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Abstract 

Missing information is a major drawback in analysing data collected in many routine 

health care settings. Multiple imputation (MI) assuming a missing at random (MAR) 

mechanism is a popular method to handle missing data. The MAR assumption cannot 

be confirmed from the observed data alone, hence the need for sensitivity analysis to 

assess robustness of inference. However, sensitivity analysis is rarely conducted and 

reported in practice. We analysed routine paediatric data collected during a cluster 

randomized trial conducted in Kenyan hospitals. We imputed missing patient and 

clinician-level variables assuming the MAR mechanism. We also imputed missing 

clinician-level variables assuming a missing not at random (MNAR) mechanism. We 

incorporated opinions from 15 clinical experts in the form of prior distributions and 

shift parameters in the delta adjustment method. An interaction between trial 

intervention arm and follow-up time, hospital, clinician and patient-level factors were 

included in a proportional odds random-effects analysis model. We performed these 

analyses using R functions derived from the jomo package. Parameter estimates from 

MI under the MAR mechanism were similar to MI estimates assuming the MNAR 

mechanism. Our inferences were insensitive to departures from the MAR assumption 

using either the prior distributions or shift parameters sensitivity analysis approach. 
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1 Introduction 

Routine health data are increasingly used in monitoring quality of patient care in low 

and middle income countries.1-5 However, concerns about quality of routine data 

including completeness and accuracy limit their use in decision making.6 To alleviate 

bias, multiple imputation (MI), a method for handling missing data which repeatedly 

draws from a model to create multiple completed data sets, is often recommended in 

the missing data literature.7-9  Standard MI relies on the assumption that the probability 

of data being missing is independent of the missing observations conditional on the 

observed data. This assumption is known as the missing at random (MAR) 

mechanism.7, 10 On the other hand, if the probability of a value being missing depends 

on unobserved data, even after conditioning on all the available information, then  data  

are said to be missing not at  random  (MNAR).7, 9 In practice, MAR and MNAR 

mechanisms cannot be distinguished using observed data only,9, 11, 12 hence the need for 

sensitivity analyses.7, 9, 13 Sensitivity analyses entail scrutinizing plausible models 

assuming MNAR mechanisms to assess departures from the MAR assumption; the 

primary analysis model is changed through a number of alterations and the stability of 

inferences across the alternative settings assessed.9, 14-16 

Broadly, sensitivity analyses following MI can be conducted within three generic 

frameworks, namely pattern-mixture models, selection models and shared parameter 

models. 7, 9, 13, 15-17  Nonetheless, sensitivity analysis within any of these frameworks is 

rarely reported in practice. This is because it is a computationally complex procedure 
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which involves defining and examining suitable assumptions for a given data set under 

analysis.15, 18 Besides, sensitivity analysis methods are underdeveloped in standard 

statistical software thus limiting their application in practice.15   

In health care settings, completeness of routine data depends on an interplay of factors 

that operate at the patient, clinician and healthcare facility levels.19  For example, 

missing data at facility level could result from temporary breakdown of medical 

devices (e.g. blood pressure machine or pulse oximeter) within a healthcare facility 

leading to absence of diagnostic investigations in that facility during the breakdown 

period. At the clinician level, individual attributes such as professional qualification, 

experience and behaviour can influence quality of care, and its documentation, 

therefore impacting the quality of routine data.20 Separately, clinician-level factors are 

rarely captured within routine health data generated in low income countries and hence 

clinician effect is often overlooked in studies reporting clinician-prescribed routine 

care.4, 5, 21 This problem of missing data at the clinician level is compounded when 

missing data are handled using inappropriate methods such as complete case analysis 

(CCA), that increase the risk of obtaining biased and inefficient estimates, hence 

misleading inference.12, 22  Furthermore, in most studies for which the primary analysis 

was based on complete case records, MI assuming MAR mechanism was used as a 

sensitivity analyses tool .12 However,  similarities between CCA and MI results could 

lead to false reassurances that data are either Missing  completely  at  random (MCAR) 
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or missing at random with a mechanism not involving the outcome (i.e. covariate-

dependent MAR 23) whereas a MNAR mechanism could be in operation.12    

To address this gap, we analysed partially observed paediatric routine data collected in 

12 Kenyan hospitals during a cluster randomized trial. Specifically, we imputed 

missing data assuming MAR while appropriately accounting for the hierarchical 

structure of the data set. We then conducted sensitivity analyses aimed at assessing 

robustness of inference under MAR mechanism using two approaches within the 

pattern-mixture model framework.  In one  approach, we  imputed  missing  data under 

the MAR mechanism  and then used  random draws from  prior distributions to create  

MNAR imputed  values.18  In the second approach, we modified  the imputation  model 

assuming MAR mechanism through a range of sensitivity parameters (delta adjustment 

approach) to ensure multiple imputation of missing data  under the  MNAR  

assumption.7, 24 Missing  data were imputed within the joint modelling MI framework.25 

The remainder of the paper is structured as follows: In Section 2 we introduce the data 

used in the analysis, before presenting multiple imputation methods under the MAR 

and MNAR mechanisms in Sections 3 and 4 respectively. Section 5 presents the 

analysis of imputed data using proportional odds model followed by results in Section 

6. We conclude with a discussion in Section 7. 
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2 Motivating data  

2.1 Study design  

Data used in the analysis were from a cluster randomized trial conducted in 12 county-

level hospitals in Kenya between March 2016 and November 2016. The trial was 

embedded within an ongoing observational study known as the Clinical Information 

Network (CIN).26, 27 Details of the trial are described elsewhere.28, 29 The trial aimed to 

examine the effect of an audit and feedback intervention on uptake of recommendations 

contained in revised World Health Organization (WHO) treatment guidelines for 

childhood pneumonia.30 Hospitals were randomly allocated to receive enhanced (six 

hospitals) or standard (six hospitals) audit and feedback. The six hospitals in the 

enhanced audit and feedback (A&F) arm received monthly report on assessment, 

classification and treatment of pneumonia cases in addition to a bi-monthly standard 

audit and feedback report on general inpatient paediatric routine care and network 

intervention strategies.28, 29 On the other hand, the six hospitals in standard A&F arm 

received bi-monthly standard audit and feedback report on general inpatient paediatric 

routine care and network intervention strategies.28, 29  

Children aged between two and 59 months admitted to hospital with pneumonia signs 

and symptoms were eligible for enrolment into the trial. Overall, 2299 children met the 

inclusion criteria in all participating hospitals.28 Trained data clerks abstracted data 

from individual patient medical records after patients were discharged from hospital. 

The data were entered directly from the medical record into an open source data capture 
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tool (Research Electronic Data Capture (REDcap)31 using a standard operating 

procedure manual. The details of admitting clinicians including a unique clinician 

identifier, gender and cadre were entered in a separate database compiled in each 

hospital. Clinician cadre refers to a clinician’s qualification depending on the level of 

training, that is, clinical officer for a clinician holding diploma-level training, 

equivalent to physician assistant; and medical officer for medical doctors holding 

bachelor’s degree training. The two databases (patient and clinician database) were 

linked by unique clinician identifier present in both databases. Of the 2299 pneumonia 

cases, 2127 (92.4%) were admitted by 378 different clinicians. On average, each 

hospital had 32 clinicians with a standard deviation of nine. The number of admissions 

by individual clinician ranged between 3 and 46. The Kenyan Ministry of Health and 

Kenya Medical Research Institute’s Scientific and Ethical Review Unit approved the 

use of de-identified patient data obtained through retrospective review of medical 

records without individual patient consent. 

2.2 Outcome: Paediatric Admission Quality of Care (PAQC) score  

The outcome of interest in this study was quality of care measured using an ordinal 

composite measure known as the Paediatric Admission Quality of Care (PAQC) 

score.32, 33 A summary of how we constructed PAQC score based on childhood 

pneumonia treatment guidelines recommended by the World Health Organization 

(WHO) in 201330 is presented in supplementary  TableA1.  Specifically, we created and 

summed 6 binary indicators spanning assessment, diagnosis (and severity 
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classification) and treatment domains of pneumonia care (supplementary Table A1). 

The assessment domain had three binary indicators. The first represented assessment 

and documentation of two primary signs and symptoms required for pneumonia 

identification. The second binary indicator represented assessment and documentation 

of seven secondary signs and symptoms required for pneumonia severity classification. 

The third binary indicator combined assessment and documentation of all primary and 

secondary signs and symptoms (supplementary Table A1). The second PAQC score 

domain entailed integration of information on presenting signs and symptoms by 

admitting clinician to correctly diagnose and classify pneumonia severity (i.e., severe 

pneumonia or pneumonia) (supplementary Table A1). The third PAQC score domain 

consisted of two binary indicators. The first one indicated whether oral amoxicillin was 

prescribed or not. The second one indicated whether oral amoxicillin was prescribed in 

line with WHO recommended  guidelines.30 To determine correctness of the dose, we 

first created a new variable “amoxicillin dose per kilogram body weight”. That is, the 

actual dose given at point of care divided by patient’s weight. The new variable was 

then transformed into a binary variable as outlined (supplementary Table A1). After 

summation of the six binary indicators, pneumonia PAQC score ranged between zero 

and six. A minimum score of zero corresponded to inappropriate pneumonia care while 

six represented complete compliance to recommended paediatric pneumonia 

management guidelines.  
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2.3 Covariates 
Covariates of interest in this analysis included time (counted in months from inception 

of A&F intervention to time of individual participant’s admission) and its interaction 

with intervention arm, hospital malaria prevalence status and hospital admission 

workload. At clinician level, gender and cadre were considered (cadre refers to 

clinician’s level of training that is, clinical officers with diploma-level training and 

medical officers with a bachelor’s degree level training). At patient level, we 

considered gender, number of comorbid illnesses and age at admission. 

