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ABSTRACT 

Chronic activation of the renin angiotensin system (RAS) favors several cardiac diseases, among 

which myocardial hypertrophy occupies an outstanding place. In this context, the hyperactivity of 

the cardiac Na+/H+ (NHE-1) exchanger plays a key role. The pathologic remodeling of the 

myocardium constitutes an independent risk factor for morbidity and mortality with continuously 

increasing healthcare cost. Therefore, the development of better therapeutic strategies emerges 

as highly mandatory.  

Our goal was to prevent angiotensin II (ANGII)-induced cardiac hypertrophy by NHE-1 gene 

silencing in Wistar rats. The intramyocardial injection of a lentivirus coding a specific small 

interference RNA (l-shNHE1) significantly reduced NHE-1 expression exclusively in the heart (~ 50 

%) and prevented cardiac remodeling in rats exposed to chronic infusion of ANG II (heart 

weigh/tibia length: 24,03 ± 0,7915 mg/mm vs 28,45 ± 0,9779 mg/mm and collagen volume 

fraction 2,526 ± 0,5003 vs 5,982 ± 1,043 in l-shNHE1 + ANGII and ANGII, respectively). 

Interestingly, this was accompanied by an improvement in cardiac function determined by 

echocardiography even though blood pressure remained elevated (Fractional shortening 0,5960 ± 

0,4228 vs -0,9567± 0,06888 and blood pressure at the end of ANGII treatment 141,2 ± 6,117 mm 

Hg vs 134,1 ± 6,723 mm Hg ; in l-shNHE1 + ANGII and ANGII, respectively). ANGII infusion 

increased myocardial NADPH oxidase activity but the l-shNHE1 injection prevented oxidative stress 

as revealed by the normalization of lipid peroxidation (T-BARS 12,40 ± 2,887.vs 23,05 ± 1,537 in l-

shNHE1 + ANGII and ANGII, respectively).  

These results allow as to propose the partial silencing of the cardiac NHE-1 through lentiviral 

injection as a promising tool in the prevention of ANGII-induced cardiac hypertrophy. 

 

KEYWORDS: NHE-1; angiotensin II; cardiac hypertrophy, lentivirus, reactive oxygen species, small 

interference RNA. 
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1. INTRODUCTION 

In the context of cardiovascular disease, when the heart is subjected to sustained hemodynamic 

overload, myocardial mass increases generating pathological cardiac hypertrophy (CH). This 

remodeling of the heart is characterized by an altered phenotype and constitutes an independent 

risk factor for morbidity and mortality that usually leads to heart failure (Levy, Garrison et al. 1990, 

Katholi and Couri 2011). In this sense, chronic activation of the renin angiotensin system (RAS) is 

responsible for several cardiac diseases, among which myocardial hypertrophy occupies an 

outstanding place (Lijnen and Petrov 1999). It is well documented that angiotensin II (ANGII) 

activates NADPH-oxidase increasing reactive oxygen species (ROS) production that play a crucial 

role in the development of CH(Garrido and Griendling 2009, Zhang, Perino et al. 2013). 

The Na+/H+ exchanger (NHE) is a key transmembrane protein that catalyzes the extrusion of 

intracellular protons collaborating in the maintenance of intracellular pH (pHi) in the physiological 

range. It is ubiquitously expressed in mammalian cells, including cardiomyocytes. Although nine 

NHE isoforms (termed NHE-1 through NHE-9) have been identified at present, cardiac cells 

primarily express NHE-1 (Fliegel and Karmazyn 2004). Each isoform represents distinct gene 

products and exhibit differences in their primary structure, membrane localization, functional 

properties, physiological roles, and sensitivity to pharmacologic inhibition.   

