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Abstract 16 

Recent methodological developments in causal mediation analysis have addressed several 17 

issues regarding multiple mediators. However, these developed methods differ in their 18 

definitions of causal parameters, assumptions for identification, and interpretations of causal 19 

effects, making it unclear which method ought to be selected when investigating a given causal 20 

effect. Thus, in this study, we construct an integrated framework, which unifies all existing 21 

methodologies, as a standard for mediation analysis with multiple mediators. To clarify the 22 

relationship between existing methods, we propose four strategies for effect decomposition: 23 

two-way, partially forward, partially backward, and complete decompositions. This study 24 

reveals how the direct and indirect effects of each strategy are explicitly and correctly 25 

interpreted as path-specific effects under different causal mediation structures. In the integrated 26 

framework, we further verify the utility of the interventional analogues of direct and indirect 27 

effects, especially when natural direct and indirect effects cannot be identified or when cross-28 

world exchangeability is invalid. Consequently, this study yields a robustness–specificity trade-29 

off in the choice of strategies. Inverse probability weighting is considered for estimation. The 30 

four strategies are further applied to a simulation study for performance evaluation and for 31 

analyzing the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer 32 

data set from Taiwan to investigate the causal effect of hepatitis C virus infection on mortality.33 
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1. Introduction 1 

1.1 Existing methods 2 

Mediation analysis quantifies the role of a mediator or set of mediators in the total causal 3 

effect of a known exposure on an outcome; this is crucial for investigating causal mechanisms 4 

(MacKinnon, 2008). Because most existing methods are applicable to only one mediator, they 5 

do not allow all mechanisms to be captured. Thus, several methods have been proposed for 6 

multiple mediators. In particular, path analysis, which is also integrated as part of structural 7 

equation modelling, is a standard method for conducting mediation analysis when all variables 8 

are continuous. Avin, Shpitser and Pearl (2005) proposed a method for multiple mediators based 9 

on the causal inference framework, under which all paths are quantitatively defined based on a 10 

counterfactual model; this extended path analysis to discrete variables. Avin et al. (2005) noted 11 

that empirical data cannot lead to the identification of all paths. As an alternative, VanderWeele 12 

and Vansteelandt (2014) extended the method with a single mediation analysis by treating all 13 

multiple mediators as one multivariate mediator and by decomposing the total effect (TE) of 14 

the exposure on the outcome into the natural direct effect (NDE) and natural indirect effect 15 

(NIE). This method furnishes information regarding the importance of the mediators, but it does 16 

not provide detailed information about each mediator. As a trade-off, the order of causal 17 

relations among all mediators and the confounders of all mediators are not required. 18 

To determine the importance of each mediator, mediation analysis for path-specific effects 19 

(PSEs) can be used. PSEs are derived from the decomposition of TE according to mediation 20 

paths. The PSE with no mediator is the direct effect, and the remaining PSEs are the so-called 21 

indirect effects. Albert and Nelson (2011) and Daniel et al. (2015) have decomposed TE 22 

completely and derived four PSEs by using two causally ordered mediators. However, to 23 

identify a PSE, two counterfactuals of the mediator must be independent. Sensitivity analysis 24 

was performed to verify this stronger assumption. To avoid this unrealistic assumption, Steen 25 
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et al. (2017) considered an alternative definition of the multimediation parameter—the 1 

expectation of the counterfactual of the outcome for multiple mediators—to partially 2 

decompose the TE. Although this decomposition did not yield the full PSEs, it was the finest 3 

natural TE decomposition under regular causal assumptions. Recently, the concept of partial 4 

decomposition has been implemented for survival outcomes (Huang and Yang, 2017; Huang 5 

and Cai, 2015; Tai et al., 2019). Moreover, Lin and VanderWeele (2017) and Lin (2019) applied 6 

an interventional approach (Didelez, Dawid and Geneletti, 2012; Geneletti, 2007) to decompose 7 

the interventional analogue of TE (iTE) for complete decomposition. The strong assumption of 8 

cross-world exchangeability was not required for this approach. 9 

 For causally nonordered mediators, Wang, Nelson and Albert (2013) and Taguri, 10 

Featherstone and Cheng (2018) have defined the parallel multimediation parameter by 11 

extending the mediation formula of one mediator (Avin et al., 2005), and they have then 12 

decomposed TE into NDE and mediator-specific NIEs. Because mediators are assumed to be 13 

causally independent, their natural causal effects, including NDE and NIEs, can be identified 14 

without the strong assumption adopted by Albert and Nelson (2011) and Daniel et al. (2015). 15 

In contrast to the previous approaches for a particular causal structure, Vansteelandt and Daniel 16 

(2017) proposed a decomposition method to derive interventional causal effects when the causal 17 

structure is unknown. Their method was defined in terms of causal effects instead of the 18 

mediation parameter, but their interventional causal effects were essentially the intermediate 19 

product obtained during the identification of the parallel multimediation parameter in the 20 

interventional approach. 21 

1.2 Open questions and contributions of this study  22 

Although the methods outlined above address several issues regarding mediation analysis 23 

with multiple mediators, it remains unclear which method ought to be selected when 24 

investigating a given causal effect. This difficulty lies in the differences between the definitions, 25 
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assumptions, and interpretations of these methods. For example, Lin and VanderWeele (2017) 1 

and Vansteelandt and Daniel (2017) have both relied on the interventional approach, but they 2 

have performed different decomposition strategies, relied on different assumptions, and 3 

provided different interpretations of causal effects. 4 

Therefore, to unify these various methods, we construct an integrated framework as a 5 

standard for causal mediation analysis with multiple mediators. This framework makes three 6 

contributions. First, the proposed framework clarifies the relationships between the 7 

assumptions, identification, and interpretation of causal effects in all existing methods. 8 

Moreover, four decomposition strategies are proposed: two-way, partially forward (PF), 9 

partially backward (PB), and complete decompositions. Existing methods for mediation 10 

analysis with multiple mediators (Albert and Nelson, 2011; Daniel et al., 2015; Fasanelli et al., 11 

2019; Huang and Yang, 2017; Lin, 2019; Steen et al., 2017; Taguri et al., 2018; Tai et al., 2019; 12 

VanderWeele and Vansteelandt, 2014; VanderWeele, Vansteelandt and Robins, 2014; 13 

Vansteelandt and Daniel, 2017; Wang et al., 2013) can be classified into one of these four 14 

strategies. The unification of formulations in this article facilitates the comparability of existing 15 

methods of mediation analysis. We comprehensively characterize the features of the four 16 

strategies and provide a comparison between them; in doing so, we help researchers select the 17 

decomposition strategy for mediation analysis that (particularly in its assumptions) is most 18 

appropriate to their object of study. 19 

Second, we propose four multimediation formulas corresponding to the four 20 

decomposition strategies; these formulas are a generalized version of mediation formula 21 

provided by (Pearl, 2009, 2010). Multimediation formulas have been restricted to particular 22 

causal mediation structures. For example, the multimediation formula under the PB 23 

decomposition strategy is applicable only when the mediators are mutually independent (Taguri 24 

et al., 2018; Wang et al., 2013). However, in this study, we demonstrate that the proposed 25 

multimediation formulas are adaptable to different mediation structures. Moreover, we 26 

demonstrate that the multimediation formula for PB decomposition is structure-free. This 27 
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implies that the PB decomposition strategy can be implemented to investigate causal effects 1 

without considering structure; this allows the causal effects to be interpreted according to the 2 

causal structure of interest. The characteristic of structure-free PB decomposition has also been 3 

studied by Vansteelandt and Daniel (2017).  4 

Third, we verify the utility of the interventional analogues of direct and indirect effects, 5 

which are termed interventional causal effects. In previous studies, the interventional approach 6 

has been primarily used when natural causal effects cannot be identified, meaning that the cross-7 

world exchangeability assumptions are invalid (Lin and VanderWeele, 2017; Vansteelandt and 8 

Daniel, 2017). However, interventional causal effects can necessarily be derived regardless of 9 

mediation conditions. Under the proposed framework, we show that when the natural causal 10 

effects and interventional causal effects can be identified, they are derived using an identical 11 

multimediation formula for the various strategies. Accordingly, statistical inferences for causal 12 

effects that are based on a multimediation formula can be always interpreted as interventional 13 

analogues. If the cross-world exchangeability assumptions hold, the results can be further 14 

interpreted as natural causal effects based on the cross-world counterfactuals. 15 

