from meeting an intrinsic (e.g. genetically determined) threshold for 720 

residency and maturity in freshwater, which is in agreement with previous 

studies (Olsson et al. 2006; Wysujack et al. 2009; O’Neal and Stanford 2011; 

Jones et al. 2015). Indeed, the absence of any smolts under conditions of high 

food supply was surprising, particularly within fish from the Tawnyard 

population (anadromous-background), which has a naturally high frequency of 725 

anadromy in the wild (Gargan et al. 2016). This suggests that, in nature, a large 

number of fish in the Tawnyard system must typically experience relatively low 

food availability as freshwater juveniles, as otherwise anadromy rates (broadly 

estimated as 50 – 60% in the wild population) would be lower in the wild. 

Moreover, the balance of fitness cost and benefits of migration in the system 730 

must be such that natural selection has caused a relatively high threshold for 

residency to evolve (an ultimate mechanism; Hazel et al. 1990; Tomkins and 

Hazel 2007; Pulido 2011), meaning a minority of Tawnyard fish in the wild 

typically surpass their intrinsic freshwater maturation threshold and the 

anadromous tactic is more frequent.  735 
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Manipulation of the timing of food reduction revealed that life-history 

responses of a given population to environmental change might depend on the 

point during ontogeny at which the change is experienced. This could come 

about via two non-mutually exclusive mechanisms: populations could exhibit 

variation in sensitivity to cues experienced during given fixed “decision 740 

windows”, and/or the timing of the decision windows themselves may vary 

across populations. In our study, food restriction in the first year (Low-High 

treatment) was a more important driver of smolting rates than food in the 

second year (High-Low) for fish from the non-anadromous-background 

population, whereas food in the second year was more important for the 745 

anadromous-background population. This was an intriguing outcome, and 

hints at a complex interplay between extrinsic environmental and intrinsic or 

population-specific factors. The apparently greater importance of food 

restriction in the first year for the non-anadromous-background population 

could perhaps be related to lower intrinsic growth rates in this population in 750 

the wild. Given their low potential growth rates, individuals in the non-

anadromous-background population might be constrained to make a life-

history decision (i.e. choose future migration or residency) early in life in order 

to divert energy intake towards meeting the associated demands of the chosen 

tactic. Because residents must accumulate sufficient lipid reserves to be 755 

converted into reproductive tissue before spawning (McMillan et al. 2012), in 

the wild, Bunaveela fish may have experienced selection for adopting a 

maturation trajectory relatively early in order to allow sufficient time for growth 

and energy accumulation, with early decision windows evolving as a 

consequence. In contrast, fish from the anadromous-background population 760 

with higher intrinsic growth potential may be less constrained in this regard, 

and may defer choice of migratory tactics to the second year of life, or indeed 

have flexibly reversible life-history trajectories where, for example, fish 

choosing residency based on high food in year one may switch to migratory 

tactics in response to low food in year two. There is some evidence for 765 

conditions in the second year of life being a key driver of migratory tactics in a 
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naturally facultatively anadromous brown trout population to support this 

(Cucherousset et al. 2005).  

Coupled with a later “decision window”/higher sensitivity to conditions in year 

two, a naturally high intrinsic growth propensity in the anadromous-770 

background population could have facilitated high levels of compensatory 

growth when receiving optimal food resources in year two in the Low-High 

treatment. If growth, or some aspect of energy usage related to growth such as 

body condition, is used as a cue for migratory tactic choice, this may then have 

translated into more individuals from this population meeting their threshold 775 

for maturation in the Low-High treatment. Strong compensatory responses after 

periods of food restriction have been observed in salmonids in general, and 

interestingly, the compensatory response has often appeared to be directed 

towards restoring body condition, rather than size. Nicieza and Metcalfe (1997) 

found food restricted fish recovered similar condition to controls within a year 780 

of food supply restoration, and Álvarez and Nicieza (2005) further found a 

compensatory response that resulted in restoration of condition and energy 

status rather than skeletal growth in brown trout post food restriction.  

Alternatively, we cannot rule out the presence of multiple migration versus 

residency decision windows, that re-occur annually or more frequently, 785 

whereby an individual repeatedly re-assesses its status trait relative to its 

inherited freshwater maturation threshold and can remain ‘undecided’ at the 

first or even second windows, though there is little empirical evidence for this. 

A simpler explanatory model is that there is a single, initial decision 

determining migration versus residency, and then subsequent decision 790 

windows occur for fish on each trajectory (migrants and resident) related to the 

timing of expression of the adopted life-history tactic, where for example 

migrants must decide at what age to actually migrate (determined by pressures 

of size-dependent sea survival), or indeed where to migrate (Ferguson et al. 

2019). Similarly, a resident individual must also decide when to mature (Thorpe 795 

et al. 1998; Thorpe and Metcalfe 1998), a decision shown to be affected by lipid 

reserves in Atlantic salmon (Rowe et al. 1991; Jonsson and Jonsson 1993, 2005) 
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and possibly triggered by similar threshold type mechanisms in brown trout. 

These timing decisions could be further influenced by extrinsic environmental 

conditions, giving rise to a temporal continuum of migration and maturation 800 

tactics. This may explain why some fish in our study were classified as having 

an undetermined life history (neither smolt nor mature) by the spring of year 

two: these individuals may simply have been delaying expression of a migratory 

or freshwater maturing phenotype until the following year. These caveats must 

be born in mind when interpreting our experimental results, as the life-history 805 

tactic frequencies we measured in year 2 could be indicative of age-specific 

tactic frequencies, rather than overall rates of migration versus residency across 

all ages. However, the basic conclusions were the same in the GLMs where the 

data were analysed as either smolt versus non-smolt, or immature versus 

mature, giving us confidence that the patterns reflect the migration decision per 810 

se.  

Variation in status traits underpinning alternative tactics 

Size-based differences between migrating individuals (those classified at the 

end of the study as smolts) and resident fish (those classified at the end of the 

study as mature) were established relatively early, with differences in weight, 815 

length, and condition that were maintained during the course of the study. The 

early divergence in physiological condition between migrants and residents 

supports the energy limitation scenario, where fish adopt migration as a result 

of failing to meet the necessary condition in early life to mature as residents in 

freshwater (Jonsson and Jonsson 1993). Maturing fish reached an apparent size 820 

asymptote earlier than migrating fish (i.e. had smaller inflection point in Figure 

5, and were larger earlier in the study). Size appears to be a potential status trait 

that regulates, or correlates with factors regulating early sexual maturation, as 

has been documented in Atlantic salmon, where anadromous males are smaller 

than their counterparts that mature early in freshwater as so-called ‘precocious 825 

parr’ (Whalen and Parrish 1999; Garant et al. 2002). However, although body 

size has been suggested as a major component of the status (cueing) trait for 

anadromy in brook trout (Thériault et al. 2007), the divergence in mass and 
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condition we found in our study suggests that other factors beyond size also 

contribute to the maturation versus migration/anadromy decision. It seems 830 

increasingly likely that a suite of interlinked physiological components is 

assessed (e.g. overall energetic status or rate of change in energy), and no single 

trait controls the migratory/anadromy decision. Genetic covariance between 

life history traits such as growth, size, metabolism, and other morphological 

traits further suggests that migration decisions are associated with a suite of 835 

inter-linked phenotypic traits (Doctor et al. 2014; Hecht et al. 2015). 

Fish on a migratory trajectory here appeared to maintain growth rates during 

the experiment (and had a higher inflection point), such that they were similar 

in length to mature fish by the end of our study. Constant, or even accelerated 

growth in pre-migratory fish (Metcalfe 1998) has been explained by size-840 

dependent survival at sea (Klemetsen et al. 2003) due to better osmoregulation 

ability (Finstad and Ugedal 1998) and reduced predation of larger anadromous 

individuals (Dill 1983; Jonsson et al. 2017). Interestingly here, although skeletal 

growth (i.e. length) was maintained, migratory fish were considerably lighter 

and in worse condition than mature fish at the end of study, which suggests that 845 

once on a migratory trajectory, resources were primarily allocated to meeting a 

size-based threshold for surviving actual migration. The maintenance of growth 

rates in migrants as such does not contradict the energy limitation scenario, but 

rather suggests that migratory fish redirect what resources they obtain into 

becoming large enough to survive the migration, at a cost to their overall body 850 

condition.  

The diminished body condition of migratory individuals was not, however, 

reflected in levels of whole-body lipids at the end of the study. Contrary to our 

expectations, migratory fish had marginally higher levels of whole body lipids 

than mature fish. Lipid storage has been identified previously as an important 855 

precursor of maturation in fish (Tocher 2003) and an indicator of a residency 

life history in salmonids (Sloat and Reeves 2014; Sloat et al. 2014 and references 

therein). The unexpected trend we observed in lipids may have been a 

consequence of measuring lipids during the smolt migration period, at which 
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stage fish that have initiated maturation might have already converted some of 860 

their energy stores into gonadal tissue, and hence show depleted lipids levels 

relative to migrants (Tocher 2003; Sloat and Reeves 2014). Alternatively, higher 

lipid levels in migrants could reflect accumulation of reserves, as either a bet-

hedging strategy if resources in the migration destination are uncertain, or to 

fuel the migration journey itself (Stefansson et al. 2003). Pre-migratory 865 

“fattening” strategies are relatively common in migratory birds (Piersma et al. 

2005) but less so in salmonines (Jonsson and Jonsson 2005). 

Intrinsic factors 

We had predicted that the two populations in our study would show variability 

in adopting migratory tactics across all food restriction scenarios and indeed, 870 

overall, the probability of smolting was higher in the anadromous background 

population than in the non-anadromous population. Moreover, higher hypo-

osmoregulatory function (lower plasma chloride concentration) was 

documented in smolts from the former population relative to the latter, 

implying that smolts from the anadromous-background population were 875 

physiologically better prepared for transition to marine conditions. In contrast, 

although some fish from the non-anadromous-background population were 

classified as smolts in the experiment, these putative smolts exhibited relatively 

lower saltwater tolerance. A potential explanation for the reduced hypo-

osmoregulatory function of non-anadromous-background smolts might be that 880 

they are poorly adapted to saltwater given their lack of (recent) evolutionary 

exposure to marine conditions. Relaxed selection leading to degradation of 

hypo-osmoregulation has similarly been observed in non-anadromous 

populations of landlocked Atlantic salmon (Nilsen et al. 2008; McCormick et 

al. 2019) and alewife Alosa pseudoharengus (Velotta et al. 2014, 2015). 885 

Alternatively, reduced saltwater tolerance could be evidence of an emerging 

migration continuum whereby putative smolts may have chosen a 

potamodromous (freshwater migratory) tactic and hence were unprepared 

physiologically for transitioning to saltwater. Nevertheless, the causal 

mechanisms underpinning anadromy and potamodromy are proposed to be 890 
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similar, e.g. reduced food availability has previously been reported to increase 

adfluvial migration in freshwater brown trout transplanted to streams of high 

population density (Olsson et al. 2006). All brown trout in Ireland presumably 

have anadromous ancestral origins, since they would have had to recolonise the 

island after the Last Glacial Maximum via the sea (Ferguson et al. 2019). It thus 895 

seems more likely that the capacity for anadromy (or at least migration), albeit 

somewhat deteriorated in terms of saltwater tolerance, lay dormant in the 

Bunaveela fish, with anadromy re-expressed under experimental conditions of 

energy limitation.  

The putative re-emergence of an anadromous life history in our Bunaveela fish 900 

is of particular interest from a fisheries management perspective, as it suggests 

the capacity for anadromy (or at least migration) may lie dormant within 

apparently resident populations. Such populations may thus have the potential 

to contribute to the restoration of anadromous stocks that have experienced 

widespread reductions, as evidenced by Gargan et al. (2006) in two formerly 905 

anadromous populations that suffered collapses. Anadromous phenotypes 

arising from resident genotypes have similarly been documented in O. mykiss 

(Kelson et al. 2019), and from common garden experiments with lake resident 

O. mykiss which were formally anadromous but were prevented from migrating 

by impassable dams or waterfalls (Thrower et al. 2004). These findings make 910 

sense within the framework of the conditional threshold model (Tomkins and 

Hazel 2007), where environmental factors can affect life history tactic 

frequency by changing the distribution of the realised physiological state 

relative to inherited switch points (a proximate mechanism). Environmental 

factors could also drive longer term changes in tactic frequency via natural 915 

selection acting to shift the genotypic distribution of underlying switch points 

(an ultimate mechanism) (Hazel et al. 1990; Tomkins and Hazel 2007; Pulido 

2011); for example, if survival or growth at sea is poor then migration may 

become less prevalent in the population if residents attain higher overall relative 

fitness than migrants. Within the Burrishoole system, the establishment of an 920 

Atlantic salmon farm in the estuary was implicated in the collapse of the 
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anadromous life history from this catchment over a period of 30 years due to 

high rates of sea lice transmission (Poole et al. 1996, 2007). Reduced marine 

survival rates may have imposed strong selection against anadromy, and hence 

caused the evolution of lower mean threshold values for freshwater maturation 925 

within the Burrishoole catchment as a whole. Our current results are consistent 

with this evolutionary explanation, in that we demonstrated heritable 

differences (or at least phenotypic differences among genetically divergent 

populations in a common garden experiment) – a pre-requisite for evolutionary 

responses. However, they also show that phenotypic plasticity can drive 930 

changes in migratory tactics, which may contribute to observed life-history 

changes in natural populations (Gargan et al. 2006; Sandlund and Jonsson 

2016). 

Early-life differences in length and mass between the two populations may 

proximately cause different anadromy propensities, as has been seen in brook 935 

trout, where size of juvenile fish was negatively related to probability of future 

residency (Thériault et al. 2007). Interestingly, though our populations differed 

in size early in the study (before food restriction), they were in similar condition 

at this time, suggesting that both populations had similar energy intake versus 

output, at least initially. Higher intrinsic growth rates in the anadromous 940 

background population may have increased the likelihood of eventual energetic 

limitation in freshwater, thus reducing relative condition and increasing 

anadromy propensity (exemplified in our Low-Low food treatment). Conversely, 

when food resources are in ample supply, high intrinsic growth rates could 

hasten freshwater maturity instead of anadromy in this population (c.f. the 945 

scenario of optimal food resources in our study). Such variability in migratory 

tactics is a feature of salmonines in general [e.g. “retirement” from anadromy in 

Dolly Varden Salvelinus malma (Bond et al. 2015)], which may buffer species 

from increasing anthropogenic pressures in the marine environment (Russell et 

al. 2012). 950 
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Conclusions 

Collectively, the results of this study show that the adoption of migratory tactics 

in brown trout involves an interplay between inherited components and 

environmentally cued physiological condition, in line with previous salmonines 

studies (Chapman et al. 2012; Dodson et al. 2013; Kendall et al. 2014). The 955 

differences we observed in population responses to food restriction and its 

timing suggest a complex relationship between intrinsic and extrinsic factors 

that may allow for a continuum of migratory tactics to exist. These population 

differences, together with the fact that putative anadromy emerged within 

offspring of a naturally non-anadromous population, emphasise that a range of 960 

life-history outcomes are possible even within a single species, which can 

contribute to so-called portfolio effects that cushion the species as a whole from 

rapidly changing environmental conditions (Schindler et al. 2015). Although 

our study offers some important insight into how extrinsic and intrinsic factors 

interactively shape life-history tactics, we have only considered one element of 965 

the freshwater environment here. Future studies should expand to consider 

how other proximate drivers such as temperature, which influences a range of 

physiological and life-history traits in salmonines (Satterthwaite et al. 2010; 

McMillan et al. 2012; Sloat and Reeves 2014; Doctor et al. 2014; Kendall et al. 

2014), govern migratory tactics in fish from different genetic backgrounds. 970 

Moreover, it is now important to expand this approach into natural systems 

using, for example, common garden or reciprocal transplant experiments, to 

assess whether these findings hold up under real world complexities.  

Finally, our results have important implications for the conservation of 

facultatively migratory species, which are in global decline due to in-stream 975 

barriers, habitat degradation, climate change, overfishing and the expansion of 

aquaculture (Costello 2009; Limburg and Waldman 2009). Knowledge of how 

extrinsic and intrinsic factors affect fish migratory tactics may aid in successful 

management and restoration of facultatively migratory populations, and in 

doing so maintain important intraspecific biocomplexity, which offers 980 

increased resilience to effects of global change (Schindler et al. 2015).  
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Figure S1: Locations in the west of Ireland of brown trout brood stock 

collected by seine netting in winter 2015, and used to produce F1 offspring for 

an experimental tank-rearing study. Fish with a non-anadromous-population 

background were offspring of brown trout collected from (a) Bunaveela Lough 

in the Burrishoole catchment (no natural occurrence of anadromy). Fish with 

an anadromous-population background were offspring of brood stock 

collected in (b) Tawnyard Lough in the Erriff catchment (a high natural 

frequency of anadromy).  
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Table S1: Brood stock crossing design for producing F1 offspring of wild-origin 

brown trout collected by seine netting from two populations (Bunaveela Lough 

and Tawnyard Lough) in the west of Ireland. Each female was stripped of eggs, 

which were then fertilised by the milt of two males from the same population 

and incubated in a hatchery facility within the Burrishoole catchment. 

Offspring produced from the Bunaveela population were considered to have a 

non-anadromous-population background, and offspring produced from the 

Tawnyard population were considered to have an anadromous-population 

background. 

Stripping 
date 

Population Catchment Sex ID 
Male 
cross #1 

Male 
cross #2 

22/12/2015 Bunaveela Burrishoole Female BF1 BM1 BM2 

22/12/2015 Bunaveela Burrishoole Female BF2 BM1 BM2 

22/12/2015 Bunaveela Burrishoole Female BF3 BM3 BM4 

22/12/2015 Bunaveela Burrishoole Female BF4 BM3 BM4 

22/12/2015 Bunaveela Burrishoole Female BF5 BM5 BM6 

22/12/2015 Bunaveela Burrishoole Female BF6 BM5 BM6 

22/12/2015 Bunaveela Burrishoole Female BF7 BM7 BM8 

22/12/2015 Bunaveela Burrishoole Female BF8 BM7 BM8 

22/12/2015 Bunaveela Burrishoole Female BF9 BM9 BM10 

22/12/2015 Bunaveela Burrishoole Female BF10 BM9 BM10 

22/12/2015 Bunaveela Burrishoole Female BF11 BM11 BM12 

22/12/2015 Bunaveela Burrishoole Female BF12 BM11 BM12 

22/12/2015 Bunaveela Burrishoole Female BF13 BM13 BM15 

22/12/2015 Bunaveela Burrishoole Female BF14 BM13 BM15 

22/12/2015 Bunaveela Burrishoole Female BF15 BM17 BM18 

22/12/2015 Bunaveela Burrishoole Female BF16 BM17 BM18 

22/12/2015 Bunaveela Burrishoole Female BF17 BM19 BM20 

22/12/2015 Bunaveela Burrishoole Female BF18 BM19 BM20 

22/12/2015 Bunaveela Burrishoole Female BF19 BM22 BM23 

22/12/2015 Bunaveela Burrishoole Female BF20 BM22 BM23 

22/12/2015 Bunaveela Burrishoole Female BF21 BM25 BM26 

27/11/2015 Tawnyard Erriff Female TF4 TM6 TM7 

27/11/2015 Tawnyard Erriff Female TF5 TM6 TM7 

27/11/2015 Tawnyard Erriff Female TF6 TM9 TM10 

10/12/2015 Tawnyard Erriff Female TF7 TM12 TM13 

  



Chapter 2 | Supporting Information 
 

73 
 

Table S2: Feeding guidelines (as % body mass fed per day), used to adjust 

absolute daily feeding rations on a monthly basis according to body mass and 

rearing temperature of brown trout reared in a recirculating aquaculture system 

for 22 months. Type of feed (based on fish size) is listed in italics (Skretting, 

Norway).  

Fish mass (g) 
 Rearing temperature 

 4 °C 6 °C 8 °C 10 °C 12 °C 14 °C 16 °C 18 °C 

Nutra Parr          
2 - 6.5g  1.6 1.9 2.2 2.6 3 3.4 3.8 NA 

6.5 - 8g  1.5 1.8 2.1 2.5 2.9 3.3 3.7 NA 

Horizon           
8 - 12g  1.21 1.53 1.73 2.1 2.42 2.78 3.06 3.57 

12 - 21g  1.21 1.36 1.57 1.87 2.16 2.55 2.84 3.34 

Elite FR           
21 - 35g  1.22 1.47 1.71 1.95 2.2 2.57 2.93 3.42 

35 - 80g  0.96 1.2 1.32 1.56 1.8 2.16 2.4 2.76 

80 - 150g  0.68 0.88 1.08 1.28 1.48 1.68 1.88 2.08 

150 - 300g  0.52 0.72 0.92 1.12 1.32 1.48 1.64 1.8 

300 - 500g  0.46 0.61 0.76 0.94 1.1 1.24 1.38 1.52 

500g +  0.34 0.48 0.62 0.76 0.89 1.02 1.16 1.3 
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Table S3: Parameter estimates with associated standard errors (SE) for mixed 

model analyses testing the effects of life-history tactics, population-

background, food treatment, and sex on the fork length (cm), weight (g), and 

condition factor (K) trajectories of brown trout over two years of experimental 

tank rearing. Measurements were taken at key periods denoted by “month”. 

Effects were contrasted against mature female fish from the anadromous-

background in the Low-Low treatment. Statistical significance was assessed at p 

< 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for length     

Intercept  7.103 0.387 18.336 < 0.001 

Month 0.699 0.013 54.865 < 0.001 

Life-history: Smolt -2.310 0.596 -3.876 < 0.001 

Population: Non-anadromous-background -0.252 0.438 -0.576 0.565 

Food: Low-High 3.322 0.429 7.736 < 0.001 

          High-Low 2.646 0.415 6.382 < 0.001 

          High-High 5.434 0.425 12.798 < 0.001 

Sex: Male -0.033 0.215 -0.154 0.878 

Month: Smolt 0.067 0.032 2.068 0.039 

Non-anadromous-background: Low-High -0.774 0.600 -1.289 0.198 

Non-anadromous-background: High-Low -2.382 0.630 -3.781 < 0.001 

Non-anadromous-background: High-High -3.066 0.594 -5.160 < 0.001 

Mixed model for weight 
    

Intercept  -73.06 8.11 -9.01 < 0.001 

Month 9.47 0.28 34.24 < 0.001 

Life-history: Smolt 22.61 12.69 1.78 0.075 

Population: Non-anadromous-background -1.36 9.07 -0.15 0.881 

Food: Low-High 76.57 8.87 8.63 < 0.001 

          High-Low 37.75 8.56 4.41 < 0.001 

          High-High 114.86 8.78 13.09 < 0.001 

Sex: Male -0.99 4.45 -0.22 0.824 

Month: Smolt -3.08 0.70 -4.39 < 0.001 

Non-anadromous-background: Low-High -19.85 12.43 -1.60 0.111 

Non-anadromous-background: High-Low -38.59 13.05 -2.96 0.003 

Non-anadromous-background: High-High -57.67 12.32 -4.68 < 0.001 

Mixed model for condition factor (Fulton’s K) 
    

Intercept  1.193 0.016 76.858 < 0.001 

Month -0.004 0.001 -5.341 < 0.001 

Life-history: Smolt -0.001 0.027 -0.025 0.980 

Population: Non-anadromous-background 0.023 0.016 1.430 < 0.001 

Food: Low-High 0.123 0.016 7.923 < 0.001 

          High-Low 0.070 0.015 4.746 < 0.001 

          High-High 0.139 0.015 9.034 < 0.001 
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Sex: Male 0.002 0.008 0.285 0.776 

Month: Smolt -0.006 0.002 -3.564 < 0.001 

Non-anadromous-background: Low-High -0.036 0.022 -1.644 0.101 

Non-anadromous-background: High-Low -0.081 0.023 -3.461 0.001 

Non-anadromous-background: High-High 0.041 0.022 1.838 0.067 
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Table S4: Parameter estimates with associated standard errors (SE) for mixed 

model analysis testing the effects of life-history tactics, population-background, 

food treatment, and sex on the final fork length (cm), condition factor (K) and 

whole body lipids (%) of brown trout after two years of experimental tank-

rearing. Effects were contrasted against mature female fish from the 

anadromous-background in the Low-Low treatment. Statistical significance was 

assessed at p < 0.05.  

Effect df Estimate SE t-value p-value 

Response: Length      

Intercept 437 20.00 0.41 48.58 < 0.001 

Life-history: Smolt 437 -0.59 0.35 -1.66 0.097 

Population: Non-anadromous-
background 

437 0.38 0.54 0.70 0.487 

Food: Low-High 437 5.06 0.44 11.39 < 0.001 

          High-Low 437 2.41 0.55 4.42 < 0.001 

          High-High 437 6.83 0.54 12.56 < 0.001 

Sex: Male 437 0.01 0.22 0.07 0.947 

Non-anadromous-background: Low-
High 

437 -1.30 0.63 -2.05 0.040 

Non-anadromous-background: High-
Low 

437 -2.14 0.75 -2.86 0.004 

Non-anadromous-background: High-
High 

437 -3.90 0.76 -5.17 < 0.001 

Response: Condition factor (Fulton’s 
K) 

     

Intercept 437 1.079 0.018 60.095 < 0.001 

Life-history: Smolt 437 -0.121 0.015 -7.948 < 0.001 

Population: Non-anadromous-
background 

437 0.061 0.024 2.559 0.011 

Food: Low-High 437 0.195 0.019 10.212 < 0.001 

          High-Low 437 0.048 0.024 2.007 0.045 

          High-High 437 0.192 0.024 8.063 < 0.001 

Sex: Male 437 -0.017 0.009 -1.831 0.068 

Non-anadromous-background: Low-
High 

437 -0.066 0.027 -2.439 0.015 

Non-anadromous-background: High-
Low 

437 -0.078 0.032 -2.404 0.017 

Non-anadromous-background: High-
High 

437 0.025 0.033 0.742 0.458 

Response: Whole body lipids      

Intercept 144 5.38 0.21 26.21 < 0.001 

Life-history: Smolt 144 0.51 0.19 2.69 0.008 

Population: Non-anadromous-
background 

9 2.59 0.29 8.83 < 0.001 

Food: Low-High 144 3.18 0.29 11.07 < 0.001 
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          High-Low 144 0.84 0.27 3.17 0.002 

          High-High 144 3.31 0.32 10.29 < 0.001 

Sex: Male 144 -0.25 0.17 -1.43 0.155 

Non-anadromous-background: Low-
High 

144 -1.41 0.42 -3.39 0.001 

Non-anadromous-background: High-
Low 

144 -2.09 0.48 -4.32 < 0.001 

Non-anadromous-background: High-
High 

144 -1.36 0.65 -2.10 0.037 
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Abstract 

In an era of rapid global change, organisms in natural systems are exposed to a 

multitude of stressors that are likely to co-occur, with uncertain impacts. Here, 

we explore the individual and cumulative effects of co-occurring environmental 

stressors on the striking, yet poorly understood, phenomenon of facultative 5 

migration. We reared offspring of a brown trout population that naturally 

demonstrates facultative anadromy (sea-migration), under different 

environmental stressor treatments and measured life-history responses in terms 

of migratory tactics and freshwater maturation rates. Juvenile fish were exposed 

to reduced food availability, temperatures elevated to 1.8 °C above natural 10 

conditions, or both treatments in combination over 18 months of experimental 

tank rearing. When considered in isolation, reduced food had negative effects 

on the size, mass and condition of fish across the experiment, and we detected 

variable effects of warm temperatures (negative effects on size and mass, but 

positive effect on lipids). However, when combined with food restriction, 15 

temperature effects on these traits were less pronounced, implying antagonistic 

dual stressor effects on morphological traits. The two stressors combined 

additively, but had opposing effects on life-history tactics: migration increased 

and maturation rates were lower under low food conditions, whereas the 

opposite was true in the warm temperature treatment. Not all fish had 20 

expressed maturation or migration tactics by the end of the study, and the 

frequency of these “unassigned” fish was higher in food restriction treatments, 

but lower in warm treatments. Fish choosing migration over freshwater 

maturation tended to be smaller and in poorer condition (but were similarly 

sized to unassigned fish). We further detected effects of food restriction on 25 

hypo-osmoregulatory function of migrants that may influence the fitness 

benefits of the migratory tactic at sea. We also highlight that responses to 

multiple stressors may vary depending on the response considered. Collectively, 

our results indicate contrasting effects of environmental stressors on life-history 

trajectories in a facultatively migratory species.    30 
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Introduction 

Against the backdrop of rapid global change, organisms are increasingly 

exposed to a variety of pressures stemming from anthropogenic activities 

(Sanderson et al. 2002). Temperature increases, habitat degradation, pollution, 

exploitation, and land use changes are examples of pressures, or “stressors”, that 35 

contribute to recent patterns of population and biodiversity decline, and altered 

ecosystem functioning (Walther et al. 2002; Parmesan 2006). While much 

research has addressed the effects of individual stressors, in practice, stressors 

rarely occur in isolation, and it is imperative we also understand the combined 

effects of multiple stressors (Breitburg et al. 1998) in order to better forecast and 40 

manage species’ responses to global change (Côté et al. 2016). This is not 

necessarily straightforward however, with co-occurring stressors – defined here 

as biotic or abiotic changes beyond the range typically experienced under 

natural conditions (Breitburg et al. 1999; Crain et al. 2008) – potentially acting 

additively, synergistically, or antagonistically (Folt et al. 1999; Crain et al. 2008).  45 

Although a growing body of research is now expanding beyond single-stressor 

approaches, uncertainty still surrounds the net effects of co-occurring stressors, 

and empirical studies have provided mixed results. Meta-analyses suggest that 

synergistic effects dominate in the marine sphere (Crain et al. 2008; Harvey et 

al. 2013; Przeslawski et al. 2015), but antagonistic effects (Byrne and Przeslawski 50 

2013) and additive effects (O’Gorman et al. 2012) have also been reported. In 

freshwater systems, which are particularly sensitive to multi-faceted change 

(Ormerod et al. 2010), antagonistic effects of multiple stressors are most 

prevalent (Jackson et al. 2016). 

The effects of stressors may be highly context-specific. For example, increased 55 

temperature is a stressor likely to be experienced almost universally across 

natural systems, yet the impacts of warming at the individual level can range 

from positive to negative depending on whether optimum performance 

temperatures are exceeded (Huey and Stevenson 1979; Sinclair et al. 2016). 

Moreover, stressor effects can differ depending on the trait/response, or the 60 

level of organisation considered e.g. warming can increase individual metabolic 
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and feeding rates, but may reduce survival, cause population/species 

extinctions (Petchey et al. 1999; Fussmann et al. 2014) or alter community 

stability due to long-term changes in species’ interaction strengths (Rall et al. 

2010). Predicting stressor effects at multiple levels is likely to be additionally 65 

challenging when more than one stressor is involved (Galic et al. 2018).  

An understudied aspect of multiple stressors is how effects at the individual 

level shape life-history trajectories, which in turn may mediate how stressors 

scale up to influence higher-level (e.g. population, community, ecosystem) 

processes. One fundamental decision that many animals face, which is 70 

associated with a broad range of life-history and eco-evolutionary 

consequences, is whether to migrate or not. Facultative migration – the 

phenomenon whereby individuals retain the capacity to adopt either a 

migratory or a non-migratory life-style – is common across many animal taxa 

(Lack 1943; Swingland and Greenwood 1984; Lundberg 1987; Kaitala et al. 1993; 75 

Chapman et al. 2011), with well documented examples in birds (Berthold and 

Querner 1982; Lundberg 1988; Pulido et al. 1996; Newton 2008), ungulates (Ball 

et al. 2001; Cagnacci et al. 2011; Hebblewhite and Merrill 2011), zooplankton 

(Hansson and Hylander 2009), and fishes (Northcote and Ward 1985; Jonsson 

1985; Chapman et al. 2012; Dodson et al. 2013). Environmental stresses such as 80 

limited food or inclement temperatures often appear to play a role in driving 

individuals to migrate (Chapman et al. 2012). Alternative migratory phenotypes 

have often been considered within the framework of the “environmentally cued 

threshold model” (Tomkins and Hazel 2007; Piche et al. 2008; Pulido 2011; 

Buoro et al. 2012), in which tactic frequencies are controlled by the relationship 85 

between an environmentally-sensitive status trait (e.g. physiological condition 

or energy status) and an inherited threshold, assumed to be genetically variable. 

If the status trait exceeds the threshold, or “switch point”, residency occurs; if 

not, migratory tactics are adopted. Environmental factors are likely to be 

important drivers of migratory tactics at both proximate and ultimate levels, yet 90 

few studies have addressed how facultatively migratory species respond to 
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pressures arising from environmental change (Doswald et al. 2009), either in 

isolation, or when stressors act in combination. 

Salmonine fishes (trouts, salmons, and charrs) represent an excellent group to 

study multiple stressor effects (McGinnity et al. 2009; de Eyto et al. 2016). In 95 

facilitating obligate freshwater spawning, salmonines display a suite of 

migratory phenotypes, encompassing residents that remain in natal streams 

their entire lives, individuals that migrate to larger rivers or lakes 

(potomodromy), and others still that undertake a marine migration before 

returning to fresh water to spawn (anadromy) (Klemetsen et al. 2003; Dodson 100 

et al. 2013; Ferguson et al. 2019; Nevoux et al. 2019). The migration versus 

residency decision represents a trade-off, where the benefits of migration 

(avoiding abiotic or biotic stresses in the natal stream, exploiting better food 

resources in the new environment, which translate into higher growth and thus 

higher fecundity or mating success) must be balanced against the costs 105 

(energetic demands of migration, physiological stress of changing 

environments/habitats, a potentially increased risk of predation) (Kendall et al. 

2014). Environmental conditions in natal fresh waters can interact with intrinsic 

physiological traits to determine alternative migratory tactics, e.g. if food 

resources cannot support growth or metabolism in early life, the resulting 110 

energetic deficit may promote migration. Food resources have been shown to 

directly (Davidsen et al. 2014; Jones et al. 2015; Archer et al. 2019) and indirectly 

influence migration (Olsson et al. 2006; Wysujack et al. 2009; O’Neal and 

Stanford 2011). Similarly, because temperature profoundly influences biological 

processes (Gillooly et al. 2001; Dell et al. 2011), temperature effects on 115 

physiological status traits/energetic balance likely make it an important 

environmental determinant of migratory decisions. Higher temperatures have 

been associated with increased anadromy in lieu of maturation in steelhead 

trout Oncorhynchus mykiss (Sloat and Reeves 2014), but under experimental 

conditions of constant food supply. Warming is likely to be accompanied by 120 

reductions in freshwater macroinvertebrate abundance (Durance and Ormerod 
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2007), with potentially synergistic effects if elevated metabolic demands 

induced by warming are compounded by low food availability. 