It has been firmly proposed an important link between myocardial hypertrophy and NHE-1 activity 

by others and our own group (Cingolani and Ennis 2007, Karmazyn, Kilic et al. 2008). Not only an 

enhanced activity of the exchanger is detected in several models of CH but also its 

pharmacological inhibition probed to be effective to prevent or even induce the regression  (Ennis, 

Escudero et al. 2003, Javadov, Choi et al. 2008, Wakabayashi, Hisamitsu et al. 2013). A number of 

factors that initiate the hypertrophic response has been involved in NHE stimulation. Activation of 

G protein coupled receptors by ANGII, endothelin (ET), and α1-adrenergic agonists, are among the 

best known (Dulce, Hurtado et al. 2006, Javadov, Baetz et al. 2006, Costa-Pessoa, Figueiredo et al. 

2013). In this context, the increase in mitochondrial ROS induced by NADPH oxidase derived ROS 

(ROS induced-ROS release mechanism) may lead to NHE-1 activation through redox sensitive 

kinases (Caldiz, Garciarena et al. 2007, Garciarena, Caldiz et al. 2008). NHE-1 hyperactivity 

increases intracellular sodium ([Na+]i) and subsequently intracellular calcium ([Ca2+]i) through the 

reverse mode of the Na+/Ca2+ exchanger (NCX). The latter would be the responsible for the 

activation of prohypertrophic phosphatases and kinases leading to CH (Perez, de Hurtado et al. 

2001, Caldiz, Garciarena et al. 2007, Cingolani, Perez et al. 2008). 

Based on the unequivocal success of NHE-1 pharmacologic inhibitors to prevent or treat 

cardiovascular diseases in experimental models, clinical trials were designed. However, although 

some positive outcomes were observed in certain subgroups of patients, overall resul ts were not 

encouraging (Avkiran and Marber 2002, Boyce, Bartels et al. 2003, Mentzer, Bartels et al. 2008). 

Moreover, one of these trials was prematurely stopped because of an increased mortality 

observed in the treated group due to cerebrovascular events (Mentzer, Bartels et al. 2008). In this 

context and in order to avoid unwanted and non-specific effects of systemic pharmacologic 

inhibition of the exchanger, intramyocardial small interference RNA administration emerges as a 
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putative alternative. This strategy would allow specific silencing of myocardial NHE-1 without 

affecting other proteins, even with a high homology degree.  

The aim of the present study was to evaluate the effectiveness of the specific silencing of cardiac 

NHE-1 to prevent the development of CH in rats subjected to chronic subcutaneous administration 

of ANGII. 

2. MATERIALS AND METHODS 

The study was performed according to the Guide for the Care and Use of Laboratory Anim als 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All 

procedures followed during this investigation are conform to the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (NIH Publication no. 85-23, 

revised 1996) and to the Argentine Republic Law no. 14346 concerning animal protection. The 

experimental protocol was approved by the Animal Welfare Committee of La Plata School of 

Medicine.  

2.1. Animals. Male Wistar rats, 5 month old, were randomly assigned to three experimental 

groups: 1- l-shNHE1 + ANGII (NHE1 with a small hairpin RNA delivered by lentivirus; (n=8); 2- ANGII 

(n=6); 3-sham operated (n=7)). Animals were anesthetized by intraperitoneal injection of ketamine 

(50 mg.kg-1 of body weight) diazepam (2.5 mg kg-1 of body weight) and hearts rapidly excised when 

plane 3 of stage III of anesthesia was reached. The rats were infused subcutaneously by mini -

osmotic pumps (Alzet model 2004 with ANGII (200 µg /kg/day)  (Baltatu, Silva et al. 2000)or vehicle 

(sterile physiologic solution) for 28 days.   

2.2. Systolic Blood Pressure measurement and ANGII infusion. Systolic blood pressure (SBP) was 

measured before and weekly after the implant of mini -osmotic pumps by tail-cuff 

plethysmography according to the procedure described (Bunag 1973). 

2.3. Cell Culture and transfections. HEK293T cells were cultured in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum, 50 U/ml penicillin, and 50 g/ml streptomycin 

in 5% CO2 air-equilibrated (control) 37°C incubator. Plasmids used were expressed by transient 

transfection of HEK293T cells using the calcium phosphate method (Jordan and Wurm 2004). 

