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Abstract

In this era of concerted genome sequencing efforts, biological sequence information is abun­
dant. With many prokaryotic and simple eukaryotic genomes completed, and with the genomes 
of more complex organisms nearing completion, the bioinformatics community, those charged 
with the interpretation of these data, are becoming concerned with the efficacy of current anal­
ysis tools. One step towards a more complete understanding of biology at the molecular level 
is the unambiguous functional assignment of every newly sequenced protein. The sheer scale 
of this problem precludes the conventional process of biochemically determining function for 
every example. Rather we must rely on demonstrating similarity to previously characterised 
proteins via computational methods, which can then be used to infer homology and hence 
structural and functional relationships. Our ability to do this with any measure of reliabil­
ity unfortunately diminishes as the pools of experimentally determined sequence data become 
muddied with sequences that are themselves characterised with "in silico" annotation.

Part of the problem stems from the complexity of modelling biology in general, and of evo­
lution in particular. For example, once similarity has been identified between sequences, in 
order to assign a common function it is important to identify whether the inferred homologous 
relationship has an orthologous or paralogous origin, which currently cannot be done compu­
tationally. The modularity of proteins also poses problems for automatic annotation, as similar 
domains may occur in proteins with very different functions. Once accepted into the sequence 
databases, incorrect functional assignments become available for mass propagation and the 
consequences of incorporating those errors in further "in silico" experiments are potentially 
catastrophic. One solution to this problem is to collate families of proteins with demonstrable 
homologous relationships, derive a pattern that represents the essence of those relationships, 
and use this as a signature to trawl for similarity in the sequence databases. This approach not 
only provides a more sensitive model of evolution, but also allows annotation from all members 
of the family to contribute to any assignments made.

This thesis describes the development of a new search method (FingerPRlNTScan) that ex­
ploits the familial models in the PRINTS database to provide more powerful diagnosis of evo­
lutionary relationships. FingerPRlNTScan is both selective and sensitive, allowing both precise 
identification of super-family, family and sub-family relationships, and the detection of more 
distant ones. Illustrations of the diagnostic performance of the method are given with respect 
to the haemoglobin and transfer RNA synthetase families, and whole genome data.

FingerPRlNTScan has become widely used in the biological community, e.g. as the primary 
search interface to PRINTS via a dedicated web site at the university of Manchester, and as 
one of the search components of InterPro at the European Bioinformatics Institute (EBl). Fur­
thermore, it is currently responsible for facilitating the use of PRINTS in a number of signif­
icant annotation roles, such as the automatic annotation of TrEMBL at the EBl, and as part 
of the computational suite used to annotate the Drosophila melanogaster genome at Celera 
Genomics.
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1.1 Biosequences

The quest to unravel the complexities of life on this planet has been pursued by one 

species in particular for many thousands of years. Today this species has a rough draft 

of the very essence of its collective existence: the human genome. The acceleration in 

our understanding of natural processes has always been kept in check by the discovery 

of yet greater levels of complexity. So, although today we may possess the technology 

to read the letters of the code of life, tomorrow we must continue to search for its 

interpretation.

If one attempts to break down a living organism into its components, the result is a set 

of simple elements, which are common to everything we consider as a living organism 

and also common to entities whose ‘life’ is still subject to debate (e.g., viruses). The 

simple building blocks of the great diversity of structure, function and form of living 

organisms are, at the most general level, amino acids, sugars, nucleotides and fatty 

acids.

The monomers of proteins are the amino acids, of which there are 20 commonly occur­

ring variations (alanine, leucine, isoleueine, valine, glycine, aspartic acid, asparagine, 

glutamic acid, glutamine, serine, histidine, tryptophan, phenylalanine, tyrosine, pro­

line, cysteine, threonine, lysine, methionine, arginine). Of the macromolecules essen­

tial to life, proteins are naturally very varied.

The polymers attributed with the storage and transmission of the genetic code are the 

nucleic acids (Deoxyribose and Ribose Nucleic Acid (DNA and RNA)). Diversity in 

the monomeric units comes from the combination of ribose or deoxyribose sugars with 

one of five nitrogenous bases (adenine, guanine, cytosine, thymine and uracil).

Fatty acids play an integral role in forming a bi-lipid membrane, which is fundamental 

in resisting the force of entropy by keeping all other components from diffusing away 

from each other.

No one group of elemental units can support life alone: it is the complex interrela­
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tionships between these elements, and, more importantly, between the macromolecu- 

lar structures of which they are components, that builds the simplest component of a 

living organism, the cell. Proteins perform a myriad of functions within the cell in­

cluding: the transportation of substrates, signal passing, the maintenance of structural 

integrity, the construction of components, and cell duplication. DNA forms the tem­

plates upon which proteins construct new proteins, and this process is facilitated by 

structures formed from RNA. Finally, this synergy is encapsulated by the lipid bilayer.

Proteins

The critical importance of the role that proteins play in living organisms has been 

known for over 200 years (Trifonov, 2000). They exhibit extreme variability in both 

structure and function. This flexibility is facilitated by the large number of permuta­

tions provided by linking the range of amino acid residues together into linear chains. 

The three-dimensional structure of a protein is a direct consequence of the linear order, 

or sequence, of its constituent amino acids. As it is clear that the functional role of a 

protein is dependent on its shape, or the arrangement in space of chemical groups, the 

study of sequence and structure provides a route to the understanding of function.

Nucleic Acids

While proteins are credited with a wide range of functions, DNA acts entirely as an 

information storage mechanism. RNA facilitates both the storage and transmission 

of the genetic code and is often credited with enzymatic activity, but DNA is almost 

universally used as the repository of biological information due to its stability. Sim- 

plistically, every organism has a genome that contains all of the instructions required to 

construct, maintain and reproduce itself. A genome is subdivided into discrete units, 

genes, which represent encoded proteins. In higher organisms, genes only occupy a 

small proportion of the entire length of the genome; the remainder either consists of a



CHAPTER 1. INTRODUCTION 22

host of regulatory structures involved with gene expression or is of currently unknown 

function.

The linear sequence of bases within genes dictates the sequence of amino acids in the 

translated protein, and therefore the structure and function of the gene product. Simple 

genomes, such as those from prokaryotic organisms, contain genes whose linear struc­

ture is directly related to the translated product. However, eukaryotic genes contain 

both translated (exons) and untranslated (introns) regions. While the function of in- 

trons is mostly unknown, their consequences are far reaching. The direct result of the 

discontinuity exhibited by these genes is the increased difficulty in the identification 

of exons, which are masked by long non-translated intronic regions. The biological 

advantages of such a scheme seem to be associated with the observation that exons 

usually encode distinct protein structures (domains or modules). These domains can 

be spliced together during protein expression to produce overall functionalities that 

differ from the functions of the individual units.

Sequencing

The science of biochemistry is firmly based around the study of the effects of proteins 

in disease phenotypes, normal housekeeping functions, or structural and enzymatic 

roles. While the techniques of extraction and purification may have been important to 

protein science, the major landmarks are associated with the first demonstration of the 

sequence of a protein and the almost parallel discovery of the structure of DNA. In 

1951, Sanger and Tuppy sequenced a single chain of the polypeptide hormone insulin 

(Sanger and Tuppy, 1951) (this followed earlier achievements in sequencing very short 

polypeptides): this evidence established the linearity of proteins. The structure of 

DNA, deduced by Watson and Crick (1953), introduced the idea that nucleic acids 

were also linear. This insight provided a clear link between protein and DNA, and 

thus the storage and dissemination of genetic information. The concepts of nucleotide
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triplets (codons) and of proteins being translation products of the genetic code shortly 

followed these discoveries.

The inevitable popularity of determining the sequence of proteins led to the emer­

gence of many more protein sequences. Despite the observations of the correlation 

between gene and protein subunit linearity, sequencing was preferentially performed 

on polypeptides due to their stability and relative ease of purification. The onset of 

DNA sequencing was heralded by techniques such as gene cloning, which provided 

a means of providing large quantities of purified DNA fragments. Once methods for 

addressing the problems of purification became established, focus turned to nucleic 

acid sequencing. A simple and rapid method for determining nucleotide sequences 

was developed by Sanger and Coulson in 1975.

The method of Sanger & Coulson, and a number of subsequent improvements (Wu, 

1978), facilitated a rapid growth in sequencing and data accumulation. This growth 

was enhanced by the automation of methods in the early 1980s. The establishment 

of genome initiatives throughout the 1980s, leading up to the 1990 announcement of 

the Human Genome Project (HOP), provided the basis for sequencing on the scale 

of the whole organism. The first non-viral genome, to be sequenced, (Haemophilus 

influenzae) was announced in May 1995. Now, six years later, Caenorhabditis elegans, 

Saccharomyces cerevisiae and Drosophila melanogaster genomes represent the most 

completely sequenced eukaryotic genomes with Homo sapiens existing in draft form 

and a number of other projects underway. Also, over 20 prokaryotic genomes have 

been completed^ with many more currently in progress^.

The expansion of data has had many implications, one of the most significant being 

the birth of a new field of biological science, bioinformatics, which unites the fields of

biology and computer science.

’ http://www.ebi.ac.uk/genomes 
ĥttp://www.tigr.org/tdb/mdb/mdb.html

http://www.ebi.ac.uk/genomes
http://www.tigr.org/tdb/mdb/mdb.html
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1.2 Databases

Dayhoff and Doolittle were amongst the earliest protagonists for organised storage of 

biological sequence data. Margaret Dayhoff is well known for her contribution to the 

development of the resource that would later become known as the Protein Sequence 

Database (see section 2.3) and for editing the ‘Atlas of Protein Sequence and Structure’ 

between 1965 and 1978 (Dayhoff, 1965a). Similarly, Russell Doolittle has long shared 

a strong interest in the power of applying computing techniques to biological problems 

(Doolittle, 2000). Many workers have since joined these early advocates and the effects 

have been widespread: establishing hundreds of biological databases, populated with 

millions of sequences. The increasing size of resources has: prompted changes to the 

infrastructure of information exchange, required greater and greater computing power, 

and instigated wider dissemination of biological data above and beyond the scope of 

traditional paper journals.

1.3 Sequence Analysis

The deposition of sequences in databases was partially prompted by the need to collect 

and classify data; however, the major driving force was the study of the effects of 

evolution on proteins. Connections made between sequence variation and heredity by 

Zuckerkandl and Pauling, in 1962, (reviewed by Zuckerkandl, 1975) were instrumental 

in the generation of the field of molecular biology. The principle that evolutionary 

links could be made from direct observation of sequence was further developed and 

utilised by Needleman and Wunsch (1970) and Dayhoff (1974). In parallel with the 

advances of computing, and the growth of databases, the field of sequence analysis 

arose. Its aim was to apply the principles of information theory to the identification of 

similarities between sequences in the hope of identifying these evolutionary links.

In more recent history, sequence analysis has become important not only for identi­
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fying relationships between known proteins, but for the characterisation of unknown 

sequences. The demonstration of similarity at the amino acid or nucleotide level can 

be used to confer functional information derived experimentally for one sequence onto 

another, based on the hypothesis that sequences sharing significant similarity also share 

a common ancestor.

This form of analysis was made necessary by the effects that rapid sequencing tech­

nologies have had on the practice of molecular biology. At the dawn of rapid DNA 

sequencing, novel sequences were treated to large scale investigations, which gen­

erally resulted in much of the underlying biology being identified in order to sup­

port the initial findings (Wheelan and Boguski, 1998). The natural consequence of 

this was that genes, which were submitted to databases, were accordingly linked to 

a plethora of information (annotation). Later, as technology advanced, methods such 

as positional cloning took precedence: an approach in which phenotype directs study 

through genetic linkage to the identification of the sequence in the genome by position 

alone. Biochemical characterisation of these proteins, therefore, takes place almost as 

an after-thought. The consequence of this is a reduction in the annotation accompa­

nying each gene. Currently, whole genomes are sequenced directly with little or no 

experimental determination of the biochemical functions of resultant sequences. The 

result is a severe annotation deficit (Boguski, 1999).

This shortage of annotation has pushed the computational analysis of protein and DNA 

sequences to the forefront and has resulted in the emergence of a wide range of se­

quence comparison tools. However, despite the revolution in bioinformatics, it is still 

common to find large proportions of genome data without an assigned function. The 

goal of many researchers is to find a solution to the annotation deficit: the stumbling 

block is that it is still incredibly difficult to program computers to ‘think biologically’. 

Approaches range from the analysis of pairwise sequence similarity to the analysis of 

evolutionarily related families of sequences. However, it is clear that it is not a problem 

that has yet been solved, or to which there will be an easy solution. Indeed, current
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sequence analysis tools are far from perfect, and naive use of these tools can lead to 

incorrect annotation. In turn, this means that there is always scope for the develop­

ment of new tools that provide non-overlapping approaches. It is likely that the only 

way to bridge the gap between sequencing and annotation, will be an increasing use 

of combinations of multiple analytical techniques. However, the potential effects of 

misusing sequence analysis can already be seen, as databases continue to be populated 

with sequences annotated only in silico. As these sequences themselves are used more 

and more as sources of annotation, the potential for an explosion of errors becomes 

increasingly likely (Karp, 1998).
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Chapter 2

Primary databases
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2.1 Biological Sequences

The sequencing of polypeptides has been possible since the fifties (Sanger and Tuppy, 

1951). The chemical stability and the ease of large scale purification of proteins gave 

peptide-based sequencing a head-start. However, by the late sixties, DNA sequencing 

was becoming a viable alternative (Sanger, 1988). A decade later, it had become the 

norm. Rapid sequencing techniques, such as the gel reading techniques of Sanger 

and Coulson (1975), heralded the start of the genomic era of large scale nucleic acid 

sequencing. Automation of these techniques in the 1990s has led to an explosion of 

sequence data. Currently a single machine can sequence thousands of bases per day, 

which stands in stark contrast to the situation in the late seventies when Wu wrote: 

“Today a DNA sequence of 200 nucleotides can be determined within a week” (Wu, 

1978).

While sequence data have been analysed and stored in databases for over 30 years by 

a number of researchers (Dayhoff, 1965b; Doolittle, 2000; Needleman and Wunsch, 

1970), the increasing speed of data acquisition has made such efforts ever more neces­

sary. The value of storing and analysing sequences comes from the potential to transfer 

knowledge from known to unknown sequences via the inference of common ancestry. 

As more and more sequences from divergent organisms enters these resources, the 

probability of retrieving useful information increases.

This chapter will initially discuss the storage and organisation of biological sequences 

in databases. The theme will then turn to the analysis of sequences, and the conse­

quences that database growth has had on the development of tools to facilitate research 

into the evolutionary relationships between proteins.
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2.2 Nucleic Acid Databases

The three databases that provide the foundation for the International Nucleotide Se­

quence Database Collaboration (INSD), which acts as a repository for all known nu­

cleotide and protein sequences, are:

• The GenBank database (Benson et al., 2000), maintained at the National Cen­

ter for Biotechnology Information (NCBI), Maryland, United States of America 

(USA).

• The European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database 

(Baker et al., 2000), maintained at the European Bioinformatics Institute (EBI), 

Cambridge, United Kingdom.

• The DNA Data Bank of Japan (DDJB) (Tateno et al., 2000), maintained at the 

Center for Information Biology, Mishima, Japan.

In order to ensure that the INSD is the most comprehensive and up-to-date store of 

biological sequence data in the world, data submitted by researchers to any of the 

individual sites is propagated nightly to each of the other nodes. Releases dated Au­

gust 1999 contained approximately 3.4 billion nucleotides from 4.6 million sequences,

63% of which are Expressed Sequence Tags (ESTs) (Benson et al., 2000). Human 

sequences constitute 56% of the total (34% of all sequences are human ESTs), while 

other organisms that contribute heavily are Mus musculus, Caenorhabditis elegans, 

Drosophila melanogaster and Arabidopsis thaliana. Figure 2.1 shows the growth of 

GenBank since 1982.

The primary sequence resources represented by the INSD databases are rapidly ex­

panding. The growth of GenBank, which historically doubled in size every 18 months, 

has accelerated to doubling every 15 months (Benson et al., 2000). Not included in the 

diagram are the current statistics; the release dated August 2000 contains 9.5 billion
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Figure 2.1: The growth of GenBank.

These data were taken from http://www.ncbi.nlm.nih.gov/Genbank/genbarikstats.html
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nucleotides from 8.2 million sequence records, which indicates that this rate is still 

increasing. The rapid accumulation of ESTs is clearly a major factor in this surge: 

estimates indicate that they account for approximately two thirds of all sequence data.

2.2.1 Other nucleic acid sequence resources

A large number of other centres around the world provide data repositories that are kept 

up to date via collaboration with INSD. The purpose of this multiplicity is twofold: not 

only are data stored locally, facilitating faster access, and reducing the burden on the 

three main distribution points, but most centres also provide local search facilities or 

specialised services. For example the National Center for Genome Resources (NCGR) 

situated in Santa Fe (USA), hosts the Genome Sequence DataBase (GSDB) (Harger 

et al., 2000) and provides access to accelerated implementations of the popular pair­

wise search tools Smith-Waterman and Frame Search. The Institute for Genomic Re­

search (TIGR) (Quackenbush et al., 2000) maintains a database of high-fidelity, non- 

redundant transcripts constructed from the vast number of EST sequences in INSD. 

The TIGR Gene Indices (TGIs) provide valuable organism-specific analyses of ESTs, 

which are notoriously difficult to use and error prone. The extra level of processing of 

ESTs in the TGIs generates a resource that is more effective for use in functional and 

genomic annotation.

Many more groups worldwide maintain databases of biological sequence data. A num­

ber of World Wide Web (WWW) resources have recently been established to collate in­

formation pertaining to these collections, which give more extensive reviews than it is 

possible to give here (The Molecular Biology Database Collection’ and ‘DBcat’: Bax- 

evanis, 2000; Discala et al., 2000). Indeed, the journal Nucleic Acids Research devotes 

one issue a year exclusively to databases, a practice that has been maintained since 

1994. The current issue (January 2000) contains papers from 110 different databases.
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2.3 Protein Sequence Databases

Much of the wealth of sequence data in the nucleic acid databases comes from non­

expressed nucleic acid sequences (promoters, binding sites, untranslated regions, etc.). 

However, a large proportion represent genes or Open Reading Frames (ORFs), transla­

tion of which yields a protein product. The preponderance of this type of data is clearly 

responsible for a bias, in biological understanding, towards the mechanisms and func­

tions of these gene products. As a result of the richness of this source of information, 

there exists a plethora of protein sequence databases, of varying content, maintained 

by many groups across the world. Such databases are repositories of data derived 

directly from sequence determination experiments, and, in ever increasing amounts, 

from translated nucleic acid sequences. These resources invariably contain raw se­

quence data, and the degree to which this is supplemented with information pertaining 

to a functional analysis or characterisation of biological role (annotation) varies from 

resource to resource. The following section will discuss a small collection of the more 

comprehensive and highly valued databases. Again, other sources are available that 

provide more extensive listings of sequence databases (Baxevanis, 2000; Discala et al., 

2000).

2.3.1 Protein Sequence Database (PSD)

Historically, the PSD was the first collection of sequences to be established. It arose 

as a direct consequence of Margaret Dayhoff’s work, which was disseminated in the 

Atlas of Protein Sequence and Structure’. The PSD currently exists as The Protein 

Information Resource (PIR) International PSD (Barker et al., 2000). Like the INSD 

resource (section 2.2), the PSD is now a worldwide collaborative venture, uniting its se­

quence data with data from Munich Information Center for Protein Sequences (MIPS) 

and Japan International Protein Sequence Database (JIPID).

The collection is the largest of the annotated protein sequence resources, with the June
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2000 release (65) containing 182,096 entries. In addition to the primary sequence data, 

the resource contains information concerning: the name and classification of the pro­

tein and the organism in which it is found, primary literature references, functional and 

biochemical characteristics of the protein, and sites and regions of biological interest 

within the sequence. An example of an entry can be seen in figure 2.2. Particular points 

of interest are the annotation sub-headings, such as the organism, references, keywords 

(a collection of descriptive words from a restricted alphabet) and features (regions of 

the protein sequence of functional or structural significance). The database is main­

tained as four distinct sections (PIR 1-4), with each section differing in the annotation 

level and quality of data. PIRl contains data with the most complete classification 

and annotation, while section 4 contains sequences that have been identified as neither 

naturally occurring nor naturally expressed.

2.3.2 SWISS-PROT

SWISS-PROT (Bairoch and Apweiler, 2000) is a manually maintained protein se­

quence database. Due to consistent efforts to provide the highest level of annotation 

(Junker et al., 1999), to reduce redundancy and to provide extensive database integra­

tion, SWISS-PROT is considered as the gold standard. The database is maintained as 

a collaborative effort between EMBL-EBI Outstation and the Swiss Institute of Bioin­

formatics (SIB). The most recent release (39) contains 86,593 sequences. Each entry is 

afforded manual analysis to ensure that its annotation is descriptive and as comprehen­

sive as possible. Annotation includes information such as function, post-translational 

modifications, domains and sites, secondary, tertiary and quaternary structure, similar­

ities, disease characteristics and sequence conflicts or variants. SWISS-PROT entries 

(see figure 2.3) also contain extensive database cross-references to sources such as: 

bibliographic references, nucleic acid sequence databases, protein family databases 

and functional or disease state resources. SWISS-PROT is supplemented by a more 

comprehensive but less carefully annotated database called TrEMBL (Bairoch and
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Figure 2.2: An example entry from the PIR international Protein Sequence Database.

ENTRY OOSH tttype complete
TITLE rhodopsin - sheep
ORGANISM #£ormal_name Ovis orientalis aries, Ovis ammon aries

*coramon_name domestic sheep 
Kcross-references taxon:9940 

DATE

Findlay,

18-Aug-1982 ltsequence_revision 30-Sep-1990 #text_change 
07-May-1999
A30407; A90319; A93264; A03155 
A91755
Pappin, D.J.C.; Elipoulos, E.; Brett, M
Int. J. Biol. Macromol. (1984) 6:73-76
A structural model for ovine rhodopsin.
A30407 

*ltmolecule_type protein 
0#residues 1-348 ##label PAP
##note no explanation is given for the differences in the sequence 

as seen in this paper from the original reports cited

Hltnote peptides and unsequenced residues are ordered by homology
with bovine rhodopsin 
A90319
Brett, M. ; Findlay, J.B.C.
Biochem. J. (1983) 211:661-670
Isolation and characterization of the CNBr peptides from 
the proteolytically derived N-terminal fragment of ovine

((cross-references MUID:83282605 
♦accession A90319

♦#molecule_type protein 
♦♦residues

1;40-44; 45-86,-87-111,-144-155,-156-163,-164-183,-184-207,-208-2 
41 ♦♦label BRE 
A93264
Findlay, J.B.C.,- Brett, M.,- Pappin, D.J.C.
Nature (1981) 293:314-316
Primary structure of C-terminal functional sites in ovine 
rhodopsin.

♦cross-references MUID:82013638 
♦accession A93264

♦♦molecule_type protein 
♦ ♦residues 240-348 ♦♦laloel FIN 

REFERENCE A90324
♦authors Pappin, D.J.C.; Findlay, J.B.C.
♦ journal Biochem. J. (1984) 217:605-613
♦title Sequence variability in the retinal-attachment domain of

mammalian rhodopsins.
♦cross-references MUID:84178280 
♦contents annotation; retinal binding site

REFERENCE A44548
♦authors Thompson, P.; Findlay, J.B.C.
♦journal Biochem. J. (1984) 220:773-780
♦title Phosphorylation of ovine rhodopsin: identification of the

phosphorylated sites.
♦cross-references MUID:84279984 
♦contents annotation; phosphorylation sites

CLASSIFICATION ♦superfamily vertebrate rhodopsin
KEYWORDS acetylated amino end; chromoprotein; eye; G

protein-coupled receptor; glycoprotein; lipoprotein; 
phosphoprotein; photoreceptor; retina; retinal; thiolester 
bond; transmembrane protein; vision

ACCESSIONS
REFERENCE

♦authors
♦journal
♦title
♦accession

REFERENCE
♦authors
♦journal
♦title

REFERENCE
♦authors
♦journal
♦title

37-61 ♦domain
TMl!

transmembrane ♦status predicted ♦label

74-96 ♦domain
TM2!

transmembrane ♦status predicted ♦label

114-133 ♦domain
TM3!

transmembrane ♦status predicted ♦label

153-175 ♦domain
TM4!

transmembrane ♦status predicted ♦label

203-230 ♦domain
TM5!

transmembrane ♦status predicted ♦label

253-276 ♦domain
TM6!

transmembrane ♦status predicted ♦label

285-309 ♦domain
TM7!

transmembrane ♦status predicted ♦label

2,15

322,323

334,338,343

335,336

SUMMARY
SEQUENCE

♦modified_site acetylated amino end (Met) ♦status 
experimental!
♦binding_site carbohydrate (Asn) (covalent) 
♦status predicted!
♦binding_site retinal (Lys) (covalent) ♦status 
experimental!
♦binding_site paImitate (Cys) (covalent) ♦status 
predicted!
♦binding_site phosphate (Ser) (covalent) (by 
rhodopsin Itinase) ♦status experimental! 
♦binding_site phosphate (Thr) (covalent) (by 
rhodopsin Itinase) ♦status experimental 

♦length 348 ♦molecular_weight 38891

1 M N G T
5
E G P N

10 
F Y V P F

15 
S N K T G

20 
V V R S P

25 
F E A P Q

30 
Y Y

31 L A E P W Q F S M L A A Y M F L L I V L G F P I N F L T L Y
61 V T V Q H K K L R T P L N Y I L L N L A V A D L F M V F G G
91 F T T T L Y T S L H G Y F V F G P T G C N L E G F F A T L G
121 G E I A L W S L V V L A I E R Y V V V C K P M S N F R F G E
151 N H A I M G V A F T W V M A L A C A A P P L V G W S R Y I P
181 Q G M Q C S C G A L Y F T L K P E I N N E S F V I Y M F V V
211 H F S I P L I V I F F C Y G Q L V F T V K E A A A Q Q Q E S
241 A T T Q K A E K E V T R M V I I M V I A F L I C W L P Y A G
271 V A F Y I F T H Q G S D F G P I F M T I P A F F A K S S S V
301 Y N P V I Y I M M N K Q F R N C M L T T L C C G K N P L G D
331 D E A S T T V S K T E T S Q V A P A
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Apweiler, 2000) (Translation of EMBL nucleotide sequence database). This resource 

exists to bridge the gap between the requirement to store the relentless flow of protein- 

coding sequence data from genome sequencing projects, and the desire to maintain the 

level of detailed annotation that SWISS-PROT is known for. TrEMBL, as its name sug­

gests, is based on the translation of coding sequences from the EMBL database. After 

extensive redundancy checks to ensure that each sequence represents a unique protein, 

a number of automated sequence analysis steps are performed to identify annotation 

that can be transfered to these sequences. As this annotation is based purely on in sil­

ico techniques, it is flagged in each database entry: ‘BY SIMILARITY’, which serves 

as a warning that it represents a less conclusive diagnosis than annotation derived via 

experimental means.

2.3.3 Summary

The importance of annotation-supplemented resources cannot be understated. The 

databases discussed previously (section 2.2) are comprehensive (i.e., they represent 

up-to-date collections of all published biological sequence data), but many entries con­

tain little or no annotation. SWISS-PROT and PSD, on the other hand, by no-means 

represent comprehensive collections of all available protein sequences. However, con­

siderable benefits come from providing links between sequence information and the 

disparate collection of information regarding both the protein’s characterisation, and 

functional or structural evidence derived from experimental means. A common feature 

of such databases is the availability of searchable fields, which allow one to identify 

and collate entries containing relevant information. For example, in order to browse 

information pertaining to the protein “p53”, it is only necessary to use the search fa­

cility to look for the word “p53”. An alternative to searching all available text is to 

select relevant keywords from a restricted set of words selected to best describe the 

protein and its role or function. The keywords for the SWISS-PROT sequence iden­

tifier (ID) OPSD_SHEEP are: Photoreceptor, Retinal protein. Transmembrane, Gly-



CHAPTER 2. PRIMARY DATABASES 36

Figure 2.3: An example entry from the SWISS-PROT protein sequence database. 
Highlighted regions indicate keywords, and an example of ambiguity in the naming 
of the family, to which the protein belongs.

PRT; 348 AA.OPSD_SHEEP STANDARD;
P02700;
21-JUL-1986 (Rel. 01, Created)
Ol-FEB-1991 (Rel. 17, Last sequence update)
15-JUL-1999 (Rel. 38, Last annotation update)
RHODOPSIN.
RHO.
Ovis aries (Sheep).
Eu)caryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
Mammalia; Eutheria; Cetartio^ctyla; Ruminantia; Pecora; Bovoidea; 
Bovidae; Caprinae; Ovis.
[11
SEQUENCE.
Pappin D.J.C., Elipoulos E., Brett M., Findlay J.B.C.;
"A structural model for ovine rhodopsin.';
Int. J. Biol. Macromol. 6:73-76(1984).
(21
SEQUENCE OF 1-111 AND 144-239.
MEDLINE; 83282605.
Brett M., Findlay J.B.C.;
■Isolation and characterization of the CNBr peptides from the 
proteolytically derived N-terminal fragment of ovine opsin.';
Biochem. J. 211:661-670(1983).
131
SEQUENCE OF 240-348.
MEDLINE; 82013638.
Findlay J.B.C., Brett M., Pappin D.J.C.;
■Primary structure of C-terminal functional sites in ovine 
rhodopsin.■;
Nature 293:314-316(1981).
(41
RETINAL BINDING SITE.
MEDLINE; 84178280.
Pappin D.J.C., Findlay J.B.C.;
■Sequence variability in the retinal-attachment domain of mammalian 
rhodopsins.';
Biochem. J. 217:605-613(1984).
-!- FUNCTION: VISUAL PIGMENTS ARE THE LIGHT-ABSORBING MOLECULES THAT 

MEDIATE VISION. THEY CONSIST OF AN APOPROTEIN, OPSIN, COVALENTLY 
LINKED TO CIS-RETINAL.

-!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN.
-!- TISSUE SPECIFICITY: ROD SHAPED PHOTORECEPTOR CELLS WHICH MEDIATES 

VISION IN DIM LIGHT.
-!- p™ :  some or ALL OF THE CARBOXYL-TERMINAL SER OR THR RESIDUES MAY 

BE PHOSPHORYLATED.
-!- MISCELLANEOUS: THIS RHODOPSIN HAS AN ABSORPTION MAXIMA AT 495 NM. 
-!- SIMILARITY: BELONGS TO FAMILY 1 OF G-PROTEIN COUPLED RECEPTORS.

OPSIN SUBFAMILY.
PIR; A30407; OOSH.
GCRDB; GCR_0194; -.
PFAM; PFOOOOl; 7tm_l; 1.
PRINTS; PR00237; GPCRRHODOPSN.

DR PRINTS; PR00238; OPSIN.
DR PRINTS; PR00579; RHODOPSIN.
DR PROSITE; PS00237; G PROTEIN RECEPTOR; 1.
DR PROSITE; PS00238; OPSIN; 1.
KW Photoreceptor; Retinal protein; Transmembrane; Glycoprotein; Vision;
KW Phosphorylation; Lipoprotein; Palmitate; G-protein coupled receptor.
FT DOMAIN 1 36 EXTRACELLULAR.
FT TRANSMEM 37 61 1 (POTENTIAL) .
FT DCMAIN 62 73 CYTOPLASMIC.
FT TRANSMEM 74 98 2 (POTENTIAL) .
FT DOMAIN 99 113 EXTRACELLULAR.
FT TRANSMEM 114 133 3 (POTENTIAL) .
FT DOMAIN 134 152 CYTOPLASMIC.
FT TRANSMEM 153 176 4 (POTENTIAL) .
FT DOMAIN 177 202 EXTRACELLULAR.
FT TRANSMEM 203 230 5 (POTENTIAL) .
FT DOMAIN 231 252 CYTOPLASMIC.
FT TRANSMEM 253 276 6 (POTENTIAL) .
FT DOMAIN 277 284 EXTRACELLULAR.
FT TRANSMEM 285 309 7 (POTENTIAL) .
FT DOMAIN 310 348 CYTOPLASMIC.
FT CARBOHYD 2 2 BY SIMILARITY.
FT CARBOHYD 15 15 BY SIMILARITY.
FT BINDING 296 296 RETINAL CHROMOPHORE.
FT LIPID 322 322 PALMITATE (BY SIMILARITY) .
FT LIPID 323 323 PALMITATE (BY SIMILARITY) .
FT DISULFID 110 187 BY SIMILARITY.
FT MOD RES 343 343 PHOSPHORYLATION (BY RK) (BY SIMILARITY)
SQ SEQUENCE 348 AA; 38891 MW;1 AAFD6F0D6A8BAEE5 CRC64;

MNGTEGPNFY VPFSNKTGW RSPFEAPQYY LAEPWQFSML AAYMFLLIVL GFPINFLTLY
VTVQHKKLRT PLNYILLNLA VADLFMVFGG FTTTLYTSLH GYFVFGPTGC NLEGFFATLG
GEIALWSLW LAIERYVWC KPMSNFRFGE NHAIMGVAFT WVMALACAAP PLVGWSRYIP
QGMQCSCGAL YFTLKPEINN ESFVIYMFW HFSIPLIVIF FCYGQLVFTV KEAAAQQQES
ATTQKAEKEV TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKSSSV
YNPVIYIMMN KQFRNCMLTT LCCGKNPLGD DEASTTVSKT ETSQVAPA
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coprotein. Vision, Phosphorylation, Lipoprotein, Palmitate and G-protein coupled re­

ceptor. The protein, rhodopsin, is a light absorbing molecule, which is an integral 

membrane protein belonging to the G-protein coupled receptor super-family. Its speci­

ficity is to rod cells, which mediate vision in low light conditions. Selecting just two of 

these keywords “retinal” and “vision” and searching SWISS-PROT (release 38, con­

taining 80,000 sequences) produces 152 results, the majority of which are opsins and 

rhodopsins. Linked to each of these ‘hits’ are references to publications containing a 

wealth of information about the family of proteins that are “retinal” binding and are 

involved in “vision”.

Clearly the databases represent a massive collection of biological information and, as 

indicated, attempts have been made to facilitate access to the data through the devel­

opment of computational tools, such as the text searching facility ‘Sequence Retrieval 

System’ (SRS) (Etzold et al., 1996). SRS provides fast access to multiple databases 

through a number of pre-query processing steps that involve the creation of indices. 

However, searching any text-field relies on the quality and scope of the annotation. 

Also, in many instances the vocabulary of biologists is imprecise, which does not 

lend itself to the rigidity of computational pattern- or string-matching. An example 

of this ambiguity can be found in the OPSD_SHEEP entry (figure 2.3), where the 

super-family that it belongs to is known variously as the G-protein coupled receptors, 

GPCRs and 7tm (seven transmembrane) receptors. Hence, to be certain of retrieving 

all of the relevant data during a search for these proteins, it would be necessary to 

include all of the alternative naming conventions.

2.4 Pairwise Sequence Analysis

The cornerstone of sequence analysis is the hypothesis that similarity between two 

genes (or gene products) indicates a shared ancestral heritage. The relationship be­

tween between proteins that have descended with divergence from a common ancestor
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is defined as homologous (Fitch, 1970; Wray and Abouheif, 1998). In the light of this, 

if two proteins are demonstrated to be homologous, an inference can be made that they 

may also share functional and/or structural characteristics. Confidently identifying 

homologous sequences, and distinguishing these from unrelated ones, allows experi­

mentally obtained and verified information to be passed on to sequences for which no 

annotation exists.

The degree to which a homologous relationship is demonstrable from sequence simi­

larity depends on the quantity of identifiable similarities between the proteins. Equally, 

the identification of similarity in the first place is heavily reliant on the methods avail­

able to compare two protein sequences. The following sections describe the principles 

of sequence similarity and the methods that have been developed to demonstrate it.

2.4.1 Sequence similarity

2.4.1.1 Identity

Similarity between sequences can be measured as the number of residues one sequence 

shares with another (percentage identity).^ High identity, as mentioned above, can be 

used to indicate homology. However, when identity drops below a threshold value 

(approximately thirty percent) it becomes difficult to assign a relationship with confi­

dence. This threshold is commonly referred to as the Twilight Zone (Doolittle, 1986).

To measure the similarity of two sequences, it is necessary to align those sequences so 

that equivalent residues are moved into register. The principle behind pairwise align­

ment relies on the assumption that if two sequences share a common ancestor, then 

mutational variations between them can be observed more clearly if they are super­

imposed. Figure 2.4 shows two beta (P) haemoglobin sequences from different organ­

isms (in both organisms, p haemoglobin plays the same role, forming a co-operative

^Similarity can be expressed as percentage identity (% ID). One hundred percent identity between 
two sequences implies that both sequences are identical.
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hetero-tetramer, aPaP, with alpha (a) haemoglobin). Accordingly, the alignment indi­

cates very few differences between the sequences. Indeed, all of the variation is limited 

to point mutations, with 131 of 146 residues being identical.

Figure 2.4: An alignment of bactrian camel and human p-haemoglobin. 

(HBB_CAMDR and HBB_HUMAN).