2.4 Missingness in the data 

Missing data occurred both in the covariates as well components of the outcome 

(PAQC score components).   

Approximately, 21.9% (83/378) and 21.7% (82/378) clinicians had missing data on the 

gender and cadre variables respectively, while patient’s gender was missing in 0.7% 

(17/2127) case records. An assessment of the missing data pattern revealed that nearly 

all clinicians with observed cadre had gender observed as well. In the PAQC score 

(outcome) components, missing data occurred in nine subcomponents: six signs and 

symptoms in the assessment domain (primary and secondary), and three 

subcomponents in the treatment domain (Supplementary Table A2). The level of 

missingness in PAQC score components ranged between 0.4% and 39%. Our analysis 

of the data sought to impute missing covariates and PAQC score components in the 

treatment domain assuming a MAR assumption. In this analysis, we only addressed 
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missing PAQC score elements in the treatment domain. This domain had the following 

specific elements: patients’ weight, amoxicillin dose prescribed and frequency of 

amoxicillin administration. In the pneumonia trial data, patients’ weight was missing in 

2.9% of case records. Among amoxicillin recipients, dose and frequency of 

administration were missing in 0.4% and 2.6% of the case records respectively 

(Supplementary Table A2). Undocumented signs and symptoms in the assessment 

domain were considered as inappropriate care and therefore scored zero in the 

construction of PAQC score (Gachau et al., unpublished data).   Besides addressing 

missing   covariates and outcome components using multiple imputation, we also 

conducted sensitivity analysis for two partially observed clinician-level variables, that 

is cadre and gender.  Our aim was to evaluate robustness of the inferences through 

multiple imputation assuming MNAR mechanism.  

3 Multiple imputations under MAR assumption 

For the pneumonia trial data, we first imputed missing covariate and missing outcome 

components assuming a MAR mechanism.  MI was conducted  within the joint model 

imputation framework using jomo package in R (version 3.5.0).34  Joint  modelling  

imputation  approach assumes  that  the data can be described by a multivariate normal 

distribution from  which imputations for all variables are drawn jointly using a single 

statistical imputation  model.24  The partially  observed  variables  of  interest  in this 

study were a mix of  categorical  and  continuous  variables.  Categorical variables were 

imputed using the latent normal approach.7   In a multilevel data context, partially 
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observed variable at each level of the hierarchy are jointly specified as responses in 

multilevel structural equations of the imputation model. For instance, considering the 

𝑖𝑡ℎ pneumonia patient attended by clinician j in hospital l, our multilevel level joint 

imputation model corresponded to 

                         𝑌𝑖,𝑗,𝑙
(1)

= 𝑋𝑖𝑗𝑙
(1)

𝛽(1) + 𝑏𝑗𝑙
(1)

+ 𝑒𝑖𝑗𝑙
(1)

                                                       (1) 

                                  𝑌𝑗𝑙
(2)

= 𝑋𝑗𝑙
(2)

𝛽(2) + 𝑏𝑗𝑙
(2)

      

    

                                  𝑒𝑖𝑗𝑙 ∼ 𝑁(0, 𝜎𝑒
2),   𝑎𝑛𝑑  (𝑏𝑗𝑙

(1)
, 𝑏𝑗𝑙

(2)
) ∼ 𝑁(0, 𝛴𝑏)                                    

where 𝒀𝒊𝒋𝒍
(𝟏)

  is a vector of partially observed patient-level variables (i.e., patient’s 

gender, weight, amoxicillin dose prescribed and frequency of amoxicillin 

administration) and  𝒀𝒋𝒍
(𝟐)

 is a vector of partially observed clinician-level variables (i.e., 

clinician’s gender and cadre). Predictor variables (𝑿𝒊𝒋𝒍
(𝟏)

) of missing patient’s gender 

included fully observed follow-up time and its interaction with feedback arm, hospital 

admission4workload and hospital malaria prevalence status, patient’s age, number of 

comorbid illnesses and PAQC score components in the assessment and diagnosis 

domains. Besides fully observed covariates above, we also include PACQ score 

(outcome) subcomponents in the imputation model as level 1 predictors.  These 

included a binary indicator variable representing completeness of   documentation of 2 

primary signs and symptoms, a binary indicator variable denoting completeness of 

documentation of 7 secondary signs and symptoms. We also included diagnosis and 
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classification, amoxicillin prescription indicators in the   diagnosis and treatment 

domains respectively. Level two predictors (𝑿𝒋𝒍
(𝟐)

) for missing clinicians’ gender and 

cadre included follow-up time and its interaction with feedback arm, hospital admission 

workload and hospital malaria prevalence status. Column vectors 𝜷(1) and 𝜷(2)denote 

level one and level two fixed effects respectively. Clinician random intercepts ( jlb ) 

were included to account for clustering at clinician level and to ensure compatibility 

with the analysis model of interest. We created 20 imputed data sets under each 

imputation model. 

4 Multiple imputations under MNAR assumption: Sensitivity analyses 

We then imputed missing data assuming MNAR mechanism to assess possible 

departures from MAR mechanism. Our analyses focused on missing clinicians’ cadre 

and gender in the second level of the hierarchical structure using two approaches within 

the pattern-mixture model (PMM) framework. In this study we considered MNAR 

imputation in level two variables (i.e., clinician’s gender and cadre) while retaining the 

MAR imputation models for level one variables (patient-level variables) for two 

reasons. First, we aimed to minimize complexities at analysis stage considering that 

threes out of four level patient-level variables (i.e., patient’s weight, amoxicillin dose 

prescribed and frequency of amoxicillin administration) were subcomponent of a 

composite outcome.   Secondly, the proportion of missing data in patient-level 
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variables was much lower (< 4%) compared to the much higher proportion (>20%) of 

missing data observed in clinician-level variables. 

In one approach, we replaced  clinicians’ gender and  cadre  imputed  assuming MAR 

mechanism with  random draws using appropriate prior distributions creating MNAR 

imputed data sets.18 In the second approach, we modified the multiple imputation 

model assuming MAR mechanism through a range of sensitivity parameters (delta 

adjustment approach).7, 24 These changes can be informed by opinion elicited  from  

experts in the subject matter or contextual knowledge.9   

4.1 Pattern mixture models 

Suppose 𝒀 (representing both response and independent variables) is an N p  matrix 

denoting a hypothetical data set containing p variables  1,...,j p  for the 
thi study 

subject,  1,2,3,..,i N . For each study subject, 𝒀𝑖 can be partitioned into observed 

and missing components denoted by 𝒀𝑖
𝑜𝑏𝑠and 𝒀𝑖

𝑚𝑖𝑠𝑠respectively. Further suppose a 

missingness indicator iR   takes the value 1 when 𝒀𝑖  is observed and 0 when 𝒀𝑖  is 

missing.  When the data are potentially MNAR then the mechanism generating missing 

data cannot be ignored17.  In this case, the joint   models for ( , )i iY R  should be 

considered. The joint model can be factorised within the pattern mixture models 

(PMM), selection model, or shared-parameter models. In this study, we considered 

factorization within the PMM framework.  
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The PMM assumes that observations are stratified based on patterns of missing data, 

and distinct models formulated to estimate parameters within each pattern.9, 24, 35 

However, since the distribution of the outcome given patterns of non-response is 

unidentifiable, the conditional distributions under MAR  is used  as a starting point and 

then appropriate changes reflecting MNAR assumption are made.24 

4.2 Elicitation of experts’ opinion 

In this study, we elicited clinical experts’ opinions and used them to define suitable 

MNAR assumptions about the differences in the distribution of clinicians with 

observed cadre/gender and clinicians with missing cadre/gender. Our investigations 

into missing data patterns showed that nearly all clinicians with missing cadre had 

missing gender (Supplementary file, Figure A1). Further assessment revealed that 

intervention arm and paediatric admission workload were predictive variables for both 

missingness and observed values of clinician’s cadre and gender. Therefore, we defined 

𝑘 = {

1 if hospital is in the control arm  and  has high  paeditric admission workload

2 if hospital is in the control arm  and  has low  paeditric admission workload
3 if hospital is in the intervention arm  and  has high  paeditric admission workload

4 if hospital is in the intervention arm  and  has low  paeditric admission workload

 

                                                                         (2) 

For each k , we estimated data predicted probabilities of a clinician belonging to a 

particular cadre (i.e., clinical officers, clinical officer interns, medical officers or 

medical officer interns) under the MAR assumption.18 Specifically, we imputed 

missing clinicians’ cadre and gender jointly assuming MAR mechanism. In this 
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imputation model, we included trial arm and admission workload as predictor variables.   

Inclusion of   trial arm and admission workload as the only predictor variables in the 

imputation model followed preliminary results above. Thereafter, we separately 

regressed clinicians’ cadre on trial arm and admission workload using a multinomial 

logistic model.    

