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Abstract—Real time monitoring of the behaviour of fluids along
the whole length of fluid filled well pipes is important to the
oil and gas industry as it enables well operators to maximize
oil and gas production and optimize the quality of oil and gas
produced, whilst reducing the cost. Flow speed measurement is
one of the key approaches in fluid flow monitoring in wells. In this
paper, three methods are designed, developed and demonstrated
to estimate the speed and direction of flow at a range of depths
in real world oil, gas and water wells using acoustic data set
from distributed acoustic sensors that attached to the wells.
The developed methods are based on a new combination of
several techniques from signal processing, machine learning and
physics. The Terabyte size acoustic dataset are recorded from
each well as a two-dimensional function of both distance along
the pipeline and time. The aim of the developed methods is
estimating flow speed at each point along over 3000 meters
pipelines and increasing the accurately and efficiently of the flow
speed calculation compared to the existing method. The methods
developed in this paper are computationally inexpensive, which
make them suitable for real time well monitoring.

Index Terms—Fluid characterization, fluid flow measurement,
flow velocity, Hough transform, K-means clustering, optical
sensors,

I. INTRODUCTION

THE instrumentation for real time condition monitoring
of the behaviour of fluids along the whole length of well

pipes and boreholes is of critical importance for oil and gas
production energy industry. Monitoring of such oil production
wells can detect when the flow from an almost depleted
oil reservoir is also bringing out sand that contaminates the
flow and must be removed at the surface, which is a costly
process. If sand is detected then the flow can be throttled
down to control the system and the sand will then fall back
and not emerge at the surface [1]. There are two main
type of flow measurements devices for well pipes, single-
point measurement and multiple-point measurement. Single-
point measurement devices measure fluid flow speeds and
temperatures at just one point along the pipe. For example,
ultrasonic sensors [2], [3] can be used to detect the size and
number of gas bubbles within the fluid [4] and to determine
the flow velocity profile in a cross section of the pipe [5].
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Point measurement Digital Coriolis Mass Flow Meters can
also measure the flow of a two phase fluid in real time making
use of Field Programmable Gate Array (FPGA) which are
advantageous for real time control optimisation [6]. Other
point flow meters include Electrical Capacitance Tomography
for visualisation of solid contaminants in a gas pipeline [7],
[8] and Kinematic Wave point detection [9]. The major disad-
vantage of the single-point measurement devices is providing
measurement only at one point [10]. Also, they have to be
installed prior to the pipe insertion.

Multiple-point measurement devices such as Distributed
Temperature Sensor (DTS) [11], [12] monitor the temperature
along the whole length of the pipeline with clear advantages
over the single-point measurement techniques. Distributed
Acoustic Sensor (DAS) is one the most recently developed
flow measurement tool that records the acoustic sounds and
vibrations along the whole length of well pipeline [2], [13],
[14]. DAS systems use optical fibres which attach to the
main fluid filled pipeline [15]–[17] to monitor acoustic sounds
and vibrations. The iDAS, developed by Silixa [18] is an
optoelectronic system which records the true acoustic signal
continuously along the path of a sensing optical fiber tens of
kilometers long [19]–[21]. The iDAS has a frequency range
from millihertz to hundreds of kilohertz. Sounds and vibrations
are generated from different sources such as turbulent fluid
flow, sand in the fluid scraping along the side of the pipe,
the sea waves at the surface and unauthorised tampering on a
pipeline.

The aim of this paper is to develop the algorithms to extract
from acoustic signals an estimation of the fluid flow speed.
Only some of the many sounds recorded within the well are
useful for extraction of the flow speed so this paper develops
and optimises a combination of signal processing algorithms
to filter out unwanted sounds and keep wanted sounds which
enable the fluid flow speed to be calculated.

The rest of this paper is organized as follows. Section II
outlines the DAS dataset used in this study. The mechanism of
DAS system to record acoustic signals is described in Section
III. In Section IV, the pre-processing techniques are presented.
Three proposed flow estimation methods are presented in
Section V. The results of our methods are described in Section
VII. Section VIII discusses our finding in details. Finally,
Section IX concludes this paper.