2.4. Construction and Production of Lentiviral Vectors. A third generation lentiviral vector capable 

of expressing a reporter gene under the CMV promoter and shRNA under the RNA polymerase III 

H1 promoter was produced as previously described (Barth, Kizana et al. 2008). Briefly, the shRNA 

against the NHE-1 was subcloned into a third generation lentiviral vector plasmid that expresses 

DsRed under the CMV promoter and shRNA under the RNA polymerase III H1 promoter 

(PPT.C.DsRed.H1). The shRNA sequence against NHE-1 was constructed inserting 5`-

GATAGGTTTCCATGTGATC-3` (positive strand), followed by 5`-GTTCTTCAAGAGAGAAC-3` (loop), 5`- 

ATCACATGGAAACCTATC-3= (negative strand), and 5`-ATCACATGGAAACCTATC-3` (terminator), at 

the BamHI cloning site (5´) and PacI cloning site (3`), following the H1 RNA polymerase promoter, 

to generate PPT.C.DsRed.H1.shNHE1 (l-shNHE1). This shRNA against NHE-1 was previously proven 

effective in reducing whole NHE-1 protein expression in cultured fibroblasts (Akram, Teong et al. 

2006). Lentiviral particles were obtained by co-transfecting HEK293T cells with the four different 
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plasmids. Three of these plasmids encode the gene sequence of lentivirus structural proteins and 

the other have the sequence of the shNHE1 or shSCR. HEK293T cell media culture was collected at 

24, 48, and 72 hours after transfection and immediately centrifuged for 10 minutes at 1000 g, 

virus containing supernatant was centrifuged for 1.5 hours at 30 000 g. Viral pellets were 

resuspended in sterile PBS overnight at 4°C, aliquoted, and stored at -80°C. Lentivirus titer was 

determined measuring fluorescence of positive HEK293T cells transduced with serial dilutions of 

the viral stock in the presence of 10 ug/mL of polybrene (Sigma). Lentivirus encoding the 

nonsilencing sequence was used as control in HEK293T. 

2.5. Intramyocardial injection of the lentivirus vector. Wistar rats were anesthetized with 

sevofluorane (4% for induction and 2–3% for maintenance) used in a gas mixture with oxygen and 

delivered through ventilation by using a positive-pressure respirator (model 680, Harvard, South 

Natick, MA). After deep anesthesia was reached, a left thoracotomy was performed via the fourth 

intercostal space, and the lungs retracted to expose the heart. Following this, the l-shNHE1 (2x107 

transducing units in 200 µl volume) or sterile PBS (200 µl) were intramyocardially injected at two 

sites in the free wall of the left ventricle (LV) using a 30-G needle (Perez, Nolly et al. 2011). 

Immediately after surgery, rats were returned to their cages and carried to a recovery room and 

subsequently returned to the animal facility until death. Rats had ad libitum access to food and 

water. 

2.6. Western blotting. Left ventricles and HEK293T cells overexpressing NHE-1 and transduced 

with l-shNHE1 or l-shSCR were homogenized in RIPA buffer (Santa Cruz Biotechnology, sc-24948) 

with protease inhibitors cocktail (Roche), PMSF and sodium orthovanadate. After a brief 

centrifugation the supernatant was kept and protein concentration determined by the Bradford 

method (Bio-Rad dye reagent) as described by the manufacturer with BSA as a standard. Samples 

were denatured and equal amounts of protein were subjected to PAGE and electrotransferred to 

PVDF membranes. Membranes were then blocked with non-fat-dry milk and incubated overnight 

with antibody against NHE-1 (Santa Cruz Biotechnology sc-28758). The detection of GAPDH 

(Millipore MAB374) was used as loading control . Peroxidase-conjugated anti rabbit (NA934, GE 

Healthcare Life Sciences), anti-mouse (NA931, GE Healthcare Life Sciences) were used as 

secondary antibodies. Bands were visualized with enhanced chemiluminescence reagent (ECL, 

Millipore) and a Chemidoc Station (Bio-Rad) and quantified using Image J analysis software. 