The  final  estimates (log odds)  pooled according to Rubin’s Rule 10  were then  used  

to  determine   data predicted  probabilities of clinicians  belonging  to either of the 4  

cadre  categories for each  k  (see Supplementary file). Similarly, we fitted a logistic 

regression model for clinicians’ gender with trial arm and admission workload as 

covariates and determined data predicted probabilities of clinicians being males or 

females. Data predicted probabilities  (𝑃𝑗𝑘)  for clinicians’ cadre (Supplementary Table 

A3) and clinicians’ gender (Supplementary Table A4) were then presented to experts in 

the form of questionnaires in face to face interviews. Fifteen clinical experts (three 

clinical officers, five clinical officer interns, three medical officers, and four medical 

officer interns) from paediatric wards in two CIN hospitals participated in the 

elicitation exercise. The experts were briefed about the purpose of the exercise before 

filling their predicted probability of clinicians with missing cadre being either clinical 

officers, clinical officer interns, medical officers or medical officer interns. Similarly, 

they filled in their belief about clinicians with missing gender being males or females in 
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each k (Supplementary Table A4). Here we denote expert predicted probability for 

gender/cadre by (𝜃𝑗𝑘).  

After the elicitation exercise, we pooled the expert predicted probabilities by 

calculating the mean (𝐸[𝜃𝑗𝑘])  and variances (𝑉𝑎𝑟[𝜃𝑗𝑘])    for every cadre/gender 

category in k. This information was then used to approximate parameters of Dirichlet 

and beta distributions from which missing clinicians’ cadre and gender were imputed 

assuming a MNAR mechanism. The parameters for the respective prior distributions 

were approximated using the methods of moments as explained in the following 

section.   

4.2.1 Dirichlet conjugate prior for multinomial distribution 

For clinicians’ cadre with four categories we chose a Dirichlet distribution as an 

appropriate conjugate prior distribution.18  A Dirichlet distribution with four parameters 

is formulated as 

                𝑓(𝑥1𝑘, 𝑥2𝑘, 𝑥3𝑘, 𝑥4𝑘, 𝛼1𝑘, 𝛼2𝑘, 𝛼3𝑘, 𝛼4𝑘) =
𝛤(∑ 𝛼𝑗𝑘

4
𝑗=1 )

∏ 𝛤4
𝑗=1 (𝛼𝑗𝑘)

∏ 𝑥
𝑗𝑘

𝛼𝑗𝑘−1𝑘
𝑖=1        (3) 

                                              𝛼𝑗𝑘  and ∑ 𝑥𝑗𝑘
4
𝑗=1 = 1 

 

where the vector 𝑥𝑗𝑘 denotes probabilities for different categories in the variable of 

interest and 𝛼𝑗𝑘 are concentration parameters. The mean and variance of Dirichlet 

distribution are   denoted by  

                                                  𝐸(𝑥𝑗𝑘) =
𝛼𝑗𝑘

𝐿𝑘
                                                        (4) 
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and  

                                         𝑉𝑎𝑟(𝑋𝑗𝑘) =
𝛼𝑗𝑘(𝐿𝑘−𝛼𝑗𝑘)

𝐿𝑘
2 (𝐿𝑘+1)

                                       (5)         

 

where     𝑉𝑎𝑟(𝑋𝑗𝑘) =
𝛼𝑗𝑘(𝐿𝑘−𝛼𝑗𝑘)

𝐿𝑘
2 (𝐿𝑘+1)

.                                                                    

Using the means and variances of experts’ predicted probabilities  (𝐸[𝜃𝑗𝑘]) and 

(𝑉𝑎𝑟[𝜃𝑗𝑘])   for the thj cadre  1,2,3,4j   in each combination of trial arm and 

admission workload  1,2,3,4k  , we estimated Dirichlet distribution concentration 

parameters using the methods of moments18 as follows:  

Step 1: Using a sequence of values between 1 and 50  (𝐿𝑘)   and the mean of experts 

predicted probabilities (𝐸[𝜃𝑗𝑘]) to approximate unknown Dirichlet mean 𝐸(𝑥𝑗𝑘) we 

estimated the concentration parameters (𝛼𝑗𝑘)  of a Dirichlet distribution in (equation 3) 

using    

                                                𝛼𝑗𝑘 = 𝐿𝑘 ∗ 𝐸(𝜃𝑗,𝑘)                                                  (6) 

 

Step 2: We substituted 𝛼𝑗𝑘 values obtained in step 1 in the variance formulae (equation 

5) to estimate Dirichlet distribution variances 𝑉𝑎𝑟(𝑥𝑗𝑘)  for each value in the 

sequence𝐿𝑘.  

Step 3:  We plotted Dirichlet distribution variance  𝑉𝑎𝑟(𝑥𝑗𝑘)   approximated in step 2 

against the sequence kL and superimposed a horizontal line corresponding to variance of 

expert predicted probabilities (𝑉𝑎𝑟[𝜃𝑗𝑘]). For instance, in 1k  , we had four plots, one 

for each clinicians’ cadre (i.e., clinical officers, clinical officer interns, medical officers 
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and medical officer interns) (Figure 1). The step was repeated for the other 

combinations of the trial arm and paediatric admission workload  2,3,4k   and the 

corresponding figures are presented in the Supplementary file (Figures A1-A3).        

Step 4:  We determined the value in the sequence kL  for which estimated Dirichlet 

variance 𝑉𝑎𝑟(𝑥𝑗𝑘) (black curve) and variance of experts’ predicted probabilities  

(𝑉𝑎𝑟[𝜃𝑗𝑘])  (red line) intersected (or were approximately equal) for a given cadre. We 

summed 𝐿𝑘 values across the four cadres and divided the total by four. The mean was 

denoted by 𝐸(𝐿𝑘).  

Step 5: We determined Dirichlet distribution parameters for the thj cadre in each by 

multiplying expert predicted mean probabilities 𝐸(𝐿𝑘).   

                                                 𝛼̂𝑗𝑘 = 𝐸(𝐿𝑘) ∗ 𝐸(𝜃𝑗,𝑘)                                            (7) 

We used approximated 𝛼̂𝑗𝑘 vector of parameters to generate random vectors of 

probabilities from a Dirichlet distribution. Estimated concentration parameters for 

Dirichlet distribution for a given k are presented in supplementary Table A5. The 

parameter vectors were used to generate random vectors of probabilities of thj  cadre 

probabilities in each k .   

                                                    Insert [Figure 1]  
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4.2.2 Beta conjugate prior for the binomial distribution 

For clinicians’ gender with two levels we considered a beta distribution conjugate prior. 

A beta distribution is formulated as 

                                               𝑓(𝑥) =
𝑥

𝛼𝑗𝑘−1
(1−𝑥)

𝛽𝑗𝑘−1

𝐵(𝛼𝑗𝑘,𝛽𝑗𝑘)
                                               (8) 

 

where  𝐵(𝛼𝑗𝑘, 𝛽𝑗𝑘) =
𝛤𝛼𝑗𝑘𝛤𝛽𝑗,𝑘

𝛤𝛼𝑗𝑘+𝛼𝑗,𝑘
,       𝛼𝑗𝑘 > 0 and 𝛽𝑗𝑘 > 0.         

    

Using  the  mean (𝐸[𝜃𝑗𝑘])   and  variances (𝑉𝑎𝑟[𝜃𝑗𝑘])  of experts  predicted  probabilities 

for  jth (j=1,2) gender category in the kth  stratum (𝑘 = 1,2,3,4), we estimated 𝛼𝑗𝑘  and 𝛽
𝑗𝑘

 

using the  moments method 36 as shown below 

                                                 

                                        𝛽̂𝑗𝑘 =
𝐸[𝜃𝑗𝑘](1−𝐸[𝜃𝑗𝑘])2

𝑉𝑎𝑟[𝜃𝑗𝑘]
+ 𝐸[𝜃𝑗𝑘] − 1                              (9) 

 

                                                  𝛼̂𝑗𝑘 =
𝐸[𝜃𝑗𝑘]∗𝛽̂𝑗𝑘

(1−𝐸[𝜃𝑗𝑘])
                                                    (10) 

The approximated 𝛼̂𝑗𝑘  and 𝛽̂𝑗𝑘 parameters for each k  1,2,3,4k   are presented in 

Supplementary Table A6. The parameters were used to generate random probabilities 

for female clinicians in 
thk stratum. We drew 20 random probabilities of a clinician 

being female. In each draw, the probability of being a male clinician was 1 minus the 

probability of being a female clinician. 
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4.3 Multiple imputations from MNAR prior distributions  

Using estimated Dirichlet and beta prior parameters vectors (Supplementary Tables A4 

and A5), we generated 20 random probability vectors for each    1,2,3,4k k  . The 

number of random draws i.e., 20 corresponded to the number of imputations. Each 

imputed data set was split into four mutually exclusive strata defined by   k (k=1,2,3,4).   

The 𝑗𝑡ℎ probability value in the 𝑖𝑡ℎ  random vector (i=1, 2,…,20)  was then used to 

determine the proportion of occurrence  of clinicians’ cadre/gender category in  the 

𝑘𝑡ℎ  stratum (here  j= 1  denotes  clinical officers,  j= 2   for clinical officer interns,  j= 3  

for medical officers  and j= 4  for  medical officer interns while  for clinicians’  gender,  

j=1  denotes  females and j=2 denotes  males).  After drawing values for clinician 

gender/cadre from the probability vectors, the four strata (k=1,2,3,4) were merged into 

one data set.  This step was repeated for all the   imputed data sets before fitting the 

analysis model of interest.    