The remainder of this article is organized as follows: In Section 2, we introduce the 16 

symbolism and assumptions for the integrated framework. Section 3 reviews single mediator 17 

analysis and presents four decomposition strategies for mediation analysis with multiple 18 

mediators. Section 4 provides the estimation of each strategy through inverse probability 19 

weighting. Section 5 describes a simulation study to evaluate the performance of the four 20 

strategies. In Section 6, all strategies are illustrated based on the dataset of the Risk Evaluation 21 

of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL) study from Taiwan. 22 

Finally, we conclude with a discussion in Section 7. 23 

2. Symbolism and assumptions of the integrated framework 24 

2.1. Symbolism 25 

In Sections 2 and 3, we focus on two mediators in our demonstration. Let 𝐴 and 𝑌 denote 26 

the exposure and outcome of interest; �̃� = (𝑀1, 𝑀2) denote the two mediators of interest; and 27 
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𝐶 denote the baseline covariate preceding 𝐴.  1 

To define all causal effects, we introduce a counterfactual model (also called the potential 2 

outcome model), as follows (Little and Rubin, 2000). Let 𝑋(𝑎) be the hypothetical value of X 3 

given that 𝐴 is intervened as 𝑎 for all 𝑎, where 𝑋 is 𝑀1, 𝑀2, �̃�, or 𝑌. We also define the cross-4 

world counterfactual 𝑌(𝑎1, �̃�(𝑎2)) as the counterfactual of 𝑌 given that 𝐴 is 𝑎 and �̃� is �̃�(𝑎), 5 

as previously defined.  6 

We now define the interventional counterfactuals. Let 𝐆(𝑎) = {𝐺1(𝑎), 𝐺2(𝑎)} be the joint 7 

random draw of �̃�(𝑎) = {𝑀1(𝑎), 𝑀2(𝑎)} . In contrast to the curly brackets used in 8 

{𝐺1(𝑎), 𝐺2(𝑎)} , the round-bracket notation in (𝐺1(𝑎), 𝐺2(𝑎))  represents 𝐺𝑖(𝑎)  as being the 9 

separate random draw of 𝑀𝑖(𝑎) for 𝑖 = 1 and 2; (𝐺1(𝑎), 𝐺2(𝑎)) are thus mutually independent. 10 

If 𝐴 is 𝑎, then 𝑌(𝑎, 𝐆(𝑎)) and 𝑌(𝑎, 𝐺1(𝑎), 𝐺2(𝑎)) are the hypothetical values of 𝑌 when �̃� is 11 

set to 𝐆(𝑎′) and (𝐺1(𝑎), 𝐺2(𝑎)), respectively. 12 

2.2. Causal structure 13 

A causal structure is generally regarded as a necessary assumption for mediation analysis. 14 

Precisely, in mediation analysis, the prespecification of a causal structure among mediators is 15 

necessary for interpreting the causal relationship but not necessary for identifying and deriving 16 

causal effects. For instance, Vansteelandt and Daniel (2017) proposed a novel decomposition 17 

strategy for mediation analysis to derive causal effects when the mediation structure is unknown. 18 

In this article, we comprehensively reveal the relationship between all effect decomposition 19 

strategies and causal structures. 20 

We now list all conditions of the causal structures for the two mediators. The causal effect 21 

of 𝐴  on 𝑌  is the effect for the mechanism of interest. 𝑀1  and 𝑀2  are the mediators whose 22 

mediated effects in this mechanism must be quantified. Therefore, the causal structure of the 23 

mediators (𝑀1, 𝑀2) fall under one of the following three conditions: 24 

Mediation structure 1 (MS1): 𝑀1 and 𝑀2 are causally independent. 25 

Mediation structure 2 (MS2): 𝑀1 is the cause of 𝑀2. 26 

Mediation structure 3 (MS3): 𝑀2 is the cause of 𝑀1.  27 
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The conditions for a causal interpretation of causal effects can be explicitly characterized using 1 

causality diagrams; the causality diagrams corresponding to (MS1), (MS2), and (MS3) are 2 

shown in Figure 1(a) to (c), respectively. In previous studies, (MS2) and (MS3) have also been 3 

termed as the sequential or ordered mediation structure (Huang and Yang, 2017; Lin, 2019; 4 

Steen et al., 2017; Tai et al., 2019), and (MS1) has been termed as the parallel or nonordered 5 

mediation structure (Taguri et al., 2018; Wang et al., 2013).  6 

 To causally interpret the effects of each strategy, we specify PSEs for the three structures. 7 

For (MS1), three PSEs (PSE0, PSE1, and PSE2) are present. PSE0 is equal to the direct effect. 8 

PSE1 and PSE2 are the indirect effects of the exposure on the outcomes mediated solely through 9 

M1 and M2, respectively. For (MS2), the causal mechanism includes four PSEs (PSE0, PSE1, 10 

PSE2, and PSE12), where PSE12 represents the indirect effect sequentially mediated through M1 11 

and M2 . Similarly, PSE0 , PSE1 , PSE2 , and PSE21  are included in the mechanism for (MS3), 12 

where PSE21 is the indirect effect mediated sequentially through M2 and M1.  13 

2.3. Assumptions for identification 14 

In this article, we assume the following consistency and composition assumptions 15 

(Gibbard and Harper, 1978; Robins and Greenland, 1992; VanderWeele and Vansteelandt, 2009): 16 

Consistency assumption: The observed value of 𝑌 is equal to the counterfactual value of 𝑌(𝑎) 17 

given that 𝐴 is 𝑎.  18 

The consistency assumption is also called the well-defined assumption (Hernán and Robins, 19 

2020) or the stable unit treatment value assumption (Rubin, 1980). It is also applied to other 20 

counterfactual models, including 𝑌(𝑎, 𝑚), 𝑀1(𝑎), and 𝑀2(𝑎, 𝑚).  21 

Composition assumption: 𝑌(𝑎) = 𝑌(𝑎, �̃�(𝑎)).  22 

For (MS2), the composition assumption for 𝑀2  is as follows: 𝑀2(𝑎) = 𝑀2(𝑎, 𝑀1(𝑎)) . 23 

Similarly, for (MS3), the additional composition assumption for 𝑀1  is stated as 𝑀1(𝑎) =24 

𝑀1(𝑎, 𝑀2(𝑎)). 25 

In addition to the consistency and composition assumptions, several types of 26 

exchangeability assumptions and cross-world exchangeability assumptions are required for 27 

identification in all strategies. 28 
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Assumption of Exchangeability between 𝑨  and 𝒀  (Ax1): No unmeasured confounders are 1 

present between 𝐴 and 𝑌; that is, 𝑌(𝑎, �̃�) ⊥ 𝐴|𝐶. 2 

Assumption of Exchangeability between �̃�  and 𝒀  (Ax2): No unmeasured confounders are 3 

present between �̃� and 𝑌; that is, 𝑌(𝑎, �̃�) ⊥ �̃�|𝐶, 𝐴. Based on the fundamental properties of 4 

probability, (Ax2) implies 𝑌(𝑎, �̃�) ⊥ 𝑀1|𝐶, 𝐴 , 𝑌(𝑎, �̃�) ⊥ 𝑀2|𝐶, 𝐴 , and 𝑌(𝑎, �̃�) ⊥5 

𝑀2|𝐶, 𝐴, 𝑀1. 6 

Assumption of Exchangeability between �̃�  and 𝑨  (Ax3): No unmeasured confounders are 7 

present between �̃� and 𝐴. This assumption comprises four subtypes: 8 

(Ax3.1) �̃�(𝑎) ⊥ 𝐴|𝐶 9 

(Ax3.2) 𝑀1(𝑎) ⊥ 𝐴|𝐶 10 

(Ax3.3) 𝑀2(𝑎) ⊥ 𝐴|𝐶 11 

(Ax3.4) 𝑀2(𝑎, 𝑚1) ⊥ 𝐴|𝐶 for any 𝑚1 12 

Assumption of Exchangeability between 𝑴𝟏 and 𝑴𝟐 (Ax4): No unmeasured confounders are 13 

present between 𝑀1 and 𝑀2; that is, 𝑀2(𝑎, 𝑚1) ⊥ 𝑀1|𝐴, 𝐶. 14 

Additionally, five cross-world assumptions are required for all strategies. We defined these 15 

assumptions in terms of cross-world counterfactuals as follows: 16 

Assumption of cross-world exchangeability 1 (Acx1): 𝑌(𝑎, �̃�) ⊥ �̃�(𝑎∗) 17 

Assumption of cross-world exchangeability 2 (Acx2): 𝑌(𝑎, �̃�) ⊥ (𝑀1(𝑒1), 𝑀2(𝑒2)) 18 