2.7. Echocardiography. Rats were monitored echocardiographically under light anesthesia with 

sevoflurane 4% by two-dimensional M-mode echocardiography with a 7-MHz transducer at the 

beginning and at the end of protocol. Measurements were performed according to the American 

Society of Echocardiography leading edge method (Lang, Bierig et al. 2005). 

2.8. Cross Sectional Area (CSA) analysis. Coronal sections of obtained from the equator of the left 

ventricle were prepared for conventional histological techniques. Thus, tissue was fixed in 

buffered formalin for 24 h. For CSA determinations, five µm thick paraffin-embedded sections 

were stained with Hematoxylin and eosin. Histological (40x magnification) images were digitized 

using a digital video camera (Olympus DP73, Japan) mounted on a widefield microscope (Olympus 

BX53, Japan). Captured images were saved in TIF format using an image analysi s software 
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(Olympus cellSens Dimension V1.7, Japan) automatically coordinated with the camera for later 

analysis. Only round cells with visible round nucleus were considered for CSA measurements. Each 

cell was individually traced, and its cross-sectional area was directly determined.  

CSA determinations were done using another image analysis software (Image -Pro Plus v6.3 - 

Media Cybernetics, USA  

2.9. Collagen Volume Fraction (CVF) determination. Five 5 µm thick coronal sections of the left 

ventricle were stained using the Picrosirius red technique (Direct Red 80, Aldrich, Milwaukee, WI 

53233, USA) for collagen evaluation as described elsewhere (Yeves, Garciarena et al. 2010). 

Samples were observed under polarized light, using an analyzer (U-ANT, Olympus) and a polarizer 

(U-POT, Olympus) was used to study the birefringence of the stained collagen.  

Histological (20x magnification) images were digitized using a digital video camera (Olympus DP73, 

Japan) mounted on a widefield microscope (Olympus BX53, Japan). Captured images were saved 

in TIF format using an image analysis software (Olympus cellSens Dimension V1.7, Japan) 

automatically coordinated with the camera for later analysis.  

CVF was calculated as the sum of all connective tissue areas of the coronal sections (type I and 

type III collagen), divided by the total surface of the section. Perivascular collagen was excluded 

from this measurement.  

2.10. NHE-1 activity. Intracellular pH (pHi) was measured in three groups of HEK293T cells, two of 

these were infected with l-shNHE1 or l-shSCR for 72 h and 48 h before the measurement were 

transfected with a plasmid that overexpress rat NHE-1 (pNHE1). The other group was only 

transfected with pNHE1 (control group). Cells were grown in coverslips and superfused with the K-

H solution (bicarbonate free) with an epi-fluorescence system (Ion Optix, Milton, MA) following 

the previously described BCECF epifluorescence technique (Yeves, Garciarena et al. 2010). At the 

end of each experiment, the fluorescence ratio was converted to pH by in vivo calibrations using 

the high K+-nigericin method (Perez, Alvarez et al. 1995). 

NHE-1 activity was assessed by evaluating the rate of pHi recovery from an ammonium pre-pulse 

induced acid load. The duration of intracellular acidosis was extended for 2 min by washout of 

NH4Cl with Na+-free solution and NHE-1 was reactivated by reintroduction of extracellular Na+ 

(Yeves, Garciarena et al. 2010).  