4.4 Multiple imputation with shift parameters (delta adjustment method) 

Multiple imputation with delta adjustment involves adding a fixed quantity  𝛿  to the 

linear predictor of the imputation model.7, 22, 24, 37 For continuous target variables, 𝛿 

represents the difference in mean between non-respondents and respondents.17 When 

the variable of interest is categorical, addition of  shift parameter  𝛿  in the imputation 

model modifies the predicted probabilities for the classification levels 7, 17, 22 thus 

producing MNAR imputed values.24  In this study, we  conducted  separate MI-MNAR 
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analyses for  clinicians’  gender and clinicians’ cadre rather than two dimensional 

sensitivity analysis.  In the first multilevel joint imputation model, we modified the 

probability of classification among clinicians with missing gender while missing 

clinicians’ cadre was imputed without any modifications (i.e., multiple imputation 

assuming MAR). In the second imputation model, the shift parameter modified the 

probability of classification in the imputation of clinicians with missing cadre while 

missing clinicians’ gender was imputed without any modification. We performed these 

analyses using R functions derived from the jomo package in R (version 3.5.0).34 These 

functions are not yet available in the version of the package available in CRAN, but 

will be included in the near future.  Our modified multilevel joint imputation model is 

formulated as follows: 

                        𝑌𝑖𝑗𝑙
(1)

= 𝑋𝑖𝑗𝑙
(1)

𝛽(1) + 𝑏𝑗𝑙
(1)

+ 𝑒𝑖𝑗𝑙
(1)

                                                     (11)                                         

                        𝑌𝑗𝑙
(2)

= 𝑋𝑗𝑙
(2)

𝛽(2) + δ(1 − 𝑅𝑗𝑙) + 𝑏𝑗𝑙
(2)

     

     

                                          𝑒𝑖𝑗𝑙 ∼ 𝑁(0, 𝜎𝑒
2),   𝑎𝑛𝑑  (𝑏𝑗𝑙

(1)
, 𝑏𝑗𝑙

(2)
) ∼ 𝑁(0, 𝛴𝑏)                                    

                                                                                   

where  𝒀𝒊𝒋𝒍
(𝟏)

 is a vector of partially observed level 1 variables (i.e., patient’s gender, 

weight, amoxicillin dose prescribed and frequency of amoxicillin administration) at 

level one of the hierarchical structure. The vector of clinicians’ gender and cadre at 

level two of the hierarchical structure is denoted by  𝒀𝒋𝒍
(𝟐)

 while 𝑅𝑗𝑙 is a binary indicator 



23 
 

with value 1 if clinicians’ gender/cadre is observed and 0 if missing. When  𝛿  is 0, a 

MAR mechanism is implied.7  

To determine a set of shift parameters for clinicians’ gender with two levels, we used 

latent normal variables which is equivalent to modelling binary data with a probit link.  

Specifically, we obtained the quartiles of the prior distribution for the proportion of 

female clinicians, and chose values of the latent normal corresponding to these quartiles 

values.  We chose three shift parameters (i.e.,  𝛿 = -0.2, -0.3, -0.5) to alter probability of 

classification in the imputation of clinicians’ gender.   The negative shift parameters 

decreased the latent normal for female clinicians on the probit scale. As such clinicians 

with missing gender were more likely to be imputed as males. The same values used to 

alter classification probabilities for clinicians’ gender were also used to alter 

classification probabilities among clinicians with missing cadre.   

 In this case, negative shift parameters increased the probability of being medical 

officers and medical officer interns, by decreasing latent normal for clinical officer 

(interns) on the probit scale. Therefore, clinicians with missing cadre were more likely 

to be imputed as medical officers (interns).  The MI-MNAR analysis under the delta-

adjusted approach was repeated for different shift parameters.  The differences in 

proportion of classification increased with an increase in the magnitude of shift 

parameters.   
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5 Statistical analysis  

After MI assuming MAR and MNAR mechanism (i.e., with delta adjustment and from 

appropriate prior distribution), we constructed PAQC score in each imputed data set 

following the procedure outlined in section 2.2. For each imputed data set, we fitted the 

proportional odds random intercepts13 model below 

 

          𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌(𝑃𝐴𝑄𝐶 𝑆𝑐𝑜𝑟𝑒; 𝑖,𝑗,𝑙) ≤ 𝑚)] = 𝛼𝑚 + 𝛽1𝑥(𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝; 𝑖𝑗𝑙) + 𝛽2𝑥(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠𝑒𝑥; 𝑖𝑗𝑙)        

                        +𝛽3𝑥(𝑐𝑜𝑚𝑚𝑜𝑏𝑖𝑑𝑖𝑡𝑦; 𝑖𝑗𝑙) + 𝛽4𝑥(𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 𝑐𝑎𝑑𝑟𝑒; 𝑗𝑙)+𝛽5𝑥(𝑐𝑙𝑖𝑛𝑖𝑐𝑖𝑎𝑛 𝑠𝑒𝑥; 𝑗𝑙) 

+𝛽6𝑥(𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑; 𝑙) + 𝛽7𝑥(𝑚𝑎𝑙𝑎𝑟𝑖𝑎 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒; 𝑙) 

                                                  +𝛽8𝑥(𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠; 𝑙) ∗ 𝑥(𝑡𝑟𝑖𝑎𝑙 𝑎𝑟𝑚; 𝑙) + 𝑏𝑗𝑙                           (12) 

 

where m , m=1,2,3,4,5,6 are PAQC score specific intercepts, i indexes the patient, and 

j and l index clinician and hospital respectively. The intercepts denote thresholds 

distinguishing adjacent PAQC score levels. The fixed effect parameters 's , are             

common across all m-1 cumulative logits13 and they denote proportional odds ratios of 

individual variables on PAQC score holding all other variables in the model constant. 

Clinician random intercepts are denoted by jlb . The analysis models  were fitted  using  

ordinal package 38 functions in R  version 3.5.0. We combined MI estimates using 

Rubin’s rules and compared inferences under MAR and MNAR mechanisms.  
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We also compared MI results with those obtained under complete case analysis which 

was based on 77.1 % (1639/2127) observations after deletion of case records with 

missing data in patient and clinician level variables.    

6 Results 

Table 1 presents a summary of both data predicted probabilities and experts’ predicted 

probabilities (mean and variance) for the four cadre categories in each combination of 

trial arm and admission workload. Experts’ opinions predicted higher probabilities of 

medical officers and clinical officers compared to data predicted probabilities. 

Furthermore, elicited opinion suggested that medical officers were more likely in 

hospitals with high paediatric admission workload compared to hospitals with low 

admission workload (Table 1). With regard to clinicians’ gender, experts’ opinions 

suggested that among clinicians with missing gender, males were more likely in high 

workload hospitals than in low admission hospitals in each k (Table 1). In both 

clinicians’ gender and cadre, experts’ responses did not vary widely across 

stratification groups  1,2,3,4k  .    
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Table 1: Data predicted and expert predicted probabilities (mean and variance) for 

clinicians’ cadre.  

    

            

                    k 

Data predicted 

probabilities under 

MARa (
j,kp ) 

Mean(variances) of experts 

predicted probabilities  

,( )j kE  (
j,k( )Var   

Clinicians’ cadre 

     1: Control arm and high workload  

Clinical officer interns 0.38 0.12 (0.08) 

Clinical officers   0.01 0.14 (0.10) 

Medical officer interns 0.60 0.49 (0.12) 

Medical officer 0.01 0.25 (0.09) 

    2: Control arm and Low workload  

Clinical officer interns 0.45 0.17 (0.12) 

Clinical officers   0.03 0.39 (0.11) 

Medical officer interns 0.50 0.29 (0.10) 

Medical officer 0.02 0.15 (0.05) 

   3: Intervention arm and high workload  

Clinical officer interns 0.42 0.23 (0.05) 

Clinical officers   0.01 0.23 (0.09) 

Medical officer interns 0.55 0.22 (0.06) 

Medical officer 0.02 0.31 (0.08) 

   4: Intervention arm and low workload 

Clinical officer interns 0.50 0.25 (0.04) 

Clinical officers   0.01 0.25 (0.12) 

Medical officer interns 0.47 0.31(0.06) 

Medical officer 0.02 0.19 (0.05) 

Clinicians’ gender 

   1: Control arm and high workload 

Females 0.47 0.45(0.02) 

Males 0.53 0.55 (0.06) 

   2: Control arm and Low workload 

Females 0.36 0.54(0.04) 

Males  0.64 0.46(0.07) 

   3: Intervention arm and high workload 

Females 0.57 0.44(0.06) 

Males  0.46 0.56(0.08) 
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    4: Intervention arm and low workload 

Females 0.42 0.52(0.05) 

Males  0.58 0.48(0.10) 

MAR: -Missing at Random 

 

 

Table 2 shows the distribution of clinicians’ cadre and gender under complete case 

analysis and under MAR and MNAR mechanisms. When clinicians’ cadre was the 

variable of interest in the sensitivity analysis, we observed a systematic increase in the 

proportion of clinicians imputed as medical officers and medical officer interns. On the 

other hand, when clinician gender was the variable of interest, more clinicians were 

imputed as males compared to females.  For clinicians’ cadre, the proportions of 

medical officer tended to increase with an increasing magnitude of sensitivity 

parameter (delta values). Similarly, the proportion of male clinicians increased with an 

increasing magnitude of sensitivity parameter. Furthermore, we observed similarities in 

the proportions of clinicians’ gender and clinicians’ cadre after multiple imputation 

from prior distributions and delta adjustment with a sensitivity parameter equal to -0.2 

(Table 2).  Considering the small number of clinical officers and medical officers in 

comparison to interns in the respective cadres, we grouped clinicians into two 

categories in subsequent analysis, i.e. clinical officers and clinical officer interns as one 

group, and medical officers and medical officer interns as the other group.  
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Table 2:  Percentage of clinicians’ cadre and gender in complete records and under multiple imputation under MAR and MNAR mechanisms.  1 