An alignment highlights the similarity between two sequences more specifically than 
merely counting the number of residues that the sequences share. These sequences, both be­
ing mamalian P-haemoglobins, are so very similar that a homologous relationship is certain.

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLWYPWTQRFFESFGDLSTPDAVMGNPKV

VHLSGDEKNAVHGLWSKVKVDEVGGEALGRLLWYPWTRRFFESFGDLSTADAVMNNPKV

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

KAHGSKVLNSFGDGLNHLDNLKGTYAKLSELHCDKLHVDPENFRLLGNVLVWLARHFGK

EFTPPVQAAYQKWAGVANALAHKYH 

E FT PDLQAAYQKWAGVANALAHRYH

The upper sequence, on each of the three rows of the alignment, is the human and the lower 
is the camel sequence.

Two less-similar sequences are the human a  and P haemoglobins, which, while func­

tionally analogous, have been diverging side by side since an ancient gene duplication 

event. These sequences (figure 2.5) are significantly more divergent than those in the 

previous example; therefore, the similarity is more challenging to identify.

To facilitate the identification of more distant relationships, the alignment can be aug­

mented by highlighting the shared identities. Figure 2.6 illustrates this process using 

the sequences from the previous example. Now, however, the relationship is more 

obvious.

The process of alignment facilitates the comparison of the two sequences and the iden­

tification of shared residues. Importantly, the alignment also highlights positions that 

are not conserved, i.e., those residues that have been subject to mutational drift. All of
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Figure 2.5: A pairwise alignment of human a  and |3-haemoglobin. 

(HBA_HUMAN and HBB_HUMAN).

In this alignment the sequences are more distantly related, so much so that they are no 
longer the same length, which indicates that insertion or deletion events have occured. 
Gaps are introduced to the sequences to simulate these events.

LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLSHGSAQV

LTPEEKSAVTALWGKV. . NVDEVGGEALGRLLWYPWTQRFFESFGDLSTPDAVMGNPKV

KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA

ÎCAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPAVHASLDKFLASVSTVLTSKY

EFTPPVQAAYQKWAGVANALAHKY

The upper sequence, on each of the three rows of the alignment, is P and the lower is the a  
sequence.

Figure 2.6: A pairwise alignment of human a  and P-haemoglobin showing identities 
between sequences.

(HBA_HUMAN and HBB_HUMAN)

An alignment o f distantly related sequences can be augmented with a row highlighting 
those residues that are shared between the two sequences.

LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF...............DLSHGSAQV

L . P .  .K .  .V .A .W G K V  E .G .E A L .R  P . T . . . F . . F ...............D . . . G . . . V

LTPEEKSAVTALWGKV. . NVDEVGGEALGRLLWYPWTQRFFESFGDLSTPDAVMGNPKV

KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA

K . HGKKV. . A ............. AH . D .......................L S .  LH . . K L . V D P . NF . L L . . . L . . . L A . H . . .

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPAVHASLDKFLASVSTVLTSKY 

E F T P .V .A . . . K . - A . V . . . L . . K Y  

EFTPPVQAAYQKWAGVANALAHKY

The upper sequence, on each o f the three rows o f the alignment, is P and the lower is the a  
sequence.
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these mutations are the combined result of two distinct processes. Firstly, the occur­

rence of a point mutation in the gene template of a protein that results in the alteration 

of a single amino acid. Secondly, the acceptance, by the host species, of the mutated 

protein as the predominant form. Acceptance is usually facilitated by the replace­

ment amino acid side chain being chemically similar to the original, and therefore not 

adversely affecting the stability or function of the protein. Such mutations are more 

readily accepted than others. As a consequence of this, looking for similarities between 

residues, as well as identities, represents a more sensitive approach to determining the 

relatedness of protein sequences.

A rarer, but more significant mutation, is the insertion or deletion of one or more 

residues. Its presence in an alignment necessitates the introduction of a gap character in 

order to keep residues aligned. The significance of gaps in alignments will be explored 

later.

2.4.1.2 Amino acid side chain similarities

The sequences in figure 2.5 are significantly different, sharing only 42% identity (61/145 

residues); however, if amino acid similarities are considered (figure 2.7), this value be­

comes almost 60%.

While all amino acid side-chains have distinct chemical structures, they can be grouped 

together on the basis of shared physical and chemical properties (figures 2.8 and 2.9).

The concept that certain residues share common properties has implications for the 

evolutionary tolerance of certain amino-acid substitutions over others. If, for example, 

the amino acid valine was replaced with leucine, the resultant effect on the stability and 

viability of the protein may be insignificant. However, a substitution between glycine 

and tyrosine could constitute a significant modification. Such a mutation may result 

in the destabilisation of local residue packing, which in turn could adversely affect the 

catalytic function of the protein. Destabilising mutations are predicted to be accepted
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Figure 2.7: A pairwise alignment of human a- and P-haemoglobin showing similarities 
between sequences.

(HBA_HUMAN and HBB_HUMAN)

The augmentation of an alignment of distantly related sequences can be furthered by 
adding information about amino acid similarities. Similarities can be based on physical 
and chemical properties of the amino acids, the alignment below is annotated with ‘+’ for 
each similar amino acid pair. The criteria by which the amino acids in this example are 
deemed ‘similar’ are the groupings defined in figure 2.8.

LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLSHGSAQV

L + P . + K + .V . A+WGKV. . .  + . E . G + E A L . R . . + .+  P . T . . + F . . F  D + . . G + . . V

LTPEEKSAVTALWGKV. . NVDEVGGEALGRLLWYPWTQRFFESFGDLSTPDAVMGNPKV

KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA

K . HGKKV+. A . + . ++A H + D . +  L S + L H + .K L + V D P .N F + L L ..+ L + + .L A .H . . .

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPAVHASLDKFLASVSTVLTSKY 

E F T P .V .A . . . K .+ A .V . . + L . .K Y  

EFTPPVQAAYQKWAGVANALAHKY

The upper sequence, on each of the three rows of the alignment, is the P and the lower is 
the a  sequence.

Figure 2.8: A classification of the collective properties of the amino acids.

To categorise the amino acids, it is necessary to be flexible due to their overlapping 
features; however, it is possible to represent common groupings.

Property Amino acid [single letter code)
Aliphatic G A V L I P C M
Aromatic F Y W
Polar/Neutral S T N Q
Polar/Acidic D E
Polar/Basic H K R
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Figure 2.9: A Venn diagram showing the relationship of the 20 naturally occurring 
amino acids to a selection of physico-chemical properties.

The relationships between the amino acids are complex and overlapping but categorisations 
can be made to group residues together.

aliphatic tiny

small
s-s

H-H

M

W

aromatic
positive

non-polar /
charged

Diagram taken from Taylor (1986).

polar
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at a significantly lower frequency than mutations that have little effect on protein struc­

tural stabilisation factors (such as packing, salt bridges and hydrogen bonding). The 

alignments in figures 2.7 and 2.10 are highlighted to emphasise the residue similar­

ities between the proteins. This feature, in both forms, simplifies the diagnosis of a 

relationship between the two proteins. Labelling alignments with characters indicating 

identity and similarity (e.g., figure 2.7) is simple and can be achieved without special­

ist software; however, the advantages of colouring an alignment are obvious (e.g. 2.10 

and 2.11). Colour schemes can be devised to either enhance commonality or empha­

sise deviation, and as a result they are widely used; however, it is most common to see 

them used with alignments of more than two sequences.

Figure 2.10: A coloured alignment of human a- and |3-haemoglobin.

(HBA_HUMAN and HBB_HUMAN).

This alignment represents a different perspective on the alignment in figure 2.4. The 
distantly related sequences are coloured with respect to the properties of the amino acid side 
chains such that similar physicochemical properties have similar shades o f colour, (e.g., 
hydrophobicity is represented by the green portion of the spectrum, and hydrophilicity 
represented by shades of red. This particular colour scheme is attributable to Taylor (1997). 
Colouring an alignment in this way emphasises the regions o f sequence that may have ob­
tained mutations, but in which only mutations between similar residues have been tolerated.

1 0  20  30  40  SO 6 0  70

The preceding sections have elaborated on the utility of alignments in the identification 

of sequence similarity. The demonstrated usage has been purely qualitative, with iden­

tification and diagnosis being performed by eye. The following section will discuss 

the quantitative measurement of sequence similarity that leads to the development of 

predictive algorithms based on scoring similarity; however, the principles remain the 

same, with strong reliance on the quality of the alignment.
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Figure 2.11: A coloured alignment of human a- and p-haemoglobin that emphasises 
commonality.

(HBA_HUMAN and HBB_HUMAN).

This alignment again displays the relationship between two related sequences. However, 
the alignment in figure 2.10 is painted in a colour scheme that, while defining groups of 
amino acids, uses a range of colours, which means that no two residues have the same 
colour. This colour scheme attributes a single colour to each group o f residues (the 
default colour scheme used in the alignment editor CINEMA (Parry-Smith et al., 1998)). 
The result is an alignment that clearly displays the conservation between the two sequences.

IV# L A j g n # V # A  L B p V t| |L  T T k  V Y P t l F  - J L # T T S % A g v f 3W S%3 v  A ^ A  L J p A  VÂW
| v M L g P f ~ E K l A v M A L B g | v £ ' va iY W v G d f  A l M l L V V V P W T Q R F F E S F G f l l L g Ï P ^ A V M S g # ¥ v M A M G i a V  L # A P S ' b Ù L A #

v I P M i p A L l A L i i M L l A W l L l v t t P  v g H l  L g | c  L L v I l A a | L  P a E T I P  A v I a I l K T l A l v g | v  l F ^ k V I  
- S —  -  ^ L lH v l V C V L A  H Ï Ï T g  K E F i  P P  v l  a  V V A # V ^  L A H K «

2.4.2 Scoring the alignment

The previous section discussed the identification of similarity between two sequences. 

Now, consider this type of analysis on a different scale. The sheer quantity of data in 

the sequence databases means that hundreds of thousands of sequences must be com­

pared in order to identify similarities. The naturally time-consuming process of subjec­

tive, manual sequence analysis is clearly an inefficient means of performing analyses 

of this magnitude. In order to identify similarity on this kind of scale, automated di­

agnoses need to be made. The first step towards automation must be to quantify the 

measure of similarity or to score it.

2.4.2.1 Counting and scoring identity

Measuring identity, as mentioned in section 2.4.1.1, is one metric that can be used 

in the task of distinguishing between related and unrelated sequences. This trivial 

computation can be formalised as scoring the alignment between two sequences with 

an Identity Matrix (IM) (figure 2.12), in which each of the 20 amino acids is provided 

with a score for its alignment with any other residue. The 20 by 20 matrix is populated 

with 0 for any non-self alignment and 1 for alignments between identical residues. A
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sequence achieves a score based on the sum of the scores of each of its aligned residues 

divided by the length of the alignment. This score is known as the percentage identity.

Figure 2.12: The identity matrix.

The identity matrix simply scores an aligned pair of amino acids 1 if they are identical and
0 otherwise.

A R N D c Q E G H 1 L K M F p s T w Y V
A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

This simple metric allows a defined threshold to be determined, above which rela­

tionships are deemed to be ‘real’. The Twilight Zone is a cut-off point beyond which 

demonstrating similarity cannot be used to infer homology (Sander and Schneider, 

1991). This point is usually measured as ~  20 — 30% identity between sequences of 

over 100 residues in length. The existence of this threshold stems from the observa­

tion that the alignment of random sequences can achieve scores of up to 30% identity. 

Therefore, scores below this level cannot be deemed to be statistically significant, and 

therefore cannot be used to infer a homologous relationship. As the Twilight Zone is 

entered, separation of true relationships from false rapidly moves from a trivial task to 

a task akin to finding ‘a needle in a haystack’ (Rost, 1999).
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The drawback of the identity scoring scheme is its simplicity. The maintenance of 

function during natural selection does not directly correspond to the maintenance of 

identity between sequences or residues. A mutation is not necessarily something that 

abrogates function: it can also be null or neutral. Therefore, a distantly related se­

quence can become highly populated with changes that make no difference to function. 

The accumulation of these mutations has no effect on the homologous relationship, yet 

it can make similarity more difficult to identify, and accordingly, homology more dif­

ficult to infer. To detect relationships at greater distances it is necessary to adopt a 

different scoring scheme.

One suitable scheme, which takes into account the changes that must occur in the 

codon to affect the protein sequence, is the Genetic Code Matrix (GCM) (Dayhoff, 

1978). This matrix accounts for the minimum number of base changes required to 

alter the codon for one amino acid to that of another. Scores are assigned as follows: 

3, for identical amino acids; 2, for those whose codons differ by one base; 1, for those 

differing by two bases; and 0 for all amino acids whose codon are different in all three 

positions. In matrix comparisons performed by Dayhoff (1978), using small datasets, 

the GCM and IM matrices do not perform significantly differently. It is plausible that 

the assumption upon which the GCM is based (i.e., that one amino acid is more likely 

to be mutated to another if doing so represents a simple genetic event - a single base 

change rather than three) does not take into account the selective pressure that the pro­

tein sequence/structure can be under to maintain functional integrity. However, point 

mutations that result in unfavourable amino acid changes should be observed dispro­

portionately less frequently in functional proteins, because of their greater likelihood 

to give rise to deleterious effects (i.e., result in non-functional proteins).

The discussion of these simple matrices leads back to the concepts of observed simi­

larity between amino acids, and the possibility of deriving scoring matrices based on 

these properties. The following section will describe two of the most popular align­

ment scoring matrices based on observed mutations.
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2.4.2.2 Counting and scoring similarity

The Mutation Data Matrix (MDM)

The MDMs developed by Dayhoff are based on comparisons between closely related 

sequences and the examination of amino acid exchanges or substitutions. Generating 

these matrices involved counting the number of occurrences of each of the potential 

amino acid transitions (i.e., 20 x 20 = 400 transitions). Closely related sequences 

(> 85% ID) were selected to maximise the chance that every observed amino acid 

exchange between sequences was due to one event and not successive mutations. The 

resultant matrix is populated with the observed frequencies of each of the possible 

substitutions in the dataset. To compute the probability that one amino acid will mutate 

into another, it is necessary to find the relative mutability of each of the amino acids: 

the number of times it changes, divided by the number of times it occurs (i.e., the 

number of times that it was available for mutation). Given this for each amino acid, 

and the substitution frequencies, a Mutation Probability Matrix (MPM) was calculated. 

Each element of this matrix expresses the probability that a particular amino acid will 

be replaced by a second after a given evolutionary interval. The interval is expressed as 

I Point Accepted Mutation (PAM), which represents the time interval in which a single 

point mutation is accepted per 100 residues. It is often useful to score a relationship 

between two sequences against a null model that represents the chance occurrence of 

such a relationship. The null model is the probability of occurrence of the target residue 

in a sequence by chance. Therefore, the ratio of the observed transition to the target 

against its chance occurrence represents the relative significance of the observation 

of such a transition (often referred to as the odds ratio). Simply, this means that an 

amino acid substitution with an odds ratio greater than I occurs more often in related 

sequences than unrelated, and vice versa for those less than I. The resultant MDM^g 

matrix, which is used throughout sequence analysis today, is produced by taking logs 

of all the values in the odds matrix. This MDM for 1 PAM can then extrapolated to
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greater evolutionary distances by serial multiplication.

Using this, and members of the series of evolutionarily extrapolated PAM matrices, 

can be more sensitive for identifying distant relationships than the IM and GCM ma­

trices (Dayhoff, 1978). The calculation of the score for an alignment is the same as 

the procedure of summing the scores from the IM. The log odds matrix contains both 

positive and negative values. Therefore, alignments that contain substitutions consis­

tently found in related sequences will score highly positively, while the summation of 

aligned positions between unrelated sequences should rapidly diminish below zero.

While the extrapolations of the PAM series provide a facility for the inference of distant 

sequence relationships, the original dataset for the construction of the PAM I matrix 

was a very closely related set of sequences (>85% ID). Henikoff and Henikoff (1992) 

developed a procedure to compute matrices from alignments of protein sequences with 

greater divergence, producing the BLOSUM series. The process is fundamentally 

different from the one used to calculate the PAM series, and accordingly there are 

significant differences in the performance of these matrices for the identification of 

homologues (Henikoff and Henikoff, 1993).

The Blocks Substitution Matrices (BLOSUM)

The BLOSUM series of matrices are generated from conserved blocks of aligned se­

quences that comprise the Blocks database (Henikoff and Henikoff, 1991), which will 

be discussed in detail in the following chapter. The computation of the BLOSUM se­

ries is based on calculating substitutions that occur between amino acids in columns 

of a block (figure 2.13). Blocks can contain sequences at a variety of evolutionary 

distances; therefore, in order to produce matrices that reflect substitutions occurring 

at defined distances, sequences within the blocks are clustered. The principle of clus­

tering involves computing pair-wise percentage identities for every pair of sequences 

(in the block) and the definition of a clustering threshold. Any sequences sharing a
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percentage identity greater than (or equal to) the clustering threshold is considered 

to belong to the same cluster. The process is repeated until all sequences have been 

assigned to clusters, and any clusters that share ‘above-threshold’ scores have been 

merged. The result is a number of clusters of highly similar sequences (how similar is 

dependent on the threshold value: 100% would collect together all sequence that were 

identical). Substitutions are measured in the same way as figure 2.13, but contribu­

tions from sequences within a cluster are averaged (figure 2.14). This has the effect of 

identifying residue substitutions that occur between sequences with less identity than 

the threshold (i.e., sequences that are more divergent than the threshold, and therefore 

exist in different clusters).

Figure 2.13: An aligned block of residues, and the pairwise substitutions that are ob­
served between its constituent sequences.

1, ASEWR
2, ATEYR
3, ASEWK

Between sequences 1 and 2, the observed substitutions are: A-A, S-T, E-E, W-Y and R-R; 
between 1 and 3: A-A, S-S, E-E, W-W and R-K; and between 2 and 3: A-A, T-S, E-E, Y-W 
and R-K. A matrix containing the observed number of substitutions can be computed:

- A E K R s T w Y
A 3 0 0 0 0 0 0 0
E 0 3 0 0 0 0 0 0
K 0 0 0 2 0 0 0 0
R 0 0 2 1 0 0 0 0
S 0 0 0 0 1 2 0 0
T 0 0 0 0 2 0 0 0
W 0 0 0 0 0 0 1 2
Y 0 0 0 0 0 0 2 0

These distant relationships, between clusters, mirror the extrapolations made of the 

PAM 1 matrix in determining substitution scores for varying evolutionary distances;
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Figure 2.14: An aligned block of residues clustered at 80%, and the effect on the 
pairwise substitutions that are observed.

Sequences 1 and 3 are 80% identical; therefore, they are placed into a cluster, labelled 4.

1, ASEWR
3, ASEWK
4, ASEWR/K
2, ATEYR

Only substitutions between 4 and 2 are counted: A-A, S-T, E-E, W-Y, ^R-R and ^R-K. The 
resultant matrix is shown:

- A E K R S T W Y
A 1 0 0 0 0 0 0 0
E 0 1 0 0 0 0 0 0
K 0 0 0 0.5 0 0 0 0
R 0 0 0.5 0.5 0 0 0 0
S 0 0 0 0 0 1 0 0
T 0 0 0 0 1 0 0 0
W 0 0 0 0 0 0 0 1
Y 0 0 0 0 0 0 1 0
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however, BLOSUM matrices require no mathematical manipulation as they represent 

real observations at each distance. Different members of the BLOSUM series are iden­

tified by their clustering percentage, and it is possible to find equivalence between PAM 

distances and clustering thresholds (Henikoff and Henikoff, 1992). The ability of the 

BLOSUM series of matrices, and of BLOSUM 62 in particular, in searching for a de­

fined set of homologous relationships was demonstrated to out-perform any member of 

the PAM series (Henikoff and Henikoff, 1993). Consequently, the BLOSUM matrices 

have become a standard option for scoring alignments in a wide range of pairwise anal­

ysis tools. Regardless of the performance of any individual matrix, it must be noted 

that when investigating an unknown relationship between sequences, one should score 

the alignment with a range of matrices so as to be sure that the alignment is being 

scored appropriately.

While the scoring of an alignment is an important issue (and will be returned to) the 

focus of this chapter will now turn to the task of identifying the optimal alignment of 

two sequences. The intensive nature of the task of searching a database of sequences 

to find an alignment has necessitated the development of computational tools and al­

gorithms. This is especially important as the sizes of sequence databases continue to 

grow exponentially.

2.4.3 Identifying the optimal alignment

In order to identify the best alignment of two sequences, it is necessary to consider ev­

ery possible permutation of residues and insertions/deletions. However, as the lengths 

of the sequences increases, enumerating these permutations becomes impractical. Matrix- 

based methods of sequence comparison can aid the identification of aligned residues 

without the requirement to calculate each possible arrangement. The most simple ex­

ample was developed 30 years ago, and it remains in use today throughout a wide 

variety of implementations. It also forms the basis of the initial processing stages of a
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number of the algorithms that followed it.

The dot-plot or dot-matrix method is attributed to the work of a number of authors 

(Fitch, 1969; Gibbs and McIntyre, 1970). The most elementary type of dot-matrix 

requires the residues of two sequences to be placed along opposing axes of a two- 

dimensional matrix (figure 2.15). Where intersecting cells reveal identical residues, a 

1 is placed.

Figure 2.15: The dot-matrix

A dot-matrix is constructed by placing the residues of two sequences along the x and y
axes of a matrix. A dot, in this case the value 1, is placed at every intersecting cell that
reveals an identity in both sequences.

A. This matrix shows the comparison of two identical sequences

A C T A G
A 1 0 0 1 0
C 0 1 0 0 0
T 0 0 1 0 0
A 1 0 0 1 0
G 0 0 0 0 1

B. The second matrix represents the elfect of an insertion, which is to remove the line of
identities from the diagonal

A C T A G
A 1 0 0 1 0
G 0 0 0 0 1
C 0 1 0 0 0
T 0 0 1 0 0
A 1 0 0 1 0
G 0 0 0 0 1

The comparison of long sequences using this method benefits from a graphical rep­

resentation of dots rather than populating a very large matrix with I ’s. Two identical 

sequences are represented as a diagonal unbroken line, while difference between two
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similar sequences would be seen as breaks in the continuity of the line. This simple 

representation of alignment has benehtted from a number of modifications since its in­

ception, yet its strength lies in visual inspection of the plot. In searching large datasets, 

manual identification is impossible; however, the principles of this method underlie the 

algorithms subsequently developed to overcome its limitations.

2.4.3.1 Global alignment algorithms

The first algorithms that were developed to efficiently align two sequences were based 

on Dynamic Programming (DP). The simplest incarnation of the DP algorithm for 

aligning sequences can be seen as the recursive delineation of a path through a matrix. 

The matrix resembles the one constructed for the dot-plot (figure 2.15) in that the two 

sequences are placed on opposing axes. Each intersecting point in the matrix repre­

sents the alignment of either the two corresponding residues from each sequence, or 

the alignment of one residue from either sequence with a gap. Accordingly, the score 

associated with an alignment between two residues is provided by a suitable substi­

tution matrix, while alignment with a gap is penalised with a defined penalty. If the 

scores used are log odds ratios (see section 2.4.2.2), then it is to be expected that bet­

ter alignments will have larger scores (better alignments are ones that represent ‘true’ 

alignments). Therefore, to identify the best alignment, an alignment algorithm must 

calculate the maximally scoring path though the matrix by incorporating as many of 

the positively scoring residue pairs, while avoiding penalties incurred from mismatches 

and gaps. An alignment of this type, which attempts to find the best alignment of all the 

residues from the whole length of both of the sequences, is termed a global alignment.

The scoring of residue matches and mismatches comes directly from the use of scoring 

matrices such as members of the BLOSUM and PAM series. However, gaps are not 

catered for and therefore require special treatment. In an alignment, a gap represents 

an insertion or deletion event that has occurred since divergence from the common an­

cestor, and as a consequence its occurrence must be penalised by assigning a negative



CHAPTER 2. PRIMARY DATABASES 55

score. There are a number of models to describe the scoring of gaps, the most common 

of which are the linear gap penalty and the affine gap penalty (often referred to as the 

gap extension penalty) (Altschul, 1989, 1998). The linear gap penalty considers the 

cost associated with an insertion/deletion to be proportional to the length of the gap, 

and hence the penalty value is multiplied by the number of residues in the gap. The 

affine score considers the penalty for inserting/deleting to be independent of the actual 

number of residues inserted/deleted, and is therefore composed of a single ‘gap-open’ 

penalty and an extra length-dependent factor.

The Needleman-Wunsch (Needleman and Wunsch, 1970) algorithm is the classical ex­

ample of a global alignment algorithm. The procedure that will be outlined below is a 

more efficient modification of this method introduced by Gotoh (1982). The essence of 

a DP algorithm is a recursive reliance on the solution to a smaller problem. Therefore, 

the alignment is constructed from the optimal alignments of smaller sub-sequences. 

First, a matrix for sequences x and y, of lengths 1 and J respectively, is constructed. 

This is indexed by i along sequence x, and by j along y (i.e., Xi represents the residue 

at position i along sequence x). Secondly, the matrix is populated recursively by calcu­

lating S(i,j), which is the highest score of the alignment between the segments x\__i and 

y\_j. Starting at the top leftmost cell, the matrix is filled to S(1,J), moving left to right 

along each row, by identifying the maximum score of each of the preceding alignment 

possibilities. If we consider a cell S(i,j), then there are three possible ways the amino 

acids corresponding to this cell could constitute an extension to a previous alignment:

• Xi could align with yj  (that is the residue in sequence x  and the residue in 

sequence y),

• Xi could align with a gap or

• yj  could align with a gap.

Figure 2.16 describes the calculation performed as each position is considered.
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Figure 2.16; The Needleman-Wunsch global alignment calculation.

56

The three possible cells from which the cell S(i,j) could continue the optimal alignment.

% - l J )

Each of the possible paths are scored accordingly, with either the addition of the subsitution 
matrix lookup (for the two aligned residues) or the addition of a gap penalty. The 
maximally scoring path is chosen and provides the score for S(,y) based on the below 
equation.

Sij  =  max

The most important feature of the DP method is that all of the path decisions made 

during the calculation are recorded (i.e., which of the three cells provide the maximum 

score). Therefore, when the matrix is fully populated, the optimal alignment is ob­

tained by following the so called traceback route from the bottom right hand comer 

of the matrix to the top left. An example alignment is described in figure 2.17, and 

traceback pointers are included as arrows.

This method, as mentioned, generates a global alignment. The traceback path starts 

at the bottom right and ends at the top left of the matrix. Its objective is to align as 

many as possible of the residues in the query sequences across their whole lengths. 

The generation of an alignment is accompanied by a score, which allows one to make 

decisions about the possibility that the two aligned sequences are related.

This procedure opens the door to database searching. A database contains many se­

quences that can be scored/aligned in this way with a given query sequence, but only
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Figure 2.17: The Needleman-Wunsch alignment matrix

The sequences ADE and ACDE are aligned by constructing a matrix with each on 
opposing axes. The score for each intersection is provided by the equation in figure 
2.16, by considering the three surrounding positions from which an alignment could 
be constructed. As each score is computed the decision taken is recorded (as ar­
rows in the diagram). When complete the optimal alignment can be found by following 
the highest scoring path, through the pointers, from the last position in the matrix to the first.

A c D H
0 1 2 . 3 4

—  ̂ -Id —y -2d —y -3d —>• -4d

0 0.0 -0.5 -1.0 -1.5 -2.0
A i  -Id \  (0,0)4.3 0 -> (1.1) 0.5 (1.2) 0.5 -4- (1.3)-05

1 -0.5 3.0 2.5 2.0 1.5
D i  -2d I (l,l)-0.5 \  (1,1)-1.0 \  (1.2)4-3 0 -> (2.3) 05

2 -1.0 2.5 2.0 5.5 5.0
H i  -3d i  (2,l)-0.5 \  (2.1)1 I  (2,3)-0.5 \  (2.3)4-3 0

3 -1.5 2.0 1.5 5.0 8.5

The parameters used in scoring this particular alignment were: alignment of identical 
residues +3, non-identical residues -1 and gap penalty (g) 0.5
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truly related sequences should provide large and positive scores. Therefore, by search­

ing a database and ranking the aligned sequences by score, homologues should be 

identified at the high-scoring end.

2.4.3.2 Local alignment algorithms

With database searching as the objective, the score of an alignment is usually optimised 

to provide the best distinction between true and false sequence assignment, rather than 

to provide the optimal alignment. With this consideration, it is often more useful to 

look at smaller highly-conserved regions of sequences (the local alignment) rather than 

global alignments. This avoids interference from less well conserved regions of pro­

teins, and allows for the identification of evolutionarily preserved ones. The fact that 

many proteins are comprised of multiple independent and distinct domains highlights 

the suitability of local alignment. Globally aligning two proteins that share only a sin­

gle domain makes no sense; however, a database search that pulls out all sequences 

that share a single domain can be very informative.

A variant of the Needleman-Wunsch algorithm, which yields the optimal local align­

ment, is the Smith-Waterman algorithm (Smith and Waterman, 1981). Finding the 

optimal alignment of two sub-sequences requires two simple but significant alterations 

to the previously described algorithm. A matrix is constructed in the same way, but 

each cell can now score zero if there is no higher-scoring path available. Equation 2.1 

indicates the four alternative choices to be made in calculating the score at position 

Sij.

S ij =  max <

0

Si - 1 J - 1 +  s { x i, y j )

S i- \ j  —g 

SiJ-i - g
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Taking the zero scoring option corresponds to the initiation of a new alignment. This 

means that a sub-alignment can start at any point in the matrix, and does not have to 

suffer the detrimental effect (from the accumulation of a highly negative score) of any 

prior poorly aligned residues. The second change allows the alignment to end at any 

point in the matrix rather than in the final cell.

An important requirement of the scoring scheme, highlighted by the fact that the align­

ment can end anywhere, is that the expected score for an alignment of random se­

quences should be negative. If this were not the case, then longer alignments would 

score more highly, based merely on length, regardless of similarity. There must also 

be the potential to achieve a positive score from the given scoring matrix, otherwise no 

cell can score above zero and no alignment will be found. The log odds matrices of 

the PAM and BLOSUM series conform to these criteria.

Heuristic Methods

The local and global algorithms guarantee to provide the optimal alignment, and there­

fore constitute the most sensitive search possible. However, speed of search is a im­

portant consideration and, with increasing database size, the full DP algorithms rapidly 

become very time consuming. Heuristic methods (inexact or approximate approaches), 

while based on the general principles of the local alignment algorithm, attempt to re­

duce the number of cells searched in the matrix in order to increase the speed of recur­

sive calculation of the alignment. A number of distinct methods exist that use heuristics 

to provide search tools able to run at high speeds. This enables large data resources to 

be searched in reasonable time frames. Two such methods are described below.

FASTA

PASTA (Pearson and Lipman, 1988) was developed to exploit the idea that true align­

ments are liable to contain short stretches of identity or very high similarity. By looking
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for these regions, and using them as a starting point for extension into longer align­

ments, much of the search space is ignored. FASTA first identifies identical word 

matches between the query and the database sequence. Diagonals in the scoring ma­

trix that contain many word matches are then selected for further attention. These exact 

matches are extended to identify maximally scoring ungapped alignments. The highest 

scoring regions are selected by joining the ungapped sub-sequence alignments together 

by extending a gapped region using gap extension penalties. Finally, the immediate 

vicinity around the highest scoring regions are realigned using full DP methods.

BLAST

BLAST (Altschul et al., 1990) takes a similar approach to FASTA in identifying lo­

cal high scoring alignments from which to start a more sensitive alignment process. 

However, it differs in a number of minor details. A pre-processing stage identifies all 

potential short words^ in the query sequence. Searching for exact matches to these 

short words in a large database can be achieved very quickly and with a minimum 

of computational effort. When a word match is identified, the alignment process is 

initiated extending the ungapped alignment around the word match region. BLAST 

may indicate numerous high-scoring, sub-sequence alignments to a single query, and a 

measure of significance can be determined from the combined value of their scores. A 

version of BLAST that provides gapped alignments is commonly used today in prefer­

ence to the ungapped version (Altschul et al., 1997).

The price paid for speed is that both methods potentially miss real alignments during 

the initial word match stage. However, the massive growth of databases has made 

sacrifices like these essential.

^Word is used here to refer to a stretch of amino acids (e.g., PS, VEK, LCCM), just as a word 
conventionally refers to a string of letters of the alphabet.
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2.4.4 Assessing the significance of the alignment

The basic sequence analysis task involves aligning sequences, and then asking whether 

the alignment is more likely to represent a relationship that occurred through descent 

from an common ancestor than one that arose by chance. The previous sections have 

discussed the method of deriving alignments from pairwise comparisons of sequences. 

This section will concentrate on methods that can provide a measure of statistical sig­

nificance to an alignment score.

2.4.4.1 Scoring

The theory required to convert alignment scores into probability values is derived from 

the statistics of single sequence scoring (Altschul et al., 1994; Altschul and Gish, 1996; 

Dembo et al., 1994; Karlin and Altschul, 1990). This section will expand on the theory: 

from its use in identifying conserved stretches of residues in a single sequence, to its 

application in sequence alignment.

Let us consider a single sequence, within which we hope to identify a specific fea­

ture. The objective of this search would be to identify a region containing amino-acids 

that are characteristic of this feature. For this to be meaningful, a distinction has to 

be made between the true representation of this feature and a random sequence. The 

feature could equally represent a compositional bias, such as a hydrophobic patch, or 

a true region of pairwise alignment. Taking the former example, while looking for 

compositional bias in a protein sequence, one would wish to design a scoring scheme 

that detects the sub-sequence containing the largest number of biased residues. For 

example, the identification of tracts of hydrophobic residues may be valuable in a 

search for proteins containing transmembrane helices. In order that high scores iden­

tify such sub-sequences, an obvious scoring requirement would be that residues such 

as alanine, valine, leucine and isoleucine were scored positively. If this is to be the 

model, then the set of residues {A,y,L,/} should be assigned a positive integer (ar­
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bitrarily 1.0), with no other residue accruing a score. A given sequence, for exam­

ple DIIAVLCDEEGGHEED, can be scored by selecting sub-sequences that score 

positively, the highest scoring of which can be termed the Maximally Scoring Sub­

sequence (MSS). Working through the example:

• sub-sequence DI would score 0+1 = 1,

• DU = 2,

• DIIA = 3,

• DIIAV = 4,

• DIIAVL = 5, and so on.

However, the whole sequence in this example will also score 5, because the model as­

signs no detrimental effect to identifying residues not in the scoring set. This drawback 

means that the MSS often tends to be the whole sequence, and hence the aim of iden­

tifying the most biased 5w&-sequence fails. This simplistic scoring model, therefore, 

only succeeds in identifying long sub-sequences, and requires re-evaluation. While it 

is obvious that the amino acids in the biased set must have positive values (otherwise 

an additive sum of scores would never result in a positive value), it is equally clear 

that not assigning any score to the remainder merely allows longer sub-sequences to 

score highly. By assigning a penalty score to the presence of non-members, the result 

is a situation in which biased residues are scored positively and all other residues are 

scored negatively. Indeed, this method works as long as the expected score is negative 

(i.e., if a random sample of residues is taken, the score is negative).

The example described above outlines the principle of determining a suitable scoring 

regime for the identification of biased or characteristic stretches of amino acid se­

quence. The following section covers a generalisation of this method, which leads to 

the development of a statistical measure of confidence in the fact that a highly scoring 

region reflects a true (or false) occurrence of such a characteristic.
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2.4.4.2 Probability values

Consider a random sequence composed of independently-sampled letters from an al­

phabet (A =  {a\,a 2T..an], where n = 20 - the amino acid alphabet), each with corre­

sponding natural probabilities of occurrence {p i.p i, ■■■Pn}- A given sequence of these 

letters {as,«7 ,^25<̂105^̂205^̂ 13} can be scored so as to determine its compositional bias 

towards any given subset of these letters, by attributing an integer sj to each letter aj 

(sj represents the score for the observation of letter aj). An MSS can be identified by 

summing all 5 for each sub-sequence if, and only if, one of the set of scores is positive, 

and the expected score (E = Pj^j) is negative. Extending the concept from the 

scoring of individual letters (sj) to the scoring of pairwise alignments is simple: each 

score Sj can be replaced with Sij, which is the score attributed to the alignment of let­

ters i and j  (from sequences I and J). The quest then becomes the identification of the 

best ungapped alignment, and the criteria for MSS^ scoring still hold, i.e., the expected 

score PiPjSij must be negative and the alignment of at least one pair of letters 

must be positive.

If S is the score of the MSS from the comparison of two random sequences of lengths m 

and n, then it can be shown that the distribution of S, for many such random sequences, 

is approximated by the Extreme Value Distribution (EVD) (Dembo et al., 1994) an 

example of which is shown in figure 2.18.

It can be demonstrated that the number of matches scoring greater than a given score x 

is approximately Poisson distributed. The mean of this distribution is given by equation 

2.2, where p is the average number of random sequences scoring above x, and is often 

known as the pairwise e-value or the expected number.

p =  Km ne~^ (2.2)

The distribution is described by two characteristic parameters: lambda and K (Karlin 
^The Maximally Scoring Sub-sequence now becomes the Maximally Scoring Sub-alignment.
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Figure 2.18: The extreme value distribution of MSS scores (S). The score of an ob­
served MSS is represented by x.