Assumption of cross-world exchangeability 3 (Acx3): 𝑀1(𝑒1) ⊥ 𝑀2(𝑒2) 19 

Assumption of cross-world exchangeability 4 (Acx4): 𝑀1(𝑒1) ⊥ 𝑀2(𝑒2, 𝑚1) 20 

Assumption of cross-world exchangeability 5 (Acx5):  21 

𝑌(𝑎, �̃�) ⊥ (𝑀1(𝑒1), 𝑀2(𝑒2, 𝑚1))  22 

The absence of time-varying confounders affected by the exposure, including mediator–23 

mediator and mediator–outcome confounders, is necessary (but not sufficient) for the cross-24 

world exchangeability assumptions. In this section, we assumed that all time-varying 25 

confounders can be captured by C. 26 

3. Causal estimand, interventional analogue, and multimediation 27 

formula for various decomposition strategies 28 
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3.1. Review of causal mediation analysis with a single mediator 1 

The average TE of 𝐴  on 𝑌  when 𝐴 = 1  versus 𝐴 = 0  can be defined as E[𝑌(1)] −2 

E[𝑌(0)] . Without loss of generality, we can replace (1, 0)  with any two level (𝑎1, 𝑎0) . 3 

Moreover, we can replace the difference with any comparative function, such as the risk ratio 4 

or odds ratio if 𝑌 is a disease status (VanderWeele and Vansteelandt, 2010). We can further 5 

replace the expectation with a hazard function if 𝑌  is a time-to-event variable (Lange and 6 

Hansen, 2011; VanderWeele, 2011a).  7 

When the mechanism includes a single mediator, only one strategy is available for 8 

decomposing TE, namely decomposition into a part with the mediator (i.e., NIE) and another 9 

part without the mediator (i.e., NDE). These are defined as  NIE ≡ Φ(1,1) − Φ(1,0) 10 

and  NDE ≡ Φ(1,0) − Φ(0,0) , where TE = NIE + NDE . Here, Φ(𝑎, 𝑒) ≡ 𝐸[𝑌(𝑎, 𝑀(𝑒))]  is 11 

the conventional mediation parameter with respect to a single mediator. Definitions other than 12 

NDE and NIE are possible for the direct and indirect effects, such as either the total direct effect 13 

and pure indirect effect or controlled direct effect and controlled mediated effect (Hafeman and 14 

VanderWeele, 2011; VanderWeele, 2011b). However, these still represent a decomposition of 15 

TE into a part with the mediator and a part without the mediator. Additionally, decomposition 16 

for both mediation and interaction (VanderWeele, 2014; VanderWeele and Shrier, 2016) is not 17 

considered in this study. 18 

3.2. Effect decomposition strategies for causal mediation analysis with 19 

multiple mediators  20 

For multiple mediators, several options are available for effect decomposition depending 21 

on practical identifiability conditions and the substantive characteristics of the object the 22 

researcher is interested in. To classify all existing methods, we propose four strategies for 23 

mediation analysis with multiple mediators, namely two-way decomposition, PF 24 

decomposition, PB decomposition, and complete decomposition. Interpretations of the causal 25 

mechanism differ between these four strategies. Two-way decomposition is primarily used to 26 

interpret the indirect effect mediated through all mediators. PF decomposition and PB 27 

decomposition can further decompose mediator-specific (M-specific) indirect effects from the 28 

indirect effect determined using two-way decomposition, but the causal interpretations of the 29 
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M-specific indirect effects for PF and PB decomposition differ. The M-specific indirect effect 1 

of PF decomposition is termed the M-leading indirect effect because it indicates the effect of 2 

exposure on the outcome through the mediation paths led by mediator M. By contrast, in the 3 

PB decomposition strategy, the M-specific indirect effect is termed the M-inducing indirect 4 

effect; this is because the M-inducing indirect effect represents the sum of the effects in which 5 

M directly induces the outcome. The complete decomposition strategy enables the extraction 6 

of PSEs for all possible mediation paths. The strengths and weaknesses of each strategy are 7 

discussed as follows. 8 

Under each decomposition strategy, we propose unified definitions of causal effects in 9 

terms of the natural multimediation parameter (Φ) and interventional multimediation parameter 10 

(Ψ). Additionally, we unify the multimediation formula (Q) corresponding to the mediation 11 

parameter for statistical inference. We then specify the formulations of Φ, Ψ, and Q under the 12 

four decomposition strategies. To simplify the notation, we omit the confounders from the 13 

following formulations. 14 

3.2.1. Two-way decomposition strategy  15 

In the two-way decomposition strategy, all mediators are treated as one multivariate 16 

mediator (�̃� ). TE is decomposed into the part passing through �̃�  and the part not passing 17 

through �̃�; following the definition for a single mediator, these parts are defined as NIETW ≡18 

Φ𝑇𝑊(1,1) − Φ𝑇𝑊(1,0)  and NDETW ≡ Φ𝑇𝑊(1,0) − Φ𝑇𝑊(0,0)  (Fasanelli et al., 2019; 19 

VanderWeele and Vansteelandt, 2014; VanderWeele et al., 2014), where 20 

Φ𝑇𝑊(𝑎, 𝑒) ≡ E[𝑌(𝑎, �̃�(𝑒))]. 21 

Herein, Φ𝑇𝑊 is the natural multimediation parameter for the two-way decomposition strategy. 22 

According to (Acx1), (Ax1), (Ax2), and (Ax3.1), we have 23 

 Φ𝑇𝑊(𝑎, 𝑒) = Q𝑇𝑊(𝑎, 𝑒) a.s., (1) 24 

where Q𝑇𝑊(𝑎, 𝑒) ≡ ∫ E[𝑌|𝑎, �̃�] 𝑓(�̃�|𝑒) 𝑑�̃� . Q𝑇𝑊(𝑎, 𝑒)  is the multimediation formula for 25 

two-way decomposition. A detailed description of (1) was provided by VanderWeele and 26 

Vansteelandt (2014), and it is presented in Appendix A. 27 

 Instead of using Φ𝑇𝑊, the causal effects can be alternatively defined for the interventional 28 
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multimediation parameter, as follows: 1 

Ψ𝑇𝑊(𝑎, 𝑒) ≡ E[𝑌(𝑎, �̃�(𝑒))]. 2 

The causal effects based on Ψ𝑇𝑊  for the two-way decomposition strategy are defined as 3 

IIETW ≡ Ψ𝑇𝑊(1,1) − Ψ𝑇𝑊(1,0)  and IDETW ≡ Ψ𝑇𝑊(1,0) − Ψ𝑇𝑊(0,0) , where IIE  and IDE 4 

refer to the interventional indirect effect and interventional direct effect, respectively. According 5 

to (Ax1), (Ax2), and (Ax3.1), we have 6 

 Ψ𝑇𝑊(𝑎, 𝑒) = Q𝑇𝑊(𝑎, 𝑒) a.s., (2) 7 

The equality in (2) is proven in Appendix A. By comparing (1) and (2), two features can be 8 

recognized. First, (NIETW, NDETW)  and (IIETW, IDETW)  are defined in terms of Φ𝑇𝑊(𝑎, 𝑒) 9 

and Ψ𝑇𝑊(𝑎, 𝑒), which are identified by the identical multimediation formula Q𝑇𝑊(𝑎, 𝑒). Thus, 10 

the inference for two-way decomposition relies only on Q𝑇𝑊(𝑎, 𝑒)  for the natural or 11 

interventional multimediation parameter. Second, identifying Φ𝑇𝑊(𝑎, 𝑒)  requires the 12 

additional assumption (Acx1) compared with the identification of Ψ𝑇𝑊(𝑎, 𝑒). Table 1 lists the 13 

required assumptions for each strategy. Therefore, based on these two features, we conclude 14 

that the causal effects of the two-way decomposition strategy necessarily have interventional 15 

causal interpretations. If a study satisfies the cross-world exchangeability assumption (Acx1), 16 

then the corresponding quantity differences of Q𝑇𝑊(𝑎, 𝑒)  can be interpreted as representing 17 

natural causal effects. This provides the guidelines for the two-way decomposition strategy. 18 

 Notably, the two-way decomposition strategy requires minimal assumptions (Table 1). For 19 

example, (Ax4) is not required for two-way decomposition. Moreover, a causal mediation 20 

structure is not required for two-way decomposition. However, although two-way 21 

decomposition furnishes the causal effect mediated by a given set of mediators, it cannot furnish 22 

the detailed causal mechanism concerning a particular path of mediators. Thus, if a study is 23 

primarily focused on PSEs, then the following three decomposition strategies can provide a 24 

finer decomposition of TE under relatively stronger assumptions. 25 

3.2.2. PF decomposition strategy  26 

The PF decomposition strategy has recently been developed for mediation analysis with 27 

causally ordered mediators (Huang and Yang, 2017; Steen et al., 2017). For two mediators, this 28 

strategy decomposes TE into three parts: via M1, via M2, and via either M1 or M2, which are 29 
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defined as NIE𝐹1 ≡ Φ𝐹(1, 1, 0) − Φ𝐹(1, 0, 0) , NIE𝐹2 ≡ Φ𝐹(1, 1,1) − Φ𝐹(1, 1, 0) , and 1 