   Sensitivity analysis variable: clinicians’ cadre Sensitivity analysis variable: clinicians’ 

gender 

 Complete   

records 

MI-MARa MI-MNARb 

 

MI-MNAR 

    = -0.2  = -0.3  = -0.5  Dirichlet prior  = -0.2  = -0.3  = -0.5   Beta prior 

Clinician cadre         

   Clinical officers 0.52 1.05 0.55 0.60 0.69 1.58 0.69 0.68 0.88 0.64 

   Clinical officer interns 39.80 43.58 40.31 39.59 36.59 39.19 44.47 43.53 44.38 45.34 

   Medical officers 2.62 2.62 3.62 4.17 4.51 4.71 2.87 2.88 2.62 2.63 

   Medical officer interns 57.05 52.74 55.53 55.64 58.33 54.53 51.97 52.91 52.11 51.38 

Clinician gender         

    Males 58.61 57.34 58.31 56.44 55.79 57.33 60.21  61.26 63.7 60.34 

    Females 41.39 42.66 41.69 43.56 44.21 42.67 39.79  38.74 36.3 39.66 

aMI-MNAR- multiple imputation assuming Missing Not at Random, bMI-MAR- multiple imputation assuming Missing at Random. 2 
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Complete case analysis (CCA), MI results assuming MAR mechanism and MI results 3 

assuming MNAR mechanism (i.e. MI with delta adjustment over a range of parameters 4 

and MI from appropriate conjugate prior distributions) for clinicians’ cadre and gender 5 

are presented in Table 3 and Table 4 respectively.  6 

After multiple imputation assuming MAR mechanism, enhanced audit and feedback led 7 

to improve uptake of new pneumonia paediatric guideline over time. For example, 8 

considering a patient admitted in an intervention hospital (enhanced audit and feedback 9 

arm), the odds of PAQC score=1 versus PAQC score ≥ 2 were 1.22 (95% CI: 1.04-10 

1.358) times higher the odds of a patients admitted in a control hospital, for a unit 11 

increase in follow-up time and holding other variables at reference levels (Table 12 

3/Table 4).   Similar observations were made under complete case analysis but the 13 

magnitude of effect was smaller and characterized by a slightly wider 95% confidence 14 

interval. 15 

The study results also exhibited contrasting results before and after multiple imputation 16 

for selected variables. For instance, adjusting for other variables, the odds of PAQC 17 

score=1 versus PAQC score ≥ 2 for a patient admitted by female clinician were 1.52 18 

(95% CI: 1.05 to 2.18) times higher the odds of patient admitted by a male clinician 19 

(Table 3/Table 4).   However, after MI assuming MAR mechanism, the odds ratio and 20 

the corresponding 95% confidence interval (i.e., 0R=1.37 (95% CI: 0.977 to 1.912)) 21 
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 did not suggest difference between male and female clinicians   in the odds of PAQC 22 

score=1 versus PAQC score ≥ 2. 23 

To assess stability of parameter estimates under MI assuming MAR mechanism, we 24 

imputed missing clinicians’ cadre (Table 3) and clinicians’ gender (Table 4) assuming 25 

MNAR mechanism.  Our study results showed that the odds ratios and the 26 

corresponding 95% CI under MI assuming MNAR mechanism were close to those 27 

obtained under MI assuming MAR mechanism. Moreover, the magnitude and direction 28 

of effects were comparable after multiple imputation with the delta adjustment method 29 

and multiple imputation based on appropriate prior distributions. The similarities in 30 

parameter estimates were more apparent for 0.2   .  31 

When we added shift parameters in the imputation of missing clinicians’ cadre (delta 32 

adjustment method) we observed some changes in clinicians’ cadre effect (adjusting for 33 

other variables) whereas the odds ratios and the 95% CI for other variables remained 34 

more or less the same. Specifically, the effect of clinicians’ cadre (adjusted odd ratio) 35 

changed from 1.05 (95% CI: 0.735 to 1.421) under MI assuming MAR mechanism to 36 

1.02 (95% CI: 0.740 to 1.460)   and 1.01 (95% CI: 0.741 to 1.461)   for 0.3    and 37 

0.5    respectively (Table 3). Similarly, replacing imputed clinicians’ cadre with 38 

random draws from a prior Dirichlet distribution, the adjusted odds ratio decreased to 39 

1.04 (95% CI: 0.719 to 1.464) (Table 3). Nevertheless, the observed shifts changes in 40 

magnitude did not change the conclusion.  41 
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After imputing clinicians’ gender with shift parameters (i.e., delta adjustment), the 42 

estimated clinicians’ gender effect remained close to that observed under MI assuming 43 

MAR except for MI-MNAR with  0.5    where the odds ratio changed from 1.37 44 

(95% CI: 0.977 to 1.912) to 1.46 (95% CI: 0.989 to 2.313). Likewise, replacing 45 

imputed clinicians’ gender with random draws from a prior beta distribution, the 46 

adjusted odds ratio for clinicians’ gender changed to 1.37 (95% CI: 0.975 to 1.857) 47 

(Table 4).  Despite the changes in magnitude of effect, the inference remained the same. 48 

With regard to variability between admitting clinicians, complete case analysis led to 49 

larger variance between clinicians compared to that estimated under MI assuming MAR 50 

and MNAR respectively (Table 3 and 4).  51 

 52 
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Table 3:  Adjusted odds ratios and corresponding 95% confidence intervals under complete case analysis and under 53 

MI assuming MAR and MNAR mechanisms respectively:  Clinicians’ cadre probabilities adjusted using shift 54 

parameters ( ) under delta adjustment methods. MAR imputed clinicians’ cadre replaced with draws from a Dirichlet 55 

prior distribution. 56 

 Complete case 

analysis 

MI-MARa MI-MNARb 

 𝛿 =-0.2 

MI-MNAR 

 𝛿 =-0.3 

MI-MNAR 

 𝛿 =-0.5 

MI-MNAR 

(Dirichlet  prior) 

Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

PAQC score intercept 0 Ref Ref Ref Ref Ref Ref 

PAQC score intercept 1 0.002 (0.001, 0.003) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 

PAQC score intercept 2 0.20 (0.092, 0.458) 0.03 (0.01, 0.076) 0.03 (0.01, 0.079) 0.03 (0.01, 0.079) 0.03 (0.01, 0.079) 0.02 (0.007, 0.062) 

PAQC score intercept 3 0.63 (0.283, 1.397) 0.08 (0.028, 0.221) 0.08 (0.029, 0.229) 0.08 (0.029, 0.229) 0.08 (0.029, 0.229) 0.06 (0.021, 0.171) 

PAQC score intercept 4 1.94 (0.874, 4.325) 0.27 (0.097, 0.759) 0.28 (0.101, 0.785) 0.28 (0.101, 0.785) 0.28 (0.101, 0.785) 0.21 (0.074, 0.599) 

PAQC score intercept 5 5.99 (3.567, 7.935) 1.02 (0.364, 2.864) 1.06 (0.376, 2.964) 1.06 (0.376, 2.964) 1.06 (0.376, 2.964) 0.77 (0.27, 2.196) 

PAQC score intercept 6 2.16 (9.342, 7.916) 2.56 (0.909, 7.194) 2.64 (0.937, 7.444) 2.64 (0.937, 7.444) 2.64 (0.937, 7.444) 1.83 (0.641, 5.24) 

Age:12-59 months 1.20 (0.991, 1.464) 1.19 (1.010, 1.410) 1.19 (1.011, 1.411) 1.19 (1.011, 1.411) 1.19 (1.011, 1.411) 1.20 (1.011, 1.428) 

Child gender: Males 0.97 (0.806, 1.174) 0.99 (0.842, 1.166) 0.99 (0.844, 1.168) 0.99 (0.844, 1.168) 0.99 (0.844, 1.168) 0.97 (0.820, 1.15) 

Comorbidities: 0 1.59 (1.015, 2.513) 1.51 (1.029, 2.219) 1.51 (1.029, 2.22) 1.51 (1.029, 2.22) 1.51 (1.029, 2.22) 1.50 (1.016, 2.226) 

Comorbidities :1 1.59 (1.005, 2.498) 1.34 (0.91, 1.974) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.33 (0.877, 1.928) 

Comorbidities :2 1.61 (1.001, 2.591) 1.38 (0.929, 2.076) 1.39 (0.93, 2.078) 1.39 (0.93, 2.078) 1.39 (0.93, 2.078) 1.35 (0.897, 2.033) 

Clinician gender: 

female 

1.52 (1.057, 2.183) 1.37 (0.977, 1.912) 1.37 (0.981, 1.931) 1.39 (0.985, 2.11) 1.35 (0.892, 1.951) 1.37 (0.973, 1.937) 

Clinician Cadre: MOc 1.02 (0.709, 1.468) 1.05 (0.735, 1.421) 1.04 (0.741, 1.462) 1.02 (0.740, 1.460) 1.01 (0.740, 1.461) 1.04 (0.719, 1.464) 

Hospital workload: low 0.93 (0.624, 1.376) 0.73 (0.531, 1.02) 0.74 (0.535, 1.025) 0.74 (0.535, 1.025) 0.74 (0.535, 1.025) 0.74 (0.526, 1.04) 
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Malaria prevalence: low 0.95 (0.644, 1.40) 0.87 (0.588, 1.151) 0.87 (0.606, 1.185) 0.87 (0.606, 1.185) 0.84 (0.606, 1.185) 0.86 (0.61, 1.226) 