2.11. Quantitative real-time PCR. NHE-1 and brain natriuretic peptide (BNP) mRNA expression was 

assessed by real-time RT-PCR and normalized to GAPDH following the procedure described 

previously (Ennis, Garciarena et al. 2005). Primers used for amplification are listed in Table 1 

Table 1 

Gene Forward Reverse 
NHE-1 5`-TCACCACAGCTCCATCAGAG-3` 5`-GATCTCGAAGGGTGTCCGTA-3` 

BNP 5`-CCCAGATGATTCTGCTCCTG-3` 5`-TTCTGCATCGTGGATTGTTC-3` 
GAPDH 5`-GGGTGTGAACCACGAGAAAT-3` 5`-CCACAGTCTTCTGAGTGGCA-3` 
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2.12. Assessment of lipid peroxidation. We used the thiobarbituric acid reactive substances (T-

BARS) spectroscopic technique(Buege and Aust 1978) to evaluate lipid peroxidation as index of 

ROS formation. Briefly, cardiac tissue from different experimental groups was homogenized in 

physiological saline solution and centrifuged at 2500 rpm to allow measuring T-BARS in the 

supernatant. Absorbance at 535 nm was measured and T-BARS expressed in nmol/g of tissue using 

an extinction coefficient of 1.56x105 M-1cm-1. 

2.13. NOX Activity. NADPH oxidase (NOX)–dependent superoxide production was measured in left 

ventricle homogenates from rats of all experimental groups, using a previously described 

lucigenin-enhanced chemiluminescence method(Bendall, Cave et al. 2002). Proteins were diluted 

in modified HEPES buffer was added to wells just before reading. NOX activity measured by O 2˙ 

production was expressed in cpm/mg of protein over 15 minutes.  

2.14. Epifluorescence microscopy. DsRed fluorescence images from HEK293T cells were obtained 

with an inverted Olympus 1X71 microscope equipped with a 100 W halogen lamp. Fluorescence 

emission was detected using 575 nm filter. The magnification of the images was 100X. 

2.15. Statistics. Data are expressed as means ±SEM. One-way ANOVA test followed by Student-

Newman-Keuls were used when appropriate. P value < 0.05 was considered of statistical 

significance. 

 

3. RESULTS 

The silencing efficiency of the l-shNHE1 coding for the siRNA against NHE-1 was evaluated in 

HEK293T cells. Because the basal expression of the exchanger is low in this cell line (Villa-Abrille, 

Cingolani et al. 2011, Odunewu and Fliegel 2013), we induced its overexpression by transfecting 

the cells with a plasmid carrying the sequence of rat NHE-1 (Fig 1A). As shown in Fig 1B, the l-

shNHE1 significantly decreased the NHE-1 protein expression (~ 35%) compared to control. In 

order to corroborate these results, the activity of NHE-1 was measured in the same experimental 

groups. The rate of intracellular pHi recovery from acidosis induced by the NH4
+ prepulse 

technique was significantly diminished in l-shNHE1-infected cells (Fig 1C). The experiments were 

performed in HCO3
- free solution since under this condition the NHE-1 is the only alkalinizing 

mechanism active. These results confirmed the l -shNHE1 as an adequate tool to experimentally 

reduce NHE-1 expression and activity.  

Because we were essentially interested in evaluating the capability of myocardial NHE-1 specific 

silencing to prevent CH development, Wistar rats were injected with the l -shNHE1 and after seven 

days of the injection the animals were subjected to continuous long-term delivery of ANGII by 

subcutaneous osmotic minipumps. First, the in vivo silencing efficacy of the l-shNHE1 (200 µl) 

injected into the left ventricle (LV) wall was explored. After 35 days of injection, the l-shNHE1 

succeeded to persistently decrease myocardial NHE-1 expression both at the mRNA and protein 

levels (~ 50%) (Fig 2A-B). Importantly, this effect was specific for the myocardium, since no 

differences in the expression of the NHE-1 were observed in other tissues such as lung and liver 

among groups (Fig 2C-D). 
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Since ANGII is a pressor peptide, its effect upon SBP was determined. Rats chronically exposed to 

ANGII increased their SBP compared to control. The injection of the l -shNHE1 did not significantly 

modify this effect (Fig 3A). As expected, ANGII administration induced CH, as revealed by the 