II. DATASET

The algorithms were tested on three sets of data which were
collected from an oil, water and gas wells. The sensing fiber
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Fig. 1: Sample of visualized raw signals. This data was
collected by a distributed acoustic sensor in distance and time
from a water pipe. The data is mapped to the color range
[0, 350] to enhance visualization.

cable was 4235 m long strapped to the production tubing and
data is collected with 10 kHz temporal frequency. Table I
provides the details of each pipeline such as the length of
the optical fiber for each pipe [22]. The Packer True Vertical
Depth is the vertical distance from a final depth to a point at
the surface which is usually less than the optical fiber length.
The other parameters of the pipes such as their diameter and
pipe material are not considered in this study nor the acoustic
wave guide properties of the well bore. Raw data is illustrated
in Fig. 1 with time on the vertical axis and depth of the
measurement on horizontal axis. In Fig. 1 X-shaped cross lines
can be seen, due to sound waves traveling up and down in the
fluid inside the pipe.

TABLE I: THE PROPERTIES OF PIPES

Well Type Packer True Vertical Depth (m) Length Optical (m)

Oil well 2600 3000

Gas well 2700 3500

Water well 2400 3200

III. MECHANISM OF RECORDING ACOUSTIC DATA BY DAS

Distributed Acoustic sensor (DAS) is composed by an
optoelectronic unit and optical fibre cable. An optoelectronic
unit is located at the surface of the sea [15], [19].The optical
fibre is run down a well alongside a pipe carrying a fluid
and it is attached to that pipe at the points with a meter
apart. Optical fibers are thin flexible cables consisting of glass
(silica) threads that are capable of transmitting light waves.
DAS measurement begins by sending a laser pulse down the
optical fibre from the optoelectronic unit. The traveling light
within the fiber backscatters from non- uniformities in the

glass at each point along the optical fiber [16]. As the fluid
mixture travels through the pipe its motion is very turbulent
and it generates a noisy sound. The acoustic waves propagate
through the fluid in the well pipes in the direction of fluid flow
and also against the fluid flow direction. Acoustic waves exert
a dynamic pressure on the well pipe and it causes local changes
in the well pipe's radial strain. DAS can capture all these local
strains at each point attached to the pipe because as acoustic
waves travel through the fluid, their pressure fluctuation can be
picked up at each attached point along DAS with some time
delay. Backscattered lights encounter changes caused by flow
acoustic waves when traveling through the line and it goes to
Optical Time-Domain Reflectometer (OTDR) that is connected
to the end of the fiber optic line in optoelectronic unit [20].
OTDR is used to test for breaks and backscattering points in
optical fiber telecommunication fibers. A pulse of light is sent
into the fiber, reflects from some discontinuity or slight change
in refractive index and returns to the OTDR. The delay shows
how far along the fiber the reflection point is found. Many
such reflection points can be found in this way. A broadband
light source is used to avoid coherent backscatter interference,
which is sometimes referred to as Coherent Rayleigh Noise.
However, instead of avoiding it, it can instead be used by
detecting the fast changes in the coherent backscatter Rayleigh
signal [23]. The Silixa distributed acoustic sensor [24] extends
this idea to measure the acoustic signal (amplitude, frequency
and phase) and so calculate axial strain changes at all points
along the optical fiber.

The optoelectronic unit measures all the axial strain changes
occur through the optical fibre. DAS works by measuring the
pressure changes at each point along the fibre and builds a
dynamic profile of those changes and hence, it is capable to
measure the acoustic field. Therefore, the optoelectronic unit
records both phase and amplitudes of the acoustic signals at
each point that optical fibre attached to the well pipe [17],
[19]. The sound is recorded continuously at each attached
point of optical fibre cable to the well pipe and this results
in an enormous amount of data recorded each day [19]. Data
collected by DAS contains the acoustic power in decibels
(dB) information stored in thousands of files. Each data file
typically contains one minute of acoustic dataset. Therefore,
each acoustic data file contains the information about the time
the fluctuation is captured and the known distance between
sensors. This is the most advantageous characteristic of DAS
for monitoring wellbore because it enables the analysis of fluid
flow at each point along the well pipe that is attached to DAS.

Acoustic waves exert a dynamic pressure on the well pipe
and it causes local changes in the well pipe’s radial strain. DAS
can capture all these local strains at each point attached to the
pipe because as acoustic waves travel through the fluid, their
pressure fluctuation can be picked up at each attached point
along DAS with some time delay. Therefore each acoustic data
file contains the information about the time the fluctuation
is captured and the known distance between sensors. This is
the most advantageous characteristic of DAS for monitoring
wellbore because it enables the analysis of fluid flow at each
point along the well pipe that is attached to DAS.
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Fig. 2: Flow speed estimation methods. The flowchart shows
each step of three approaches to estimate the speed of sound
and ultimately the flow speed at each point along the well
pipe.

