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Abstract— A digital control algorithm for a
current-mode (CM) and a voltage-mode (VM)
synchronous buck converter (SBC) is devel-
oped. In both cases, the design leads to a
stable controller, even for a duty cycle larger
than 50%. The desired output voltage and the
transient response can be independently spec-
ified. Moreover, zero steady-state error in the
output voltage can be obtained with the aid of
additional dynamics. In both cases, the speci-
fication is done by pole placement using com-
plete state feedback. A discrete-time model
is used to design the feedback gains. Both
the stability and the small-signal transient re-
sponse are analyzed. In another paper (Oliva
et al., 2003) the control algorithms are experi-
mentally validated with a DSP-controlled SBC.

K eywords— Switch-mode power supplies,
digital control, buck converter.

I. INTRODUCTION

Switch-mode power supplies (SMPS), like the buck
converter, are frequently used in the current or the
voltage modes of operation. Current-mode control
is commonly used due to its intrinsic current limit-
ing, providing a natural over-current protection. This
characteristic allows to parallel modules to extend the
current capability (Brown and Midlebrook, 1981).

Since CM SMPS show an instability (evident as a
subharmonic oscillation) when the duty cycle is larger
than 50%, the industry has adopted the external ramp
compensation method to cancel out the oscillations.
This method consists on adding an artificial ramp to
the reference or to the current waveform (Unitrode,
1995; Brown and Midlebrook, 1981). It is a sim-
ple method, but it does not allow to arbitrarily place
the closed-loop poles to achieve a desired dynamic re-
sponse.

SMPS have traditionally been modeled with the
averaged-state model, introduced by Ctk (Midlebrook
and Cuk, 1976). However, this model does not explain
the CM instability.
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The origin of the CM instability is conveniently ex-
plained by another modeling technique, introduced by
Packard (1976), known as discrete modeling, and by
the sampled-data model from Brown (Brown and Mi-
dlebrook, 1981). These techniques are used in this
work to obtain the discrete model of the switching con-
verter, followed by a complete state feedback to adjust
the closed-loop dynamics. The small-signal stability
and transient response for this model are latter ana-
lyzed. The instability is completely eliminated from
the CM converter, yielding a determined dynamic re-
sponse. The regulator was analyzed using a discrete
modeling technique, as in Fang and Abed (2001). For
the VM converter, the desired output voltage and the
type of transient response that the regulator would
exhibit due to perturbations or a set-point variation
can be separately specified (this is a main difference
between this method and the traditional sawtooth-
and-threshold method). Moreover, with the aid of
additional dynamics, zero steady-state error can be
achieved on the output voltage. Summarizing, an
alternative control strategy is introduced for SMPS
operating in VM and CM. The algorithms were ex-
perimentally tested on a SBC-based voltage regula-
tor. The experimental results are shown in Oliva et
al. (2003).

A DSP was used to implement the controller. This
is not an issue when the target is a high-current con-
verter, because the DSP is a small portion of the over-
all cost. The use of a DSP has additional advantages,
such as monitoring of critical variables, communica-
tion with other devices and possible on-line tuning of
the dynamic response.

II. STATE SPACE MODEL

A. Continuous-time model

Switching converters are, in general, non-linear and
time-variant circuits. Nevertheless, different models
have been developed to describe the small-signal be-
havior of the system with linear equations (Brown and
Midlebrook, 1981). The boost and the Ctk convert-
ers exhibit a non-linear function between the control
variable and the output voltage. On the other hand,
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the buck converter is easier to control because that
function is linear.

A discrete-time model for the switching converter
capable of giving enough detail can be derived from the
above mentioned techniques of Packard and Brown.
In general, it is assumed that the periodic switching
produces a change in the structure of the switching
converter. Since the switch changes state twice per
cycle, the system has two structures, one valid when
the switch is on (t,,) and another one valid when the
switch is of f (tory)-

The SBC operates in the continuous-conduction
mode with a constant switching frequency fs = 1/Ts.
The following analysis shows the derivation of the
model.  Let: i.(t) the instantaneous current flow-
ing through the capacitor; ir,(t) the instantaneous cur-
rent flowing through the inductor; I, the load current,
assumed constant; and vg(t) the instantaneous input
voltage. The current flowing through the inductor and
the voltage across the capacitor are chosen as state va-
riables.