HW/TL ratio, the echocardiographic determination of the interventricular septum (IVSd) and the 

posterior wall thickness (PWd) in diastole as well as the up-regulation of myocardial BNP 

expression. However, this was not the case for the rats exposed to the l -shNHE1, supporting a key 

role of the NHE-1 in CH development (Fig 3B-E). This effect was confirmed at the histological level 

by determining the cross sectional area of cardiomyocytes and collagen abundance. Rats that 

were intramyocardially injected with the l-shNHE1 showed a smaller area of cardiomyocytes as 

well as a reduced collagen fraction (Fig 3F-G). Even more interesting was the finding that the l-

shNHE1 significantly improved cardiac contractile function measured by echocardiography ( Fig 

3H), even though blood pressure continued elevated and cardiac mass was decreased. This result 

is in agreement with a previous report of our group (Ennis, Garciarena et al. 2007). 

As we have already mentioned, ANGII increases the production of ROS, and these molecules are 

key players in CH development. Therefore, we tested the effect of the l-shNHE1 intramyocardial 

injection on ROS production. As it can be appreciated in Fig 4A the activity of NADPH oxidase was 

significantly increased in the hearts exposed to ANGII compared to control, even in the hearts 

injected with the l-shNHE1. Subsequently, we measured the consequences of the increase in ROS 

production by determining lipid peroxidation (T-BARS). Interestingly, only in the rats not exposed 

to the l-shNHE1 a significant increase in lipid peroxidation was evident (Fig 4B).  

 

4. DISCUSSION 

The main finding of the present study is the demonstration that the partial silencing of the 

myocardial NHE-1 is a suitable strategy to prevent ANGII-induced CH. It is worth to highlight that 

this antihypertrophic effect, as well as the improvement in cardiac function, were obtained 

without normalization of SBP.  Figure 5 summarizes the sequence of events proposed.  

As mentioned in the Introduction, NHE-1 pharmacologic inhibitors have been clinically tested in 

order to reproduce the benefits observed in the experimental models (Theroux, Chaitman et al. 

2000, Zeymer, Suryapranata et al. 2001, Mentzer, Bartels et al. 2008). Unfortunately, the 

outcomes of these clinical studies were not as good as expected. Only the EXPEDITION and a 

subgroup of the GUARDIAN clinical trial reported benefits with the NHE-1 inhibitor cariporide 

when dealing with patients with myocardial ischemia (Theroux, Chaitman et al. 2000, Mentzer, 

Bartels et al. 2008). Awkwardly, the EXPEDITION study was ended up prematurely due to an 

increased incidence of cerebrovascular events and mortality in the treated group (Mentzer, Bartels 

et al. 2008). A possible explanation for these findings is that systemic pharmacologic inhibition 

usually affects not only the intended target but also some related or unrelated proteins in many 

tissues. At present, nine members of the NHE family have been described with varying tissue and 

cellular distribution. Current pharmacological inhibitors are not highly selective for isoforms, 

therefore the inhibitors evaluated could not only affect NHE-1 activity but also extend to other 

isoforms increasing the possibilities of non-desire effects. On the other hand, small interference 

RNA technique permits the silencing of a specific protein expression without interfering with the 
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expression of other proteins even with a high homology degree. Therefore, we consider that 

intramyocardial injection of the l-shNHE1 represents a good option to obtain protein specific and 

organ restricted NHE-1 inhibition (Figure 2). Not only this approach allows stable gene silencing at 

least for one month (Diaz, Perez et al. 2014, Nolly, Pinilla et al. 2015) but also it should provide the 

benefits of pharmacological inhibitors avoiding non-desire effects due to wide access of the 

inhibitor to every isoform and organ. In connection with this, in previous works of our group the 

shNHE1 naked sequence (Morgan, Correa et al. 2011) or contained into a lentivirus (Perez, Nolly et 

al. 2011, Nolly, Pinilla et al. 2015) was administered to silence NHE-1 expression and function in 

normal and hypertrophied rat hearts. Remarkably, the silencing effect obtained was restricted to 

the heart but widely extended through the LV wall, farther to the injection site, as other authors 

have also prove (Kizana, Cingolani et al. 2009, Schuman, Landa et al. 2011, Diaz, Perez et al. 2014). 