NDE𝐹 ≡ Φ𝐹(1, 0, 0) − Φ𝐹(0, 0, 0), respectively. The natural multimediation parameter under 2 

PF decomposition is defined as 3 

Φ𝐹(𝑎, 𝑒1, 𝑒2) ≡ E[𝑌(𝑎, 𝑀1(𝑒1), 𝑀2(𝑒2, 𝑀1(𝑒1)))]. 4 

As shown in Table 1, based on assumptions (Acx4), (Acx5), (Ax1), (Ax2), (Ax3.2), (Ax3.4), and 5 

(Ax4), we identify Φ𝐹(𝑎, 𝑒1, 𝑒2) as follows: 6 

 Φ𝐹(𝑎, 𝑒1, 𝑒2) = Q𝐹(𝑎, 𝑒1, 𝑒2) a.s., (3) 7 

where Q𝐹(𝑎, 𝑒1, 𝑒2) ≡ ∫ 𝐸[𝑌|𝑎, �̃�]𝑓(𝑚1|𝑒1)𝑓(𝑚2|𝑒2, 𝑚1)𝑑�̃� , which is the multimediation 8 

formula under PF decomposition. The proof of (3) was provided by Steen et al. (2017), and it 9 

is presented in Appendix A. 10 

 We further introduced the interventional multimediation parameter under PF 11 

decomposition as 12 

Ψ𝐹(𝑎, 𝑒1, 𝑒2) ≡ 𝐸[𝑌(𝑎, 𝐺1(𝑒1), 𝐺2(𝑒2, 𝐺1(𝑒1)))], 13 

where the two instances of 𝐺1(𝑒1)  represent the same random draw. Based on Ψ𝐹 , the 14 

interventional analogues of causal effects in PF decomposition are defined as IIE𝐹1 ≡15 

Ψ𝐹(1, 1, 0) − Ψ𝐹(1, 0, 0) , IIE𝐹2 ≡ Ψ𝐹(1, 1,1) − Ψ𝐹(1, 1, 0) , and IDE𝐹 ≡ Ψ𝐹(1, 0, 0) −16 

Ψ𝐹(0, 0, 0). According to (Ax1), (Ax2), (Ax3.2), (Ax3.4), and (Ax4), we have 17 

 Ψ𝐹(𝑎, 𝑒1, 𝑒2) = Q𝐹(𝑎, 𝑒1, 𝑒2) a.s., (4) 18 

Similar to two-way decomposition, (3) and (4) reveal that the PF decomposition strategy 19 

provides a unique multimediation formula for inference. Thus, if the assumptions (Acx4) and 20 

(Acx5) hold, the effects obtained by Q𝐹(𝑎, 𝑒1, 𝑒2) have a natural causal interpretation; otherwise, 21 

the causal effects should be interpreted through the interventional analogues. 22 

For (MS2), NIE𝐹2 represents the causal effect mediated solely through 𝑀2. Because the 23 

change of exposure status in NIE𝐹2 only relates to 𝑀2. NIE𝐹1 can be rewritten as the sum of  24 

E[𝑌(1, 𝑀1(1), 𝑀2(0, 𝑀1(1)))] − E[𝑌(1, 𝑀1(1), 𝑀2(0, 𝑀1(0)))] 25 

and  26 

E[𝑌(1, 𝑀1(1), 𝑀2(0, 𝑀1(0)))] − E[𝑌(1, 𝑀1(0), 𝑀2(0, 𝑀1(0)))], 27 

where the first is interpreted as PSE12 and the second as PSE1. Notably, PSE1 and PSE12 are 28 
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unidentifiable because of the cross-world exchangeability assumptions (Avin et al., 2005). 1 

Therefore, NIE𝐹1 includes all the effects first mediated through 𝑀1 (i.e., PSE1 and PSE12). For 2 

some arbitrary number of mediators, we conclude that a particular mediator led the mediation 3 

paths corresponding to the M-specific indirect effect of PF decomposition. We refer to this type 4 

of indirect effect as an M-leading indirect effect. 5 

3.2.3. PB decomposition strategy 6 

In this section, we propose the PB decomposition strategy, which is an alternative approach 7 

to the partial decomposition of TE. Similarly, for two mediators, this strategy decomposes TE 8 

into three parts: via M1, via M2, and neither via M1 nor via M2, which are defined as NIE𝐵1 ≡9 

Φ𝐵(1, 1, 0) − Φ𝐵(1, 0, 0) , NIE𝐵2 ≡ Φ𝐵(1, 1,1) − Φ𝐵(1, 1, 0) , and NDE𝐵 ≡ Φ𝐵(1, 0, 0) −10 

Φ𝐵(0, 0, 0) , respectively. The natural multimediation parameter under PB decomposition is 11 

defined as 12 

Φ𝐵(𝑎, 𝑒1, 𝑒2) ≡ E[𝑌(𝑎, 𝑀1(𝑒1), 𝑀2(𝑒2))]. 13 

As shown in Table 1, based on assumptions (Acx2), (Acx3), (Ax1), (Ax2), (Ax3.2), and (Ax3.3), 14 

we identify Φ𝐵(𝑎, 𝑒1, 𝑒2) as follows: 15 

 Φ𝐵(𝑎, 𝑒1, 𝑒2) = Q𝐵(𝑎, 𝑒1, 𝑒2) a.s., (5) 16 

where Q𝐵(𝑎, 𝑒1, 𝑒2) ≡ ∫ 𝐸[𝑌|𝑎, �̃�]𝑓(𝑚1|𝑒1)𝑓(𝑚2|𝑒2)𝑑�̃� , which is the multimediation 17 

formula under PB decomposition. The proof of (5) is provided in Appendix A. Notably, (Acx3) 18 

is valid only when the mediators are mutually independent, implying that the identification of 19 

Φ𝐵  is restricted to (MS1). Recently, several mediation analysis methodologies have been 20 

proposed using the PB decomposition strategy to address specific conditions. For example, 21 

Wang et al. (2013) and Taguri et al. (2018) have developed methodologies for mediation 22 

analysis specifically for the independent mediation structure (MS1) based on Φ𝐵(𝑎, 𝑒1, 𝑒2).  23 

 In contrast to Φ𝐵(𝑎, 𝑒1, 𝑒2) , the interventional multimediation parameter for PB 24 

decomposition is as follows: 25 

Ψ𝐵(𝑎, 𝑒1, 𝑒2) ≡ 𝐸[𝑌(𝑎, 𝐺1(𝑒1), 𝐺2(𝑒2))], 26 

where 𝐺1(𝑒1)  and 𝐺2(𝑒2)  are separate random draws. This can be identified under three 27 

structures because the cross-world exchangeability is not required. More specifically, assuming 28 

(Ax1), (Ax2), (Ax3.2), and (Ax3.3), we have 29 
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 Ψ𝐵(𝑎, 𝑒1, 𝑒2) = Q𝐵(𝑎, 𝑒1, 𝑒2) a.s., (6) 1 

The details are provided in Appendix A. The corresponding interventional causal effects are 2 

IIE𝐵1 ≡ Ψ𝐵(1, 1, 0) − Ψ𝐵(1, 0, 0) , IIE𝐵2 ≡ Ψ𝐵(1, 1,1) − Ψ𝐵(1, 1, 0) , and IDE𝐵 ≡3 

Ψ𝐵(1, 0, 0) − Ψ𝐵(0, 0, 0). If (Acx2) and (Acx3) hold, then (5) and (6) support the interpretation 4 

of these interventional causal effects as natural causal effects under (MS1). By contrast, under 5 

(MS2) and (MS3), IIE𝐵1 , IIE𝐵2 , and IDE𝐵  lack natural interpretations of these assumptions 6 

because the conventional causal effects of PB decomposition cannot be identified. Thus, the 7 

causal effects obtained through the PB decomposition strategy are always treated as 8 

interventional analogues of direct and indirect effects regardless of mediation structures, but 9 

they are natural only under (MS1). 10 

Although the PF and PB decomposition strategies both decompose M-specific indirect 11 

effects from TE, as mentioned in Section 3.1, the interpretations of the derived indirect effects 12 

are distinct. For (MS1), NIE𝐵1 and NIE𝐵2 (or IIE𝐵1 and IIE𝐵2) are the causal effects mediated 13 

solely through 𝑀1 and 𝑀2, respectively. For sequential structures, such as (MS2) and (MS3), 14 

IIE𝐵𝑘 represents the sum of PSEs mediated through 𝑀𝑘 for 𝑘 = 1, 2. To prove this, we consider 15 

(MS2); the proof for (MS3) follows the same procedure. First, IIE𝐵1  can be rewritten as 16 