The Extreme Value Distribution

I 
I

P(S<x) P(S>=x)

Sub-sequence score
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and Altschul, 1990). The former is the unique positive solution to equation 2.3, which 

represents the scale parameter of the distribution (its effect being on the skew); the 

latter, K, is a constant that can be computed from Pi,pj and Sij.

S  =  1 (2.3)
w=i

If A is a random variable representing the number of occurrences of MSSs (from N 

pairs of random sequences) scoring greater than x, because p is described by a Poisson 

distribution, the probability of finding exactly n such MSSs can be shown by equation 

2.4.

=  (2.4)

Therefore, the chance of finding exactly zero such MSSs is from equation 2.5:

f(X  =  0 ) % g - ^ ^  (2.5)

So, by extrapolation, the chance of finding at least one such alignment is one minus 

the chance of finding none, which gives gives equation 2.6:

P{X>  1)% 1 - g - ^  (2.6)

Since the definition of X is the number of MSSs scoring > x, then this equation can be 

combined with 2.2 and rewritten as 2.7, i.e., the pairwise p-value:

Prob(5 > % ) % ! -  (2.7)

Computable from this equation is the probability that a score, S, derived from the 

alignment of two random sequences is at least x. If a score of x is attributed to the 

MSS of an alignment between a query sequence (of length m) and a database sequence



CHAPTER 2. PRIMARY DATABASES 66

(of length n), the probability that a random sequence could score as well or better 

can be given as a measure of the significance of the MSS. A highly significant, non- 

random, score is likely to be found in a random distribution with a very low probability, 

and vice versa. It is possible to compute this pairwise probability value (p-value) from 

the score for any alignment given that the scoring scheme conforms to the restrictions 

mentioned previously.

2.4.4.3 Adjusting probabilities for database searches.

When a database search is performed, the p-value must be adjusted for the multiple 

comparisons made therein. The previously calculated p-value refers only to the com­

parison of two sequences. An estimate of the probability of observing at least one 

random MSS (where S > x )  in a. database search of D sequences is calculated as fol­

lows.

The expected number (E) of matches, where S > x ,  (encountered in a database search) 

is the probability of occurrence of one such MSS, when two sequences are compared, 

p, multiplied by the number of times the database is searched (i.e., the number of se­

quences in the database D). Therefore, E  =  pD, and from equation 2.6 the probability 

of observing at least one such MSS is:

P s s l - g - ' '®  (2.8)

This calculation makes the assumption that all sequences in a database are equally 

likely to be related to the query. However, it is also valid to assume that only all equal- 

length sub-sequences have a similar likelihood of being related to the query. There­

fore, considering a sequence of n residues matching an equal-length sub-sequence in a 

database of N  residues, the estimate is:

1 - e~P^ (2.9)
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This probability is commonly confused with the e-value, due to an approximation ren­

dering them interchangeable at low probabilities (Altschul et ah, 1994). To clarify 

the situation, the following definitions will be made. The probability P is defined as 

the ‘exact probability’ of identifying at least one random sequence with S > x, in a 

database search of D sequences. The ‘expected value’, E, is defined as the number 

of random sequence matches expected to occur with S > x in a database search of D 

sequences. It is E  that is correctly termed the e-value.

2.5 Problems of pairwise sequence analysis

The principle process of pairwise sequence analysis involves submitting query se­

quences to a BLAST or FASTA (or time-permitting Smith-Waterman) search of a 

primary resource (sections 2.2 and 2.3). The result of this is a score-sorted list of 

sequences containing sub-sequences that align with a region of the query sequence. 

The highest scoring sequences are assumed to be related (the associated probability 

value provides an indication of the mathematical significance of a score), and if there 

is a consistency in the annotation of these top-scoring sequences, then the hypothesis 

that ‘significant similarity implies homology’ allows this annotation to be transferred 

to the query sequence (a diagnosis of the family membership of the query sequence).

The sequences that match in a search like this can be labelled in such a way that al­

lows the efficacy of a result to be evaluated. Sequences that belong to the same family 

as the query sequence that score significantly are termed ‘true positives’; while non­

family member sequences that also have significant scores are termed ‘false positives’, 

as these represent false diagnoses. Sequences falling below the significance threshold 

are termed ‘negative’ diagnoses; those that belong to the query’s family are ‘false neg­

atives’ and all others are ‘true negatives’. A perfect result would provide no ‘false’ 

assignments at all; i.e., all true members of the family score above the threshold and 

all others below. In reality, there is often a balance to be made between avoiding
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false positives and false negatives. One search technique may result in a set of signifi­

cantly scoring sequences that contain no non-family member representatives (no false 

positives) at the cost of missing a number of distantly related members (some false 

negatives). An alternative technique may identify distant relatives, but introduce many 

false positives. The former represents a search that would be termed selective while 

the latter describes a sensitive search. Neither result can be described as more effective 

than the other; however, the different perspectives that they represent can be used to 

indicate the degree of confidence that a query sequence has been correctly identified.

The highest degree of confidence comes from a selective result, which represents a 

family containing a closely related set of sequences, clearly separated from other fam­

ilies in sequence space. A sensitive result is more suited to the process of searching a 

database with a well known and annotated sequence in the hope of identifying previ­

ously unknown related sequences. A challenging result, which falls into neither camp, 

is the observation of a number of high scoring but seemingly unrelated matches to 

sequences that belong to different families. A common reason for this may be the ex­

istence of multiple domains in the query sequence; therefore, the ‘unrelated’ matches 

come from sequences annotated with respect to their functional properties and not to 

the common domain that is shared with the query sequence. Also, it is of course possi­

ble that a query sequence has no close relatives, and therefore produces no significant 

matches. While, algorithms and computerised searching techniques can be applied to 

the resolution of these complexities, it is often the case that only the clearest and most 

significant results can be used to make a confident diagnosis.

Another level of uncertainty can be obtained from searches performed on databases 

containing variable-quality data. The majority of ORFs that arise from genome se­

quencing projects are assigned a function in silico (via similarity alone) and many are 

only designated -  ‘hypothetically expressed’. The move away from the principles of 

functional cloning (determining function and role first, and sequence later (Boguski, 

1999)), has been instrumental in increasing the speed of sequence data accumulation.



CHAPTER 2. PRIMARY DATABASES 69

However, the detrimental consequences of the move towards the positional cloning era 

(sequence first and function later) is the ever widening gap between the number of 

available sequences and the number of those with comprehensive annotation. The de­

velopment of high-throughput genome analysis has only served to widen this gulf. As 

the quantity of sequence data, from such sources, increases, so does the likelihood that 

a pairwise search will reveal matches to query sequences that are themselves unanno­

tated or annotated only in silico.

The ramifications of this situation become even more profound if we consider the po­

tentials of transitive annotation. While it may be a leap of faith to apply the experi­

mentally derived functions and characteristics of one protein (A) to another (B), based 

entirely on inferred homology, this is the central tenet of sequence analysis. However, 

the application of such information to another sequence (C) based purely on similarity 

with a sequence, itself annotated via similarity (e.g., B), may lead to an unacceptable 

increase in incorrectly annotated sequence data (Karp, 1998).

Putting aside the problems of polluted data, it must be mentioned that similarity searches 

such as these, even ones that demonstrate local similarity, are tools for predicting gen­

eral similarities between proteins. The drawback of an approach based on general­

ity is simply that the process of evolution can significantly alter a protein’s function 

through relatively minor modifications to specific regions (e.g., very few mutations in, 

or around, the active site of an enzyme can be responsible for significantly altering 

substrate specificity). Clearly, the identification of any relationship, however weak, 

between an unannotated sequence and a known protein may confer a degree of infor­

mation (e.g., the unknown protein may belong to a related gene family). However, the 

specific biochemical function of the protein cannot confidently be transfered without 

further evidence. Despite this caveat, the use of BLAST and FASTA to identify rela­

tionships and to assign function, without careful consideration of the implications, is 

commonplace (Brenner, 1998, 1999).

Pairwise sequence analysis can provide evidence that can be used to infer homologous
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relationships. However, it should not be blindly assumed that sequence similarity is 

a guarantor of functional homogeneity, since similarity alone cannot distinguish be­

tween evolutionary relationship such as orthology or paralogy. Two sequences share 

an orthologous relationship, if they are derived from a single protein that has diverged 

from its common ancestral form following a spéciation event (Wray and Abouheif, 

1998). A paralogous relationship (Fitch, 1970; Henikoff et al., 1997), is the conse­

quence of a gene duplication resulting in two copies of a gene that evolve side by side 

in an organism. Gene duplications can potentially introduce a copy of a gene that is 

free of the restrictions of natural selection. If an unaltered copy of the gene remains, 

mutational events that are deleterious to the function of one copy may no longer pro­

duce a phenotypic effect (neutral mutations). This freedom may lead, by chance, to 

the generation of a diverse functional role, which in turn may provide its own selec­

tive advantage. The problem of interpreting the relationship between two paralogous 

sequences is that, while their functional divergence may have been significant, two 

paralogous sequences will still share a large degree of generic similarity.

A natural extension of the concept of pairwise analysis is to compare more than two 

sequences in the hope of revealing regions of commonality that are directly attributable 

to the preservation of function. Proteins sharing functional and evolutionary relation­

ships can be grouped into families, and it is the analysis of these that is described in 

the following chapter.
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Chapter 3

Secondary Databases
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To negate some of the problems associated with the analysis of sequence data, as out­

lined in the previous section, requires the investment of great deal of time and effort. 

However, collating individual sequences into families can have beneficial effects above 

and beyond merely addressing the problems of pairwise sequence analysis:

•  The collective knowledge held by a set of proteins is clearly more comprehen­

sive than that available for a single member, and this can compensate for any 

omissions or errors found in the annotation of individual members.

• The observation of a diverse set of orthologous members of a protein family 

can provide an insight into the common properties of the family and may, by 

inference, describe features of their shared ancestry.

3.1 Gene families

A gene family represents a set of proteins that are related via descent from a com­

mon ancestor; i.e., those sequences that share a homologous relationship (See section 

2.4). Just as the process of pairwise alignment allows conserved regions between two 

sequences to be identified, the similar procedure of generating a Multiple Sequence 

Alignment (MSA) can highlight conservations apparent in many members of a gene 

family. In an MSA, sequences are aligned relative to the alignment itself rather than 

any given sequence. Gaps are introduced so that regions of conservation are brought 

into line: an insertion in one member will produce a corresponding column of gaps to 

be introduced into each of the other sequences so as to preserve the alignment of the 

other residues. The signature of conserved and divergent regions in an MSA represents 

the evolutionary history of the protein family: highly mutated regions average out into 

non informative sections; while structurally or functionally important regions, which 

are less tolerant to mutation, stand out as islands of calm. An analogy can be drawn 

between the MSA and a photograph taken with an extended exposure time. In such
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a picture, incidental or fast moving objects are seen as averaged blurs, while integral 

static objects appear clarified in comparison (figure 3.1).

Reconstructing the evolution of a gene family is not trivial: one must attempt to in­

fer information about the ancestry of a protein from a limited number of, usually bi­

ased, samples of modem organisms. Mutational events during replication and cell 

division are rare, especially in higher order eukaryotes. Nevertheless, the time-scales 

over which comparisons can be made are often huge. It is common to attempt to iden­

tify the similarities between proteins from, for example. Homo sapiens. Drosophila 

melanogaster and Saccharomyces cerevisiae, which represents an ancestral relation­

ship dating back thousands of millions of years. While not all proteins undergo muta­

tional change at the same rate, generally the accumulation of change over such a time 

period is not limited merely to a few point mutations.

An important point should be made about the concept of a gene family. The above 

definition is complicated by the phenomenon of modularity: a commonly observed 

occurrence involving independently evolved domains becoming fused into a single 

protein. In such a protein, a global MSA demonstrates quite a different evolutionary 

story to a local alignment of either of the two domains. Therefore, when referring to 

a gene family, one must be careful to ensure that the comparison is really being made 

between proteins that share the same ancestor. The definition of a family can therefore 

be extended to include situations in which quite unrelated proteins share a modular 

domain (e.g., SRC homology domains), as long as the alignment is only made within 

the boundaries of the domain.

The principles and process behind the construction of an MSA will be outlined in the 

following section.
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Figure 3.1: Long exposure photography is analogous to multiple sequence alignment.

(a) Taking a photograph over an extended time period captures the 
relationship between objects and time: transitory events are repre­
sented by ghost-like trails on the image; while the clarity of fixed 
immovable entities is emphasised.

(b) An alignment of bacterial cell-division proteins (ftsZ). The alignment repre­
sents the sampling of discrete events over evolutionary time and combining them 
in a single image. Evolutionarily conserved regions are emphasised; whereas sec­
tions containing multiple mutations seem undefined and indistinct. The colouration 
serves to highlight those residues that are well conserved over the whole alignment.
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3.2 The Multiple Sequence Alignment

An alignment of sequences from a gene family can be used to reconstruct evolutionary 

events. It is possible to demonstrate the reconstruction by starting from the perspective 

of the ancestral sequence. Consider the pairwise comparison of two proteins (A and 

B) that have only recently diverged:

Sequence A= AAVIG 

Sequence B= APVIG

Their inherent relationship can be described by assigning an arbitrary common an­

cestor; which, as this departure only represents the accumulation of a single point 

mutation, can be either of the sequences. Therefore the relationship can be described 

as follows:
Ancestor AAVIG

A->P

Progeny AAVIG APVIG

Any subsequent mutations can also be placed in the context of this relationship:

AAVIG

A - > P

AAVIG APVIG
A - :^ y /  \ ^ > T  \ ^ - > G

CAVIG TAVIG APVGG

G - > o \

CAVID PPVGG

Each additional sequence represents the smallest possible step, i.e., the accumulation 

of a single point mutation. From an alignment of only those sequences on the tips 

of the branches, the most modem of each lineage, it is possible to infer the common 

ancestral sequence (figure 3.2).
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Figure 3.2: An alignment of the most modem sequences of each lineage.

CAVID
TAVIG
PPVGG

Most clearly the ancestor must have been a sequence with valine in the third position. 

On closer inspection, it is likely that alanine may be found in position 2, isoleucine in 

4 and glycine in 5. The consensus is x-A-V-I-G, which, considering the original se­

quence was AAVIG, is a very good approximation. This simplistic example considers 

sequences that have not diverged significantly, and therefore the answer was not diffi­

cult to obtain. In a real MSA, significantly divergent sequences not only create greater 

ambiguity in the assignment of the consensus but also make the process of initially 

aligning the sequences complex. However, the greater the number of samples that are 

taken into account, the better the reconstruction method performs.

Obtaining an MSA from a set of sequences assumed to belong to a family is not a 

trivial exercise, and, as a consequence, a multitude of automatic and manual tools exist 

to facilitate this process.

3.2.1 Creating a multiple sequence alignment.

The starting point for the analysis of a family of related sequences is the creation 

of a set of members. The set should be as representative and divergent as possible. 

An alignment editor (SOMA? (Parry-Smith and Attwood, 1991), SEAVIEW (Galtier 

et al., 1996), CLUSTALX (Thompson et al., 1997), CINEMA (Parry-Smith et al., 

1998)) can be used to manually place this set of sequences into the context of the 

alignment. Sequences are then moved, slid laterally, until residues appear to align, in­

serting gaps where necessary to model insertion or deletions. This process is repeated 

for each member of the group until an optimal arrangement is found that appears to re­
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fleet the mutational history of the family (figure 3.3 shows a simplified representation 

of an alignment, while figure 3.4 shows an example of a real alignment.).

Figure 3.3: A graphical representation of the alignment process.______
The following pictures illustrate the process o f aligning members o f a gene family (a). As 
an intermediary step pairwise alignments between sequences sharing significant identity 
can be performed (b), and then these can be used to direct subsequent alignments between 
the pairs (c)

a) Four sequences (unaligned).

b) Pairs of sequences sharing high identity are aligned.

c) The result consists o f an alignment between the two pairs.

Automation of this procedure suffers from similar problems to those faced by pairwise 

alignment algorithms: the time taken to achieve an optimal result is dependent on the 

lengths of the sequences aligned (due to the large numbers of calculations required). 

In an MSA, this problem is further exacerbated by the need to align more than two 

sequences. A solution to the pairwise alignment problem (section 2.4.3.2) is to reduce 

the number of initial observations that are considered in an ensuing alignment, the ob­

jective being to increase the speed of the procedure with little reduction in the accuracy 

of the alignment. Analogously, most MSA algorithms rely on a recursive process of 

aligning closely related sequences, followed by subsequent alignment of the resultant 

alignments. This speeds up the process at the cost of fixing alignments at an early stage 

and ignoring information learned during the remainder of the steps (Thompson et al..
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1994, 1997).

Figure 3.4: The acylphosphatase family unaligned and aligned (PRINTS: ACYLPH- 
PHTASE).

This family o f proteins catalyses the hydrolysis o f the carboxyl-phosphate bond of  
acylphosphates, and are found in organisms as diverse as Homo sapiens and Drosophila 
melanogaster.

î Ç ï ! U B 5 î i ' “ - * ‘ * “ - W v e e i v | a e v e 8 v c # N W » s » e i L |v v e l v « ( e 8 * a l v S e |v S e i > « l « v |A M e |L e  
*cvM.H0iCEi i A M L B v |i— v ta g v K a v c W M iA — A W  i g w ^ v — » i a v i a i v t a f W a i  V mI lM  
Acvo.cHCK i A H * i 3 | v § l | v g a 9 v g « v ] y g l T g g « B l L i i  V jg v U g J U o l v g à S A l e f  « A |v g |L g | | |g i  J |  
A C V O ,B O V M lM A Ï ë l l1 |î l |v p |i r 6 |v B t i F F B lH * A p H K l ê L V H v H M B g g v |s | l |6 F A e * V * |l
ACVM.HUAtANli A«R L « B v S *  v IÔ »  v R / C M " *  S ü  A*» I *  V V îg 'M W

ACyu.RAT A # P i* * v g 0 v # a v g g v c # * , . , v ; E # A # l # g L v g # v # 0 i 0 M # v # e # v # a g M #
M  L QK A MtÂ I Ml V |S «  v n a . c a M  l I  v v g | v | | i a a M  v f o l  vMPtH v |a m

ACVP.DRCA.E M A iH 8 - 1 c |H ||v g e |v g g v g |r R A H  A L g |A |g L g l M |i c A ^ P W la i v g 4 l  i e * P  A#A#VA<#ggl
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(a) The unaligned sequences of the acylphosphatase family.

ACV M .»«^J|A  L H [ a |«  A L ■  V M H i  v |«  V c 
fcCVM.HOftâ?
ACVO^CHICK- 
ACVO.BOW >9 ma|

-  ■ ■■
ACVM.ANAPl i
ACyP.DPOkt, M A |a v l â |C f H v / |« |v f f t v |^
acvo.human:. ..

'#gv**#;Lt#Am|L,i*q#cwhs«*##v;g#i#g#*A_ 
f«ivgiv»<mW|AllWL gl

(b) The sequences of the same family aligned by shifting members left and right.

3.3 Multiple Sequence Analysis

An MSA, as described in the previous section, can be used to describe the evolutionary 

relationship between members of a family; for example, as illustrated in figure 3.5, se­

quence A shares a closer common ancestor with sequence B than with C. A description 

such as this can form the basis of a phylogenetic analysis.

The construction of an MSA often leads to the identification of specific regions of

conservation that are shared between all sequences in the family, which correspond to

structural or functional elements of the protein (figure 3.6). These regions or motifs*

(variously called features or blocks) accordingly represent preservation of function

across the population as it diverges from an ancestral organism, the assumption being

* A motif is often described as an ungapped sub-alignment.
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Figure 3.5: The ancestral relationships of three sequences (A, B and C)

Ancestor A/B/C

Ancestor A/B Ancestor C

Sequence A Sequence B Sequence C

Figure 3.6: An MSA can lead to the identification of functionally preserved motifs

The alignment of the four sequences o f figure 3.3 could reveal strongly conserved 
motifs, which have not accumulated insertions or deletions. An example motif from the 
acylphosphatase family is shown alongside one of the regions (from the alignment in figure 
3.4).

S V D Y E V F G R V Q G V C F R

S V D Y E V F G T V Q G V C F R

S V D Y E IF G R V Q G V C F R

S V D Y E IF G K V Q G V C F R
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that mutations occurring within these motifs were not tolerated and are therefore not 

observed in the descendants. An obvious hypothesis is that the essence of the fam­

ily (i.e., what defines the physical properties of the family) is somehow encoded in 

these regions. Therefore, if the demonstration of significant similarity between two se­

quences has the ability to confer membership on unannotated proteins, then the MSA 

must also be able to confer such information. Indeed, as the MSA represents the cu­

mulative history of many sequences, the description of a relationship is more specific 

than that obtained via a pairwise comparison.

The following sections detail a number of different methods and models that aim to 

describe a family using an MSA as a starting point. Once a family is described, the 

resultant descriptor can be used to identify regions of similarity in unannotated se­

quences. This process is analogous to the pairwise analysis procedures outlined in the 

previous chapter.

3.3.1 Scanning a sequence

The scanning of a sequence is the process by which a linear string of amino acids is 

sequentially searched for the existence of a pattern. Each of the following methods 

produce models that describe either the whole MSA or a representative section of it. 

A model can be used to search for an alignment between itself and a query sequence. 

As with pairwise alignment, the demonstration of significant similarity can be used to 

infer a homologous relationship. The simplistic sliding window approach is commonly 

used for most models of this type, the exception being the Profile and Profile-Hidden 

Markov Model, which will be discussed later (sections 3.3.7.1 and 33.1.2).

3.3.1.1 The sliding window

The scanning process can be interpreted as the sliding of a fixed-width window along 

the length of a query sequence. At each position, the window reveals a sub-sequence
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(figure 3.7) with which the model can be compared and scored. Scoring such an align-

Figure 3.7: Scanning a sequence with a fixed window.

ABCDEF

ABCDEF

AB CDEF

As the window slides over the sequence it reveals each subsequent overlapping region.

ment is dependent on the methods used to describe the model. The following sections 

will describe the properties of some of the methods and the scoring schemes that are 

used to reveal similarity.

3.3.2 The Motif

At the simplest end of the spectrum are those methods that concentrate on the single- 

most informative region of a family of proteins. This can be defined as a portion of 

sequence that all members must share, i.e., the most characteristic motif of a family. 

For example, a suitable motif could be the active site of a catalytic enzyme: the conse­

quences of mutations within this motif may be functionally disastrous, and therefore, 

it is likely to be well conserved. A motif is a short stretch of residues selected from 

each of a number of sequences. Its properties include its length and depth; i.e., the 

number of residues it contains and the number of sequences in which it is observed 

respectively (figure 3.8).
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Figure 3.8: A motif, including notation that describes its generalisation.

A motif is a stack of amino acid strings.

It can be generalised as:

ACDEFGH
ACDEKGH
ACRDKGH
ACEERGH

aa\^\ aa\^2 ^^1,3
aa2 \̂ 0432,2 002,3 <202,m

00^1 00 ,̂2 00/2,3 ' ■ ' 00/2 ///

Where aaij is the amino acid in sequence /, and at position (column) j.

3.3.3 Selecting a motif

As with manual multiple sequence alignment, manual motif selection is facilitated by 

the use of alignment editors (Galtier et al., 1996; Parry-Smith and Attwood, 1991; 

Parry-Smith et al., 1998; Thompson et al., 1997). Particular note should be made of 

colouring schemes, which in this context prove to be invaluable assets. A colouring 

scheme reflects concepts of sequence similarity (discussed previously, section 2.4.1.2) 

such that residues that share physical and chemical properties are grouped and coloured 

similarly (figures 2.8,2.9 and 2.10). The manual selection of motifs is a subjective pro­

cess. The use of colouring schemes in alignment editors facilitates the identification of 

regions that show significant conservation by highlighting the distinction between con­

servative mutations and mutational drift. As expert identification of motifs is a time- 

consuming and laborious task, a number of automated methods have been developed 

that reduce the level of human intervention (Brocchieri and Karlin, 1998; Depiereux 

and Feytmans, 1992; Henikoff et al., 1995; Smith and Smith, 1992).

Once a motif is extracted, the issue of how it is used in a similarity search is raised.
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Motifs are usually encoded so as to provide a suitable score, with which the signifi­

cance of an alignment can be determined.

3.3.4 Encoding a motif

It can be cumbersome to describe a motif in the way shown in figure 3.8, so a number of 

simplified representations have been developed to model the motif. A totally conserved 

motif may be described as the sequence of residues of which it is comprised; e.g., 

DALIR, which indicates that all sequences in the family contain these amino acids, in 

that order, at some position along their length. However, total conservation is rare, and 

it is much more likely that a motif may contain sequences that deviate in one or more 

positions while maintaining a general pattern (figure 3.8).

3.3.4.1 The regular expression

There are a number of ways of describing a motif without having to detail each mem­

ber subsequence. A Regular Expression (RE) may be composed that formulates the 

rules for residues appearing at the various positions of the motif. The motif in figure 

3.9 can be described as D-A-[LA]-[IA]-R. In positions 3 and 4 of the RE, the am­

biguity is represented by the use of square brackets: in these positions, either of the 

included residues could have been observed. If, within a motif, a column contains one 

or more residues that do not conform to any grouping (such as those described in sec­

tion 2.4.1.2), then the column can effectively be ignored by replacing the allowed list 

of residues for that column with an x (figure 3.10).

Also included in the RE formalism is the ability to define the exclusion of a particular 

residue, thereby indicating what is allowed and/or not allowed at a particular position. 

This feature enables closer modelling of the motif. For example, a motif modeled by 

D-A-{P}-[LI]-R cannot contain a proline residue in the third column. Proline is an 

amino acid that significantly affects the conformation of the protein backbone, and
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Figure 3.9: A simple motif, and its RE.

motif D A L I R
D A A I R
D A L A R

RE D - A - [LA] - [lA] - R

Figure 3.10: A simple motif with a single divergent position, and its RE.

motif D A L A R
D A L I R  
D A L Y R 

RE D A L X R

certain protein secondary structural elements may not form in its presence. Therefore, 

its exclusion may be strongly indicative of a particular motif.

A longer RE is less likely to be observed in a random, or non-family, sequence. For 

example, the short expression D-I-V-L is found in 2,028 sequences of the 260,981 

sequences in the OWL sequence database (Bleasby et al., 1994, release 30.3), D-I- 

V-L-P in 104 and D-I-V-L-P-L in only four. However, an expression that contains 

flexible positions is more prone to ambiguity, D-[AVI]-V-[AVI]-P is found 657 and the 

longer D-[AVI]-V-[AVI]-P-[AVI] is found in 126. Therefore, care must be taken to 

ensure that the pattern derived from an MSA is specific enough to distinguish family 

members from non-family members.

An extension of this method relies on establishing ‘groups’ of residues: based on 

shared physical and chemical properties; e.g., the group of hydrophobic amino acids 

“IVLAM” can be described as a single token, h, which represent the whole group. This 

allows a familial signature to be defined as a pattern of group types rather than the rigid 

encapsulations of REs; e.g., D-[AVI]-V-[AVI]-P may be better described as D-h-V-h-P, 

as this pattern tolerates any hydrophobic residue in positions 2 and 4. This approach
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is supported by the fact that these residues share similar properties. So, although the 

sequences selected to represent the family provide no evidence for the existence of 

the residues L or M, they are residues frequently found to substitute for those in the 

observed set (see section 2.4.2.2). The added flexibility means that, rather than being 

rejected due to incomplete sampling of the family, a previously unidentified member 

may be welcomed into the family; e.g., D-[AVI]-V-[AVI]-P does not identify the sub­

sequence DLVLP even though leucine is very similar in nature to alanine, valine and 

isoleucine. However, the gain in sensitivity made by this approach may be offset by 

a loss of selectivity: a pattern may become too unspecific and therefore matches se­

quences that are not related to the family from which it was derived.

A RE is not usually scored against a sub-sequence to produce an alignment score: it 

merely matches a sub-sequence or not. This apparent simplicity means that searching 

a database of sequences with patterns like these can be very fast.

3.3.4.2 The frequency matrix.

The frequency matrix is a simple matrix that can be used to describe a motif, and to 

generate a similarity score for the alignment of a sub-sequence with the motif. Its 

construction relies on considering each column of the alignment as a single entity, 

and literally counting the number of amino acids of each type, such that a column 

of observed frequencies is built. Using the motif representation shown in figure 3.8, 

equation 3.1 can be used to create a normalised frequency matrix (figure 3.11).

N
1.5a

Fa = t l -  8 .=  <!
1 if aai c = residue^

(3.1)
0 if aa,-̂ c /  residue^

In this calculation, c is the chosen column, a is an amino acid taken from the alphabet 

of 20 amino acids (A..Y), / is a sequence from the N  sequences in the alignment, 5a 

is a function returning 1 if a is found in sequence i (in the column in question), and
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0 otherwise, and aaî c is a lookup which identifies the residue at row (sequence) i and 

column c of the motif.

The frequency matrix is used to score each window of the sequence in the attempt to 

identify the region of commonality. The scoring process and subsequent steps are de­

tailed below, but first an alternative model for the description of the motif is discussed.

3.3.4.3 The ‘profile’ motif.

Known variously as a profile (Gribskov et al., 1990), a Position Specific Scoring Ma­

trix (PSSM) (Henikoff et al., 1990) or a weight matrix, this model is constructed from 

the aligned sub-sequences of a motif using a substitution matrix to provide scores for 

both observed amino acids and unobserved ones. The application of the ‘Gribskov 

profile’ (Gribskov et al., 1987), to the description of a motif requires a minor simpli­

fication. A ‘Gribskov profile’ is a scoring matrix composed of a number of columns, 

corresponding to allowed sequence tokens (the alphabet of amino acids, or nucleotides, 

and gaps ) and a number of rows, corresponding to positions along the alignment. The 

method includes scores associated with gaps, which highlights the fact that the aim of 

a profile is to encode more than just the most conserved regions of the alignment. The 

simplification made for ‘motif profiles’ is that gap-scoring features are not required.

The ‘profile’ is constructed from a motif, like the one shown in figure 3.8. For each 

member of the alphabet of amino acids, the frequency of occurrence in an aligned 

position is calculated. This produces the frequency matrix, as described in section

3.3.4.2 and figure 3.11. The subsequent calculation, shown in equation 3.2, based on 

the normalised frequency matrix (taking each element from the matrix; i.e.. Fa from 

equation 3.1) and comparison with a substitution matrix (Dayhoff, 1978; Henikoff and 

Henikoff, 1992), computes the score attributed to the occurrence of each amino acid 

type (r) at every position (c) in the matrix:
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Figure 3.11 : A frequency matrix, and its normalised form, based on the example in fig­
ure 3.8. Frequencies for the occurrence of each residue in each column are normalised 
for the number of sequences.

The frequency matrix

columns[c)
— G 1 2 3 4 5 6
A 4 G G G G G G
C G 4 G G G G G
D G G 2 1 G G G
E G G 1 3 G G Grows(r) F G G G G 1 G G
G G G G G G 4 G
H G G G G G G 4
K G G G G 2 G G
R G G 1 G 1 G G

The normalised frequency matrix

columns{c)
— 0 1 2 3 4 5 6
A 1.0 G G G G G G
C 0 l.G G G G G G
D G G G.5 G.25 G G G
E G G G.25 G.75 G G G

rows(r) F G G G G G.25 G G
G G G G G G l.G G
H G G G G G G l.G
K G G G G G.5 G G
R G G G.25 G G.25 G G

The alphabet used {A,C,D,E,F,G,H,K,R} represents the subset of the available
amino acid alphabet observed in the example motif. In a complete example, all 2G
letters of the amino acid alphabet would be represented.
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20
Prof(rc) =  S  ^aSubs(aaa,aar) (3.2)

a~\

This produces a profile (figure 3.12), with rows corresponding to members of the al­

phabet and columns representing the positions across the motif, which can be used in 

the same way as the frequency matrix to provide a score for each sub-sequence.

In the calculation of a profile, the normalised frequency matrix can be populated with 

weighted frequencies of residues for each position. The weighting function can be 

used to compensate for redundancy in the motif. When a motif contains many closely 

related sequences, the weighting function can be used to give the rarer, more distantly 

related sequences a more balanced representation (equation 3.3).

;?i I 1 if aui c = residue^
WFa = '- ^ ------------  { ' (3.3)

^  vy. I 0 if aoi^c f  residue^
1=1 ^

In this calculation, c is the column chosen, a is an amino acid taken from the alphabet 

of 20 amino acids (A..Y), i is a sequence from the N  of the alignment, the factor w, is 

the weight of i, 0  ̂is a function returning I if a is found in i (in the column in question), 

and 0 otherwise, and aat̂ c is a lookup which identifies the residue at row (sequence) i 

and column c of the motif.

3.3.5 Motif Scoring

As the sliding window reveals each sub-sequence, the scoring matrices are used to 

provide a score for each of the matching residues, the total score being the sum of 

the individual matches between positions of the sub-sequence and the matrix. The 

differences between the scoring procedures, as well as the actual scores produced and 

their significances, are discussed in the following sub-sections.
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Figure 3.12: An example motif, frequency matrix and profile matrix (derived) from the 
PRINTS database.

The motif (PRINTS:5HT1BRECEPTR, motif 1) is the first motif in the 5HT1B receptor 
fingerprint. It is composed of 7 sequences and covers a region of 12 residues.

1 2 3 4 5 6 1 8 9 10 11 12
Ë E Q C 1 Q C A P P P P
E E Q G I Q C A P P P P
E E Q G I Q c A P P P P
E E p G A Q c A P P P P
E E F G A Q c A P P L A
E E P G A R c A P P P P
E Q P S R L c S P P A S

The frequency matrix composed from the above motif.

i 2 3 4 5 6 7 8 9 IG 11 12
A ü G 0 0 3 G 0 6 G 0 1 1
B G G G G G G G G G G G G
C G G G G G G 7 G G G G G
D G G G G G G G G G G G G
E 7 6 G G G G G G G G G G
F G G G G G G G G G G G G
G G G G 6 G G G G G G G G
H G G G G G G G G G G G G
/ G G G G 3 G G G G G G G
K 0 0 0 0 G G 0 0 0 0 G G
L G G G G G 1 G G G G 1 G
M G G G G G G G G G G G G
N G G G G G G G G G G G G
P G G 4 G G G G G 7 7 5 5
Q G 1 3 G G 5 G G G G G G
R G G G G 1 1 G G G G G G
S G G G 1 G G G 1 G G G 1
T G G G G G G G G G G G G
V G G G G G G G G G G G G
W G G G G G G G G G G G G
X G G G G G G G G G G G G
Y G G G G G G G G G G G G
Z G G G G G G G G G G G G

The profile is constructed from the frequency matrix and the BLOSUM 62 (Henikoff and 
Henikoff, 1992) substitution matrix.

1 2 3 4 5 6 7 8 9 10 11 12
A - l ü -1 0 -1 0 1 11 -9 G 35 - l ü -1 0 - 2 G
B IG 8 -11 - 8 -22 -7 -3 0 -17 -2 0 -2 0 -22 -17
C -4G -38 -3 0 -27 -8 -27 90 -1 -3 0 -30 -22 -22
D 2G 17 -5 - 8 -2 4 -8 -3 0 -17 -1 0 -1 0 -15 -1 0
E 5G 45 2 -17 -17 9 -4 0 -8 -1 0 -1 0 -1 2 - 8
F -3G -3 0 -35 -28 -12 -25 -2 0 -2 0 -4 0 -40 -31 -3 4
G -2G -2 0 -20 51 -2 0 -22 -3 0 G -2 0 -2 0 -2 0 -1 4
H G G -11 -18 -21 - 4 -3 0 -18 -2 0 -2 0 -21 -18
I -3G -3 0 -30 -37 8 -22 -IG -11 -3 0 -3 0 -19 -25
K IG IG -1 -17 -1 4 7 -3 0 - 8 -1 0 -1 0 -11 -8
L -3G -28 -25 -37 1 -11 -IG -11 -3 0 -3 0 -17 -25
M -2G -17 -11 -27 -1 1 -IG -1 0 -2 0 -2 0 -12 -17
N G G -11 1 -21 - 4 -3 0 -15 -2 0 -2 0 -21 -15
P -IG -IG 35 -18 -2 0 -1 4 -3 0 -1 0 70 70 44 47
Q 2G 24 15 -17 -15 34 -3 0 - 8 -1 0 -1 0 -11 - 8
R G 1 -7 -18 -IG 11 -3 0 -1 0 -2 0 -20 -18 -17
S G G -5 5 -5 - 4 -IG 14 -1 0 -10 - 8 G
T -IG -IG -IG -15 -5 - 9 -IG 1 -1 0 -1 0 - 8 -5
V -2G -2 0 -20 -28 8 -17 -IG - 2 -2 0 -2 0 -12 -17
W -3G -28 -31 -21 -3 0 -21 -2 0 -3 0 -4 0 -4 0 -35 -37
X -IG -IG -15 -8 -5 - 9 -2 0 G -2 0 -2 0 -15 -1 4
Y -2G -18 -21 -28 -15 -11 -2 0 -2 0 -3 0 -3 0 -25 -27
Z 4G 38 7 -17 -17 17 -3 0 - 8 -1 0 -1 0 -12 -8
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3.3.5.1 Scoring a sequence - the frequency matrix

90

A ‘character-match’ occurs when a residue in the sub-sequence is cross-matched with 

one in the normalised frequency matrix in the correct column. Correspondingly, a 

‘character-mismatch’ occurs if a non-scoring, zero-valued element is revealed; i.e., 

the residue does not reside in the column. The sum of each of the character-matches 

represents the value given to the total score for that sub-sequence. The sub-sequence 

and its associated score can be termed the ‘motif-match’ or simply the match; e.g., 

figure 3.13 shows three sub-sequences of the query being scored against an example 

motif.