Environmental stressors may also act to affect the performance of individuals 

once a migratory decision has been made. Although migration potentially 125 

confers many benefits on individuals, the ensuing costs mean that 

environmental conditions experienced prior to out-migration might further 

affect the future success of migrants, both during migration and in the 

subsequent environment (river, lake, or sea) (McCormick et al. 2009a). Sea-

migration in particular requires substantial physiological remodelling for 130 

transitioning to salt water, and the changes in physiological regulation of ions, 

colouration, and body shape (collectively termed “smolting”, (Tanguy et al. 

1994)) necessitate an expensive investment by individuals that is likely to begin 

long before the migration is initiated, and hence may be affected by 

environmental stressors. Empirical evidence suggests that once the migratory 135 

decision is made, migrants divert resources towards accelerated growth 

(Metcalfe 1998). Smolt survival at sea is positively related to size (Ward and 

Slaney 1988) and, as such, favourable freshwater conditions may produce larger 

and more successful migrants, with associated fitness benefits altering the 

migration-residency trade off.  140 

Here, we present the results of an experimental laboratory study of physiology, 

migration and maturation of brown trout, using the F1 progeny of wild-caught 

parents from a population that exhibits facultative migration in nature. We 

aimed to explore if, and how, life-history decisions are shaped by individual and 

interactive effects of two putative extrinsic environmental stressors. 145 

Specifically, we aimed to: (i) determine the effects of food restriction and 

elevated temperature on a range of physiological traits (size, mass, condition, 

lipids); (ii) assess the life-history consequences, in terms of migratory tactics 

and maturation decisions, of these stressors (both in isolation and combined); 

and (iii) explore how environmental stressors affect future migratory 150 

performance. We expected that food reduction and elevated temperature would 

each increase the prevalence of migratory tactics, with potentially synergistic 
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effects when the stressors were combined. We also expected stressors to 

negatively affect future migratory capacity of anadromous individuals by 

reducing potential for fast growth (and thus reducing smolt viability), or by 155 

inhibiting osmoregulation in salt water.  

Materials and Methods 

Study population and fish rearing 

Brown trout brood stock from a wild population were caught by seine-netting 

in November 2015 in Tawnyard Lough, an upland lake of 56 ha in the Erriff 160 

catchment (National Salmonid Index Catchment) in the west of Ireland (53° 37´ 

0.00" N: 09° 40´ 17.10" W). Tawnyard Lough is fed primarily by the Glendavoch 

river, and a number of smaller tributaries (Figure S1). Brown trout primarily 

spawn within the Glendavoch River and move downstream as fry or parr to 

Tawnyard Lough, a distance of a few hundred metres to kilometres, depending 165 

on where spawning occurred. Tawnyard Lough produces a large run of out-

migrating anadromous juveniles (smolts), with annual estimates of 500 to 3000 

smolts enumerated at the outflow of the Lough over the last 30 years (Gargan 

et al. 2016). An unknown proportion of the population remain within the lake, 

and undergo several years of freshwater growth before returning to the natal 170 

stream to spawn. While the migration phenotypes of the brood stock could not 

be determined unambiguously in this study (because external signs of prior 

migration are not completely unambiguous in this system), we assumed that 

the frequencies of migratory/resident phenotypes among our brood stock was 

broadly representative of naturally occurring frequencies, given that brood 175 

stock were obtained haphazardly. Moreover, our goals in this study were not to 

test explicitly for inherited variation in migration tactics, but rather to explore 

proximate (environmental) drivers. The caveat must be kept in mind, however, 

that any environmental effects we document are contingent on the genotypic 

composition of our sample. 180 

Each ripe female (n = 7) was stripped of eggs, which were then split into two 

batches, and each batch was fertilised by the milt of a single male (n = 10) (i.e. 

each female was mated to two males, creating fourteen full-sib families). Due to 
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constraints in obtaining brood stock and variation in the timing of when 

females were ripe to be stripped, eggs were fertilised on three occasions in 185 

November and December 2015 (see Table S1 fertilisation/ brood stock crossing 

details). Fertilised eggs from each crossing were incubated separately in 

standard Heath trays in the nearby Burrishoole hatchery. Prior to exogenous 

feeding, fry from the late November/early December fertilisations (hereafter 

“Nov-Dec fertilisation group”) were transferred to a rearing facility at University 190 

College Cork (Aquaculture and Fisheries Development Centre). Here, families 

were mixed, and fry were held in a 100 L growth tank on a recirculating 

aquaculture system (RAS), maintained by a conditioning unit at a seasonally 

varying temperature regime approximating that of the catchment from which 

the brood stock were obtained (i.e. the annual cycle in mean weekly 195 

temperatures in the nearby Burrishoole catchment for the preceding three 

years, see Figure S2). Note that in winter 2015, simulated water temperatures 

were higher than the source catchment due to initial logistical constraints in 

achieving low temperatures. Fry were fed ad libitum with commercially 

available trout pellets (Skretting Ltd., Norway) to facilitate their transition to 200 

exogenous feeding (by June 2016), and were then fed ad libitum until the 

experimental phase began. Fish experienced a constant photoperiod (12:12 

hours of light: dark) during this initial rearing phase. Due to logistical 

constraints, an additional group of fry from the first fertilisation event (termed 

“Nov fertilisation group”) was maintained at a natural temperature regime in a 205 

flow-through tank at the Burrishoole hatchery facility, where they transitioned 

to exogenous feeding via ad libitum feeding with the same trout pellets. Fry from 

the Nov group were transported to the UCC rearing facility in May 2016, and 

reared in a 100 L tank, in the same RAS and under the same conditions as the 

Nov-Dec fertilisation group. Due to size differences (Nov group fish were larger 210 

than Nov-Dec group fish by the beginning of the experiment) the two 

fertilisation groups were reared in separate tanks for the duration of the study 

to prevent emergence of feeding hierarchies. 
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Experimental treatments 

The study and all associated procedures were carried out with ethical approval 215 

from Health Products Regulatory Authority (HPRA) Ireland, under HPRA 

project license AE19130/P034, and individual licenses AE19130/1087, 

AE19130/I200, AE19130/I201 and AE19130/I202). The experimental phase ran 

for an 18-month period from December 2016 to June 2018 with all fish humanely 

euthanized at the end of the experiment. 220 

Juvenile brown trout were randomly allocated across eight 520L tanks at the 

end of November 2016 (initial n = 140 per tank for Nov-Dec group, and n = 35 

per tank (filled to 203L) for Nov group), each assigned one of two temperature 

treatments and one of two food treatments. Water flowed continually through 

tanks to prevent the build-up of waste, returned to a central sump via 225 

mechanical filtration, and was treated with protein skimming, biofiltration and 

UV skimming. Weekly monitoring of water quality indicated that levels of pH, 

nitrate, nitrite, and ammonia were well within acceptable ranges for fish health. 

Mortality during the experimental phase was minimal (4%). To avoid 

compromising water quality with excessive biomass, fish were culled 230 

haphazardly (n = 229 in total across all treatments) over the two years of tank 

rearing, with equal densities in terms of fish numbers (fish per L) maintained 

across treatment groups and equal biomass densities (g per L) maintained 

between fertilisation groups. Fish culled in this manner were not included in 

the analyses. 235 

To explore the individual and interactive effects of food restriction and 

temperature in determining migratory tactics, food and temperature 

treatments were applied in isolation and in combination for both fertilisation 

groups for the duration of the experimental phase. The two food treatments 

were: (i) high food treatment: fish fed recommended daily rations for optimal 240 

growth calculated as a percentage of their body mass and adjusted for 

seasonally-changing temperatures (Skretting Ltd., Norway); and (ii) low food 

treatment: fish fed 25% of optimal daily rations. A value of 25% of optimal daily 

rations was chosen for the low food treatment because similar restrictions have 
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previously been shown to reduce the frequency of residency in adfluvial brown 245 

trout (Wysujack et al. 2009). Food was dispensed during daylight hours via 

automatic feeders (Arvo-Tec Oy, Huutokoski, Finland) located above each tank. 

Feeders delivered regular pulses of food (lasting two seconds), with the 

frequency of pulses adjusted according to food treatment (i.e. fewer pulses for 

low food treatments). The two temperature regimes were achieved by passing 250 

water through one of two conditioning units that maintained two temperature 

treatments as follows : (i) cool temperature treatment: temperatures matching 

the natural, seasonally-varying, temperature regime for the Erriff catchment; 

and (ii) warm temperature treatment: temperatures elevated by 1.8 °C ± 0.55 

(SD) above the cool temperature treatment. The cool treatment ranged from 255 

5.9 - 16.4 °C (mean temperature = 10.9 °C ± 3.2 SD) and the warm treatment 

ranged from 7.5 - 18.2 °C (mean temperature = 12.7 °C ± 3.2 SD). An increase of 

1.8 °C for the warm temperature treatment was chosen because this is in line 

with increases of 1 - 3 °C projected to occur under climate change scenarios 

(IPCC 2014). While both treatments remained within sub-lethal ranges for 260 

brown trout (Forseth et al. 2009; Jonsson and Jonsson 2009), the warm 

temperature treatment was considered “stressful” because the maximum 

temperatures in the warm treatment approached upper thermal growth limits 

for brown trout (18.7 °C). Optimal temperatures for growth have been estimated 

to be between 13.1 – 13.9 °C (Elliott and Hurley 2000; Hari et al. 2006; Elliott 265 

and Elliott 2010; Kovach et al. 2016). Temperatures in the warm treatment 

remained above this for twice as long as those in the cool treatment, which 

remained closer to optimal growth conditions. Food rations were reduced over 

four weeks and temperature was increased by 0.5 ºC per week to minimise 

stress. Within each treatment, absolute rations were adjusted on a monthly 270 

basis to account for changes in body mass and temperature.  

Data collection and life-history determination 

Within each food and temperature treatment combination, 25 – 30 fish per 

fertilisation group were lightly anaesthised with MS-222 and marked with 

unique colour combinations of visible implant elastomer (VIE) tags (Northwest 275 
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Marine Technology Ltd., Washington, USA), allowing for re-identification of 

individuals. Fork length and mass were measured at key periods throughout the 

study [Late-November in 2016 (prior to initiation of treatments), February, 

April, June, July, September, December in 2017, and April in 2018].  

All fish were checked weekly for morphological indicators of smolting from 280 

March to June in each of 2017 and 2018, the period corresponding to the natural 

migratory period in the wild for this population (Gargan et al. 2016). Wild 

smolts typically migrate out of the Erriff system aged between 1+ and 4+, with 

the large majority doing so aged 2+ or 3+ (approximately equal numbers of 

each) (Gargan et al. 2016). Smolting is a precursor to downstream migration in 285 

several salmonines, and comprises a number of morphological, behavioural and 

physiological changes. We used the following morphological indicators to 

assess smolting [following Tanguy et al. 1994)]: silvering/loss of parr marks; 

pronounced lateral line (i.e. clearly visible and raised to the touch); transparent 

fins; and fusiform shape (pointed snout, slimmer body, and elongated caudal 290 

peduncle) (Riddell and Leggett 1981; Hard et al. 1999; Villar-Guerra et al. 2019). 

Fish that clearly matched three of these criteria were classed as smolts. In spring 

2017, no fish matched the morphological criteria for smolts. In spring 2018, fish 

that matched the morphological criteria for smolts were transferred to salt 

water at 30 ppt for 24 hours to assess hypo-osmoregulatory function. Seawater 295 

“challenges” are used as an indicator of anadromy capacity, where the ability to 

regulate ion concentrations (e.g. to maintain plasma chloride concentration) in 

sea water is a measure of saltwater tolerance, or physiological “readiness” of 

smolts for seawater entry (Clarke 1982; McCormick et al. 1998; Schultz and 

McCormick 2012; McCormick 2012). Fish were monitored during this period to 300 

ensure that any fish showing signs of failing the challenge (loss of equilibrium) 

could be removed and euthanised (though no fish showed signs of failure in our 

study). After the 24-hour seawater challenge, fish were euthanised with an 

overdose of MS-222. The mass and fork length of each individual was recorded, 

and a blood sample was obtained from the caudal vasculature using a 21 gauge 305 

needle and a 2.6ml heparinised syringe. Blood samples were centrifuged at 
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8000 rpm for 3 minutes, and the plasma aliquot was siphoned off, stored at -80 

°C and later measured for plasma chloride concentration as an indicator of 

osmoregulatory performance. Four to six gill filaments were placed in 100µl of 

ice-cold SEI buffer (150 mmol l-1 sucrose, 10 mmol l-1 EDTA, 50 mmol l-1 310 

imidazole, pH 7.3) and frozen at -80 °C for later measurement of gill Na+/K+-

ATPase (NKA) activity.  

All fish (classed morphologically as smolts or non-smolts) were dissected in 

spring 2018 to visually determine sex and maturation status based on gonad 

development. Mature males had enlarged white testes or running milt. 315 

Maturing males had visible or moderately enlarged testes but no running milt. 

Mature females had visible eggs in the body cavity. Immature fish (unconfirmed 

sex at the time of sampling) were later genotyped to determine genotypic sex 

using a microsatellite sex marker. The natural spawning period for the wild 

population-of-origin is in late autumn/early winter, and the migratory period is 320 

in the spring (Gargan et al. 2016). Since freshwater maturation generally 

precludes migration in brown trout (Jonsson 1985; Dellefors and Faremo 1988; 

Dȩbowski and Dobosz 2016) any fish showing signs of maturing without having 

migrated to sea are considered to be on a non-anadromous trajectory, while 

smolts which undertake marine migrations are immature. We thus classed fish 325 

as smolts (migratory tactic) if they matched the morphological criteria for 

smolts and were immature. Fish were classed as mature (residency tactic) if they 

showed signs of maturation at the time of sampling. Fish that were immature 

and did not match the morphological criteria for smolts had an unknown life 

history at the time of sampling and were classed as “unassigned”. Whole body 330 

lipid content (%) was measured for all smolts and a random sample of mature 

(n = 107) and unassigned (n =19) fish using a CEM Smart trac5 system of 

integrated heating and nuclear resonance (CEM Corporation, Matthews, NC, 

USA) on individual homogenised fish samples (Toussaint et al. 2002; Keeton et 

al. 2003; Nielsen et al. 2005). Plasma chloride concentration was measured by 335 

coulometric titration using a Jenway PCLM3 chloride meter (FishVet Group, 

Oranmore, Ireland) for all smolts and a random sample of non-smolts (n = 107 
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mature fish and n = 18 unassigned fish). Gill NKA activity was measured 

following McCormick et al. (2009) for a random sample of smolts and non-

smolts (n = 25 smolts, n = 135 mature fish and n = 22 unassigned fish).  340 

Statistical analysis 

To test if food and temperature acted as stressors at the level of individual traits 

underpinning migration (Aim 1), we explored factors affecting fork length, mass 

and condition of fish across the study period within a mixed effects modelling 

framework (nlme package (Pinheiro et al. 2019)). We calculated condition factor 345 

as: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑎𝑠𝑠 (𝑔)

𝑓𝑜𝑟𝑘 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)𝑏
 × 100 

Where b is the slope estimated from the linear relationship between log (mass) 

and log(fork length) (Bolger and Connolly 1989). The mixed effects models 

included time (continuous variable representing weeks since start of 350 

experiment), a quadratic term for time (to account for non-linearity of traits 

through time), food treatment, temperature treatment, fertilisation group, and 

sex as fixed effects, and individual identity as a random effect to account for 

multiple measurements on some individuals. We included an interaction 

between food treatment and temperature treatment (to test for synergistic or 355 

antagonistic effects of food and temperature), and a three-way interaction (food 

treatment × temperature treatment × time) to test whether trajectories diverged 

through time according to treatment combination. To compare single stressor 

effects with combined stressor effects, we carried out pairwise comparisons 

across all levels of the food × temperature interaction using Tukey post-hoc tests 360 

(emmeans package (Lenth 2019)).  

To test whether trait trajectories were similar in mature fish and smolts, we 

created additional mixed effects models with time, a quadratic term for time, 

migratory tactics (categorical variable, two levels: smolt/mature), sex, and 

fertilisation group as fixed effects, an interaction between time and migratory 365 

tactics, and a random effect of individual identity. We excluded unassigned fish 
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in this comparison of “status” traits, as we could not determine their life-history 

trajectory, i.e. some of the unassigned fish may have been on a migratory 

trajectory, but were deferring actual migration until a later age. For all of the 

above models, temporal autocorrelation of the response variable was accounted 370 

for by modelling an autoregressive error structure as a first order lag function 

of time. Separate models were constructed for z-standardised measures of 

length, mass and condition, and normal errors were assumed in each case.  

We similarly used mixed effects models (normal errors) to explore factors 

influencing variation in final measurements of traits (z-standardised length, 375 

condition, and whole body lipids) at the end of the study. We included food 

treatment, temperature treatment, fertilisation group, sex, and an interaction 

between food treatment and temperature treatment as fixed effects, and date of 

terminal sample (categorical variable with 8 sampling dates) as a random effect. 

Additional mixed effects models tested for differences in final measurements of 380 

status traits according to migratory tactics (migratory tactic, sex and 

fertilisation group included as fixed effects, and terminal sample date as a 

random effect).  

To test if food and temperature treatments affected life-history tactics (Aim 2), 

we built three generalized linear models (GLMs) with a logit-link function and 385 

binary life-history response variables. One GLM predicted smolt status (binary 

response: 1 = smolt, 0 = non-smolt), a second GLM predicted maturation (binary 

response: 1 = mature, 0 = immature), and a third GLM tested for differences in 

expression of any life-history tactics by the end of the study (i.e. by age 2+, 

second year of life) (binary response: 1 = unassigned, 0 = smolt or mature). All 390 

GLMs included the categorical variables: food treatment, temperature 

treatment, sex, fertilisation group, and an interaction between food and 

temperature treatments. 

To explore variation in osmoregulatory performance, we first tested for 

differences in gill NKA activity (log transformed) and plasma chloride 395 

concentration between smolts and non-smolts using mixed effects models 

(normal errors). Each model included life-history tactic, fertilisation group, and 
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sex as fixed effects, and terminal sampling date as a random effect. We retained 

the “unassigned” life-history class in these analyses to determine if unassigned 

fish showed signs of hypo-osmoregulatory capacity in salt water relative to 400 

mature fish, suggesting that these unassigned fish were in fact on a smolting 

trajectory but were yet to express morphological indicators of smolting. Post-

hoc pairwise comparisons between life-history tactics were carried out using the 

emmeans package (Lenth 2019).  

We explored the mechanisms underpinning osmoregulatory capacity by fitting 405 

a GLM (normal errors) to gill NKA activity as a function of size-corrected plasma 

chloride concentration in smolts and non-smolts. Because hypo-

osmoregulatory capacity generally increases with size in brown trout (Finstad 

and Ugedal 1998), we corrected for size in this analysis by using the residuals of 

the linear relationship between plasma chloride and fork length. Finally, we 410 

assessed how food and temperature treatments influenced osmoregulatory 

capacity of smolts (Aim 3) using mixed effects models. Separate models (normal 

errors) were constructed for z-standardised gill NKA activity and plasma 

chloride concentration, with food treatment, temperature treatment, sex, 

fertilisation group, fork length (a covariate to correct for body size effects), and 415 

a food × temperature interaction included as fixed effects, and terminal sample 

date as a random effect.  

Marginal R2 values for mixed effect models were calculated using the MuMIn 

package in R (Barton 2019). We used likelihood ratio tests (LRT) to assess 

statistical significance of predictor variables for all models at a 5% alpha level, 420 

and non-significant interaction terms were excluded to interpret main effects. 

Analysis was carried out in R version 3.5.3 (R Core Team 2019), and all models 

were checked against assumptions of the given model (independence, non-

normality of residuals, heteroscedasticity and multicollinearity). 

Results 425 

At the termination of the experiment, 349 fish were assigned a life-history tactic 

(30 smolts and 319 mature fish) and 76 fish were classed as “unassigned” (Table 
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1). The frequency of smolting varied by food and temperature treatments. 

Overall, the proportion of smolts (averaged across fertilisation groups) was 

highest in the low food–cool temperature treatment (18.9 %), with the lowest 430 

proportion in the high food–warm temperature treatment (0.9 %), and 

intermediate proportions in low food–warm temperature (4.6 %) and high 

food–cool temperature treatments (3.8 %).  

The proportion of mature fish (averaged across fertilisation groups) was highest 

in the high food–warm temperature treatment (92.5 %), followed by similar 435 

proportions in high food–cool temperature (75.2 %) and low food–warm 

temperature treatments (75.0 %). Maturation was lowest in the low food-cool 

temperature treatment (57.6 %).  

Table 1: Percentage of brown trout (n = 425), F1 offspring of wild trout, classed 

as smolts (i.e. migratory tactic) or non-smolts (mature or unassigned) after two 440 

years of experimental tank-rearing. Offspring were derived from brood stock 

gametes fertilised in November and December 2015 (coded here as early 

November = “Nov” and late November/early December = “Nov-Dec”). Values 

correspond to percentages for each category (broken down by sex) of the total 

number of fish per tank (where each tank corresponds to a given food treatment 445 

by temperature regime combination, i.e. a single row in the table). Sample size 

(n) given in brackets after the %.  

Food, 
Temperature 

Fertilisation 
Group 

% Smolts 
(n) 

% Mature 
(n) 

% Unassigned 
(n) 

Female Male Female Male Female Male 

Low, Cool Nov 6.1 
(2) 

3.0 
(1) 

48.5 
(16) 

6.1 
(2) 

6.1 
(2) 

30.3 
(10) 

Low, Cool Nov-Dec 15.1 
(11) 

8.2 
(6) 

19.2 
(14) 

39.7 
(29) 

8.2 
(6) 

9.6 
(7) 

Low, Warm Nov 0 
(0) 

0 
(0) 

51.5 
(17) 

36.4 
(12) 

3.0 
(1) 

9.9 
(3) 

Low, Warm Nov-Dec 2.7 
(2) 

4.0 
(3) 

41.3 
(31) 

28.0 
(21) 

2.7 
(2) 

21.3 
(16) 

High, Cool Nov 2.9 
(1) 

0 
(0) 

32.4 
(11) 

32.4 
(11) 

5.9 
(2) 

26.5 
(9) 

High, Cool Nov-Dec 2.8 
(2) 

1.4 
(1) 

43.7 
(31) 

36.6 
(26) 

2.8 
(2) 

12.7 
(9) 

High, Warm Nov 0 
(0) 

0 
(0) 

61.8 
(21) 

23.5 
(8) 

2.9 
(1) 

11.8 
(4) 

High, Warm Nov-Dec 1.4 
(1) 

0 
(0) 

48.6 
(35) 

47.2 
(34) 

0 
(0) 

2.8 
(2) 
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Morphological trait trajectories 

Physiological trait trajectories diverged through time in response to food 450 

treatment, temperature treatment, and fertilisation group (Figure 1A, Table 2). 

The models for length (marginal R2 = 0.68) and condition factor (marginal R2 = 

0.33) retained significant interactions between food treatment and temperature 

treatment, food treatment and time, and temperature treatment and time 

(Table 2). The model for mass (marginal R2 = 0.61) retained a significant time × 455 

food × temperature interaction (Table 2). Fertilisation group had a significant 

effect on length (χ2 = 57.17, df = 1, p < 0.001), mass (χ2 = 24.49, df = 1, p < 0.001), 

and condition factor (χ2 = 8.73, df = 1, p = 0.003), with fish in the Nov 

fertilisation group tending to be larger and heavier than those in the Nov-Dec 

group, and in marginally lower condition. There was no significant effect of sex 460 

on length (χ2 = 0.73, df = 1, p = 0.394), mass (χ2 = 2.01, df = 1, p = 0.156) or 

condition factor (χ2 = 0.29, df = 1, p = 0.591) across the study. When food and 

temperature stressors were experienced in isolation (i.e. a single treatment 

applied) fish receiving the low food treatment were smaller (post hoc 

comparison of low food–cool temperature versus high food-cool temperature 465 

treatment: t-value = 12.06, p < 0.001), lighter (t-value = 13.26, p < 0.001) and in 

poorer condition (t-value = 10.74, p < 0.001). Fish in the warm temperature 

treatment were also smaller (warm temperature-high food versus cool 

temperature-high food treatment: t-value = 3.23, p = 0.007), lighter (t-value = 

3.66, p = 0.002), but in similar condition (t-value = 1.41, p = 0.495) (Figure 2A, 470 

B, C). The positive interaction term between food treatment and temperature 

treatment indicated that effects of combined stressor treatments on length, 

mass, and K were less than we might expect based off their effects in isolation.  

Fish also varied in length (marginal R2 = 0.55), mass (marginal R2 = 0.36) and 

condition factor (marginal R2 = 0.16) trajectories according to migratory tactics, 475 

with smolts tending to be smaller than mature fish across the duration of the 

study period (χ2 = 15.55, df = 1, p < 0.001). The significant interaction between 

migratory tactics and time for mass and condition factor (Figure 1B, Table 3) 
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indicated smolts gained less mass, with lower condition trajectories (Figure 

2D,E,F). 480 

 

 

Figure 1: Coefficient estimates (± associated standard errors) of mixed effects 

models describing z-standardised length, mass and condition trajectories of 

brown trout offspring (derived from wild-caught parents from a facultatively 

anadromous population) that were (A) exposed to food and temperature 

stressors and (B) classed as adopting either smolt (migratory tactic) or 

freshwater maturing (non-migratory/resident) tactics after 18 months of tank 

rearing. 
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Table 2: Results of the mixed effect model analysis for length, mass and condition trajectories of brown trout exposed to food and 

temperature stressors. The results of the model selection procedure on interaction terms are given, and the selected model for each 485 

response is highlighted in bold. The models included a random effect of individual identity and a first-order autoregressive correlation 

structure with respect to time (weeks of experimental treatment) was also modelled. 

Model df AIC logLik L-ratio p-value 

Length ~ time*food*temperature + time2 + fertilisation + sex 14 1222.8 -597.4   

Length ~ time*food + time*temperature + time2 + food*temperature + fertilisation + sex 13 1222.5 -598.3 1.8 0.186 

Length ~ time*food + time2 + food*temperature + fertilisation + sex 12 1229.7 -602.8 9.1 0.003 

Length ~ time*temperature + time2 +food*temperature + time2 + fertilisation + sex 12 1422.2 -699.1 201.6 < 0.001 

Length ~ time*food + time*temperature + time2 + fertilisation + sex 12 1236.1 -606.1 15.6 < 0.001 

Mass ~ time*food*temperature + time2 + fertilisation + sex 14 1667.1 -819.6   
Mass ~ time*food + time*temperature + time2 + food*temperature + fertilisation + sex 13 1672.6 -823.3 7.5 0.006 

Condition ~ time*food*temperature + time2 + fertilisation + sex 14 3023.4 -1497.7   

Condition ~ time*food + time*temperature + time2 + food*temperature + fertilisation + sex 13 3022.4 -1498.2 0.9 0.337 

Condition ~ time*food + time2 + food*temperature + fertilisation + sex 12 3029.8 -1502.9 9.4 0.002 

Condition ~ time*temperature + time2 +food*temperature + time2 + fertilisation + sex 12 3059.6 -1517.8 39.3 < 0.001 

Condition ~ time*food + time*temperature + time2 + fertilisation + sex 12 3027.3 -1501.7 7.0 0.008 
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Table 3: Results of the mixed effect model analysis for length, mass and condition trajectories of brown trout in the experiment with 

life-history classed as either smolts (i.e. migratory) or freshwater mature across the study period. The results of the model selection 490 

procedure on interaction terms are given, and the selected model for each response is highlighted in bold. The models included a 

random effect of individual identity and a first-order autoregressive correlation structure with respect to time (weeks of experimental 

treatment) was also modelled. 

Model df AIC logLik L-ratio p-value 

Length ~ time*life-history + time2 + sex + fertilisation 10 1300.6 -640.3   

Length ~ time + life- history + sex + fertilisation 9 1298.9 -640.4 0.2 0.637 

Mass ~ time*life-history + time2 + sex + fertilisation 10 1836.0 -908.0   

Mass ~ time + life- history + time2 + sex + fertilisation 9 1843.6 -912.8 9.7 0.002 

Condition ~ time*life-history + time2 + sex + fertilisation 10 2674.4 -1327.2   

Condition ~ time + life- history + time2 sex + fertilisation 9 2678.8 -1330.4 6.4 0.011 
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Figure 2: Trajectories of fork length, mass, and condition of brown trout 

offspring (derived from wild-caught parents from a facultatively anadromous 

population) under different food treatments and temperature treatments (A, 

B, C), and classed according to life-history tactics (D, E, and F). Food and 

temperature treatments are denoted in the format “Food-Temperature” (High 

or Low food, and Warm or Cool temperature) and life histories were classed 

as either smolt (migratory tactics) or mature (non-migratory). Week 0 = end 

of November 2015, when fish were 10 to 11 months old (Nov-Dec and Nov 

group, respectively). 

 495 

Morphological traits at the end of the study 

At the end of the experiment, fish varied in length, condition and whole body 

lipids depending on food treatment, temperature treatment, life-history tactics 

and fertilisation group (Figure 3A, B). The models describing final length 

(marginal R2 = 0.48) and condition (marginal R2 = 0.38) each retained a 500 

significant interaction between food treatment and temperature treatment but 

the model describing whole body lipids (marginal R2 = 0.41) did not (Table 4). 

We detected significant negative main effects of food treatment (χ2 = 63.44, df 

= 1, p < 0.001) but positive effects of temperature treatment (χ2 = 3.91, df = 1, p 
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= 0.048) on lipid levels (Figure 3A). The significant positive interaction term 505 

(Figure 3A) indicated an antagonistic effect of food and temperature treatments 

on length and condition (Figure 3C, D, and E). Fertilisation group significantly 

affected length (χ2 = 4.56, df = 1, p = 0.033) and condition (χ2 = 5.15, df = 1, p = 

0.023). Fish in the Nov fertilisation group tended to be larger but in poorer 

condition, with similar lipid levels (χ2 = 0.02, df = 1, p = 0.880) to those in the 510 

Nov-Dec group. There was no significant effect of sex on length (χ2 = 0.14 df = 

1, p = 0.712), condition (χ2 = 2.60, df = 1, p = 0.107) or lipids (χ2 = 1.91, df = 1, p = 

0.167).  

Life-history tactics significantly affected final length (χ2 = 4.80, df = 1, p = 0.036), 

final condition (χ2 = 19.62, df = 1, p < 0.001), and final lipids (χ2 = 13.87, df = 1, p 515 

= 0.002). Overall, smolts were smaller than mature fish, with lower condition 

values, and higher lipid levels (Figure 3B, C, D, E). Smolts and unassigned fish 

were similarly sized (χ2 = 0.35, df = 1, p = 0.554), with similar lipid levels (χ2 = 

1.49, df = 1, p = 0.222), though smolts had lower condition values (χ2 = 07.48, df 

= 1, p = 0.006) (Figure S3).  520 
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Figure 3: Coefficient estimates (± standard errors) from mixed effect models 

describing effects of (A) food treatment and temperature treatment and (B) 

migratory tactics on z-standardised final measures of length, condition, and 

whole body lipids of brown trout offspring classed as either smolts (migratory) 

or freshwater mature (non-migratory/resident) at the end of the experimental 

study (Spring 2018). Median values of (C) length, (D) condition, and (E) whole 

body lipids are represented by the white horizontal lines in each box in (C), 

(D), and (E). Food and temperature treatments are denoted in the format 

“Food-Temperature” (High or Low food, and Warm or Cool temperature). 

Note that only one smolt was recorded in the High-Warm treatment, and thus 

there is no corresponding white line for the median in the High-Warm 

treatment. 
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Table 4: Results of the mixed effect model analysis for length, condition, and whole body lipids of brown trout exposed to food and 

temperature stressors at the end of the experimental study period. The results of the model selection procedure on interaction terms 

are given, and the selected model for each response is highlighted in bold. The models included a random effect of terminal sample 525 

date. 

Model df AIC logLik L-ratio p-value 

Length ~ food*temperature + fertilisation + sex 8 901.5 -422.8   

Length ~ food + temperature + fertilisation + sex 7 916.5 -451.3 16.98 < 0.001 

Condition ~ food*temperature + fertilisation + sex 8 1034.0 -509.0   
Condition ~ food + temperature + fertilisation + sex 7 1036.9 -511.5 4.94 0.026 

Lipids ~ food*temperature + fertilisation + sex 8 375.5 -179.8   

Lipids ~ food + temperature + fertilisation + sex 7 375.7 -180.8 2.18 0.140 
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Migratory tactics 

The model describing the probability of smolting had significant effects of food 

treatment (χ2 = 16.50, df = 1, p < 0.001), temperature treatment (χ2 = 14.08, df = 530 

1, p < 0.001), fertilisation group (χ2 = 7.09, df = 1, p = 0.008) and sex (χ2 = 4.34, 

df = 1, p = 0.037). The interaction between food treatment and temperature 

treatment was not significant (LRT for model with and without interaction 

term: χ2 = 0.02, df = 1, p = 0.882). Food restriction increased the probability of 

smolting whereas the warm temperature treatment decreased the probability of 535 

smolting (Figure 4A, B). Males were less likely to smolt than females, and fish 

in the Nov fertilisation group were less likely to smolt than those in the Nov-

Dec group (Figure 4A, B).  

The model describing the probability of maturing also had significant effects of 

food treatment (χ2 = 19.13, df = 1, p < 0.001), temperature treatment (χ2 = 17.49, 540 

df = 1, p < 0.001), sex (χ2 = 15.90, df = 1, p < 0.001), but the effect of fertilisation 

group was not significant (χ2 = 1.04, df = 1, p = 0.308). The interaction between 

food treatment and temperature treatment was not significant (LRT for model 

with and without interaction term: χ2 = 0.99, df = 1, p = 0.319). In contrast to 

effects on smolting, the high food treatment increased the probability of 545 

maturing, as did the warm temperature treatment (Figure 4C, D). Males were 

less likely to mature than females in all treatments (Figure 4C, D).  