Since the system has two different topologies during
ton, and toff, the SBC is characterized by two state
equations. These two equations can be grouped into a
single equation. To simplify the notation, the temporal
dependency of the variable will be omitted, unless that

would lead to a confusion. Thus, ir (t) will be written
as ;L .

The model for the SBC under constant load resis-
tance, Rjoqq, is the following: During t,, of the n,

switching period (n.Ty < t < (n+ d,)Ts, where d,, is

the duty cycle):
“1/L ir
_1/C~Rload :| |: Ve :| + |:

Bt

<~ .’;7: Ai.x 4+ b

=Yl

Yielding v = wvg4. Similarly, during ¢y,

(n+d)Ts<t<(n+1)Ts:

iL _ 0 ~1/L ir
1'}6 % *1/C~Rload Ve
< 52 As.x + by.u, by := 0.

Combining the equations during ¢,, and ¢,s; into a
single equation, yields (Brown and Midlebrook, 1981):

T = (dA +d A)x+ (dby+d.b)u (1)
i) = {1if nTs <t<(n+d,)Ts
0if (n+dp)Ts <t < (n+1)Ts
dt) = 1-4d(t)

Notice that if d,, is constant, the equation is linear
with periodic coefficients. On the other hand, if the
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control is applied on d,, the equation becomes non-
linear, because the duty cycle is a function of the state
variables.

It is possible to derive a linear equation if the SBC
operates under the small signal regime. The signals
can be represented by a nominal value (in capital let-
ters) plus a perturbation (in lowercase with ’~’). Thus,
the input voltage and the duty cycle will be written as
vg = Vg + 94, and d,, = D + d,,, respectively. There-
fore, d = d(t) can be written as a steady-state part
(although it is time variant) d, plus a perturbation, d
(Brown and Midlebrook, 1981): d = d + d,d =1-d,
are defined as:

) - {1if nTs <t < (n+ D)T;
0if(n+D)Ts <t< (n+1)T;s
) = {sgn(dn—D)iftE[(n—I—D)TS,(n—i—dn)TS]
0 otherwise

Notice that these equations formally represent the
effect of a perturbation of the duty cycle in the state
equation. Likewise, the state vector can be represented
by a steady-state component plus a perturbation:

T=T+Z.

Replacing in the state equation (1):

The state equation can be split in a nominal part
plus a perturbation, as follows:

Fii o= [dAy+d AT+ [dby +d by Ve +
+ [d.-Ay +d' Ag) & + [d.by + d'ba] 0a +
+ (A1 = A) (2 + &) + (b1 — b2) (Va + 04)] d.

Making the perturbation equal to zero yields the
steady-state equation:

T=[dAy +d . As) T+ [dby +d bs] Vi,
and subtracting the last equation from the complete
response, the equation for a perturbation in the state
vector becomes:
& = [dA+d.Ay] &+ [dby +d by) g+
+[(A1 — A2) (Z+ &) + (b1 — ba) (Vi + 04)] d.

This expression can be linearized neglecting the
second-order terms, yielding:

& = [dA+d.Ay] &+ [dby+d .by] 0g+
—+ [(Al — AQ) T+ (b1 — bg) Vd} d
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Finally, d(t) can be approximated by a train of
impulses with the appropriate area, as it is done in
(Brown and Midlebrook, 1981):

o0

> (&;&)5ﬁf(n+lnny

n—=——oo

d =~ p(t) =

B. Discrete-time model

In this section it is found the discrete-time model of
the SBC by integration of the small-signal state-space
model over a switching period, Ts. Without lose of
generality, it is choosen the initial integration time at
(n + D)Ts. In the interval [(n + D)Ts, (n + 1)Ts] the
switching functions are d = 0, d’ = 1, yielding:

b = Aok bobg+ K.dyT,.8]t — (n+ DT,
K : = (Al — AQ) T [('ﬂ + D)TS] + (b1 — b2> Vd.