Time (months) 1.05 (0.969, 1.145) 1.01 (0.941, 1.083) 1.01 (0.943, 1.085) 1.01 (0.943, 1.085) 1.01 (0.943, 1.085) 0.99 (0.927, 1.074) 

Enhanced A&Fd arm 0.18 (0.095, 0.349) 0.19 (0.109, 0.345) 0.19 (0.108, 0.340) 0.19 (0.108, 0.340) 0.19 (0.108, 0.341) 0.18 (0.101, 0.334) 

Time* Enhanced A&F 1.15 (1.018, 1.307) 1.22 (1.104, 1.358) 1.23 (1.107, 1.362) 1.23 (1.107, 1.362) 1.23 (1.107, 1.362) 1.24 (1.112, 1.379) 

Variance between 

random clinician’s 

intercepts 

1.32(1.151) 1.16(1.07) 1.16(1.07) 1.16(1.07) 1.16(1.07) 1.16(1.07) 

aMI-MAR: -Multiple imputation assuming Missing at Random, bMI-MNAR: -Multiple imputation assuming Missing at Not Random,  57 
cMO: -Medical officers, dA&F: -Audit and feedback 58 
  59 
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Table 4:  Adjusted odds ratios and corresponding 95% confidence intervals under complete case analysis and under MI 60 

assuming MAR and MNAR mechanisms respectively:  Clinicians’ gender probabilities adjusted using shift parameters 61 

( ) under delta adjustment methods and imputed clinicians’ gender (under MAR) replaced with draws from a beta 62 

prior distribution. 63 

 Complete case 

analysis 

MI-MARa MI-MNARb 

 𝛿 =-0.2 

MI-MNAR 

 𝛿 =-0.3 

MI-MNAR 

 𝛿 =-0.5 

MI-MNAR 

(Beta prior) 

Effect OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

PAQC score intercept 0 Ref Ref Ref Ref Ref Ref 

PAQC score intercept 1 0.002 (0.001, 0.003) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004)  0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 0.002 (0.001, 0.004) 

PAQC score intercept 2 0.20 (0.092, 0.458) 0.03 (0.01, 0.076) 0.03 (0.010, 0.076) 0.03 (0.01, 0.077) 0.03 (0.01, 0.079) 0.02 (0.008, 0.061) 

PAQC score intercept 3 0.63 (0.283, 1.397) 0.08 (0.028, 0.221) 0.08 (0.028, 0.221) 0.08 (0.028, 0.223) 0.08 (0.029, 0.229) 0.07 (0.024, 0.178) 

PAQC score intercept 4 1.94 (0.874, 4.325) 0.27 (0.097, 0.759) 0.27 (0.097, 0.758) 0.274(0.098, 0.766) 0.28 (0.101, 0.785) 0.23 (0.083, 0.611) 

PAQC score intercept 5 5.99 (3.567, 7.935) 1.02 (0.364, 2.864) 1.02 (0.364, 2.861) 1.03 (0.368, 2.892) 1.06 (0.376, 2.964) 0.85 (0.313, 2.304) 

PAQC score intercept 6 2.16 (9.342, 7.916) 2.56 (0.909, 7.194) 2.56 (0.909, 7.186) 2.58 (0.918, 7.264) 2.64 (0.937, 7.444) 2.12 (0.779, 5.787) 

Age:12-59 months 1.20 (0.991, 1.464) 1.19 (1.010, 1.410) 1.19 (1.010, 1.411) 1.19 (1.010, 1.411) 1.19 (1.011, 1.411) 1.19 (1.011, 1.412) 

Child gender: Males 0.97 (0.806, 1.174) 0.99 (0.842, 1.166) 0.99 (0.843, 1.168) 0.99 (0.843, 1.168) 0.99 (0.844, 1.168) 0.99 (0.842, 1.167) 

Comorbidities: 0 1.59 (1.015, 2.513) 1.51 (1.029, 2.219) 1.51 (1.028, 2.218) 1.51 (1.031, 2.223) 1.51 (1.029, 2.22) 1.51 (1.03, 2.222) 

Comorbidities :1 1.59 (1.005, 2.498) 1.34 (0.91, 1.974) 1.34 (0.909, 1.973) 1.34 (0.911, 1.977) 1.34 (0.911, 1.977) 1.34 (0.910, 1.975) 

Comorbidities :2 1.61 (1.001, 2.591) 1.38 (0.929, 2.076) 1.38 (0.928, 2.074) 1.39 (0.93, 2.079) 1.39 (0.93, 2.078) 1.38 (0.929, 2.076) 

Clinician gender: female 1.52 (1.057, 2.183) 1.37 (0.977, 1.912) 1.37 (0.962, 1.891) 1.37 (0.971, 2.026) 1.46 (0.989, 2.313) 1.37 (0.975, 1.857) 

Clinician Cadre: MOc 1.02 (0.709, 1.468) 1.05 (0.735, 1.421) 1.03 (0.729, 1.453) 1.04 (0.718, 1.402) 1.04 (0.741, 1.461) 1.03 (0.741, 1.423) 

Hospital workload: low 0.93 (0.624, 1.376) 0.73 (0.531, 1.02) 0.73 (0.53, 1.016) 0.74 (0.533, 1.022) 0.74 (0.535, 1.025) 0.73 (0.527, 1.012) 

Malaria prevalence: low 0.95 (0.644, 1.40) 0.87 (0.588, 1.151) 0.87 (0.597, 1.169) 0.86 (0.603, 1.181) 0.86 (0.606, 1.185) 0.86 (0.578, 1.139) 
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Time (months) 1.05 (0.969, 1.145) 1.01 (0.941, 1.083) 1.01 (0.942, 1.084) 1.01 (0.942, 1.084) 1.01 (0.943, 1.085) 1.01 (0.94, 1.082) 

Enhanced A&Fd arm 0.18 (0.095, 0.349) 0.19 (0.109, 0.345) 0.19 (0.108, 0.342) 0.19 (0.108, 0.339) 0.19 (0.108, 0.340) 0.19 (0.11, 0.347) 

Time* Enhanced A&F 1.15 (1.018, 1.307) 1.22 (1.104, 1.358) 1.22 (1.106, 1.361) 1.22(1.107, 1.362) 1.23 (1.107, 1.362) 1.22 (1.103, 1.357) 

Variance between random 

clinician’s intercepts 

1.32(1.151) 1.16(1.07) 1.16(1.07) 1.16(1.07) 1.16(1.07) 1.16(1.07) 

aMI-MAR: -Multiple imputation assuming Missing at Random, bMI-MNAR: -Multiple imputation assuming Missing at Not Random, cMO: 64 
-Medical officers 65 
dA&F: -Audit and feedback 66 
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7 Discussion 67 

In this study we sought to address missing data in a multilevel routine data context and 68 

to conduct sensitivity analyses to assess stability and robustness of inference under 69 

assumed MAR mechanism. This work was motivated by data collected among 70 

paediatric inpatient admission receiving routine paediatric care in a group of Kenyan 71 

hospitals.  Missing data occurred in patient and clinician-level covariates, as well as 72 

pneumonia care indicators used to construct a composite measure for quality of care - 73 

PAQC score. To handle missingness, we used complete case analysis and multiple 74 

imputation methods. As expected, CCA analysis led to estimates with wider 95% 75 

confidence intervals (due to larger standard errors) compared to MI under MAR 76 

mechanism given that MI makes use of all the available information. Complete case 77 

analysis or list wise deletion is the default technique for handling missing data in most 78 

statistical software hence its wide use in practice. 12 A major drawback of CCA is loss 79 

of power particularly for data sets with multiple partially observed variables.15 80 

Furthermore, there is potential for biased estimates when complete case records are not 81 

a random sample of the population being studied.9 For this reason, inference under MI 82 

assuming MAR mechanism is often preferred. However, the MAR assumption cannot 83 

be ascertained using the data alone. Therefore,  we  conducted  sensitivity analyses 84 

within the pattern mixture models.7, 9 The focus of our sensitivity analyses was 85 

clinician-level variables in the second level of the hierarchical structure. In order to 86 
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define suitable assumptions reflecting MNAR missing data mechanism9 in the two 87 

variables of interest, we elicited and incorporated experts’ opinions into the analysis. 88 

Specifically, we interviewed 15 clinical experts in paediatrics wards in two study 89 

hospitals and incorporated their opinions into our sensitivity analysis using two 90 

approaches. In the first approach, we incorporated uncertainty about the missing data 91 

mechanism in the form of conjugate prior distributions. gender 92 

In the second approach, we incorporated experts’ opinion in the form of shift 93 

parameters within the delta adjustment method. Although this approach is a transparent 94 

and flexible means by which to impute data under MNAR mechanisms, the choice of 95 

appropriate sensitivity  parameters is less straightforward.7, 24 In this study, we utilized 96 

elicited probabilities combined with additional information probed from experts during 97 

interview sessions in the choice of sensible shift parameters. According to experts’ 98 

contextual knowledge, hospitals with high workload were more likely to be teaching 99 

and referral hospitals, hence more medical officers and medical officer interns. 100 

Furthermore, experts’ opinions indicated that there are more male medical 101 

officers/interns than female medical officers/interns, compared to the observed data. 102 

Therefore, clinicians with missing information in high workload hospitals were more 103 

likely to be male medical officers/interns than female medical officers/interns. In our 104 

analysis, we implemented experts’ opinion over a range of 3 shift parameters (i.e., -0.2, 105 