The model describing the probability of being unassigned a life-history tactic 

included significant effects of food treatment (χ2 = 5.62, df = 1, p = 0.018), 

temperature treatment (χ2 = 4.91, df = 1, p = 0.027), sex (χ2 = 34.05, df = 1, p < 550 

0.001) and fertilisation group (χ2 = 7.69 df = 1, p = 0.006). The interaction 

between food treatment and temperature treatment was not significant (LRT 

for model with and without interaction term: χ2 = 3.31, df = 1, p = 0.069). Fish 

were significantly more likely to be unassigned a life history in either the low 

food or cool temperature treatments, as were males, and fish from the Nov 555 

fertilisation group (Table 5). 
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Figure 4: Co-efficient estimates (± 95% confidence intervals) of GLMs 

describing probability of adopting (A, B) migratory and (C, D) maturation 

tactics in brown trout (n = 425, F1 offspring of wild trout from naturally 

facultatively anadromous population). Fish were classed as smolts or maturing 

after 18 months of tank rearing under varying food restriction and temperature 

treatments.  
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Table 5: Parameter estimates with associated standard errors (SE) for three 

binomial generalised linear models (GLM) predicting smolt (migratory) 560 

probability (dummy coded: smolt = 1, non-smolt = 0), freshwater maturation 

(dummy coded: mature/maturing = 1, immature = 0), and “unassigned” life-

history tactics (dummy coded: unassigned = 1, smolt/mature = 0) in brown trout 

(n = 425). The reference level of each factor is in brackets, i.e. effects in all 

models were contrasted against female fish from the Nov-Dec fertilisation in 565 

the High food and Cool temperature treatment. Statistical significance was 

assessed at p < 0.05. 

Effect Estimate SE t-value p-value 

GLM of probability of smolting:     

Intercept (High-Cool, Female, Nov-Dec 
fertilisation) 

-2.559 0.494 -5.176 < 0.001 

Food: Low 1.811 0.513 3.533 < 0.001 

Temperature: Warm -1.621 0.481 -3.372 0.001 

Fertilisation group: Nov -1.341 0.569 -2.358 0.018 

Sex: Male -0.849 0.417 -2.037 0.042 

GLM of probability of maturation:     

Intercept (High-Cool, Female, Nov-Dec 
fertilisation) 

1.879 0.284 6.625 < 0.001 

Food: Low -1.054 0.248 -4.242 < 0.001 

Temperature: Warm 1.004 0.247 4.073 < 0.001 

Fertilisation group: Nov -0.261 0.255 -1.023 0.306 

Sex: Male -0.963 0.248 -3.888 < 0.001 

GLM of probability of being unassigned a 
life history: 

    

Intercept (High-Cool, Female, Nov-Dec 
fertilisation) 

-2.923 0.366 -7.986 < 0.001 

Food: Low 0.644 0.276 2.337 0.019 

Temperature: Warm -0.601 0.274 -2.192 0.028 

Fertilisation group: Nov 0.784 0.281 2.789 0.005 

Sex: Male 1.655 0.311 5.320 < 0.001 
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Osmoregulatory performance 

Gill NKA activity varied according to life history (χ2 = 56.74, df = 2, p < 0.001), 570 

but was not affected by sex (χ2 = 1.28., df = 1, p = 0.258) or fertilisation group (χ2 

= 0.72, df = 1, p = 0.397). Post hoc testing showed smolts had significantly higher 

NKA activity than mature fish (t = -7.41, df = 172, p < 0.001) and unassigned fish 

(t = 5.15, df = 172, p < 0.001; Figure 5A). Similarly, plasma chloride concentration 

was significantly affected by life history (χ2 = 52.14, df = 2, p < 0.001), with no 575 

significant effect of sex (χ2 = 2.75, df = 1, p = 0.097) or fertilisation group (χ2 = 

2.03, df = 1, p = 0.154). Smolts had significantly lower plasma chloride 

concentration after saltwater exposure than mature fish (t = 5.56, df = 144, p < 

0.001) and unassigned fish (t = -6.77, df = 144, p < 0.001; see Figure 5B). Size-

corrected plasma chloride concentration decreased significantly with gill NKA 580 

activity in smolts (χ2 = 14.18, df = 1, p < 0.001, Figure 5C), however there was no 

significant relationship between size-corrected plasma chloride concentration 

and gill NKA activity in non-smolts (χ2 = 1.79, df = 1, p = 0.180, Figure 5D).  

After accounting for the significant effect of body size (χ2 = 5.97, df = 1, p = 

0.015), the model describing plasma chloride concentration in smolts (marginal 585 

R2 = 0.49) did not retain a significant food × temperature treatment interaction 

(LRT: χ2 = 0.26, df = 1, p = 0.610). We detected a significant main effect of food 

treatment on plasma chloride concentration (χ2 = 5.29, df = 1, p = 0.021), where 

the high food treatment was associated with lower chloride values (Figure 6A, 

B). There was no significant effect of temperature treatment (χ2 = 2.26, df = 1, p 590 

= 0.133), sex (χ2 = 1.60, df = 1, p = 0.205) or fertilisation group (χ2 = 2.77, df = 1, 

p = 0.096) on chloride concentrations. Mixed model analysis indicated non-

significant effects of fork length (χ2 = 0.06, df = 1, p = 0.814), food treatment (χ2 

= 0.03, df = 1, p = 0.862), temperature treatment (χ2 = 0.85, df = 1, p = 0.358), 

sex (χ2 = 2.47, df = 1, p = 0.116) and fertilisation group (χ2 = 3.53, df = 1, p = 0.060) 595 

on gill NKA activity in smolts (marginal R2 = 0.20, Figure 6A). Overall, this 

indicates positive direct effects food treatment (independent of size) on 

saltwater tolerance of smolts, which were not reflected in gill NKA activity. See 

Tables S6 and S7 for parameter estimates from the mixed effect models. 
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Figure 5: Variation in (A) gill NKA activity, and (B) plasma chloride 

concentration of brown trout – classed as smolts (migratory tactics) and 

mature (non-migratory), or unassigned a life-history tactic – after 24 hours in 

salt water (30 ppt salinity). Size-corrected plasma chloride concentration was 

negatively related to Gill NKA activity in (C) smolts (dashed line = 95% 

confidence interval) but there was no relationship in (D) non-smolts (mature 

and unassigned fish).  

 600 
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Figure 6: Coefficient estimates (± 95% confidence intervals) from the mixed 

effects models describing z-standardised (A) gill NKA activity and plasma 

chloride concentration of brown trout smolts after a 24 hours in salt water (30 

ppt salinity). Variation in plasma chloride concentration of smolts according 

to food treatment is shown in (B), where the white lines in each box represent 

the median. Note that only one smolt was recorded in the High-Warm 

treatment, and thus there is no corresponding white line for the median in the 

High-Warm treatment. 

 

Discussion 

Accelerating global change is exposing ecosystems to a multitude of co-

occurring stressors, the implications of which are uncertain, particularly for 

migratory populations. Here we showed that food restriction increased the 605 

occurrence of a migratory phenotype (smolts), but conversely elevated 

temperature reduced smolting rates in favour of increased freshwater 

maturation (a phenotype consistent with a residency tactic). The observed 

effects on life-history were underpinned by complex, interactive effects of these 

putative stressors on underlying status traits associated with migratory 610 

decisions.  
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Effects of multiple stressors on underlying morphological traits 

While stressors applied in isolation generally appeared to have negative effects 

on morphological traits, the effects of warming were less pronounced than food 

restriction, and varied depending on the response considered. Though fish at 615 

higher temperatures were smaller than their counterparts in the cool treatment, 

they maintained similar condition trajectories, and indeed had higher lipid 

stores at the end of the study, suggesting temperature may alter patterns of 

energy allocation in different ways to food restriction. Smaller sizes and higher 

lipid stores might arise if investment into gonadal development is prioritised 620 

over somatic growth earlier when environmental conditions appear favourable 

for early growth (i.e. the warm temperature treatments) (Jonsson et al. 2013), 

supported by the high prevalence of mature fish in warm treatments. 

Interestingly, the cumulative effects of food restriction and temperature were 

less than expected, based on their effects in isolation, suggesting complex 625 

antagonistic interactions between the stressors, whereby increased 

temperatures reduced body size and mass at high, but not low, food levels. The 

dampened response to temperature when combined with food restriction could 

perhaps be explained by metabolic rate depression under low food conditions, 

which has previously been documented in food-limited brown trout (Auer et al. 630 

2015, 2016). This, together with overall reduced consumption rates, may simply 

have swamped any effects of temperature on growth in the low food treatments. 

Indeed, bioenergetics modelling of stream-dwelling rainbow trout growth has 

indicated growth may be more affected by factors influencing food intake rates 

(such as reduced overall food availability) than by direct effects of temperature, 635 

particularly during warmer summer months (Railsback and Rose 1999). 

Effects of multiple stressors on migration 

The antagonistic effects of food restriction and higher temperatures on 

physiological traits were not apparent at the level of migratory tactics. Indeed, 

opposing (additive) effects of these putative stressors on migratory phenotypes 640 

seemed initially to be counterintuitive. While an increase in the migratory tactic 

in response to food limitation is in line with previous work (Olsson et al. 2006; 
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Wysujack et al. 2009; O’Neal and Stanford 2011; Jones et al. 2015; Archer et al. 

2019), surprisingly, a temperature increase of 1.8 °C above the natural 

temperature regime of the source catchment reduced smolting rates. An energy 645 

limitation scenario (where an environmental stressor may act to prevent 

individuals from reaching genetically determined maturation thresholds) was 

supported in our results at the level of the status traits. Future migrants (i.e. 

smolts) were consistently smaller than fish that matured in fresh water (i.e. 

residents) and differences in mass and condition trajectories indicated migrants 650 

were energetically deficient (relative to mature fish). Energetic limitation 

appeared to be associated with low food availability, but less so with warmer 

temperatures. 

Warmer temperatures have been proposed to generally increase the frequency 

of migrants through energetic limitation, if associated elevated metabolic 655 

demands are not offset by increased energetic intake (Sloat and Reeves 2014; 

Kendall et al. 2014). However, warming can have a range of context-dependent 

impacts on patterns of energy acquisition and allocation in salmonines, which 

in turn may lead to a diversity of effects on life histories. For example, warmer 

temperatures are associated with higher levels of growth up until some thermal 660 

optimum (Jensen 1990; Forseth and Jonsson 1994; Elliott et al. 1995; Ojanguren 

et al. 2001; Jonsson et al. 2013), but bioenergetics modelling shows that optimal 

temperatures for growth are negatively related to daily ration amount and body 

size (Beauchamp 2009). Thus, higher temperatures could either increase or 

decrease average somatic growth, depending on food supply, the current 665 

distribution of fish sizes, and proximity to thermal growth optima. High somatic 

growth, along with high body condition and lipids, has been linked to increased 

freshwater maturation in facultatively migratory salmonines (Jonsson and 

Jonsson 1993; Dodson et al. 2013; Hecht et al. 2015), but other studies have 

found that faster growing juveniles may be more likely to migrate at earlier ages 670 

and smaller sizes because they are more energetically constrained by limited 

food availability (owing to much higher metabolic costs) than slower growers 

(Forseth et al. 1999). Moreover, migration tendency is linked to the relative 
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productivity of marine and freshwater habitats, with anadromy more prevalent 

in areas where the marine environment offers better opportunities for feeding 675 

and growth (e.g. in higher latitudes) (Gross et al. 1988). Although the 

temperature stressor we simulated in our study is in line with projected climate 

warming scenarios of 1–3 °C (IPCC 2014), our warm temperature treatment 

remained largely within the optimal temperature range for growth in brown 

trout of 13–17 °C (Elliott et al. 1995; Elliott and Hurley 2000; Ojanguren et al. 680 

2001) (maximum temperature in the warm treatments was 18.2 °C). It is 

therefore likely that warmer temperatures did not tip most individuals into an 

energetic deficit, thus fish were more likely to mature, rather than to smolt, in 

the warm treatments.  

Bioenergetic modelling of migratory variation in steelhead trout has suggested 685 

that reductions in food resources can be mediated or exacerbated by water 

temperatures to alter expression of life histories (Benjamin et al. 2013). Few 

studies have empirically tested the cumulative effects of food supply and 

temperature on migratory tactics, but from our study, it appears these two 

environmental stressors may act additively, rather than synergistically, at least 690 

for populations that are well within their thermal limits. Moreover, the positive 

effect of temperature on maturation, coupled with negative temperature effects 

on the frequencies of smolts and unassigned fish, indicates here that warming 

acts to hasten the expression of life histories, driving earlier maturation instead 

of migration. Similar changes in life-history dynamics have been predicted in 695 

partially migratory masu salmon (O. masou), where favourable early growth 

conditions associated with warming promoted maturation over migration and 

caused an overall decline in life-history diversity (Morita et al. 2014).  

Antagonistic effects of temperature and food on physiological traits (presumed 

to underpin migratory decisions) were not translated at the level of migratory 700 

tactics (where the putative stressors combined additively). Our results provide 

additional evidence that multiple stressors can alter ecological responses in 

unexpected ways, sometimes termed “ecological surprises” (Paine et al. 1998). 

This suggests that effects of stressors can vary depending on the level of 
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organisation, or indeed the response, that is measured (Galic et al. 2018). It also 705 

underscores how environmental factors may affect migratory decisions directly, 

and not solely through environmentally-induced changes in putative cueing 

traits. For example, temperature can affect gene expression with long-lasting 

consequences for future behaviour and life history (Jonsson and Jonsson 2019). 

There is some evidence to support that warming, in particular, can directly alter 710 

life-history tactics e.g. temperature hastened maturation at smaller sizes in 

nine-spined sticklebacks (Pungitius pungitius) independently of temperature-

mediated growth (Kuparinen et al. 2011). Changes in somatic growth or energy 

allocation due to antagonistic effects of stressors therefore adds an additional 

layer of complexity to our ability to infer future migratory tactics from patterns 715 

of juvenile growth.  

Early life conditions affect migration propensity 

The effects of fertilisation group on migratory propensity was an unexpected 

outcome of our study. While the relatively small numbers of brood stock used 

makes it difficult to draw conclusions regarding differences between 720 

fertilisation groups, which most likely stem from inherited genetic effects or 

epigenetic/parental effects, differences might nonetheless reflect non-inherited 

variation arising from early-life environment that has knock-on effects for 

future phenotype (Burton and Metcalfe 2014). Moreover, differences in the 

timing of readiness for reproduction/fertilisation also indicates differences 725 

among brood stock (e.g. spawning site in the wild) that may have translated into 

genetic or parental effects, rather than an effect of fertilisation date per se. 

Although both fertilisation groups experienced the same food restriction and 

temperature treatments, phenotypic differences that were established before 

the application of treatments continued throughout the experimental phase of 730 

the study (e.g. fish from the Nov fertilisation group, whilst larger, tended to be 

in poorer condition), supporting genetic/ parental effects as factors which may 

be equally as important as downstream environmental conditions. 

Interestingly, individuals in the earlier fertilisation group were more likely to be 

classed as “unassigned” by the end of the study. Delayed phenotypic expression 735 
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of migratory tactics can be reconciled with the existence of multiple decision 

windows, where an initial window determines the overall migration versus 

residency decision but then subsequent windows determine the actual age at 

which migrants become smolts, and residents mature (Ferguson et al. 2019). 

Age at smolting, and age at maturation, may involve similar threshold 740 

mechanisms as the overarching migration decision but perhaps with different 

status traits playing the role of ‘trigger’; e.g. size or growth rates may determine 

age at smolting in Atlantic salmon but lipid levels may determine age at first 

maturation (Rowe et al. 1991; Jonsson and Jonsson 1993, 2005). Complex 

environmental stressor effects on these various cues could then increase or 745 

decrease overall life-history diversity through temporal variation in migration 

or maturation patterns. In the Erriff system from which our brood stock was 

obtained, seaward-migration of wild fish is typically undertaken by smolts at 

two or three years after hatching (Gargan et al. 2016), with potentially up to half 

of smolts migrating at age 3+. Similarly, although the age distribution of mature 750 

residents is unknown for the Erriff system, maturation at ages of 3+ and older is 

likely. As such, the patterns we observed might have reflected stressor effects 

on age at migration or age at maturity, in addition to effects on tactic choice per 

se. At least in relation to food restriction, we have no reason to expect that the 

increased smolting rates we observed in our low food treatments at age 2+ 755 

would have been counter-balanced by increased maturation rates at age 3+ of 

the remaining unassigned fish; if anything, these were likely to have been simply 

delaying actual smolting until an older age, and therefore larger size (given that 

larger smolts are more likely to survive the critical transition to the marine 

environment). In other words, smolting rate differences measured across ages 760 

2+ and 3+ combined, if the experiment had been continued for an additional 

year, were likely to have been even more pronounced between food treatments. 

It is less obvious whether the same can be said for temperature effects, but we 

have no a priori reason to expect that age 3+ smolting rates would respond in 

the opposite direction to sustained higher temperatures than age 2+ smolting 765 

rates.  
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Stressor effects on future migratory capacity 

A final aim of our study was to assess if exposure to multiple stressors influenced 

the capacity of migratory individuals to successfully transition to salt water (an 

indicator of future migratory success). Smolts generally showed heightened 770 

hypo-osmoregulatory performance relative to non-smolts (for a given fish size 

as indexed by reduced plasma chloride levels following saltwater exposure), 

which was associated with increased Na+, K+-ATPase activity, a key enzyme 

involved in ion regulation. This is in agreement with many previous studies in 

salmonines that have described high NKA activity in smolts, which is related 775 

directly to ability to maintain homeostasis in seawater (McCormick et al. 1998, 

2009b, 2013; Nilsen et al. 2007). We had expected the addition of stressors 

might further influence the hypo-osmoregulatory performance of smolts 

through negative effects on size, irrespective of enzyme activity, and indeed, we 

did detect a size dependency in plasma chloride levels, which was not reflected 780 

in gill NKA activity. Size-dependent increases in salinity tolerance that are 

independent of the size-dependent smolt decision have also been previously 

established for salmonines (McCormick et al. 1998). Thus, though the overall 

frequency of smolting was lower in optimal growth conditions (i.e. high food 

regimes in our study), the small number of smolts that were produced under 785 

these good growing conditions were larger and in better condition than their 

counterparts exposed to less favourable conditions. Intriguingly, we detected an 

additional negative effect of food restriction on hypo-osmoregulatory 

performance that was independent of size. Food limitation could potentially 

contribute to competitive interactions between individuals, emergence of 790 

dominance hierarchies, and generally heightened physiological stress, with 

implications for seawater tolerance and survival of brown trout (Pickering 1989; 

Sigholt and Finstad 1990; Liebert and Schreck 2006; Midwood et al. 2014). 

Collectively, these results suggest that food restriction may act as a stressor to 

migrants, which may have negative impacts for survival at sea (Ward and Slaney 795 

1988), and possibly reduce the overall fitness of the migratory life history.  
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Implications and considerations 

Considerable uncertainty still surrounds how environment and genetics 

integrate, via mediating physiological traits, to influence complex life-history 

patterns of facultatively migratory species (Crozier et al. 2008). Here, we 800 

focused on two stressors that are likely to occur in synchrony based on 

projections of global change, with important implications for an experimentally 

reared population of trout that can be extrapolated to wild populations, though 

some caveats should be noted. Whilst macroinvertebrate abundance and size 

are indeed projected to shrink with rising temperatures across the range of 805 

brown trout distribution (Durance and Ormerod 2007), in natural systems 

trout have been shown to track shifts in prey community assemblies 

(Woodward et al. 2010) or even become more selective in diet as temperatures 

increase (O’Gorman et al. 2016). Furthermore, given that our study population 

originated from a relatively cool catchment, it is possible that temperature 810 

increases in similar systems will primarily serve to increase fish 

growth/energetic status and promote residency, although this very much 

depends on how other key factors such as food supply, flow rates, biotic factors 

also respond to climate change. Any reductions in anadromy would likely alter 

the transfer of nutrients between freshwater and marine systems, with 815 

consequences for wider ecosystem processes (Doughty et al. 2016). If warming 

results in overall decreases in life-history diversity within populations (e.g. 

Benjamin et al. 2013; Morita et al. 2014) that are coherent over broad spatial 

scales, this could lead to a reduction in the “portfolio effect” in salmonines, 

whereby maintaining a range of phenotypic diversity buffers aggregations of 820 

populations and even entire species from changing environmental conditions 

(Schindler et al. 2015). 

Expanding our approach to additional populations, including those that are 

closer to their thermal limits, e.g. in southern Europe, may alter the patterns we 

observed here (Almodóvar et al. 2012). There is some evidence for genotype by 825 

temperature interactions in key phenotypic traits in salmonines (Doctor et al. 

2014) but the role of intrinsic factors relative to environmental context requires 
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further exploration (Ferguson et al. 2017). Common garden or reciprocal 

transplant style experiments in the wild would help to elucidate the 

mechanisms underpinning responses to multiple stressors in migratory species, 830 

whilst also incorporating the complexities of natural systems, such as changes 

in prey community structure, or abiotic correlates of warming (e.g. reduced 

oxygen/flow) (Clews et al. 2010). Nevertheless, our study has important 

implications for the development of management strategies to conserve 

facultatively migratory salmonines, a culturally iconic group in global decline 835 

due to aquaculture expansion, habitat degradation, and climate change 

(Costello 2009; Limburg and Waldman 2009).  
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Figure S1: Location in the west of Ireland of brown trout brood stock collected 

by seine netting in winter 2015, and used to produce F1 offspring for an 

experimental tank-rearing study. Fish used in the study were offspring of 

brood stock collected in Tawnyard Lough in the Erriff catchment (a 

population with a high natural frequency of anadromy).  
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Figure S2: Weekly temperatures (open circles) for the three years preceding 

the study, as recorded at the Marine Institute long-term monitoring station at 

Newport, Mayo (west of Ireland), close to the Erriff catchment where brood 

stock used in the experiment originated. Red and blue lines are the mean 

weekly temperatures (averaged across tanks) for the cool and warm 

treatments in the laboratory experiment. The grey line represents the thermal 

growth optimum for trout (13.9 °C) (Elliott and Hurley 2000).  
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Figure S3: Final measures of (A) length, (B) condition, and (C) whole body 

lipids of brown trout offspring classed as either smolts (migratory) or 

unassigned a life-history tactic at the end of the experimental study. Median 

values of length, condition, and whole body lipids are represented by the white 

horizontal lines in each box in (A), (B), and (C).  

 

  



Chapter 3 | Supporting Information 
 

129 
 

Table S1: Brood stock crossing design for producing F1 offspring of wild-origin 

brown trout collected by seine netting from a population in Tawnyard Lough in 

the west of Ireland. Each female was stripped of eggs, which were then fertilised 

by the milt of two males from the same population and incubated in a hatchery 

facility within the Burrishoole catchment. Fish were subsequently reared in two 

separate groups according to fertilisation date, where “November fertilisation 

group” refers to offspring produced from crosses made on 12th November 2015, 

and “Nov-Dec fertilisation group” refers to offspring produced from crosses on 

27th November and 10th December 2015.  

Stripping 
date 

Fertilisation 
Group 

Catchment Sex ID 
Male 

cross #1 
Male 

cross #2 

12/11/2015 Nov 
Erriff 

(Tawnyard) 
Female TF1 TM1 TM2 

12/11/2015 Nov 
Erriff 

(Tawnyard 
Female TF2 TM1 TM2 

12/11/2015 Nov 
Erriff 

(Tawnyard) 
Female TF3 TM3 TM4 

27/11/2015 Nov-Dec 
Erriff 

(Tawnyard) 
Female TF4 TM5 TM6 

27/11/2015 Nov-Dec 
Erriff 

(Tawnyard) 
Female TF5 TM5 TM6 

27/11/2015 Nov-Dec 
Erriff 

(Tawnyard) 
Female TF6 TM7 TM8 

10/12/2015 Nov-Dec 
Erriff 

(Tawnyard) 
Female TF7 TM9 TM10 
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Table S2: Parameter estimates with associated standard errors (SE) for mixed 

model analyses testing the effects of food treatment, temperature treatment, 

fertilisation group, and sex on the fork length (cm), mass (g), and condition 

trajectories of brown trout over 18 months of experimental tank rearing. 

Measurements were taken at key periods denoted by “time”. Effects were 

contrasted against female fish from the Nov-Dec fertilisation group in the high 

food and cool temperature treatment. Responses are z-standardised and 

statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for length     

Intercept (Female, Nov-Dec, Cool, High) 0.48 0.07 7.28 < 0.001 

Time 0.87 0.02 51.23 < 0.001 

Time2 -0.22 0.01 -17.45 < 0.001 

Sex: Male -0.04 0.05 -0.85 0.397 

Fertilisation group: Nov  0.42 0.06 7.53 < 0.001 

Temperature: Warm  -0.24 0.08 -3.23 0.001 

Food: Low  -0.90 0.07 -12.06 < 0.001 

Time × Warm temperature 0.06 0.02 3.02 0.003 

Time × Low food -0.32 0.02 -16.08 < 0.001 

Low food × Warm temperature 0.42 0.11 3.96 < 0.001 

Mixed model for mass     

Intercept (Female, Nov-Dec, Cool, High) 0.58 0.07 8.18 < 0.001 

Time 0.89 0.03 32.55 < 0.001 

Time2 -0.13 0.02 -8.09 < 0.001 

Sex: Male -0.08 0.05 -1.41 0.159 

Fertilisation group: Nov  0.28 0.06 4.93 < 0.001 

Temperature: Warm  -0.29 0.08 -3.66 < 0.001 

Food: Low  -1.03 0.08 -13.26 < 0.001 

Time × Warm temperature -0.01 0.04 -0.15 0.880 

Time × Low food -0.62 0.04 -16.05 < 0.001 

Low food × Warm temperature 0.41 0.11 3.69 < 0.001 

Time × Low food × Warm temperature 0.15 0.06 2.72 0.007 

Mixed model for condition      

Intercept (Female, Nov-Dec, Cool, High) 0.76 0.09 8.36 < 0.001 

Time -0.29 0.04 -7.88 < 0.001 

Time2 -0.17 0.03 -5.83 < 0.001 

Sex: Male 0.04 0.07 0.54 0.593 

Fertilisation group: Nov  -0.21 0.07 -2.94 0.003 

Temperature: Warm  -0.14 0.10 -1.41 0.160 

Food: Low  -1.02 0.09 -10.74 < 0.001 

Time × Warm temperature 0.13 0.04 3.08 0.002 

Time × Low food -0.27 0.04 -6.31 < 0.001 

Low food × Warm temperature 0.35 0.13 2.64 0.009 
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Table S3: Parameter estimates with associated standard errors (SE) for mixed 

model analyses testing the effects of life-history tactics, fertilisation group, and 

sex on the fork length (cm), weight (g), and condition trajectories of brown 

trout classed as smolts (migratory) or mature (non-migratory) over 18 months 

of experimental tank rearing. Measurements were taken at key periods denoted 

by “time”. Effects were contrasted against mature female fish from the Nov-Dec 

fertilisation group. Responses are z-standardised and statistical significance was 

assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for length     

Intercept (Female, Nov-Dec, Mature) 0.18 0.06 3.06 0.002 

Time 0.74 0.01 52.94 < 0.001 

Time2 -0.23 0.02 -13.91 < 0.001 

Life-history: Smolt -0.48 0.12 -3.93 < 0.001 

Sex: Male -0.07 0.07 -1.06 0.290 

Fertilisation group: Nov  0.33 0.07 4.48 < 0.001 

Mixed model for mass     

Intercept (Female, Nov-Dec, Mature) 0.16 0.08 2.18 0.029 

Time 0.64 0.02 32.27 < 0.001 

Time2 -0.13 0.02 -5.95 < 0.001 

Life-history: Smolt -0.54 0.15 -3.47 0.001 

Sex: Male -0.10 0.08 -1.19 0.234 

Fertilisation group: Nov  0.19 0.09 2.11 0.036 

Time × Smolt -0.20 0.06 -3.10 0.002 

Mixed model for condition     

Intercept (Female, Nov-Dec, Mature) 0.42 0.09 4.81 < 0.001 

Time -0.32 0.03 -11.99 < 0.001 

Time2 -0.16 0.03 -4.63 < 0.001 

Life-history: Smolt -0.80 0.16 -4.87 < 0.001 

Sex: Male 0.02 0.09 0.18 0.859 

Fertilisation group: Nov  -0.32 0.10 -3.37 0.001 

Time × Smolt -0.24 0.09 -2.53 0.012 
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Table S4: Parameter estimates with associated standard errors (SE) for mixed 

model analysis testing the effects of food treatment, temperature treatment, 

fertilisation group, and sex on the final fork length (cm), condition, and whole 

body lipids (%) of brown trout after 18 months of experimental tank-rearing. 

Effects were contrasted against female fish from the Nov-Dec fertilisation group 

in the high food and cool temperature treatment. Responses are z-standardised 

and statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for length     

Intercept (Female, Nov-Dec, High, Cool) 0.61 0.14 4.50 < 0.001 

Sex: Male 0.02 0.07 0.37 0.714 

Fertilisation group: Nov  0.40 0.19 2.12 0.078 

Temperature: Warm  -0.20 0.09 -2.16 0.031 

Food: Low  -1.53 0.16 -9.68 < 0.001 

Low food x Warm temperature 0.55 0.13 4.13 < 0.001 

Mixed model for condition      

Intercept (Female, Nov-Dec, High, Cool) 0.80 0.15 5.31 < 0.001 

Sex: Male -0.12 0.08 -1.60 0.110 

Fertilisation group: Nov  -0.45 0.20 -2.25 0.065 

Temperature: Warm  -0.01 0.11 -0.02 0.987 

Food: Low  -1.36 0.18 -7.65 < 0.001 

Low food x Warm temperature 0.35 0.16 2.21 0.027 

Mixed model for whole body lipids (%)     

Intercept (Female, Nov-Dec, High, Cool) 0.65 0.16 4.08 < 0.001 

Sex: Male -0.17 0.13 -1.36 0.177 

Fertilisation group: Nov  0.03 0.17 0.15 0.887 

Temperature: Warm  0.25 0.13 1.95 0.054 

Food: Low  -1.25 0.16 -7.84 < 0.001 
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Table S5: Parameter estimates with associated standard errors (SE) for mixed 

model analysis testing the effects of life-history tactics, fertilisation group, and 

sex on the final fork length (cm), condition and whole body lipids (%) of brown 

trout after 18 months of experimental tank-rearing. Effects were contrasted 

against mature female fish from the Nov-Dec fertilisation group. Responses are 

z-standardised and statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for length     

Intercept (Mature, Female, Nov-Dec) -0.11 0.27 -0.40 0.688 

Life-history: Smolt -0.28 0.13 -2.08 0.038 

Sex: Male 0.03 0.07 -0.35 0.726 

Fertilisation group: Nov 0.44 0.52 0.84 0.435 

Mixed model for condition      

Intercept (Mature, Female, Nov-Dec) 0.27 0.23 1.17 0.241 

Life-history: Smolt -0.73 0.17 -4.40 < 0.001 

Sex: Male -0.14 0.09 -1.51 0.133 

Fertilisation group: Nov -0.48 0.43 -1.11 0.309 

Mixed model for whole body lipids (%)     

Intercept (Mature, Female, Nov-Dec) -0.23 0.35 -0.67 0.504 

Life-history: Smolt 0.61 0.17 3.67 < 0.001 

Sex: Male -0.17 0.14 -1.26 0.209 

Fertilisation group: Nov 0.43 0.67 0.64 0.547 
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Table S6: Parameter estimates with associated standard errors (SE) for mixed 

model analysis testing the differences in the gill NKA activity (log transformed) 

and plasma chloride concentration of brown trout classed as smolts (migratory 

tactics), mature or unassigned (non-migratory tactics) after 24 saltwater 

immersion. Effects were contrasted against mature female fish from the Nov-

Dec fertilisation group. Statistical significance was assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for gill NKA activity (log 
transformed) 

    

Intercept 0.12 0.16 0.77 0.445 

Life-history: Smolt 0.81 0.11 7.41 < 0.001 

Life-history: Unassigned 0.02 0.12 0.15 0.879 

Sex: Male -0.09 0.08 -1.12 0.266 

Fertilisation group: Nov 0.23 0.27 0.84 0.442 

Mixed model for plasma chloride 
concentration 

    

Intercept 161.61 3.59 45.00 < 0.001 

Life-history: Smolt -16.24 2.92 -5.56 < 0.001 

Life-history: Unassigned 13.68 3.69 3.71 < 0.001 

Sex: Male 3.84 2.36 1.63 0.105 

Fertilisation group: Nov -9.04 6.45 -1.40 0.210 
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Table S7: Parameter estimates with associated standard errors (SE) for mixed 

model analysis testing the effects of fork length, food treatment, temperature 

treatment, fertilisation group, and sex on the gill NKA activity and plasma 

chloride concentration after 24 saltwater immersion of brown trout smolts after 

18 months of experimental tank-rearing. Effects were contrasted against female 

fish from the Nov-Dec fertilisation group in the high food and cool temperature 

treatment. Responses are z-standardised and statistical significance was 

assessed at p < 0.05.  