Interestingly, by this intervention we were able to reduce the left ventricular mass in adult 

spontaneously hypertensive rats in a previous work (Nolly, Pinilla et al. 2015). However, we should 

keep in mind that the clinical use of viral vectors is not deprived of certain safe ty and ethical issues 

yet unresolved. In this regard, it is necessary to consider the possibility that replication-competent 

viruses can be generated during vector production, and insertional mutagenesis could occur 

leading to cancer, among the most relevant (Thomas, Ehrhardt et al. 2003) 

ANGII is a well-known octapeptide capable of increasing blood pressure and inducing CH 

development (Mehta and Griendling 2007). Moreover, it has been demonstrated that this 

hormone stimulates NHE-1 activity through activation of the AT1 receptor(Matsui, Barry et al. 

1995). Among the intracellular pathways triggered by ANGII, the stimulation of the NADPH oxidase 

has been propose to be critical for CH development (Garrido and Griendling 2009) . We have 

previously demonstrated that NADPH oxidase-derived ROS prompt the release of greater amounts 

of ROS from the mitochondria by a process named “ROS induced- ROS release” (Garciarena, Caldiz 

et al. 2008). The last ones activate a redox-sensitive kinase pathway that ends up with the 

phosphorylation of the cytosolic regulatory tail of the NHE-1 triggering its hyperactivity. The 

consequence of this mechanism is the augmentation of intracellular Na+ leading to a secondary 

increase in intracellular Ca2+ through the reverse mode of the NCX. The rise in intracellular Ca2+ 

finally favors calcineurin activation and the transcription of hypertrophic genes (Ennis, Garciarena 

et al. 2007, Hisamitsu, Nakamura et al. 2012). Importantly, a negative inotropic effect of 

calcineurin through different mechanisms has been described (Sah, Oudit et al. 2002, Li, Yatani et 

al. 2003). Therefore, the decrease in cardiac NHE-1 protein expression by l-shNHE1 

intramyocardial administration emerges as a good strategy to prevent intracellular Na+ 

accumulation, calcineurin activation, hypertrophy development and its negative impact on cardiac 

contractility. The preservation of cardiac function after regression of CH seems not to be unique to 

the regression of CH by NHE-1 inhibition (Esposito, Rapacciuolo et al. 2002). It seems that in the 

myocardium, intracellular Ca2+ is compartmentalized in such way that the contractile pool is 

different from the pool that regulates reactive signaling. In agreement with this, it has been 

suggested that calcineurin is activated preferentially by specific sub-cellular Ca2+ pools (Frey, 

Barrientos et al. 2004, Wu, Zhang et al. 2006). Therefore we can speculate that the decrease in 

diastolic [Ca2+] might be sensed by the Ca2+ calmodulin-calcineurin pathway, but not by the 
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contractile machinery. It deserves to be noted that the prevention of CH development by l -shNHE-

1 administration occurs without normalizing high blood pressure and NADPH oxidase activity but 

with normalization of lipid peroxidation The reason for this would be that mitochondria is the 

main source of intracellular ROS favored by NHE-1 hyperactivity. Therefore, a diminish activity of 

the exchanger will result in a decrease production of ROS. These results are in accordance with 

previous reports of our laboratory indicating that pharmacological specific inhibition of NHE-1 

prevents oxidative stress (Garciarena, Caldiz et al. 2008). 