Since the ¢ function is non-zero only at (n+ D)Ty, the
integral yields:

&[(n+ 1T, = e*P T3 [(n+ D)T,] +

, . (n+1)-T
+e2 P K Tod,, + /
(n+D)-Ts

Another approximation is done to evaluate this equa-

tion, assuming that the input voltage is constant dur-
ing the integration interval. Therefore, the integral
of the last term is zero. This approximation implies
that the input voltage is not considered as a pertur-
bation input; nevertheless, this does not affect the
stability analysis. By analogy, during the interval
[(n+ 1)Ts, (n+ D+ 1)Ty] the state equation reduces
to:

2o

= A1%.

This equation is integrated using as the initial con-
dition the value of the state vector found at the end of
the previous period, & [(n + 1)Ts], yielding:

&{(n+1+D)T,) =
= NPTl g (n+ DT, +

, R
+eA1PTs g A2 DT K.T.d,,

(2)

which concludes the developing of the discrete-time
model. This discrete model evaluates the behavior of
the system due to small-signal perturbations (of dura-
tion cfnTs) in the duty cycle.

III. SENSITIVITIES
A. Voltage Mode

A VM SBC requires a controller that compares an ar-
tificial saw-tooth waveform (STW) with a reference
value, vy¢f, to obtain the duty cycle corresponding to
each individual cycle. Therefore, the VM SBC operates
in a typical pulse-width modulation scheme (PWM).
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AT =Ty

The sensitivity of the duty cycle with respect to v;..s
may be obtained by a geometric analysis. Consider
the external STW with period T and amplitude V.
For the nominal reference voltage, V;.f¢, the nominal
duty cycle, D, is given by D = %LTS. When a per-
turbation 9.y is applied on the rgference voltage, it
produces a variation on the duty cycle, aAl, such as

3)

d= Dot
V;"ef ref

B. Current Mode

The CM SBC is controlled by changing the duty cycle
based on variations of the peak value of the current
flowing through the inductor. Therefore, it is neces-
sary to find an expression for d,, as a function of the
state and the control variables. The latter, fp, is the
perturbation on the peak value of the inductor current.

For the small-signal model, an approximation for dn
using only the linear terms of its Taylor series expan-
sion is proposed, yielding

7 5dn ~

dn = E’LL

Od .

~Uc
0V,

ody, »

+5e b (4)

mn

1)
Evaluation of —: To evaluate the sensitivity

i
of the duty cycle WithL respect to the current flowing
through the inductor it is convenient to analyze Fig.
1, that shows the variation of the duty cycle due to a
perturbation 7z, > 0 in the current flowing through the
inductor.

If the input and output voltages are considered con-
stant during t,,, then the slope of the ramp corre-
sponding to the current flowing through the inductor
does not change, and appears only a vertical shift given
by 2z. Thus,

- L
Ay = — iy,

Vi VT, 5)

-V
© is the slope of the ramp.

where

od
Evaluation of —=: To evaluate the sensitivity of

v
the duty cycle with r::espect to the voltage across the
capacitor refer to Fig. 2, that shows the dependency
of the derivative of the current flowing through the in-
ductor upon variations in the output voltage, v.. The
equations corresponding to the nominal (1) and per-
turbed (r’) slopes are analyzed to obtain the expres-
sion of d,, as a function of 9, :

L AL (Va V)

Y'Y T b, L

A AAI _ Va— (Ve o]
(D—i—dn)-Ts L
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Figure 1: Variation of the duty cycle due to a pertur-
bation in the curent flowing through the inductor.