Effect Estimate SE t-value p-value 

Mixed model for gill NKA activity     

Intercept 0.57 0.59 0.98 0.342 

Fork length -0.06 0.29 -0.21 0.840 

Food: Low -0.09 0.62 -0.15 0.889 

Temperature: Warm -0.42 0.52 -0.80 0.435 

Sex: Male -0.64 0.47 -1.37 0.189 

Fertilisation group: Nov -1.12 0.69 -1.64 0.200 

Mixed model for plasma chloride 
concentration 

    

Intercept -0.88 0.47 -1.90 0.072 

Fork length -0.43 0.20 -2.18 0.041 

Food: Low 1.08 0.53 2.06 0.109 

Temperature: Warm 0.54 0.40 1.34 0.194 

Sex: Male -0.34 0.30 -1.13 0.271 

Fertilisation group: Nov 0.79 0.53 1.49 0.211 
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Abstract 

Metabolic rates vary hugely within and between populations of the same 

species, yet we know relatively little about the factors causing this intraspecific 

variation. Given that metabolic rate determines the energetic cost of life, 

uncovering these sources of variation is important to understand and forecast 5 

population responses to environmental change. Moreover, few studies have 

examined factors causing intraspecific variation in metabolic flexibility. Here, 

we explore if, and how, extrinsic environmental conditions and population-

specific factors contribute to variation in metabolic traits in brown trout, an 

iconic species that is capable of extreme variation in migratory life-history 10 

tactics. We measured metabolic traits in offspring from two wild populations of 

brown trout that naturally show divergent migratory tactics (one anadromous 

i.e. sea-migratory, and one non-anadromous) that had been reared under 

experimental conditions of long-term food restriction. Both populations 

showed decreased standard metabolic rates (SMR – baseline energy 15 

requirements) under low food conditions. The non-anadromous population 

had an overall lower SMR relative to the anadromous population, but maximum 

metabolic rate (MMR), and consequently, aerobic scope (AS), were both higher 

in the anadromous population, and were higher overall in males compared to 

females. Intriguingly, the anadromous population had a higher AS under low 20 

food conditions compared to optimal food conditions, indicating population-

specific effects of food restriction on AS. Collectively, our results suggest the 

different components of metabolic rate can vary in their response to extrinsic 

environmental conditions, and can also vary according to intrinsic (i.e. 

population background/sex) effects. Moreover, populations can further differ in 25 

their flexibility of metabolic traits, potentially due to population-specific factors 

related to life history (e.g. migratory tactics). Overall, our study suggests that 

responses to environmental change may be population specific, but 

incorporating an understanding of variation in metabolic traits, and their 

flexibility, will improve our ability to conserve populations.   30 



Chapter 4 | Food and population influence metabolism 
 

138 
 

Introduction 

Metabolic rate represents the fundamental energetic cost of living that 

underpins organism performance in variable and changing environments. Since 

metabolism has profound implications for fitness (Pettersen et al. 2016, 2018), 

relatively higher or lower metabolic rates have in turn been linked to variation 35 

in fitness components such as growth rates (Auer et al. 2015c; Zeng et al. 2017), 

and survival (Bochdansky et al. 2005) in ways that often depend on 

environmental context (Burton et al. 2011; Auer et al. 2015b, c). The minimum 

energy expenditure required for tissue maintenance and homeostasis is termed 

standard metabolic rate (SMR) in ectotherms (basal metabolic rate (BMR) in 40 

endotherms within the thermoneutral range). SMR occurs when an organism is 

inactive, unstressed, and not digesting (Chabot et al. 2016). Maximum 

metabolic rate (MMR) sets the upper bounds of energy expenditure as the 

highest rate of aerobic metabolism (transport of oxygen and production of ATP) 

that can be achieved (Norin and Metcalfe 2019). Together, SMR and MMR 45 

define an organism’s aerobic scope (AS), a trait that determines the amount of 

energy that can be directed towards key functions including digestion, 

movement, growth, and reproduction through increased metabolism, once 

baseline energy requirements (i.e. SMR) are met (Guderley and Pörtner 2010).  

Large variation in both SMR/BMR and MMR (and consequently AS) exists 50 

among species, populations, and individuals (Burton et al. 2011; Konarzewski 

and Książek 2013; Hillman et al. 2013; Norin and Clark 2016), with variation 

linked to differences in lifestyle (Killen et al. 2010), geographic distribution 

(Angilletta 2001; Naya and Bozinovic 2012), thermal regime (Álvarez et al. 

2006; Eliason et al. 2011; Sandblom et al. 2016), and behavioural differences 55 

(Metcalfe et al. 2016). In aquatic ectotherms, factors related to life-history 

tactics appear to underpin many inter-individual and intra-individual 

differences in metabolic traits. Along with a 16-fold variation in MMR reported 

across fish species that occupy different ecological niches (Norin and Clark 

2016), metabolic rates can still show c. 3-fold inter-individual variation after 60 

accounting for age and size differences (Metcalfe et al. 2016). Such variation 
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likely arises because the optimal combination of the various components of 

metabolic phenotype is context-specific (Auer et al. 2015b, c), or because 

populations (or types of individuals within populations) experience different 

selection pressures due to life-history differences, or extrinsic/intrinsic factors. 65 

For example, sockeye salmon Oncorhynchus nerka populations that undertake 

longer, or more challenging migrations have higher AS (Eliason et al. 2011), and 

higher metabolic rates have also been documented in males versus females, e.g. 

higher AS in male pink salmon O. gorbuscha (Clark et al. 2011). 

On top of variation per se, patterns of covariation in metabolic phenotypes can 70 

also be different across and within species. SMR and MMR have been proposed 

to be tightly linked because of the “increased intake hypothesis”, whereby a high 

SMR requires investment in metabolic machinery that also facilitates a high 

MMR, with associated fitness benefits (Biro and Stamps 2010; Burton et al. 

2011). While SMR and MMR generally do appear to be correlated within species 75 

(Auer et al. 2017), the traits can vary in their response to different 

environmental factors, and the coupling of metabolic traits can be context 

dependent (Killen et al. 2013; Norin et al. 2016). Moreover, a decoupling of SMR 

and MMR can occur over time because each is under individual selection 

pressures (Norin and Metcalfe 2019), which often operate in parallel but may 80 

also act independently (e.g. Wone et al. 2015; Barceló et al. 2016). Thus, even if 

SMR and MMR are somewhat functionally linked, ecologically significant 

variation in overarching AS can arise due to differences in the sensitivities of 

each metabolic trait to environmental conditions. Thus, within-individual 

variation in response to variation in the environment may account to some 85 

extent for intraspecific patterns of variation and covariation in metabolic traits. 

The ability of a single genotype to display different physiological, 

morphological, or behavioural phenotypes in response to variation in 

environmental factors is called phenotypic plasticity. Phenotypic ‘flexibility’ has 

been defined as a particular type of plasticity in which within-individual 90 

changes are reversible (Piersma and Drent 2003), as distinct from 

developmental plasticity, where phenotypic responses to early developmental 
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conditions remain relatively fixed for the rest of life (West-Eberhard 2003). 

Phenotypic flexibility is an important attribute that facilitates individuals in 

coping with changing conditions (Seebacher et al. 2015), with life-history 95 

consequences that may scale up to affect higher levels of organisation, for 

example, population persistence, community stability, and ecosystem processes 

(Bolnick et al. 2011). Flexibility in metabolic rate is likely to be an important 

component here, and indeed, there is a growing body of evidence supporting 

metabolic plasticity as a widespread response to environmental change 100 

(Hofmann and Todgham 2010). Factors including temperature (Seebacher et al. 

2015; Sandblom et al. 2016), food availability (Auer et al. 2015c, 2016a; Zeng et 

al. 2018), food quality (Naya et al. 2007), oxygen availability (Hochachka et al. 

1996; Norin et al. 2016) and salinity (Allan et al. 2006) have all been shown to 

induce short term and longer term (i.e. acclimation) changes in metabolic rates 105 

of organisms.  

In ectotherms, SMR generally appears to be more flexible in the extent of its 

response to extrinsic factors than MMR (Norin and Metcalfe 2019). For 

example, increased temperatures were shown to cause reduction of SMR in 

European perch Perca fluviatilis, a thermal compensation response that was not 110 

apparent in MMR (Sandblom et al. 2016). Similar flexibility in BMR relative to 

MMR (or cold-induced maximum aerobic metabolism) has been demonstrated 

in endotherms in response to temperature (Nespolo et al. 2001; van de Ven et 

al. 2013; Dubois et al. 2016). Food availability has also been frequently shown to 

induce flexibility in SMR (and BMR) (Naya et al. 2007; Auer et al. 2015c, 2016a; 115 

Langer et al. 2018), suggesting reductions in baseline metabolism, rather than 

MMR, tends to underpin overall metabolic flexibility in response to food 

restriction (Zeng et al. 2018).  

Although there is a significant number of studies detailing inter and intra 

specific variation in metabolic responses, we know considerably less about 120 

factors giving rise to differences in metabolic flexibility (Norin and Metcalfe 

2019). Variation in metabolic rate flexibility between populations has been 

described primarily as changes in SMR or BMR, and particularly in response to 
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distribution or temperature factors e.g. cane toads Rhinela marina at high 

latitudes show more plastic resting metabolic rates in response to temperature 125 

than their counterparts at low latitudes (Winwood-Smith et al. 2015; McCann 

et al. 2018). Similarly, rufous‐collared sparrow Zonotrichia capensis populations 

from seasonally-variable or temperate environments show more flexible BMRs 

in response to temperature than those from arid desert systems, though desert 

populations conversely showed more BMR flexibility at low food conditions, a 130 

finding that highlights the context-dependency of optimal metabolic 

phenotypes (Cavieres and Sabat 2008; Maldonado et al. 2012). Given that the 

optimal metabolic phenotype in a given context can show considerable 

variability depending on the population background, incorporating population-

specific (or life history) factors into the investigation of metabolic variation and 135 

flexibility is likely to have important implications for managing and conserving 

species experiencing environmental change, yet few studies have addressed 

this. 

Salmonine fishes (salmons, trouts, and charrs) represent an excellent group to 

study variation in metabolic phenotypes. As obligate freshwater spawning 140 

species, salmonines display a multitude of life-history strategies that 

incorporate a wide variety of migratory tactics (Klemetsen et al. 2003). Some 

individuals remain resident in natal freshwaters for their entire life cycles, 

whilst others migrate to more productive feeding grounds such as larger rivers 

and lakes (termed “potomodromy”), or even undertake dramatic migrations to 145 

the sea (termed “anadromy”) (Ferguson et al. 2019). Migration generally 

facilitates high levels of growth in the new habitat, with migrants typically 

returning to spawn in freshwater at larger sizes than non-migratory “residents”. 

Facultative migration – where individuals can adopt either a migratory or a non-

migratory lifestyle - is common in salmonines, and populations can be primarily 150 

resident, migratory, or comprise a mix of both tactics (Chapman et al. 2012). 

Such alternative migratory phenotypes can be understood using the framework 

of the “environmentally cued threshold model” (Tomkins and Hazel 2007; 

Piche et al. 2008; Pulido 2011; Buoro et al. 2012), whereby tactic frequencies are 
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controlled by the relationship between an environmentally-sensitive trait (e.g. 155 

physiological condition or energetic status) and a genetically-variable 

threshold. Migration is triggered depending on whether or not an individual’s 

“status” trait exceeds the threshold condition for residency. Energetic limitation 

in natal freshwaters is proposed to be a strong determinant of migration 

(Forseth et al. 1999). As such, variation in migratory tactics is likely to be linked 160 

to variation in metabolic rates e.g. steelhead trout O. mykiss that matured in 

freshwater in lieu of migrating tended to have lower SMR values (Sloat and 

Reeves 2014); and juvenile Atlantic salmon Salmo salar with higher SMR early 

in life were more likely to subsequently migrate (McCarthy 2000).  

Moreover, once the migration decision has been made, different energetic 165 

demands are associated with the alternative tactics. For example, migrants must 

have sufficiently high aerobic capacity (i.e. MMR/ AS) to sustain swimming 

performance during the migration itself (which can cover distances of tens to 

several thousand kilometres), and to facilitate high growth in the new 

environment. In contrast, residents typically have lower energetic 170 

requirements, but must cope with access to fewer food resources in the 

freshwater environment (relative to lacustrine or marine resources) (Gross et al. 

1988). Populations that display predominantly one migratory phenotype over 

another are thus likely to experience different selection pressures on metabolic 

traits, whereby a migratory life-style might favour increases in the upper bounds 175 

of metabolisms (MMR), and residency might promote decreases in baseline 

energetic requirements (SMR), each with implications for overall AS and energy 

balance. This has some empirical support, for example, migratory three-spined 

stickleback Gasterosteus aculeatus had higher SMR, active metabolic rate, and 

AS than non-migratory morphs (Tudorache et al. 2007), and anadromous (sea-180 

migratory) juvenile Atlantic salmon S. salar had higher SMR than non-migrants 

(Seppänen et al. 2010). Less is known about how differences in migratory 

lifestyle might interact with environmental conditions to cause variation in 

metabolic traits. 
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Here, we explore the effects of extrinsic (food supply) versus intrinsic 185 

(population/sex) factors on metabolic rates in experimental F1 offspring derived 

from two wild populations of brown trout that differ in their migratory tactics. 

Specifically, we aimed to (i) asses how a period of long-term food restriction 

alters SMR, MMR and AS (ii) test if populations that naturally vary in their life 

histories also vary in SMR, MMR, and AS and (iii) explore if populations show 190 

variation in their metabolic responses to conditions of food restriction. We 

expected that food restriction would overall have a greater effect on SMR 

compared to MMR. We also expected that offspring derived from the naturally 

anadromous (i.e. migratory) population would show relatively higher MMR or 

AS, and those from the non-anadromous population would show relatively 195 

lower SMR, but the populations might vary in their ability to adjust their 

metabolic traits.  

Methods 

Study populations and fish rearing 

Brown trout brood stock from two wild populations were caught by seine 200 

netting in November 2015 in the Erriff (53° 37´ 0.00" N: 09° 40´ 17.10" W) and 

the Burrishoole (53° 57´ N: 09° 35´ W) catchments in the west of Ireland (Figure 

S1). Erriff brood stock were caught in the Tawnyard Lough, an upland lake of 56 

ha which is fed primarily by the Glendavoch river and a number of smaller 

tributaries. The Tawnyard Lough population spawn mainly in the Glendavoch 205 

River, and move downstream as fry or parr to Tawnyard Lough (a distance of a 

few hundred metres to kilometres, depending on where spawning occurred). 

Tawnyard Lough produces a large run of out-migrating anadromous juveniles 

(smolts), with annual estimates of 500 to 3000 smolts enumerated at the 

outflow of the Lough over the last 30 years (Gargan et al. 2016). An unknown 210 

proportion of the population remain within the lake, and undergo several years 

of freshwater growth before returning to the natal stream to spawn, with local 

experitise indicating that the Tawnyard population in general has a strong 

anadromous component (broadly estimated as 50 – 60% of population 

expressing anadromy) (P. Gargan, pers comm). 215 
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Burrishoole brood stock were caught in Lough Bunaveela (46 ha) in the 

headwaters of the catchment. A population of non-anadromous trout remain 

resident in Lough Bunaveela for most of their lifecycle, undertaking only short-

distance, directed movements (10 – 100s of metres) between the lake and 

inflowing/outflowing spawning streams. Although the anadromous life history 220 

is present in the larger Burrishoole catchment, the development of aquaculture 

in Clew Bay is believed to have caused the anadromous trout run to decline 

severely in Burrishoole in the late 1980s. Despite Bunaveela spawning streams 

being accessible to anadromous fish, there is no evidence that the Bunaveela 

population has ever produced anadromous fish, either historically, or recently 225 

(Poole et al. 2007; Magee 2017). In summary, we consider offspring derived 

from the Tawnyard brood stock to have a strong anadromous background 

(hereafter termed the “anadromous background population”), and offspring 

from the Bunaveela brood stock to have no recent anadromous background 

(termed the “non-anadromous background population”).  230 

See Archer et al. (2019) for detailed description of crossing, fertilisation, and 

rearing procedures, which we describe here in brief. Each ripe female was mated 

to two males from the same source population. Fertilised eggs were incubated 

at a hatchery in the Burrishoole catchment. Post-hatching, fry were transferred 

to a rearing facility at University College Cork (Aquaculture and Fisheries 235 

Development Centre). Here, fry were initially held in two 100L growth tanks on 

a recirculating aquaculture system (RAS) maintained at natural temperature 

regime for the west of Ireland, and moved to 520L tanks on a larger RAS to 

facilitate growth in December 2016. Populations were reared separately for the 

entirety of the study to prevent emergence of dominance hierarchies. Fry were 240 

fed ad libitum with commercially available trout pellets (Skretting Ltd., Norway) 

until experimental food treatments (see below) began in September 2016. 

During the experimental phase, a programmed lighting system of LED lights 

above each tank mimicked the photoperiod of the source catchments. Water in 

the RAS was treated with mechanical filtration, bio filtration and UV skimming, 245 

and water quality (checked weekly) consistently remained within acceptable 
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levels for fish health. Great care was taken to ensure that all measured variables 

other than feeding regime (fish densities, temperature, photoperiod, lux, flow 

rates) were constant across the tanks.  

Food restriction treatments 250 

Fish in this study experienced experimental food restriction treatments from 

September 2016 to June 2018. The study, and all associated procedures, were 

carried out with ethical approval from Health Products Regulatory Authority 

(HPRA) Ireland, under HPRA project license AE19130/P034, and individual 

licenses AE19130/1087, AE19130/I200, AE19130/I201 and AE19130/I202 with all 255 

fish humanely euthanized under licence in June 2018 as part of a parallel 

experiment (Archer et al. 2019). 

To explore the effects of extrinsic environment (food restriction) and intrinsic 

factors on metabolism, juvenile brown trout from each population were 

randomly allocated one of four food treatments in September 2016 (n = 90 per 260 

feeding treatment per population, at the beginning of the experimental phase). 

The food treatments were as follows: (i) High-High food: fish fed recommended 

daily pellet rations for optimal growth, calculated as a percentage of their body 

weight and adjusted for seasonally-changing temperatures (Skretting Ltd, 

Norway); (ii) Low-Low: fish fed 25% of recommended optimal rations. (iii) 265 

High-Low: fish switched from optimal rations to 25% optimal ration (i.e. from 

High to Low) in June 2017; and (iv) Low-High: fish switched from 25% of 

optimal rations to 100% optimal rations in June 2017 (i.e. from Low to High). 

The reductions to 25% of optimal food rations took place gradually over a four-

week period to minimise stress. Within each tank, absolute rations were 270 

adjusted on a monthly basis to account for changes in body mass and 

temperature. 

Measurement of metabolic traits 

Eight to twelve individuals of each population in each food treatment were 

measured for SMR and MMR in February 2018 in a controlled-temperature (CT) 275 

chamber at 8 °C (mean temperature 7.99 °C ± 0.26 SD, matching the natural 

temperature in the wild for these populations).  
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Measurement of MMR 

Whole-animal oxygen consumption (MO2) in animals operating at their 

maximum aerobic metabolic rate was used as proxy for MMR (Norin and 280 

Metcalfe 2019) following best practices outlined in Norin and Clark (2016). We 

used an exhaustive chase protocol following Norin and Clark (2016) to elicit 

MMR in the same individuals that we measured for SMR. Prior to SMR 

measurements, each individual fish due to be measured for SMR that day was 

first placed in an aerated 50L tank and manually chased by hand until 285 

exhaustion, determined to occur when the fish were unresponsive (i.e. did not 

elicit burst swimming) to tactile stimulus (typically after 2 to 3 minutes of 

sustained chasing). Once exhausted, the fish was immediately transferred to a 

respirometry chamber in the same system used to measure SMR, the chamber 

was sealed, and oxygen decline within the closed chamber loop (recirculation 290 

pump operational) was recorded for a 60s measurement period. The time taken 

to transfer fish to chambers and begin recording oxygen measurements never 

exceeded 20s, ensuring that minimal recovery from the exhaustive chase 

procedure occurred before recording oxygen consumption.  

Measurement of SMR 295 

The SMR of individual fish was determined overnight in a darkened CT chamber 

using intermittent-flow respirometry, following best practices outlined in 

Svendsen et al. (2016). The respirometry system consisted of four acrylic 

respirometry chambers (1200 ml) (Loligo Systems, Viborg, Denmark), 

submerged in a water bath, flushed with de-chlorinated water bubbled to 100% 300 

oxygen saturation by an air stone. PVC tubing (10mm diameter, non-permeable 

to oxygen) connected each individual chamber to two pumps (Eheim Ltd., 

Deizisau, Germany): the “flush” pump flushed fully oxygenated water through 

the chambers. A second “recirculation” pump recirculated water in a closed loop 

through the chamber, whereby water exiting the chamber was passed through 305 

a 10mm flow through oxygen cell (PreSens Ltd., Regensburg, Germany) that 

continually measured dissolved oxygen concentration, before being 

recirculated back to the same respirometry chamber via PVC tubing. Thus, 
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individual oxygen consumption (MO2, used as a proxy for SMR in fasted, non-

active animals) was measured in repeated cycles that consisted of a flush period 310 

(flush pump operational) and a measurement period (recirculation pump 

operational) where oxygen level in each chamber was recorded at one second 

intervals to estimate oxygen decline (i.e. oxygen uptake). Each cycle consisted 

of 330s of flushing, and a measurement period of 200 - 300s (to ensure 

sufficient O2 depletion for calculating MO2 in different-sized fish). We also 315 

allowed a 30s buffer period before recording oxygen uptake once the flush 

pump was switched off, to allow the chamber water and flush water to mix 

completely and reach an equilibrium oxygen saturation .  

Fish were fasted for 28 h prior to being placed into individual respirometry 

chambers to ensure individuals were in a post absorptive state (Cutts et al. 320 

2002). Fish entered the chambers between 11:00 and 12:00 each day, and were 

left to acclimatise for five hours, with chambers continually flushed with 

oxygen-saturated water during this acclimation period. SMR measurements 

began between 16:00 and 17:00, and ended between 09:00 and 10:00 the 

following morning, allowing for a minimum of 100 measurements of oxygen 325 

uptake per individual. Fish were not disturbed during this ~20-hr SMR 

measurement period. Once SMR measurements had finished, each fish was 

removed from the chamber, lightly anaesethised with MS-222, blotted dry, and 

mass and fork length were recorded. Each fish was then given an individual 

identifier tag using unique colour combinations of visible implant elastomer 330 

tags (Northwest Marine Technology Ltd., USA). To limit bacterial growth in the 

system, the entire respirometry set-up was rinsed with bleach after each 

overnight SMR respirometry trial. We also measured background (i.e., 

bacterial) respiration rates in each chamber on a daily basis by recording oxygen 

decline in empty chambers for one measurement cycle before fish entered the 335 

respirometry system, and again for one measurement cycle the following 

morning (once the respirometry measurements had ended and fish were 

removed from the chambers).  
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Determination of sex 

To determine sex, we euthanised fish that had been measured for SMR and 340 

MMR via an overdose of MS-222 in April 2018 (approximately 2 months after 

respirometry measurements due to involvement in an ongoing parallel study, 

see Archer et al. (2019)). If sex could not be determined anatomically, genotypic 

sex was later assigned using a microsatellite sex marker (P. Prodöhl, 

unpublished). We were unable to re-identify six individuals due to tag loss, 345 

leaving n = 55 fish successfully assigned for sex. Sex ratios were approximately 

similar across food treatment groups and across population backgrounds.  

Statistical analysis 

To estimate SMR (mg O2 h-1), we first calculated MO2 values for each repeated 

measurement of oxygen uptake recorded during the overnight SMR 350 

respirometry trials. MO2 (mg O2 h-1) was calculated as the most consistent linear 

decline in oxygen recorded during each measurement cycle, estimated by 

rolling regression in the respR package in R (Harianto and Carey 2019). All 

measurements of MO2 were visually inspected to assess regression fit, and only 

MO2 values with an acceptable fit (associated R2 values > 0.90, unless a clear 355 

linear trend was determined upon visual inspection of fit) were included in 

subsequent SMR calculations. To account for any background respiration 

included in these MO2 values, we estimated background respiration by 

calculating MO2 values for the oxygen uptake measurements in empty 

chambers, both before and after each overnight SMR respirometry trial (as 360 

described above). Because background MO2 rates were assumed to increase 

linearly through time over the course of the experiment (due to bacterial 

growth), we allowed for a dynamic background correction value (i.e. that 

increased overnight), calculated as: 

𝑀𝑂2_𝑏𝑔 = 𝑏𝑔0 + (𝑡 × 𝑏𝑔) 365 

 Where 𝑀𝑂2_𝑏𝑔 is background MO2, at a given measurement time point t, the 

time elapsed since initiating overnight SMR measurements, 𝑏𝑔0 and 𝑏𝑔 are 

parameters (the intercept and slope respectively) estimated from the matrix 
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regression of the background oxygen uptake before, and background oxygen 

uptake after, as a function of time elapsed. We then used 𝑀𝑂2_𝑏𝑔 to account for 370 

background respiration by subtracting 𝑀𝑂2_𝑏𝑔 from each value of MO2 as 

calculated for an individual fish at successive time points during the overnight 

SMR respirometry trials. MO2_bg never exceeded more than 2% of total MO2 in 

all cases, confirming that background respiration rates remained low 

throughout the study.  375 

SMR for each individual fish was calculated by taking the mean of the lowest 

10th percentile of background-corrected MO2 values recorded over the 20-h 

SMR measurement period, then excluding outliers (values more than two 

standard deviations from this mean).  

We estimated individual MMR (mg O2 h-1) using the respR package (Harianto 380 

and Carey 2019) by calculating MO2 as the linear decline in oxygen in each 

individual respirometry chamber in the 60s measurement period immediately 

after the exhaustive chase protocol (i.e. extracting slopes from the linear 

regression of oxygen concentration against time over a 60s period). Oxygen 

sensor probe and equipment malfunctions resulted in respirometry 385 

measurements for 6 fish being discarded, leaving a total of n = 61 individuals 

measured for SMR and MMR. Absolute aerobic scope (AS) for each fish was 

calculated as the difference (mg O2 h-1) between MMR and SMR.  

Since metabolic responses to food restriction are well-documented to be 

reversible in salmonines (metabolic rates are restored to pre food restriction 390 

levels once standard food rations are reinstated (O’Connor et al. 2000)), we first 

assessed if any potential metabolic responses to food restriction had been 

reversed/offset in the Low-High groups by February 2018 (when we measured 

metabolic traits). No differences in SMR (ANOVA: χ2 = 0.23, df = 1, P = 0.633), 

MMR (χ2 = 0.40, df = 1, P = 0.528), or AS (χ2 = 0.51, df = 1, P = 0.476) existed 395 

between the High-High food treatment and Low-High treatment. Similarly, we 

tested whether potential metabolic responses to food restriction were affected 

by the length of the food restriction period i.e. did Low-Low (17 months 
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restriction) differ from High-Low (7 months restriction). No differences existed 

in SMR (χ2 = 0.04, df = 1, P = 0.836), MMR (χ2 = 0.44, df = 1, P = 0.509), or AS 400 

(χ2 = 0.47, df = 1, P = 0.494) between the Low-Low food treatment and the High-

Low treatment. Since our primary interest was simply in the overarching effects 

of food restriction on metabolism (and not the effects of switching food 

treatments per se), we combined the High-High and Low-High treatments into 

a single “High Food” treatment group, and combined the Low-Low and the 405 

High-Low treatments into a single “Low Food” treatment group. We present 

analyses using the “High Food” and “Low Food” groups here, with the caveat 

that “High” or “Low” refers specifically to the food treatment experienced in the 

~7-month period prior to metabolic measurements in year 2 of life (a timescale 

over which metabolic rates have been shown to be consistent in salmonines 410 

(Seppänen et al. 2010)). Moreover, pilot SMR measurements collected from our 

populations in April and May 2017 (following similar respirometry protocols to 

those described above) showed similar effects of High/Low food treatments as 

the results described below (which focus solely on the 2018 measurements of 

SMR, MMR, and AS). This indicates that responses to food treatments were: (i) 415 

consistent though time (or at least between years); and (ii) most likely as a result 

of phenotypic plasticity rather than random variation.  

To avoid the pitfalls associated with solely using P-values (Halsey et al. 2015; 

Halsey 2019), we first tested for factors influencing mass-independent measures 

of SMR, MMR, and AS through estimation statistics (i.e. estimating effect sizes) 420 

using the dabestr package (Ho et al. 2019). We used the residuals of the linear 

relationships between log10 body mass, and SMR, MMR, and AS (all log10 

transformed) to correct for body size in these analyses. Residuals generated 

from these analyses (rSMR, rMMR, and rAS) gave mass-independent estimates 

of metabolic rates (individuals with positive residuals have a higher than 425 

expected metabolic rate for a given fish size, whereas negative residuals indicate 

a lower than expected rate). Effect sizes for mean differences in rSMR, rMMR, 

and rAS were computed for all pairwise comparisons between all levels of food 

treatment (high or low) and population background (anadromous or non-
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anadromous) factors, and 95% confidence intervals (CIs) were constructed by 430 

bootstrapped resampling for 5,000 resamples. An additional set of analyses 

tested for sex-based differences in metabolic traits, whereby we similarly 

estimated effect sizes for pairwise comparisons of rSMR, rMMR, and rAS 

between the two levels of sex. Similar analyses were also run using an alternative 

ANCOVA approach, which tested for variation in the relationships between 435 

body mass and SMR, MMR, and AS according to population, food treatment, 

and sex factors using general linear models (GLMs) (see Supporting 

Information). The results (shown in the SI) were qualitatively similar, 

suggesting that the findings based on estimation statistics that we present here 

are robust. 440 

Finally, to explore whether population background and food treatments 

affected the size-independent relationships between different aspects of 

metabolism, we created three GLMs (normal errors). The first GLM included 

rMMR as a response variable, and rSMR, food treatment and population 

treatment as explanatory variables, interactions between rSMR and food 445 

treatment, and between rSMR and population, along with a three-way 

interaction term (rSMR × food × population). The second GLM included rAS as 

the response variable, and similarly included rSMR, food treatment, population 

treatment, and interaction terms for rSMR × food, rSMR × population and rSMR 

× food × population. We constructed a third GLM with rAS as the response 450 

variable, and rMMR, food treatment, population treatment as predictors, along 

with interaction terms for rMMR × food, rMMR × population and rMMR × food 

× population.  

For the estimation statistics approach, we considered an estimated difference 

in means between groups to exist (i.e. was significant) if the 95% CI of the effect 455 

size did not include zero. We used likelihood ratio tests (LRT) to assess 

statistical significance of predictor variables for all of the GLM models at a 5% 

alpha level, and non-significant interaction terms were excluded to interpret 

main effects. All analysis was carried out in R version 3.6.0 (R Core Team 2019) 

and all models were checked against assumptions of the given model 460 
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(independence, non-normality of residuals, heteroscedasticity and 

multicollinearity).  

Results 

Effects of population and food restriction on metabolic rate 

Overall, whole-animal SMR, MMR and AS varied with food treatments and 465 

across populations, with higher mean SMR, MMR and AS in the anadromous 

population (see Table 1 for mean values and SD by population and treatment 

combinations).  

Table 1: Mean values and associated standard deviations (SD) for the length 

(mm), mass (g), standard metabolic rate (SMR) (mg O2 hr-1), maximum 470 

metabolic rate (MMR) (mg O2 hr-1), and aerobic scope (AS) (mg O2 hr-1) of 

brown trout offspring derived from two wild populations (AB = anadromous 

background population, non-AB = non anadromous background population). 

Offspring experimentally reared under two food treatments (High = optimal 

rations, Low = 25% of optimal rations). 475 

Food, 
Population 

Length 
(mean ± SD) 

Mass 
(mean ± SD) 

SMR 
(mean ± SD) 

MMR 
(mean ± SD) 

AS 
(mean ± SD) 

High, AB 201.6 ± 18.8 109.65 ± 30.40 5.39 ± 1.71 40.52 ±14.47 35.13 ± 13.38 

Low, AB 200.6 ± 9.2 101.76 ± 16.38 4.51 ± 0.71 43.04 ± 8.94 38.52 ± 8.79 

High, Non-AB 199.7 ± 15.5 110.83 ± 27.59 5.18 ± 1.49 31.87 ± 10.79 26.69 ± 9.64 

Low, Non-AB 199.0 ± 17.7 101.37 ± 27.30 4.21 ± 1.54 30.31 ± 11.73 26.09 ± 11.13 

 

 Fish from the low food treatments had lower mass-independent SMR (lower 

rSMR) than those in the high food treatment (Figure 1A), and this difference in 

mean rSMR was evident in both populations (Figure 1A, Table 2). Fish from the 

anadromous background population had a marginally higher rSMR than those 480 

from the non-anadromous background population in both food treatments, 

however the 95% CIs for the mean difference in rSMR between populations 

overlapped zero (Figure 1B, Table 2). 
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Figure 1: (A) Residual standard metabolic rate (rSMR) values (body mass 

corrected) for brown trout offspring derived from an anadromous background 

population (AB) and a non-anadromous background population (non-AB). 

Fish were reared under two experimental food treatments: optimal food 

rations (High); and 25% of optimal daily rations (Low). Black vertical bars 

represent the standard deviation around the mean (shown as a gap in the 

bars), and sample size is shown as “N =”. (B) Cumming estimation plots for 

each population background and food treatment combination.with effect sizes 

shown as black dots (i.e. the mean differences in rSMR among the groups), the 

distributions (shaded curves) and 95% confidence intervals (back bars) of the 

effect sizes obtained from non-parametric bootstrap resampling (5,000 

resamples). 

 485 
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Table 2: Effect sizes (∆) and associated 95% confidence intervals (CIs) for 

differences in mean residual standard metabolic rate (rSMR) (mg O2 hr-1), 

residual maximum metabolic rate (rMMR) (mg O2 hr-1), and residual aerobic 

scope (rAS) (mg O2 hr-1) of brown trout offspring derived from two wild 490 

populations (AB = anadromous background population, non-AB = non 

anadromous background population), exposed to two food treatments (High = 

optimal rations, Low = 25% of optimal rations). CIs were constructed by non-

parametric bootstrap resampling (5,000 resamples).  

Mean difference (∆) 
∆ rSMR 
(95% CI) 

∆ rMMR 
(95% CI) 

∆ rAS 
(95% CI) 

Low AB – High AB 
-0.039 

(-0.067; -0.007) 
0.060 

(-0.003; 0.129) 
0.075 

(0.004; 0.155) 

Low non-AB – High non-AB 
-0.054 

(-0.109; -0.002) 
0.006 

(-0.066; 0.078) 
0.013 

(-0.071; 0.101) 

High AB – High non-AB 
0.026 

(-0.014; 0.061) 
0.111 

(0.039; 0.175) 
0.125 

(0.039; 0.200) 

Low AB – Low non-AB 
0.040 

(-0.006; 0.089) 
0.165 

(0.091; 0.236) 
0.187 

(0.101; 0.271) 

Female – Male 
-0.019 

(-0.051; 0.020) 
-0.155 

(-0.203;-0.104) 
-0.178 

(-0.236; -0.118) 

 495 

There was no effect of food on rMMR in either population (95% CIs for the mean 

difference in rMMR overlapped zero, Figure 2A, B). Fish from the anadromous 

background population had a higher rMMR than those from the non-

anadromous background population in both food treatments (Figure 2A, B, 

Table 2). 500 

Similarly, fish from the anadromous background population had a higher rAS 

than the non-anadromous background population under both food treatments 

(Figure 3A, B, Table 2). We also detected population-specific effects of food 

treatment on rAS, whereby fish in the anadromous population in the low food 

treatment had a marginally higher rAS than those in the high food treatment 505 

(Figure 3B, Table 2). This food treatment effect on rAS was not apparent in the 

non-anadromous population (Figure 3B).  
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Figure 2: (A) Residual maximum metabolic rate (rMMR) values (body mass 

corrected) for brown trout offspring derived from an anadromous background 

population (AB) and a non-anadromous background population (non-AB). 