Figure 3.13: Scoring the query sequence “SACDEKGHI” against the normalised fre­
quency matrix of figure 3.11.

Each sub-sequence, revealed by the sliding window, is scored against the frequency matrix 
by summing the matches made between residues and columns of the matrix. The sub­
sequences of SACDEKGHI are SACDEKG, ACDEKGH and CDEKGHI and are shown 
on rows 1, 2 and 3 respectively, and the summed scores are shown on rows 4, 5 and 6 
respectively.

1) 5 A C D E K G
2) A C D E K G H
3) C D E K G H I

/11.00 Gi.oo F>o.50 F>o.25 F o.25 G 1.00 H i m
F o.25 F o .75 ^ 0 .5 0

^ 0 .2 5 ^ 0 .2 5

4) 0 -f 0 + 0 + 0.25 -f- 0 + 0 -f 0 = 0.25
5) 1 + 1 -f- 0.5 -f 0.75 + 0.5 -f- 1 + 1 = 5.75
6) 0 -f 0 + 0.25 -f- 0 -f 0 -f 0 -f 0 = 0.25

The scores in each column represent the percentage occurrence of each residue, hence 

by summing these scores across all columns a second normalisation is requires to re­

turn the total score for a motif to a comparable form. The summed score is divided 

by the number of columns to produce the final normalised score, which is similar in 

nature to the measure of identity provided by the percentage identity to the alignment 

between two sequences. However, as this score is conceptually different to the pair­
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wise percentage identity, it will be referred to as the Weighted Percentage IDentity 

(W-PID).

W-PID scores of the sub-sequences in figure 3.13 (3% 82% and 3% respectively),

indicate the likelihood of the match being correct. One in particular infers the iden­

tification of the true position of the motif in this sequence. The W-PID score has the 

advantage of making the score given to a motif match directly comparable to all other 

matches, which, in turn, facilitates the discrimination between true and false matches. 

Using these values, a user is able to make a judgment based on the relative magnitudes 

of two scores and thus differentiate between them: the difference between a match 

scoring 95% and 5% is immediately obvious. However, not all matches are this clear 

cut; indeed, while scores of matches in the 0-15% range are usually false, those be­

tween 15% and 30% are notoriously difficult to judge (the ‘Twilight Zone’: Doolittle 

(1986)).

3 3.5.2 Scoring a sequence - the ‘profile’ motif

The ‘profile’ motif, like the frequency matrix, provides a look-up table to score the oc­

currence of each residue type in each position of the alignment between the matrix and 

the sub-sequence. However, unlike percentage identity scores, profile scores are not 

directly comparable in their raw state. These scores are utilised because they conform 

to a set of conditions that facilitate the use of a statistical model (section 2.4.4.2). The 

use of the profile scoring method can therefore provide, for each match to each motif, 

a score and importantly a probability value describing the mathematical significance 

of that score.

'0.25 / 7 * 100 = 3% (There are seven columns in the scoring matrix)
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3.3.6 Multiple Motifs

As motifs represent local, rather than global features, when an MSA is constructed, 

multiple regions of conservation are often apparent. Therefore, a natural extension of 

the single motif methods is one, in which many motifs are selected to describe the 

family.

The use of more than one region inherently endows the model with greater information 

content. As mentioned previously (section 3.3.2), in a similarity search, longer patterns 

are less likely to be observed by chance. Therefore, in a search, the combined evidence 

of matches to a number of discrete motifs may significantly increase selectivity merely 

by increasing the length of the pattern. An increase in the number of described regions 

also has an effect on sensitivity (the ability to detect weaker relationships). The use of 

a single motif provides a simple black and white diagnosis: a sequence either contains 

a motif or not. However, biological sequences do not usually exhibit such simple 

relationships. The consequence of an inflexible motif (e.g., a RE) is that it may not 

match a sequence merely on the basis of a single unforeseen mutation. As a sequence 

accumulates more and more mutations, even a motif encoded as a frequency matrix 

or a profile may fail to match it. Therefore, using only a single motif, such divergent 

sequences may go unidentified. However, using multiple motifs means that levels of 

stringency below the complete match of a particular pattern can be used to indicate 

family membership. Thereby allowing more deviant sequences to be identified as a 

member of the family: e.g., a sequence matching five of the six motifs that define a 

family is very likely to be related. The consequence is that multiple motifs can both 

add sensitivity and improve selectivity.

There are a variety of implementations of the concept of family identification via mul­

tiple motifs (Attwood and Beck, 1994; Grundy et al., 1997; Henikoff et al., 1995). All 

build upon the MSA and rely on the selection of conserved blocks of alignment; where 

they vary is in both the procedure of motif selection and the encoding of motifs. One
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of the problems that faces the use of multiple motifs is that the method, like the single 

motif methods, discards information from the alignment, while this loss of information 

is on a lesser scale, it is nevertheless obvious when attempting to describe very distant 

relationships.

3.3.7 Whole Alignments

In the natural progression from single to multiple motifs, the next step is to encode 

the whole alignment, without discarding any sequence information. Two distinct ap­

proaches are commonly used to generate familial models from full, or modified MS As: 

Profiles (Gribskov et al., 1990) and Profile-Hidden Markov Models (Profile-HMMs) 

(Eddy, 1996, 1998), the latter being a modification of the former, in which the proba­

bilistic modelling techniques of the Hidden Markov Models (HMMs) have been used 

to alleviate some of the problems inherent in the Profile methods.

3.3.7.1 Profile Methodology

The encoding of a whole alignment requires some consideration of the scoring or pe­

nalising of gaps. The ‘Gribskov profile’ method (Gribskov et al., 1990, 1987) (dis­

cussed in section S.3.4.3) utilises a system of gap penalty multipliers that rely on the 

length of a gap to assign two penalty values (one for starting the gap and one for scoring 

each subsequent gap character, which is similar in concept to the affine gap calcula­

tion (discussed in section 2.4.3.1)). The matrix of figure 3.12 is modified slightly to 

include two extra rows that represent the gap penalty calculation. Alignments between 

sequences and profiles are scored and generated using DP algorithms (Gribskov et al., 

1990), which are necessitated by the requirement to identify gapped regions.
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S.3.7.2 Profile-Hidden Markov Models (Profile-HMMs)

One of the drawbacks of the profile methods are their reliance on the use of ad hoc 

gap scoring schemes: while, a coherent statistical theory has been developed to de­

scribe the ungapped sequence alignment, the scoring of gapped alignments rely on 

empirical estimates of this theory. Driven by this, techniques based on the mathemati­

cal modelling techniques of the HMM methodology, have recently been introduced to 

sequence analysis.

HMMs are general probabilistic models that are applicable to the solution of linear 

problems, e.g., sequences of events or objects, etc. In an MSA, the columns of an 

alignment are linear events, which can be described by minimal connectivity between 

neighbouring states. Consider two neighbouring residues in a sequence matching a 

number of columns of a profile; if residue a matches column n then residue a + \  can 

only do one of three things: match column n +1 ; insert before n + lo r  skip column n 

1 altogether. A Profile-HMM constructed from these three states. Match (M), Insertion 

(I) and Deletion (D), can accordingly describe all possible events in the alignment of 

a sequence to a profile. Each match state emits symbols (residues) in accordance with 

emission probabilities (computed from observed residue frequencies and substitution 

probabilities), and each state is interconnected with transition probabilities (see figure 

3.14).

It is possible to model a single sequence using a Profile-HMM; however, it is uninter­

esting, being merely a collection of match states strung together. Insert a second se­

quence into the model, and I and D states become populated, as insertion and deletions 

are made relative to the initial sequence allowing for the alignment of the second. As 

this process is continued, the overall picture of the MSA is created, with each transition 

between states being calculated from the addition of sequence data. Rather than the ad 

hoc selection of gap penalties in the profile method, this model extracts probabilities 

for gaps from the alignment itself, thus creating a more contextual score/penalty for
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Figure 3.14: The Profile-HMM is characterised by its match, delete and insert states 
and the allowed transitions between them.

Ml M2 M3

D1 D2 D3

each gap. As illustrated above, the Profile-HMM does not require the pre-construction 

of an M SA, as it can be trained from unaligned data.

3.3.8 Summary

The methods and models outlined in section 3.3 provide an overview of the attempts 

made to describe the biological relationships observed in M SAs. Most of these models 

have been developed for, and used in, the generation of databases of familial descrip­

tors. Coupled with suitable search tools, these databases provide means for the analy­

sis of novel sequences. However, unlike pairwise analysis, these descriptors inherently 

provide a more specific description of the essence of a family of proteins. Databases 

that store these descriptors, alongside annotation compiled specifically about the fam­

ily in question, further enhance the benefit of making such a search, with the guarantee 

that any significant result will also be informative. A number of the most popular 

examples of these databases are described in the following section.
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3.4 Pattern and Family Databases

In general, secondary or family databases store data derived from a set of sequences 

that share a commonality; i.e., a gene family or a domain, as discussed in section 

3.1. Such resources can be divided roughly into two camps: pattern databases and 

sequence-cluster databases. The former represent those that store familial descriptions 

in the forms mentioned in section 3.3. The latter are represented by databases that use 

pairwise similarity and multiple sequence alignment to collect together, or cluster, all 

putative members of a gene family.

3.4.1 Pattern Databases

These resources are characterised by the methods used to encode family membership, 

the extent to which this is supplemented with annotation, and the search facilities that 

are provided to identify these patterns in query sequences.

3.4.1.1 PROSITE

The RE is the basis of the encoding of familial patterns in the PROSITE database 

(Hofmann et al., 1999). Development of such signatures involves careful selection and 

re-selection of patterns that ‘only’ characterise members of the family in question. A 

database search with the pattern at each stage of development is required to ensure that 

no non-family member also contains this pattern by chance. Once it is determined that 

the RE is capable of doing its job ( i.e., selecting all true members of the family and 

avoiding false positives and false negatives), a corresponding database entry is created 

and extensive family-specific annotation is included. A PROSITE database entry con­

tains: a description of the RE pattern; annotation, which provides a concise description 

of the protein family; and a list of sequences that match the pattern (including an indi­

cation of their status; i.e., true-positive, false-positive or false-negative).
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Searching PROSITE is facilitated by the ScanProsite Web interface^, which, when 

provided with a query sequence, returns a simple list of matching patterns.

3.4.1.2 PRINTS

The PRINTS method (Attwood and Beck, 1994) is the least automated of the multiple- 

motif based methods. Motif selection, i.e., determination of its start position and width, 

and its isolation, is performed by hand via manipulation of a seed MSA with an align­

ment editor (Parry-Smith et al., 1998). Each extracted motif is comprised of a simple 

block of amino acids (figure 3.8).

The initial seed MSA rarely encompasses the full extent of the biological family that 

is to be described. So, the set of motifs that are extracted from this alignment are sub­

jected to an iterative process, in which motifs are used to extract further family mem­

bers from sequence database (currently a composite of SWISS-PROT and TrEMBL 

(Attwood, 2000)). New sequence information is then used to augment the motifs, and 

the process is repeated. Cycles of scanning and motif augmentation continue until 

no more sequences match the motifs. At this convergence point, the motifs can be 

considered as having reached their full descriptive potential. Known collectively as a 

fingerprint, this set of motifs is stored in the PRINTS database. Each entry is supple­

mented with information detailing the biological function or role of the protein family 

that it describes, including: cross-references to family members in primary resources 

and to patterns in secondary databases; links to relevant references and articles, and a 

concise review of functional characteristics and other salient features of the family.

Searching the PRINTS database of fingerprints was originally facilitated by a WWW

interface to X-finger (Perkins and Attwood, 1996). This software enabled users to

submit a single query sequence, and returned a list of the highest scoring motifs, and

fully matching fingerprints.

ĥttp://expasy.cbr.nrc.ca/tools/scnpsitl.html

http://expasy.cbr.nrc.ca/tools/scnpsitl.html
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3.4.1.3 Blocks

Blocks (Henikoff and Henikoff, 1991) is a database that uses multiple ungapped sub­

alignments, termed blocks, to represent family membership. In the original version 

of the database blocks were extracted from families identified by PROSITE, while 

later versions used both PROSITE and PRINTS. Alignment and detection of conserved 

regions is performed by an automated system called PROTOMAT (Henikoff et al., 

1995). Blocks are stored in their raw form in the database, but each sub-sequence is 

supplemented with additional weighting information. The weight assigned to a sub­

sequence represents a measure of its divergence from others in the block. Redundancy, 

attributable to over representation of particular sequences or residues, can be reduced 

by giving high weights to sequences that are under represented and low weights to 

those that are over represented. This weighting is then taken into account when the 

score, for matching a query sequence to a block, is calculated. Blocks+ (Henikoff et al.,

1999) is a recent extension to the Blocks database, which extends family coverage by 

taking additional blocks from families defined in PRINTS, Pfam-A (Bateman et al.,

2000), ProDom (Corpet et al., 2000) and DOMO (Gracy and Argos, 1998).

Blocks can be searched using the BLIMPS search software, which involves the conver­

sion of blocks into PSSMs (Henikoff and Henikoff, 1996) before aligning and scoring 

a query sequence against each block. Sequences matching two or more blocks are 

given scores and p-values, which indicate the mathematical significance of the given 

scores.

3.4.1.4 Meta-MEME

Another development of the multiple motif methodology, which uses a different pro­

cedure for encoding and identifying motifs is Meta-MEME (Grundy et al., 1997). This 

method, like Blocks, starts from unaligned sequences and selects motifs using a proce­

dure called MEME. Using this method, motifs and the distances between them, are en-
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coded using a single probabilistic model, the HMM. The advantage of using an HMM 

to describe the combination of residue frequency data and the distances between con­

served regions, is that both types of data (residue frequencies, and lengths of gap) can 

be modelled using identical mathematical tools within the paradigm’s framework. This 

is an important point, as inter-motif distances are characteristics that can aid the differ­

entiation between true and false family members. The previously mentioned multiple 

motif methods generally either use an arbitrary means of scoring, or penalising, inter­

motif gaps that exist beyond the observed norm, or ignore them completely.

The HMM formalisation has already been outlined (section 3.3.7.2); however, it is 

important to emphasise that the advantage of their use is that all features of the align­

ment can be scored using a consistent probabilistic method, including point mutation 

and insertion/deletion events: ad hoc penalties do not need to be derived. The Meta- 

MEME model simplifies the HMM model to only represent match states and insert 

states. A motif is described by a succession of match states, the number being equal to 

the number of columns in the motif, the spacing between the 1st motif and the next is 

captured as the probabilities of transitions into, around and out-of an insert state (see 

figure 3.14, on page 95, for an illustration of transition states in the more generalised 

Profile-HMM). Each motif is thus described as an individual chain of match-states, and 

then the whole model is stitched together, so that an insert state describes the distances 

observed between each pair of neighbouring motifs in the alignment.

3.4.1.5 IDENTIFY

The IDENTIFY database is generated using the EMOTIF method (Nevill-Manning 

et al., 1997). Two main principles underlie this method. Firstly, the patterns used 

to describe motifs are REs, which differ from PROSITE REs in their use of substi­

tution groups. These groups represent sets of residues frequently observed to substi­

tute for one another, while substitutions between, or outside of, groups are observed 

less frequently (based on alignments from the Blocks and HSSP (Dodge et al., 1998)
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databases). Figure 3.15 shows an example of three such substitution groups.

Figure 3.15: Substitution groups are sets of amino acids found to occur together in 
columns of aligned sequences. Arranging these hierarchically provides an opportu­
nity to describe relationships between the residues in the groups, and provides a clear 
representation of each of the overlapping sets.

EKQR ILMV

ILVKQR EKQ AST

EQ ST AS

A / \
KR

Arranging these groups hierarchically allows a column in a motif to be described by 

the smallest, most biologically meaningful group possible. For example, a column 

containing the residues E, K, R and A may be described by [EKRA] (figure 3.16). 

However, it is likely that the observation of alanine in this position is significant only 

in indicating that there is little conservation at this position. A better solution would 

be to model the sequences containing E, K and R using a defined set such as [EKQR] 

(the smallest group to contain E, K and R from figure 3.15) and describe the other 

sequences appropriately, i.e., [A].

Indeed, the second feature that characterises the EMOTIF method is its use of multiple 

specific REs to represent a single motif, in order to describe a relationship containing 

subdivisions (i.e., a super-family contains families, and a family contains sub-families). 

This feature also introduces an increased level of selectivity into a sensitive search. A 

motif that describes a common feature of a super-family may contain many columns 

that, due to divergence, contain little or no information. An RE can only describe 

such a position with a wild card, which allows any residue to match. However, as 

in the previous example, an alternative is to create two REs that together provide full 

coverage of the super-family, while individually producing a more specific diagnosis 

of family membership (figure 3.16).

IDENTITY'S REs are created from motifs in the PRINTS and Blocks databases. The
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Figure 3.16: An RE forced to represent a divergent relationship may ultimately be too 
unselective; however, by defining two, more specific, REs this region can be described 
more effectively.

K P L
E P L

Sub-family 1 E P I
K P V
R P A
A P ASub-family 2
A P A

An RE that describes the whole family is: [EKRA] P [ILVA]
Using only defined substitution groups this yields: X P X

This motif can be described by two, more selective REs: [EKRQ] P [ILV]
A P A

database of REs is searched by the EMOTIF-search program, which provides a facility 

for the submission of a query sequence and outputs a simple ranked list of RE matching 

sub-sequences.

3.4.1.6 Profiles

‘Profiles’ (Bucher et al., 1996) are based on a generalisation of the Gribskov profile 

(Gribskov et al., 1987), which was described in sections 3.3.4.3 and 3.3.7.1. The 

profiles database is most commonly used as complementary resource to PROSITE. 

Profiles are used, due to the enhanced sensitivity of the models, as supplements to 

PROSITE REs in cases where patterns fail to discriminate, e.g., domains or other re­

gions of high sequence divergence. The Profiles database exists as a distinct entity 

maintained by the Swiss Institute for Experimental Cancer Research (ISREC) group; 

however, only those that are verified and annotated, by the ISREC group, are dis­

tributed with PROSITE.
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Profiles can be searched using the ProhleScan software^. Submitting a query sequence 

to this resource results in a score sorted list of profile matches.

3.4.1.7 Pfam

Pfam (Bateman et al., 2000) contains family MS As and Profile-HMMs. For each fam­

ily, a small number of representative sequences are aligned to produce a seed align­

ments from which Profile-HMMs are built. An iterative process of refinement follows 

the building of the initial seed HMMs, in which a non-redundant set of sequences 

‘pfamseq’ (Bateman et al., 2000) are searched with the model to establish a complete 

set of family members. Once the optimal seed alignment is identified (i.e., one that 

allows the model to identify all members of the family), thresholds are set to establish 

a cut-off between true and false matches to the model. The above is a description of 

the development of the Pfam-A component of the resource, complementing this set of 

annotated and validated alignments (a short description of the family, and a threshold 

value accompany each of the Pfam-A alignments) is an automatically generated set of 

Profile-HMMs (Pfam-B). Pfam-B entries are generated from automatically clustered 

sequence groups derived from the ProDom database.

Pfam is searched using ‘hmmsearch^’ and ‘hmmpfam’ from the ‘hmmer’ package^. 

Alignments between sequences and the model are presented in a score-sorted list. A 

WWW server implementation of the search facility^ provides graphical representations 

of results, which includes an overview of the different domains involved in a family (if 

applicable).

'^http;//www.isrec.isb-sib.ch/software/PFSCAN_form.html
^Hmmsearch is a package that allows the user to search a single HMM against a database of se­

quences, while hmmpfam conversely allows the searching of a single sequence against a database of 
HMMs.

ĥttp://hmmer. wustl.edu/
 ̂http ://w w w. sanger.ac. uk/Pfam

http://www.isrec.isb-sib.ch/software/PFSCAN_form.html
http://hmmer
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3.4.2 A summary of secondary databases.

The ‘pattern’ clearly holds greater potential to describe the familial relationships inher­

ent between sequences than a single sequence alone. A single sequence represents a 

distinct point in evolutionary history. The comparison of two points can provide a view 

of the heritage of individuals; however, this perspective cannot compare to the wealth 

of knowledge that is made available by the addition of more and more points. As more 

sequences are added to the model, any apparent conservation reflects the evolutionary 

preservation of that thing that defines the family of proteins - its structural or functional 

characteristics. Using patterns to identify relationships, in order to confer functional 

annotation, can therefore be more precise. The pattern holds the key to the identifi­

cation of specific features, which, due to the fact that they have been conserved, may 

be inferred to be vital functional components. Whereas, the identification of general 

similarities between two sequences cannot achieve such a specific level of diagnosis.

The very act of pattern derivation means that time and effort have to be expended 

to create familial descriptors. As a consequence of this, the total family coverage in 

the pattern databases represents a small proportion of the available sequence family 

data. Unfortunately, due to this discrepancy, the negative result of querying such a 

resource may be ambiguously interpreted: a query sequence could indeed be novel 

and have no observed relatives; alternatively, and most likely, it belongs to a family 

not yet described by the database in question. Most pattern databases contain non­

overlapping distributions of family descriptors, and hence, in the case of a negative 

result, it is important to query as many resources as are available.

While it is true that some families are only represented in individual databases, a de­

gree of overlap does exist. This, however, does not constitute redundancy: each type 

of pattern (RE, motif, profile, HMM, etc.) has a different range of properties. Con­

sequently, the use of multiple resources can provide independent evidence, which is 

essential for testing the reality of a diagnosis.
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REs, in general, tend to lack sensitivity: they are commonly either detected or not, 

which leaves little room for ambiguity. Conversely, long REs can be very selective, 

which means that confidence in their assignments is usually high. PROSITE REs are of 

varying length and quality, however, so care should be taken to obtain complementary 

evidence from another source. The IDENTIFY methodology (section 3.4.1.5), clearly 

shows that, even for REs, sensitivity can be obtained through careful manipulation of 

the original data.

The use of multiple motifs introduces the potential to identify both sensitive (in which 

a sequence is allowed to match less than all motifs) and selective results (in which a se­

quence must match all motifs to be considered a member of the family). The methods 

adopted by PRINTS and Blocks, produce composite descriptors of familial member­

ship, in which the black and white question of “does a sequence match or not?” can 

be softened to introduce shades of grey that allow distant family-members to match, as 

well as close members. Also the use of different scoring schemes, such as frequency 

matrices and PSSMs, to score matches to motifs provide varying improvements in sen­

sitivity; e.g., the introduction of a substitution matrix into the scoring scheme means 

that residues not observed in the original alignment can still be scored, on the basis 

of likely substitutions. Families that have become too divergent to contain signifi­

cant stretches of well conserved alignment, cause motif-based models (especially those 

which rely on the absence of gaps) to suffer from the absence of conserved columns. 

Motifs derived from such MS As are forced to be short, and as a consequence may to 

fail in distinguishing true from false.

By utilising the potential for the entirety of each member sequence to be used in a de­

scription of a family, those resources that describe whole alignments can gain greater 

levels of sensitivity. In the search for distant family members, it is important to be able 

to extract as much information as possible from the MSA. Clearly, of benefit in this 

task is a model that can utilise information-rich regions, which are normally discarded 

by motif based methods. However, with an increase in sensitivity there is often a
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concurrent loss in selectivity. The use of the whole alignment often requires the incor­

poration of regions so divergent that no meaningful alignment can be made; however, 

these still contribute to the model. As the proportion of divergent unaligned sequence 

increases with respect to the conserved aligned regions, the probability of identifying 

random sequences (false positives) increases. A loss of selectivity usually means that 

the distinction between true positives and false positives is difficult to define.

The problems associated with making this distinction can be illustrated with the naive 

derivation of a Profile-HMM to describe the a-haemoglobin family. The first step 

being to derive a representative set of a-haemoglobin sequences to represent a seed 

alignment (figure 3.17). If these sequences are then aligned and a Profile-HMM is 

generated from the alignment, then all members of the seed alignment score highly 

when probed with the model. Searching a sequence database with the model reveals 

many high scoring matches, a high proportion of which are a-haemoglobin . However, 

a significant proportion of these matches come from the closely related 6-, and, less 

closely related, p-haemoglobins, which do not belong to the seed alignment and should 

therefore be considered false positives (figure 3.18).^

Both profile-based resources, mentioned in the previous section (sections 3.4.1.6 and 

3.4.1.7), use a threshold cut-off score that represents the observed limit of family mem­

bership (sequences scoring below this value are not considered members of the family), 

which allows selectivity to be regained. While, the a-haemoglobin example, shows 

that selectivity can be a problem, it also illustrates the suitability of these models for 

the description of distant relationships. A number of the low scoring sequences that 

match the profile, built solely from a  sequences, represent distant relationships; includ­

ing myoglobins and invertebrate globins, as well as the other members of the vertebrate 

haemoglobin family.

To summarise, the benefits of using patterns over single sequences, in searching for

*It will be demonstrated in a later section that it is possible to create a fingerprint, using the PRINTS 
method, which is capable of making the distinction between the a  and ^-haemoglobin families.
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Figure 3.17: The seed alignment for the generation of a Profile-HMM of the a- 
haemoglobin family. The figure shows a section (the first 50 residues from each se­
quence) of the file used as input for the hmmbuild program (from the HMMer suite).

H B A 1 _ P L E W A /1 -1 5 2  --K L T A E D K  HNVKAIWDHV KGHEEAIGAE A LY R --M FC C  M PTTR IY FPA
HBA_AMBME/1 - 1 5 2  -FKLSGED K ANVKAVWDHV KGHEDAFGHE A L G R --M FTG  lEQ TH TY F PD
H B A _ C A IC R /1 - 1 5 2  --V L S E E D K  SHVKAIWGKV AGHLEEYGAE A L E R --M F C A  Y PQ TK IY FPH
H B A _ S P H P U /1 -1 5 2  --M LSA SD K  ANVKAIWSKV CVHAEEYGAE T L E R --M F T V  YPSTKTYFPH
H B A _ M E S A U /1 -1 5 2  --V LSA K D K  TNISEAW GKI GGHAGEYGAE A L E R --M F F V  YPTTKTYFPH
H B A _ R A T /1 -1 5 2  --V LSA D D K  TNIKNCWGKI GGHGGEYGEE A L Q R--M FA A  FPTTKTY FSH
H B A _ L Y N L Y /1 -1 5 2  --V LSA A D K  SNVKACWGKI GSHAGDYGTE A L E R --T F C S  FPTTK TY FPH
H B A _P A N T S /1 - 1 5 2  --V L S S A D K  NNVKACWGKI GSHAGEYGAE A L E R --T F C S  FPTTK TY FPH
H B A 1_B 0S M U /1 - 1 5 2  --V LSA A D K  GNVKAAWGKV GGHAAEYGAE A L E R --M F L S  FPTTK TY FPH
H B A _ B O V IN /l-1 5 2  --V L SA A D K  GNVKAAWGKV GGHAAEYGAE A L E R --M F L S  FPTTKTY FPH
H B A _E Q U Z E /1 - 1 5 2  --V L SA A D K  TNVKAAWSKV GGNAGEFGAE A L E R --M F L G  FPTTK TY FPH
H B A _PH Y C A /1 - 1 5 2  --V L S P A D K  TNVKAAWAKV GNHAADFGAE A L ER --M FM S FPSTK TY FSH
H B A _ E L E M A /1 -1 5 2  --V LSD K D K  TNVKATWSKV GDHASDYVAE A L E R --M F F S  FPTTK TY FPH
H B A _ C E B A P /1 -1 5 2  --V L S P A D K  TNVKTAWGKV GGHAGDYGAE A L E R --M F L S  FPTTKTY FPH
H B A _H U M A N /1-152 --V L S P A D K  TNVKAAWGKV GAHAGEYGAE A L E R --M F L S  FPTTKTY FPH
H B A 1 _ G A L C R /1 -1 5 2  --V L S P T D K  SIVKAAWEKV GAHAGDYGAE A L E R --M F L S  FPTTK TY FPQ
H B A 1 _ T A D B R /1 -1 5 2  - -V L S P E D K  NNVKAAWSKV GGQAGDYGAE A L E R --M F L S  FPTTKTY FPH
HBAD_AEGM O/1 - 1 5 2  --M LTADDK KLIQATWDKV QGHQEDFGAE A L Q R --M F IT  YPPTKTYFPH
H B A _ C Y P C A /1 -1 5 2  --S L S D K D K  AAVKGLWAKI SPKADDIGAE A L G R --M LT V  YPQTKTYFAH
H B A_C ARA U/1 - 1 5 2  --S L S D K D K  AW KALW AKI GSRADEIGAE A L G R --M L TV  YPQTKTYFSH
H B A _C A T C L /1 - 1 5 2  --S L S D K D K  ADVKIAWAKI SPRAD EIG AE A L G R --M LT V  YPQTKTYFAH
H B A 1 _ N 0 T A N /1 -1 5 2  --S L S D K D K  AAVRALWSKI GKSADAIGND A L S R - -M I W  YPQTKTYFSH
H B A 1 _ S A L I R /1 -1 5 2  --S L T A K D K  SW KAFW GKI SGKADW GAE ALGRDKMLTA YPQTKTYFSH
H B A _ S A L S A /1 -1 5 2  --S L T A R D K  SW NAFW GKI KGKADWGAE A L G R --M L TA  YPQTKTYFSH
H B A 1 _ X E N L A /1 -1 5 2  --L L S A D D K  K H IK A IM PA I AAHGDKFGGE A L Y R --M F IV  NPKTK TYFPS
H B A 3 _ R A N C A /1 -1 5 2  - -S L S A S E K  A A V LSIV G K I GSQGSALGSE A L T R --L F L S  FPQTKTYFPH
H B A _ L A T C H /1 -1 5 2  --G LT A A D K  TLIK SIW G K V  EK ETEA IG VE A L V R --L F K C  FPQSKVYFDH

relationships between sequences, are obvious. Single sequences merely contain snap­

shots of the evolution of a family, while an MSA represents a reconstruction of a por­

tion of the evolutionary history of a family. Amongst the many ways of representing 

the MSA, there are advantages and disadvantages to each method, and, no one pattern 

database can claim to provide a full coverage of all the protein families available in 

the primary databases. When using patterns to identify novel sequences, or to hunt for 

unidentified members of families, the most profitable approach is to use multiple re­

sources. Complementary approaches can provide independent confirmation of unclear 

results, and provide the most complete coverage of gene families by utilising the fact 

that these databases contain non-overlapping distributions.

The next sections illustrate attempts made to address some of the deficiencies that have 

been highlighted in this section, starting with a composite resource, and moving on to 

more automated approaches at describing familial relationships.
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Figure 3.18: Searching a SWISS-PROT/TrEMBL composite database of sequences 
(version 37_9) with the Profile-HMM generated from the alignment shown in figure 
3.17, produced the following result. _______________

Shown below is a selection of the complete set of results which runs to 750 lines. 
Before the divide, the first 25 results are shown, which are all a-haemoglobin se­
quences. After the divide, the first non-a sequences appear (highlighted in red) 
with scores still deemed to be highly significant. Lower still are some remaining a  
sequences (blue).
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3.4.3 A composite pattern database - InterPro

InterPro (Apweiler et al., 2000) is a composite resource that currently provides access 

to PROSITE, PRINTS and Pfam. It is built at the EBI as a collaborative project be­

tween the researchers responsible for its parent resources. An InterPro entry contains 

no familial discriminator of its own; each merely exists to combine, rationalise and 

standardise the access to patterns, motifs and models from the parent resources. An 

entry contains: links to parent databases; family-specific annotation, including litera­

ture references (mostly taken from PROSITE and PRINTS); information concerning 

biological relationships between families described by entries, and a list of all sequence 

members of the family it describes.

The importance of a resource such as this comes from the advantages inherent in com­

bining a number of different search tools into a single coherent unit. Each database and 

method, described in section 3.4, provides a non-overlapping perspective on the task 

of identifying homologous relationships, either in the coverage of different families or 

in the use of different methods of encoding this information. This diversity means that 

the result of a similarity search against an individual database can be corroborated or 

disproved by searching an alternative database. However, each resource is situated in 

a different geographic location, and while the WWW facilitates seamless transitions 

between these locales, it is still necessary to perform a number of different searches 

and manually assemble a coherent result. InterPro enables the disparate models and 

family descriptions of a number of pattern databases to be accessed and searched us­

ing a single set of tools, within one location, and for the results to be displayed in one 

consistent interface.

3.4.4 Family or clustered sequence databases

Clustered family databases provide a level of coverage of sequence space that cannot 

be realistically expected from the pattern databases. They are automatically gener­
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ated from primary sequence data, and only some benefit from limited manual input. 

The coverage of a clustered database is limited only by the availability of primary se­

quence data. Often, resources of this type either use, or contain, references to pattern 

database entries, and therefore play an important role in maintaining up-to-date famil­

ial relationships within sequence databases. The clustering process has already been 

described in the context of the construction of BLOSUM matrices, and refers to the 

process by which sequences are collected into clusters on the basis of shared similarity 

(section 2.4.2.2). Examples of such databases include ProDom (Corpet et al., 2000), 

SBASE (Murvai et al., 2000) and PIR-ALN (Srinivasarao et al., 1999).

ProDom is automatically generated from SWISS-PROT and TrEMBL using a com­

bination of automated methods including the use of Pfam models and PSI-BLAST 

(Altschul et al., 1997) to determine the familial membership of clusters of sequences. 

A number of domains or families described by ProDom are validated by human ex­

perts. SBASE consists of sequence clusters generated by demonstrating significant 

levels of similarity between members, based on BLAST database searches. PIR-ALN 

is a database of alignments derived from annotation in the PIR database: containing 

super-family, family and homology domain classifications. Sequences are hierarchi­

cally clustered into these classifications and then alignments are generated using a 

combination of automated and manual approaches.

Together, these databases share the advantage of being able to represent large numbers 

of families, with the corresponding disadvantage of lacking detailed annotation. To 

perform a similarity search of these resources requires standard pairwise tools such 

as BLAST or FASTA. The advantage that this has over a search of a standard se­

quence database is that the family membership of every sequence is known prior to 

the search. Therefore, queries matching pre-clustered sequences can be more confi­

dently assigned; i.e., a query sequence matching 10 members of the same family is 

more likely to represent a true match than one matching sequences from 10 different 

clusters.
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3.4.5 PSI-BLAST

PSI-BLAST (Altschul et al., 1997) is a hybrid approach, which, like BLAST, can 

search a database of sequences for pairwise similarities. However, based on the se­

quences identified as high scoring results, PSI-BLAST can generate a profile, which 

can then be used to perform a subsequent search of the same database. This process 

can be iterated, by adding new sequences at each step, until a stable set is identified. 

Unlike conventional profile-based methods, the PSI-BLAST model does not require 

the prior construction of a seed alignment, and this ability to build a profile ‘on the fly’ 

means that this approach is not limited to searching for the subset of families that have 

been characterised by the pattern databases.

This tool is widely used, as it represents an impressive improvement on the simple 

BLAST search; however, care must be taken with respect to the iterative process of in­

troducing new sequences to the profile. The inclusion of any particular sequence into 

the profile dramatically improves the score that it will receive, which is to be expected: 

if a sequence, such as a divergent member of a family, is weakly matched by a profile, 

then its inclusion should modify the model in its favour. However, this applies equally 

for divergent and unrelated sequences; hence, the augmentation of a profile with an 

unrelated sequence can significantly impair its diagnostic ability. In the extreme, this 

effect can cause the original family to be replaced by the incursion of the unrelated 

family. Even though this phenomenon is true of all profile methods, its potential is 

ever more present in an approach like PSI-BLAST, because the construction of the 

profile is less carefully supervised: subsequent iterations can be automated.

This chapter has described the analysis of multiple sequences, and the potential for 

MSAs to be used to define patterns capable of describing the evolutionary relation­

ships inherent in protein families. A range of pattern databases have been constructed 

and patterns are commonly used in the task of in silico functional identification of
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novel protein sequences. The following chapter will discuss the PRINTS database in 

greater detail, with particular focus on the research activity required in the generation 

of patterns based on protein families.



112

Chapter 4

PRINTS
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4.1 Introduction

The following sections detail the development of fingerprints: the familial descriptors 

of the PRINTS database. Developing fingerprints has contributed to this thesis in two 

ways. Firstly, as a purely research-led exercise, a number of protein families have 

been studies and fingerprints have been derived for deposition in PRINTS (especially 

the haemoglobin and tRNA synthetase families). Secondly, understanding the process 

that underlies the derivation and use of fingerprints drove the research required for the 

development of a new PRINTS search tool (Chapter 5).