𝐸[𝑌(1, 𝐺1(1), 𝐺2(0, 𝐺1(0)))] − 𝐸[𝑌(1, 𝐺1(0), 𝐺2(0, 𝐺1(0)))]  based on the composition 17 

assumption. Clearly, IIE𝐵1 is identical to IIE𝐹1, and they represent the causal effect mediated 18 

solely through 𝑀1 . Second, based on the composition assumption, IIE𝐵2 =19 

𝐸[𝑌(1, 𝐺1(1), 𝐺2(1, 𝐺1(1)))] − 𝐸[𝑌(1, 𝐺1(1), 𝐺2(0, 𝐺1(0)))] can be rewritten as the sum of  20 

E[𝑌(1, 𝐺1(1), 𝐺2(1, 𝐺1(1)))] − E[𝑌(1, 𝐺1(1), 𝐺2(1, 𝐺1(0)))] 21 

and  22 

E[𝑌(1, 𝐺1(1), 𝐺2(1, 𝐺1(0)))] − E[𝑌(1, 𝐺1(1), 𝐺2(0, 𝐺1(0)))], 23 

where the first is interpreted as PSE12 and the second as PSE2. Therefore, IIE𝐵2 includes all the 24 

effects finally mediated through 𝑀2 (i.e., PSE2 and PSE12). In general, the M-specific indirect 25 

effect of PB decomposition passes through all the mediation paths in which a mediator directly 26 

induces the outcome. Therefore, we named the indirect effects of PB decomposition as M-27 

inducing indirect effects. 28 

As shown in Table 1, PB decomposition is the only strategy that allows structure-free 29 

decomposition. Structure-free mediation analysis is more useful because prespecifying an 30 
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appropriate mediation structure is challenging. Vansteelandt and Daniel (2017) also proposed a 1 

structure-free decomposition strategy. They defined the direct and indirect effects based on 2 

Ψ𝐵(𝑎, 𝑒1, 𝑒2) by using the following random draw approaches for 𝐺1(𝑒1) and 𝐺2(𝑒2): if 𝑒1 ≠3 

𝑒2 , then 𝐺1(𝑒1)  and 𝐺2(𝑒2)  are drawn separately, and if 𝑒1 = 𝑒2 , then 𝐺1(𝑒1)  and 𝐺2(𝑒2)  are 4 

drawn jointly. Therefore, this decomposition essentially mixes the proposed PB decomposition 5 

with two-way decomposition through interventional analogues of causal effects. 6 

3.2.4. Complete decomposition strategy 7 

In the complete decomposition strategy, TE is decomposed into four parts: solely via M1, 8 

solely via M2, via the dependence of M1 and M2, and neither via M1 nor via M2, which can be 9 

defined as NIE𝐶1 ≡ Φ𝐶(1, 1, 0, 0) − Φ𝐶(1, 0, 0, 0) , NIE𝐶2 ≡ Φ𝐶(1, 1, 1, 0) − Φ𝐶(1, 1, 0, 0) , 10 

NIE𝐶3 ≡ Φ𝐶(1, 1, 1, 1) − Φ𝐶(1, 1, 1, 0) , and NDE𝐶 ≡ Φ𝐶(1, 0, 0, 0) − Φ𝐶(0, 0, 0, 0) , 11 

respectively. The natural multimediation parameter for complete decomposition is defined as 12 

Φ𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) ≡ E[𝑌(𝑎, 𝑀1(𝑒1), 𝑀2(𝑒2, 𝑀1(𝑒3)))]. 13 

Although Φ𝐶 can define each PSE, it is generally unidentifiable if no stronger assumptions can 14 

be used (Daniel et al., 2015). Therefore, we consider the following interventional analogues of 15 

direct and indirect effects: IIE𝐶1 ≡ Ψ𝐶(1, 1, 0, 0) − Ψ𝐶(1, 0, 0, 0) , IIE𝐶2 ≡ Ψ𝐶(1, 1, 1, 0) −16 

Ψ𝐶(1, 1, 0, 0) , IIE𝐶3 ≡ Ψ𝐶(1, 1, 1, 1) − Ψ𝐶(1, 1, 1, 0) , and IDE𝐶 ≡ Ψ𝐶(1, 0, 0, 0) −17 

Ψ𝐶(0, 0, 0, 0) . In these expressions, Ψ𝐶  is the interventional multimediation parameter for 18 

complete decomposition defined as 19 

Ψ𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) ≡ E[𝑌(𝑎, 𝐺1(𝑒1), 𝐺2(𝑒2, 𝐺1(𝑒3)))], 20 

where 𝐺1(𝑒1)  and 𝐺1(𝑒3)  are distinct random draws even when 𝑒1 = 𝑒3 . Assuming (Ax1), 21 

(Ax2), (Ax3.2), (Ax3.4), and (Ax4), we can prove 22 

 Ψ𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) = Q𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) a.s., (7) 23 

where  24 

Q𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) ≡ ∫ 𝐸[𝑌|𝑎, �̃�] 𝑓(𝑚1|𝑒1) {∫ 𝑓(𝑚2|𝑒2, 𝑚1
∗) 𝑓(𝑚1

∗|𝑒3) 𝑑𝑚1
∗} 𝑑�̃�. 25 

The details of (7) are presented in Appendix A. In the literature, a generalized form of (7) for 26 

an arbitrary number of mediators has been provided by Lin (2019) and Tai et al. (2019). In 27 



15 
 

contrast to the preceding three strategies, the direct and indirect effects obtained using the 1 

complete decomposition strategy typically have only interventional interpretations, even when 2 

cross-world exchangeability is assumed. However, this strategy can furnish the most detailed 3 

mechanism for the causal effect of the exposure on the outcome. 4 

3.3. Robustness–specificity trade-off for the mediation structure based on 5 

comparison of PF and PB decompositions  6 

Conventionally, when using PF decomposition strategies, a specific mediation structure 7 

must be specified. For example, if (MS2) is assumed by virtue of background knowledge, 8 

Φ𝐹(𝑎, 𝑒1, 𝑒2) or its interventional analogue Ψ𝐹(𝑎, 𝑒1, 𝑒2) are adapted to define the direct and 9 

M-specific indirect effects. They can be identified as Q𝐹(𝑎, 𝑒1, 𝑒2) under the aforementioned 10 

set of assumptions. By contrast, if 𝑀2 is the cause of 𝑀1 (i.e., (MS3) is assumed), then we can 11 

swap M1 and M2 and use Φ𝐹′(𝑎, 𝑒1, 𝑒2) ≡ E[𝑌(𝑎, 𝑀1(𝑒1, 𝑀2(𝑒2)), 𝑀2(𝑒2))]  or its 12 

interventional analogue Ψ𝐹′(𝑎, 𝑒1, 𝑒2) ≡ 𝐸[𝑌(𝑎, 𝐺1(𝑒1, 𝐺2(𝑒2)), 𝐺2(𝑒2))]  to define the direct 13 

effect and M-specific indirect effect, which is identified as  14 

Q𝐹′(𝑎, 𝑒1, 𝑒2) ≡ ∫ 𝐸[𝑌|𝑎, �̃�]𝑓(𝑚1|𝑒1, 𝑚2)𝑓(𝑚2|𝑒2)𝑑�̃�. 15 

In this subsection, we demonstrate the interpretation of Φ𝐹(𝑎, 𝑒1, 𝑒2) , Ψ𝐹(𝑎, 𝑒1, 𝑒2) , and 16 

Q𝐹(𝑎, 𝑒1, 𝑒2)  when the mediation structure is (MS1) or (MS3). The performance of 17 

Φ𝐹′(𝑎, 𝑒1, 𝑒2) , Ψ𝐹′(𝑎, 𝑒1, 𝑒2) , and Q𝐹′(𝑎, 𝑒1, 𝑒2)  under (MS1) and (MS2) is also used for 18 

demonstration through an approach similar to that where 𝑀1 and 𝑀2 are swapped. We shall now 19 

demonstrate a deep relationship between PF and PB decomposition.  20 

For (MS1) and (MS3), Φ𝐹(𝑎, 𝑒1, 𝑒2) reduces to Φ𝐵(𝑎, 𝑒1, 𝑒2) and Ψ𝐹(𝑎, 𝑒1, 𝑒2) reduces to 21 

Ψ𝐵(𝑎, 𝑒1, 𝑒2)  because 𝑀1  does not affect 𝑀2 . Therefore, both Φ𝐹(𝑎, 𝑒1, 𝑒2)  and Ψ𝐹(𝑎, 𝑒1, 𝑒2) 22 

are interpreted as Φ𝐵(𝑎, 𝑒1, 𝑒2) and Ψ𝐵(𝑎, 𝑒1, 𝑒2) (i.e., the corresponding parallel IE1 and M-23 

inducing IE2) under (MS1) and (MS3), respectively. Under the same identification assumptions, 24 