Fish were reared under two experimental food treatments: optimal food 

rations (High); and 25% of optimal daily rations (Low). Black vertical bars 

represent the standard deviation around the mean (shown as a gap in the 

bars), and sample size is shown as “N =”. (B) Cumming estimation plots for 

each population background and food treatment combination.with effect sizes 

shown as black dots (i.e. the mean differences in rMMR among the groups), 

the distributions (shaded curves) and 95% confidence intervals (back bars) of 

the effect sizes obtained from non-parametric bootstrap resampling (5,000 

resamples). 
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Figure 3: (A) Residual aerobic scope (rAS) values (body mass corrected) for 

brown trout offspring derived from an anadromous background population 

(AB) and a non-anadromous background population (non-AB). Fish were 

reared under two experimental food treatments: optimal food rations (High); 

and 25% of optimal daily rations (Low). Black vertical bars represent the 

standard deviation around the mean (shown as a gap in the bars), and sample 

size is shown as “N =”. (B) Cumming estimation plots for each population 

background and food treatment combination.with effect sizes shown as black 

dots (i.e. the mean differences in rAS among the groups), the distributions 

(shaded curves) and 95% confidence intervals (back bars) of the effect sizes 

obtained from non-parametric bootstrap resampling (5,000 resamples). 

 510 
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Coupling of metabolic traits 

When considering size-independent effects of rSMR on rMMR, the interaction 

terms for rSMR × food × population (χ2 = 0.23, df = 1, P = 0.633), rSMR × food 

(χ2 = 1.45, df = 1, P = 0.229), rSMR × population (χ2 = 0.90, df = 1, P = 0.344), 515 

and food × population (χ2 = 2.66, df = 1, P = 0.103) were all non-significant. The 

main effects of rSMR (χ2 = 0.66, df = 1, P = 0.417) and food (χ2 = 2.21, df = 1, P = 

0.137) were also non-significant. We detected a significant main effect of 

population background (χ2 = 22.35, df = 1, P < 0.001), whereby the anadromous 

background population had a higher rMMR for a given rSMR (Figure 4A).  520 

Effects of rSMR on rAS were similar, where we detected non-significant effects 

of rSMR × food × population (χ2 = 0.24, df = 1, P = 0.624), rSMR × food (χ2 = 

1.39, df = 1, P = 0.239), rSMR × population (χ2 = 0.92, df = 1, P = 0.337), and food 

× population (χ2 = 2.69, df = 1, P = 0.101), and non-significant main effects of 

rSMR (χ2 = 0.004, df = 1, P = 0.952) and food (χ2 = 1.86, df = 1, P = 0.173). The 525 

anadromous population had a significantly higher rAS for a given rSMR (effect 

of population background: χ2 = 21.98, df = 1, P < 0.001; Figure 4B). 

We detected a significant positive relationship between rMMR and rAS (χ2 = 

4689.8, df = 1, P < 0.001; Figure 4C), but interactions between rMMR × food × 

population (χ2 = 1.16, df = 1, P = 0.201), rMMR × food (χ2 = 0.2, df = 1, P = 0.673), 530 

rMMR × population (χ2 = 2.3, df = 1, P = 0.1297), and food × population (χ2 = 0.1, 

df = 1, P = 0.768) were all non-significant. The main effects of food (χ2 = 2.4, df 

= 1, P = 0.123) and population (χ2 = 1.9, df = 1, P = 0.163) were also non-significant.  

See Supporting Information for coefficient estimates for all of the above models.  

  535 
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Figure 4: Size-independent relationships between: (A) residual standard 

metabolic rate (rSMR) and residual maximum metabolic rate (rMMR); (B) 

rSMR and residual aerobic scope (rAS); and (C) rMMR and rAS for brown 

trout offspring derived from an anadromous background population (AB) and 

a non-anadromous background population (non-AB). Fish experienced two 

food reduction treatments: optimal food rations (High) and 25% of optimal 

rations (Low).  

 

Effects of sex on metabolism 

There were no sex-based differences in rSMR between , with similar rSMR in 

males and females (Figure 5A, Table 2). However, male fish had higher rMMR 

than female fish (Figure 5B, Table 2), and similar sex-based differences were 540 

detected in rAS (Figure 5C, Table 2).  
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Figure 5: Gardner-Altman estimation plots for: (A) standard metabolic rate 

(SMR); (B) maximum metabolic rate (MMR); and (C) aerobic scope (AS) of 

brown trout classed as female or male after two years of experimental tank 

rearing. The Gardner-Altman estimation plots show the residual (body mass 

corrected) SMR/MMR/AS on the left axes and the effect size (mean difference 

between females and males) is represented by the black dot on the right axes, 

along with the distribution (shaded curve) and 95% confidence interval 

(black bars) of the effect size, obtained via non-parametric bootstrap 

resampling (5,000 resamples).  
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Discussion 545 

Intra-specific variation in metabolic rates is widespread across species, yet there 

are still gaps in our understanding of how intrinsic and extrinsic environmental 

factors can interact to influence the various components of an individual’s 

metabolism. Here, we exposed brown trout offspring from two population 

backgrounds (one anadromous/sea-migratory, one non-anadromous) to long-550 

term food restriction to determine if, and how, intrinsic factors (i.e. 

population/sex specific effects) versus extrinsic factors (food resources) affect 

metabolic rates. Fish from both populations had lower SMR under low food 

conditions, with slight differences in overall SMR between populations. Fish 

from the anadromous population had higher MMR, and consequently, higher 555 

AS than the non-anadromous population under all food regimes. Intriguingly, 

fish from the anadromous-background also had a higher AS at low food 

compared to high food conditions, suggesting this population was more flexible 

in maximum metabolic traits than the non-anadromous population. We also 

found differences in MMR and AS linked to sex, which were not apparent in 560 

SMR. Collectively, our results suggest the various components of metabolism 

are differentially affected by intrinsic and extrinsic factors. Moreover, 

populations may vary in their capacity to flexibly adjust metabolic traits in 

response to environmental conditions, with consequences for population 

resilience to global change.  565 

Effects of extrinsic environment on metabolic traits 

 The lower SMR we observed in response to long-term food restriction (> 7 

months) is in line with previous work showing SMR (or BMR) to be strongly 

sensitive to food availability, typically without corresponding changes in MMR 

(Metcalfe et al. 2016). SMR has been found to show similar flexible decreases in 570 

food-poor environments (Naya et al. 2007; Auer et al. 2015c, 2016a; Zeng et al. 

2018; Langer et al. 2018) or, conversely, to increase at high food availability (Van 

Leeuwen et al. 2011, 2012). Reductions in SMR are assumed to be optimal when 

food is scarce because the overall energetic cost of living is similarly reduced, 

thus facilitating higher growth (and consequently, fitness) (Auer et al. 2015c). 575 
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Such flexibility in SMR will likely have positive implications for species 

experiencing rapid environmental change, with temperature-induced plasticity 

in SMR linked to increased resilience to climate change (Magozzi and Calosi 

2015). However, the adaptiveness of a given flexible response will depend upon 

both the predictability of the environmental change (i.e. the pattern of 580 

fluctuations in the environment), and the speed at which organisms can flexibly 

adjust their phenotypes to match these changing conditions (Reed et al. 2010). 

Moreover, it is unclear whether SMR flexibility translates into overall fitness 

benefits in scenarios of multi-faceted environmental change. This is particularly 

pertinent for aquatic ectotherms such as salmonines, which are likely to 585 

experience reductions in invertebrate prey size and abundance alongside 

warming (Durance and Ormerod 2007). It remains to be seen whether such 

populations have the capacity to sufficiently reduce SMR in response to 

combined stressors of food restriction and warming, though a study in common 

carp Cyprinus carpio indicates that the benefits of food-induced SMR plasticity 590 

may be temperature dependent. (Zeng et al. 2018).  

Effects of intrinsic factors on metabolic traits  

We detected overall variation in SMR, MMR, and AS according to population 

factors, with higher metabolic traits observed for the anadromous population. 

Population-level variation in metabolic traits could arise either though 595 

plasticity/flexibility/acclimation, or reflect genetic differences (which could 

include genetic variation in plasticity itself, e.g. variation among genotypes in 

their extent of flexibility). Metabolic rates are evolvable (Pettersen et al. 2018) 

and have been shown to respond to selection across relatively short time frames, 

e.g. BMR increased within 11 generations of selection in bank voles Myodes 600 

glareolus (Sadowska et al. 2015). The differences in SMR (for a given fish size) 

between populations was in agreement with our expectations, with the non-

anadromous population having a lower mass-adjusted SMR than the 

anadromous population. However, the effect size of population on SMR was 

small in both food treatments, with 95% CIs that included zero, suggesting that 605 

differences between populations were marginal. Nevertheless, any differences 
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in SMR could be indicative of life-history differences between the two 

populations, where lower SMR in the non-anadromous population has arisen as 

an evolutionary or plastic response to lower levels of productivity in freshwaters 

relative to marine (Gross et al. 1988). Since we observed population-level 610 

differences in SMR in both high and low food treatments, it seems more likely 

that the differences in SMR between populations are due to inherited genetic 

differences rather than plastic responses (i.e. the non-anadromous population 

had lower SMR even at optimal food levels). Such inherited differences could 

arise from standard inherited allelic variation, or from inherited environmental 615 

influences (e.g. maternal effects) that could include epigenetic inheritance. 

Regardless of the inheritance mechanism, the resulting fixed phenotypic 

differences between the populations could be adaptive. For example, the non-

anadromous population may have experienced stronger selection for reduced 

SMR in order to minimise their baseline energy requirements (Gross et al. 1988), 620 

whereas selection on SMR may have been in the opposite direction in the 

naturally anadromous population, whereby higher SMR (and indeed MMR or 

AS) could facilitate rapid somatic growth in order to reach target smolt sizes to 

successfully migrate (McCarthy 2000).  

The relatively strong differences we observed between populations in MMR 625 

(and consequently AS) suggests the upper bounds of metabolism may be more 

affected by population-specific factors than the lower bounds. We had expected 

the anadromous population to show comparatively higher MMR than the non-

anadromous population, and indeed this was the case, a finding that reflects 

higher MMR and AS previously described in migratory versus non-migratory 630 

ecotypes of three-spined sticklebacks (Tudorache et al. 2007). A genetic basis 

to MMR has been proposed to underpin metabolic variation between migratory 

forms of three-spined stickleback, where differences in MMR between 

anadromous and non-anadromous populations have been explained within the 

context of relaxed selection on swimming performance in stream-resident 635 

populations, mediated by reductions in MMR (Dalziel et al. 2012b). In contrast, 

anadromous populations that undertake more arduous/lengthy migrations 
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tend to have higher swimming/cardiac performances, and higher MMR (Lee et 

al. 2003; Eliason et al. 2011; Dalziel et al. 2012a), indicating migration effort may 

further underpin consistent differences in MMR between migratory and non-640 

migratory individuals or populations (Seppänen et al. 2010). A higher MMR in 

the anadromous population may also confer fitness benefits by facilitating high 

levels of growth, either through direct selection on MMR in the freshwater 

environment (where fast growth increased migration success), and indeed, 

differences in intrinsic freshwater growth rates have previously been described 645 

for our study populations (Archer et al. 2019). Indirect selection on MMR in 

juveniles might also occur because of a positive genetic correlation with MMR 

expressed in the marine environment, where high growth rates are translated 

into increased fecundity, with rank-order MMR in fish generally repeatable 

through time (Norin and Clark 2016). 650 

Sex-based differences in MMR (and AS) that were not evident in SMR further 

suggests that MMR is more strongly influenced by intrinsic rather than 

environmental factors. We observed a higher MMR in males, suggesting that 

while males and females had similar basic energetic requirements, males had 

more scope to increase their metabolism and divert resources into processes 655 

such as growth, or aggressive interactions underpinning competition. 

Salmonines generally show patterns of sex-specific aggression, with differences 

in aggression developing early, e.g. juvenile O. mykiss display more aggressive 

behaviour than females (Johnsson and Åkerman 1998), a trait likely genetically 

correlated to sex-based differences in competitive ability as adults (Johnsson et 660 

al. 2001). On a broader scale, our finding corroborates evidence for sex-specific 

differences in AS described in pink salmon O. gorbuscha (Clark et al. 2011), and 

in cardiovascular performance of migrating sockeye salmon O. nerka 

(Sandblom et al. 2009). Collectively, these studies suggest that the relatively 

lower AS of female salmonines could make them more susceptible to effects of 665 

global change. 



Chapter 4 | Food and population influence metabolism 
 

164 
 

Differences in flexibility of metabolic traits 

That we detected stronger effects of food restriction on SMR compared to MMR 

or AS lends further support to the proposal that the “ceiling”, which constrains 

upper limits of metabolism, is less flexible than the metabolic “floor” (i.e. SMR) 670 

(Sandblom et al. 2016). Nonetheless, we did detect population-specific 

flexibility in AS, where the anadromous population had marginally higher AS at 

low rather than high food conditions, a difference that was not apparent in the 

non-anadromous population. The AS flexibility in the anadromous population 

appeared to be somewhat underpinned by decreased SMR at low food 675 

conditions (i.e. similar effect sizes for food treatment effects on SMR in both 

populations, but higher/positive effects sizes of low food on AS were only seen 

in the anadromous population). The few studies that have explored the effects 

of food restriction on MMR or AS have found little evidence for food-induced 

flexibility in these traits (Van Leeuwen et al. 2011; Killen 2014; Auer et al. 2016b; 680 

Zeng et al. 2018). The population-specific increase in AS in response to food 

restriction that we observed is initially counter-intuitive, but can interpreted as 

further evidence for the optimal combination of metabolic traits being context-

dependent. For example, context-dependency of flexibility in MMR and AS have 

previously been described in barramundi Lates calcarifer that showed variable 685 

plasticity to hypoxia, salinity, and temperature changes (Norin et al. 2016). It is 

less clear why a higher AS might be optimal in a low food environment. The 

ability to flexibly increase AS may perhaps be a consequence of the migratory 

background of this population, particularly if the conditions that promote a 

migratory life-history in this population also tend to promote flexibility in SMR, 690 

MMR, or AS (e.g. fluctuations in food resources/quality in the catchment-of-

origin drive patterns of migration and also flexibility in AS).  

Plasticity in MMR or AS in the anadromous population may be an adaptive 

response to conditions of low food, given that food restriction increases the 

frequency of migratory tactics in brown trout in general (Ferguson et al. 2019 695 

and references therein) and has been shown to increase the prevalence of 

migrants in this population specifically (Archer et al. 2019). If low food 
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environments promote migration, individuals that can increase their MMR are 

likely to have higher fitness, since high aerobic capacity (i.e. MMR or AS) is 

required to fuel swimming performance of migrating fish (Claireaux et al. 2005; 700 

Eliason et al. 2011). A flexible MMR in low conditions could be thus be a 

population-level adaptive response to a migratory background, a response that 

only emerges at low food availability when it potentially facilitates improved 

migration performance. Such a response is comparable to studies documenting 

increased whole animal oxygen consumption of high latitude (i.e. cold-705 

acclimated) killifish Fundulus heteroclitus compared to low-latitude fish, with 

differences only evident at cold extremes (Fangue et al. 2009; Dhillon and 

Schulte 2011).  

Higher AS (but not SMR) have been previously associated with competitive 

performance (Killen et al. 2014), and increased food intake (Auer et al. 2015a). 710 

Selection for higher MMR in low food environments has recently been shown 

in juvenile Atlantic salmon S. salar (Auer et al. 2018a), with higher MMR 

explained in relation to increased competitive ability. As such, a flexible 

maximum metabolic rate may represent an alternative metabolic strategy to 

lowering SMR, in order to maintain food consumption rates (and growth) in 715 

response to long-term food restriction. The benefits of such an alternative 

metabolic strategy become clear in the context of long-term food restriction 

scenarios because SMR depression is associated with the accumulation of 

harmful mitochondrial reactive oxygen species (ROS) that can impose long-

term costs on life-history traits (Salin et al. 2018). Alternatively, we cannot rule 720 

out that food reduction may have induced higher MMR as a by-product of 

increased numbers of aggressive interactions between individuals (Seebacher et 

al. 2013), with anadromous brown trout tending to show more aggressive 

behaviour than non-anadromous forms (Lahti et al. 2001).  

Implications and considerations  725 

Overall, the importance of population-specific factors evident here is consistent 

with a role for natural selection in the evolution of MMR and SMR, though SMR 

appears to also respond in a more flexible/plastic manner to environmental 
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conditions. Intriguingly, because we observed metabolic trait variation in 

populations that naturally express different life histories (in terms of migratory 730 

tactics) such population-level differences may be further influenced by 

proximate and ultimate mechanisms underpinning alternative migration 

(Hazel et al. 1990; Tomkins and Hazel 2007; Pulido 2011). For example, if 

primarily non-migratory populations (or individuals) tend to have lower SMR, 

this may increase the frequency of fish that meet their residency 735 

threshold/“switch point”, meaning the population shifts further towards 

residency and undergoes further selection for lower SMR up to some limit. 

Conversely, if a migratory population (or individual) tends to have higher SMR, 

this increases the likelihood that individuals become energetically constrained 

in freshwater, (i.e. do not meet their residency threshold), and thus more fish 740 

become migrants (and the population as a whole experiences positive selection 

on SMR). Subsequently, migrants with a higher MMR will likely perform better 

during migration and at sea, achieving higher levels of fitness, and thus 

selection will favour a higher MMR in such populations. Environmental 

conditions could also affect evolutionary processes, if factors such as low food 745 

or inclement temperatures interact with metabolic traits and further alter the 

costs and benefits of migration versus residency tactics. A tight evolutionary 

coupling has recently been described for metabolic rate and pace of life history 

in guppies Poecilia reticulate (Auer et al. 2018b), and similar mechanisms could 

be at play in species with alternative migratory life histories. Because 750 

metabolism and life-history traits are both influenced by environmental factors, 

reciprocal translocation or “common garden” experiments in nature (e.g. Auer 

et al. (2018b)) can help to disentangle interactions between physiology, 

environment, and genetics as both the causes and consequences of alternative 

migratory tactics (i.e. whether covariation between metabolic traits and life 755 

history is caused by phenotypic flexibility or fixed inherited differences).  

It is important also to note that here we only considered metabolic variation at 

a single life stage, and it is likely that metabolism (and its flexibility) can vary 

though ontogeny (Pettersen et al. 2016), depending on energy requirements 
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associated with developmental stage (Beaman et al. 2016; Burggren 2018), or 760 

seasonal changes (Versteegh et al. 2012; Petit et al. 2013). Expanding our 

approach to incorporate repeated measurements on individuals throughout 

their lives (or indeed on individuals at different stages of ontogeny) would 

further illuminate when and how metabolic flexibility develops, and is most 

beneficial. Nonetheless, our results indicate that metabolic traits can respond 765 

differently to extrinsic and intrinsic factors, and metabolic responses can 

further vary according to population-specific factors. That maximum 

metabolism was more fixed than minimum metabolism suggests that trout may 

be more constrained in their capacity to adjust AS in response to extrinsic 

factors, with important conservation implications for a species that is already in 770 

global decline due to anthropogenic activities (Limburg and Waldman 2009). 

Moreover, the variation in metabolic traits that we observed in our two brown 

trout populations indicates that responses to environmental change are unlikely 

to be universal; and developing effective management strategies is not 

necessarily a straightforward task. Nevertheless, greater plasticity is linked to 775 

higher resilience (Magozzi and Calosi 2015; Seebacher et al. 2015) if 

environmental changes are predictable (Reed et al. 2010) and understanding 

the capacity of species and populations to flexibly adjust their metabolic traits 

is essential for predicting and mitigating the effects of progressively changing 

environmental conditions in natural systems.  780 
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Figure S1: (A) Bunaveela Lough in the Burrishoole catchment, where brown 

trout brood stock were collected by seine netting in November 2015, used to 

produce F1 offspring for the experimental study. The wild Bunaveela 

population does not express the anadromous life history, and experimental 

offspring from Bunaveela brood stock were considered to have non-

anadromous population background. (B) Tawnyard Lough in the Erriff 

catchment, site of brown trout brood stock collections (via seine netting) in 

November 2015, used to produce F1 offspring for the experimental study. The 

wild Tawnyard Lough population has a strong anadromous component, and 

experimental offspring from Tawnyard brood stock were considered to have 

an anadromous population background. 
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Figure S2: (A) Body mass scaling of standard metabolic rate (SMR) measured 

in April and May 2017 in brown trout offspring derived from an anadromous 

background population (AB) and a non-anadromous background population 

(non-AB). Fish were reared under two experimental food treatments: optimal 

food rations (High); and 25% of optimal daily rations (Low). (B) Residual SMR 

values (body mass corrected) for each population background and food 

treatment combination. Black vertical bars represent the standard deviation 

around the mean (shown as a gap in the bars), and sample size is shown as “N 

=”. (C) Cumming estimation plots with effect sizes shown as black dots (i.e. 

the mean differences in rSMR among the groups), the distributions (shaded 

curves) and 95% confidence intervals (back bars) of the effect sizes obtained 

from non-parametric bootstrap resampling (5,000 resamples). 
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Table S1: Parameter estimates and associated standard errors (SE), t-values, and 

P-values from a mixed effect model (marginal R2 = 0.92) testing the effects of 

food treatment (high or low) and population background (anadromous or non-

anadromous) on standard metabolic rate (SMR) measured in brown trout in 

April and May 2017. SMR was log10-transformed, and body mass (log10-

transformed) was included as a covariate. Date of SMR measurement was 

included as a random effect. Significance was assessed at a 5% alpha level. 

Effects are contrasted against fish from the non-anadromous population 

background in the high food treatment.  

Response Parameter Estimate SE t-value P-value 

log10 SMR Intercept -1.06 0.07 -15.19 < 0.001 

 Food: Low -0.08 0.02 -3.69 0.005 

 Population: Anadromous 0.03 0.02 1.40 0.196 

 log10 Body mass 0.99 0.05 21.11 < 0.001 

 

 

Table S2: Parameter estimates, with associated standard errors (SE), t-values, 

and P-values from the linear model describing log10-transformed metabolic 

rates (mg O2 hr-1) as a function of log10-transformed body mass in n = 61 brown 

trout (SMR = standard metabolic rate, MMR = maximum metabolic rate, and 

AS = aerobic scope).  

Response Parameter Estimate SE t-value P-value 

log10 SMR Intercept -1.54 0.16 -9.50 < 0.001 

 log10 Body mass 1.10 0.08 13.64 < 0.001 

      

log10 MMR Intercept -0.26 0.30 -0.85 0.397 

 log10 Body mass 0.89 0.15 5.99 < 0.001 

      

log10 AS Intercept -0.24 0.35 -0.68 0.497 

 log10 Body mass 0.85 0.17 4.89 < 0.001 
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Table S3: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the general linear models testing the effects of food treatment 

(high or low) and population background (anadromous or non-anadromous) 

on relationships between residual (i.e. body mass corrected) standard metabolic 

rate (rSMR) and residual maximum metabolic rate (rMMR), rSMR and residual 

aerobic scope (rAS), and rMMR and rAS in brown trout. Significance was 

assessed at a 5% alpha level. Effects are contrasted against fish from the non-

anadromous population background in the high food treatment.  

Response Parameter Estimate SE t-value P-value 

rMMR Intercept -0.09 0.02 -3.79 < 0.001 

 rSMR 0.18 0.22 0.81 0.420 

 Food: Low 0.04 0.03 1.49 0.142 

 Population: Anadromous 0.13 0.03 4.73 < 0.001 

      

rAS Intercept -0.10 0.03 -3.70 < 0.001 

 rSMR 0.02 0.26 0.06 0.952 

 Food: Low 0.05 0.03 1.36 0.178 

 Population: Anadromous 0.15 0.03 4.69 < 0.001 

      

rAS Intercept 0.001 0.003 0.17 0.868 

 rMMR 1.172 0.017 68.48 < 0.001 

 Food: Low 0.005 0.004 1.54 0.128 

 Population: Anadromous -0.006 0.004 -1.39 0.169 
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Supplementary ANCOVA analyses 

As additional analyses to acertain the robustness of our estimation statistics 

approach, we also tested for variation in the relationships between body mass 

and SMR, MMR, and AS according to population and food treatment factors 

using general linear models (GLMs). Body mass and metabolic rates were log10 

transformed to normalise and linearise the data. The GLMs included either log10 

SMR, log10 MMR, or log10 AS as response variables, and the models included 

log10 body mass, food treatment (high or low) and population background 

(anadromous or non-anadromous) as explanatory variables. We also included 

an interaction between body mass and food treatment, an interaction between 

mass and population, and a food × population interaction to test if responses to 

food reductions were similar for both populations. We created an additional set 

of GLMs to test for sex-based differences in log10-transformed SMR, MMR, and 

AS, where sex (male or female) and log10 body mass were included as response 

variables. For all of the above GLMs, separate models were constructed for SMR, 

MMR and AS (log10-transformed) and we assumed normal errors in each case.  

Supplementary ANCOVA results 

Log10 SMR increased with log10 body mass (χ2 = 205.26, df = 1, P < 0.001), and 

the food treatment × population interaction term was non-significant (LRT for 

model with and without interaction term: χ2 = 0.22, df = 1, P = 0.643). Log10 

SMR was significantly affected by food treatment (χ2 = 8.72, df = 1, P = 0.003) 

and population background (χ2 = 4.20, df = 1, P = 0.040). For a given size, fish 

in the low food treatment had lower SMR values than those in the high food 

treatment, and fish from the non-anadromous population also had a lower SMR 

than those from the anadromous population (Figure S3A). 

Log10 MMR increased with log10 body mass (χ2 = 51.70, df = 1, P < 0.001), with a 

non-significant interaction between food treatment and population (χ2 = 0.99, 

df = 1, P = 0.320), and no significant differences between food treatments (χ2 = 

1.63, df = 1, P = 0.202). There was a significant effect of population (χ2 = 25.88, 

df = 1, P < 0.001), where for a given size, fish from the anadromous population 
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had a higher MMR than those from the non-anadromous population (Figure 

S3B). 

Log10 AS similarly varied with log10 body mass (χ2 = 34.33, df = 1, P < 0.001), with 

no significant interaction between food treatment and population (χ2 = 0.94, 

df = 1, P = 0.333), and a non-significant effect of food treatment (χ2 = 2.08, df = 

1, P = 0.149). Fish from the anadromous population had a higher AS (for a given 

fish size) than those from the non-anadromous background (Figure S3C: χ2 = 

23.74, df = 1, P < 0.001).  

The positive relationship between log10 SMR and log10 body mass (χ2 = 141.01, 

df = 1, P < 0.001) was similar for female and male fish (Figure S4A: χ2 = 1.08, df 

= 1, P = 0.299). However, males of a given size had a higher MMR than females 

(Figure S4B: χ2 = 36.28, df = 1, P < 0.001) and sex-based differences were 

similarly detected in AS for a given fish size (Figure S4C: χ2 = 33.90, df = 1, P < 

0.001). See Table S4 and Table S5 for coefficients from all above GLMs. 
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Figure S3: Body mass scaling of (A) standard metabolic rate (SMR), (B) 

maximum metabolic rate (MMR), and (C) aerobic scope (AS) of brown trout 

offspring derived from an anadromous background population (AB) and a 

non-anadromous background population (non-AB). Fish were reared under 

two experimental food treatments: optimal food rations (High); and 25% of 

optimal daily rations (Low).  

 

 

 

Figure S4: Body mass scaling of (A) standard metabolic rate (SMR); (B) 

maximum metabolic rate (MMR); and (C) aerobic scope (AS) of brown trout 

classed as female or male after two years of experimental tank rearing. 
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Table S4: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the general linear models testing the effects of food treatment 

(high or low) and population background (anadromous or non-anadromous) 

on standard metabolic rate (SMR), maximum metabolic rate (MMR), and 

aerobic scope (AS) in brown trout. SMR, MMR, and AS were log10-transformed, 

and body mass (log10-transformed) was included as a covariate. Significance was 

assessed at a 5% alpha level. Effects are contrasted against fish from the non-

anadromous population background in the high food treatment.  

Response Parameter Estimate SE t-value P-value 

log10 SMR Intercept -1.47 0.15 -9.73 < 0.001 

 Food: Low -0.05 0.02 -2.95 0.005 

 Population: Anadromous 0.03 0.02 2.05 0.045 

 log10 Body mass 1.06 0.07 14.33 < 0.001 

      

log10 MMR Intercept -0.37 0.26 -1.45 0.152 

 Food: Low 0.03 0.03 1.28 0.207 

 Population: Anadromous 0.14 0.03 5.09 < 0.001 

 log10 Body mass 0.90 0.13 7.19 < 0.001 

      

log10 AS Intercept -0.38 0.30 -1.27 0.211 

 Food: Low 0.05 0.03 1.44 0.155 

 Population: Anadromous 0.15 0.03 4.87 < 0.001 

 log10 Body mass 0.87 0.15 5.86 < 0.001 
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Table S5: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the general linear models testing the effect of sex on standard 

metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS) of 

brown trout (n = 55). SMR, MMR, and AS were log10-transformed, and log10 body 

mass was included as a covariate in all models. Significance was assessed at a 

5% alpha level. Effects are contrasted against female fish. 

Response Parameter Estimate SE t-value P-value 

log10 RMR Intercept -1.58 0.19 -8.36 < 0.001 

 Sex: Male 0.02 0.02 1.04 0.304 

 log10 Body mass 1.11 0.09 11.87 < 0.001 

      

log10 MMR Intercept -0.53 0.27 -2.00 0.051 

 Sex: Male 0.16 0.03 6.02 < 0.001 

 log10 Body mass 0.99 0.13 7.56 < 0.001 

      

log10 AS Intercept -0.56 0.32 -1.76 0.084 

 Sex: Male 0.18 0.03 5.82 < 0.001 

 log10 Body mass 0.97 0.16 6.18 < 0.001 
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Abstract 

Metabolism defines the energetic cost of life, yet we still know relatively little 

about how intraspecific variation in standard metabolic rate (SMR), maximum 

metabolic rate (MMR), and aerobic scope (AS) arises and persists. Inconsistent 

associations between metabolic traits and fitness/performance metrics 5 

indicates that the optimal metabolic phenotype, or combination of metabolic 

traits, may be context-dependent. Here, we use a tank-rearing experiment to 

epxlore how environmental and population-specific factors influence the links 

between growth rates (a key performance trait) and metabolism in brown trout, 

a species that demonstrates considerable variation in migratory life histories. 10 

Growth rates and metabolic traits were measured in offspring from two 

populations that naturally vary in migratory tactics (one anadromous i.e. sea 

migratory, one non-anadromous), exposed to ~15 months of warming at 1.8 °C 

above natural temperatures. The anadromous population had overall higher 

SMR, MMR, and AS compared to the non-anadromous population, but both 15 

populations showed lower SMR in the warm treatment. We observed lower 

MMR and AS in the anadromous population in the warm temperature 

treatment, but not in the non-anadromous population. The variation in 

metabolic traits had complex implications for growth rates across the study that 

were dependent on population background and temperature. Lower SMR was 20 

associated with higher growth in the warm treatment, suggesting SMR 

reduction was an acclimation response to minimise maintenance costs under 

warm conditions. Higher MMR and AS were linked to higher growth rates in 

the anadromous population, potentially due to behavioural or life-history 

differences. A strong coupling between SMR and MMR or AS in this population 25 

further suggested that metabolic trait covariation was underpinned by the 

demands of fuelling a high-powered metabolism. Collectively, our study 

indicates that populations vary in their capacity to acclimate different metabolic 

traits in response to chronic warming and that the links between metabolic 

traits and growth rates are also population specific. In the wild, the effects of a 30 

given metabolic phenotype on growth rates and overall fitness are likely to 

depend on both environmental context and population background, and we 
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should consider both factors when forecasting population responses to 

warming.  

Introduction 35 

As the fundamental biological rate determining resource use and energy 

balance (Brown et al. 2016), metabolism underlies organism performance, and 

ultimately, fitness (Burton et al. 2011). Understanding the links between 

metabolism, performance, and environmental conditions is widely recognised 

as being crucial to forecasting species’ and population responses to global 40 

change (Seebacher et al. 2015), yet this is not necessarily straightforward. 

Despite considerable variation in metabolic traits apparent within and between 

populations, uncertainty still surrounds the drivers of such variation, or its 

consequences for fitness in different environmental contexts (Pettersen et al. 

2018). It is imperative that we uncover the sources of metabolic variation, and 45 

assess how such variation can influence the performance of individuals, and 

hence the ability of populations to cope with global change.  

The baseline energetic demands of ectotherms are defined by their standard 

metabolic rate (SMR), termed basal metabolic rate (BMR) in endotherms within 

their thermoneutral zone. SMR represents the minimum energetic costs of 50 

maintaining tissues and homeostasis in an organism that is inactive, unstressed, 

and non-digestive (Chabot et al. 2016). The upper bounds of metabolism are set 

by the maximum metabolic rate (MMR), which is the highest rate of aerobic 

metabolism (i.e. oxygen transport and ATP production) that can be achieved 

(Norin and Metcalfe 2019). Aerobic scope (AS) – the difference between an 55 

organism’s SMR and MMR – determines the potential energy that can be 

allocated towards important functions including digestion, activity, growth and 

reproduction (Guderley and Pörtner 2010). SMR, the most frequently measured 

metabolic trait, shows significant inter-individual variation, with up to 

threefold differences in SMR even among similarly sized and aged individuals 60 

from the same population (Burton et al. 2011; Konarzewski and Książek 2013). 