IV. PRE-PROCESSING ACOUSTIC DATA

In this study the raw data is pre-processed and the speed
of sound is estimated by designing three novel approach as
demonstrated in Fig. 2. We subtracted the acoustic signals
recorded from adjacent effective sensor positions to filter out
unwanted strong noise sounds and keep wanted sounds which
enable the fluid flow speed to be calculated. These unwanted
sounds originate from sound sources external to the well
pipe, typically from other nearby wells. The sounds from a
point source some distance away will arrive at two adjacent
sensors at about the same time so by subtracting signals
for adjacent sensors we can remove these external sounds.
Having measured the speed of sound by three methods, we
will consider the Doppler Effect [22] and calculate the flow
velocity. The details of each technique are presented in section
V. A summary of the main findings are reported in the
results section, which compares the speed of flow versus depth
calculated by each method.

A. Time versus distance normalization

As some parts of the optical fibre DAS are tightly bound to
the fluid filled pipe they will record a higher amplitude acous-
tic signal so it is advantageous to first perform a normalisation
along the depth or distance axis of the data to make all the
amplitudes the same. The average amplitude at each depth can
be found by calculation of the standard deviation or variance
along the time axis [25]. Then this can be normalised along
the depth axis. In our recent study on this dataset [26], four
normalization techniques were implemented and it has been
reported that statistical normalization is the most suitable one

for our dataset. Therefore, acoustic signals were normalized
as a function of time at different depths along the fiber.

B. 2D Fast Fourier Transform

Two dimensional Fast Fourier transform is applied to con-
vert dataset from time domain to frequency domain [27],
where k, f and G(k, f) represent the wave-number, frequency
and DAS signal of the sample data respectively.

G(k, f) =

∫ ∫
f(x, t)e−j(kx−2πft) dxdt (1)

2D-FFT is capable of revealing aspects of data that are
not easily detected in the time-space domain like trends,
discontinuities, and self-similarity. In order to increase the
performance of the 2D-FFT algorithm, we should transform
the height and width of an image to an integer power of
two [28]. Hence, 2D-FFT is applied with a moving window
of 256 samples in distance and 16, 384 samples in time. 256
samples in distance are chosen to maintain a good number
of spatial frequency bins [29]. 16, 384 samples in time are
chosen because of the sampling rate in time is 10 kHz and
16, 384 is the closest power of 2 number which is not sampling
lower than the Nyquist frequency [30]. The result, G(k, f),
contains a pair of V-shaped lines which are used to predict
the speed of the propagating acoustic wave. Fig. 3 shows the
result of applying a two dimensional Fast Fourier Transform
on 2D representations. As it seen in Fig. 3 (a) the data in the
frequency versus wave-number domain forms a V-shape and
the slope of its arms determines speed of the sound in fluid
flow according to:

ν =
2πf

k
(2)

If the slope of the fitted lines to the arms of the V-shape
is positive we can conclude the sound is traveling upward
in the pipe, otherwise the sound is traveling down the well
pipe. Hence, from now on we concentrate on the methods
which can extract as many of the pixels from the V-shape line
for further analysis. The result of the 2D FFT is normalized
with respect to the frequency and the wave number which are
shown in Fig. 3 (b) and Fig. 3 (c) respectively. The outcome
of the wave number normalization (Fig. 3 (c)) enhances the
brightness of the V-shape compared with the original V-shape
(Fig. 3 (a)) and the outcome of the frequency normalization
(Fig. 3 (b)) [31]. Therefore, the wave number normalization
outcome is selected as the input for the next method which is
the hard threshold. The threshold is defined as λ =

√
2 log10p

according to the hard threshold definition [32] where p is the
mean of the pixel’s intensity. All the pixels below the threshold
are set to zero as shown in Fig. 3:

G(k, f) =

{
G(k, f) G(k, f) ≥ λ

0 G(k, f) < λ
(3)

The threshold is defined as the top 0.2% of the sample
amplitude. The thresholded image is formed of the set of pixels
which are mostly extracted from the V-shape lines as it shown
in Fig. 4 (a).
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(a) 2D FFT (b) Normalized 2D FFT with frequency (f ) (c) Normalized 2D FFT with wave number (k)

Fig. 3: 2D FFT and k versus f normalization- The results of applying 2D FFT to acoustic signals are presented in the two
dimensional (a). The result was normalized with regards to the frequency (b) and the wave number (c). However, normalizing
the frequency spreads the noise out along the x-axis whilst normalizing the wave number results in the clear V-shape.