Φ𝐹(𝑎, 𝑒1, 𝑒2)  and Ψ𝐹(𝑎, 𝑒1, 𝑒2)  can be identified as Q𝐵(𝑎, 𝑒1, 𝑒2) . Notably, Q𝐹(𝑎, 𝑒1, 𝑒2) 25 

reduces to and has the same interpretation as Q𝐵(𝑎, 𝑒1, 𝑒2) for (MS1), but it does not have the 26 

corresponding interventional or natural causal interpretation for (MS3). 27 

Following a similar logic, we also show that for (MS1) and (MS2), Φ𝐹′(𝑎, 𝑒1, 𝑒2) reduces 28 
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to Φ𝐵(𝑎, 𝑒1, 𝑒2)  and Ψ𝐹′(𝑎, 𝑒1, 𝑒2)  reduces to Ψ𝐵(𝑎, 𝑒1, 𝑒2) . Both Φ𝐹′(𝑎, 𝑒1, 𝑒2)  and 1 

Ψ𝐹′(𝑎, 𝑒1, 𝑒2) have the same interpretations of Φ𝐵(𝑎, 𝑒1, 𝑒2) and Ψ𝐵(𝑎, 𝑒1, 𝑒2) if the underlying 2 

mediation structure is not correctly specified (i.e., it is MS1 or MS2). Then, Φ𝐹′(𝑎, 𝑒1, 𝑒2) and 3 

Ψ𝐹′(𝑎, 𝑒1, 𝑒2) can be identified as Q𝐵(𝑎, 𝑒1, 𝑒2), and Q𝐹′(𝑎, 𝑒1, 𝑒2) reduces to and has the same 4 

interpretation as Q𝐵(𝑎, 𝑒1, 𝑒2)  for (MS1). Q𝐹′(𝑎, 𝑒1, 𝑒2)  has no corresponding causal 5 

interpretation for (MS2). 6 

Figure 2 summarizes the relation between the PF (in the directions of 𝑀1 and 𝑀2) and PB 7 

decompositions. All counterfactual definitions (natural and interventional) of PB and PF 8 

decompositions have causal interpretations for (MS1), (MS2), and (MS3). However, the indirect 9 

effects defined based on the PB decomposition are always M-inducing for (MS2) and (MS3), 10 

whereas the indirect effects of the PF decomposition are M-leading when the mediation 11 

structure is appropriately specified (i.e., MS2) and M-inducing when the mediation structure is 12 

in the opposite direction (i.e., MS3). For (MS1), both PB and PF decompositions are reduced to 13 

the parallel multiple mediators formula (Taguri et al., 2018). Although the PB decomposition 14 

strategy is considerably more robust to different mediation structures than is the PF 15 

decomposition strategy, it can only be interpreted as an interventional effect for (MS2) and 16 

(MS3). By contrast, PF decomposition is relatively specific to a certain mediation structure at 17 

two levels. In terms of the mediation formula, Q𝐹(𝑎, 𝑒1, 𝑒2)  has no causal interpretation for 18 

(MS3), and Q𝐹′(𝑎, 𝑒1, 𝑒2)  has no causal interpretation for (MS2). In terms of the mediation 19 

parameter, Ψ𝐹(𝑎, 𝑒1, 𝑒2) has the same interpretation as Ψ𝐵(𝑎, 𝑒1, 𝑒2) and is identified as Q𝐵  for 20 

(MS1) and (MS3). However, it can be interpreted as both a natural and an interventional indirect 21 

effect for (MS2). In conclusion, if the mediation structure is assured, the corresponding PF 22 

decomposition is recommended because both interventional and natural effects can be derived; 23 

however, if the mediation structure is not assured, the PB decomposition is recommended for a 24 

more flexible interpretation. 25 

4. Inverse probability of weighting (IPW)  26 

In this study, we adopt IPW to calculate direct and indirect effects for two mediators. 27 
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Suppose that 𝑓𝐴|𝐶(𝑎|𝐶), 𝑓𝑀1|𝐴,𝐶(𝑚1|𝑎, 𝐶), 𝑓𝑀2|𝐴,𝐶(𝑚2|𝑎, 𝐶), and 𝑓𝑀2|𝐴,𝑀1,(𝑚2|𝑎, 𝑚1, 𝐶) are the 1 

density functions of 𝐴 , 𝑀1 , 𝑀2 , and 𝑀2  𝑀1 , respectively. The joint density function �̃� =2 

(𝑀1, 𝑀2)  is referred to as 𝑓�̃�|𝐴,𝐶(𝑚1, 𝑚2|𝑎, 𝐶) . Assume that the outcome model is 3 

E[𝑌|𝐴 = 𝑎, �̃�, 𝐶]. Then, the multimediation parameters of the four strategies are rewritten, and 4 

the IPW estimators of each strategy are defined as follows: 5 

Two-way decomposition 6 

Q𝑇𝑊(𝑎, 𝑒) = ∫ E[𝑌|𝑎, �̃�, 𝐶] 𝑓�̃�|𝐴,𝐶(�̃�|𝑒, 𝐶) 𝑑�̃� = E(𝑊𝑇𝑊(𝑎, 𝑒; 𝑀1, 𝑀2) × 𝑌), 7 

where 𝑊𝑇𝑊(𝑎, 𝑒; 𝑀1, 𝑀2) = [𝑓𝑀1|𝐴,𝐶(𝑀1|𝑒, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝑒, 𝑀1, 𝐶)I(𝐴 = 𝑎)]/ 8 

[𝑓𝐴|𝐶(𝐴|𝐶)𝑓𝑀1|𝐴,𝐶(𝑀1|𝐴, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝐴, 𝑀1, 𝐶)]. 9 

Thus, the IPW estimator for Q𝑇𝑊(𝑎, 𝑒) is  10 

Δ̂𝑇𝑊
𝐼𝑃𝑊(𝑎, 𝑒) = ℙ𝑛(�̂�𝑇𝑊(𝑎, 𝑒; 𝑀1, 𝑀2) × 𝑌), 11 

where ℙ𝑛(𝑋𝑖) = 1/𝑛 ∑ 𝑋𝑖𝑖  is the empirical average operator, and  12 

�̂�𝑇𝑊(𝑎, 𝑒; 𝑀1, 𝑀2) = [𝑓𝑀1|𝐴,𝐶(𝑀1|𝑒, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝑒, 𝑀1, 𝐶)I(𝐴 = 𝑎)]/ 13 

[𝑓𝐴|𝐶(𝐴|𝐶)𝑓𝑀1|𝐴,𝐶(𝑀1|𝐴, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝐴, 𝑀1, 𝐶)]. 14 

PF decomposition 15 

Q𝐹(𝑎, 𝑒1, 𝑒2) = ∫ 𝐸[𝑌|𝑎, �̃�, 𝐶]𝑓𝑀1|𝐴,𝐶(𝑚1|𝑒1, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑚2|𝑒2, 𝑚1, 𝐶)𝑑�̃�16 

= E(𝑊𝐹(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) × 𝑌) 17 

where 𝑊𝐹(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) = [𝑓𝑀1|𝐴,𝐶(𝑀1|𝑒1, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝑒2, 𝑀1, 𝐶)I(𝐴 = 𝑎)]/ 18 

[𝑓𝐴|𝐶(𝐴|𝐶)𝑓𝑀1|𝐴,𝐶(𝑀1|𝐴, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝐴, 𝑀1, 𝐶)]. 19 

The IPW estimator for Q𝐹(𝑎, 𝑒1, 𝑒2) is  20 

Δ̂𝐹
𝐼𝑃𝑊(𝑎, 𝑒1, 𝑒2) = ℙ𝑛(�̂�𝐹(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) × 𝑌), 21 

where �̂�𝐹(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) is the weight estimated by substituting 𝑓𝐴|𝐶, 𝑓𝑀1|𝐴,𝐶, and 22 

𝑓𝑀2|𝐴,𝑀1,𝐶.     23 

PB decomposition 24 

Q𝐵(𝑎, 𝑒1, 𝑒2) = ∫ 𝐸[𝑌|𝑎, �̃�, 𝐶]𝑓𝑀1|𝐴,𝐶(𝑚1|𝑒1, 𝐶)𝑓𝑀2|𝐴,𝐶(𝑚2|𝑒2, 𝐶)𝑑�̃� =25 

E(𝑊𝐵(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) × 𝑌), 26 

where 𝑊𝐵(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) = [𝑓𝑀1|𝐴,𝐶(𝑀1|𝑒1, 𝐶)𝑓𝑀2|𝐴,𝐶(𝑀2|𝑒2, 𝐶)I(𝐴 = 𝑎)]/ 27 