Although MMR (and consequently AS) is measured less often, the level of 

variation appears similar to that of SMR, once age and size are accounted for 
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(Hillman et al. 2013; Norin and Clark 2016). While SMR and MMR are often 

correlated within species (Auer et al. 2017; Swanson et al. 2017), the relationship 65 

between metabolic traits can also vary considerably (Cutts et al. 2002; Chappell 

et al. 2007; Wone et al. 2015; Norin et al. 2016; Barceló et al. 2016). This 

substantial variation and covariation in metabolic phenotypes can be 

understood in terms of ultimate mechanisms (evolved differences due to past 

natural selection), or proximate mechanisms (differences due to developmental 70 

variation or plastic responses to variable environments) (Tinbergen 1963; 

Bateson and Laland 2013).  

Given the likely importance of metabolism for fitness, the reason behind the 

persistence of such variation is somewhat unclear, but one possibility is that the 

optimum metabolic phenotype is context-dependent (Burton et al. 2011). 75 

Variation in optimum phenotypes may occur across populations, e.g. due to 

spatial variation in selection pressures such as temperature, food supply, or 

habitat quality (Thomas et al. 2001; Angilletta et al. 2002). Within populations, 

variation in optimal phenotypes might emerge through time via fluctuating 

selection arising from temporal variation in environmental conditions (Schulte 80 

2015). Moreover, at any given time, the optimum phenotype may vary between 

different types of individuals within and among populations. For example, 

within a population of three-spined sticklebacks Gasterosteus aculeatus, 

migrants had higher standard and active metabolic rates than residents 

(Tudorache et al. 2007), with similar differences among populations linked to 85 

reduced selection on swimming performance in stream-resident populations 

(Dalziel et al. 2012a, b). Variation in optimal phenotypes might also emerge 

between different behavioural types e.g. shy versus bold individuals 

(Dingemanse et al. 2004; Boon et al. 2007; Careau et al. 2008). Collectively, the 

above ultimate mechanisms can lead to evolved (i.e. genetically based) variation 90 

in metabolic traits being maintained within and across populations. Over time, 

a decoupling of metabolic traits can also occur because each trait is subject to 

subtly distinct selection pressures (Norin and Metcalfe 2019), which often act 
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in parallel but may also operate independently (Wone et al. 2015; Barceló et al. 

2016).  95 

Environmental factors are also instrumental in controlling metabolic rate 

variation from a proximate perspective. Dramatic changes in metabolic 

components have been reported in response to temperature (Fry 1971; Pörtner 

and Knust 2007; Clark et al. 2013), hypoxia (Dupont-Prinet et al. 2013; Norin et 

al. 2016), food availability (O’Connor et al. 2000; Van Leeuwen et al. 2011, 2012; 100 

Auer et al. 2015c), and habitat structure (Finstad et al. 2004; Millidine et al. 

2006). Since aerobic metabolism is dependent on factors influencing oxygen 

demand and uptake (Fry 1971), temperature profoundly determines metabolic 

rates (Gillooly et al. 2001; Angilletta et al. 2002; Pörtner and Knust 2007; Brown 

et al. 2016; Pettersen et al. 2018). However, the magnitude of any temperature-105 

induced change in metabolism tends to decrease with exposure time as the 

animal becomes acclimated to the new temperature (Seebacher et al. 2015). 

Acute effects of temperature on metabolism are reasonably well researched, but 

we know less about the effects of chronic temperature exposure (i.e. shifts in 

thermal regime lasting months to years) on different metabolic traits, despite 110 

such time scales being highly relevant in the context of climate change (Clark 

et al. 2013).  

Predicting the effects of temperature is made more complicated because the 

various components of metabolism can show different sensitivities to 

environmental conditions. There is some evidence for more plastic metabolic 115 

“floors” (SMR) than “ceilings” (MMR) in response to temperature, as 

documented in European perch Perca fluviatilis that reduced SMR after long-

term warming with no compensatory adjustments seen in MMR (Sandblom et 

al. 2016). Indeed, many fish species appear to show minimal temperature-

induced changes in AS (Lefevre 2016; Jutfelt et al. 2018), though this is not 120 

always the case (Norin et al. 2014). Similar divergence in the relative responses 

of BMR and MMR (or cold-induced maximum metabolism) to temperature is 

apparent in endotherms (Nespolo et al. 2001; van de Ven et al. 2013; Dubois et 

al. 2016), indicating that decoupling of metabolic traits may be widespread. 
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While a positive relationship between SMR and MMR has been proposed under 125 

the “increased intake” hypothesis – where a higher SMR maintains the 

metabolic machinery that fuels high MMR (Biro and Stamps 2010; Burton et al. 

2011) – covariation between metabolic components may be stronger, weaker, or 

non-existent depending on environmental context (Killen et al. 2013; Norin et 

al. 2016), and can vary between individuals (Norin and Malte 2011). It seems 130 

that SMR and MMR might thus be subject to subtly different proximate (or 

ultimate) constraints that might be revealed or masked by a given set of 

environmental conditions (Killen et al. 2013; Norin and Metcalfe 2019).  

While the fitness implications of metabolism are presumed to be considerable 

because it shapes life histories (Stearns 1992), there is equivocal evidence for 135 

effects of metabolic traits on various fitness metrics (Burton et al. 2011). Positive 

relationships between SMR/RMR and growth (Yamamoto et al. 1998; McCarthy 

2000), reproduction (Sadowska et al. 2013), and survival (Jackson et al. 2001) 

imply fitness benefits of higher SMR that are in line with the “increased intake” 

hypothesis. Yet SMR/BMR has also been negatively linked to growth (Álvarez 140 

and Nicieza 2005; Norin and Malte 2011), reproduction (Blackmer et al. 2005) 

and survival (Álvarez and Nicieza 2005; Larivée et al. 2010), supporting an 

alternative “compensation” hypothesis, whereby a lower SMR is advantageous 

for energy-saving purposes (Burton et al. 2011). Surprisingly little attention has 

been paid to the associations between MMR or AS and fitness (Metcalfe et al. 145 

2016), even though AS has been proposed as the overarching physiological trait 

governing fitness-related functions (Brown et al. 1993; Pörtner and Knust 2007; 

Pörtner and Farrell 2008). Nonetheless, MMR appears to show similarly 

inconsistent relationships with fitness (Hayes and O’Connor 1999; Boratyński 

and Koteja 2009; Zub et al. 2014). Such inconsistencies are likely explained by 150 

context-dependent fitness benefits of various metabolic trait phenotypes. For 

example, higher SMR (or MMR) may only be beneficial when resources are 

plentiful (Reid et al. 2011, 2012; Auer et al. 2015c; Killen et al. 2016) or 

predictable (Hoogenboom et al. 2013), and have been found to have negative 

(Bochdansky et al. 2005), or no effects (Álvarez and Nicieza 2005) when 155 
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resources are limited. Moreover, the fitness consequences of metabolic traits 

may depend on complex links between the larger metabolic phenotype (e.g. the 

coupling of SMR and MMR), and the environmental conditions encountered 

(Auer et al. 2015b).  

Since the optimal metabolic phenotype (or combination of traits) varies across 160 

space/among populations as the environmental context changes, metabolic 

variation might be further associated with population-specific (e.g. evolved) 

differences in life history, such as migration tendency, yet relatively few studies 

have investigated these links. Salmonine fishes (salmon, trout, and charr) offer 

great potential for exploration of the proximate and ultimate drivers of 165 

metabolic trait variation and covariation. In facilitating obligate freshwater 

spawning, salmonines exhibit diverse life-histories that encompass a continuum 

of migratory tactics, from individuals that remain resident in natal freshwater 

streams for their entire life cycle, to those that undertake spectacular migrations 

to larger rivers, lakes, or the sea (Klemetsen et al. 2003). Facultative migration, 170 

where individuals in a population can display either migratory or non-migratory 

(resident) tactics (Chapman et al. 2011a), is proposed to be triggered by the 

relationship between an environmentally-sensitive trait and a genetically-

variable threshold (Tomkins and Hazel 2007; Piche et al. 2008; Pulido 2011; 

Buoro et al. 2012). While the exact trait controlling migration tactics remains 175 

unresolved (Ferguson et al. 2019), migration is often expressed as a consequence 

of energetic limitation in natal streams (Forseth et al. 1999). Variation in 

migratory life histories among individuals and populations is thus likely to be 

linked to variation in metabolic traits, e.g. anadromous (sea-migratory) Atlantic 

salmon Salmo salar had higher SMR than non-migrants across three 180 

populations (Seppänen et al. 2010), and future migrants within a population 

had higher SMR than individuals that delayed migration (McCarthy 2000).  

While variation in metabolic traits could have proximate/causal effects i.e. 

contribute to the emergence of migratory tactics among populations via the 

threshold model, metabolic variation might persist as a compensatory 185 

adaptation in migratory or resident populations (via ultimate mechanisms) that 
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increases the benefits of migration/residency relative to costs (Hendry et al. 

2004). For example, while larger body sizes and higher growth are associated 

with increased migration propensity (Jonsson 1985; Forseth et al. 1999; 

Morinville and Rasmussen 2003), survival-at-sea also increases with size 190 

(Armstrong et al. 2018). We might thus expect higher SMR, MMR, or AS to 

confer growth-mediated fitness benefits in migratory populations. In contrast, 

non-migratory populations must cope with unpredictable/patchy temperatures 

(Elliott 2000; Rutherford et al. 2004) and food availability typical of freshwater 

streams (Martin-Smith and Armstrong 2002), which might favour a lower SMR 195 

that minimises energy requirements.  

Here, we explore the effects of temperature and population factors on metabolic 

traits and growth (a key fitness-associated trait) in experimentally reared F1 

offspring from two wild trout populations that naturally differ in migratory 

tactics. Specifically, we aimed to: (i) assess how long-term temperature 200 

elevation and population background affects metabolic traits (SMR, MMR, and 

AS); (ii) test if populations of variable migratory propensity show variation in 

metabolic responses to warming; (iii) test whether variation in metabolic traits 

influences growth performance; and (iv) investigate how relationships between 

metabolic traits and growth vary according to temperature and population 205 

background. We expected that increased temperature would result in 

compensatory responses in metabolic rates (lower SMR, and/or higher MMR 

and AS) and increased growth rates but that the migratory population would 

overall show higher metabolic rates and growth rates. We also expected that 

SMR, MMR, and AS would be positively related to growth, but the strength or 210 

direction of this relationship could vary between populations, and be magnified 

by warmer temperatures.  

Methods 

Study populations and fish rearing 

We obtained brown trout brood stock from two wild populations in November 215 

2015 by seine netting in the Erriff (53° 37´ 0.00" N: 09° 40´ 17.10" W) and the 

Burrishoole (53° 57′ N: 09° 35′ W) catchments in the west of Ireland (Figure S1). 
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Erriff broodstock were caught in the Tawnyard Lough (56 ha), an upland lake 

fed by the Glendavoch river and a number of smaller tributaries. Trout in the 

Tawnyard Lough primarily spawn in the Glenadavoch River, moving 220 

downstream as fry or parr to the Lough (covering several hundred metres to 

kilometres, depending on spawning location). A large run of out-migrating 

anadromous juveniles (smolts) are produced from Tawnyard Lough each year, 

with estimates of 500 to 3000 smolts enumerated annually at the outflow of 

the Lough (Gargan et al. 2016). An undetermined proportion of the population 225 

remain in the Lough, undergoing several years of freshwater growth before 

spawning in their natal stream, with local expertise indicating that the 

Tawnyard population overall has a strong anadromous component (broadly 

estimated as 50 – 60% of the wild population) (P. Gargan, pers comm.). 

The Burrishoole brood stock were caught in the Srahrevagh River (ca. 7250 m2 230 

of salmonid habitat), a tributary of the Black River in the headwaters of the 

catchment that drains into Lough Feeagh, and ultimately Clew Bay. Although 

an anadromous life history occurred in the Burrishoole catchment up to 30 

years ago (annual estimates of up to 2000 anadromous recruits), the 

anadromous trout run collapsed in the 1980s, coinciding with sea lice outbreaks 235 

from a salmon aquaculture facility established in the downstream estuary 

(Poole et al. 2007). Recent annual runs of up-migrating sea trout are typically 

in the low hundreds. Although the exact spawning locations of historic or 

contemporary anadromous individuals are uncertain, brood stock used in our 

study showed no signs of having undertaken a marine migration, i.e. were all 240 

non-anadromous fish In summary, we consider offspring derived from the 

Tawnyard brood stock to have a strong anadromous background (hereafter 

termed the “anadromous background population”), and offspring from the 

Srahrevagh brood stock to have no recent anadromous background (termed the 

“non-anadromous background population”).  245 

See Archer et al. (2019) and Chapter 3 for detailed description of crossing, 

fertilisation, and rearing procedures, described here in brief. Eggs from each 

female were fertilised by 1-2 males from the same source population and 
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incubated at the Burrishoole hatchery facility. Post-hatching, fry were 

transferred to a rearing facility at University College Cork (Aquaculture and 250 

Fisheries Development Centre), Ireland. Here, they were held in two 100L 

growth tanks (one per population) on a recirculating aquaculture system (RAS), 

maintained at a natural temperature regime typical of the west of Ireland under 

a constant photoperiod (12:12 hours of light: dark), until experimental 

treatments began. During this initial rearing period, fish were fed ad libitum 255 

with commercially available trout pellets (Skretting Ltd., Norway). In December 

2016, 140 fry were allocated to one of four 203L capacity tanks in a larger 

experimental RAS (two tanks per population, initial n = 35 per tank). Within the 

experimental RAS, LED lights above each tank mimicked the natural 

photoperiod of the source catchments. Water flowed continually through tanks, 260 

was treated with mechanical filtration, biofiltration, protein and UV skimming, 

and was mixed in a central sump tank. Mixed water from the sump was passed 

through one of two conditioning units, one that maintained a seasonal 

temperature regime typical of the west of Ireland, or one that was elevated to 

1.8 °C (± 0.55 SD) above the natural temperature regime. Thus, each tank 265 

received water from the same recirculating source, heated to one of two 

temperatures. Fish were fed recommended daily pellet rations for optimal 

growth calculated as a percentage of their body mass, with absolute rations 

adjusted monthly to account for changes in temperatures and body mass 

(Skretting Ltd., Norway). Water quality in the RAS (checked weekly) was 270 

consistently within acceptable levels for fish health, and great care was taken to 

ensure that all measured variables other than temperature regime (fish 

densities, feeding, photoperiod, lux, flow rates) were constant across tanks. 

Mortality was negligible during the experimental period, but fish were 

haphazardly culled (n = 20) over the course of tank rearing for inclusion in 275 

parallel studies.  

The study and all associated procedures were carried out with ethical approval 

from Health Products Regulatory Authority (HPRA) Ireland, under HPRA 

project license AE19130/P034, and individual licenses AE19130/1087, 
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AE19130/I200, AE19130/I201 and AE19130/I202 with all fish humanely 280 

euthanized under licence in April 2018.  

Temperature treatments 

To explore the effects of temperature and population factors on growth and 

metabolism, juvenile brown trout from each population were randomly 

allocated to one of two temperature regimes in January 2016, with the 285 

populations reared separately to prevent emergence of dominance hierarchies. 

The two temperature regimes were: (i) cool temperature treatment: 

temperatures matched the natural, seasonally-varying temperatures of the 

source catchments; and (ii) warm temperature treatment: temperature elevated 

to 1.8 °C ± 0.55 (SD) above the cool treatment. The cool treatment ranged from 290 

5.9 - 16.4 °C (mean temperature = 10.8 °C ± 3.3 SD) and the warm treatment 

ranged from 7.5 - 18.2 °C (mean temperature = 12.6 °C ± 3.4 SD). The 1.8 °C 

elevation in the warm treatment was chosen to reflect increases of 1 - 3 °C 

projected under climate change scenarios (IPCC 2014), but is within sub-lethal 

ranges for brown trout (Forseth et al. 2009; Jonsson and Jonsson 2009). 295 

Temperature was increased by 0.5 ºC per week when initiating treatments to 

minimise stress. Within each temperature treatment, 24-26 fish of each 

population were lightly anaesethised with MS-222, and marked with a unique 

colour combination of visible implant elastomer (VIE) tags (Northwest Marine 

Technology., USA) to allow for re-identification. Six individuals lost VIE tags 300 

over the course of the experiment, leaving n = 96 individually identifiable fish.  

Data collection  

To calculate growth rates of VIE tagged individuals across the study period, the 

fork length (mm) and mass (g) of lightly anaesethised fish was recorded in April, 

June, July, August, September, and December 2017. In February 2018 305 

(approximately 12 months after temperature treatments were established), 

eight fish from each population and temperature treatment combination 

underwent respirometry trials to measure metabolic traits (n = 32 individuals 

in total).  
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Measurement of MMR  310 

Whole-animal oxygen consumption (MO2) in animals operating at their 

maximum aerobic metabolic rate was used as proxy for MMR (Norin and 

Metcalfe 2019), following best practices outlined in Norin and Clark (2016). We 

used an exhaustive chase protocol following Norin and Clark (2016) to elicit 

MMR in the same individuals that we measured for SMR. Prior to SMR 315 

measurements, each individual fish due to be measured for SMR later that day 

was first placed in an aerated 50L tank in a controlled-temperature (CT) 

chamber at 7.9 °C ± 0.1 SD, and manually chased by hand until exhaustion. We 

determined exhaustion to occur when the fish were unresponsive (i.e. did not 

exhibit burst swimming) to tactile stimulus (typically after 2 to 3 minutes of 320 

sustained chasing). Once exhausted, the fish was immediately transferred to a 

respirometry chamber in the same system used to measure SMR, the chamber 

was sealed, and oxygen decline within the closed chamber loop (recirculation 

pump operational) was recorded for a 60s measurement period. The time taken 

to transfer fish to the chamber and begin recording oxygen measurements never 325 

exceeded 20s, ensuring that minimal recovery from the exhaustive chase 

procedure occurred before recording oxygen consumption. 

Measurement of SMR  

The SMR of individual fish was determined using intermittent-flow 

respirometry, following best practices outlined in Svendsen et al. (2016). SMR 330 

measurements took place overnight in a darkened CT chamber maintained at 

7.9 °C ± 0.1 SD (the mid-point between the cool and warm temperature 

treatments at the time of measurements). The respirometry system consisted of 

four acrylic respirometry chambers (1200 ml) (Loligo Systems, Viborg, 

Denmark), submerged in a water bath, flushed with de-chlorinated water 335 

bubbled to 100% oxygen saturation by an air stone. PVC tubing (10mm 

diameter, non-permeable to oxygen) connected each individual chamber to two 

pumps (Eheim Ltd., Deizisau, Germany). A “flush” pump flushed fully 

oxygenated water through the chambers. A second “recirculation” pump 

recirculated water in a closed loop through the chamber, whereby water exiting 340 
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the chamber was passed through a 10mm flow through oxygen cell (PreSens 

Ltd., Regensburg, Germany) that continually measured dissolved oxygen 

concentration, before being recirculated back to the same respirometry 

chamber via PVC tubing. Thus, individual oxygen consumption (MO2, used as 

a proxy for SMR in fasted, inactive animals) was measured in repeated cycles 345 

that consisted of a flush period (flush pump operational) and a measurement 

period (recirculation pump operational) where oxygen level in each chamber 

was recorded at one second intervals to estimate oxygen decline (i.e. oxygen 

uptake). Each cycle consisted of 330s of flushing, and a measurement period of 

200 - 300s (to ensure sufficient O2 depletion for calculating MO2 in different-350 

sized fish). We also allowed a 30s buffer period before recording oxygen uptake 

once the flush pump was switched off, to allow the chamber water and flush 

water to mix completely and reach an equilibrium oxygen saturation. 

Fish were fasted for 28h prior to respirometry measurements to ensure 

individuals were in a post absorptive state (Cutts et al. 2002). Fish were placed 355 

in individual respirometry chambers between 11:00 and 12:00 each day, and 

were left to acclimatise for five hours, with chambers continually flushed with 

oxygen-saturated water during this acclimation period. SMR measurements 

began between 16:00 and 17:00, and ended between 09:00 and 10:00 the 

following morning, allowing for a minimum of 100 measurements of oxygen 360 

uptake per individual over a ~20-h period, during which time fish were not 

disturbed. Once SMR measurements had finished, fish were returned to their 

rearing tanks. To limit bacterial growth in the system, the entire respirometry 

set-up was washed with bleach after each overnight SMR respirometry trial. We 

also measured background (i.e. bacterial) respiration rates in each chamber on 365 

a daily basis by recording oxygen decline in empty chambers for one 

measurement cycle before fish entered the respirometry system, and again for 

one measurement cycle once the respirometry measurements had ended and 

fish were removed from the chambers. 
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Measurement of MMR  370 

Whole-animal oxygen consumption (MO2) in animals operating at their 

maximum aerobic metabolic rate was used as proxy for MMR (Norin and 

Metcalfe 2019), following best practices outlined in Norin and Clark (2016). We 

used an exhaustive chase protocol following Norin and Clark (2016) to elicit 

MMR in the same individuals that we measured for SMR. Prior to SMR 375 

measurements, each individual fish due to be measured for SMR later that day 

was first placed in an aerated 50L tank and manually chased by hand until 

exhaustion. We determined exhaustion to occur when the fish were 

unresponsive (i.e. did not exhibit burst swimming) to tactile stimulus (typically 

after 2 to 3 minutes of sustained chasing). Once exhausted, the fish was 380 

immediately transferred to a respirometry chamber in the same system used to 

measure SMR, the chamber was sealed, and oxygen decline within the closed 

chamber loop (recirculation pump operational) was recorded for a 60s 

measurement period. The time taken to transfer fish to the chamber and begin 

recording oxygen measurements never exceeded 20s, ensuring that minimal 385 

recovery from the exhaustive chase procedure occurred before recording 

oxygen consumption. 

Statistical Analysis 

We estimated SMR (mg O2 h-1) by first calculating an individual’s MO2 values 

(mg O2 h-1) for each repeated measurement of oxygen uptake recorded during 390 

the overnight SMR respirometry trials. MO2 was calculated as the most 

consistent linear decline in oxygen recorded during each measurement loop, 

estimated by rolling regression using the respR package (Harianto and Carey 

2019). We inspected all MO2 measurements to assess regression fit, and only 

included MO2 values with an acceptable fit (R2 values > 0.90) in subsequent 395 

SMR calculations, unless a clear linear trend was determined upon visual 

inspection of fit. Any background respiration in MO2 values was accounted for 

by subtracting the MO2 values calculated in empty chambers before and after 

each trial. We assumed background MO2 rates increased linearly over the 

course of each trial (due to bacterial growth), and therefore allowed for a 400 
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dynamic background correction value (i.e. background MO2 increased 

overnight), calculated as: 

𝑀𝑂2𝑏𝑔
= 𝑏𝑔0 + (𝑡 × 𝑏𝑔) 

 where 𝑀𝑂2𝑏𝑔
 is background MO2, at a given measurement time point t, the 

time elapsed since initiating overnight SMR measurements, 𝑏𝑔0 and 𝑏𝑔 are 405 

parameters (the intercept and slope respectively) estimated from the matrix 

regression of the background oxygen uptake before and after experiments, as a 

function of time elapsed. We then subtracted 𝑀𝑂2𝑏𝑔
 from each value of MO2, 

as calculated for an individual fish at successive time points during the 

overnight SMR respirometry trials. 𝑀𝑂2𝑏𝑔
 never exceeded more than 2% of total 410 

MO2 in all cases, confirming that background respiration rates remained low 

throughout the study. Individual SMR was then calculated by talking the mean 

of the lowest 10th percentile of background-corrected MO2 values recorded over 

the 20-h SMR measurement period, then excluding outliers (values more than 

two SD from this mean). 415 

We estimated individual MMR (mg O2 h-1) using the respR package (Harianto 

and Carey 2019) by calculating MO2 as the linear decline in oxygen in each 

individual respirometry chamber in the 60s measurement period immediately 

after the exhaustive chase protocol (i.e. extracting slopes from the linear 

regression of oxygen concentration against time over a 60s period). We 420 

calculated individual absolute aerobic scope (AS) (mg O2 h-1) as the difference 

between MMR and SMR.  

We explored variation in metabolic traits by first testing if the relationships 

between body mass and SMR, MMR, or AS were affected by temperature and 

population factors (Aims 1 and 2) using three general linear models (GLMs). 425 

Body mass and metabolic rates were log10 transformed to normalise and 

linearise the data. Each GLM (normal errors) included either log10 SMR, log10 

MMR, or log10 AS as the response variable, and log10 body mass, temperature 

treatment and population background as explanatory variables. To test for 

variation in the scaling of metabolic rates, each model included interactions 430 
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between log10 body mass and temperature, and log10 body mass and population, 

along with an interaction between temperature and population, and a three-

way interaction term (log10 body mass × temperature × population).  

To explore how factors affected metabolic rate independent of mass, and to 

avoid the pitfalls associated with solely using P-values (Halsey et al. 2015; Halsey 435 

2019), we next tested for differences in mass-independent measures of SMR, 

MMR, and AS by estimation statistics (i.e. calculating effect sizes) using the 

dabestr package (Ho et al. 2019). The residuals of the linear relationship 

between log10 body mass and SMR, MMR, and AS (all log10 transformed) were 

used to correct for body mass in these analyses (see Table S1 for model 440 

summaries). Residual values of metabolic rates (rSMR, rMMR, rAS) gave mass-

independent estimates of metabolic rates (individuals with positive residuals 

have a higher than expected metabolic rate for a given fish size, whereas 

negative residuals indicate a lower than expected rate). Effect sizes for mean 

differences in rSMR, rMMR, and rAS were computed for all pairwise 445 

comparisons between all levels of temperature treatment and population 

background, and 95% confidence intervals (CIs) were constructed by 

bootstrapped resampling for 5,000 resamples.  

To assess whether temperature treatment and population background 

influenced the relationship between metabolic traits, we constructed three 450 

GLMs (normal errors). We used residual metabolic rates in these analyses to 

give mass-independent estimates of metabolic rates. The first GLM included 

rMMR as a response variable, with rSMR, temperature treatment, and 

population background included as explanatory variables. A second GLM 

included rAS as the response, and rSMR, temperature treatment, and 455 

population background were similarly included as predictors. We included two-

way interaction terms for rSMR × temperature, and rSMR × population, along 

with a three-way rSMR × temperature × population interaction to test for 

differences in covariation between MMR or AS with SMR. The third GLM 

modelled rAS as function as rMMR, temperature treatment, and population 460 
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background, and similarly included the interaction terms rMMR × temperature, 

rMMR × population, and rMMR × temperature × population.  

Finally, we explored how metabolic rates, population and temperature 

treatments influence growth rates across the study period (Aims 3 and 4) within 

a mixed effects modelling framework using the nlme package (Pinheiro et al. 465 

2019). We estimated growth rates as the specific growth rate (% day-1) in terms 

of fork length (GL) between measurement periods according to: 

𝐺𝐿 = 100 ×  (ln 𝑆𝑡 −  ln 𝑆𝑖) 𝑑⁄  

where St is the fork length at time t, Si is the initial fork length, and d is the time 

elapsed (in days) between Si and St (Hopkins 1992). We built three mixed effects 470 

models (normal errors) to examine how rSMR, rMMR and rAS influenced 

growth rates in fish that underwent respirometry trials. Each model included 

time (continuous variable corresponding to months since start of experiment), 

a third order polynomial term for time (to account for non-linearity through 

time), temperature treatment, population background, and metabolic rate 475 

(either rSMR, rMMR, or rAS) as fixed effects, and individual identity as a 

random effect to account for multiple growth rate measurements of individuals. 

We included two-way interactions between metabolic rate and temperature, 

metabolic rate and population, and temperature and population, and a three-

way interaction (metabolic rate × temperature × population). Since growth rate 480 

is size dependent (Nicieza and Álvarez 2009; Killen 2014), we included initial 

fork length as a covariate in the models, and we accounted for temporal 

autocorrelation of growth rates by modelling an autoregressive error structure 

as a first order lag function of time. To test if metabolic rate effects were 

consistent across the experiment, we constructed three additional mixed effect 485 

models as described above, but included an additional interaction between 

metabolic rate and time.  

We used likelihood ratio tests (LRT) to assess statistical significance of predictor 

variables for all models at a 5% alpha level. Non-significant interaction terms 

were excluded to interpret main effects. For the estimation statistics approach, 490 
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we considered an estimated difference in means between groups to exist (i.e. 

was significant) if the 95% CI of the effect size did not include zero. Marginal 

R2 values for mixed effect models were calculated using the MuMIn package 

(Barton 2019). Analysis was carried out in R version 3.6.0 (R Core Team 2019) 

and all models were checked against assumptions of the given model 495 

(independence, non-normality of residuals, heteroscedasticity and 

multicollinearity). 

Results 

Variation in metabolism 

Whole-animal SMR, MMR, and AS varied between temperature treatments and 500 

population background (see Table 1 for a summary of mean values of metabolic 

rates for each temperature and population combination).  

As expected, log10 SMR increased significantly with log10 body mass (χ2 = 31.79, 

df = 1, P < 0.001, Table S2), but we did not find any significant interactions 

between body mass, temperature, and population (χ2 = 0.31, df = 1, P = 0.580), 505 

between body mass and temperature (χ2 = 0.11, df = 1, P = 0.735), or between 

body mass and population (χ2 = 0.13, df = 1, P = 0.716). The temperature × 

population interaction was also non-significant (χ2 = 0.01, df = 1, P = 0.985), but 

the main effects of temperature treatment (χ2 = 9.55, df = 1, P = 0.002), and 

population background (χ2 = 5.05, df = 1, P = 0.025) were significant. For a given 510 

size, fish in the warm temperature treatment had lower SMR values, as did fish 

from the non-anadromous population (Figure 1A, Table S2). Similarly, 

estimation statistics showed fish in the warm temperature treatment had lower 

mass-independent SMR (lower rSMR) than those from the cool treatment 

(Figure 1B, Table 2). The non-anadromous population also tended to have lower 515 

rSMR at both temperatures, although this difference was less apparent in the 

warm temperature treatment, where the 95% CIs for the mean difference in 

rSMR between populations overlapped zero (Figure 1C, Table 2). 

Table 1: Mean values and associated standard deviations (SD) for the length 

(mm), mass (g), standard metabolic rate (SMR) (mg O2 hr-1), maximum 520 
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metabolic rate (MMR) (mg O2 hr-1), and aerobic scope (AS) (mg O2 hr-1) of 

brown trout (n = 32) offspring derived from two wild populations (AB = 

Anadromous background, Non-AB = Non-anadromous background). Fish were 

measured for metabolic traits in February 2018 after ~12 months of 

experimental rearing at one of two temperature treatments (Cool = natural 525 

temperature regime, Warm = 1.8 °C above natural temperature regime). 

Temperature, 
Population 

Length 
(mean ± SD) 

Mass 
(mean ± SD) 

SMR 
(mean ± SD) 

MMR 
(mean ± SD) 

AS 
(mean ± SD) 

Cool, AB 218.50 ± 11.30 119.00 ± 23.00 5.97 ± 1.32 54.00 ± 9.60 48.04 ± 8.65 

Warm, AB 222.88 ± 6.90 133.59 ± 17.13 5.57 ± 1.34 45.57 ± 10.89 40.00 ± 10.29 

Cool, Non-AB 201.75 ± 8.22 108.58 ± 14.66 4.80 ± 1.02 36.83 ± 8.32 32.04 ± 8.01 

Warm, Non-AB 202.75 ± 19.95 108.10 ± 29.88 3.95 ± 1.03 35.16 ± 8.79 31.21 ± 8.08 

 

After accounting for the effects of individual variation in log10 body mass on 

log10 MMR (χ2 = 11.13, df = 1, P = 0.001, Table S2), there were no significant 

interactions between body mass, temperature, and population (χ2 = 0.01, df = 1, 530 

P = 0.992), between body mass and temperature (χ2 = 0.06, df = 1, P = 0.810), 

between body mass and population (χ2 = 0.87, df = 1, P = 0.352), or between 

temperature and population (χ2 = 1.15, df = 1, P = 0.284). We detected significant 

main effects of temperature treatment (χ2 = 4.10, df = 1, P = 0.043) and 

population background (χ2 = 10.59, df = 1, P = 0.001) on log10 MMR. Overall, 535 

MMR (for a given size) was lower in the warm treatment, and in the non-

anadromous background population (Figure 2A, Table S2). When considering 

size-independent MMR (rMMR), a lower rMMR in the warm treatment was 

evident only fish from the anadromous background population (Figure 2B, C, 

Table 2), and population differences in rMMR were seen in the cool treatment 540 

only (Figure 2B, C).  

Table 2: Effect sizes (∆) and associated 95% confidence intervals (CIs) for 

differences in mean residual standard metabolic rate (rSMR) (mg O2 hr-1), 

residual maximum metabolic rate (rMMR) (mg O2 hr-1), and residual aerobic 

scope (rAS) (mg O2 hr-1) of brown trout (n = 32) offspring derived from two wild 545 

populations (AB = anadromous background population, non-AB = non 
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anadromous background population), exposed to two temperature treatments 

(Cool = natural temperature regime, Warm = 1.8 °C above natural temperature 

regime). CIs were constructed by non-parametric bootstrap resampling (5,000 

resamples).  550 

Mean difference (∆) 
∆ rSMR 
(95% CI) 

∆ rMMR 
(95% CI) 

∆ rAS 
(95% CI) 

Warm AB – Cool AB 
-0.084 

(-0.153; -0.020) 
-0.116 

(-0.192; -0.029) 
-0.121 

(-0.206; -0.031) 

Warm non-AB – Cool non-AB 
-0.075 

(-0.134; -0.005) 
-0.012 

(-0.073; 0.057) 
-0.002 

(-0.073; 0.076) 

Cool non-AB – Cool AB 
-0.060 

(-0.118; -0.005) 
-0.144 

(-0.217; -0.068) 
-0.157 

(-0.241; -0.073) 

Warm non-AB – Warm AB 
-0.050 

(-0.125; 0.023) 
-0.040 

(-0.122; 0.026) 
-0.038 

(-0.124; 0.037) 

 

We detected similar trends in AS, with non-significant interactions between 

body mass, temperature, and population (χ2 = 0.01, df = 1, P = 0.942), between 

body mass and temperature (χ2 = 0.04, df = 1, P = 0.834), between body mass 

and population (χ2 = 0.93, df = 1, P = 0.336), and between temperature and 555 

population (χ2 = 1.27, df = 1, P = 0.260). After accounting for the effects of log10 

body mass on log10 AS (χ2 = 7.81, df = 1, P = 0.005, Table S2), the main effect of 

temperature treatment was also non-significant (χ2 = 2.98, df = 1, P = 0.084). 