4.2 The development of fingerprints

Fingerprinting a family of proteins (the target family) can be seen as the progression 

through a number of sequential steps (figure 4.1):

• alignment of a set of sequences that are representative of the target family (i.e., 

they must be sufficiently diverse to describe the target family),

•  regions of conservation are identified in the alignment, and marked as motifs,

•  motifs are extracted, and encoded in order that they can be used to identify 

matching sub-sequences,

• a primary protein sequence data-bank is searched for matches to these motifs,

• sequences identified in the search are evaluated to identify those that match all 

motifs in the fingerprint,

•  the original motifs are augmented with sequence information from these fully 

matching sequences,

• then the search and augmentation process is repeated (iterated) each time new 

fully matching sequences are identified.
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•  the process completes when no more new sequences are identified.

Figure 4.1: An overview of the fingerprinting process.
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Primary Sequence Database

Once a target family has been fully represented, the fingerprint is annotated, and de­

posited into the PRINTS database. The target family can represent a protein super­

family, a family, a specific sub-family or sub-type, or it can be as diverse as to represent 

a promiscuous shared domain.

4.2.1 Alignment

The initial alignment of a family of sequences is a critical step in the derivation of a 

fingerprint. The chosen sequences must be representative and care must be taken to se­

lect a set that, while sharing the common features of the family, are not biased towards
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a closely related sub-set. Using such a subset can result in a fingerprint that is skewed 

towards the over-represented group. This considered selection process is particularly 

important in the derivation of a super-family fingerprint. Modelling a super-family 

requires sequences to be selected as evenly as possible from each of the different fam­

ilies, and sub-families, that comprise it. In figure 4.2 a super-family is represented as 

the collection of all sequences from sub-families A-G. Selecting candidate sequences 

for a super-family MSA should ideally take into account all sub-families. For example, 

sampling heavily from A, B and C, produces an alignment that favours a diagnosis of 

the ‘ABC’ family and not the ‘DEFG’ family, while sampling from both is more likely 

to provide a representative seed.

Figure 4.2: The selection of sequences is a critical step in the description of an align­
ment.

Superfamily {ABCDFFG}

Family {ABC}

A B C D

Family {DFFG

G

Once a candidate set of sequences has been identified, the MSA is constructed. The 

manual alignment of sequences essentially represents an incremental pairwise align­

ment process, which is extended through the addition of distant relatives (to broaden 

the scope of the MSA) and close relatives (to facilitate the identification of conserved
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regions). Manual alignment is often supplemented with judicial use of an automated 

alignment tool, which is commonly followed by manual re-alignment.

4.2.2 Motif Extraction

The manual alignment process is influenced by the requirement to identify regions 

of conservation that are suitable for the excision of ungapped motifs. Therefore, the 

objective is to produce alignments that contain blocks of aligned sequence separated 

by unaligned gapped regions. From this seed MSA, the most conserved regions are 

selected and extracted to produce the ‘initial’ set of motifs (figure 4.3).

Figure 4.3: The fingerprint ALPHAHAFM was derived from this alignment of a  
haemoglobin sequences. The boxes highlight the sub-sequences extracted to become 
the initial set of motifs. (Motif 1 is shown, in full, in figure 4.4)

«»nvép*|f A%t

4.2.3 Iteration

4.2.3.1 Scanning and matching sequences

Each motif, in turn, is scanned against all of the sequences in the primary database 

(currently a SWISS-PROT/TrEMBL composite (Attwood et al., 2000)) to produce a 

list of potential matches ranked by score. The n-single scoring method, designed to 

enhance the signal to noise ratio of motif scores (Parry-Smith, 1990; Parry-Smith and 

Attwood, 1992), is computed for each sub-sequence match to the motif (see figure 4.5).
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Figure 4.4: Motif 1 from the ALPHAHAEM fingerprint (figure 4.3).

DHVKGHEEAIGAE 

DHVKGHEDAFGHE 

GKVAGHLEEYGAE 

SKVCVHAEEYGAE 

GKIGGHAGEYGAE 

GKIGGHGGEYGEE 

GKIGSHAGDYGTE 

GKIGSHAGEYGAE 

GKVGGHAAEYGAE 

GKVGGHAAEYGAE 

SKVGGNAGEFGAE 

AKVGNHAADFGAE 

SKVGDHASDYVAE 

GKVGGHAGDYGAE 

GKVGAHAGEYGAE 

EKVGAHAGDYGAE 

SKVGGQAGDYGAE 

DKVQGHQEDFGAE 

AK ISPK ADDIG AE 

AK IG SR ADEIG AE 

A K ISPRA DEIGA E 

SKIGKSADAIGND 

G K I  SGKADWGAE 

GKIKGKADWGAE 

PAIAAHGDKFGGE 

GKIGSQGSALGSE 

GKVEKETEAIGVE

The scoring and ranking procedure, performed by the ‘scan’ program (a component 

of the ‘Algorithms and Data Structures for Protein sequence analysis’ (ADSP) suite 

(Parry-Smith, 1990; Parry-Smith and Attwood, 1992)), is repeated for each motif. The 

result is a sorted list of scoring matches to each motif (figure 4.6) . Analysis of these 

lists is performed by the ‘compare’ program (also a component of ADSP^). While the 

fingerprint is a composite structure, which is the sum of its motifs, ‘scan’ produces 

individual lists for each motif (hit-lists). Therefore, to identify matches to the finger­

print requires rationalisation of these lists. ‘Compare’ does this by providing motif- 

match information from the perspective of the sequence: i.e., the question becomes 

how many motifs does a sequence match (rather than which sequences are matched 

by each motif). The rationale is that a random sequence may match a single motif by

chance alone, but the probability that it will match two or more diminishes rapidly. So,

’ The scan and compare programs were originally only made available for the VMS operating system. 
The updated scan and compare programs that are currently used for the development of PRINTS have 
been made available by W. Wright (unpublished data).
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Figure 4.5: N-single scoring of motif matching sub-sequences.

For each motif, the maximum achievable score is calculated: taking the frequency 
of occurrence of residues in each column of the motif, and selecting the maximum. 
Shown below are an example motif and a representation highlighting the frequen­
cies of the residues in each column.

A C E G F N W
A C E G F N W
A c E 1 F N Y

A3 Cb Es G2 Fb Nb W2
II Yi

The highest scoring sequence is ACEGFNW (3H-3-f3-f2-l-3-l-3-l-2 =  19) which 
is then multiplied by the number of residues in the motif (7) (19 * 7 =  133).

When a query sequence is scored against the motif, its score is given as a percentage 
of the maximal n-single score. For example, the sequence ACEHFNT (3 -I- 3 -1- 3 -f 
0-1-3-1-3-1-0=15) matches in five of the seven possible columns, therefore its score 
is multiplied by five (5 * 15 =  75). As a percentage of the maximal n-single score it 
is 75/133*100 =  56.4%.
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Figure 4.6: A hit-list of matches to a single motif.

Below is a list of sub-sequences matching motif 1 of the ALPHAHAEM fingerprint (figure 4.4). 
Each line in the hit-list contains the following information about each match: its rank in the list, 
its percentage n-single score, the sequence’s identity code and accession, the position of the match 
within the sequence (start and end points), some parameters relating to the number of times the 
sequence in question has matched, and finally, the actual sub-sequence that matches the motif. Only 
the top 15 matches are shown; in this case, the list extends down to 2000 matches, the majority of 
which represent low scoring chance matches.

HitNo Score Id Code Ace No Start End Toe Moc Motif
1 100.00 HBA_MESAU P01945 15 27 5 1 GKIGGHAGEYGAE
2 99.36 HBA_CERAE P01926 15 27 5 1 GKVGGHAGEYGAE
3 99.36 HBA_MACAS P21766 15 27 5 1 GKVGGHAGEYGAE

, 4 99.36 HBA_MACFA P21767 15 27 5 1 GKVGGHAGEYGAE
5 99.36 HBA_MACMU P01925 15 27 5 1 GKVGGHAGEYGAE
6 99.36 HBA_MACNE P19002 15 27 5 1 GKVGGHAGEYGAE
7 99.36 HBA_MACSI P21768 15 27 5 1 GKVGGHAGEYGAE
8 98.22 HBA_ANSSE P01985 15 27 5 1 GKIGGHAEEYGAE
9 98.22 HBA_LARRI P08260 15 27 5 1 GKIGGHAEEYGAE
10 97.37 HBA_MACSP P07402 15 27 5 1 DKVGGHAGEYGAE
11 97.37 HBA_MANSP P08258 15 27 5 1 DKVGGHAGEYGAE
12 97.07 HBA_HORSE P01958 15 27 5 1 SKVGGHAGEYGAE
13 96.77 HBA_LORTA P01938 15 27 5 1 EKVGGHAGEYGAE
14 96.47 HBA_CAMDR P01974 15 27 5 1 GKIGGHAAEYGAE
15 96.47 HBA_ONDZI P01944 15 27 5 1 GKIGGHAAEYGAE
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by identifying sequences matching multiple motifs, ‘true’ family members should be 

highlighted. The list of sequences produced by ‘compare’ details those matching all 

n motifs of a fingerprint, n — 1, « — 2, ..., all the way down to matching two motifs. 

Sequences matching all motifs are usually members of the seed alignment; however, 

if new sequences are identified, this indicates that the full extent of the family was not 

explored by the initial set of motifs.

The following section describes the iterative process required to extend the scope of 

the fingerprint when new sequences are discovered.

4.2.3.2 Iterating

Once a ‘scan’ and ‘compare’ cycle has been performed, the resultant list of motif- 

matching sequences is evaluated. If new sequences are identified as matching all mo­

tifs, and their family membership is corroborated by independent evidence, then this 

indicates that the fingerprint is performing as expected. That is, the fingerprint has 

identified new family members, rather than matching false sequences. These new se­

quences can be used to augment the motifs: by adding each matching sub-sequence to 

the original motifs (figure 4.7).

These augmented motifs become labeled as ‘iteration 2’ motifs, and can be used in a 

subsequent sequence database search (a further ‘scan’ and ‘compare’ cycle).

The scan-compare-augment process is repeated only if each subsequent round of search­

ing uncovers suitable new sequences that can be added to the motifs. When no further 

fully matching sequences are identified, the iteration concludes and the current motifs 

are recorded. At this stage, the motifs are deemed to have achieved their potential, and 

the database entry can be finalised.
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Figure 4.7: The scanning process can identify new sequences, which can be used to 
augment the original motifs.____________________________________________

An alignment (a) yields a set of motifs (b) that can be used to search a database of 
sequences in order to identify matching sub-sequences. In this example, two new 
sequences are identified as matching all four motifs (c). The regions of the new 
sequences that match the original motifs can be extracted and used to augment the 
initial motifs (d). The search can then be repeated with the new motifs.

a)

b)

c)

d)
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4.2.4 Annotating

A PRINTS database entry consists of more than just the sequence data from which 

the motifs are derived. Two crucially important features are the annotation, which 

describes the biological role of the protein family, and the links to other primary and 

secondary databases. Both elements require research. Annotation is usually derived 

directly from literature surveys. While, database searching is essential to verify links 

between a fingerprint’s family and relevant descriptions of it in other resources. An 

example of an annotated fingerprint is shown in figure 4.8 (ALPHAHAEM (PRINTS 

accession: PR00612)), which describes the a  sub-family of the haemoglobin family of 

oxygen binding and transport proteins. Two distinct sections are shown: the database 

cross references (indicated in blue) and the family annotation, which contains both 

literature references (red), and the free-text, family description (magenta).

Annotation is important because it is this information that helps to support a diagnosis 

and provides the biological context of what family membership actually means. As 

a consequence, care is taken to provide a concise description of the key functional 

properties of the family, any super-family, family, or sub-family relationships of rel­

evance and any available biological or biochemical information specific to the motifs 

(the presence of active sites, binding-sites or structural features etc.).

4.2.5 Analysis of the fingerprinting method

The idealised situation, envisaged above, describes the principles of the fingerprinting 

process. However, in reality, creating a fingerprint can be a non-trivial exercise. The 

following discussion aims to describe some of the problems that may be encountered.

A perfect familial discriminator should be totally selective: i.e., no non-family mem­

bers should match any of the motifs in a fingerprint. However, in each of the ranked 

lists of motif-matches (the hit-lists produced by ‘scan’), many false sequences are 

matched (usually with low scores). The occurrence of a motif-match in a hit-list is
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Figure 4.8: Part of the ALPHAHAEM fingerprint, including annotation and external 
database links________________________________________________________

ALPHAHAEM 
P R 0 0 6 1 2  
COMPOUND( 5 )
2 0 - S E P - 1 9 9 6 ;  UPDATE 2 3 - F E B - 1 9 9 8  
A l p h a  h a e m o g l o b i n  s i g n a t u r e
P R IN T S ;  P R 0 0 1 8 8  PLANTGLOBIN; P R 0 0 6 1 1  ERYTHCRUORIN; P R 0 0 5 1 3  MYOGLOBIN
P R IN T S ;  P R 0 0 1 8 8  PLANTGLOBIN; P R 0 0 6 1 1  ERYTHCRUORIN; P R 0 0 5 1 3  MYOGLOBIN
P R IN T S ;  P R 0 0 8 1 4  BETAHAEM; P R 0 0 8 1 5  PIHAEM; P R 0 0 8 1 6  ZETAHAEM
P R O S I T E ;  P S 0 1 0 3 3  GLOBIN
BLOCKS; B L 0 1 0 3 3
PDB; ICMY; IHDA
SCOP;  ICMY; IHDA
CATH; ICMY; IHDA

1 .  DICKERSON,  R . E .  a n d  G E I S ,  I .
H e m o g l o b i n :  S t r u c t u r e ,  F u n c t i o n ,  E v o l u t i o n  a n d  P a t h o l o g y .
THE BENJAMIN/CUMMINGS P U BLISHING COMPANY, 1 9 8 3 .

2 .  KAPP, O . H . ,  MOENS, L . , VANFLETEREN, J . ,  TROTMAN, C . N . A . ,  SU ZUK I,  T .  
a n d  VINOGRADOV, S . N .
A l i g n m e n t  o f  7 0 0  g l o b i n  s e q u e n c e s :  E x t e n t  o f  a m i n o  a c i d  s u b s t i t u t i o n
a n d  i t s  c o r r e l a t i o n  w i t h  v a r i a t i o n  i n  v o l u m e .
PR OTEIN  SC IE NCE 4 2 1 7 9 - 2 1 9 0  ( 1 9 9 5 ) .

3 .  MOENS, L . , VANFLETEREN, J . ,  VAN DE PEER, Y . , PEETERS,  K . , KAPP, 0 . ,  
CZELUZNIAK,  J . ,  GOODMAN, M . , BLAXTER, M. a n d  VINOGRADOV, S .
G l o b i n s  i n  n o n v e r t e b r a t e  s p e c i e s :  d i s p e r s a l  b y  h o r i z o n t a l  g e n e  t r a n s f e r
a n d  e v o l u t i o n  o f  t h e  s t r u c t u r e  f u n c t i o n  r e l a t i o n s h i p s .
M O L .B I O L .E V O L .  13 3 2 4  3 3 3  ( 1 9 9 6 ) .

4 .  WHITAKER, T . L . ,  BERRY, M . B . ,  HO, E . L . ,  HARGROVE. M . S . ,  P H I L L I P S ,  G . N . ,  
KOMIYAMA, N . H . ,  NAGAI, K. a n d  OLSON, U . S .
T h e  D - h e l i x  i n  m y o g l o b i n  a n d  i n  t h e  b e t a  s u b u n i t  o f  h e m o g l o b i n  i s  r e q u i r e d  
f o r  t h e  r e t e n t i o n  o f  h e m e .
BIOCHEMISTRY 34  8 2 2 1  8 2 2 6  ( 1 9 9 5 ) .

G l o b i n s  a r e  h a e m  c o n t a i n i n g  p r o t e i n s  i n v o l v e d  i n  d i o x y g e n  b i n d i n g  a n d / o r  
t r a n s p o r t  [ 1 ] .  Ac p r e s e n t ,  m o r e  t h a n  7 0 0  g l o b i n  s e q u e n c e s  a r e  k n o w n  [ 2 ] .
I t  h a s  b e e n  p r o p o s e d  t h a t  a l l  g l o b i n s  h a v e  e v o l v e d  f r o m  a  f a m i l y  o f  
a n c e s t r a l , a p p r o x i m a t e l y  17  kDa h a e m o p r o t e i n s  t h a t  d i s p l a y e d  t h e  g l o b i n  
f o l d  a n d  f u n c t i o n e d  a s  r e d o x  p r o t e i n s  [ 3 1 .  T h e  g l o b i n  s u p e r f a m i l y  i n c l u d e s  
v e r t e b r a t e  h a e m o g l o b i n s  ( H b ) ; v e r t e b r a t e  m y o g l o b i n s  ( M b ) ;  i n v e r t e b r a t e  
g l o b i n s ; p l a n t  l e g h a e m o g l o b i n s ; a n d  b a c t e r i a l  f l a v o h a e m o g l o b i n s .

T h e  f u n c t i o n  o f  h a e m o g l o b i n s  (H b)  i s  t r a n s p o r t  o f  d i o x y g e n  i n  b l o o d  p l a s m a .  
Hb b i n d s  0 ( 2 )  i n  t h e  r e d u c e d  [ F e ( I I ) ]  s t a t e .  T h e  Hb m o l e c u l e  e x i s t s  a s  a 
t e t r a m e r ,  t y p i c a l l y  o f  t w o  a l p h a  a n d  t w o  b e t a  g l o b i n  c h a i n s ,  w h i c h  f o r m  
a  w e l l - d e f i n e d  q u a t e r n a r y  s t r u c t u r e .  E a c h  m o n o m e r  b i n d s  i r o n  p r o t o p o r p h y r i n  
I X  ( h a e m ) .

T h e  3D s t r u c t u r e s  o f  a  g r e a t  n u m b e r  o f  v e r t e b r a t e  H b s  i n  v a r i o u s  s t a t e s  
a r e  k n o w n .  T h e  p r o t e i n  i s  l a r g e l y  a l p h a  h e l i c a l ,  e i g h t  c o n s e r v e d  h e l i c e s  
(A t o  H) p r o v i d i n g  t h e  s c a f f o l d  f o r  a  w e l l  d e f i n e d  h a e m - b i n d i n g  p o c k e t  
(Hb a l p h a  s u b u n i t s  l a c k  h e l i x  D [ 4 ] ) .  T h e  i m i d a z o l e  r i n g  o f  t h e  " p r o x i m a l "  

H i s  r e s i d u e  p r o v i d e s  t h e  f i f t h  h a e m  i r o n  l i g a n d ;  t h e  o t h e r  a x i a l  h a e m  i r o n  
p o s i t i o n  r e m a i n s  e s s e n t i a l l y  f r e e  f o r  0 ( 2 )  c o o r d i n a t i o n .  C o n s e r v e d  " d i s t a l "  
H i s  a n d  V a l  r e s i d u e s  b l o c k  a n  u n h i n d e r e d  a c c e s s  t o  t h e  s i x t h  c o o r d i n a t i o n  
s i t e  s o  t h a t  a  c o n t r o l l e d  b i n d i n g  o f  s m a l l  m o l e c u l e s  m a y  r e s u l t  o n l y  a s  a  
c o n s e q u e n c e  o f  s i d e  c h a i n  d y n a m i c s  o f  t h e  p r o t e i n  [ 1 ] .  0 ( 2 )  b i n d i n g  r e s u l t s
i n  a  t r a n s i t i o n  f r o m  h i g h  s p i n  t o  l o w  s p i n  i r o n ,  w i t h  a c c o m p a n y i n g  c h a n g e s  
i n  t h e  F e  N b o n d  l e n g t h s  a n d  c o o r d i n a t i o n  g e o m e t r y .  I n  Hb ,  t h e s e  s u b t l e  
c h a n g e s  l e a d  t o  t h e  w e l l  k n o w n  c o o p e r a t i v e  e f f e c t .  A t  t h e  q u a t e r n a r y  
s t r u c t u r e  l e v e l ,  0 ( 2 )  b i n d i n g  i n d u c e s  r e l a t i v e  r e o r i e n t a t i o n  o f  t h e  
[ a l p h a - 1 ,  b e t a  1]  a n d  [ a l p h a - 2 ,  b e t a - 2 ]  d i m e r s .

A l p h a  a n d  b e t a  h a e m o g l o b i n s  a r e  h i g h l y  s i m i l a r ;  t h e  s e q u e n c e  o f  a l p h a  
d i f f e r s  i n  l e n g t h  f r o m  t h a t  o f  b e t a - h a e m o g l o b i n  o n  a v e r a g e  b y  5 r e s i d u e s  
( a c t u a l  l e n g t h s  1 4 1  a n d  1 4 6  r e s i d u e s  r e s p e c t i v e l y ) .  T h e  m a j o r  s t r u c t u r a l  

d i f f e r e n c e  b e t w e e n  a l p h a  a n d  b e t a - f o r m s  i s  t h a t  b e t a - h a e m o g l o b i n s  c o n t a i n  
a n  a l p h a  h e l i x  ( t h e  D h e l i x )  t h a t  i s  m i s s i n g  i n  a l p h a - f o r m s .

ALPHAHAEM i s  a 5 e l e m e n t  f i n g e r p r i n t  t h a t  p r o v i d e s  a  s i g n a t u r e  f o r  a l p h a  
h a e m o g l o b i n s .  T h e  f i n g e r p r i n t  w a s  d e r i v e d  f r o m  a n  i n i t i a l  a l i g n m e n t  o f  2 7  
s e q u e n c e s :  t h e  m o t i f s  w e r e  d r a w n  f r o m  s h o r t  c o n s e r v e d  s e c t i o n s  s p a n n i n g  t h e
f u l l  a l i g n m e n t  l e n g t h ,  f o c u s i n g  o n  t h o s e  r e g i o n s  t h a t  c h a r a c t e r i s e  t h e  
a l p h a  h a e m o g l o b i n s  b u t  d i s t i n g u i s h  t h e m  f r o m  t h e  r e s t  o f  t h e  g l o b i n  f a m i l y  
m o t i f  1 i n c l u d e s  t h e  s e c o n d  a l p h a  h e l i x ,  l e a d i n g  i n t o  h e l i x  3 ;  m o t i f  2 s p a n s  
t h e  C - t e r m i n u s  o f  h e l i x  3 a n d  h e l i x  4 ;  m o t i f  3 i n c l u d e s  t h e  N t e r m i n u s  o f  
h e l i x  5 ;  m o t i f  4 s p a n s  h e l i c e s  6 a n d  7 ,  i t s  C t e r m i n a l  r e s i d u e  b e i n g  t h e  
i n v a r i a n t  p r o x i m a l  H i s ;  a n d  m o t i f  5 e n c o d e s  h e l i x  9 .  S e v e n  i t e r a t i o n s  o n  
O W L 3 0 .1  w e r e  r e q u i r e d  t o  r e a c h  c o n v e r g e n c e ,  a t  w h i c h  p o i n t  a  t r u e  s e t  
c o m p r i s i n g  2 7 2  s e q u e n c e s  w a s  i d e n t i f i e d .  N u m e r o u s  p a r t i a l  m a t c h e s  w e r e  a l s o  
f o u n d ,  a l l  o f  w h i c h  a r e  m e m b e r s  o f  t h e  h a e m g l o b i n  f a m i l y :  m o s t  a r e  b e t a
h a e m o g l o b i n s  t h a t  m a t c h  2 o r  3 m o t i f s .
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a consequence of either, the true identification of that motif in a related sequence, 

or a chance match to an unrelated sequence. When considering a single motif only, 

the hit-list may contain many false matches interspersed throughout the true matches. 

However, if a comparison is made between the hit-lists for two motifs, it is possible to 

identify sequences that are represented in both lists (i.e., the sequences contain matches 

to both motifs). If a motif-match is merely the result of a random event, then the chance 

of two such events occurring in the same sequence is accordingly smaller (the product 

of the probabilities of each of the independent events). As more hit-lists are compared, 

accordingly the number of false sequences matching all motifs drops rapidly.

Ideally, all true sequences should be identified as matching all motifs, and no other 

sequences should make partial matches to the fingerprint, until, at the two motif level, 

chance dictates that some false sequence will occur. Unfortunately, there are frequent 

exceptions to this ideal. The following is a list of some of the commonly encountered 

deviations:

• some ‘true’ sequences fail to match all motifs,

•  some ‘false’ sequences match all motifs

• in some cases it is difficult to distinguish ‘true’ results from ‘false’.

The following subsections discuss these scenarios, and provide insights into these 

problems and their solutions.

4.2.5.1 Some ‘true’ sequences fail to match all of the motifs in a fingerprint

When sequences that would be expected to belong to the family appear as partial 

matches to the fingerprint the indication is that the model is failing for a particular 

reason. Some of the reasons and their solutions are explored below.
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Re iterate with augmented motifs

It is often the case, especially after the very first derivation of the seed alignment, 

that deviations in family outliers are not well represented by the seed. After the first 

iteration, this is commonly manifested as the apparent loss of motif matches from true 

family-member sequences (figure 4.9) . If the result of the first ‘scan’ and ‘compare’

Figure 4.9: Augmenting the original motifs with new sequences can potentially intro 
duce a bias into the process.____________________________________________

An alignment (a) yields a set of motifs (b) that can be used to search a database of 
sequences in order to identify matching sub-sequences. One true family member 
sequences matches all five, but the other misses a match to the 4th motif (c). This 
is observed as the apparent loss of motif 4 from this sequence (d). The indication 
is that the initial alignment was not representative enough to take into accounts 
the deviance of this particular outlier. Augmenting the motifs with only the fully 
matching sequence, by disregarding the partial match, could potentially lead to a 
biasing of the subsequent matches (e).

a)

b)

c)

d)

e)

cycle is the concurrent loss of matches from some sequences and the identification of
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new sequences that match the whole fingerprint, then it is usual to use the new full- 

matching sequences to augment the original motifs. However, in this case using these 

sequences could result in over-training the fingerprint. The effect of over-training is to 

populate the fingerprint with sequences from a particular sub-division of the family to 

the exclusion of other members. Consequently, subsequent iterations may force more 

and more ‘deviant’ family members out of the fingerprint.

Conversely, adding new sequence data to a set of motifs may provide sufficient diver­

sity to allow the failing sequences to once again match those motifs. The solution is 

therefore to carefully monitor the effects of re-iterating, and to be aware of the potential 

signs of over-training (e.g., the dominance of one subtype over another).

Remove motifs

After a number of iterations, or on reaching the final set, if some members of the true 

family still refuse to match all motifs, this tends to indicate one or more poorly chosen 

motifs (figure 4.10). Most often, this observation is confirmed by the absence of the 

same motif/s from all of the sequences that are failing to match all motifs. A solu­

tion for this problem is to remove the offending motif from the fingerprint. Naturally, 

this action reduces the length of the effective discriminator. However, the assumption 

is that the poorly selected motif describes a relationship that only a subset of the se­

quences share, and as a result of this the motif is not performing the role for which it 

was selected.

More complex manifestations of this situation (true sequences missing motifs) can 

be observed (figure 4.11) ; the solution generally requires modification of either the 

number of motifs and/or alterations of the regions of the alignment described by the 

motif/s that fail to discriminate.
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Figure 4.10: If a number of sequences fail to match all motifs after a number of itéra 
tions, this can indicate a poorly chosen motif.______________________________

When an un-representative alignment (a) yields a set of motifs (b) and they are 
used to search a database of sequences, the matching sub-sequences may exclude a 
particular group of true family members. If continued augmentation and iteration 
fail to identify this group as fully matching members (c and d), the indication is that 
a motif may have been incorrectly selected.

a)

b)

c)

d)
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Figure 4.11: The simple examples shown in figures 4.9 and 4.10 may occur in combi 
nation, and can result in the poor representation of more than one outlier group.

Complex patterns of poorly discriminating motifs can result from a combination of 
poorly chosen motifs and over-represented sub-families, often the only solution is 
to re-evaluate the seed alignment in the light of this new information.

4.2.5.2 Some ‘false’ sequences match all motifs of a fingerprint

This is always an untenable situation, because the definition of a family is based on 

its constituent sequences being exclusive members of a set that matches all motifs. 

While it may be acceptable for a ‘true’ member to be missing one or more motifs, 

it is unacceptable for a non-member sequence to match all motifs. The reduction in 

diagnostic power that this represents can be attributed to two problems: the number 

of motifs is too few to discriminate the family over background noise, or the motifs 

fail to distinguish the family from a closely related family. The solution in all cases 

is to significantly re-evaluate the alignment and the selection of conserved regions. In 

most examples, selecting a greater number of motifs will solve the problem of false 

sequences matching too many motifs. However, if it persists as the number of motifs 

increases, it may have more complex roots. The problem may stem from one or more 

of the following failures.
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111 definition of the family

The initial set of sequences (members of the target family) may not be representative 

of the total extent of the true biological family; i.e., the target family may be larger, 

or more deviant than expected. If this is indeed the case, then the first iteration will 

uncover new sequences (which is exactly what happens as part of the standard itera­

tive process). However, iteration can result in the identification of not just members 

of the target family, but related families, or more complex super-family, family and 

sub-family relationships. If such new relationships are discovered, then the effect on 

the distribution of matching sequences may be unexpected (the different groups of 

sequences matching different patterns of motifs in figure 4.11 may well indicate the 

discovery of such relationships). In this case, what is required is a re-appraisal of the 

target family. A suitable re-definition might be to include a closely related family so 

that the fingerprint represents a super-family relationship (motifs 1 and 3 from figure 

4.11 are matched by all groups of sequences (potential families), selecting these to de­

fine a fingerprint would allow all groups to be identified). Another situation may call 

for the strict exclusion of co-related regions so as to create a fingerprint that is selective 

for a single sub-family. This re-evaluation will in most cases require inclusion of new 

sequences into the alignment process (and into the seed alignment) and re-excision of 

motifs.

Ill definition of the conserved regions

Regions that appear conserved within an alignment may also occur with a high fre­

quency in totally unrelated sequences. Motifs derived from these regions will conse­

quently perform badly as discriminators. Areas of low complexity, such as poly-amino 

acid tracts and cysteine rich regions, are notoriously poor regions for defining motifs, 

due to their strong potential to score highly against random sequences. This situation 

is not normally responsible for producing false matches to all motifs, but if the number
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of low complexity regions is high in comparison with the total number of motifs, then 

it may be a plausible effect.

Ill definition of the problem

Sometimes the selection of motifs can be misguided by the restricted number of the 

initial set of sequences. As mentioned previously, a family can be much more extensive 

than initial research may indicate. Another symptom of this short-sightedness is a lack 

of understanding of the nature of domain sharing amongst proteins.

The objective of the fingerprinting method is to identify relatives of a family of se­

quences via the inference of a homologous relationship. However, the path of descent 

is not always the downhill process that classically defines evolution. Horizontal trans­

fer and gene fusion are just two mechanisms, by which confusion can arise over the 

definition of a family membership (Fitch, 2000; Gogarten and Olendzenski, 1999). 

The reuse of domains, within protein evolution, is a clearly observed phenomenon 

throughout biology (Henikoff et al., 1997; Jacob, 1977). So, attempting to construct 

a fingerprint without first taking into account the potential mosaic nature of proteins 

(this can be manifested as the sharing of multiple distinct domains in different num­

bers and positions in unrelated proteins), can lead to confusing results. After the first 

iteration, this can be manifested as the identification of ‘true’ family members (those 

matching all motifs), that, on the basis of annotation, are considered to be false (i.e., 

not belonging to the target family). In this case the problem is a lack of comprehension 

of the scope, and potential, of the fingerprinting method.

In some cases, at the stage of creating a fingerprint to describe a given family, instances 

of domain reuse may be unknown or have gone unnoticed. Thus, the creation of a 

set of motifs from conserved regions across the whole alignment may result in the 

unwitting inclusion of sections of shared domain. In the worst case, the extent of 

the fingerprint could stretch no further than the boundaries of the shared domain. The
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iterative process would obviously fail to discriminate sequences belonging to the ‘true’ 

family from sequences that also share the domain, hence, the initial observation would 

be that many ‘false’ sequences match the fingerprint (figure 4.12).

Figure 4.12: An illustration of two alignments (families A and B) is shown, each 
containing six motifs. The shared motifs (A:5 and 6, B:1 and 2) fall in a common 
domain. Selecting all six motifs, when describing either A or B will result in partial 
identification of the other. Selecting only the shared motifs, independently, from either 
alignment will result in a fingerprint that makes no distinction between the families.

The solution to this situation is to reconsider the problem in the light of the new in­

formation, i.e., motifs selected from a commonly shared domain will not distinguish 

members of one family from the set of proteins that also share that domain. Rather 

than identifying motifs that selectively identify a a particular subset (the original target 

family), it is equally valid to consider modelling the shared domain so as to create a 

new target family, in which the defining characteristic is the possession of this common 

domain; the fingerprinting process can support the definition of either.

4.2.S.3 It is difficult to distinguish false from true

In attempting to define a fingerprint one of the most commonly observed problems is 

the difficulty associated with clearly distinguishing target family member sequences 

from false matches. This is often manifested as ‘false’ sequences matching more than 

one motif and ‘true’ sequences matching less than all motifs, and is apparent for all 

the reasons discussed in the previous sections (poorly selected motifs, poorly defined 

target family, cross reaction with related families, etc.). The illustration in figure 4.13
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describes such an example, where three types of partially matching sequences blur 

the distinction between true matches and false matches. Sometimes the perfect result

Figure 4.13: Partially matching sequence can blur the distinction between true and 
alse.
In this example three types of partial match are illustrated. Motifs defined to de­
scribe the target family (a) appears to cross-react with members of a closely related 
family (b). Also some fragmentary sequences from the target family, match only 
the first three motifs (c). And finally, a number of unrelated sequences make partial 
matches to two motifs (d).

b)

c )

d)

cannot be obtained, even after many iterations and motif alterations. In these cases, it 

is necessary to strive to achieve a degree of separation between true and false, even if it 

cannot be as dramatic as no false sequences matching any motifs and all true sequences 

matching all motifs.

The concept of the partial match has been discussed before; it represents the identifica­

tion of a sequence that does not contain sufficient conservation to be described fully by 

a fingerprint. However, the presence of multiple matching motifs still indicate a signif­

icant relationship between it and the family delineated by a fingerprint. The partially
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matching sequence may reflect a number of different relationships within this family 

of proteins; e.g., it could be a member of a distinct sub-family or a member of a closely 

related sibling family. Because, each of these examples refer to the identification of 

an homologous relationship, partially matching sequences cannot be ignored, indeed 

their very presence highlights the sensitivity of the multiple motif approach.

To summarise, the fingerprint clearly has the ability to describe a confident relation­

ship by being selective and identifying only sequences that match all motifs (therefore, 

maintaining the distinction between true and false members). However, by also con­

sidering matches to sequences that do not demonstrate the same degree of confidence 

in their assignment (partial matches), a level of sensitivity can be achieved.

4.3 Creating fingerprints for the PRINTS database

As an integral part of the research of the fingerprinting process, a number of finger­

prints were derived for deposition into PRINTS. This section will concentrate on a few 

examples that illustrate some of the points made in the previous section.

4.3.1 Haemoglobin

A suitable illustration of the problem of creating fingerprints of closely related families 

can be illustrated by the example of the haemoglobin family (see figure 4.14; and sec­

tion 3.4.2: figures 3.17 and 3.18). Haemoglobin’s primary function is bind oxygen as it 

diffuses into the bloodstream from the lungs, and transport it to outlying tissues, where 

it is released. The most abundant form of this protein exists as a hetero-tetramer of two 

a- and two p-subunits; these subunits share a similar fold to the monomeric oxygen 

binding protein myoglobin. These proteins, particularly a- and P-haemoglobin, share 

significant levels of similarity, as a consequence of their paralogous relationships. At 

the outset of this research, PRINTS contained a single fingerprint that attempted to de-
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scribe the common features of these particular globins. However, because the globin 

family is extensive and diverse, and the haemoglobin fingerprint contained few motifs, 

it proved to be a poor discriminator against both non-haemoglobin globins and other 

unrelated proteins. When distinct families share so much in common, motifs selected 

for their conservation in one family are often also well conserved in the other fami­

lies too. The consequence, of deriving a fingerprint using these motifs is a failure to 

discriminate between members; i.e., the construction a fingerprint from an alignment 

of a-haemoglobins, may identify myoglobin sequences and ^-sequences as well as a. 

To address this problem, it is necessary to construct an MSA that describes both sub­

families, in order to identify regions of overlap and, more importantly, disagreement. 

Figure 4.14 illustrates the example with the the a-,|3-haemoglobin alignment. In this 

example, the whole alignment is very short, although a number of suitable motifs can 

be identified. In particular, where an insertion in the P alignment introduces a gap into 

the a  alignment (a  motif 3 and p motif 2 in figure 4.14 ^), a motif that appears to span 

the gap can function as a good discriminator against p sequences.