  [𝑓𝐴|𝐶(𝐴|𝐶)𝑓𝑀1|𝐴,𝐶(𝑀1|𝐴, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝐴, 𝑀1, 𝐶)]. 28 

The IPW estimator for Q𝐵(𝑎, 𝑒1, 𝑒2) is  29 



18 
 

Δ̂𝐵
𝐼𝑃𝑊(𝑎, 𝑒1, 𝑒2) = ℙ𝑛(�̂�𝐵(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) × 𝑌),  1 

where �̂�𝐵(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) is the weight estimated by substituting 𝑓𝐴|𝐶 , 𝑓𝑀1|𝐴,𝐶, 𝑓𝑀2|𝐴,𝐶, and 2 

𝑓𝑀2|𝐴,𝑀1,𝐶. 3 

Complete decomposition 4 

Q𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) 5 

= ∫ 𝐸[𝑌|𝑎, �̃�, 𝐶] 𝑓𝑀1|𝐴,𝐶(𝑚1|𝑒1, 𝐶) {∫ 𝑓𝑀2|𝐴,𝑀1,𝐶(𝑚2|𝑒2, 𝑚1
∗ , 𝐶) 𝑓𝑀1|𝐴,𝐶(𝑚1

∗|𝑒3, 𝐶) 𝑑𝑚1
∗} 𝑑�̃� 6 

= E(𝑊𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3; 𝑀1, 𝑀2) × 𝑌), 7 

where 𝑊𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3; 𝑀1, 𝑀2) = [𝑓𝑀1|𝐴,𝐶(𝑀1|𝑒1, 𝐶) 8 

 × ∫ 𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝑒2, 𝑚1
∗ , 𝐶)𝑓𝑀1|𝐴,𝐶(𝑚1

∗|𝑒3, 𝐶)𝑑𝑚1
∗ 9 

 × I(𝐴 = 𝑎)]/[𝑓𝐴|𝐶(𝐴|𝐶)𝑓𝑀1|𝐴,𝐶(𝑀1|𝐴, 𝐶)𝑓𝑀2|𝐴,𝑀1,𝐶(𝑀2|𝐴, 𝑀1, 𝐶)]. 10 

The IPW estimator for Q𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3) is  11 

Δ̂𝐶
𝐼𝑃𝑊(𝑎, 𝑒1, 𝑒2, 𝑒3) = ℙ𝑛(�̂�𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3; 𝑀1, 𝑀2) × 𝑌), 12 

where �̂�𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3; 𝑀1, 𝑀2)  is the weight estimated by substituting 𝑓𝐴|𝐶  , 𝑓𝑀1|𝐴,𝐶 , and 13 

𝑓𝑀2|𝐴,𝑀1,𝐶.     14 

The aforementioned derivations are detailed in Appendix B. 15 

 To determine the IPW, the only remaining step is to estimate the conditional density 16 

functions of 𝐴 , 𝑀1 , 𝑀2 , and 𝑀2|𝑀1  (i.e., 𝑓𝐴|𝐶 , 𝑓𝑀1|𝐴,𝐶 , 𝑓𝑀2|𝐴,𝐶 , and 𝑓𝑀2|𝐴,𝑀1,𝐶 ). These 17 

conditional density functions can be estimated using parametric methods, such as the maximum 18 

likelihood (ML) approach, or using nonparametric methods, such as kernel density estimation. 19 

In the following analysis, we adopt the ML approach by assuming conditional models to infer 20 

direct and indirect effects. As a consequence, �̂�𝑇𝑊(𝑎, 𝑒; 𝑀1, 𝑀2) , �̂�𝐹(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) , and 21 

�̂�𝐵(𝑎, 𝑒1, 𝑒2; 𝑀1, 𝑀2) can be directly derived by substituting the estimated density functions 22 

into these weights. For 𝑊𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3), the importance sampling and Monte Carlo integration 23 

techniques are further incorporated into the estimation procedure because recursive integrations 24 

are required to calculate �̂�𝐶(𝑎, 𝑒1, 𝑒2, 𝑒3; 𝑀1, 𝑀2).  25 

5. Simulation study 26 

5.1. Data generation 27 

To evaluate the finite sample performance of the proposed estimators, we conducted a 28 
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simulation study using two mediators in the (MS2) mediation structure. In the simulations, the 1 

baseline confounder 𝐶 was generated from a Bernoulli distribution with a success probability 2 

of 0.5. Conditional on 𝐶, the exposure 𝐴, mediators (𝑀1, 𝑀2), and outcome 𝑌 were generated 3 

as follows: 4 

𝐴|𝐶 ~ 𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5 + 𝐶)),  5 

𝑀1|𝐶, 𝐴 ~ 𝑁𝑜𝑟𝑚(𝜇 = 0.1𝐶 + 0.3𝐴, 𝜎2 = 1), 6 

𝑀2|𝐶, 𝐴, 𝑀1 ~ 𝑁𝑜𝑟𝑚(𝜇 = 0.3𝐶 + 0.5𝐴 + 0.1𝑀1, 𝜎2 = 1), and  7 

𝑌|𝐶, 𝐴, 𝑀1, 𝑀2 ~ 𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(−0.5 − 𝐶 + 0.5𝐴 + 0.1𝑀1 + 0.5𝑀2 + 𝜃𝑖𝑛𝑡𝑀1𝑀2)), 8 

where 𝑒𝑥𝑝𝑖𝑡  denotes the expit function, 𝑁𝑜𝑟𝑚  denotes the normal distribution, and 𝐵𝑒𝑟 9 

denotes the Bernoulli distribution. In the outcome model, 𝜃𝑖𝑛𝑡  is the interaction parameter, 10 

which was separately set as 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, and 7. Simulations 11 

were performed 1000 times with a sample size of 10,000 for each value of the interaction 12 

parameter. 13 

 We subsequently applied the IPW approach for four multimediation formulas to the 14 

simulated dataset, and we used the conventional regression-based approach to analyze the 15 

simulated dataset for comparison. The regression-based approach is a substitution method for 16 

estimation based on fitting the models of the outcome and mediators through the ML approach. 17 

In this simulation study, we considered a scenario in which the exposure and mediator models 18 

were correctly specified, but the outcome was regressed on 𝑀1 and 𝑀2 only. The model of the 19 

outcome was misspecified when 𝜃𝑖𝑛𝑡 was nonzero. 20 

5.2. Results 21 

In the simulation, the direct and indirect effects corresponding to each decomposition 22 

strategy were produced separately through regression-based and IPW approaches, and the 23 

results are summarized in Figure 3 and Appendix C. In Figure 3, the mediator-specific indirect 24 

effects were summed as a single indirect effect, and the biases and 95% confidence intervals 25 

were calculated for the different values of the interaction parameter. The results of the mediator-26 

specific indirect effects are detailed in Appendix C. 27 

As expected, the biases of the indirect effects of the regression-based approach in the 28 



20 
 

complete and PB decompositions significantly increased as the model misspecification of the 1 

outcome became more severe—that is, the effect of interaction on the outcome model increased 2 

(Figure 3). However, for two-way and PF decompositions, the indirect effect estimation using 3 

the regression-based approach was unbiased regardless of the increase in the interaction 4 

parameter. The regression-based approach is theoretically biased in indirect effect estimation if 5 

the outcome is misspecified, but it can tolerate misspecifications of the outcome under the two-6 

way and PF decomposition strategies. By contrast, the IPW approach is robust to the outcome 7 

model, regardless of the strategy used. 8 

6. Causal mechanism of hepatitis C virus (HCV) infection on 9 

mortality  10 

To apply our framework, we considered the REVEAL-HBV study—a community-based 11 

cohort study conducted in Taiwan that assessed the effect of viral hepatitis on the development 12 

of hepatocellular carcinoma (HCC) (Chen et al., 2006). In the REVEAL-HBV study, 23,820 13 

residents aged 30–65 years from seven townships of Taiwan were recruited from 1991 to 1992 14 

and followed up until 2008. A total of 477 cases of HCC were reported. HCV and HBV infection 15 

status and clinical data, such as alanine aminotransferase (ALT) level and ultrasound images, 16 

were measured at baseline. Mortality was confirmed every few years based on Taiwan’s death 17 

certification system. 18 

We applied the proposed method to the REVEAL-HBV study to investigate the 19 

mechanism through which HCV infection affects mortality in patients with HBV. We 20 

considered the following two mediators: elevated viral load of HBV—which was defined as 21 

viral load > 10,000 copies/mL (Chen et al., 2009)—was regarded as M1, and abnormal ALT 22 

was regarded as M2. In the diagnosis of HBV infection, an elevated ALT level indicates 23 

immune-mediated inflammation, which eliminates HBV-infected hepatocytes. In particular, 24 

high HBV viral load is the cause of abnormal ALT in the mechanism of HBV infection, and 25 