-0.3 and -0.5). The shift parameters altered the probabilities with which the multilevel 106 

joint imputation model imputed missing clinicians’ cadre and gender. Furthermore, the 107 
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degree of departure from MAR assumption was the same for individuals with missing 108 

clinicians’ cadre and gender.  This was in consideration of experts’ beliefs that 109 

departures from MAR assumptions would be similar for the two clinician level 110 

variables.    111 

 From the study results, parameter estimates (i.e., odds ratios and corresponding 95% 112 

confidence intervals) estimates under MI assuming MNAR scenarios were close to 113 

those from the analysis under MAR. The similarities were an indication of robust 114 

inferences under MAR assumptions. For delta adjusted over a range of parameter we 115 

observed slight increase/decrease in magnitude of clinicians’ cadre and gender effects. 116 

However, these changes did not lead to changes in inference and conclusions. More 117 

importantly, the effect of enhanced A&F over follow-up time remained stable across a 118 

range of MNAR scenarios.   In the event that conclusions differ between CCA and MI-119 

MAR, it could mean that either CCA is wrong (outcome dependent MAR) or that MI is 120 

wrong (covariate dependent MNAR) or both are wrong (outcome dependent MNAR).  121 

When the mechanism is covariate-dependent MNAR (i.e., it does not depend on the 122 

outcome), then CCA is valid and in this case it can be better than MI assuming MAR 123 

mechanism.39   124 

Strengths and implications of the study 125 

Through this study, we have demonstrated application of two sensitivity analysis 126 

approaches in multilevel routine data contexts incorporating experts’ opinion. The 127 

sensitivity analyses methods adopted in this study have been used and reported in 128 
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previous studies.7, 15, 18, 22, 24 In our case we apply the approaches to multilevel data 129 

compared to single level data used in previous analyses. A key difference between the 130 

two sensitivity analyses methods is that one provides several inferences based on 131 

specified sensitivity parameters (i.e., MI with delta adjustment method) while the other 132 

provides a single inference based on informative prior distributions (i.e., MI from prior 133 

distribution). In spite of these differences, parameter estimates were comparable 134 

between the two sensitivity analyses methods. A possible explanation for the 135 

similarities could be the fact that both methods utilized same experts’ opinions to create 136 

differences between MAR and MNAR imputed values in the variables of interest.  137 

Therefore, we recommend both methods as guiding examples for conducting sensitivity 138 

analyses within the pattern mixture model framework, rather than prescribe how every 139 

sensitivity analysis in the multilevel data setting should be conducted. Moreover, more 140 

studies are needed to examine the performance of the two methods in a range of 141 

simulation scenarios.  142 

In this study, we elicited experts’ opinions in face to face interviews, which allowed us 143 

to probe for additional information and clarifications not captured in the questionnaires. 144 

We therefore recommend face to face interviews. In instances where  face to face 145 

interviews are impractical, telephone discussions or electronic questionnaires can be 146 

considered.9 When imputing from prior distributions, the choice of a conjugate prior 147 

should be informed by the distribution of the variable under analysis. However, in 148 

situations where prior knowledge is difficult to elicit, delta adjustment method with 149 
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tipping-point analysis can be a valuable alternative.22, 40 Tipping-point analysis allows 150 

one to explore sensitivity parameters across a wide range of values in order to 151 

determine a set of sensitivity parameters for which inference and conclusions change.37    152 

In this study, we applied the delta adjustment method within the pattern mixture 153 

framework and combined estimates across the imputed data sets using Rubin’s rule. A 154 

recent study by Tang (2017) evaluated the extent of bias   associated with used of 155 

Rubin’s variance estimator under the delta-adjusted pattern mixture models (PMMs) 156 

and control-based PMM. From the study results, bias of MI variance was found to be 157 

negligible in the delta-adjusted PMM but substantial in the control-based PMM 158 

context.41  The study results further showed that inference based on Rubin’s rule in the 159 

delta-adjusted PMM was approximately valid. 41  For this   reason, we only reported 160 

estimates based on Rubin’s rule.10 The alternative asymptotic sampling variance 161 

estimator  suggested by Tang (2017) can  be considered in future   studies.41 162 

Limitations 163 

This study was limited in several ways. Firstly, we interviewed 15 clinical experts in 164 

two study sites due to time and cost constraints, on top of refusal by some of the 165 

respondents to fill in the questionnaires. Secondly, we only imputed clinicians’ cadre 166 

and gender under MNAR mechanism while patient-level variables were imputed 167 

assuming MAR mechanism. Moreover, we conducted separate MI-MNAR analysis for 168 

clinicians’ cadre and gender instead of a two dimensional sensitivity analysis.  This 169 

because eliciting experts’ opinions for the two variables jointly would have been 170 
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complicated and more difficult to implement.  Thirdly, although our data had clustering 171 

at hospital (n=12) and clinician level (n=378), we only accounted for clinicians’ 172 

random effect in our analysis model while hospital characteristics were included as 173 

fixed effects. This was because, while we wanted to ensure compatibility between 174 

analysis and imputation models, statistical software used could accommodate random 175 

effects only at the second level of hierarchy. Moreover, our outcome variable (the 176 

PAQC score) was a composite outcome, and we imputed for it by imputing and 177 

combining its components. This approach may not be fully compatible with the 178 

analysis model. To the best of our knowledge, more work is still needed on the best 179 

way to impute for composite outcomes in multilevel settings, to assure compatibility 180 

between imputation and substantive models in that setting. Nevertheless, multiple 181 

imputation of missing PAQC score components at item level has been shown to 182 

produce less biased estimates compared to the conventional approach where all missing 183 

PAQC score components are scored with zero at construction stage (Gachau et al., 184 

unpublished data).     185 

Conclusion 186 

In conclusion, sensitivity analysis is useful in ascertaining robustness of inference 187 

under MAR assumption. We have demonstrated that eliciting and incorporating 188 

experts’ opinions in form of prior distribution and shift parameters provides transparent 189 

and flexible means of assessing departures from the MAR assumption following 190 

multilevel MI. After multilevel MI of clinician level variables assuming MNAR, our 191 
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inferences were insensitive to departures from the MAR mechanism. These 192 

observations were made using both sensitivity analysis methods. That is, incorporating 193 

uncertainty about the missing data mechanism in the form of conjugate prior 194 

distributions and in the form of shift parameters within the delta adjustment method. 195 

  196 



43 
 

Declarations 197 

Ethics approval and consent to participate 198 

The Kenya Ministry of Health and Kenya Medical Research Institute’s Scientific and 199 
Ethical Review Unit approved the use of de-identified patient data obtained through 200 
retrospective review of medical records without individual patient consent. 201 

 202 
Consent for publication Not applicable 203 

 204 

Availability of data and materials 205 
The datasets analysed in this study are not publicly available because they are a 206 

property of the Ministry of Health and we do not have authority to share on their 207 

behalf.  208 

 209 

Competing interests:  The authors have declared that no competing interests exist 210 

Funding 211 

This work was supported through the DELTAS Africa Initiative Grant No. 212 
107754/Z/15/Z-DELTAS Africa SSACAB. The DELTAS Africa Initiative is an 213 

independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for 214 
Accelerating Excellence in Science in Africa (AESA) and supported by the New 215 
Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD 216 

Agency) with funding from the Wellcome Trust (Grant No. 107754/Z/15/Z) and the 217 

UK government. The views expressed in this publication are those of the author(s) and 218 
not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK 219 

government. 220 

Funds from the Wellcome Trust (GrantNo.207522) awarded to Prof. Mike English as a 221 

senior Fellowship together with additional funds from a Wellcome Trust core grant 222 
awarded to the KEMRI-Wellcome Trust Research Programme (GrantNo.092654) 223 
supported CIN data collection. 224 

 225 

Authors’ contribution 226 
SG conducted the analyses with support from MQ. Feedback on the analytic approach 227 
was provided by ENN, NO, ME and PA.  SG drafted the initial manuscript with 228 

feedback on subsequent drafts provided by all authors who then approved the final 229 
manuscript. 230 



44 
 

 231 

Acknowledgements 232 

We would like to thank the Ministry of Health who gave permission for this work to be 233 

developed and have supported the implementation of the CIN together with the county 234 

health executives and all hospital management teams. We are grateful to the Kenya 235 

Paediatric Association for promoting the aims of the CIN and the support they provide 236 

through their officers and membership. We also thank the hospital teams involved in 237 

service delivery for the sick child. This work is published with the permission of the 238 

Director of KEMRI. 239 

The Clinical Information Network team who contributed to the design of the data 240 

collection tools, conduct of the work, collection of data and data quality assurance that 241 

form the basis of this report and who saw and approved the report’s findings include: 242 

Grace Irimu, Samuel  Akech, Ambrose Agweyu, Michuki Maina, Jacquie Oliwa, David 243 

Gathara, Lucas Malla,  Morris Ogero, James Wafula, George Mbevi,  Mercy Chepkirui 244 

(KEMRI-Wellcome Trust Research Programme); Samuel N’garng’ar (Vihiga County 245 

Hospital), Ivan Muroki (Kakamega County Hospital), David Kimutai & Loice Mutai 246 

(Mbagathi County Hospital), Caren Emadau & Cecilia Mutiso (Mama Lucy Kibaki 247 

Hospital), Charles Nzioki (Machakos Level 5 Hospital), Francis Kanyingi & Agnes 248 

Mithamo (Nyeri County Hospital), Margaret Kuria (Kisumu East County Hospital), 249 