Through, the construction of a number of these alignments, the eventual result was 

a redefinition of the haemoglobin family, as a set of selective and discriminatory fin­

gerprints (PRINTS :ALPHAHAEM, BETAHAEM, ZETAHAEM, PIHAEM describ­

ing the a- and P-haemoglobin families, and the Ç and n paralogues of a , respectively).

4.3.2 tRNA synthetases

Aminoacyl-tRNA synthetases catalyse a two-step reaction resulting in the aminoacy- 

lation of transfer-RNA (tRNA): the addition of an amino acid to the 3’ end of a tRNA 

molecule. Each of the 20 amino acids is recognised by a different synthetase, and

each synthetase must identify the set of acceptor tRNA substrates that hold the correct

^In the alignment, a  motif 3 appears to contain gaps. However, this is only necessary in the a,  P 
alignment. The motif is actually selected from the a  alignment, hence motif 3 is a ten residue ungapped 
motif.
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Figure 4.14: a- and |3-haemoglobin share significant similarity. In order to define 
motifs to describe either individually it is necessary to produce an alignment containing 
both (an ‘a-,P-haemoglobin’ family fingerprint) and select motifs from regions where 
there is less commonality within the family alignment and more in the sub-family.

u.ü.itu.ii.u.u.ü.ü.u.u.E'u.u.g r» g' '̂S'ggT^gTg^gg'S g’giag^gaaagai» 3 $ 5 2 2 3 3 3 3

î î ï S ï
  _________________l U J D O l I I I I I I l I I I I I O l I Z I I I I I Z Z Z Z Z Z Z Z

5 i.i  ̂ s ssasaa s-s y

% ##***#**

s S M é é i î i

a Hg I t afg-yM M la v whmh

■iitiiirtiiiiihiVMiihw giiWa-Mw ïïg a  î

■M Ë M Ë I

tiUUUi
U U 1 3 > U U < ^ ^ U U U Z Q ü < < U O

ÜJ Ul UJ iD W O

w-s c » ̂  ̂  »> ÿ i

I ï'!3 !!v5
<  Ï  Ï I  ? I  ? ?

V H « A Z Z U H 3 < >

s!4ï!45!4:,< < < < < < 0 1 0 3 0 »a m I  «  ”  X , l  1 ^ "  I



CHAPTER 4. PRINTS 136

anti-codons - a requirement that is defined by the genetic code. The first step involves 

a condensation reaction between Adenosine Tri-Phosphate (ATP) and an amino acid, 

followed by a reaction between the aminoacyl-adenylate and the tRNA molecule, re­

leasing Adenosine Mono-Phosphate (AMP) and the aminoacyl-tRNA molecule. The 

catalytic regions that give rise to these two distinct functions are separated along the 

length of the sequence in these proteins (Schimmel and Ribas De Pouplana, 2000). It 

is postulated that during the evolution of these proteins, the functional units evolved 

as separate entities, which co-operated to provide the dual functionality of the mod­

em proteins. The common role of the aminoacyl-adenylation, and the modularity of 

all extant synthetases provides a strong argument for the creation of modem tRNA- 

synthetases via fusion of these two components. The adenylate synthesis domain 

is considered to represent the ancient functional protein, to which domains have be­

come fused that stabilise and specify interactions with the tRNA molecule (reviewed 

by Schimmel and Ribas De Pouplana (2000)).

Here we look at the case of fingerprinting the tRNA synthetases, which effectively 

illustrates the modular nature of these proteins. In defining fingerprints to describe 

these proteins (and for modular proteins in general, see figure 4.12), care must be 

taken to consider the evolutionary relationships of each distinct domain separately.

In tRNA synthetases, the catalytic domain plays no role in specifying the binding of 

the correct amino acid and its cognate anti-codon bearing tRNA. Each of the paral­

ogous sub-types contain domains specialised for this recognition role. To describe 

the family of proteins that function specifically as valyl-tRNA synthetases, it is es­

sential to describe those features that distinguish it from all other tRNA synthetases. 

Therefore, a clear understanding of the modularity of these proteins is a prerequisite. 

Defining motifs from a naive alignment of valyl-tRNA synthetase resulted in the se­

lection of a number of motifs, which crossed the domain boundary, the first iteration 

produced a telling result. While, several of the results corresponded to the recognition 

of the correct amino-acid (valine), a large number correspond to proteins sharing the
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common domain (data not shown). Clearly, selecting motifs from the shared domain 

(characterised by its ‘KMSKS’ motif) of the protein (see figure 4.15) will result in 

the identification of more than just the valyl-tRNA synthetases. To resolve this, either 

those cross-reacting motifs should be lost, or if this would result in too few motifs, 

new motifs should be drawn up. In fact resolution, of this problem was actually better 

achieved through the construction of an alignment containing members of the cross­

reacting families, so as to design motifs that specifically avoided the shared domain.

The final result of this work, was the derivation of a set of amino-acid specific tRNA 

synthetase fingerprints, each with the inherent ability to identify sequences belonging 

to its own specific subtype and no other (figure 4.16).

4.4 Using fingerprints

Once the fingerprint has been created and annotation has been researched and put in 

place, its utility as a discriminator can be realised. The objective is to identify the sig­

nature in the sequence of a uncharacterised protein, thereby revealing its relationship to 

a family of functionally characterised proteins. Using a fingerprint in this way requires 

software capable of identifying matches to motifs in a query sequence and determining 

their significance. This role was originally fulfilled by X-finger (Perkins and Attwood, 

1995).

Given a query sequence, X-finger both identifies top-scoring matches to individual 

motifs and top-scoring full fingerprint matches. These results are scored and rank 

ordered using the n-single scoring scheme (section 4.2.3.1 and figure 4.5).

It was made clear in the previous discussion of fingerprinting (section 4.2.5) and single­

motif methods (sections 3.3.4.1 and 3.4.2) that single motif matches, while potentially 

illuminating, often fail to discriminate true from false matches. PRINTS motifs are 

designed to function as complementary pieces of evidence, which perform as a whole



z>
c/3

3

C
O

L A

n
X>
tn

SVI_STMU/l-0598 ..............
iY I_ tC O a/l-16D 4 ..............
SYI.NMIK/1-16D4 ..............
S Y IJ » ttT \V l-l» J  ....................... I
SV I_C M IU l-ia )0  ..............
> Y l_C W t/1-1612 ....................... 1
SYIJ*»tCI/1.160r ..................
SYi_TeTnvi-u2i............ .
SY IJ*T W 1-1T 0« ..................
SYI.rtf*MV 1-1912 ..................
9VK_VfAST/l^Uao............ .
SYV.FUCIW/1-1K8 ..................
9W _M im H /l-l«28 ..................
W _Y tA S T /l-16J0  ................ .
IW _B<SU/1-1S2S ................
W _m C >T /1-1625 ................ .
SW _SYtf«/1-1624 ................ .
SW .«LPV; 1 - 1 6 2 1 ................ .
5W J«T 1V 1-1627 ................
SYV.TWITW 1 - 1 6 1 1 ................ .
SVUJf<TU»l-15J9 QIF|ki| -
S Y U m C e /1-1544 ................ .
5YLJWPM/1-154 5 ......
SYU_K0U/1-1540 T ^ S -------
5YU.NW IK/1-1541 SfTT-------
5 Y L K S U /1-1540 -llW tf —
SYUU9JMMV1-15091 .............. .
5YULMC0 0/1-154) iHYSYf—  
SYLn_YlAST/l-1543 rWSYt —

.CMUSOflLKO-- 
ItmvsoULKR-- 
lEHTYSWlLKR............A

ivTEqei------- n
isolkisonilko-.......
iIOMClit^ILNQ-

eensfKic&Y.........tftnxi
OLVVVSEnD......... im| lfi

,KAE5LOKE 
lOrrN̂ OPLEYE KPKf/OK- 

,DPiEVf KAKE03K-. 
,CFR£YtlCAICie»-- 

-eXK.«5YEKV- 
-teOLWJTElCV-- 

ISUqYWQCMl- 
-CWIKL5TTML- 

OYWWKEVCY 
IMRLDLWLE- 

.EASWATKOW
:>Si.TV«DeCLN--
SAA1TW.D0(LN
lCrm.EMDESC/f- 
iCmXEWQE 5<P/E- 
.0ASIAWSES6L0- 

.FAAPMKDILW/KTtALP- 
OS^Wi.lMDeSKIV- 
:QS8lA0ALIMM5<rv-

OSlltSILLfV 
Uf*VL
WIISL—---- ---

£#W<H/A« m m
H  0LKDL8V ............ — iCtFJFI
l#FMFT5M0DVKF5ieKIV!MirTN5lVH)I 

IWlAT#K0YMFMQL5VDTTKLT#r 
-VLDWrfOfCYFfYLCK

eeilFLYMfKTVK5#»in 
UWSHIDFQVOOSWTSOIM)

NLCVNRI l^RMFC MKLWKWtF 
INLOVNRIl l̂UfCNKlWIMTKF 
1HLOI LH/etYWCfC MKIYOmTKF

LYI--EQRD5H1HR5-- 
w o r r — -AKAOSMAWG- -c 

IIDVYT— TKAOSIARRS-C
eOAMlO---

OE#LHEQMH 
SBODLVt —  D&( WORRKS- 

m.VC — OAKW#NgLA- 
I# — M k e eo E T i-  -LM-

E,*4g 
E#/E0»3ce#w < 
KOQVAAK A

tstssI y! UHa E#5AIE(K^ AK
m f L K .........VflMAAIOCT..
m  l i t ........ tfoOEAAHICT-.T
u  Mum-.
F lK iM ...................................EAIOe

QL------ Y$OMEAKKE -
KAiwUfTL

SFK-orew-NevQ--
5DDIIDELK#«EIW*I
QwetmrLA-

LOIOTTL ■ fmx.m  TtNf/SEO-FAALfMfTKTMUfYTlM.
FFMMWrDCyXXTI FAYNLP I tH SK  - 

MTENl IKETVOQETVY#m.F LKR5F E - 
TE ÏO- KALmCVMKTIAKYTDOIÊRmTF IfTAJAAWE LANKLAK 

TALSAEQ- ICYLIW VmmArS^SOOxllWDTF KTAIAA^ IMMKLT#
(NYMETNMrvrOWftL W M #I SCXWf I «AYK

WKEIMANKLWFYKW5VIMvl7-MFTEOF5UOAI5CW#l 
TRM J l -  EOLAI WPfCTfTXIEOM VWHMOWW USITE SF f 
TKMIL5L-E KDLAl SKCTirinVTDLIIOM VKFMWFQ» LKSl Tt 5F t

The KMSKS regions is conserved in all ten members o f class I and is defmative of the shared catalytic domain.

>3

f
I
3 -m
c/3
3-i
CL

on

§■
3
K.
3

X

on

3 T

m

3 *
CD

W00



CHAPTER 4. PRINTS 139

Figure 4.16: The set of tRNA synthetase fingerprints in PRINTS.

PRINTS
accession

PRINTS
identifier

Family name

PR00980 
PR00981 
PR00982 
PR00983 
PR00984 
PR00985 
PR00986 
PR00987 
PR01038 
PR01039 
PRO1040 
PR01041 
PR01042 
PR01043 
PR01044 
PR01045 
PR01046 
PR01047

TRNASYNTHALA
TRNASYNTHSER
TRNASYNTHLYS
TRNASYNTHCYS
TRNASYNTHILE
TRNASYNTHLEU
TRNASYNTHVAL
TRNASYNTHGLU
TRNASYNTHARG
TRNASYNTHTRP
TRNASYNTHTYR
TRNASYNTHMET
TRNASYNTHASP
TRNASYNTHGLY
TRNASYNTHGA
TRNASYNTHGB
TRNASYNTHPRO
TRNASYNTHTHR

Alanyl-tRNA synthetase signature 
Seryl-tRNA synthetase signature 
Lysyl-tRNA synthetase signature 
Cysteinyl-tRNA synthetase signature 
Isoleucyl-tRNA synthetase signature 
Leucyl-tRNA synthetase signature 
Valyl-tRNA synthetase signature 
Glutamyl-tRNA synthetase signature 
Arginyl-tRNA synthetase signature 
Tryptophanyl-tRNA synthetase signature 
Tyrosyl-tRNA synthetase signature 
Methionyl-tRNA synthetase signature 
Aspartyl-tRNA synthetase signature 
Glycyl-tRNA synthetase signature 
Glycyl-tRNA synthetase alpha subunit signature 
Glycyl-tRNA synthetase beta subunit signature 
Prolyl-tRNA synthetase signature 
Threonyl-tRNA synthetase signature

in a fingerprint and not individually. Therefore, merely listing top-scoring individual 

motifs is prone to yield, in all but the clearest of cases, a confused result, particularly, 

in the presence of motifs that can score highly against a sequence purely by chance. 

Take the example of a motif designed to represent a cysteine-rich region of a protein. 

In context, an individual motif detects sequences similar to itself within the confines 

of its neighbouring motifs, which anchor it into a specific region of a specific family 

of proteins. Released from these restrictions, the motif is free to identify any cysteine 

rich region. The fingerprint is a composite structure, and therefore, using the combined 

evidence of its components is clearly a better way to identify sequences with which it 

may share similarity. Consequently, the view of the whole fingerprint plays an im­

portant role in the identification of similarity. Unfortunately, as discussed in section 

4.2.5, relationships between sequences are often not clear enough to be described in 

such ‘cut and dry’ terms as the requirement for a sequence to match all motifs of a 

fingerprint. It is highly likely that a sequence, matching 9 of 10 motifs, is a true mem-
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ber of the family, and its diagnosis should not be occluded by a strict adherence to a 

rigid identification policy. By restricting ‘true’ diagnoses to those matching all motifs 

of a fingerprint, X-finger risks missing family members, and thus fails to exploit the 

inherent sensitivity of the fingerprinting method.

The software provides a facility to view the performance of matches to individual mo­

tifs in a graphical format; however, there is a drawback to this representation. Matches 

are plotted on these graphs using the n-single scoring scheme, which renders scores to 

motif matches as a percentage of the highest achievable score (for that motif). While, 

this means that different matches to individual motifs can be compared, and that signif­

icant scores can be evaluated, comparisons between motifs in a single fingerprint can­

not be made, as indeed nor can comparisons between different fingerprints be made. 

This means that it is difficult to evaluate those very cases where this kind of analysis 

would be necessary: i.e., determining whether a sequence is more likely to belong to 

one family rather than another.

In short, X-finger is best suited to the visual comparison of sequences within a family, 

which makes it a useful tool for use in the development cycle of the fingerprinting pro­

cess. However, the PRINTS database is of little use to the wider biological community 

without a suitable analysis tool that can: facilitate rapid and automated analyses of 

multiple sequences; and provide a means of evaluation that allows results to be inter­

preted. Furthermore, a tool that could detect, and use, the biological context of motifs 

within a fingerprint to improve the rejection of false diagnoses, and make use of the 

increase in sensitivity afforded by the detection of partial matches, would better exploit 

the potential of fingerprints.

The realisation of this goal has been the main objective of this thesis and has culmi­

nated in the development of a new search tool. The following chapter will discuss the 

development of the PRINTS database searching software.
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Chapter 5

Methods
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5.1 Aim

Before the inception of this project the PRINTS database lacked a search method capa­

ble of doing justice to the powerful contextual information inherent in multiple motifs. 

The only available search method, X-finger (Perkins and Attwood, 1996), was not able 

to identify partial matches, and hence missed all but the most specific diagnoses. The 

challenge therefore was to provide a search method designed from the outset to take 

into account the multiple motif model.

5.2 The development of a new search tool for PRINTS

The development of a fingerprint searching tool, requires a deconstruction of the meth­

ods which underly the process of identifying and scoring a pattern in a sequence. The 

principle of the overall process, is based on the assumption that if patterns of con­

servation are observed in an MSA then the identification of these same patterns in an 

uncharacterised sequence can lead to the inference of an homologous relationship.

Firstly, the process must provide a means of aligning a pattern with the sequence in 

such a way that all possible alignments are evaluated. In pairwise analysis this is 

achieved through the construction of the alignment matrix. However, identifying a 

fixed-length pattern involves a simpler sliding window approach, which scans across 

the entire length of the sequence, revealing at each step a different, overlapping subse­

quence. As the fingerprint consists of more than one pattern, this procedure must be 

repeated for each of the motifs.

Secondly, as each sub-sequence is revealed the alignment made between it and the 

motif must be scored. This requires the construction of a model suitable for describing 

the motif and providing a score for its alignment. The simplest model is the identity 

matrix, which provides a score (+1) for each residue of the sub-sequence that is present 

in the corresponding column of the motif. As discussed in sections 2.4.2 and 3.3.4 a
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variety of scoring schemes exist, which improve on the identity matrix.

Thirdly, once each sub-sequence is scored, the task of identifying matches that corre­

spond to the identification of the fingerprint must begin. Matches are made at the motif 

level, therefore, it is necessary to place them in the context of the fingerprint; i.e., as 

motifs are selected from an MSA, matches made to them should also progress linearly 

across the sequence. An essential factor in the consideration of fingerprint context is 

that tolerance should be allowed for sequences to fail to match all of the motifs, so as to 

create provision for the partial match. The importance of the ability to partially match 

a fingerprint should not be understated, as it is this critical feature of the multiple motif 

methodology that allows highly selective and/or sensitive diagnoses to be made. The 

identification of partial matches, however, is a non trivial task that was not addressed 

by the X-finger search method.

The following sub-sections, review the process of scanning, alignment and scoring of 

motif matches, which was outlined above, with particular emphasis on the experiments 

that were important in the evolution of the new PRINTS search tool

5.2.1 The scanning process

5.2.1.1 The sliding window

The scanning process mimics the effect of sliding a window along the length of a se­

quence (section 5.2.1.1 and figure 3.7), to reveal sub-sequences. The sliding window 

process essentially renders every sub-sequence in the query available, in order that ev­

ery position in the sequence can be probed for the existence of a match to a given mo­

tif. However, a fixed width window does not visit every residue with equal frequency, 

which renders the edges of the sequence a potential source of missed information. 

(Figure 5.1). This is particularly important when considering fragmentary sequences, 

which are common in primary databases; therefore, it is important to consider the en­

tirety of the query sequence as a potential site for the identification of a motif, and not
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to treat the edges differently. If a fragment is cleaved within a conserved regions, the 

motif may be missed and the important similarity will go unnoticed. A simple solution 

is to pad the sequence with non-scoring tokens^ to allow each sequence element equal 

chance of identification with the sliding window (Figure 5.2). This token merely acts 

as a potential amino acid and allows partial motif matches to be recognised. Padding 

creates / +  m — 1 motif sized windows from the sequence, for comparison with the 

motif, where I is the length of the sequence, and m is the length of the motif.

Figure 5.1: A query sequence is not evenly represented by a fixed width window.

The query sequence is unevenly represented in the sub-sequences, with only residues D and 
E occuring in each position of the window.

ABCDEFGH

ABCDEFGH

AB CDEF GH

ABCDEFGH

ABCD EFGH

Each sub-sequence is scored against a matrix computed from the motif. The encod­

ing of the motif and its scoring of the query sequence can be performed in a multi­

tude of ways, as discussed in section 3.3.4; the following sections will review the two 

paradigms that became important in the development of the scoring component of the 

search method.

5.2.1.2 The frequency matrix.

In the earliest implementations of scoring methods for the identification of motif matches,

the basic frequency matrix was used (its construction was described in section 3.3.4.2).
 ̂A non-scoring token is character that does not belong to the alphabet of protein sequences, and 

therefore can never be scored.
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Figure 5.2: The result of padding the edges of a sequence is an even representation.

In this example it is clear that every residue o f  the query sequence is exposed by the window  
an equal number o f times, and has the opportunity to visit every position o f the window. 
Without padding, partial m otif patterns such as X A BC  or FGHX (where X  is any amino 
acid) would never be identified.

###A  BCDEFG H ###

# ##A B  CDEFGH###

## #A B C  DEFGH###

### A B C D  EFGH###

###A B C D E  FGH###

###A B  CDEF GH###

###A B C  DEFG H ###

###A B C D  EFGH ###

###A B C D E  FGH# ##

###A BC D EF GH## #

###A BC D EFG  H ###

A motif represented in this way comprises a matrix of scores based on the number 

of occurrences of a particular residue in each column of the motif, expressed as a 

normalised score (see section 3.3.4.2 and figure 3.11). Scores for matching residues 

in each column are distributed between 0  and 1 , and the matrix is sparse, i.e., most 

residues have no score.

5.2.1.3 The profile matrix.

Later incarnations of the scoring methods were based on a modified version of the 

‘Gribskov profile’ (Gribskov et al., 1990), (as described in section 3.3.4.3), in which 

gap-scoring features are not considered. Representing a motif using this model pro­

duces a matrix, in which the rows correspond to members of the alphabet, and columns 

to positions across the motif. Scores are based on the frequency matrix, but with ad­

ditional weighting from substitution matrices, so they provide log-likelihood values; 

consequently, positive scores indicate likely residues and vice versa.
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5.2.2 Scoring a sequence

Scoring a sub-sequence, against each of the scoring matrices was described in detail 

in section 3.3.5. Again, important consideration that affected the development of the 

search method are reviewed below.

5.2.2.1 Scoring a sequence - the frequency matrix

The PRINTS methodology has long been based on a weighted scoring scheme known 

as n-single (see figure 4.5), however, it has one significant drawback. N-single scores 

provide no basis for comparison between matches to motifs either within the same fin­

gerprint, or between different fingerprints. As one of the objectives of the development 

of the search is to clearly illustrate the significance of fingerprint matches, this renders 

the use of such a scoring method inappropriate.

For example, let us consider two matches made to a single motif for which the highest 

possible score is 40.25^. The first match is a maximally-scoring sub-sequence, which 

achieves 40.25 (ACDEKGH); hence, the scaled n-single score will be 100%. The 

next match is sub-optimal and only achieves 22.5 (ACRDFGI), which when scaled 

equals 56%. Clearly, using this scoring scheme, matches to the same motif can be 

compared (the first match is better than the second); however, without prior knowledge 

of the maximal scores, it makes no sense to compare the scores achieved by matches to 

different motifs. So, while producing a useful measure of the significance of multiple 

matches to the same motif, it is not apparent how this can be applied to the context of 

a whole fingerprint, and for this reason, the use of n-single scores was avoided.

Like the pairwise percentage identity, the W-PID score (derived from the normalised 

frequency matrix) provides a fixed range over which matches score. A perfect match,

to an invariant motif produces a 1 0 0 % score, while a sub-sequence that contains no

În figure 3.13, the highest score achievable is 1-t-1 -1-0.5-I-0 .75-I-0 .5 -I-1 -I-1 =  5.75, which achieves 
character-matches in all 7 columns and therefore equals 5.75 *7 =  40.25.
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residues in common with a motif will score 0%. This unique property means that 

comparisons can be made between the relative magnitudes of scores made by differ­

ent sub-sequences, and, more importantly, it allows decisions to be made about the 

likelihood of a sub-sequence representing a true match rather than a false one.

Distinguishing between true matches and false matches within the fixed scale of the 

W-PID, can however, be a problem. When scanning a sequence with a motif, there is 

often an abundance of low scoring matches. The problem arises if the difference in 

magnitudes between true scores and false scores is not significant, which is a particu­

lar problem for shorter motifs. The preponderance of low-scoring matches to shorter 

motifs makes a case for the inclusion of some form of penalty to reduce this abundant 

noise. To meet this requirement, a scoring adjustment scheme was designed such that 

it selected/or good matches and against poor ones. In figure 3.13, two of the matches, 

which are both false, only incur scores in l/7th of the positions of the matrix, while 

the true match scores in all 7. Augmenting these scores, through multiplication by 

\ht fraction of positions incurring a non-zero score, does not affect the true score but 

reduces the false ones accordingly. Unlike n-single weighting, all sub-sequences that 

achieve character-matches in all columns are still equally comparable across all motifs 

(within the same fingerprint or with motifs from other fingerprints), it is only those 

matches that fail in one or more columns that are down-weighted. The adjusted score. 

Adjusted W-PID (AW-PID), for each match can be described by equation 5.1:

Sum of matches to columns ^ number of columns matched jqq ^5 

number of columns number of columns

The use of W-PIDs, and AW-PIDs is suited to the analysis of small sets of data, where 

interpretation of the results is facilitated by the judgment of a user. However, there 

are two obvious problems with the reliance on these scoring schemes: data sets are 

frequently large (genomes, EST databases, etc.), and the judgment of users varies ac­
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cording to their level of expertise. Using a profile matrix instead of a frequency matrix 

to represent a motif, provides the facility to generate a ‘probability value’ indicating 

the likelihood of a correct match. The significance of this value can be set within de­

fined confidence levels, which supports the use of automated systems. Automation, in 

turn, facilitates the analysis of larger datasets.

S.2.2.2 Scoring a sequence (the ‘profile’ matrix)

The ‘profile’ motif also provides a score that can be used to determine the significance 

of a match. The score, which is based on the summation of log-likelihood ratios, has 

two beneficial properties that promote its use over and above the FED scores. Firstly, 

because likely residues score positively and unlikely ones score negatively, summation 

of these scores provides ‘true’ motif-matches with highly positive scores, while ‘false’ 

matches receive small or negative scores. Secondly, as discussed in section 2.4.4, these 

scores fit the criteria for their conversion into probability values. The application of 

the EVD methodology requires that the expected score for the alignment of two sub­

sequences, 'ZPiPjSij, must be negative, and the scoring matrix must produce at least 

one positive score (see section 2.4.4.2). Applying this methodology to the scoring 

of sub-sequences against motifs is straightforward, with Sij representing the lookup 

between residue j  in the sequence and the score for its comparison with residue i in 

the profile matrix.

Therefore, using the profile matrix to generate a score for a match means that less false 

matches should be identified, and the significance of those remaining matches can be 

evaluated statistically.

Using these motif-match scores (or probabilities) to determine the significance of a 

match between a sequence and a fingerprint (where multiple motif matches must be 

taken into consideration) will be discussed in the following section.

Sections 5.2.3, 5.2.4 and 5.2.5 detail the novel research that was required to address
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the unique problem of how to deal with the fingerprint context of multiple matching 

motifs.

5.2.3 Dealing with matches

Scanning a set of matrices (frequency or profile) against a sequence produces lists of 

scoring matches (one list from each of the motifs), from which the true fingerprint 

match must be extracted. The information available for each match is as follows:

• the motif number (each motif in a fingerprint is labeled numerically from the 

N-terminus),

•  the position of the match in the sequence,

• the score (and, for profiles the p-value).

In some cases, the identification of the true fingerprint match cannot be achieved by 

simply selecting the best scoring matches to each of the motifs. As demonstrated in 

the discussion of REs (section 3.3.4.1), short motifs have a tendency to be matched 

by random sub-sequences as readily as they are matched by true sequences: i.e., the 

distinction between a true match and a false one is not significant. Accordingly, it can 

be very difficult to predict whether a sequence truly matches a fingerprint from mere 

consideration of matches to individual motifs.

An important effect of the adoption of profile scores, which can be appreciated by 

examination of the lists of matches, is a clarification of the distinction between true 

positive and false positive assignments. Figure 5.3 illustrates the effect that chang­

ing the scoring regime has on the ability to clearly separate true from false results, in 

which, the sequence of an Edg-1 orphan receptor (SWISS-PROT:P21453) was scanned 

against two selected fingerprints. Each of tables show the ten top-scoring matches to 

motifs of both the rhodopsin-like G-Protein Coupled Receptor super-family (GPCR)
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and the unrelated Beta-Lactoglobulin family (BLC) fingerprints^. The selection of 

these particular fingerprints demonstrates the identification of a previously-known re­

lationship and its comparison with a wholly unrelated family; i.e., P21453 is distantly 

related to GPCR, but not to BLC. The list in the first table of figure is sorted by the 

W-PID score (the first two columns describe the fingerprint and the motif number that 

made the match), it is clear that matches to the second motif of the BLC fingerprint 

dominate the table, pushing true results down below the threshold"^. Using the AW- 

PID score (the second table in figure 5.3) suppresses most of the spurious results that 

overwhelmed the previous example. However, the top scoring sub-sequence still hits 

the BLC family. In contrast, the third table shows the list sorted by scores generated 

by the profile method, where the top three matches are true motifs and only two false 

matches appear in the list.

This less than perfect result highlights the pitfalls of considering single motifs suffi­

cient to describe complex familial relationships, while simultaneously demonstrating 

the weaknesses of the scoring scheme based on the frequency matrix. The solution to 

the latter point is clearly to pursue use of the profile matrix. The utility of this approach 

is further highlighted if the p-values for these scores are calculated. BLC motifs 2 and 

5 have p-values of 5 x 10“ ^and 3 x 10“  ̂ respectively, whereas the equivalent values 

for the top four GPCR motifs range from 2 x 10“  ̂ to 5 x 10“ ,̂ up to six orders of 

magnitude smaller and thus considerably less likely to have occurred by chance.

The example in the third table, of figure 5.3, also provides an indication of how simple 

contextual information can help confirm the true result from this list of motifs. Each 

of the seven motifs of the GPCR fingerprint are present in the list of matches, and each 

match is sequentially positioned along the sequence, just as the motifs must be in the 

original alignment. Clearly, if confidence in the scores of matches cannot be provided, 

the additional information available from the MSA about their number, and relative

^The fingerprints are GPCRRHODOPSIN;PR00237 and BLCTOGLOBULN:PR01172, referred to 
as GPCR and BLC in the tables for brevity.

^Here the threshold is arbitrarily the top ten scores, which serves to illustrate this example.
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Figure 5.3: Sorting a list of matches by each of the scoring schemes.
The tables contains the ten top-scoring individual m otif matches revealed when a set of 
matches made between the sequence P21453 and the fingerprints GPCR and BLC are 

sorted using each of the scoring schemes.

Ten top-scoring sequences from results sorted by W-PID score
fingerprint

BLC
BLC
BLC
BLC
BLC
BLC
BLC

GPCR
GPCR
GPCR

Motif W-PID
53
36
35
35
34
34
32
32
32
31

AW-PID
39
16
16
16
12
12
18
32
32
31

Profile
214
61
95
9
53
23

257
463
367
353

Position
127
94
179
266
164
267
192
253
292
124

Ten top-scoring sequences from results sorted by AW-PID score
fingerprint Motif W-PID AW-PID Profile Position

BLC 2 53 39 214 127
GPCR 6 32 32 463 253
GPCR 7 32 32 367 292
GPCR 3 31 31 353 124
GPCR 2 31 31 227 80
GPCR 5 23 23 153 2 0 2

GPCR 4 2 2 2 2 195 159
GPCR 1 21 2 1 170 47

BLC 5 32 18 257 192
BLC 2 36 16 61 94

Ten top-scoring sequences from results sorted by profile score
fingerprint Motif W-PID AW-PID Profile Position

GPCR 6 32 32 463 253
GPCR 7 32 32 367 292
GPCR 3 31 31 353 124

BLC 5 32 18 257 192
GPCR 2 31 31 227 80

BLC 2 53 39 214 127
GPCR 4 2 2 2 2 195 159
GPCR 1 21 21 170 47
GPCR 5 23 23 153 2 0 2

GPCR 6 15 13 1 0 2 47
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positions can be used to improve confidence in the diagnosis. Therefore, in order to 

enhance the detection of meaningful results (from lists of matches), requires identifi­

cation of the context within which motifs reside and, in suitable cases, to combine the 

evidence of multiple complementary matches.

5.2.3.1 Identifying fingerprint context

Fingerprints are derived from aligned families of sequences; therefore, their constituent 

motifs have the following properties:

• motifs have ‘order’; i.e., motif 1 is always followed by motif 2  and never pre­

ceded by it.^

•  motifs have fixed positions within the alignment.

The problem of how to identify the matches that conform to the ‘fingerprint context’ 

of motifs must be solved in the most efficient manner, because scanning each motif 

against a sequence produces numerous matches, most of which, by definition are spu­

rious. The simplest solution is to search all permutations of matching motifs to identify 

those that best fit the model. However, this is computationally intensive and rapidly 

becomes time consuming as more matches are encountered. To avoid these difficulties, 

a single-pass algorithm was developed (one that requires only a single traversal of the 

list of matches to find the best answer), which uses a trade off of time for memory to 

facilitate analysis of a list of n matches in linear time 0{n). The following section will

describe the algorithm and detail its development.

worthwhile caveat is that this is not strictly true in the case of proteins that contain repeating 
domains, where a motif from one repeat could be considered out of order if compared with a motif from 
a different repeat. However, this statement does hold if each repeat is considered as a distinct entity in 
its own right.
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5.2.4 The PathFinder algorithm

5.2.4.1 Finding the longest path

The objective of this algorithm is to identify, for a given query sequence, the longest 

scoring ‘path’ through the matches made by a single fingerprint. A path is merely 

a correctly ordered list of matches, and the hope is that one such path describes the 

‘true’ set of matches that represent the correctly identified fingerprint. The relationship 

between paths and matches is shown in figure 5.4. The list of matches is sorted on the

Figure 5.4: An example list of matches.

This simple example demonstrates a set of motif matches, including 
both true (corresponding to real occurrences of the motif), and

false matches.

2 a la 2 b

The true matches (here, labelled 1,2,3) provide a valid path of 3 elements (indicated 
by a bold line); however, there are other valid full and partial paths through this list 
(indicated by dotted lines).

position of the match (first match from the beginning of the sequence first, and so 

on) and is presented as a list of motif numbers, i.e., matches to motif n. Figure 5.5 

describes the list of matches and an overview of the process of identifying the longest 

paths.
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Figure 5.5: The PathFinder process

A list of matches contains the elements shown in the table (the list is sorted by 
position); however, to compute the best path, only the position of the match and the 
motif number are required.

sub-sequence position matching motif score

AAAAAAAAAA 2 0 1 595
AAAAAAAAAA 55 2 560
AAAAAAAAAA 80 2 345
AAAAAAAAAA 1 2 0 1 395
AAAAAAAAAA 154 3 795
AAAAAAAAAA 189 2 295

During the PathFinder process, the list is traversed by selecting one element at a 
time. Each element is compared with each of the paths that are available to it, and 
a decision is made about whether to add it to a growing path or merely to create a 
new path (with it as the only member).

List A growing list of paths through the list of matches
1

2

1

1 1 ,2

2 a 1 1 ,2 1 ,2 a
la 1 1 ,2 1 ,2 a la
3 1 1 ,2 1 ,2 a la 1,3 1,2,3 1 ,2 a,3 la,3

2 b 1 1 ,2 1 ,2 a la 1,3 1,2,3 1 ,2 a,3 la,3 1,2b la,2b

In this table, multiple occurrences o f  elements are labelled a or b for clarity; however, they 
still represent matches to the same motif.
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The procedure employed to identify the greatest scoring path is straightforward. Start­

ing with the 1st element (see step a, figure 5.6), the list is traversed asking simply 

‘whether the current motif number is greater than the greatest in each of the paths’ (in 

the case of the first element, there are no paths with which to compare, so this statement 

is found to be untrue):

Figure 5.6: Details of the PathFinder process

Step Element Current paths New paths to add

a 1 - - - 1 - - -

b 2 - - 1 ,2  -

c 2 a 1 1 ,2 - - 1 ,2 a -

d la 1 1 ,2 1 ,2 a - la  -

e 3 1 1 ,2 1 ,2 a la 1,3 1,2,3 l,2a,3 la,3

f 2 b 1 1 ,2 1 ,2 a la 1 ,2 b la,2 b -
1,3 1,2,3 l,2a,3 la,3 -

• If it is not true, then a new path is created with the current element at the head (so 

the first path is created with the first element as its only member). For example, 

in step d, motif la  cannot be added to any of the current paths, and is thus 

represented as a path in its own right.

• If an element can be added to a path, then the current path is augmented by 

adding the current element at the head (e.g, in step b, motif 2  naturally adds to a 

path containing motif 1 to create a new longer path (1 ,2 )).

To facilitate the exploration of all possible paths it is necessary to duplicate any path 

before augmenting it, an example of this occurs in the transition between steps b and c, 

where both paths now exist (the original ‘1’ and the new ‘1,2’). This process generates 

a number of paths that grow as each ‘valid’ match is encountered until the final match
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in the list. The result is a list of all paths (potential fingerprint matches) - the highest 

scoring of which is expected to be the identification of matches to the real motifs.

The use of this method to remove false-positive matches, both provides a biologi­

cally valid solution to the task of computationally identifying true fingerprint matches 

and reduces the number of chance matches to fingerprints. The probability that motif 

matches could occur by chance, and also be in the correct order may be non-negligible 

when considering two and (sometimes) three motifs. However, as the number of dis­

tinct motifs in a fingerprint increases, the probability that multiple matches will occur 

by chance diminishes, and accordingly the chance that these will also be made in the 

correct order becomes vanishingly small.

S.2.4.2 Partially matching fingerprints

The phenomenon of a fingerprint matching a sequence is clearly not one that can be 

described easily with a binary (black or white) result, because biology operates on all 

the shades of grey between these extremes; i.e., sequences are variable - some parts are 

more conserved than others. As a consequence of this variation, problems arise when 

attempting to identify distantly related members of a family.