Population background significantly affected log10 AS (χ2 = 9.51, df = 1, P = 

0.002), whereby AS (for a given size) was lower in the non-anadromous 560 

background population (Figure 3A, Table S2). However, rAS tended to be lower 

in the warm treatment in the anadromous background population (Figure 3B, 

C, Table 2), but not in the non-anadromous population. Population differences 

in rAS were strongest in the cool treatment (Figure 3C).  



Chapter 5 | Temperature, metabolism, and growth 
 

205 
 

 

Figure 1: (A) Body mass scaling of standard metabolic rate (SMR) of brown 

trout offspring derived from an anadromous background population (AB) and 

a non-anadromous background population (non-AB). Fish were reared under 

two experimental temperature treatments: a natural temperature regime 

(Cool); and temperature elevated 1.8°C above the cool regime (Warm). (B) 

Residual SMR values (body mass corrected) for each population background 

and temperature treatment combination. Black vertical bars represent the 

standard deviation around the mean (shown as a gap in the bars), and sample 

size is shown as “N =”. (C) Cumming estimation plots with effect sizes shown 

as black dots (i.e. the mean differences in rSMR among the groups), the 

distributions (shaded curves) and 95% confidence intervals (back bars) of the 

effect sizes obtained from non-parametric bootstrap resampling (5,000 

resamples). 

 565 
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Figure 2: (A) Body mass scaling of maximum metabolic rate (MMR) of brown 

trout offspring derived from an anadromous background population (AB) and 

a non-anadromous background population (non-AB). Fish were reared under 

two experimental temperature treatments: a natural temperature regime 

(Cool); and temperatures elevated 1.8°C above the Cool regime (Warm). (B) 

Residual MMR values (body mass corrected) for each population background 

and temperature treatment combination. Black vertical bars represent the 

standard deviation around the mean (shown as a gap in the bars), and sample 

size is shown as “N =”. (C) Cumming estimation plots with effect sizes shown 

as black dots (i.e. the mean differences in rMMR among the groups), the 

distributions (shaded curves) and 95% confidence intervals (back bars) of the 

effect sizes obtained from non-parametric bootstrap resampling (5,000 

resamples). 
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Figure 3: (A) Body mass scaling of aerobic scope (AS) of brown trout offspring 

derived from an anadromous background population (AB) and a non-

anadromous background population (non-AB). Fish were reared under two 

experimental temperature treatments: a natural temperature regime (Cool); 

and temperatures elevated 1.8°C above the cool regime (Warm). (B) Residual 

AS values (body mass corrected) for each population background and 

temperature treatment combination. Black vertical bars represent the 

standard deviation around the mean (shown as a gap in the bars), and sample 

size is shown as “N =”. (C) Cumming estimation plots with effect sizes shown 

as black dots (i.e. the mean differences in rAS among the groups), the 

distributions (shaded curves) and 95% confidence intervals (back bars) of the 

effect sizes obtained from non-parametric bootstrap resampling (5,000 

resamples). 
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Relationships between metabolic traits 

After adjusting for body mass, rMMR was positively related to rSMR, with a 570 

significant interaction between rSMR and population (χ2 = 5.16, df = 1, P = 0.023) 

whereby the anadromous population had a higher rMMR for a given rSMR 

(Figure 4A, Table S3). The two-way interactions between temperature and 

rSMR (χ2 = 0.63, df = 1, P = 0.429), and between temperature and population 

(χ2 = 0.25, df = 1, P = 0.618), and the three-way interaction between temperature, 575 

population, and rSMR (χ2 = 0.64, df = 1, P = 0.425) were all non-significant. We 

did not detect a significant main effect of temperature (χ2 = 1.22, df = 1, P = 

0.270). 

The positive relationship between rAS and rSMR varied according to a 

significant rSMR × population interaction (χ2 = 5.02, df = 1, P = 0.025), whereby 580 

the anadromous population had a higher rAS for a given rSMR (Figure 4B, Table 

S3). The rAS × temperature interaction (χ2 = 0.66, df = 1, P = 0.420), the 

temperature × population interaction (χ2 = 0.28, df = 1, P = 0.597), and the rSMR 

× temperature × population interaction (χ2 = 0.66, df = 1, P = 0.418) were all 

non-significant. The main effect of temperature was also non-significant (χ2 = 585 

1.17, df = 1, P = 0.276).  

There was a strong positive relationship between rAS and rMMR (Figure 4C, χ2 

= 2490.9, df = 1, P < 0.001). We did not detect significant interactions between 

rMMR and temperature (χ2 = 0.50, df = 1, P = 0.479), between rMMR and 

population (χ2 = 1.41, df = 1, P = 0.234), or between rMMR, temperature, and 590 

population (χ2 = 0.26, df = 1, P = 0.613). The temperature × population 

interaction was also non-significant (χ2 = 0.47, df = 1, P = 0.493). While the main 

effect of population was non-significant (χ2 = 1.46, df = 1, P = 0.227), the main 

effect of temperature was significant (χ2 = 6.23, df = 1, P = 0.013), whereby fish 

in the warm treatment had a marginally higher rAS for a given rMMR (Figure 595 

4C, Table S3).  
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Figure 4: Relationships between: (A) Residual standard metabolic rate 

(rSMR) and residual maximum metabolic rate (rMMR); (B) rSMR and residual 

aerobic scope (rAS); and (C) rMMR and rAS for brown trout offspring derived 

from an anadromous background population (AB) and a non-anadromous 

background population (non-AB). Fish experienced two temperature 

treatments: a natural temperature regime (Cool), or temperatures elevated 

1.8°C above the cool regime (Warm). Residual (size-independent) values for 

metabolic rates were estimated from the linear relationship between each 

metabolic rate (SMR, MMR, or AS) as a function of body mass (both log10-

transformed).  

 

Metabolic traits and growth  

Specific growth rates of fish included in respirometry trials varied non-linearly 

through time (polynomial term for time: χ2 = 134.32, df =3, P < 0.001; Figure 600 

5A). After controlling for significant negative effects of initial body size on 

growth (χ2 = 14.23, df =1, P < 0.001; Table S4), the mixed effects model 

describing the effects of rSMR on specific growth rate (marginal R2 = 0.69) 

retained significant two-way interactions between rSMR and temperature, and 

between temperature and population (Table 3). Overall, the negative rSMR × 605 

temperature term indicated that in the warm treatment, higher rSMR were 

associated with lower growth rates (Figure 5B, Table S4). The negative 

interaction between temperature and population indicated that non-

anadromous population had marginally lower growth rates in the warm 

treatment (Figure 5A, B). Neither the interaction term for rSMR × temperature 610 
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× population, nor the term for rSMR × population was significant in the model 

(Table 3).  

The mixed effects model describing the effects of rMMR on specific growth rate 

(marginal R2 = 0.67) retained a significant two-way interaction between rMMR 

and population (Table 3), once the effects of initial size and time were 615 

accounted for (effect of time: χ2 = 133.15, df = 3, P < 0.001; and of initial size: χ2 

= 14.50, df =1, P < 0.001, Table S4). The anadromous background population 

showed a weak, positive effect of rMMR on growth, but the relationship was 

negative in the non-anadromous population (Figure 5A, C, and Table S4). 

Interaction terms for rMMR × temperature × population, for rMMR × 620 

temperature, and for temperature × population were not significant in the 

model describing growth rate as a function of rMMR (Table 3). 

The model describing the effects of rAS on specific growth rate (marginal R2 = 

0.69) similarly retained a significant two-way interaction between rAS and 

population (Table 3), once the effects of initial size and time were accounted for 625 

(effect of time: χ2 = 132.99, df = 3, P < 0.001; and of initial size: χ2 = 12.52, df =1, 

P < 0.001 Table S4). The effect of rAS on growth was positive in the anadromous 

population but negative in the non-anadromous population (Figure 5A, D, 

Table S4). The model did not include significant interaction terms for rAS × 

temperature × population, for rAS × temperature, or for temperature × 630 

population (Table 3).  

The additional set of mixed effect model analyses indicated that relationships 

between metabolic rates and growth were variable through time (Figure S2, 

Table S5) (LRT: rSMR × polynomial term for time: χ2 = 38.60, df = 3, P < 0.001; 

rMMR × polynomial term for time: χ2 = 10.45, df = 3, P = 0.015; rAS × polynomial 635 

term for time: χ2 = 8.80, df = 3, P = 0.032).  

See Supporting Information for summaries of all GLM and mixed effects model 

coefficients.  
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Figure 5: (A) Coefficient estimates (± 95% confidence intervals) from the 

mixed effect models describing the effects of residual metabolic rate 

components (SMR = standard metabolic rate, MMR = maximum metabolic 

rate, and AS = aerobic scope, temperature treatment (Cool and Warm), and 

population background (AB = anadromous background, Non-AB = non-

anadromous background) on specific growth rates of brown trout obtained 

from repeated measurements across the study (“Time” = months since 

initiating treatments). The mixed models were used to predict specific growth 

rates of brown trout in response to marginal effects of (B) rSMR, temperature 

treatment, and popualtion background, (C) marginal effects of rMMR, 

temperature treatment, and popualtion background and (D) marginal effects 

of rAS, temperature treatment, and population background. Shaded regions 

in (B), (C), and (D) show the 95% confidence intervals for the predictions. 

Growth rates were predicted at mean values for the remaining explanatory 

variables in the models.  
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Table 3: Results of the mixed effect model analysis for specific growth rate trajectories (% day-1) of brown trout that were measured for 640 

standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS). The results of the model selection procedure 

on interaction terms are given (significance assessed at P < 0.05), and the selected model for specific growth rate as a function of a given 

metabolic component is highlighted in bold. The models included a random effect of individual identity and a first-order autoregressive 

correlation structure with respect to time was modelled (“Time” = months since beginning of treatment).  

Model terms df AIC logLik L-ratio P-value 

rSMR*Temperature*Population + poly(Time, 3) + Length 15 -487.46 258.73   

rSMR*Temperature + rSMR*Population + Temperature*Population + poly(Time, 3) + Length 14 -486.41 257.20 3.05 0.081 

rSMR*Population + Temperature*Population + poly(Time, 3) + Length 13 -483.75 254.88 4.66 0.031 

rSMR*Temperature + Temperature*Population + poly(Time, 3) + Length 13 -487.76 256.88 0.64 0.422 

rSMR*Temperature + rSMR*Population + poly(Time, 3) + Length 13 -482.70 254.35 5.71 0.017 

rMMR*Temperature*Population + poly(Time, 3) + Length 15 -486.17 258.09   

rMMR*Temperature + rMMR*Population + Temperature*Population + poly(Time, 3) + Length 14 -488.12 258.06 0.05 0.818 

rMMR*Population + Temperature*Population + poly(Time, 3) + Length 13 -489.95 257.97 0.17 0.678 

rMMR*Temperature + Temperature*Population + poly(Time, 3) + Length 13 -484.62 255.31 5.50 0.019 

rMMR*Temperature + rMMR*Population + poly(Time, 3) + Length 13 -488.36 257.18 1.76 0.184 

rMMR*Population + Temperature + poly(Time, 3) + Length 12 -488.00 256.00 4.13 0.127 

rAS*Temperature*Population + poly(Time, 3) + Length 15 -487.10 258.55   

rAS*Temperature + rAS*Population + Temperature*Population + poly(Time, 3) + Length 14 -489.10 258.55 0.01 0.982 

rAS*Population + Temperature*Population + poly(Time, 3) + Length 13 -490.67 258.33 0.43 0.513 

rAS*Temperature + Temperature*Population + poly(Time, 3) + Length 13 -485.32 255.66 5.78 0.016 

rAS*Temperature + rAS*Population + poly(Time, 3) + Length 13 -489.73 257.87 1.36 0.243 

rAS*Population + Temperature + poly(Time, 3) + Length 12 -488.70 256.35 4.40 0.111 

 645 
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Discussion  

Metabolism defines the energetic balance of organisms, with considerable 

implications for performance, and ultimately, fitness. Yet despite widespread 

variation in metabolic traits, we know surprisingly little about how or why such 

variation persists, or how metabolic variation affects individual performance. 650 

Here, we explored the intrinsic and extrinsic causes of variation in metabolism 

in facultatively migratory brown trout by experimentally rearing two 

populations (that naturally differ in anadromy tactics) under a temperature 

regime that simulated a 1.8°C increase above natural temperatures, in line with 

climate change projections. Both populations had lower SMR in the warm 655 

temperature treatment, with lower MMR and AS also seen in the anadromous 

population in the warm temperature treatment, a difference that was not 

evident in the non-anadromous population. The variation in metabolic traits 

had complex implications for growth rates across the study that varied by 

population background and temperature. Lower SMR were associated with 660 

higher growth in the warm treatment, whereas lower MMR and AS were linked 

to higher growth rates in the non-anadromous population. Overall, our study 

indicates that populations may show variable responses to changing 

environmental conditions in terms of metabolic traits, with potential fitness 

consequences in a warming world.  665 

Effects of temperature on metabolism 

The lower SMR displayed by both populations in the warm treatment suggests 

that adjustment of this key physiological trait is a plastic, or acclimation, 

response to chronic warming. While acute warming is well known to cause an 

initial increase in ectotherm metabolic rates (Clarke and Johnston 1999; 670 

Angilletta et al. 2002), exposure over longer time scales (i.e. those comparable 

to the 15 months of warming in our study) tends to reduce the magnitude of the 

response because acclimation occurs (Seebacher et al. 2015). The reduction in 

SMR we observed supports the potential for thermal compensation by way of 

the “plastic floors” hypothesis, where a lower SMR at warmer temperatures is 675 

beneficial because it reduces maintenance costs (Sandblom et al. 2016). Such 
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acclimation responses in fish can be considerable, e.g. Atlantic halibut 

(Hippoglossus hippoglosssus) acclimated at warmer temperatures (ranging 

from 5-18°C) for 14 weeks showed stable SMR from 10-16°C (Gräns et al. 2014). 

Acclimation capacity has been generally linked to increased resilience to 680 

environmental change (Magozzi and Calosi 2015; Seebacher et al. 2015). 

However, while temperatures are broadly projected to increase, more extreme 

and frequent warming events are also forecast (Meehl and Tebaldi 2004; 

Seneviratne et al. 2014). The adaptiveness of a given flexible response will thus 

greatly depend on both the pattern of fluctuations in temperatures, and the 685 

speed at which individuals can alter their phenotype (Reed et al. 2010).  

Population effects on metabolism 

In addition to temperature-induced changes, we observed variation in SMR 

between our study populations that matched our expectations of lower baseline 

energetic requirements in the non-anadromous population. Metabolic traits are 690 

evolvable (Rønning et al. 2007; Nilsson et al. 2009; Pettersen et al. 2018) and 

can respond to selection over relatively short periods (Sadowska et al. 2015). As 

such, population-level variation could reflect genetic differences or 

plastic/acclimation responses related to life-history differences between 

populations. For example, a lower SMR could be optimal for the non-695 

anadromous population because freshwater systems have relatively low 

productivity (Gross et al. 1988), whereas higher SMR in the anadromous 

population might facilitate rapid growth to reach sufficient smolt size to 

successfully migrate (Ward and Slaney 1988), particularly if SMR and MMR are 

linked under the “increased intake” hypothesis (Burton et al. 2011). The higher 700 

MMR and AS we observed in the anadromous population might similarly reflect 

evolutionary change or plasticity driven by the demands of migration. MMR and 

AS is higher in anadromous sockeye salmon Oncorhynchus nerka populations 

that undertake more challenging migrations (Lee et al. 2003; Eliason et al. 2011), 

whereas relatively lower MMR and AS has been reported in resident versus 705 

migratory three-spine stickleback populations, linked to weak selection on 

swimming performance (Dalziel et al. 2012a, b). Higher SMR and MMR might 
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subsequently be favoured in the marine environment by facilitating predator 

avoidance (e.g. locomotor capacity) (Plaut 2001; Killen et al. 2015; Eliason and 

Farrell 2016). We also cannot rule out that metabolic traits may be reflective of 710 

environmental constraints specific to each population, e.g. counter gradient 

selection driven by poor/fluctuating resources experienced by the anadromous 

population, whereby a higher AS maximises consumption and growth when 

opportunities arise (Álvarez et al. 2006).  

Intriguingly, while both of our study populations showed similar reductions in 715 

SMR in the warm temperature treatment, we detected variable responses in 

size-independent measures of MMR and AS with warming. Similar MMR and 

AS in the non-anadromous populations in both warm and cool treatments 

suggested that aerobic performance in this population was either unaffected by 

warming, or else showed a heightened acclimation response to the temperature 720 

increase than the anadromous population (which had lower MMR and AS in the 

warm versus cool treatment). Relatively little is known about the response of 

MMR or AS to chronic temperature increases (Schulte et al. 2011; Clark et al. 

2013), but the population-level variation we observed supports mounting 

evidence that effects of long-term warming may vary considerably between and 725 

potentially within species. For example, thermal compensation in AS by way of 

acclimation in MMR has previously been seen in Atlantic halibut (Gräns et al. 

2014). However, tropical barramundi Lates calcarifer showed reduced MMR and 

AS after acclimation to high temperatures, despite observed increases in MMR 

after acute exposure to warming (Norin et al. 2014). Similarly, a small decline in 730 

MMR was observed in shorthorn sculpin Myoxocephalus scorpius after eight 

weeks of warming, even though a reduction in SMR partially restored AS by the 

end of the acclimation period (Sandblom et al. 2014).  

Since a high AS is generally considered to increase individual performance and 

fitness (Pörtner and Farrell 2008; Biro and Stamps 2010), and is a trait linked 735 

with migration effort (Eliason et al. 2011; Clark et al. 2011) it is initially unclear 

why the anadromous population did not appear capable of maintaining MMR. 

This implies there might be costs associated with maintaining a high MMR that 
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are specific to the anadromous population, in other words, temperature-

induced flexibility in MMR may not be adaptive in this population e.g. if 740 

environmental fluctuations are rapid/extreme and the speed of acclimation is 

slow, the benefits of plasticity may be limited (Reed et al. 2010). Alternatively, 

the reduction in SMR may have caused an inevitable reduction in MMR, which 

is in line with the “increased intake” hypothesis underpinning energetic 

capacity in the anadromous population (Burton et al. 2011). This seems likely 745 

given the strong coupling we observed between SMR and MMR, which was 

absent in the non-anadromous population.  

Consequences of metabolic rate variation for growth  

The variation in metabolic traits we observed had consequences for growth, 

which depended largely on temperature treatment in the case of SMR. Lower 750 

SMR were associated with higher growth in warm, but not in cool treatments, 

supporting a context-dependency to the fitness consequences of a given SMR 

(Burton et al. 2011). However, it is important to note that growth rate is just one 

component of fitness, and might not always map positively or linearly onto 

fitness (Arendt 1997; Blanckenhorn 1998). Nonetheless, in this case, a lower 755 

SMR under warm conditions was likely beneficial for growth because 

maintenance energy costs were reduced, analogous to reductions in SMR 

facilitating higher growth or energy storage when food is limited (Naya et al. 

2007; Auer et al. 2015c, 2016; Zeng et al. 2017). However, we also detected a 

complex interaction between SMR and time, indicating that the relationship 760 

between SMR and growth can further vary according to temporal factors. For 

example, the negative association between warm temperatures and SMR on 

growth may have been strongest during periods when temperatures exceeded 

the optimal ranges for growth in trout e.g. during the summer months (Elliott 

et al. 1995; Ojanguren et al. 2001). Moreover, while relative metabolic rates of 765 

salmonines tend to be stable through time (Nespolo and Franco 2007; 

Seppänen et al. 2010), absolute metabolic rates can vary considerably 

depending on a suite of environmental factors (Metcalfe et al. 2016; Norin and 

Clark 2016). As such, the link between SMR, growth, and temperature may also 
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depend on additional factors, e.g. food supply (Zeng et al. 2018), which in turn 770 

show fluctuations in time and space (Álvarez and Nicieza 2005; Robertsen et al. 

2014).  

A similarly complex mapping emerged between both MMR and AS and growth 

rate, which depended on population background and varied through time. 

Higher MMR and AS were associated with slightly higher growth rates in the 775 

anadromous population (independent of temperature), but this relationship 

was reversed in the non-anadromous population. Food intake (Auer et al. 

2015a), and digestive/assimilation capacity (Alsop and Wood 1997) increase 

with MMR and AS, which presumably underlies the positive correlation 

between MMR, AS, and growth in the anadromous population. Higher growth 780 

(relative to a non-anadromous population) has previously been described in fish 

originating from the same source catchment as the anadromous-background 

population in the present study (Archer et al. 2019). Fast juvenile growth has 

been associated with the anadromy lifestyle in general (Forseth et al. 1999), 

appearing to be partially underpinned here by a higher metabolic scope. This 785 

implies that while a high metabolic scope is optimal in migratory populations, 

(perhaps because MMR and AS are linked to swimming performance (Dalziel et 

al. 2012b), and migration effort/performance (Eliason et al. 2011; Clark et al. 

2011)), growth rates in non-anadromous populations are not limited by aerobic 

capacity.  790 

Observed differences in the strength of the association between both MMR and 

AS and growth, and its variability through time, reflect inconsistent outcomes 

among studies that have previously assessed the relationship between 

metabolism and fitness-related traits (Metcalfe et al. 2016). In this case, 

behavioural differences between populations may have altered the magnitude 795 

of the association between MMR and AS and growth. For example, migratory 

fish populations (and individuals) typically show higher levels of activity, 

boldness, and aggression (Metcalfe et al. 1995; Lahti et al. 2001; Chapman et al. 

2011b), which may in turn cause fish from anadromous populations to operate 

closer to MMR more frequently. Thus, a higher MMR and AS is likely be more 800 
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advantageous in terms of maximising growth (Burton et al. 2011), but the 

association may be weaker, or absent in the non-anadromous population, which 

potentially approaches MMR infrequently. There is a dearth of knowledge 

regarding how often individuals approach their MMR, and whether this varies 

among individuals or populations, though existing studies suggest considerable 805 

variation is likely (Murchie et al. 2011; Seebacher et al. 2013; Killen et al. 2014). 

The negative association between MMR and growth in the non-anadromous 

population implies a stronger influence of SMR on growth, supporting the 

“compensation” hypothesis as a factor underpinning metabolic variation in this 

population (Burton et al. 2011) (particularly when considered alongside the 810 

weaker correlation between SMR and MMR in the non-anadromous 

population). Alternatively, variability in the relationship between MMR and AS 

and growth between populations, might reflect differences in the allocation of 

surplus resources (fuelled by AS) towards other competing functions besides 

somatic growth, e.g. lipid accumulation and gonadal development (Jonsson et 815 

al. 2013), or competitive/aggressive interactions (Killen et al. 2014). This could 

also explain temporal variability in the MMR and AS – growth relationship, 

where the benefits of a higher MMR and AS may be enhanced when growing 

conditions are optimal e.g. at times of high food availability, and growth 

benefits reduce when food is scarce (Auer et al. 2015b).  820 

Implications and considerations 

Variation in the relationship between growth, population, and MMR and AS 

underscores that considering additional biotic and abiotic factors that vary 

through time or space might further disentangle the links between 

environment, metabolism, and fitness components (Pettersen et al. 2016). Here, 825 

we measured metabolic traits only after a long-term period of temperature 

acclimation and growth. Although relative metabolic rates in salmonines are 

consistent over this time scale (Seppänen et al. 2010), repeated measurements 

of metabolic traits could further illuminate how metabolic phenotype (or 

associations between metabolic traits and fitness) can vary according to 830 

fluctuating extrinsic and intrinsic conditions (Versteegh et al. 2012; Biro et al. 
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2018), or developmental stage (Beaman et al. 2016; Burggren 2018). Moreover, 

metabolic measurements at a finer temporal scale would allow exploration of 

variation in acclimation time, a trait that has received relatively little attention 

but likely has important implications for ectotherms experiencing both chronic 835 

and variable temperature changes (Sandblom et al. 2014). Additionally, we did 

not consider acute responses to warming, which may preclude any acclimation 

response. For example, if acute warming initially increases SMR before thermal 

compensation occurs, the resulting reduction in AS may limit capacity for 

essential functions such as feeding or predator avoidance (Clark et al. 2011; 840 

Sandblom et al. 2014). Extending this study to include more realistic/natural 

conditions (e.g. co-occurring abiotic or biotic stressors), coupled with tracking 

of individual reproductive success would give further insight into how optimal 

combinations of metabolic traits and life history are shaped by environmental 

context.  845 

Nonetheless, the variation (and covariation) we detected in metabolic traits 

arising from long-term temperature exposure and population factors has 

implications for the performance of populations experiencing rapid climate 

change (Parmesan 2006). Studies have most often focused on the link between 

SMR or BMR and fitness components, but we add to a growing body of research 850 

suggesting that MMR (and consequently, AS) can influence fitness components 

(Boratyński and Koteja 2009; Clark et al. 2013; Zub et al. 2014; Auer et al. 2015b). 

In our case, links between MMR and growth rates – a key fitness-related trait – 

were mediated by population-specific factors. Moreover, population-based 

variation in the correlation between SMR and MMR and AS hints at the 855 

intriguing possibility of fundamental links between these traits that may vary 

according to extrinsic or intrinsic factors, thus limiting or enhancing capacity 

to respond to environmental change (Metcalfe et al. 2016; Norin et al. 2016). 

Though metabolic acclimation capacity is linked to increased resilience 

(Seebacher et al. 2015) – at least when environmental change is predictable 860 

(Reed et al. 2010) – such population-level variation underscores that responses 

to change are likely to be highly variable, even within species. Understanding 
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the context-dependency of associations between metabolic phenotypes and 

fitness, and how these can vary depending on population-specific factors, is 

required for successful management and conservation of aquatic species that 865 

are already in widespread decline due to progressive warming and global change 

(Pörtner and Knust 2007; Limburg and Waldman 2009; Martins et al. 2011).  
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Figure S1: (A) Srahrevagh River in the Burrishoole catchment, where brown 

trout brood stock were collected by seine netting in November 2015, used to 

produce F1 offspring for the experimental study. The wild Srahrevagh 

population does not express the anadromous life history, and experimental 

offspring from Srahrevagh brood stock were considered to have non-

anadromous population background. (B) Tawnyard Lough in the Erriff 

catchment, site of brown trout brood stock collections (via seine netting) in 

November 2015, used to produce F1 offspring for the experimental study. The 

wild Tawnyard Lough population has a strong anadromous component, and 

experimental offspring from Tawnyard brood stock were considered to have an 

anadromous population background. 
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Figure S2: Mean specific growth rate trajectories (residual values corrected 

for initial body size) (with associated standard errors) of brown trout classed 

as having: (A) High or low standard metabolic rate (SMR); (B) High or low 

maximum metabolic rate (MMR); and (C) High or low aerobic scope (AS) 

according to residual SMR/MMR/AS values after accounting for variation in 

body mass (“High” metabolic phenotype = rSMR/rMMR/rAS > 0 and “Low” = 

rSMR/rMMR/rAS < 0). Fish were offspring from two population backgrounds 

(AB = Anadromous background, Non-AB = Non-Anadromous background), 

reared under two temperature treatments (Cool = natural temperature 

regime, Warm = elevated 1.8°C above Cool). (D) Coefficient estimates (± 95% 

confidence intervals) from mixed effect models testing interactive effects of 

time (months since experiment start) and metabolic rate (rSMR/rMMR/rAS), 

along with effects of temperature treatment, and population background on 

specific growth rate trajectories of brown trout. 
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Table S1: Parameter estimates, with associated standard errors (SE), t-values, 

and P-values from the linear model describing log10-transformed metabolic 

rates (mg O2 hr-1) as a function of log10-transformed body mass in n = 32 brown 

trout (SMR = standard metabolic rate, MMR = maximum metabolic rate, and 

AS = aerobic scope).  

Response Parameter Estimate SE t-value P-value 

log10 SMR Intercept -1.28 0.33 -3.89 0.001 

 log10 Body mass 0.95 0.16 6.00 < 0.001 

      

log10 MMR Intercept 0.16 0.39 0.42 0.676 

 log10 Body mass 0.71 0.19 3.74 0.001 

      

log10 AS Intercept 0.18 0.42 0.42 0.680 

 log10 Body mass 0.67 0.21 3.27 0.003 
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Table S2: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the general linear models testing the effects of temperature 

treatment (cool or warm) and population background (anadromous or non-

anadromous) on standard metabolic rate (SMR), maximum metabolic rate 

(MMR), and aerobic scope (AS) in brown trout. SMR, MMR, and AS were log10-

transformed, and body mass (log10-transformed) was included as a covariate. 

Significance was assessed at P < 0.05. Effects are contrasted against fish from 

the anadromous population background in the cool temperature treatment.  

Response Parameter Estimate SE t-value P-value 

log10 SMR Intercept -1.045 0.300 -3.479 0.002 

 Population: Non-anadromous -0.061 0.027 -2.246 0.033 

 Temperature: Warm -0.078 0.025 -3.090 0.004 

 log10 Body mass 0.875 0.144 6.092 < 0.001 

      

log10 MMR Intercept 0.605 0.356 1.698 0.101 

 Population: Non-anadromous -0.104 0.032 -3.255 0.003 

 Temperature: Warm -0.061 0.030 -2.024 0.053 

 log10 Body mass 0.531 0.170 3.117 0.004 

      

log10 AS Intercept 0.649 0.399 1.626 0.115 

 Population: Non-anadromous -0.111 0.036 -3.084 0.005 

 Temperature: Warm -0.058 0.034 -1.727 0.095 

 log10 Body mass 0.483 0.191 2.532 0.017 
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Table S3: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the general linear models testing the effects of temperature 

treatment (cool or warm) and population background (anadromous or non-

anadromous) on relationships between size-corrected standard metabolic rate 

(SMR) and maximum metabolic rate (MMR), SMR and aerobic scope (AS), and 

MMR and AS in brown trout. SMR, MMR, and AS were corrected for body mass 

by taking the residuals of the linear relationship between metabolic rate and 

body mass to give rSMR, rMMR, and rAS. Significance was assessed at P < 0.05. 

Effects are contrasted against fish from the anadromous population background 

in the cool temperature treatment.  

Response Parameter Estimate SE t-value P-value 

rMMR Intercept 0.043 0.027 1.572 0.128 

 rSMR 0.731 0.261 2.798 0.009 

 Population: Non-anadromous -0.073 0.029 -2.499 0.019 

 Temperature: Warm -0.035 0.031 -1.103 0.280 

 rSMR × Non-anadromous -0.774 0.349 -2.221 0.035 

      

rAS Intercept 0.049 0.032 1.561 0.130 

 rSMR 0.690 0.301 2.292 0.030 

 Population: Non-anadromous -0.084 0.034 -2.482 0.020 

 Temperature: Warm -0.039 0.036 -1.089 0.286 

 rSMR × Non-anadromous -0.878 0.402 -2.187 0.038 

      

rAS Intercept -0.007 0.004 -2.053 0.050 

 rMMR 1.113 0.022 49.909 < 0.001 

 Population: Non-anadromous 0.005 0.004 1.208 0.237 

 Temperature: Warm 0.010 0.004 2.495 0.019 
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Table S4: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from three mixed effects models testing the effects of standard 

metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS) on 

specific growth rate trajectories of brown trout from two population 

backgrounds. Specific growth rate was calculated from repeated fork length 

measurements in fish experiencing either natural (Cool) or elevated (Warm) 

temperature regimes. SMR, MMR, and AS were corrected for body mass by 

taking the residuals of the relationship between body mass and metabolic rate 

to give rSMR, rMMR, and rAS. Initial fork length was included as a covariate in 

all models. Significance was assessed at P < 0.05. Effects are contrasted against 

fish from the anadromous population in the cool treatment. 

Response Effect Estimate SE t-value P-value 

Specific 
growth rate 

Intercept 0.332 0.073 4.559 < 0.001 

Non-Anadromous 0.019 0.019 0.996 0.332 

 Time -0.136 0.114 -1.200 0.233 

 Time2 -0.148 0.051 -2.939 0.004 

 Time3 0.466 0.046 10.081 < 0.001 

 Initial length -0.013 0.004 -3.644 < 0.001 

 rSMR 0.149 0.115 1.294 0.211 

 Temperature: Warm 0.033 0.014 2.335 0.031 

 rSMR × Warm -0.278 0.134 -2.071 0.052 

 Warm × Non- Anadromous -0.044 0.018 -2.433 0.025 

      

Specific 
growth rate 

Intercept 0.356 0.072 4.955 < 0.001 

Non-Anadromous -0.024 0.016 -1.513 0.146 

 Time -0.133 0.115 -1.152 0.252 

 Time2 -0.143 0.051 -2.794 0.006 

 Time3 0.458 0.046 9.997 < 0.001 

 Initial length -0.013 0.004 -3.692 < 0.001 

 rMMR 0.003 0.067 0.046 0.964 

 Temperature: Warm 0.011 0.010 1.125 0.274 

 rMMR × Non-Anadromous -0.267 0.128 -2.094 0.049 

      

Specific 
growth rate 

Intercept 0.331 0.071 4.695 < 0.001 

Non-Anadromous -0.020 0.015 -1.335 0.197 

 Time -0.166 0.114 -1.465 0.146 

 Time2 -0.135 0.051 -2.633 0.010 

 Time3 0.462 0.046 10.083 < 0.001 

 Initial length -0.012 0.004 -3.431 0.001 

 rAS 0.018 0.060 0.303 0.765 

 Temperature: Warm 0.013 0.009 1.375 0.184 

 rAS × Non-Anadromous -0.259 0.111 -2.345 0.029 
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Table S5: Parameter estimates and associated standard errors (SE), t-values, 

and P-values from the mixed effects models testing the for interactive effects of 

time (weeks since start of experiment) and standard metabolic rate (SMR), 

maximum metabolic rate (MMR), and aerobic scope (AS) on specific growth 

rate trajectories of brown trout. Fish were from two population backgrounds 

(AB = anadromous and non-AB = non-anadromous). Specific growth rate was 

calculated from repeated fork length measurements in fish experiencing either 

natural (Cool) or elevated (Warm) temperature regimes. SMR, MMR, and AS 

were corrected for body mass by taking the residuals of the relationship between 

body mass and metabolic rate to give rSMR, rMMR, and rAS. Initial fork length 

was included as a covariate in all models. Significance was assessed at P < 0.05. 