Samuel Otido (Embu County Hospital), Grace Wachira & Alice Kariuki (Karatina 250 

County Hospital), Peris Njiiri (Kerugoya County Hospital), Rachel Inginia & Melab 251 

Musabi (Kitale County Hospital),  Hilda Odeny (Busia County Hospital), Grace 252 

Ochieng & Lydia Thuranira (Kiambu County Hospital); Priscilla Oweso (Vihiga 253 

County Hospital), Ernest Namayi (Mbale Rural Health and Demonstration Centre), 254 

Benard Wambani, Samuel Soita (Kakamega Provincial General Hospital), Joseph 255 

Nganga (Mbagathi District Hospital), Margaret Waweru, John Karanja (Kiambu 256 

County Hospital), Susan Owano (Mama Lucy Kibaki Hospital), Esther Muthiani 257 



45 
 

(Machakos Level 5 Hospital), Alfred  Wanjau (Nyeri Level 5 hospital), Larry Mwallo 258 

(Kisumu East District Hospital), Lydia Wanjiru (Embu Provincial General Hospital), 259 

Consolata Kinyua (Karatina District Hospital), Mary Nguri (Kerugoya District 260 

Hospital) and Dorothy  Munjalu (Kitale District Hospital). 261 

 262 

 263 

 264 

 265 

  266 



46 
 

References 267 

1. Gachau S, Ayieko P, Gathara D, et al. Does audit and feedback improve the adoption of 268 
recommended practices? Evidence from a longitudinal observational study of an emerging 269 
clinical network in Kenya. BMJ Global Health 2: e000468 (2017). 270 
2. Akech S, Chepkirui M, Ogero M, et al. The clinical profile of severe paediatric malaria in 271 
an area targeted for routine RTS, S/AS01 malaria vaccination in Western Kenya. Clinical 272 
Infectious Diseases. 2019. 273 
3. Oliwa JN, Gathara D, Ogero M, et al. Diagnostic practices and estimated burden of 274 
tuberculosis among children admitted to 13 government hospitals in Kenya: An analysis of two 275 
years’ routine clinical data. PloS one. 2019; 14: e0221145. 276 
4. Thomas J, Ayieko P, Ogero M, et al. Blood Transfusion Delay and Outcome in County 277 
Hospitals in Kenya. Am J Trop Med Hyg 96: 511-7 (2017, accessed Feb 08). 278 
5. Gachau S, Irimu G, Ayieko P, Akech S, Agweyu A and English M. Prevalence, outcome 279 
and quality of care among children hospitalized with severe acute malnutrition in Kenyan 280 
hospitals: A multi-site observational study. PloS one. 2018; 13: e0197607. 281 
6. Organization WH. Improving data quality: a guide for developing countries. Manila: 282 
WHO Regional Office for the Western Pacific, 2003. 283 
7. Carpenter JR and Kenward MG. Multiple imputation and its applications. Chichester: 284 
John Wiley & Sons, 2013. 285 
8. Molenberghs G and Kenward M. Missing data in clinical studies. John Wiley & Sons, 286 
2007. 287 
9. Tsiatis AA, Kenward MG, Fitzmaurice G, Verbeke G and Molenberghs G. Handbook of 288 
missing data methodology. Chapman and Hall/CRC, 2014. 289 
10. Rubin DB. Inference and missing data. Biometrika. 1976; 63: 581-92. 290 
11. Kenward MG and Carpenter J. Multiple imputation: current perspectives. Statistical 291 
methods in medical research. 2007; 16: 199-218. 292 
12. Mackinnon A. The use and reporting of multiple imputation in medical research–a 293 
review. Journal of internal medicine. 2010; 268: 586-93. 294 
13. Molenberghs G and Verbeke G. Models for discrete longitudinal data. New York 295 
Springer, 2005. 296 
14. Fitzmaurice G, Davidian M, Verbeke G and Molenberghs G. Longitudinal data analysis. 297 
New York: Chapman&Hall /CRC Press, 2009. 298 
15. Héraud-Bousquet V, Larsen C, Carpenter J, Desenclos J-C and Le Strat Y. Practical 299 
considerations for sensitivity analysis after multiple imputation applied to epidemiological 300 
studies with incomplete data. BMC medical research methodology. 2012; 12: 73. 301 
16. Liublinska V and Rubin DB. Sensitivity analysis for a partially missing binary outcome in 302 
a two‐arm randomized clinical trial. Statistics in medicine. 2014; 33: 4170-85. 303 
17. Little RJ, D'agostino R, Cohen ML, et al. The prevention and treatment of missing data 304 
in clinical trials. New England Journal of Medicine. 2012; 367: 1355-60. 305 



47 
 

18. Smuk M, Carpenter J and Morris T. What impact do assumptions about missing data 306 
have on conclusions? A practical sensitivity analysis for a cancer survival registry. BMC medical 307 
research methodology. 2017; 17: 21. 308 
19. Yelin E, Yazdany J, Tonner C, et al. Interactions between patients, providers, and health 309 
systems and technical quality of care. Arthritis care & research. 2015; 67: 417-24. 310 
20. Rowe AK, de Savigny D, Lanata CF and Victora CG. How can we achieve and maintain 311 
high-quality performance of health workers in low-resource settings? The Lancet 366: 1026-35 312 
(2005). 313 
21. Tuti T, Agweyu A, Mwaniki P, Peek N and English M. An exploration of mortality risk 314 
factors in non-severe pneumonia in children using clinical data from Kenya. BMC medicine. 315 
2017; 15: 201. 316 
22. Tompsett DM, Leacy F, Moreno‐Betancur M, Heron J and White IR. On the use of the 317 
not‐at‐random fully conditional specification (NARFCS) procedure in practice. Statistics in 318 
medicine. 2018. 319 
23. Fitzmaurice G, Davidian M, Verbeke G and Molenberghs G. Longitudinal data analysis. 320 
CRC Press, 2008. 321 
24. Van Buuren S. Flexible imputation of missing data. Chapman and Hall/CRC, 2018. 322 
25. Quartagno M and Carpenter J. jomo: A package for multilevel joint modelling multiple 323 
imputation. R package version. 2016: 2.-0. 324 
26. English M. Designing a theory-informed, contextually appropriate intervention strategy 325 
to improve delivery of paediatric services in Kenyan hospitals. Implementation Science 8: 1 326 
(2013). 327 
27. Tuti T, Bitok M, Paton C, et al. Innovating to enhance clinical data management using 328 
non-commercial and open source solutions across a multi-center network supporting inpatient 329 
pediatric care and research in Kenya. Journal of the American Medical Informatics Association 330 
23: 184-92 (2016). 331 
28. Ayieko P, Irimu G and English M. Effect of enhanced feedback to hospitals that are part 332 
of an emerging clinical information network on uptake of revised childhood pneumonia 333 
treatment policy: study protocol for a cluster randomized trial. Trials 18: 416 (2017). 334 
29. Ayieko P, Irimu G, Ogero M, et al. Effect of enhancing audit and feedback on uptake of 335 
childhood pneumonia treatment policy in hospitals that are part of a clinical network: a cluster 336 
randomized trial. Implementation Science. 2019; 14: 20. 337 
30. Organization WH. Pocket book of hospital care for children: guidelines for the 338 
management of common childhood illnesses. 2nd ed. Geneva: World Health Organization, 2013. 339 
31. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N and Conde JG. Research electronic 340 
data capture (REDCap)—a metadata-driven methodology and workflow process for providing 341 
translational research informatics support. Journal of biomedical informatics. 2009; 42: 377-81. 342 
32. Opondo C, Allen E, Todd J and English M. The Paediatric Admission Quality of Care 343 
(PAQC) score: designing a tool to measure the quality of early inpatient paediatric care in a low-344 
income setting. Tropical Medicine & International Health. 2016; 21: 1334-45. 345 



48 
 

33. Opondo C, Allen E, Todd J and English M. Association of the Paediatric Admission 346 
Quality of Care score with mortality in Kenyan hospitals: a validation study. The Lancet Global 347 
Health. 2018; 6: e203-e10. 348 
34. Quartagno M, Carpenter J and Quartagno MM. Package ‘jomo’. 2019. 349 
35. Carpenter JR and Kenward MG. Multiple Imputation of Unordered Categorical Data. 350 
Multiple Imputation and its Application. 2013: 112-26. 351 
36. Lunn D, Jackson C, Best N, Spiegelhalter D and Thomas A. The BUGS book: A practical 352 
introduction to Bayesian analysis. Chapman and Hall/CRC, 2012. 353 
37. Yuan Y. Sensitivity analysis in multiple imputation for missing data. Proceedings of the 354 
SAS Global Forum 2014 Conference:[http://support sas 355 
com/resources/papers/proceedings14/SAS270-2014 pdf]. 2014. 356 
38. Christensen RHB. ordinal—regression models for ordinal data. R package version. 2015; 357 
28: 2015. 358 
39. White IR and Carlin JB. Bias and efficiency of multiple imputation compared with 359 
complete‐case analysis for missing covariate values. Statistics in medicine. 2010; 29: 2920-31. 360 
40. Leacy FP, Floyd S, Yates TA and White IR. Analyses of sensitivity to the missing-at-361 
random assumption using multiple imputation with delta adjustment: Application to a 362 
tuberculosis/HIV prevalence survey with incomplete HIV-status data. American journal of 363 
epidemiology. 2017; 185: 304-15. 364 
41. Tang Y. On the multiple imputation variance estimator for control‐based and delta‐365 
adjusted pattern mixture models. Biometrics. 2017; 73: 1379-87. 366 

 367 

 368 

 369 

 370 

http://support/