During the accumulation of mutations in proteins undergoing the selection pressures 

of evolution, influence is applied such that function is maintained. However, distant 

relatives, from large gene families, can take on quite divergent roles and even normally 

conserved regions may become sites of large scale change. Motifs are usually extracted 

from these supposedly stable regions; therefore, fingerprint matches to distant relatives 

may fail to identify one or more motifs. Following this observation, we can define 

the the concept of a ‘partial match’ as any sequence that matches less than the full 

complement of motifs that make up a fingerprint. By definition, the PathFinder method 

does not discriminate against partial matches, and through looking at the cumulative 

scores of each potential path, the most probable result will still be the identification of
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the ‘true’ partial match, rather than a chance combination of false, or random, matches.

S.2.4.3 Motif positions

In an attempt to further enhance the power of the PathFinder method, other character­

istics of motifs were investigated for their effectiveness at discriminating between true 

and false assignments. The locations of motifs are obvious candidates for this role as, 

although less common than point mutations, insertions and deletions are clearly evi­

dent in mutational processes. Events such as these are low frequency occurrences, so it 

is to be expected that inter-motif distances will vary only slightly over short evolution­

ary periods. However, great variations in these distances can be observed, especially 

when examining relationships between distant members of super-families. A method 

that utilises this criterion in the selection of true and false matches must, therefore, be 

subjected to careful consideration in the selection of suitable thresholds.

The first and simplest criterion that allows for the rejection of a false match is the 

‘overlapping rule’. During the construction of fingerprints, motifs are selected that 

are adjacent to each other and are only allowed to overlap by one residue. Therefore, 

matches that overlap by more than this can be rejected on the grounds that they cannot 

coexist.

Secondly, the multiple alignment from which a fingerprint is drawn can be seen as a 

fixed entity about which sequences slide to align the conserved regions. Therefore, 

as the position of any motif is maintained in the alignment, its position relative to 

each sequence may vary slightly. This leads to the observation of a range over which 

motifs naturally occur. Taking into account this range can also facilitate the selection 

of favourable matches. Clearly, a match to a motif found several hundred residues 

from the N-terminus, when the motif normally occurs within a few positions of this 

terminus (with very little observed deviation in the natural population), would appear 

unlikely to represent a true match to this motif.
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S.2.4.4 Inter-motif distances

A selection method, based on motif positions, was implemented and utilised in the 

PathFinder algorithm; however, a significant observation was made, which necessi­

tated its modification. Modularity is a commonplace occurrence in biology, and at the 

protein level it results in members of protein families playing distinct parts in very dif­

ferent functional roles. This is manifested as the sharing of distinct domains between 

proteins. As a consequence, the physical positioning of a particular domain in a given 

sequence can be very varied. Motifs derived from such a domain may occupy many 

different positions in the sequences of the family (see figure 4.12), which renders the 

identification the natural variance of these positions unsuitable as a selection criterion. 

Therefore, the selection of matches based solely on absolute position is destined to fail 

for fingerprints that encode commonly shared domains, of which, due to the gregarious 

nature of protein modularity, there are many examples.

The aim of designing a fingerprint is to represent core islands of functionally conserved 

residues (motifs) within an alignment. These motifs are usually identified within an ex­

panse of disorder, separated by short regions of relatively minor disorder. The concept 

of the domain reflects the observation that it is less likely that major rearrangements 

will occur in an intra-fingerprint position (i.e., between motifs) than outside the con­

served region: domains are independent entities. A more consistent measure of fin­

gerprint context can be made, by only considering deviations in the spacing between 

motifs, which avoids the problem of the variable physical location of the domain.

The computation of an inter-motif distance (D) between two motifs n and m is straight­

forward, and is described in equation 5.2:

n - \
D = intervaln+ ^  intervali + lengthi (5.2)

i=m+1

where interval and length are defined as the distance between motif i and / — 1 , and
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the length of motif i respectively. To make this approach more flexible, two features 

are taken into account. Firstly, as there are upper and lower bounds on the position of 

a motif in an alignment, there must be corresponding limits on inter-motif distances. 

Secondly, each MSA can only ever be a sample of the evolutionary history of a par­

ticular family, and thus may not represent all possible ranges of deviation. The former 

issue is resolved by recording the upper and lower limits of deviation observed in the 

alignment, and accepting only matches that are found to occur within this range. The 

latter issue is a complicated one, but a satisfactory solution can be found empirically. 

The problem arises because the physical collection of biological sequences has, histori­

cally been culled from a relatively biased set of ‘experimentally interesting’ organisms. 

Therefore, rejecting matches based on the observations of such a limited dataset is po­

tentially dangerous, and could result in the process becoming too selective. A solution 

is to introduce a variable degree of leniency around the upper and lower limits imposed 

on inter-motif distances (e.g., plus and minus a user-defined percentage of the average 

inter-motif distance), which permits selectivity and sensitivity to be modulated. The 

calculation (detailed in figure 5.7) takes into account the average position of the motif 

and computes a value based on the user-defined parameter which is taken off the lower 

limit and added onto the upper.

In the PathFinder process, we are interested in whether a match (at position y) can 

join a path that contains a motif at position x. If the motif falls within the range Ly < 

X < Uy, then the match can indeed be considered a valid addition to the path, and thus 

potentially a ‘true’ match to a motif in the fingerprint.

S.2.4.5 Summary

The adoption of selective criteria such as motif position and inter-motif distances fa­

cilitates the detection of true matches by allowing the rejection of numerous spurious 

matches. This in turn simplifies the identification of true matches, which can be seen as 

an enhancement of the selectivity of the approach. Increases in selectivity notoriously
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Figure 5.7: Derivation of the inter-motif limits

The observed upper and lower limits, and respectively, are used to calculate 
the region (L„ < m < U,i) within which the previous motif (m) must have occurred, 
for the match to motif n to be considered true. Iu,i and //„ are the upper and lower 
limits for the intervals, or distances, between the previous motif and n. From these 
intervals an average is calculated, which after multiplication with a scaling factor, 
is subtracted from and added to

I I

In

I Un

Ln = {In -  Pn)

pos„
motif n

U n  —  (W/x H" P n )

Pn = Ilin * %

the average interval

multiplying the average interval by the percentage deviance 
produces the value required to modify the upper and lower 
limits.
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reduce sensitivity. However, by taking into account features such as partial finger­

print matches, variability at the residue level, and the positional variability of motifs in 

alignments, the sensitivity of the method is maintained.

Once a path has been constructed, the scores of each of the matches are taken into 

consideration to provide a corresponding path-score (or fingerprint score). In the case 

of scoring with a frequency matrix, it is the sum of these scores that characterises 

the total score of the fingerprint. During development, a number of scoring methods 

were investigated in order to provide the clearest distinction between the score of a 

chance occurrence, and the score that represents a true match to a fingerprint. The 

following section will describe the pitfalls of some of these methods and their eventual 

replacement with product probabilities.

5.2.5 Scoring fingerprints

As previously discussed, a motif is usually too short to prove statistically, or indeed 

empirically, that identifying it is sufficient to diagnose membership of a family. How­

ever, a fingerprint is a collection of motifs and it is the combined evidence of a number 

of motifs that characterises a family.

With scores generated from the frequency matrix method (AW-PID), the simplest 

method of combining them is to sum the scores; however, as each score represents 

a percentage identity calculation then it is equally valid to provide an average over all 

motifs.

Unfortunately, neither are particularly suitable for the role as the both fall short of 

meeting the criteria required for a scoring scheme; i.e., it must provide good discrimi­

nation between true and false scores, and provide a means for the comparative assess­

ment of scores. This highlights the problem suffered by all methods that attempt to 

make functional or familial assignment based on scoring matrices, i.e., it is difficult 

to determine a point at which a result can be labelled true rather than false and vice
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versa. It is the objective of any of these methods to avoid both false positives and false 

negatives. The perfect method would provide a clear distinction such that it was simple 

to define a threshold above which scores could be designated true.

The search for a scoring paradigm with which to endow the PathFinder method with 

such discriminatory power was littered with the experimentation with a number of 

methods. Each, while empirically providing some help with this decision making step, 

was nevertheless without mathematical grounding and subject to inconsistency. For 

example, if one observes that a fingerprint of ten motifs is better at discriminating its 

family members than one of three motifs, then conceivably the discriminatory power 

could be some function of the number of motifs. Logically, a score that involved aug­

mentation of the summed score with this value may provide the necessary selectivity. 

Multiplication of the path-score by the number of matching motifs was indeed able 

to push scores for true matches higher up on the scale, while false, or poor, matches 

languored. Another characteristic of a likely match is the length of the model; as men­

tioned previously, longer motifs are less likely to attract false matches than shorter 

ones. A scoring scheme taking into account the lengths of motifs, which augments the 

score for each match by multiplying by the length of the motif, had similar results in 

expanding the separation between true and false. However, scoring schemes such as 

these have no basis other than empirical observation, and as such it is difficult to define 

thresholds and impossible to justify mathematically.

The solution to this problem came from the introduction of the profile matrix, and 

the subsequent generation of probability values to describe match scores. The raw 

profile score produces very low, or negative, values when the match score is close to 

that expected from a random match, and thus can provide a large distinction between 

those matches that come are true and those that are false. The absolute magnitudes 

of profile scores are dependent on the parameters of the EVD describing the motif. 

Therefore, there is no way of comparing the scores of matches to different motifs, and 

accordingly this makes it difficult to define thresholds. However, the motif p-value
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does allow comparisons to be made between diagnoses, even if this is represented as a 

statement of the likelihood that a match between a motif and a random sequence would 

produce a particular score (see section 2.4.4.2). Matches with p-values above defined 

confidence levels can therefore be rejected on the basis that they tend to the random 

distribution, and are as a consequence likely to represent false matches. P-values of 

each motif in a fingerprint can be combined, because it is valid to consider each match 

as an independent observation, thus the product of the motif p-values describes the 

compound probability of all pieces of evidence (Bailey and Gribskov, 1998a,b).

This compound probability score (p-value, or e-value (the database adjusted p-value), 

as defined in section 2.4.4.3) provides another angle on the problem of determining 

the distinction between a true result and a false one. However, it is by no means a 

perfect solution to the problem. The EVD is an estimated distribution, which attempts 

to describe the distribution of MSSs (in this case, maximally scoring motif-matches) 

in random sequences. P-values for scores deemed to indicate significant relationships 

are taken from the tail of this distribution, i.e., a high scoring match will have a cor­

respondingly low probability of belonging to the random distribution. Therefore, it 

makes little sense to compare a probability of 1 x with one of 1 x other

than to say that both results indicate a very high probability that a true observation 

has been made. In this way p-values and profile scores can achieve what the the other 

scores could not, a means of comparison, albeit estimated, and a good spread of results 

around the true-false crossover.

5.2.6 Summary

It is clear from the above discussion that no single scoring method can provide all of 

the answers. It is therefore important to provide as much information as possible so 

as to facilitate interpretation of the results. As previously mentioned, the objective of 

the development of these methods was to produce a search tool for PRINTS that could
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present the user with sufficient information to supplement any automatic diagnoses 

made.

Based on the observations made in section 5.2, especially the particular advantages 

conferred by the used of p-values, it was decided to implement a search tool based 

on the p-value scoring scheme and using the PathFinder method as a mechanism to 

identify fingerprint context. The result was the ‘FingerPRINTScan’ tool (Scordis et al., 

1999).

The following section describes a number of software tools that each function as inter­

faces to fingerPRINTScan and provide distinct analytical roles.

5.3 Interfaces

The dissemination of data is as important as its generation, i.e., a database that lacks the 

facility to distribute its amassed knowledge is essentially useless other than as a refer­

ence tool. FingerPRINTScan was developed to investigate the fundamental biological 

problem of identifying homologous relationships based on the familial descriptors that 

are the basis of PRINTS. The following subsections will describe the tools that provide 

an interface for the FingerPRINTScan software, which allow:

• remote access to the the scanning software (FPScan),

• alternative (graphical) perspectives on the results of a query (GRAPHScan),

• an automated service designed to facilitate the scanning of large numbers of 

sequences (MULScan).

5.3.1 FPScan

Once FingerPRINTScan made it possible to answer the question “Is it likely that 

a query sequence shares a relationship with one or more of the fingerprints in the
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database?” it was necessary to present this information in a succinct manner. The au­

dience of such a tool is wide and varied, with potential users ranging from molecular 

biologists to researchers of computational biology. Each category of user has a differ­

ent agenda, and thus, has a distinct set of requirements pertaining to their goal, all of 

which have to be satisfied by a tool such as this one. While, one researcher may be 

attempting to elucidate functional characteristics of an unknown protein, another could 

be searching genome data for predicted open reading frames. While both are seeking 

homologous relationships, the former may be only interested in a simple result that 

supports or contradicts biochemical evidence. However, the latter may, for example, 

require detailed information of the positions of motifs, as well as access to a com­

parison between reported high scoring matches and background noise. To approach 

this problem (i.e., the delivery of information to users with different requirements), a 

hierarchical reporting system was developed.

Built using a WWW Hypertext Markup Language (HTML) interface, the submission 

form and results pages are widely accessible and simple to use. The submission form 

(figure 5.8) allows the input of either a protein-sequence database code or a raw se­

quence for scanning against the PRINTS database, and results are returned to the 

WWW browser (figure 5.9). The hierarchical arrangement of results enables the novice 

user to quickly discover the simplest answer to the query, and removes the necessity 

to wade through superfluous information. However, a user interested in how the result 

was obtained is provided increasing amounts of information as they scroll down the 

page. Three levels of information are presented:

• The top level provides the name of the matching fingerprint and the e-value of its 

score. All assignments at this level, are ones to which the method has designated 

the greatest confidence (figure 5.10).

•  The second level details the ten top-matching fingerprints. This usually includes 

the highest scoring false-matches, which are shown by means of comparison
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(figure 5.11).

• The final level describes the top ten again, but at the motif level, allowing the 

matches made with each motif to be analysed separately (figure 5.12).

This organisation and breakdown of the results allows both the descriptive statistical 

measure and the comparative AW-PID scores to be displayed, and provides the user 

with sufficient information to supplement the on-screen diagnosis with their own opin­

ion. In situations where the answer is not clear-cut, it becomes invaluable to have extra 

information at hand to back up a diagnosis.

Figure 5.8: The FPScan submission form.

P-val FPScan

This facility allows you to search  iS flg itqw ith  a  PROTEIN query seq u en ce , either taken 
directly f r o m u s i n g  a  valid database code; e g ’'opsd. shbbp - , or supplied a s  your own 

■ P T ' in -h ou se  sequence,

Results are presented in HTML tables

Please input one of:
I
^  B  D a t a b a s e  C o d e  
1  □  C u t  a n d  P a s t e  s e q u e n c e

T he E -valu e threshold 
determ ines the level of 

significance of results In 
the 1 St table

E - v a l u e  th r e s h o l d :

S e n d  Q u e r y
M a ll  a n y  c o m m e n t s ,  b u g s ,  o r  s u g g e s t i o n s  to :

5.3.2 GRAPHScan

When a distant member of a protein family is matched by a fingerprint, the profile score 

and corresponding p-value can be unimpressive. In cases such as these, confidence
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Figure 5.9: An example result of a FPScan search, using OPSD_SHEEP as the query 
sequence.

Scan o f Mquonce; OPSD_SHEEP

RHOOOPSIN. -  OVIS ARIES (SHEEP),

H n « a p r i

~ ttil'e^^lîÂ vSAm Ô
ALVSIWLA!ER¥WV

ftCRRHODOPSN
355 l«6e-CP PimPPCYOQLV

PARSARSSmHPVIYlMMNrQpi

yiPQGMQCS

KSSSVYN FVIYl M M N KQ FAN C M L

QMKUATPLNYIl

Figure 5.10: The top level of FPScan results

This table describes the top level of the results page. The first column contains 
a link to the matching fingerprints in PRINTS, which allows access to annotation 
and database links. The second column contains the e-value (the database size ad­
justed p-value) of the match score. The final column contains a link to the graphical 
representation of the corresponding match (described in section 5.3.2)

Highest scoring fingerprints for sequence: OPSD_SHEEP

Fingerprint e-value GRAPHScan

RHODOPSIN 6.82e-“ Graphic

GPCRRHODOPSN 2.37e-‘*> Graphic

OPSIN 3.96g-" Graphic



CHAPTERS. METHODS 168

Figure 5.11: The second level: the ten top matches.

This table describes the second level of the results page. The columns left to right 
contain the following information; a link to the fingerprint; the number of motifs 
matched (6 of 6, indicate that all available motifs have been matched); the sum 
of the percentage identity scores for each of the matches; the average percentage 
identity; the summed profile scores; the product p-value; the corresponding e-value 
and a link to the graphical representation of the match.

Ten top scoring fingerprints for sequence: OPSD_SHEEP

Fingerprint No. of motifs Sumid Aveld Pfscore Pvalue Evalue GRAPHScan

RHODOPSIN 6 of 6 490 82 4791 7.6e-™ 6.8e"“ -

GPCRRHODOPSN 7 of 7 208 29.8 2328 2.4e-*' -

OPSIN 3 of 3 199 66.6 1448 4e“ ' ’ -

-

MCRFAMILY 2 of 7 42 21.2 401 4.6e+‘* -
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Figure 5.12; The final level: the ten top matches detailed by motif

This table describes the final, and most detailed, level of the results page. Each of  
the ten top-matching fingerprints, listed in the previous table, is shown here broken 
down into individual motif matches. The information contained in the table is as 
follows (from left to right): a link to the fingerprint; the motif (to which the match 
is made); the percentage identity score; the profile score; the p-value; the sequence 
fragment; the length of the motif; the lowest position in the alignment that this 
motif is observed; the position of the match and the highest observed position of 
the motif.

Ten top scoring fingerprints for sequence: OPSD_SHEEP. Detailed by motif.

Fingerprint N o. o f  m otifs IdScore Pfscore Pvalue Sequence length low pos high

R H O D O P SIN I of 6 86.94 898 1 .456-'“* GTEGPNFYVPFSNKTGVVR 19 3 3 5

2 of 6 80.24 808 2.666-"* SPFEAPQYYLAEPWQFS 17 22 22 25

6 of 6 81.87 703 1.046"'* TTLCCGKNPLGDDE 14 319 319 322
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can be raised in this assignment by observing the pattern of matches made to each 

of the motifs. Visualisation of the data is facilitated by plotting the score for each 

matching motif across the length of the sequence, and disregarding the restrictions 

imposed by the PathFinder method (positions and inter-motif distances). This produces 

a raw plot of the magnitude and position of each match on the x- and y-axes of a graph 

respectively (figure 5.13). The results of scanning the sequence with each of the motifs 

are separated into individual graphs to avoid confusion, and are plotted sequentially on 

top of each other (figure 5.14). Observing the data like this allows the user to clearly 

appreciate the distinction between the many false matches, occurring over the entire 

length of the sequence, and true matches. To further highlight high-scoring matches, 

all those over a given threshold are displayed as a rectangle rather than a single line, 

the other dimension being the length of the motif (figures 5.13 and 5.14).

Figure 5.13: The GRAPHScan output describing the matches to a single motif (motif 1 
of the GPCRRHODOPSN fingerprint), plotted along the length of a sequence (SWISS- 
PROT:OPSD_SHEEP).

1

The observations, made in section 5.2.3, about the effect of varying the motif scoring 

scheme, can be illustrated through the use of this graphical method, which demon­

strates the efficacy of both the scoring methods and the graphical depiction of a scanned 

sequence. Figure 5.15 shows the result of scanning a sequence (SWISS-PROT: TRB 1_YEAST) 

against its family’s fingerprint (PRINTSiPNDRDTASEII) using each of the scoring 

schemes described previously (i.e.. A) W-PID, B) AW-PID and C) the raw profile 

score). The adjustment made to the W-PID significantly reduces the abundance of 

false matches, and diminishes the magnitude of those matches that are still apparent.

The comparison also shows that by using the profile score (which deviates from posi­

tive to negative) the majority of false scores fall below the zero threshold, while none
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Figure 5.14: The GRAPHScan output describing the matches to all motifs in the 
GPCRRHODOPSN fingerprint, plotted along the length of a sequence (SWISS- 
PROT: OPSD_SHEEP).

OPSD_SHEEP vs GPCRRHODOPSN
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of the truly significant scores are affected.

The potential for shorter motifs to produce more spurious matches, was discussed ear­

lier; here it can be demonstrated by observing the difference in the number of false 

matches made by the short motif, 4, and the long motif, 6. Another advantage of the 

graphical methods is that it provides a qualitative overview of the quality of individual 

motifs. GRAPHScan thus allows the user to pinpoint ‘good’ motifs and ‘bad’ ones.

5.3.3 MULScan

Today sequence data are generated on the scale of the genome; therefore, it is desirable 

to be able to perform sequence analysis on thousands of sequences at a time. A purely 

functional addition to the suite of programs is MULScan, which provides the facility 

to submit multiple sequences for analysis.

The implementation of the FingerPRINTScan software is such that scanning a single 

sequence is fast enough to provide an interactive WWW based session. To consider the 

potential of scanning more than one sequence necessitates the development of an al­

ternative solution, which also conserves resources for single sequence scanning users. 

MULScan provides a WWW interface that enables multiple submissions to be made; 

these are queued on a server until a time of low load, whereupon they are processed 

linearly and results are forwarded to the user via electronic mail. The interface does 

not represent an extension of the software, as the handling of more than one sequence 

has been a design requirement from the outset; however, what it does represent is an 

extension of the functionality of the suite of tools.

5.3.3.1 FPScan Multiple Sequence Analysis (FPScanMSAn)

Aside from the WWW, many analyses are performed on personal computers, with 

local databases and software installations. Working with multiple sequences can ulti­

mately produce large quantities of data. The analyses of these data can be hindered
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Figure 5.15: A comparison between the match scoring schemes, demonstrated using 
the GRAPHScan tool.
All graphs show the matches made (all those scoring above the threshold of zero), to 
motifs of the PNDRDTASEII fingerprint, by a query sequence that is a member of the 
same family. Graph A was plotted using the W-PID scoring scheme; graph B used 
the AW-PID, and graph C used the profile score to determine whether matches score 
above the threshold and matches are plotted using the percentage identity score, to 
enable comparisons to be made.
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by the practicalities of the task; e.g., searching through 6,000 sets of results by eye 

is a daunting prospect; nevertheless, scanning the Saccharomyces cerevisiae proteome 

would generate almost exactly this number of results.

The command-line software tool ‘FPScanMSAn’ was developed to simplify the man­

agement of large scale analyses. As mentioned above, the scanning software (finger­

PRINTScan) is fast enough to satisfy a user of the WWW interface; i.e., it identifies 

matches to an average sequence in less than 30 seconds. However, when faced with 

13,000 Drosophila melanogaster ORFs, time becomes an important factor to consider 

(even at one sequence every 10 seconds, the task of scanning the fly proteome would 

take over 36 hours). Also, the results of 13,000 analyses are cumbersome and diffi­

cult to process. If multiple proteomes are to be scanned, then this situation becomes 

increasingly complicated.

FPScanMSAn was designed to automate a number of the steps required to perform 

such large scale analyses, to provide reporting capabilities for simple queries of the 

results, and to facilitate the deposition of results into a relational database that supports 

complex querying.

One of the problems of dealing with large datasets is the practical issue of coping 

with scanning each and every sequence. While fingerPRINTScan was designed to 

admit multiple sequences it actually scans then sequentially against a database of fin­

gerprints; however, most computer systems do not have sufficient memory (RAM) to 

support the submission of very data-sets. FPScanMSAn provides the facility to divide 

a large file of sequences into smaller, more-manageable units and sequentially sub­

mits each of these to fingerPRINTScan. All input files and their results are allocated 

an individual directory, which means that each is segregated, thus making subsequent 

analysis of the results more tractable. Dividing the large query set of sequences into 

smaller subsets also facilitates the use of multiple instances of the software on multiple 

machines or processors: this affords a primitive, but effective, multiprocessing capa­

bility. Consequently, dividing 13,000 sequences over 10 processors, has the potential
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to reduce the processing time from 36 to under 4 hours.

With all the results in place, simple analyses can be performed, such as selecting all 

sequences that match fingerprints with scores above a given threshold, or identifying 

the top scoring match to each sequence. Such analysis may be sufficient to satisfy the 

needs of a researcher hunting proteomes in order to establish ORE identities. Often the 

requirements for analysis can be more complex: e.g., to find all sequences matching a 

particular fingerprint, or to cross compare sequences matching particular fingerprints 

from one proteome with another. To support this, the results of any fingerPRINTScan 

search can be reformatted for entry into a relational database, which allows complex 

queries to be phrased in a Structured Query Language (SQL). The advantages of the 

use of a relational database stem from the ability to define fixed relationships between 

data, which vastly improve its manageability (figure 5.16 describes the tables used to 

store the results of each search).

Data produced by sequentially scanning a set of sequences will obviously be sorted by 

the order of sequences in the original datafile, and this organisation often disregards 

their biological relationships. By simply sorting the data by the matching fingerprint, 

previously hidden trends and patterns may be identified. For example, using the re­

sults from prokaryotic and eukaryotic proteomes to compare the relative abundances 

of particular family membership can highlight: conserved, housekeeping protein fam­

ilies, believed to be essential components of all living cells, and protein families that 

provide specialisations necessitated by the organisms’ differences.

As discussed previously, paralogous relationships between sequences in a family can 

complicate the picture of functional relationships. By looking closely at variations in 

the scoring patterns of individual motifs from sequences matching the same fingerprint, 

it may be possible to detect trends that indicate the existence of distinct subtypes (re­

flecting potential paralogues, the precise functions of which may differ). To construct 

a query that involves looking at matches to fingerprints and their constituent motif- 

matches, using a non-database approach is cumbersome and would require writing



CHAPTERS. METHODS 176

Figure 5.16: FingerPRINTScan results are placed into a relational database to enable 
complex queries to be formed over the data. Below is the database schema, which 
describes the tables and attributes, as well as indicating the relationships between the 
entities represented in the database

name
date
PRINTS version 
notes

fpscansearch

motifmatch

fingerprintmatchid
motifnumber
percentageidentity
profilescore
pvalue
subsequence
motiflength
lowestmotifposition
matchposition
highestmotifposition

fingerprintmatch

searchid

sequenceid
sequenceaccession
fmgerprintname
motifsmatched
totalmotifs
sumidentity
averageidentity
sumprofilescore
productpvalue
productevalue
graph
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software to select relevant data from the set of results. However, by defining the rela­

tionship between fingerprints and motifs explicitly in the relational database, queries 

such as these can be posed simply as SQL statements.

While these hypothetical queries are speculative ones based on biological knowledge, 

the use of databases that support complex querying is a ever growing concern of the 

biological community; therefore, the provision of a relational database form of finger­

PRINTScan results can only be expedient for further analysis.

5.4 Summary

The search tool presented in this chapter has been developed to utilise as much of the 

biological knowledge inherent in a fingerprint as possible. It has taken the task of 

identifying potential matches to a group of patterns from a purely numerical approach, 

to one that is supplemented with the inherent biological context contained within the 

MSA. The method, exploits the sensitivity of fingerprint models, by providing access 

to partially-matching results, and facilitates the manual diagnosis of difficult cases, by 

supplying probability values and differing perspectives (graphical and motif-based). 

The software is freely available and has been supplied to many research groups. As a 

consequence, aside from the WWW services that we provide, fingerPRINTScan is in 

use in many different research activities all over the world. The following chapter will 

demonstrate a number of the applications of the software.
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Chapter 6

Results and Applications
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6.1 Introduction

One of the most important issues in the evaluation of the fingerPRINTScan method 

was to compare the use of the different scoring schemes. This section will discuss how 

the development of the method was driven, in part, by the requirement to identify a 

suitably discriminatory scoring procedure.

When using any sequence analysis search tool, it is essential to determine a level of 

confidence in the familial assignments, or predictions, made. As discussed earlier, 

some diagnoses are ‘black and white’: a sequence is identified as either a match or 

not. A problem with such a method is that it leaves little room for variation, and, as a 

result, it can be insensitive to the identification of distant family members. However, 

as provision is made for deviation by using more sensitive approaches, the issue of the 

distinction between true and false diagnoses is raised. A perfect scenario would be to 

envisage a score, which both provided a measure of the significance of a result, and 

definitively drew a line between evolutionary relationships and false positives (Hub­

bard, 1997). Realistically, scoring schemes do not live up to these criteria, and as a 

consequence it is profitable to pursue more realistic goals. This can be achieved by 

balancing the need to avoid false positives with the desire to search sensitively. For 

example, panning for distant members of a family requires careful study of weak re­

lationships; in such a search, the inclusion of a number of false assignments is to be 

expected and is therefore tolerable. However, any form of automated analysis must 

rely on confident diagnoses; therefore, false positives must be minimised. The follow­

ing section will discuss the application of scoring thresholds to the fingerPRINTScan 

method that aim to minimise the occurrence of false positives.
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6.2 A comparison of scoring schemes

Based on the membership of families in the PRINTS database (version 27.0) a se­

quence database was constructed (true27). Each fingerprint in PRINTS contains a 

list of sequence identifiers that are designated as true members of each family. Care­

ful checking has been performed to ensure that these assignments represent true di­

agnoses, as the integrity of the database relies on the family membership of these 

sequences. Therefore, these were chosen to represent a set of sequences for which 

fingerPRINTScan could produce the most confident and verifiable assignments. As a 

comparison, the same set of sequences were randomly shuffled so as to maintain the 

amino-acid composition of the sequences, while destroying any positional sequence in­

formation (rand27). In this way, scoring artifacts based on compositional bias should 

be avoided (e.g., motifs that produce high scoring matches based solely on the over­

abundance of particular residues), and the distinction between matches of random se­

quence and evolutionarily related sequence can be measured. Randomising the se­

quences also avoids complications in distinguishing between real false assignments 

(completely unrelated sequences) and matches to related, but distant, family members 

(which indicate a true evolutionary relationship, but are d e s i g n a t e d b e c a u s e  the 

sequence does not belong to the fingerprint).

Both sets of sequences (true27 and rand27) were processed by FPScanMSAn, using a 

database of motif profiles based on fingerprints from version 27.0 of PRINTS. Profiles 

were generated, as in section 3.3.4.3, using the BLOSUM 62 substitution matrix. The 

results of both runs were placed into a relational database as described in section 5.3.3.

For each sequence in true27 and rand27, the top scoring match was extracted from 

the database, and the following data were collated: the matching fingerprint identifier; 

the sequence (SWISS-PROT or TrFMBL) identifier and accession code; the summed 

AW-PED score; the average AW-PID score; the summed profile score; the product p- 

value; and the product e-value. The same ten sequence are shown from each of the
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sets of results in figure 6.1^ (sequences from rand27 are shuffled, so they now merely

Figure 6.1: The first ten sequences from each of the two result datasets.

Sequences from rand27

fingerprint
name

sequence
identifier

sequence
accession

sum
AW-PID

average
AW-PID

sum
profile

product
p-value

product
e-value

P2X1RECEPTOR GLU2 ORYSA P07730 74.07 37.04 404 0.007 1800
BETATUBULIN GUI I ORYSA P07728 58.59 29.3 354 0.004 1000
RIB0S0M ALP2 G U I2 ORYSA P07729 90 45 446 0.00041 110
MELNOCYTESHR Q40685 Q40685 66.67 33.33 348 0.0013 330
GPROTEINA12 Q38780 Q38780 76.92 38.46 417 0.0006 150
VP6CAPSID Q40347 Q40347 68 34 501 3.3e-05 8.5
FM0XYGENASE5 GLUB ORYSA Q02898 67.95 33.98 393 0.0022 560
ADENOSINEAIR Q40689 Q40689 72.47 36.23 406 0.0014 370
FMOXYGENASE GLUC ORYSA Q02897 64 32 500 1.6e-05 4.2
KIR12CHANNEL GLU4_0RYSA PI4323 84.13 42.06 400 0.0018 470

Sequences from true27

fingerprint sequence sequence sum average sum product product
name identifier accession AW-PID AW-PID profile p-value e-value
nSGLOBULIN GLU2 ORYSA P07730 390 56 3923 5.7e-73 1.5e-67
IISGLOBULIN GUI I ORYSA P07728 390 56 3898 2.8e-72 7.1e-67
IISGLOBULIN G UI2 ORYSA P07729 390 56 3898 2.6e-72 6.8e-67
IISGLOBULIN Q40685 Q40685 390 56 3873 le-71 2.7e-66
IISGLOBULIN Q38780 Q38780 390 55 3818 l.le -7 0 2.9e-65
IISGLOBULIN Q40347 Q40347 380 55 3750 1.5e-69 3.7e-64
IISGLOBULIN GLUB_ORYSA Q02898 380 55 3724 9.5e-69 2.4e-63
IISGLOBULIN Q40689 Q40689 380 55 3780 1.2e-69 3.Ie-64
IISGLOBULIN GLUC ORYSA Q02897 380 55 3711 2.3e-68 5.8e-63
IISGLOBULIN GLU4_0RYSA P14323 380 54 3688 4.8e-68 1.2e-62

share composition and length with their counterparts in true27). The examples are 

members of a single fingerprint (as illustrated by the true27 results). Note that the 

average AW-PID score barely distinguishes the real scores (from the true27 set, which 

range between 54 and 56%), from the random scores ( the maximum of which is 45%).

Performing the same comparison over all of the ~54,000 sequences in true27 and 

rand27, further highlights the failure of the AW-PID score to effectively discriminate 

true from false. To demonstrate the efficacy of scoring sequences for each of the four 

scoring schemes (AW-PID, summed AW-PID, profile and p-value) histograms of the 

frequency of sequences achieving particular scores were plotted (one for each of the 

scoring schemes). The comparison between true (true27) and false (rand27) distribu­

tions allows for putative thresholds to be set in order to exclude varying percentages of

'Throughout this chapter the numerical form le is used in place of 1 x 10A -IO
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false positives; i.e., this allows a scoring threshold to be established to produce a se­

lective result (by removing the majority of false positives assignments). A qualitative 

assessment of the resultant histograms clearly demonstrates the weakness of scoring 

with AW-PID (figure 6.2). The bulk of the overlap between false and true results oc­

curs between 30 and 40%; however, the range over which these are indistinguishable is 

extensive (true matches start to appear at around 20%, while false ones do not diminish 

significantly until 60%).

Figure 6.2: A plot of average AW-PID scores for sequences matching fingerprints from 
PRINTS 27.0. ‘True’ sequences are members of the true27 sequence database, while 
‘False’ members are derived from the rand27 database.
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Qualitatively each of the other scoring schemes provide a better distinction between 

true and false results (figures 6.3, 6.5 and 6.7); in each, the distribution of the random 

scores is sharp and tight, which is in stark contrast to the distribution of true scores. 

The p-value score seems to produce the flattest, more highly variable distribution of
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true scores (the overlap of the high-scoring random sequences and low-scoring true 

sequences is emphasised in figures 6.4, 6.6 and 6.8).

Figure 6.3: A plot of summed AW-PID scores for sequences matching fingerprints 
from PRINTS 27.0. True’ sequences are members of the truc27 sequence database, 
while ‘False’ members are derived from the rand27 database.
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Quantitatively, the differences between the scoring schemes are clear. Drawing a 

vertical line on any of these plots provides a separation between two populations of 

sequence matches. If we use this line (threshold) to designate family membership, 

then sequences scoring above the threshold are diagnosed as true, and those below are 

false. As we can be confident about the family membership of the sequences in truc27, 

the definition of a threshold can be used to compare the performance of the scoring 

schemes. Sequences from rand27 that score above the threshold represent false posi­

tives, and those from the true set that score below are the false negatives. Figure 6.9 

shows that by modulating the number of acceptable false positives (by moving the



CHAPTER 6. RESULTS AND APPLICATIONS 184

Figure 6.4: A plot of summed AW-PID scores for sequences matching fingerprints 
from PRINTS 27.0, highlighting the region of cross-over between true and false scores.
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Figure 6.5: A plot of profile scores for sequences matching fingerprints from PRINTS 
27.0. True’ sequences are members of the true27 sequence database, while ‘False’ 
members are derived from the rand27 database.
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Figure 6.6: A plot of profile scores for sequences matching fingerprints from PRINTS 
27.0, highlighting the region of cross-over between true and false scores.
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Figure 6.7: A plot of p-values for sequences matching fingerprints from PRINTS 27.0. 
‘True’ sequences are members of the true27 sequence database, while ‘False’ members 
are derived from the rand27 database.
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Figure 6.8: A plot of p-values for sequences matching fingerprints from PRINTS 27.0, 
highlighting the region of cross-over between true and false scores.
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threshold) the resultant number of false negative assignments can be calculated.

Figure 6.9: For each of the scoring schemes a threshold value was set. Each scheme 
has a different scale (e.g., the average AW-PID ranges from 0-100%, while the p-value 
scale ranges from 1- in order to express thresholds defined on these scales,
each is expressed as the percentage of false positive assignments it creates (10%, 5%, 
1% and 0.01%). Tabulated are the corresponding percentages of false negatives pro­
duced by each threshold.