5 CONCLUSIONS 

In the present work, we succeeded to prevent pathological CH induced in rats by chronic 

administration of ANGII, even though the persistence of increased afterload (high SBP). This result 

was obtained by cardiac restricted in vivo partial silencing of the NHE-1. We used a lentiviral 

vector coding for a specific shRNA against the exchanger directly injected into the left ventricular 

wall. This maneuver has the potential advantage of not interfering with NHE-1 expression in other 

organs and therefore limiting the possibilities of non-desired effects.  
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Figure 1. Lentiviral silencing of the Na+/H+ exchanger 1 in HEK293T cells transiently transfected 

with pNHE1 plasmid. A. Bright-field and fluorescent images of cell cultures; I and II non-infected 

cells; III and IV cells infected with l-shNHE1; V and VI, cells infected with l-shSCR. (magnification: 

100X). B. NHE-1 protein expression. Top: representative Western blot bands.  Bottom: average 

results from each experimental group. C. Na+/H+ exchanger 1 activity measured during intracellular 

acidosis recovery by BCECF epifluorescence. Left typical registers during pHi recovery. Right: 

average values of dpHi/dt at a common pHi 6.8. Bars represent mean ± SEM, the number of 

individual experiments for each group is depicted inside bars. * correspond to p<0.05 One -way 

ANOVA analysis, l-shNHE1+pNHE1 vs pNHE1 and l-SCR+pNHE1 groups. 

Figure 2. Intramyocardial injection of the l-shNHE1 in Wistar rats. A. NHE-1 protein expression in 

left ventricles of Wistar rats. Top: representative Western blot bands. Bottom: average results 

from each experimental group. B. Myocardial NHE-1 mRNA abundance quantificated by RT-qPCR. 

C and D. Lung and liver protein expression of NHE-1. Bars represent mean ± SEM, the number of 

individual experiments for each group is depicted inside bars.* correspond to p<0.05 One -way 

ANOVA analysis, l-shNHE1+ANGII vs Ctrl and ANGII groups. 

Figure 3. ANGII chronic infusion by osmotic mini pumps. A. After 28 days of ANGII administration a 

significant increase in SBP was observed. * correspond to p<0.05, t-test, before (b) vs. after (a) in 

each group. B-D. Cardiac hypertrophy estimated by heart weight/tibia length ratio (HW/TL), the 

interventricular septum (IVSd) and posterior wall thickness (PWd) in diastole determined by 

echocardiography E. BNP mRNA myocardial expression. F-G. Chronic administration of ANGII 

significantly increased CSA and interstitial collagen, effects prevented by the l-shNHE1 

(magnification: 40X and 20X, respectively). H. Cardiac function assessed by fractional shortening 

was improved by the l-shNHE1 injection. Bars represent mean ± SEM, the number of individual 

experiments for each group is depicted inside bars. # indicate p<0,05, ANGII vs Ctrl and l-

shNHE1+ANGII groups; * indicate p<0.05; l-shNHE1+ANGII vs Ctrl and ANGII groups. † indicate 

p<0,05, l-shNHE1+ANGII vs ANGII; & indicate p<0,05, Ctrl vs l -shNHE1+ANGII; ††† indicate 

p<0.001, Ctrl vs ANGII, One-way ANOVA analysis.  

Figure 4. ANGII induced myocardial production of reactive oxygen species (ROS). A.  ANGII infusion 

increased myocardial NADH oxidase (NOX) activity measured by the lucigenin method. B. Lipid 

peroxidation in left ventricular samples was measured by TBARS technique. ANGII increased 

TBARS, effect prevented by the intramyocardial injection of l -shNHE1. Bars represent mean ± SEM, 

the number of individual experiments for each group is depicted inside bars. * indicate p<0.05, Ctrl 

vs l-shNHE1+ANGII and ANGII groups; # indicate p<0,05, ANGII vs Ctrl and l -shNHE1+ANGII groups; 

One-way ANOVA analysis. 

Figure 5. Schematic summary of the sequence of events proposed to underline the prevention of 

CH development by the intramyocardial injection of the l -shNHE1 in Wistar rats subjected to 

sustained subcutaneous delivery of ANGII. 
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Suppl. Figure 1: Representative image of the intramyocardial injection of the l-shNHE1 in a Wistar 

rat. 

Suppl.Figure 2: Representative Western Blot of NHE-1 expression in non-transfected and 48 hs. 

after transfection with pNHE1 HEK293T cell homogenates. 
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