Fig. 4: The result of applying a threshold filter on the 2D FFT
image.

V. ALGORITHMS TO ESTIMATE THE SPEED OF SOUND

The following three sections will investigate three methods
to estimate the speed of sound.

A. Method one: Cross correlation

In the first flow speed estimation approach (Fig. 2), the
outcome of 2D-FFT is fed into threshold filter and then
Cross-correlation method. Cross-correlation is an operation
to measure the similarity between two signals at different
time lag positions [34]. By using cross correlation between
acoustic signals at different positions along the fiber, the
time shift of the wave between the different positions can be
calculated [35], [36]. If u(t) and v(t) are two acoustic signals
along the fiber, t and τ represent time and the integration
variable respectively. d(t) is the time lag between two signals,
u(t) and v(t), and can be obtained from Eq. 4.

d(t) = u(t)⊗ v(t) =

∫ +∞

−∞
u∗(τ − t)v(τ)dτ (4)

(a) Cluster one which are the pixels of the V-
shape lines.

(b) Cluster 2

(c) Cluster 3

Fig. 5: K-means clustering result. The algorithm extracts the
points of V-shape lines. k − f plot for water flow data from
at depth = 1000 m. Two linear features are corresponding to
the speed of sound propagating up or down the well.

The details of the mathematical derivation can be found in
[34], [37].
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Fig. 6: Hough Transform line detection algorithm detects the two lines in the V-shape cluster (step 2). The image in step 3
shows the superimposed green and purple lines on the pixels of the V-shape image.

B. Method two: K-means Clustering and Hough transform
line detection

In the second flow speed estimation approach (Fig. 2), K-
means clustering is implemented for extraction of informative
signals. K-means clustering is a classification algorithm that
divides data into K clusters depending on their attributes
where K is a positive integer number [38]. Initially, K objects
are selected randomly as the seed objects and the other objects
assigned to each seed based on their distance to each seed.
In each iteration the centroid of each cluster is calculated
and the objects move to the group which is closest to its
centroid. The iteration process will stop when there are no
more objects to move into the new cluster [39]. We tried few
numbers (K = 2, 3, 4, 5, 6) to initialize the K-means clustering
algorithm. For the number of cluster more than 4 algorithm
was stuck in a local minimum and it did not converge. For
K = 2, 3, 4 the algorithm converged successfully and K = 3
yielded the lower sum of squared distance therefore, we
selected 3 clusters.

The K-means clustering method is implemented by using
the normalized V-shaped data (Fig. 3 (c)) to extract the group
of pixels forming the V-shape [40]. The image data is clustered
into three groups based on the Euclidean distance metric. As
shown in Fig. 5 (a), one of the clusters is clearly a V-shape
which is fed into a line detection algorithm called Hough
Transform. The details of mathematical derivation can be
found in [39].

The Hough Transform technique has a common application
in image processing when it is required to define some
features of a shape in a parametric form. The main advantage
of the Hough Transform technique which makes it suitable
for our application is its gap tolerance in feature boundary
descriptions. In addition, it is capable of identifying features
automatically and the result is not affected by the image
noise [41]. The Hough Transform algorithm takes the V-
shape cluster as an input and detects the lines in the image.
Image 3 in Fig. 6 shows the green line (left arm) and the
purple line (right arm) were detected by the Hough Transform
algorithm which were superimposed on the V-shape cluster
image (Fig. 6, image 2). The slope of the detected lines is
used for the speed of sound calculation.

C. Method three: Radial Integration Algorithm

The Third flow speed estimation (Fig. 2) approach is an inte-
gration along a radius in a polar diagram that is superimposed
at the f versus k origin. The integration can be summarized
as a summation of data values organized on a discrete grid
along lines or rays emanating at different angles, θ, from a
predetermined point (in case of continuous representation of
data, the data would be integrated along the lines instead of
summing). For each considered angle θ, the summed value,
E, is divided by the number of pixels that formed the line for
normalization and is stored in a one-dimensional list or array.
Upon plotting E vs. θ (Fig. 7 (c)), distinct peaks become
visible for angles θ that coincide with the orientation of any
linear features passing through the point of interest. This
reduces the problem complexity from detecting lines and their
orientations on a 2D grid to detection of peaks positions on
a 1D signal. All lines emanating from the origin of the f
versus k plot and extending to each pixel location along the
left, right and top edges of the plot are considered. Essentially,
this traces the rectangular external boundary of the Fig. 7 (a)
shows the original image and the white lines are superimposed
on the V-shape (Fig. 7 (b)) signal lines. The energy function
can be seen in Fig. 7 (c) which shows two peaks in the graph
indicating the two lines of the V-shape image Fig. 5 (a).