Effects are contrasted against fish from the anadromous population in the cool 

treatment. 

Response Effect Estimate SE t-value P-value 

Specific growth 
rate 

Intercept 0.316 0.071 4.456 < 0.001 

Non-Anadromous 0.020 0.019 1.049 0.307 

 Time -0.155 0.108 -1.437 0.153 

 Time2 -0.162 0.047 -3.479 0.001 

 Time3 0.487 0.045 10.924 < 0.001 

 Initial length -0.012 0.003 -3.549 0.001 

 rSMR 0.128 0.116 1.106 0.283 

 Temperature: Warm 0.036 0.014 2.513 0.021 

 rSMR × Warm -0.263 0.134 -1.955 0.065 

 Warm × Non-AB -0.046 0.018 -2.512 0.021 

 rSMR × Time 2.459 0.469 5.244 < 0.001 

 rSMR × Time2 -0.708 0.506 -1.401 0.164 

 rSMR × Time3 1.181 0.521 2.268 0.025 

      

Specific growth 
rate 

Intercept 0.331 0.072 4.585 < 0.001 

Non-Anadromous -0.021 0.016 -1.317 0.203 

 Time -0.164 0.115 -1.424 0.157 

 Time2 -0.136 0.051 -2.654 0.009 

 Time3 0.469 0.045 10.421 < 0.001 

 Initial length -0.012 0.004 -3.324 0.001 

 rMMR 0.004 0.066 0.057 0.955 

 Temperature: Warm 0.011 0.009 1.145 0.266 

 rMMR × Non-AB -0.280 0.127 -2.209 0.039 

 rMMR × Time 0.686 0.479 1.432 0.155 

 rMMR × Time2 -0.409 0.455 -0.899 0.370 

 rMMR × Time3 1.023 0.421 2.428 0.017 
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Specific growth 
rate 

Intercept 0.314 0.071 4.399 < 0.001 

Non-Anadromous -0.018 0.015 -1.215 0.239 

 Time -0.189 0.114 -1.658 0.100 

 Time2 -0.129 0.052 -2.501 0.014 

 Time3 0.472 0.045 10.423 < 0.001 

 Initial length -0.011 0.004 -3.142 0.002 

 rAS 0.019 0.060 0.320 0.752 

 Temperature: Warm 0.013 0.009 1.399 0.177 

 rAS × Non-AB -0.272 0.110 -2.472 0.023 

 rAS × Time 0.480 0.445 1.077 0.284 

 rAS × Time2 -0.362 0.422 -0.858 0.392 

 rAS × Time3 0.911 0.388 2.350 0.020 
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Chapter 6 

General Discussion 

Enormous phenotypic diversity is evident between populations and among 

individuals within populations (Roff 1996), with pivotal roles in ecosystem 

structure and function (Bolnick et al. 2011; Des Roches et al. 2018). 5 

Understanding why, and how, such intraspecific diversity arises and persists is 

necessary to inform management and conservation of species in a changing 

world (Naish and Hard 2008), not least because different phenotypes may show 

variable responses to environmental change. Mechanisms underpinning 

intraspecific diversity can be understood from proximate and ultimate 10 

perspectives (Tinbergen 1963), where proximate mechanisms relate to the 

environmental or ontogenetic factors influencing phenotypic expression, and 

ultimate mechanisms concern evolutionary function and phylogenetic control 

of phenotypes (Laland et al. 2011; Bateson and Laland 2013). With this in mind, 

the overarching objective of this thesis was to advance the understanding of 15 

how proximate and ultimate factors (with more emphasis on the former) 

contribute to shaping phenotypic diversity in brown trout, a culturally and 

economically important species that is iconic for the impressive array of life 

histories it displays (Klemetsen et al. 2003; Ferguson et al. 2019; Nevoux et al. 

2019).  20 

Overview of each chapter 

My overall approach has been to address the causes and consequences of life 

history diversity in brown trout by exploring the interplays between physiology, 

environment, and phenotypic diversity, focusing on alternative migratory 

tactics. In Chapter 2 I aimed to explore how extrinsic (i.e. environmental) and 25 

intrinsic (i.e. population) factors interactively determine expression of 

migratory versus non-migratory tactics. In experimental offspring from two 

populations that naturally differ in migration frequency, I measured rates of 

anadromy, maturation, and various traits associated with physiological 
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condition, in response to long-term food restriction treatments. To clarify when 30 

in early life the migratory decision might occur I also investigated how the 

timing of food restriction influences migration, which proved to be variable 

between the two populations. Although anadromy rates tended to be higher in 

the offspring from the anadromous population, anadromous phenotypes 

emerged at lower frequencies among offspring from the non-migratory 35 

population, with implications for conservation and restoration of the 

anadromous life history among brown trout populations. 

In Chapter 3, I aimed to extend the study of the proximate drivers of life history 

variation by exploring how co-occurring environmental factors collectively 

influence migratory tactics. I reared offspring from an anadromous-background 40 

population under conditions of low food and warm temperature treatments that 

simulated potential climate change scenarios. The food and temperature 

stressor treatments had additive, but opposing effects on migration tactics, 

whereby food restriction increased migration rates, but warm temperatures 

increased maturation rates in lieu of migration. The combined stressors had 45 

antagonistic effects on size-associated traits and underlying physiological 

condition, suggesting that responses to cumulative effects of global change will 

not be straightforward, and may depend upon the response considered.  

Chapter 4 explored how metabolic traits vary according to intrinsic and 

extrinsic factors. Specifically, I measured SMR, MMR, and AS in brown trout 50 

offspring from two populations that differ in migration tendency, after exposure 

to long-term conditions of food restriction. Variation in SMR and MMR was 

related to population background and food restriction treatments, and I 

detected population-specific variation in the ability to adjust AS in response to 

food restriction. The results in Chapter 4 contribute to our understanding of 55 

how populations can respond to fluctuating food resources via phenotypic 

plasticity in metabolic rate, with potential consequences for population 

persistence if food resources are limited or temporally variable.  

I further explored causes and consequences of metabolic rate variation in 

Chapter 5 by assessing how temperature influences variation in metabolic traits 60 



Chapter 6 | General Discussion 
 

242 
 

among populations, and the consequences of metabolic variation for a fitness-

related trait. I measured SMR, MMR, AS, and individual growth rates in 

offspring from two populations with divergent migratory tactics that were 

reared under long-term warming conditions. Metabolic traits showed both 

population-level variation and plastic responses to warming. The relationship 65 

between metabolic traits and growth depended on either temperature (for 

SMR) or population background (for MMR and AS), which suggests that future 

climate warming effects on performance in wild populations are likely to be 

context dependent.  

In this chapter, I discuss how these studies contribute to our understanding of 70 

the interaction between genes and environment underpinning phenotypic 

diversity in terms of: (i) life-history tactics, and (ii) physiology. In synthesising 

the results of this thesis with existing studies, I highlight the broader 

implications of the findings presented here. I also address some considerations 

faced while undertaking this research, and identify areas for future research to 75 

build upon this body of work.  

Proximate drivers of facultative migration 

Support for the threshold model 

Much of our understanding of facultative migration has been aided by applying 

the environmentally cued threshold model (Tomkins and Hazel 2007). Under 80 

this framework, alternative tactics are conditional upon the relationship 

between a “status” trait (which is cued by the environment, but also probably 

influenced by genetic factors), and an inherited threshold for the status trait 

(Tomkins and Hazel 2007; Piche et al. 2008; Pulido 2011; Buoro et al. 2012). It 

follows that divergent phenotypes can emerge under similar environmental 85 

conditions, but also that similar phenotypes might be produced from genetic 

dissimilarity. Based on the threshold reaction norm concept, I had expected that 

manipulations of environmental conditions (i.e. food treatments in Chapter 2, 

along with food and temperature treatments in Chapter 3) would result in 

different frequencies of migratory phenotypes emerging in the various 90 

treatments. The relatively higher rates of migratory phenotypes observed in 
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food restriction treatments in Chapters 2 and 3 were compatible with the 

threshold model, as was the higher frequency of the mature phenotype in warm 

treatments in Chapter 3 (although the expression of migratory tactics in this 

case was in the opposite direction to expectations). Moreover, the emergence of 95 

anadromous phenotypes in fish derived from the Bunaveela population (that 

naturally does not show any anadromy in the wild) suggests that experimental 

food restriction prevented some individuals within this population from 

meeting their threshold for residency. Nonetheless, despite the apparent re-

expression of anadromous phenotypes within the Bunaveela under low food 100 

conditions, anadromy was comparatively more frequent among fish from the 

naturally anadromous Erriff population, indicating a genetic component to 

anadromy. This offers some insight into ultimate mechanisms underlying 

facultative migration, whereby the mean threshold values have potentially 

evolved to differ between the two populations (Piche et al. 2008).  105 

An important caveat here is that smolting was measured in year two of life, 

meaning total anadromy rates across all potential smolt ages were not 

quantified. Outcomes could potentially differ if the probability of smolting in 

year three varies by population. Within the Erriff catchment, the majority of 

smolts migrate in the second (2+) or third (3+) year of life, with approximately 110 

equal frequencies of 2+ and 3+ smolts (Gargan et al. 2016). Since the Bunaveela 

population does not express anadromy in nature, we have no definitive 

information on the distribution of smolts among different age classes. However, 

smolts historically produced in the wider Burrishoole catchment (pre-collapse 

of the anadromous stocks) exhibited approximately equal ratios of 2+ to 3+ 115 

smolts (Poole et al. 1996), and more recent records indicate a bias towards 2+ 

smolts (Poole et al. 2007). We thus have no compelling reason to suspect that 

the population-level patterns of anadromy might vary if the study had been 

extended for an additional year. 

Evidence for potential status traits 120 

The environmentally cued threshold model proposes that individuals 

undertaking migratory decisions assess a “status” trait, yet studies have not 
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conclusively identified any one trait that controls migratory decisions in 

salmonines (Kendall et al. 2014; Ferguson et al. 2019). The results described in 

Chapters 2 and 3 add to a growing body of evidence supporting a multitude of 125 

potential status traits as being instrumental in migratory decisions. In light of 

previous studies describing both positive and negative relationships between 

migration tactics and proposed status traits e.g. size (Morinville and Rasmussen 

2003; Acolas et al. 2012), mass (Winter et al. 2016), condition (Boel et al. 2014; 

Hecht et al. 2015), growth (Jonsson 1985; Morinville and Rasmussen 2003; 130 

Acolas et al. 2012), energetic demands (Forseth et al. 1999), and lipid deposition 

(McMillan et al. 2012; Sloat and Reeves 2014), it seem increasingly apparent that 

it is more likely that a suite of interlinked physiological (or morphological) traits 

combine to influence migration tactics. In Chapters 2 and 3, future migrants 

and non-migrants showed divergent trajectories in traits such as condition, 135 

body size, and mass, far in advance of the natural migration period. Though we 

cannot definitively say if these traits had causal effects in the migratory 

decision-making process, or were consequences of adopting a chosen tactic, 

nonetheless, the results in Chapters 2 and 3 do suggest that a number of 

size/physiologically-associated traits are integral to the migratory phenotype. 140 

Such traits may reflect some underlying energetic state that is assessed, or their 

association with migration tactics might arise from genetic or environmental 

covariation between these traits and other physiological traits that influence 

migration (e.g. rate of change in energy balance or lipid deposition) (Doctor et 

al. 2014).  145 

Relationships between migratory tactics and different physiological 

components or potential “status” traits may be further mediated by intrinsic or 

extrinsic conditions, making it more difficult to characterise clear associations, 

particularly if traits vary in environmental sensitivities. For example, 

antagonistic effects of environmental stressors on traits in Chapter 3 did not 150 

translate at the level of migratory tactics, perhaps due to variable effects of co-

occurring environmental factors on key underlying traits (Galic et al. 2018). 

Moreover, links between the underlying traits themselves may be variable, for 



Chapter 6 | General Discussion 
 

245 
 

example, associations between metabolic traits and growth (two strong 

candidates for status traits) varied according to environmental factors (i.e. 155 

temperature) and population background in Chapter 5, in addition to showing 

temporal sensitivity. When considered alongside population-level variation in 

metabolic traits in offspring from populations of different migratory 

backgrounds (Chapters 4 and 5), the divergence in physiological and 

morphological traits implies fundamental differences in energy uptake and 160 

expenditure between migrants and residents (Forseth et al. 1999; Sloat and 

Reeves 2014), or at least between predominantly migratory and non-migratory 

populations. Individual-level tracking of relationships among metabolic traits 

and other surrogate status traits (size/physiologically-associated traits) across 

an extended period during development would help to clarify how these traits 165 

collectively form an “energetic phenotype” that influences migratory tactics.  

Environmental factors influencing migration  

Understanding how environmental factors mediate the expression of life-

history tactics via underlying traits was a key goal of this thesis, and was 

specifically addressed in Chapters 2 and 3. The higher rates of anadromy in 170 

response to food limitation (Chapters 2 and 3) is in agreement with studies that 

have found direct and indirect manipulations of food availability to alter 

patterns of adfluvial/marine migration and freshwater maturation (Olsson et al. 

2006; Wysujack et al. 2009; O’Neal and Stanford 2011; Jonsson et al. 2012; Jones 

et al. 2015). An interesting result emerging from Chapter 2 was that the timing 175 

of food limitation can alter patterns of migration versus residency in a 

population-specific manner. This could be explained by variable “decision 

windows” between populations, or differential sensitivity between populations 

to annually recurring decision windows. While we could not distinguish in 

Chapter 2 if populations showed temporally distinct decisions windows, or if 180 

the migration decision is revisited annually, threshold-type models used to 

understand life-history trajectories in Atlantic salmon S. salar (Thorpe et al. 

1998) and steelhead O. mykiss (Satterthwaite et al. 2009) propose existence of 

multiple distinct decision windows. Moreover, each window might relate to 
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separate maturation or emigration decisions. A similar series of decisions (or 185 

“switches”) could exist for brown trout, each of which is independently 

controlled by a combination of environmental and genetic factors (Ferguson et 

al. 2019).  

The prevalence of individuals that could not be assigned a life-history 

phenotype in Chapters 2 and 3 further supports the existence of additional life-190 

history decisions that may be more related to the timing of phenotypic 

expression. Further exploration is required to determine whether similar 

threshold mechanisms are at play here. Existence of additional decision 

windows could perhaps explain why associations between potential status traits 

and migration tactics have generally proved to be inconsistent (Kendall et al. 195 

2014; Ferguson et al. 2019), particularly if different traits hold varying degrees 

of importance for various decisions related to migration and residency. 

Condition (and/or other traits related to energy status) might form the basis for 

the initial migration versus residency decision, whereas size, lipid stores, or 

growth might be more important in decisions regarding when to migrate or 200 

mature, respectively (Thorpe et al. 1998; Thorpe and Metcalfe 1998). Similarly, 

migration destination might be influenced by factors related to, but nonetheless 

distinct from, the initial migratory decision. For example, metabolic rate has 

been implicated in the decision of brown trout to migrate from natal streams, 

but subsequent growth rates (Cucherousset et al. 2005), or rate of lipid 205 

depletion (Boel et al. 2014) might dictate whether trout terminate migration in 

the larger river stem or lake, or continue to the sea. It seems increasingly 

obvious that we should reject the notion of life-history tactics as a simple 

dichotomy of migration versus residency, which belies the complex mosaic of 

life-history decisions in trout (Birnie-Gauvin et al. 2019). Instead, consideration 210 

of myriad trajectories – encompassing freshwater maturation at a variety of ages 

and migration/anadromy at a variety of ages – is required, with each trajectory 

controlled by a combination of inherited and environmental factors mediated 

by interlinked physiological traits.  
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 While the overarching effects of food availability in Chapters 2 and 3 were in 215 

line with expectations, the negative relationship between temperature and 

migratory tactics in Chapter 3 was somewhat unexpected given the fundamental 

role of temperature in defining energetic balance in ectotherms (Fry 1971; Clarke 

and Johnston 1999; Gillooly et al. 2001). Since cooler water temperatures are 

associated with increased lipid deposition (Kammerer and Heppell 2013), which 220 

is linked to maturation in salmonines (McMillan et al. 2012; Sloat and Reeves 

2014), higher temperatures have generally been postulated to increase the 

frequency of migratory phenotypes (Sogard et al. 2012; Sloat and Reeves 2014; 

Sloat et al. 2014; Kendall et al. 2014). However, the results in Chapter 3 suggest 

that warming acted in this case to increase early freshwater maturation. While 225 

the mechanisms behind warming-induced maturation are not immediately 

obvious, it seems that an acclimation response to temperature (e.g. in minimum 

energy requirements, similar to SMR reductions in Chapter 5) resulted in more 

individuals reaching their threshold for residency. Any such reduction in 

baseline energy costs would thus allow for accumulation of energy stores/body 230 

condition necessary for maturation. Temperature effects on maturation might 

thus have been mediated via effects on condition (or energy allocation) at key 

times (even though effects on size/mass were negative, we detected a neutral or 

positive relationship between temperature and condition that varied through 

time in Chapter 3). Positive relationships between body condition and 235 

temperatures up to 20 °C have been observed for Atlantic salmon within 

aquaculture settings (Tromp et al. 2018), and have been linked to more frequent 

and earlier maturation in the species (Good and Davidson 2016; Debes et al. 

2019).  

The unexpected results in Chapter 3 underscore that temperature changes, or 240 

indeed, any environmental changes, are likely to depend on the pre-existing 

conditions in a given environment. Changes in thermal regimes (or other 

freshwater conditions) that remain within the optimal range for growth may 

promote residency if physiological condition can be maintained, a scenario 

particularly likely in relatively cool systems that undergo warming (Benjamin et 245 
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al. 2013). This is in agreement with predictions from state-dependent models 

indicating that dramatic temperature changes (> 3 °C) would be required to 

alter the balance of life-history expression in O. mykiss inhabiting cool streams 

(Satterthwaite et al. 2010). Nevertheless, the results in Chapters 2 and 3 

collectively indicate that changes in the freshwater environment may still alter 250 

the frequency of the anadromous and resident life-history tactics relatively 

quickly. As implied by this thesis, such changes could occur at the population 

level via changes in individual energy uptake/allocation in response to abiotic 

conditions or fluctuations in local patterns of resource availability. However, 

from these results we can infer changes that may occur on a broader scale. The 255 

prevalence of anadromy generally increases with latitude, reflecting the 

gradient in the balance between freshwater and marine productivity (Gross et 

al. 1988). As such, observed and predicted decreases in macroinvertebrate prey 

(e.g. Durance and Ormerod 2007) might drive more marine migration in some 

areas, whereas increased eutrophication may promote freshwater residency in 260 

others (Gross 1987). Predicted increases in temperature (IPCC 2014) might 

overwhelmingly act to tip the balance from anadromy to residency across much 

of the species’ distribution in northern Europe, if effects of warming on growth 

rates are largely positive and within thermal optima (e.g. Chapters 3 and 5; 

Benjamin et al. 2013). Thus, changes in the balance of anadromy versus 265 

residency may vary depending on geographic location, and proximity to 

physiological optima, either enhancing or reducing life history diversity. A shift 

towards uniformity in life histories will have negative implications for the 

“portfolio effect” in salmonines, where high levels of life-history diversity can 

buffer species as a whole from environmental change (Schindler et al. 2010, 270 

2015). Changes in the relative frequency of alternative life histories might also 

have consequences for the broader ecosystem. For example, changes in marine 

nutrients supplied by returning anadromous fish can alter freshwater 

community structure and ecosystem function (Naiman et al. 2002; Janetski et 

al. 2009; Doughty et al. 2016), or even result in eco-evolutionary feedback 275 

dynamics (Auer et al. 2018). 
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Proximate and ultimate factors influencing metabolic traits 

While the importance of proximate factors in driving migratory tactics was the 

primary aim of Chapters 2 and 3, in Chapters 4 and 5 I explored how interactions 

between environmental and intrinsic (population) factors mediate physiology 280 

at a more fundamental level: metabolic rate variation. Despite considerable 

intraspecific variation evident in minimum metabolic rates (Biro and Stamps 

2010; Burton et al. 2011), the reasons underpinning the persistence of such 

variation are somewhat unclear. Lower SMR in offspring from non-anadromous 

populations (Chapters 4 and 5), and in conditions of food restriction (Chapter 285 

4) and a long-term temperature increase (Chapter 5) collectively support SMR 

variation arising from both environmental and population factors (Norin and 

Metcalfe 2019). Variation in maximum aerobic metabolism is less-often studied 

but purportedly similar, and likely to be of great ecological relevance (Metcalfe 

et al. 2016; Norin and Clark 2016). That MMR and AS tended overall to be higher 290 

in the anadromous-background populations hints at a genetic component to 

these traits. Moreover, population-specific effects of food restriction (Chapter 

4) and temperature (Chapter 5) point towards potential genotype-by-

environment effects on MMR and AS. 

Reductions in SMR in warm temperatures/low food conditions presumably 295 

occurred as plastic or acclimation responses to energetically challenging 

environments. Such responses are in line with the principle of “plastic metabolic 

floors” (a reduction in baseline energetic demands) as a key compensation 

mechanism in coping with inclement conditions (Sandblom et al. 2016). 

However, MMR, and consequently, AS, appear to be somewhat more immutable 300 

and to be largely determined by population-specific factors. While capacity for 

physiological plasticity can improve resilience to predictable effects of warming 

(Seebacher et al. 2015), constraints in the flexibility of MMR and AS may mean 

that compensation responses to environmental change are insufficient 

(Sandblom et al. 2016).  305 

The population-level differences observed in SMR, MMR, and AS might be 

indicative of divergent plastic responses by populations, and also raises the 
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intriguing possibility of ultimate mechanisms underlying metabolic trait 

variation, e.g. selection within the anadromous background population 

favouring higher SMR, MMR, or AS facilitating fast growth (McCarthy 2000) or 310 

increased swimming performance (Eliason et al. 2011). Interestingly, though AS 

was marginally higher in food-restricted fish from the anadromous-background 

population (Chapter 4), AS was lower in fish originating from the same 

population after long-term warming (Chapter 5). While these variable 

responses may simply be related to food/temperature induced shifts in the 315 

patterns of future life-history trajectories (as seen in Chapter 2 and 3), it 

nonetheless raises questions about the future performance of this population 

with climate warming (Pörtner and Farrell 2008; Sandblom et al. 2016). Will 

constraints in the upper boundaries of aerobic metabolism limit the capacity of 

migratory populations to respond to change? Some population-specific 320 

responses to warming have been predicted in salmonines (Martins et al. 2011), 

but the viability of many migratory populations is in doubt in a rapidly warming 

world (Crozier et al. 2008; Jonsson and Jonsson 2009; Farrell 2009). 

Implications of metabolic trait variation for fitness 

Collectively, results from Chapters 4 and 5 indicate that while metabolism is 325 

generally assumed pivotal in shaping life histories though effects on fitness 

(Brown et al. 1993; Ricklefs and Wikelski 2002; Guderley and Pörtner 2010), 

this association is mediated by environmental and genetic factors. The negative 

relationship between SMR and growth under warm conditions in Chapter 5 

adds further support to studies describing context-dependent fitness benefits of 330 

a given metabolic phenotype (Norin and Malte 2011; Auer et al. 2015a, b). 

Although growth is a key fitness-related trait, it is important to note here that 

improved growth performance may not necessarily translate into improved 

fitness (Mangel and Stamps 2001), and growth is itself a trait likely to show 

context-dependent fitness benefits. For example, faster growth in populations 335 

that tend to migrate might confer additional fitness benefits in terms of 

survival-at-sea (Kendall et al. 2014; Armstrong et al. 2018) but could be less 

important for non-migratory populations, and may thus have contributed to the 
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population-specific variation in the relationship between MMR and AS and 

growth observed in Chapter 5. Examination of additional fitness-related traits 340 

(e.g. lipid stores) may reveal population-specific differences in how surplus 

energy (fuelled by MMR and AS) is allocated and traded off between competing 

functions.  

On a broader scale, the ability to adjust physiological components in response 

to environmental factors has been positively associated with species’ resilience 345 

to global change (Seebacher et al. 2015). However, the advantages of phenotypic 

plasticity for population persistence will depend upon both the speed at which 

the phenotype can change, but also the nature of the environmental change, i.e. 

whether fluctuations are predictable, and how accurately the current 

environment predicts future conditions (Reed et al. 2010). It is also important 350 

to note that in Chapters 4 and 5, fish were exposed to long-term changes in food 

and temperature but acute responses/short-term changes in environmental 

conditions were not considered, which could have altered the relationship 

between metabolic and fitness-related traits. This is particularly relevant since 

more frequent extreme weather events are forecasted with a changing climate 355 

(Meehl and Tebaldi 2004; Seneviratne et al. 2014), particularly if some acute 

effects (e.g. those affecting locomotion/survival) may be more important for 

fitness than longer term ones (e.g. growth). Nevertheless, understanding how 

facultatively migratory species such as brown trout respond to global change in 

terms of energetics may potentially contribute some mechanistic insights into 360 

changes that might scale up and partially underpin any changes in life histories. 

For example, though I did not directly test the association between metabolic 

rates and life-history expression at the individual level, the capacity of fish to 

lower SMR over a long timescale may shed some light on why relatively high 

rates of maturation were still possible in the low food conditions and warm 365 

temperature treatments in Chapters 2 and 3. Building on the knowledge of how 

various metabolic components relate to life history, and how this nexus is 

mediated by environmental factors will provide further insight into the 

ecological significance of metabolic variation. 
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Considerations and limitations of the research 370 

Experimental approach 

The results presented here help to reveal how environmental factors can 

combine with intrinsic factors to influence phenotypic diversity, but it is 

important to consider them within the context of the experimental tank-based 

approach that formed the basis for this research. While experimental tank 375 

rearing is a powerful approach that allows clean manipulation of key 

environmental variables of interest, while holding other factors constant, these 

advantages must be traded off against the inevitable loss of natural complexity 

in an artificial setting. Inferring the applicability of findings from controlled 

experiments to wild populations is somewhat difficult, and effects described 380 

here may vary in nature depending on the location or population considered. 

For example, while I explored combined environmental factors in Chapter 2, 

responses in wild populations may be swamped by additional stressors or other 

confounding factors (Merilä and Hendry 2014; de Eyto et al. 2016; Galic et al. 

2018). Extending this common-garden approach to more variable natural 385 

systems, or reciprocal transplant experiments in the wild between populations 

of divergent migratory tactics would complement the tank-based 

manipulations described here and give insight on whether these findings hold 

up in more realistic and ecologically relevant contexts.  

An additional drawback of this experimental approach is the considerable 390 

spatial and logistical constraints associated with the housing and husbandry of 

large numbers of fish under artificial conditions. A recurring limitation arising 

from spatial constraints is replication of experimental manipulations at the 

tank-level, which would allow any potential inter-tank variation/noise to be 

estimated and accounted for. Although I attempted to minimise any such 395 

nuisance variation related to tank effects (e.g. by standardising all conditions 

besides manipulated variables, analysing the data at the individual level and 

fitting random effects where appropriate), additional tank-level replication 

would make any future experimental studies more robust. Nonetheless, despite 

any potential nuisance variation related to tank effects, the results I describe 400 
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here are broadly in line with theoretical predictions, suggesting that 

conclusions drawn with respect to population and environmental effects are 

more parsimonious than simple tank-related effects. Likewise, logistics of tank 

rearing also limited our capacity for replicating treatments at the population 

level. While the use of two populations in Chapters 2, 4, and 5 is an advance on 405 

a single population approach - a common limitation among studies of 

facultatively migratory species (Olsson et al. 2006; Wysujack et al. 2009; 

Chapman et al. 2011) – inclusion of additional populations would determine the 

general applicability and robustness of my findings described here. This is 

particularly desirable given population-level variation is a key outcome of this 410 

thesis (Chapters 2, 4, and 5).  

The importance of population background for traits related to both migration 

and metabolism throughout much of this thesis is clear. However, less obvious 

is whether such population-background effects can be attributed to life-history 

differences between populations, or are simply indicative of the different 415 

catchments of origin (i.e. the various populations having evolved in distinct 

river systems, possibly originating from different lineages). For example, brood 

stock from each population were of unknown life history, but were assumed to 

represent the naturally occurring balance of migration versus residency for each 

population (ranging from non-anadromous, to strongly anadromous). Using 420 

parents of a known life history (e.g. via stable isotope analysis) would help to 

parse out factors related specifically to life history from those related to various 

other population-level differences. This would be particularly powerful if 

representatives of each possible life-history phenotype could be obtained as 

brood stock from populations, however, this is not always possible (e.g. in 425 

wholly resident populations). The presence of reciprocal hybrids from each 

population/life history would also be desirable to control for parental effects, 

which can be considerable (Taborsky 2006; Burton et al. 2013; Moore et al. 

2019). Nevertheless, life history is intricately linked to population-specific 

factors, being both proximately, and ultimately (via selective forces) determined 430 

by such factors (e.g. growth opportunity in the local environment), and is thus 
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likely to be representative of any major differences between populations. On a 

more philosophical note, disentangling whether divergent phenotypic 

responses among populations to environmental manipulations represents an 

adaptive genetic basis to the trait of interest, or implies other population-435 

specific explanations (e.g. genetic drift or gene flow) is a fundamental challenge 

of the common-garden style approach employed in this thesis (Merilä and 

Hendry 2014). While the results in this thesis are largely consistent with a 

genetic basis to migration and metabolic traits, other potential population-

specific explanations cannot be excluded completely.  440 

Conclusions and future directions 

A recurring theme throughout this thesis is the decomposition of drivers 

underpinning phenotypic diversity into genetic and environmental 

components. The results described here offer some insight into how the 

culturally and economically important brown trout (and other salmonine 445 

species) will respond to changing environmental conditions, with implications 

for conservation and management strategies. The potential for (re-)emergence 

of migration in resident populations (Chapter 2; Thrower et al. 2004) offers 

some positive perspective on the restoration of anadromous salmonine 

populations that have drastically declined by as much as 80% in recent years 450 

(Limburg and Waldman 2009). Similar experiments using salmonine 

populations where migration has ceased due to impassable barriers/ dams 

would help to clarify further whether freshwater resident populations maintain 

the capacity to produce migratory individuals.  

The general flexibility in life-history expression displayed by my focal 455 

populations offers some encouraging evidence that brown trout have the 

capacity to maintain a diverse suite of life histories among populations, which 

may help to cushion the entire species from global change (Schindler et al. 

2015). However, the ecological and evolutionary impacts of any environmental 

changes on physiology and life-history expression will depend on a multitude 460 

of factors, not least geographic location and population-specific proximity to 

optimal growth. Some populations may show increased diversity, whereas 
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others may become more uniform. The consequences of altered intraspecific 

diversity require further investigation (Bálint et al. 2011; Ceballos et al. 2017), 

but are somewhat analogous to biotic homogenisation at the community level 465 

in response to climate change, with negative impacts on community stability 

(O’Gorman et al. 2012, 2019). The logical next step is to consider environmental 

change across the broader range of brown trout distribution, in populations that 

may be closer to their thermal limits or those experiencing additional pressures 

from interspecific dynamics or disease. Consideration of multiple, co-occurring 470 

environmental factors (e.g. Chapter 2) is essential in future studies in order to 

make realistic predictions regarding environmental change (Côté et al. 2016). A 

novel approach would be to take advantage of natural environmental gradients, 

which allow for in situ manipulation of environmental conditions. So-called 

“natural laboratories” such as geothermally-heated systems (Woodward et al. 475 

2010; O’Gorman et al. 2014), or areas warmed as a by-product of nuclear energy 

production (Sandblom et al. 2016; Huss et al. 2019) offer unique opportunities 

to explore the effects of warming/biotic interactions on metabolic traits and life-

histories (e.g. O’Gorman et al. 2016; Pilakouta et al. 2019). By combining natural 

complexity with semi-controlled conditions, these could prove to be an exciting 480 

extension to the common-garden or translocation experiments that are 

invaluable to disentangling environmentally-induced/plastic responses from 

long-term evolutionary change.  

While much of this thesis has focused on direct effects of proximate factors on 

phenotypic diversity, the existence of an underlying genetic component to 485 

migration-associated traits is clear. Consideration of the evolutionary effects of 

environmental forces, or how these may indirectly alter life histories via 

ultimate mechanisms is equally important. For example, directly testing how 

changes in freshwater conditions can alter the future fitness of various 

phenotypes (e.g. reduced salinity tolerance in Chapter 3 and growth in Chapter 490 

5) will indicate how ultimate mechanisms give rise to phenotypic change 

within, and divergence across, populations. Beyond effects in the natal 

freshwaters (explored in this thesis), environmental changes on the migration 
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journey, and in the destination environment, will alter the costs and benefits of 

each tactic, and ultimately the relative fitness of migrants versus residents. 495 

Direct stress from various factors – changes in pH, oxygen levels, temperatures 

– on the migration route (Eliason et al. 2011; Peiman et al. 2017), or large-scale 

shifts in freshwater or marine food webs will likely impose strong selection on 

facultatively migratory species (Crozier and Hutchings 2014). Such 

environmental changes could act as forces of selection on underlying migration 500 

thresholds, or on the genes influencing physiological condition or 

energetic/metabolic traits (Phillis et al. 2016) with consequences for migration 

propensity, or perhaps, migration destination. Future studies on (i) the 

heritability of metabolic phenotypes, energy budgets, and migratory tactics, and 

(ii) their relative fitness in different contexts are fundamental to understanding 505 

the evolutionary basis to alternative life histories, along with the physiological 

underpinnings.  

In an era of rapid global change and biodiversity loss, there is a pressing need 

to understand how species with strikingly diverse and complex life histories 

might respond. Can facultatively migratory species display sufficient flexibility 510 

to cope with changes to key elements of the environment? The results of this 

thesis suggest that brown trout have considerable capacity to respond in terms 

of physiology and life history, but outstanding questions still remain on the 

future of migratory species (Lennox et al. 2019). Developing further knowledge 

of how genetic and environmental forces interactively shape physiology, and 515 

ultimately, life histories is essential to anticipating and managing the 

consequences of anthropogenic change for declining salmonine populations.  
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