(MS2) is the potential mediation structure. Although the proposed decision rule suggests a 26 

particular strategy for this application in terms of the mediation structure and assumptions, we 27 

still analyzed the REVEAL-HBV data by using four strategies separately. Age, sex, and 28 

smoking status were included as baseline confounders. 29 
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In this study, we adopted the IPW approach for estimating the effects of binary survival 1 

status. The estimates of direct and indirect effects on the risk scales for (MS2) are summarized 2 

in Table 2. The standard deviations and P values were calculated using bootstrap resampling 3 

with 1000 replicates. The complete and PB decompositions both indicate that the indirect effect 4 

was mediated solely through the high HBV viral load among patients with HBV-positive status 5 

(Table 2). The negative value of this indirect effect reflects the inhibition of HBV replication 6 

by HCV. Furthermore, the positive indirect effect mediated solely through abnormal ALT level 7 

in the complete and PF decompositions reveals the mechanism of liver damage induced by 8 

HCV infection. Comparing the results of the four strategies revealed that the incomplete 9 

decomposition strategies, namely the PF, PB, and two-way decompositions, failed to provide 10 

meaningful estimates of the indirect effects when the directions of the underlying PSEs were 11 

inconsistent. For example, in the two-way decomposition, the indirect effect mediated through 12 

all mediators was nonsignificant, whereas the M1- and M2-specific indirect effects were 13 

observed in this population through the other deconvolution strategies. 14 

7. Discussion 15 

 The investigation of causal mechanisms is crucial in many fields. Using different 16 

assumptions and definitions, many researchers have developed methodologies for causal 17 

mediation analysis with multiple mediators. Direct and indirect effects can be derived by 18 

decomposing TE into several components. In this article, we integrate (with a unified 19 

symbolism and set of definitions and assumptions) existing mediation analysis methods by 20 

proposing the four decomposition strategies of two-way, PF, PB, and complete decompositions. 21 

Based on this integrated framework, we develop the multimediation parameters and 22 

multimediation formulas for causal interpretations and statistical inferences, respectively. 23 

Moreover, we clarify the correct interpretation of the decomposed indirect effects. Two-way 24 

decomposition indicates the entire indirect effect mediated by all mediators; PF decomposition 25 

indicates the M-leading indirect effects; PF decomposition indicates the M-inducing indirect 26 

effects; and complete decomposition indicates all PSEs. The required assumptions for natural 27 
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interpretation and interventional interpretation are explicitly specified.  1 

Moreover, we illustrate the robustness–specificity trade-off to reveal the applicability of 2 

the four strategies to different mediation structures. The robustness–specificity trade-off permits 3 

considerable flexibility for mediation analysis. If researchers have empirical warrant for the 4 

mediation structure, a structure-specific strategy such as PF decomposition is suggested for 5 

investigating the causal mechanism. By contrast, the PB decomposition strategy is a suitable 6 

option to avoid misinterpreting causality when there is uncertainty surrounding the mediation 7 

structure. 8 

In the assessment of assumptions, bias formulas for the sensitive analysis of direct and 9 

indirect effects under different conditions have recently been proposed (Arah, Chiba and 10 

Greenland, 2008; VanderWeele, 2010; VanderWeele and Arah, 2011). As indicated in the 11 

proposed decision rule, mediation analysis requires three assumptions: exchangeability 12 

between the outcome and exposure, exchangeability between the outcome and mediators, and 13 

exchangeability between the mediators and exposure. Thus, the bias formula can facilitate 14 

empirical quantification of the effect of bias when an assumption is invalid. We reveal that the 15 

remaining assumptions of exchangeability between mediators and cross-world exchangeability 16 

are optional for mediation analysis. The assumption of exchangeability between mediators is 17 

relative to the choice of PF and PB decomposition. The cross-world exchangeability assumption 18 

is related to natural interpretation. Thus, the integrated framework developed in this study aids 19 

mediation analysis with multiple mediators. 20 
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Table 1. Assumptions of the four decomposition strategies 1 

 Decomposition strategy. 
  Two-way 

decomposition 
PF decomposition PB decomposition 

Complete 

decomposition 

 Nature Intervention Nature Intervention Nature Intervention Nature* Intervention 

Assumptions         

Exchangeability among 𝐴 and 𝑌         
 Ax1: 𝑌(𝑎, �̃�) ⊥ 𝐴|𝐶 V V V V V V  V 

Exchangeability among �̃� and 𝑌         
 Ax2.1: 𝑌(𝑎, �̃�) ⊥ �̃�|𝐶, 𝐴 V V V V V V  V 

Exchangeability among �̃� and 𝐴         
 Ax3.1: �̃�(𝑎) ⊥ 𝐴|𝐶 V V       

 Ax3.2: 𝑀1(𝑎) ⊥ 𝐴|𝐶   V V V V  V 

 Ax3.3: 𝑀2(𝑎) ⊥ 𝐴|𝐶     V V   

 Ax3.4: 𝑀2(𝑎, 𝑚1) ⊥ 𝐴|𝐶   V V    V 

Exchangeability among 𝑀1 and 𝑀2         
 Ax4: 𝑀2(𝑎, 𝑚1) ⊥ 𝑀1|𝐴, 𝐶   V V    V 

Cross-world Exchangeability         
 Acx1: 𝑌(𝑎, �̃�) ⊥ �̃�(𝑎∗) V        

 Acx2: 𝑌(𝑎, �̃�) ⊥ (𝑀1(𝑒1), 𝑀2(𝑒2))      V    

 Acx3: 𝑀1(𝑒1) ⊥ 𝑀2(𝑒2)     V    

 Acx4: 𝑀1(𝑒1) ⊥ 𝑀2(𝑒2, 𝑚1)   V      

 Acx5:𝑌(𝑎, �̃�) ⊥ (𝑀1(𝑒1), 𝑀2(𝑒2,𝑚1))     V      

* complete decomposition only identifies interventional causal effects.  2 

 3 



 

Table 2. Effect decomposition of HCV (A) on mortality (Y) through HBV (M1) and 1 
abnormal ALT (M2) under the four decomposition strategies. 2 

Path Strategy 

 
Complete 

decomposition 

PF 

decomposition 

PB 

decomposition 

Two-way 

decomposition 

 
effect 
(SD) 

P value 
effect 
(SD) 

P value 
effect 
(SD) 

P value 
effect 
(SD) 

P value 

A→Y 
0.080 

(0.026) 
0.002* 

0.080 

(0.027) 
0.003* 

0.080 

(0.027) 
0.003* 

0.080 

(0.027) 
0.003* 

A→M1→Y 
-0.015 
(0.005) 

0.003* 
-0.016 
(0.006) 

0.004* 

-0.015 
(0.005) 

0.003* 

-0.004 
(0.007) 

0.543 A→M1→M2→Y 
-0.001 
(0.002) 

0.399 
0.011 

(0.004) 
0.004* 

A→M2→Y 
0.012 

(0.004) 
0.002* 

0.012 
(0.004) 

0.002* 

Total effect 
0.076 

(0.026) 
0.004* 

0.076 
(0.026) 

0.004* 
0.076 

(0.027) 
0.004* 

0.076 
(0.027) 

0.004* 

Abbreviations: HCV: hepatitis C virus; HBV: hepatitis B virus; ALT: alanine aminotransferase; PF: partially 3 
forward; PB: partially backward; SD: standard deviation  4 
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 Figure 1 

1. Causality diagram of 𝐴, 𝑀1, 𝑀2 and 𝑌 where (a) 𝑀1 and 𝑀2 are causally independent; (b) 2 

𝑀1 is the cause of 𝑀2; and (c) 𝑀2 is the cause of 𝑀1. 3 

  4 



 

 1 

Figure 2. Relationship between PF and PB decompositions. 2 
Abbreviations: NDE: natural direct effect; NIE: natural indirect effect; PF: partially forward; PB: partially 3 
backward; (MS1): M1 and M2  are causally independent; (MS2): M1 is the cause of M2 ; (MS3): M2  is the 4 
cause of M1; PSE: path-specific effect. 5 
 6 
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 1 

Figure 3. Bias and 95% confidence intervals for direct and indirect effects. The x axis represents the value 2 
of the interaction parameter of the outcome model. The interaction parameter was set at 0, 0.5, 1, 1.5, 2, 2.5, 3 
3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, and 7. The y axis represents the bias. Points indicate mean bias, and intervals 4 
represent 95% confidence intervals for the different interaction parameters.  5 
Abbreviations: IPW: inverse probability weighting; Reg: regression-based approach; PF: partially forward; 6 
PB: partially backward; DE: direct effect; ID: indirect effect.  7 
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