VI. FLOW SPEED ESTIMATION

We use the speed of sound estimation from three developed
methods to estimate flow speed. Due to the Doppler Effect, the
speed of sound traveling along the flow direction will appear
faster, and the flow speed can be determined by

v =
ν1 − ν2

2
(5)

where v is speed of flow, ν1 and ν2 are speed of sound
traveling along and opposite to the flow direction respectively.

VII. RESULTS

The results of three developed methods to analyse oil, water
and gas dataset are presented in Fig. 8. The dataset is collected
from each well during 2× 104 s and along over 3000 m well
pipe which is a very large dataset. we consider block of data
over the time and distance in our analysis. The flow speed
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(a) The signal after applying 2D FFT. (b) The line found by radial integration function
superimposed on the original image.

(c) Energy function which is summation of pixels
through integration.

Fig. 7: Two linear features passed through the origin, each corresponding to the speed of sound propagating up or down the
well.

(a) Gas Well (b) Oil Well (c) Water Well

Fig. 8: The result of implementing three methods to estimate the flow speed in gas (a), oil (b) and water (c) showed in these
diagrams.

does not change in the same location at different time stamp.
However, the flow speed changes at different depth along the
well pipe due to changes in a flow pressure. In most cases,
a file containing one minute of acoustic data could not be
loaded with available computing resources. To overcome the
challenge of handling large data files, we divided the raw data
into a series of blocks for processing. The size of the block
depends on the desired spatial and temporal resolution for
calculated velocity profiles. For the next block, the window
was moved by a time samples and half of spatial samples.
Halving the spatial window size is performed to enhance
repeatability and to increase spatial resolution in the results
[19]. The end result is a set of k − f plots overlapping in
distance and covering the entire file content as shown in Fig.
7 (a).

The type of fluid in each pipe is different and has different
properties. As it seen in Fig. 8, each method only performs
on certain depth of the well pipe. In water and gas pipes,
Cross-Correlation estimation is between 100 m and 2200 m,
Radial integration is between 1000 m and 1400 m and K-
means clustering is between 1700 m and 2700 m (Fig. 8 (a)
(c)). However, for the oil pipe, Cross-correlation estimates the
flow speed between 1000 m and 2600 m and the other two

algorithms perform well between 1700 m and 2600 m (Fig. 8
(b)). Amongst all the algorithms, the Cross-Correlation can
provide a flow speed estimation on the longest part of the pipe
which is 2000 m, however the K-means clustering method is
the only one which is capable of extracting the signals between
2100 m and 2700 m and estimating the flow speed.

In gas and water wells, the results (Fig. 8 (a), (c)) are shown
the Cross-Correlation performs well in shallower (less than
1000 m) and K-means Clustering method performs in deeper
(more than 2000 m) depths of the well pipes. In oil well, none
of the methods provide a flow speed estimation in shallower
area as it shown in Fig. 8 (b). Also, the Cross-Correlation
estimation is consistent and agrees with K-means clustering
and the Radial integration estimation results in the middle
depth (between 1000 m and 2000 m). Table II summarises
the result of the three approaches and compares them with the
estimation from flow meter which locates at the well head. It
should be noted that the result of the three approaches are the
mean of flow estimation all along each pipe but flow meter
estimation is just at one point which is well head at the surface
of the sea.

When considering table II, we see that for the oil well Cross
Correlation and Radial Integration are closest to the well head
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TABLE II: COMPARING MEAN OF ESTIMATED FLOW SPEED

Well Type Cross Correlation (m/s) K-means Clustering (m/s) Radial Integration (m/s) Flow Meter at Well Head (m/s)

Oil Well 1.6362 0.3339 3.0362 2.8000

Gas Well 1.2691 1.5915 0.2457 6.9600

Water Well 1.4558 2.0718 2.4329 2.1000

flow meter with Radial Integration being the closest. For the
Gas well Cross Correlation and K-means clustering are the
closest but some way off from the well head flow meter. In
the water well, K-means clustering is the closest with the other
two methods about a half metre per second different one higher
and one lower.