DT dT

N
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Figure 2: Variation of the duty cycle due to a pertur-
bation on the output voltage.

Solving for d,, yields d,, = D {m

Ve << (Vd—VC),

d, ~ [VdDVC] . (6)

] , and if

ody,
o1,
cle with respect to the peak reference current, Ip, can
be found from Fig. 3. The peak current through the
inductance, Ip, will be changed by the control algo-
rithm, and a perturbation in its value will change the
nominal duty cycle. From Fig. 3 the reader can see

(Va—Ve)
L

Evaluation of : The sensitivity of the duty cy-

5 1
that d,, - Ty = £, where r = . Therefore,
r

A L A
dn = —TS(Vd—VC)Ip' (7)

IV. CONTROL
A. Voltage Mode

So far, it was developed a linear model for the SBC. An
expression for the control scheme using complete state
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Figure 3: Variation of the duty cycle due to a pertur-
bation in the peak current through the inductor.

Vref }_@_,‘ (@aTals)

Figure 4: Digital tracking system with complete state
feedback.

feedback is found in this section. From Eq. (3), the
perturbation d, in the duty cycle can be expressed as
a function of the control variable. The discrete-time
model for the SBC is given by Eq. (2). Replacing Eq.
(3) in Eq. (2) yields

Z[(n+14+D)Ts]=®-&[(n+D)Ts] +T-

Wef.f}ref.
If complete state feedback is applied and the system
is controllable, the closed-loop poles can be arbitrar-
ily placed to yield a desired transient response. The
negative feedback proportional to the states over 0y..s
is Opey = —F, - & [nTs]. The elements of the vector F,
determine the closed-loop poles of the system. Re-
placing v,.¢ in the system model gives

D
@CLU :|:(P_F 'F'u:|7
ref
&[(n+14+D)T,] = Pcr,-&[(n+ D)T.
Using this control strategy a desired transient response

can be achieved.
Al

The voltage regulator designed in the previous sec-
tion was calculated under constant loading. This sec-
tion develops a mechanism that allows the controller
to track load changes and change the reference in or-
der to keep the output voltage constant. This goal
is achieved by the inclusion of additional dynamics,
as shown in Fig. 4, that represents a digital tracking
system with complete state feedback. The added dy-
namics are represented by @, Ty, Lo (Vaccaro, 1995).

Ezxtended state model of the regulator
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A state space representation for the model repre-
sented in Fig. 4 is obtained defining a composite state
vector:

valk) = [ irlk] velk] walk] "

where z, is the state vector of the additional dynamics.
Then, to obtain the state space representation of the
whole system, the cascade connection is explicitly used
to construct its transition matrix and input matrix as

P 0 r
(Dd:|:1—\ac @a:|7rd:|:0:|7

where ¢ is the output matrix (relating the output y
with the states = as y = ¢ z). A regulator can be
designed for the pair (&4, T4) yielding a feedback gain
L = [ Ly Lo ], where L; contains the first n el-
ements of L, being n the order of the system to be
controlled (for the SBC: n = 2). Vector Ly is the re-
maining part of L and relates the output y, with the
states x, as y, = Lo x,. The gain L is calculated by
pole placement. The whole procedure for obtaining
(®g, T'y) is detailed in Vaccaro (1995); however, in this
case ®, =1, ', = 1. The main (and fundamental)
advantage of this configuration is the fact that if the
closed loop system is stable then the system will follow
a constant reference with zero steady state error.