Scoring scheme False positive thresholds.
10 5 I O.OI

Average AW-PID II.2 16.0 30.0 65.3
Summed AW-PID 2.7 4.0 9.0 33.0
Profile 2.0 2.8 6.3 27.0
p-value 1.0 1.4 2.3 14.3

In order to make any diagnosis, a threshold must be defined; however, in drawing this 

line a compromise must be made between the number of false diagnoses made (false 

positives versus false negatives). The acceptable levels of either false positives or neg­

atives is strongly dependent on the task at hand. For example, investigation of distant 

family members requires a minimal loss of true data, and hence the threshold that 

best supports this role would be defined so as to minimise the number of false nega­

tives. From figure 6.9, the minimum number of false negatives was produced by the 

p-value scoring scheme (10% false positive assignments results in 1% false negatives), 

by contrast, if the AW-PID threshold is set at the same level (10% false positives) an 

order of magnitude more true matches are missed. Here, the compromise required to 

achieve a more sensitive result is that the number of false positive assignments is high 

(10%). However, in such a quest for distant family membership, it is to be expected 

that sequence assignments will be investigated manually; therefore, other evidence can 

be used to provide a distinction between real distant members and high-scoring false 

positives. Conversely, automating a sequence analysis method means that less false 

positive assignments are acceptable. Placing a threshold at such a point that it avoids 

99.99% of false positives, results in the loss of ~I4%  of the true matches. Again, a
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compromise is made. This time, the requirement to reduce the number of false assign­

ments means that a relatively high number of false negatives must be accepted.

At each point along this scale from the total avoidance of false positives (below the 

0.01% threshold) and the avoidance of false negatives (above the 10% threshold), the p- 

value scheme proves to be the most discriminatory, by consistently providing the least 

false negatives at every level. The largest deviance in the number of false negatives 

is seen between the 1% and 0.01% false positive thresholds, which corresponds to the 

cross-over between the the two distributions (the wane of the random and the rise of 

the true distribution). Therefore, it is in crossing this range that signifies the move from 

a sensitive to selective result. As a consequence, the default threshold used for making 

diagnoses by fingerPRINTScan is set approximately midway between these two values 

and represents a false positive assignment rate of about 2 in 10 (0.18%), which is an 

acceptable level for the analysis of single sequences using the WWW facility. The 

actual p-values thresholds that correspond to each of the false positive percentages are 

indicated in the following table (figure 6.10).

Figure 6.10: The p-value scoring scheme provides the best performance of all the scor­
ing schemes for any given threshold. Each p-value (or e-value) threshold corresponds 
to a percentage of false positives and false negatives. A new threshold is introduced 
into this table that has an e-value threshold of Ie~" ,̂ which is the default value used by 
FPScan to indicate significant results. The value sits approximately midway between 
the 1% and 0.01% values, and effectively represents a compromise between selectivity 
and sensitivity.

false
positive
percentage

p-value
threshold

e-value
threshold

false
negative
percentage

5 3.8e“ '’ 0.98 1.4
1 lA e ~ ' 0.06 2.3
0.18 4.7e-'" 5.4
O.OI 8.9e“ “’ 14.3
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6.2.1 Summary

Unfortunately, all of the scoring schemes exhibit the same pattern: a gain in selectivity 

is offset by a loss of sensitivity and vice versa. However, one scoring scheme consis­

tently performs better than the others: the p-value scheme. The merit of using such 

a scoring scheme is therefore clear. The p-value provides an qualitative measure of 

the likelihood of a match score, with which it is possible to compare matches to fin­

gerprints in order to determine their significance. Also, the score provides the clearest 

distinction between random scores and true scores. Consequently, the p-value score is 

best suited to establishing a threshold, by means of which sequences can be assigned 

family membership with confidence.

6.3 Multiple motifs

Closer examination of the low-scoring results reveals some interesting features of fin­

gerprints. As discussed previously, shorter patterns fail to discriminate true from false 

more frequently than longer patterns. This phenomenon can be observed empirically 

by performing an analysis of the scores achieved by fingerprints with varying numbers 

of motifs. Plotting the score distributions of fingerprints with 2 to 15 motifs reveals a 

clear pattern: increasing the numbers of motifs results in higher scores (lower p-values) 

(figure 6.11). Interestingly, the graphs indicate that a significant proportion of two- and 

three-motif fingerprints fall below a selective threshold (0.01% false positives, p-value

The true27 dataset from section 6.2, was used in this experiment to investigate the ef­

fect that multiple motifs have on the distribution of scores. It was observed in the pre­

vious section that there is a significant amount of overlap between the scores achieved 

by matches made by true and random sequences, even with the best performing scor­

ing scheme. Any improvement that can be made in the distinction between true and
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Figure 6.11: Both graphs show the distribution of p-values against the number of mo­
tifs in a fingerprint. Frequency is plotted vertically, while p-value is plotted along the 
x-axis. Each set o f fingerprint matches is represented separately based on the the num­
ber o f motifs each fingerprint contains. The different views o f the data clearly show 
the variation in the distribution of scores over the number of motifs in a fingerprint.

-1400

-1200

-1000

-800

-BOO

-400

-200

0

P-value

02
03
■ 4

'-1400 ■ 5 
■6

'-1200 □ 7
■a

'-1000 ■ 9

'-800
o lO  
■ 11

'-600
■ 12 
■ 13

'-400
■ 14
■ 16

'-200

lj-0

1
P-value



CHAPTER 6. RESULTS AND APPLICATIONS 193

false results in this region, will significantly improve the confidence that can be placed 

in any assignments made by fingerPRINTScan.

Initial analysis of these low-scoring matches indicated the presence of both falsely 

identified true member sequences, and low scoring partial matching sequences. Se­

quences make partial matches with fingerprints for a variety of reasons; e.g., sequences 

can be incomplete or truncated (fragmentary sequences) or they can be distant mem­

bers of the family (distant orthologues or paralogues). These accordingly match fin­

gerprints with scores ranging from nearly maximal (e.g., 1 match missing in a 10 mo­

tif fingerprint) to minimal (e.g., only matching 2 motifs). While, identifying partial 

matches is important to provide as much sensitivity as possible, their presence com­

plicates the study of the scoring patterns of n-motif fingerprints. Therefore, in order 

to define a selective threshold, and to investigate the scoring patterns of fingerprints, a 

new set of true member sequences was defined to replace true27. True27_full contains 

only sequences identified as fully-matching members of fingerprints: a sequence must 

match all n of a fingerprint’s motifs. It is fair to provide this redefinition of the true 

dataset as the fingerprinting method considers only these sequences as suitable for ex­

traction of motifs; therefore, they represent the most confidently assigned and verified 

members of a fingerprint’s family.

Using the sequences from true27_full to perform the analysis described in section 6.2, 

show a reduction in the percentage of false negatives (see figure 6.12). The remain­

ing low-scoring results fall into two categories: those sequences that belong to one 

fingerprint but are identified by another and those sequences identified by the correct 

fingerprint, but which score below the threshold. Both sets of sequences represent a 

failure to diagnose familial membership by the fingerPRINTScan method, and, there­

fore, require further investigation. The sequences were split into their respective sets by 

identification of each sequence’s fingerprint (all sequences in this set are fully match­

ing members of a fingerprint) and a comparison of this with the fingerprint that actually 

matched the sequence; those with correct assignments are designated ‘false negatives’.
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Figure 6.12: A comparison between the number of false positive assignments made us­
ing the the true27 and true27_full datasets. As no partial matching sequences are rep­
resented, any sequences falling below thresholds are false negatives that arise as a con­
sequence of a fingerprint failing to elevate a full matching member above the threshold. 
Three false-positive threshold values are shown, alongside the corresponding p-value, 
and the false-negative percentages (from figure 6.10), as well as the true27_full values.

false p-value false false
positive threshold negative negative
percentage % true27 % true27_full
1 2.4g-^ 2.3 1
0.18 5.4 3
0.01 8.9e-“> 14.3 11

while those with incorrect matches are termed ‘true negatives’̂ . Both sets highlight 

problems. The fingerprints of the former set correctly identify their members, but fail 

to provide significant scores, while the latter set are matched by unrelated fingerprints 

that score higher than their own fingerprint. Observations of the scoring potential of 

fingerprints with varying numbers of motifs indicated a propensity for smaller patterns 

(fingerprints with fewer motifs) to produce scores that barely distinguish true matches 

from random matches (figure 6.11). This observation is clearly reflected in an analysis 

of the fingerprints that contribute these low scoring matches. The most obvious trend 

is the preponderance of fingerprints with 2 and 3 motifs falling into this group (figures 

6.13 and 6.14).

Closer examination of the low scoring fingerprints reveal particular examples that re­

peatedly produce scores in this range and, more importantly, a common trend shared 

between these fingerprints. Clearly, it is short fingerprints, those with 2 to 4 motifs that 

most consistently fail to promote their own member sequences either above a threshold 

or above matches to other fingerprints. However, many of these fingerprints share an­

other common feature. Most of the fingerprints in either table of figure 6.15, describe

^The ‘true negative’ matches are also false negatives, because they represent sequences unidentfied 
by their own fingerprints below the threshold.
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Figure 6.13: The number of sequences falling below two thresholds analysed by the 
number of motifs in their families’ fingerprints. All sequences falling below the two 
thresholds 1% and 0.01% false positives were analysed. For each sequence, the number 
of motifs in its family’s fingerprint was extracted. This is presented in the following 
table as the number of fingerprints containing n motifs.

Number of sequences scoring below the thresholds
false negatives

false p-value total number of motifs
positive threshold 2 3 4 5 6 7 8 9 10
1
0.01

2Ae~'
8.9e“ '^

218
4102

204
1908

10
1789

3
366

1
30 6 3

true negatives
false p-value total number of motifs
positive threshold 2 3 4 5 6 7 8 9 10
1
0.01

2Ae~' 289
900

258
619

16
161

15
88 10 13 1 2 1 5

Figure 6.14: All sequences from fingerprints with 2-3, and 2-4 motifs are expressed as 
percentages of the total number of sequences falling below the two thresholds.

false p-value false negatives true negatives
positive threshold 2 & 3 motif 2-4 motif 2 & 3 motif 2-4 motif
percentage fingerprints
1 2 A e -' 94.8 100 93.6 98.17
0.01 8.9e-*'’ 90.13 99.05 87.22 97.00

> 9 0 > 9 9 > 8 7 > 9 7



CHAPTER 6. RESULTS AND APPLICATIONS 196

very divergent relationships. A number of promiscuous domains are represented, most 

notably the ZINCFINGER (the C2H2-type zinc finger fingerprint), GPROTEINBRPT 

(the G-protein beta WD-40 repeat) and HOMEOBOX (the homeobox signature) fin­

gerprints. As noted previously, shared domains or highly-divergent families, when 

described by motif-based models, have a tendency to produce weak patterns, which is 

due in part to the restrictions on motifs (i.e., that they must be conserved ungapped 

blocks of aligned sub-sequences). When sequences in an MSA become so divergent 

that extensive gaps are required to maintain alignment, regions from which motifs 

are derived are frequently shortened and become less abundant. The reduction in the 

quantity of conserved regions, is usually accompanied with a reduction in the quality 

of conservation (i.e., more positions in the motif accumulate multiple point mutations); 

both affect the discrimination power of the fingerprint. Less conservation in columns of 

the alignment improve the potential for random sequences to attain positively-scoring 

matches, and fewer, and increasingly polluted, motifs reduce the significance of true 

member scores, and the context that larger numbers of motifs afford.

6.3.1 Summary

Fingerprints defined from 2-4 motifs clearly affect the diagnostic ability of the finger­

PRINTScan method, especially when these a models also contain poorly conserved 

motifs. This feature, unique to only a subset of the fingerprints in the database, seem­

ingly can not be addressed by an alteration of the methodology employed in the scan­

ning process, and must therefore be solved by other means. The simplest approach 

would be to remove fingerprints of less than 5 motifs from any but the most sensi­

tive analyses, the unfortunate result would be a loss of the scope usually provided by 

the absent fingerprints, but selectivity would be improved. Alternatively, by defining 

scoring thresholds (which measure the score range over which true fingerprint family 

members vary), rather than a catch-all threshold (based on the estimated number of 

false positive assignments), a view of the variability of a given family can be provided.
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Figure 6.15: All of the fingerprints from figure 6.13 were collated, to produce a list 
of the most frequently occurring fingerprints in the list of false negative assignments 
(below the 1% and 0.01% thresholds).

Threshold p-value of 23e   ̂ (1% false positives)
frequency fingerprint name
136 ZINCFINGER
69 C2HCZNHNGER
29 GFCYSKNOT
10 4FE4SFRDOXIN
9 GPROTEINBRPT
7 WWDOMAIN

Threshold p-value of 8.9g (0.01% false positives)
frequency fingerprint name
453 ZINCFINGER
366 GPROTEINBRPT
329 HOMEOBOX
159 THIOREDOXIN
156 AMPBINDING
132 HTHLYSR, PAPAIN
117 HTHARAC, LEURICHRPT
92 C2HCZNF1NGER
86 2FE2SFRDOX1N
84 HTHREPRESSR, NUDIXFAMILY
72 CHITINBINDNG
71 4FE4SFRDOX1N
70 mVVPRVPX
66 FNTYPElll, GLUCAGON, SH3D0MA1N
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While, this does not provide a clear solution to the problems of distinguishing true 

from false results with 2-4 motif fingerprints, what it does provide is an indication of 

the range over which true matches are made. Matches to fingerprints below an arbi­

trary threshold, which nevertheless fall within the realms of their fingerprint’s natural 

score range, can therefore be assessed differently from matches that lie outside of this 

range.

6.4 Genome Analysis

The potential for the use of fingerPRINTScan in the analysis of large numbers of se­

quences has been stated previously. The software can be parallelised, and on average 

can perform more than 700 sequence scans per hour per processor. The resultant data 

can be placed into a relational database, which provides the facility for performing 

analyses of the results. These factors, combined with the multiple motif based ap­

proach of the fingerprinting process, are ideally suited for fingerPRINTScan’s inclu­

sion in a genome annotation or analysis program. As will be discussed later, finger­

PRINTScan has already played a role in the annotation of Drosophila melanogaster as 

a component of InterPro (Rubin et al., 2000).

A set of ten genomes were selected for the following analysis. The genomes represent 

diverse taxa, ranging from eukaryote, bacteria and archaea. These preliminary analyses 

are concerned mainly with the effect of the application of the thresholds defined in 

section 6.2. The analysis of large datasets demands that low-scoring, true diagnoses 

should be sacrificed so as to avoid as many false positives assignments as possible. 

Figure 6.16 shows the number of assignments made by fingerPRINTScan at different 

thresholds, from the analysis of ten genomes.
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Figure 6.16: Ten genomes from diverse taxa, were selected to observe the effects of 
variation of the scoring thresholds defined in section 6.2.

The number of sequences identified above the threshold
Organism Total Threshold

ORFs 1.0% 0.01%
(2.3e-’ ) (8 ,9e-‘ )̂

No. % No. %
Bacillus subtilis 4095 880 21.5% 407 9.9%
Drosphila melanogaster 13615 3859 28.3% 1612 11.8%
Mycoplasma genitalium 483 124 25.7% 81 16.8%
Escherichia coli 4246 959 22.6% 460 10.8%
Methanococcus jannaschii 1772 281 15.9% 165 9.3%
Chlamydia pneumoniae 1052 197 18.7% 119 11.3%
Pyrococcus horikoshii 2061 307 14.9% 126 6.1%
Saccaromyces cerevisiae 6191 1138 18.4% 565 9.1%
Rickettsia prowazekii 834 188 22.5% 118 14.2%
Caenorhabditis elegans 18379 3984 21.7% 1857 10.1%

6.4.1 Summary

These simple results indicate that by using this software a number of assignments 

can be made, which are in line with the diagnosis rates of other similar automated 

analysis methods. The confirmation step of automatic annotation for TrEMBL results 

in 0.07% false positive assignments (Fleischmann et al., 1999) with 10% coverage 

(sequences assigned). Here, using the 0.01% false positive threshold, a similar level 

of coverage is achieved. As coverage is a function of the size of the resource, in this 

case the 1360 fingerprints in PRINTS 27.0, increasing this coverage and improving 

the confidence of the assignments made is something that can not be achieved alone 

by any single resource; TrEMBL annotation utilises PROSITE and IDENTlFY-like 

patterns to confirm diagnoses. However, these results indicate that fingerPRINTScan 

is worthy of inclusion into annotation programmes that can utilise the combined efforts 

of multiple search tools; e.g. the InterPro search facility and the TrEMBL annotation 

suite.
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6.5 Sensitivity

The PRINTS search tool fingerPRINTScan has the ability to report both full and par­

tial matches. Providing this flexibility means that fingerPRINTScan can be directed 

towards the careful (manual) consideration of distant relationships as well as en masse 

diagnoses. So far the only results to be considered have been the top-scoring full fin­

gerprint matches; because high-confidence diagnoses, such as these, are essential for 

providing functional predictions in large scale analyses. However, the multiple-motif 

methodology has the potential to identify relationships that are far less clear-cut than 

the ‘full fingerprint match’. Indeed, a partial match to a fingerprint may indicate a 

novel relationship between the family in question and a distant relative. In cases where 

an uncharacterised sequence cannot be assigned annotation from pairwise similarity 

alone, and likewise no membership of a defined family can be confidently prescribed, 

the identification of any indication of ancestry, however distant, is very important. 

While a partial match can never be as confident an indicator of familial membership 

as a full match, it nevertheless provides an assertion to support, or controvert, the 

accumulation of evidence from other sources. To improve the chance that difficult di­

agnoses are correctly interpreted a search tool must provide as much information as 

possible. FingerPRINTScan meets these requirements by displaying differing levels 

of information relating to the fingerprint match, and then to each of the motif matches; 

furthermore, it also provides a graphical analysis of motif matches. In order to further 

supplement and enhance the task of analysing such distant and/or ambiguous results, a 

new feature has been introduced, which can provide a perspective on the relationships 

between individual matching fingerprints.

The PRINTS database has recently been supplemented with a resource based on a re­

lational database management system: PRINTS-S (Attwood et al., 2000). This new 

paradigm provides the facility to describe the relationships between fingerprints, and 

their components (motifs, sub-sequences, sequences that belong to families, etc.), more
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explicitly than it was possible to do in the original. With this development has come the 

ability to delineate ‘parent-child’ relationships between individual fingerprints based 

on their evolutionary heritage. In particular, this hierarchical description of finger­

prints, using their super-family, family and sub-family relationships, has proved to be 

beneficial in the analysis of full and partial matches. Based on the original model 

of PRINTS, where information regarding relationships between fingerprints was only 

available within the annotation of each entry, the observation of a number of matches to 

a query sequence, may have been ambiguous. By providing a list of scoring matches, 

as well as access to fingerprint annotation, fingerPRINTScan provided a means for 

the interpretation of these results. However, by utilising the explicit relationships de­

fined in PRINTS-S, fingerPRINTScan can now provide direct access to this informa­

tion, which dramatically reduces the effort required to interpret a single result. The 

beneficial effects of the fact that fingerPRINTScan does not consider fingerprints in 

PRINTS to be isolated (i.e., they form parent-child relationships) can be clearly ob­

served from the results of matching a sequence to a family with a well defined hi­

erarchy. Scanning the sequence SWISS-PR0T:MC3R_RAT (a melanocortin receptor 

(subtype 3)) against PRINTS 27.0 produces the matches shown in figure 6.17A. The 

highest scoring match is to the melanocortin receptor family fingerprint; on its own this 

correctly diagnoses the sequence as a member of the melanocyte-stimulating hormone 

receptor family (PRINTS :MCRFAMILY). However, there are further lower-scoring 

matches: MELNOCORTINR, which specifically identifies the melanocortin receptors; 

MELN0C0RTN3R, which is derived from a subtype of the melanocortin receptors 

(specifically subtype 3); and GPCRRHODOPSN, which describes the rhodopsin-like 

GPCR super-family. Below the threshold (e-value le~4) there are also a number of 

partial matches. With the knowledge that the four highest scoring matches share spe­

cific parent-child relationships, this result is very clear: the sequence belongs to the 

rhodopsin-like GPCR super-family, it is specifically a subtype-3 melanocortin receptor, 

which belongs to the melanocortin specific sub-family of the melanocyte-stimulating
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Figure 6.17: Result from the scan of MC3R_RAT against PRINTS 27.0. A) shows 
the original set of results, and B) shows the effect of supplementing these results with 
parent-child relationship information from PRINTS-S.
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hormone receptor family (figure 6.17B shows the addition of parent-child relationships 

to the result in 6.17A). Furthermore, these relationships extend into the low signifi­

cance scores below the threshold, and all but one of these matches belong to the same 

super-family.

The extension of similarity, beyond the realms of significance, reflects the impor­

tance of providing this degree of annotation to partial matches. Insignificant partially- 

matching sequences tend to indicate chance events; however, when these partial matches 

belong to the same super-family, it is possible that they represent real matches that 

merely lack the mathematical significance to be identified as such. Any such partial 

match that can find support from insignificant, but related matches, may benefit from 

the additional information or evidence that this provides. An example is shown in fig­

ure 6.18, a sequence TrEMBL:Q9U320 (a predicted ORE from C. elegans genome) 

partially matches GPCRRHODOPSN. The top-scoring match is significant enough to 

indicate that the sequence is likely to be a member of the super-family, while all other 

matches are insignificant partial s. However, four of the partial matches also belong to 

the super-family, and although these do not indicate any statistical significance their
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biological relevance provides some support for the original diagnosis.

Eigure 6.18: Result from the scan of Q9U320 against PRINTS 27.0. A) shows the 
original set of results, and B) shows the effect of supplementing these results with 
parent-child relationship information from PRINTS-S.
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6.5.1 Summary

Sensitive searches for distant family members inevitably require manual intervention. 

In exploiting the sensitivity afforded by the multiple-motif method employed in the 

construction of fingerprints, fingerPRINTScan can provide support for the analysis of 

unclear results through the identification of partial matches. The software also attempts 

to illuminate ambiguous matches by providing access to varying levels of information 

about any matches made, and to the uniquely rich set of inter-relations between finger­

prints in PRINTS.

6.6 Applications

The accessibility of fingerPRINTScan has meant that the software played a larger role 

than merely the provision of a convenient search tool for the PRINTS WWW site.
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From the outset the software was developed with the intent that it would be released 

freely and openly to the biological community. The paradigm of making software 

available with minimal restrictions (on the use of either the program itself or redevel­

opment of its underlying source code) is common today; and high profile software de­

velopments like Linux are amongst its most influential proponents. The benefit comes 

from the freedom that individuals have to reuse and integrate different pieces of soft­

ware. By being able to use and modify software without restriction, means that time 

and effort is not wasted on ‘re-inventing the wheel’; i.e., if the requirement of a com­

ponent of a sequence analysis package is that it searches PRINTS, then it would be 

sensible to use fingerPRINTScan and integrate it into the package, rather than devel­

oping software from scratch.

As a result of both the above consideration, and its profile as the PRINTS search 

tool, fingerPRINTScan is currently widely used in numerous commercial, and aca­

demic sectors. Usually the incentive to install a private implementation of the software 

comes from the sensitivity of the data to be analysed or the requirement to analyse 

large amounts of data, both of which are unsuitable for submission to WWW services. 

A number of publically available instances of applications of fingerPRINTScan are 

described in the following sections.

6.6.1 TrEMBL

The TrEMBL database, is an automatically annotated database, which comprises trans­

lated coding sequences from the EMBL nucleotide sequence database. The annotation 

process relies on clustering sequences sequences from an annotated database (SWISS- 

PROT) using an automated method (e.g., PROSITE). Clusters, or groups, are subse­

quently analysed to extract annotation that is common among the members. Once 

annotation has been established for each group TrEMBL sequences are clustered us­

ing the same methods. Correspondingly, TrEMBL clusters can be annotated with the
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common annotation from correlated SWISS-PROT groups.

Essential for the efficacy of this method is the unambiguous, and consistent, designa­

tion of groups of both annotated and unannotated sequences. It is therefore essential 

to only use the most confident group assignments possible. To determine the confi­

dence or otherwise of groups designated by the PROSITE method, comparisons are 

made with assignments from the complementary approach implemented in the EMO­

TIF method. Using this approach 10% of the sequences in TrEMBL can be confidently 

assigned annotation (Fleischmann et al., 1999). To extend this method requires an in­

crease in the scope of the family coverage provided by the clustering procedure. Both 

the PROSITE patterns and the confirmatory EMOTIF patterns are derived from the 

same source (the IDENTIFY database is not used, merely PROSITE patterns are re­

encoded using the EMOTIF method), and as a consequence the use of the alternative 

method only functions as a means of confirming or rejecting the diagnosis. In an ef­

fort to increase familial coverage and to increase the potential for utilising overlapping 

complementary evidence to confirm group designations, the authors express the desire 

for the inclusion of external databases in this process. Recently, through the integra­

tion of PRINTS into InterPro, fingerPRINTScan has provided the means for the use 

of PRINTS in this annotation process (Steffen Moller, pers. comm.). Currently, over 

47,000 sequences in TrEMBL release 14 (June 2000), which contains 351,834 entries, 

contain links to PRINTS fingerprints.

6.6.2 InterPro

This integrated resource, provides access to patterns from a number of secondary 

databases. The first release included entries from PROSITE, PRINTS and Pfam, and 

the latest release also includes ProDom entries. Essential to the construction of Inter­

Pro is the ability to merge, and validate, patterns from each of the parent resources 

that describe a single biological family. InterPro deals with the complexities of the
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relationships between entries (either in the same resource or between resources) by 

defining specific types of parent-child relationships; i.e., sub-type and sub-string rela­

tionships. A parent-child relationship recognises the hierarchical structure of the rela­

tionship between two entities; e.g., the pattern that describes a particular super-family 

can be defined as the parent of a number of family patterns, which in turn are par­

ents to sub-family patterns. Parent-child relationships across the pattern databases are 

complicated by the existence of redundant definitions; e.g., Pfam: 7tm_I is a profile 

which characterises the Rhodopsin-like G-protein coupled receptor family, PRINTS: 

GPCRRHODOPSN provides a similar but non-overlapping characterisation, as does 

PROSITE: G_PROTEIN_RECEPTOR and G_PROTEIN_RECEPTOR_2. While each 

entry defines the same family, the diagnostic ability of each resource is quite differ­

ent. Consequently, the summation of all patterns into a single InterPro entry provides 

both the largest range of members, and an indication of the most consistent member­

ship (i.e., the intersection of all the sequences matching each of the individual pat­

terns). Patterns that define family membership that resides further down the hierarchy 

describe more specific diagnoses of function, these are defined with sub-type rela­

tionships. Sub-string relationships are shared between patterns that define the same 

family, but which physically exist within the region described by another pattern; e.g., 

PROSITE:G_PROTEIN_RECEPTOR is a small RE which covers only a small range 

of MSA of the family, whereas the HMM Pfam:7tm_l provides more extensive cov­

erage of the alignment. The inclusion of PRINTS in InterPro has been facilitated by 

fingerPRINTScan, which functions as component of the integrated search tool and is 

used in the verification of sequence family membership. The latter is a step akin to 

the annotation of TrEMBL described above, in which InterPro entries are defined by 

comparing pattern from its parent resource, and the establishing of overlapping defini­

tions of familial membership. This process ensures that when multiple patterns exist 

they can be collated into a single InterPro entry; e.g., the entry IPR000276 consists 

of PROSITE: G_PROTEIN_RECEPTOR, PROSITE: G_PROTEIN_RECEPTOR_2,
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Pfam: 7tm_I and PRINTS: GPCRRHODOPSN.

The differing perspectives that each of the parent resources bring to a diagnosis re­

flect the utility of InterPro. For example, while Pfam’s HMMs provide sensitive di­

agnoses of distant relationships, the inclusion the extensive sub-family assignments 

in PRINTS (which can make more specific diagnoses), can yield a more balanced 

or more precise result. The sequence SWISS-PROT:BOSS_DROME is annotated by 

Pfam (version 5) as 7tm_3, which indicates its membership of the metabotropic gluta­

mate GPCR family (MGR). This family of proteins is characterised by its seven trans­

membrane architecture, its involvement in the inositol phosphate calcium signalling 

pathway and its coupling with G-proteins. However, using fingerPRINTScan to scan 

BOSS_DROME against the PRINTS MGR family fingerprint (GPCRMGR) shows no 

significant similarity (figure 6.19). Further investigation using PSI-BLAST shows that

Figure 6.19: A GRAPHScan plot of the motif of PRINTS:GPCRMGR against SWISS- 
PROT:BOSS_DROMF.

BfJSS DFriMF vs CiPTFWGR

Residue Number

BOSS_DROMF does identify weak matches to some ‘MGR-like’ proteins; by intégrât-
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ing these MGR-like proteins into the PSI-BLAST profile and iterating it is possible to 

identify some MGR members. However, this kind of transitive assignment does not 

directly indicate that BOSS_DROME is a member of the MGR family, merely that 

it shares similarities with proteins that in turn share similarities with MGR members. 

Close examination of the Pfam seed-alignment reveals a number of these low scoring 

MGR-like sequences. Hence, the sensitivity of the Pfam model, in this case, reveals a 

relationship that cannot be clearly verified; and unfortunately this speculative relation­

ship is carried over into a diagnosis of the sequence. The perspective that PRINTS pro­

vides on this relationship is clear, there is little evidence to link BOSS_DROME to the 

MGR fingerprint (figure 6.19); however, its own family fingerprint (BRIDEOF7LESS) 

provides a clear match (figure 6.20) and an unambiguous diagnosis.

Figure 6.20: A GRAPHScan plot of the fingerprint PRINTS:BRIDEOF7LESS against 
SWISS-PROT:BOSS_DROME.

B0S8_DR0ME vs BRIDE0F7LESS
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rn

Residue Hunber

The utility of InterPro as a genome annotation tool was demonstrated in a comparative
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analysis of three eukaryote genomes performed by Rubin et al. (2000). The authors 

indicate that using a combination of InterPro analyses and manual inspection, ~54% 

of the D. melanogaster, ~45% of C. elegans and ~48% of S. cerevisiae proteomes 

could be assigned.

6.6.3 Other applications

Many researchers, from both the commercial and academic sectors, across the world 

maintain a personal installation of fingerPRINTScan; a number of the higher profile 

applications are detailed below.

Researchers from the San Diego Supercomputer Center (SDSC) at the university of 

California, San Diego, provide WWW-based access to their Biology Workbench. This 

project is aimed at integrating nucleic acid and protein sequence databases with many 

of the most popular analysis tools in order to supply a single interface with all of 

the functionality that a computational molecular biologist may require. This type of 

integration removes the burden of exchanging data between disparate and incompatible 

WWW-based search tools and databases. The sequence analysis tools provided by the 

Workbench range from BLAST and FASTA searches to the use of ClustalW to produce 

MS As. Currently the only pattern database analyses that are available are PROSITE 

and PRINTS (via fingerPRINTScan).

Bionavigator, a commercial project (situated in Sydney, Australia), similarly offers 

a wide range of biological sequence analysis tools packaged together in a single in­

terface; interest in the use of fingerPRINTScan (EPS) has been clearly stated (Steve 

Taylor, pers. comm.), but at present the software has not been included in the release 

version of the product. Likewise, the PRINTS search software is soon to be integrated 

into the Artemis annotation tool used at the Sanger Centre, Cambridge, U.K. for mi­

crobial genome annotation.

To summarise, since its inception as the PRINTS database search tool fingerPRINTScan,
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has become a widely used sequence analysis tool; it now provides supports for a wide 

range of annotation roles, and has emerged as an integral component of the current 

picture of pattern database driven sequence analysis.



211

Chapter 7

Discussion and Conclusions
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This thesis has shown how the development of fingerprints for the PRINTS database, 

and the understanding of the processes of pattern based sequence analysis, led to the 

appreciation of the need for a search tool that could fully exploit the properties inher­

ent in multiple motif methodology. It has also shown how the analysis of these and 

other methods, has influenced the design and construction of a search tool capable of 

realising these aims.

The search tool, fingerPRINTScan, attempts to balance the contradictory requirements 

of sequence analysis (the need for selectivity and sensitivity), by providing diagnoses 

based on the strength of affirmatory multiple motif matches, yet never discarding 

matches that fail to fully match a fingerprint. Instead of relying purely on statistical 

calculations to reveal the highest scoring or most likely match, fingerPRINTScan takes 

into account the biological context of motifs. The additional information supplied by 

knowledge of the order, or positions, of motifs within the alignment, provide the ba­

sis for the identification of the most likely match to a fingerprint, and the rejection of 

spurious matches.

Ultimately, any sequence analysis tool must rely on a scoring scheme to provide dis­

crimination between sequences that match because they are homologous, and sequences 

that match due to chance. For any scoring scheme this discrimination is not absolute. 

Both true and false scores exist in overlapping continuous distributions; and the best 

that can be achieved is to select the scoring scheme that produces the minimum of 

overlap. For the analyses performed by fingerPRINTScan the generation of p-values 

from a profile matrix proved to perform the most effective separation of true and false 

results.

Where no discrimination is possible (i.e., within the overlap), it was shown that finger­

prints of 2 and 3 motifs are most often associated with providing these poor diagnoses. 

The weakness of these particular patterns stems from an inherent failure of the fin­

gerprinting process itself. The discriminatory power of any pattern is strongly reliant 

on both the conservation of the MSA and the length of the conserved region. One of
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the benefits of multiple motif based patterns is the fact that many smaller-pattems can 

function as effectively as a single larger one. This means that alignments containing di­

vergent sequences can still be effectively described, even if there are few long stretches 

of conservation. However, as the relationship described by the MSA becomes more and 

more distant, the degree of conservation falls. As a consequence, regions suitable for 

the definition of motifs become smaller and more scarce (motifs must be defined from 

regions that do not contain gaps). Consequently, fingerprints, suffer from the dual ef­

fects of reduced motifs and diminished conservation in the remaining ones. Therefore, 

beyond a certain point, the ability of a fingerprint to distinguish true members of its 

family from random matches is removed.

By modulating the threshold p-value that draws the line between true and false di­

agnoses, both highly selective and sensitive searches can be supported. Naturally, a 

compromise is made; a sensitive search tolerates false positive assignments, while a 

selective search minimises false positives at the cost of losing a proportion of true 

matches. The p-value scoring scheme provides the most effective compromise by re­

sulting in the minimal loss of true assignments as selectivity is increased. It was indi­

cated, for a range of proteomes, that fingerPRINTScan is capable of making levels of 

assignment comparable with the automated analysis tool used for the annotation of the 

TrEMBL database.

At the other end of the scale, sensitive analyses are supported by the ability to de­

tect partial matches. Such analyses are invariably performed manually, therefore it 

is necessary to provide as much information to the user as is available. To meet this 

requirement, and in order to facilitate the interpretation of ambiguous results, finger­

PRINTScan supplements each match between a sequence and a fingerprint with addi­

tional information. This includes a graphical representation of the match, and details 

of each matching motif. Furthermore, by revealing the hierarchical relationships that 

exist between fingerprints, it is possible to illuminate the biological context of any 

matches that are made.
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One of the very clear conclusions that can be drawn from the work presented in this 

thesis is the identification of the distinct niche that fingerprints occupy. As familial 

discriminators fingerprints excel in the definition of specific patterns that facilitate the 

sub-division of families, but produce weak models from alignments containing distant 

relationships. Conversely models such as Profile-HMMs tend to describe divergent 

relationships well, but fail to provide very specific diagnoses. InterPro provides a real 

opportunity for PRINTS to concentrate on providing strong and specific diagnoses, 

while Pfam and profiles concentrate on the modelling of domains and distant relation­

ships.

This conclusion highlights an important caveat about sequence analysis, which should 

be reiterated. The warning is that every pairwise or pattern search tool has its own spe­

cific strengths and weaknesses; therefore, none should be trusted explicitly or used in 

isolation. This is especially important in this era of high throughput genomics; as more 

and more sequences obtain their annotation via similarity alone, the consequences of 

not heeding this warning could be dire.

The work presented in this thesis has provided a search tool for PRINTS; hopefully 

it has also created a facility for the dissemination of its unique perspective into the 

analyses of as many annotation programmes as possible.
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List of abbreviations

ADSP ‘Algorithms and Data Structures for Protein sequence analysis’

DDJB DNA Data Bank of Japan

DP Dynamic Programming

EBI European Bioinformatics Institute

EMBL European Molecular Biology Laboratory

EST Expressed Sequence Tag

EVD Extreme Value Distribution

GCM Genetic Code Matrix

GSDB Genome Sequence DataBase

HMM Hidden Markov Model

INSD International Nucleotide Sequence Database Collaboration 

IM Identity Matrix

ISREC Swiss Institute for Experimental Cancer Research 

JIPID Japan International Protein Sequence Database 

MDM Mutation Data Matrix



LIST OF ABBREVIATIONS 216

MIPS Munich Information Center for Protein Sequences

MSA Multiple Sequence Alignment

MSS Maximally Scoring Sub-sequence

NCBI National Center for Biotechnology Information

ORF Open Reading Frame

PAM Point Accepted Mutation

PIR Protein Information Resource

PSD Protein Sequence Database

PSSM Position Specific Scoring Matrix

Profile-HMM Profile-Hidden Markov Model

RE Regular Expression

SIB Swiss Institute of Bioinformatics

SQL Structured Query Language

SRS ‘Sequence Retrieval System’

TIGR The Institute for Genomic Research

WWW World Wide Web
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