VIII. DISCUSSION

Radial integration and K-means clustering methods use
Doppler shift for flow estimation which means they require
detection of acoustic waves travelling both up and down the
well to enable both sides of the V-shape in the frequency
versus wave-number plot to be detected. We found that there
were only certain regions in the well where this occurred,
typically when there were sources of sound above and below
the measurement point or places where sound waves travelling
down the pipe could be reflected back up the pipe and vice
versa. In other places along the well only one side of the V-
shape would be detected so any calculations based on Doppler
shift would give very poor results. However, we found that in
many of these cases the Cross-Correlation method worked very
well as it did not depend on having two sides to the V-shape.

Table II averages across all the results in Fig. 8 and so
hides a lot of the detail giving deceptive results. A number of
the data points in Fig. 8 could reasonably be excluded from
the average. If it known that these well pipes did not have
side branches bringing in or removing additional flow then we
would expect the flow speed to remain approximately constant
and not fluctuate wildly from one location to a nearby location
along the pipe.

In the Gas well, the very low values of flow speed for
Radial integration occur when the V shape in the frequency
versus wave-number did not have one of the sides of the V.
So by detecting that the V-shape did not have one of its sides,
these low readings can be excluded. The issue with detecting
one arm of the V-shape is also valid for all of the K-means
clustering results. Similarly, the sudden changes in Cross-
correlation flow speed from 2 to 0 m/s are not physically
reasonable and so the low values of the Cross-correlation
flow speed can be excluded. Therefore we conclude that the
results within about 1 m/s of 2 m/s can be kept and that then
there is good agreement between Cross-correlation and Radial
integration and giving an average flow speed of approximately
2.2 m/s less than the 6.96 m/s well head flow meter.

In the water well, there is similar reasoning. We can keep the
flow speed values within a range of 0.5 m/s of the maximum
and minimum Cross-correlation flow speed results giving an

average of the remaining points of about 1.4 m/s which is less
than the 2.1 m/s well head flow meter. In the Oil well, there are
large fluctuations of flow speed over very short distances along
the well which are not physically reasonable. Here we know
that Cross-correlation is robust against difficulty in detecting
the two sides of the V-shape in the frequency versus wave-
number plots. So preserving flow speeds within 1 m/s of the
2 m/s Cross-correlation flow speeds enables us to exclude all
of the very slow flow speeds. Now we make an interesting
observation that when the K-means clustering is not working
properly giving very low flow speeds, the Radial integration is
working very well and vice versa. The average of these points
gives a flow speed of approximately 2.1 m/s less than the 2.8
m/s of the well head flow meter.

The well head flow-meter measures volume flowing per
second from which the speed is inferred. It is not surprising
that the calculated results are all less than the well head flow
speeds as the fluids at deeper depth are under high pressure
which is relieved as they approach the surface resulting in
a larger volume flow speeds and that the largest difference
is for gas which compresses the most with pressure. It was
expected that the actual flow speed would differ from the well
head volume flow meter.

IX. CONCLUSION

We conclude that the Cross-correlation is the most reliable
method for flow speed estimation using DAS dataset. However,
it was advantageous to average it together with the K-means
clustering and radial integration results within a small range
around the cross-correlation results. We also note that in
the oil well K-means clustering and radial integration are
complementary techniques yielding results when the other
technique is not reliable, so these should be combined together.
In addition, there is a stronger complementary effect in the
gas and water pipes where radial integration gives results at
lower depths and K-means clustering gives results at deeper
depths. It is clear that if there is too much background noise
in the frequency versus wave-number plots, radial integration
will lead to erroneous results while K-means clustering has the
ability to extract the signal from the noise across the frequency
versus wave-number plots. Radial integration method works
very well when the background noise is very low. Detection
of the background noise level (Fig. 7 (c)) can be used to
determine whether Radial integration is likely to be unre-
liable. If sources of sound could be deliberately introduced
along the well to reliably generate downward travelling and
upward travelling sound waves then the K-means clustering
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and radial integration methods would operate reliably over a
longer length of the well. Sound sources can be introduced by
including partially open in-flow control valves and other types
of constriction to increase turbulence of flow.
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