B. In Current Mode

In the sequel the control strategy to make the system
to operate in current mode (CM) is shown. A complete
state feedback is used. From Eq. (4), it is seen that
d,, can be split in two parts: one due to the CM effects
and the other due to the feedback. Then considering
Egs. (5), (6) and (7) it results

The discrete model for & [(n 4+ 1 + D)Ts] was found
in (2), that is further simplified for the SBC case con-
sidering that A1 = Ay = A, and D'’ =1 — D. Then

i[(n+1+ DT =®.2[(n+ D)Ty| +Td,, (8)

where ® = 4T T' = AT KT, K = (by — by) V.
Replacing d,, results

Zl(n+1+D)T, =

= ®i[(n+D)T.]+IQ+T Kﬁ) fp]

—L D

Y= Wwn Vi v

] &[(n+ D)T.].
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Grouping together the terms corresponding to the
CM:

| (g +)

Som =o 4+ T

A state feedback is done on I, to place the closed
loop poles: I, = —F..Z[(n+ D).T,] and the closed-
loop system becomes

[(n+1+D)T] = ®crz[(n+ DTy, (9)

L

= |®oy — F.T——m |,
oM T, (Vg — Vo)

Qor
where @, is the closed-loop system matrix.
Assuming controllability, the closed-loop poles can
be arbitrarily placed by selecting the feedback gain F'.
Up to this point, nothing prevents the system to be
stable for constant load and duty cycle over 50%.

B.1.

When the load is not constant, it is convenient to im-
plement an observer for the load changes. An estima-
tor for the load current is proposed as follows:

Control with variable load

IO:iM_i07

where iy is the average current in the inductor, ob-
tained over a complete switching cycle, and i¢c is the
average current in the output capacitor, which is dif-
ferent from zero over a load transient. Then:

1 (T
M = — i dt.
TM TS /) 11

The current of the capacitor is estimated from i. =

(10)

d
C % approximating the derivative using finite differ-

ences as i, = T (ve —v;), where v, is the voltage of
the capacitor sampled in the previous cycle. Then two
new state variables are added to the discrete system:
ia and v, . As a first step, iy is added as the third
state variable in the continuous system and the new A

matrix becomes

0 = 0
A= % —1/C-Ripaa 0 |,
= 0 0

being the new state z = [ i Ve
matrix ¢ of the discrete system is

B AT Y11 P12 0
O=c""" =1 w3 o O
P31 P32 P33

where (33 = 1 since the third state corresponds to
a pure integrator. As it is necessary to implement
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Eq. (10), which corresponds to a resetable integrator
(forcing i to zero each time (n+ D).T5) it is observed
that ¢35 = @93 = 00 the state ips[(n+D).Ts] does not
affect the value of the other states at the next sampling
time. Also the product ¢55.10[(n+ D). Ts] = 0 due to
the periodic reset of iyr[(n + D).Ts]. The same effect
(p33-ips = 0) is obtained forcing ¢35 = 0 instead of
periodically reseting i [(n + D). Ts].

Finally, the variable v is added to the discrete sys-
tem as the fourth state. Then the discrete system ma-
trix @, of the whole system results:

Y11 P12 00
P, — AT — | P21 P22 0 0
© w31 32 0 0
0 1 0 0
and the next state vector is =z =

[ i, Ve M Uz }T. Then the new discrete
model is formally identical (replacing ® and x with
the new expressions) to Eq. (9) with respect to the
effects of the perturbations on the duty cycle.

As a design alternative, the design procedure shown
above for the VM can be used here for variable load
adding additional dynamics, but it is not shown due

to space limitation.

V. CONCLUSIONS

A digital controller was developed for a SBC in VM
and CM using complete state feedback. The control
scheme is based on the addition of a small corrective
signal over the nominal control signal of the converter,
so changing slightly the duty cycle to cancel perturba-
tions keeping the output voltage constant.

The main difference with the traditional control
strategy for the VM (proportional control with refer-
ence ramp) is that here it is possible to specify inde-
pendently the output voltage level and the transient
response of the system. Also, due to the additional
dynamics, a zero steady-state error is guaranteed for
the output voltage. The controller is designed by pole
placement in the state space. The closed loop dynam-
ics of the SBC in CM can be completely specified even
for duty cycles over 50%.

The controllers obtained in this paper were experi-
mentally tested on a SBC under different load condi-
tions. The results are promising (Oliva et al., 2003)
with stable behavior even under load variations.
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