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Abstract

The thesis proposes a new method of obtaining molecular structural data from 

resonance Raman spectroscopy; the experimental, theoretical and numerical 

aspects of the method are presented, and some of the results are included.

The first chapter describes Raman and resonance Raman scattering and 

introduces the instrumentation, methods and procedures used in obtaining 

Raman data. The sources of error in measuring band intensities and excitation 

profiles are analysed, and corrections to the errors are proposed. Some 

original experimental results are presented in Appendix 2 for the purpose of 

illustrating the technique and the sources of errors.

Chapter 2 describes an advanced theoretical model of secondary radiation, and 

its interpretation in terms of Raman and fluorescence radiation; in Chapter 3 the 

model is applied to relating resonance Raman data to molecular structure, by 

using the physical assumptions of the model and the corresponding 

mathematical approximations. The result is a set of equations relating 

microscopic parameters describing the molecular structure to the macroscopic 

quantities to be measured experimentally.

A new mathematical procedure for solving the equation set obtained at the end 

of Chapter 3 is proposed in Chapter 4; the numerical and computational 

implementation are described in this chapter and the computer programs used 

in practical applications are presented in appendices 4 and 5.

The results of applying the new method are presented in Chapter 5 in the form 

of tables containing the calculated parameters and of graphs comparing the 

experimental and the simulated excitation profiles; chemical systems belonging 

to three different geometries have been investigated.
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I. Introduction to Resonance Raman Spectroscopy

Raman Scattering

The Raman effect was discovered in India in 1928 by C. V. Raman and, almost 

simultaneously, by G. Landsberg and L. Mandelstam in the Soviet Union. 

There was significant initial interest in the new discovery because its 

experimental observation happened at around the same time as its theoretical 

prediction [1,2], thus providing an early success for the young field of quantum 

physics.

The Raman effect gives rise to satellite lines, equidistant on each side of the 

exciting line in the spectrum of light scattered by a sample; as these satellite 

lines are produced by the interaction between light and the sample, they can 

provide a useful insight into the nature of the sample. The lines on the lower 

and higher energy side of the spectrum are called, respectively, "Stokes" and 

"anti-Stokes". The different positions of the satellite lines from that of the 

incident light means that the scattering undergone by the photons is inelastic; 

the intensity of the satellites is much lower than that of the incident beam, 

which means that the inelastic scattering has very low probability of occurring.

In fact, examining the interaction processes between light and matter, light can 

be transmitted, reflected or absorbed with much higher probability than it is 

scattered and most of the scattering takes place elastically; the transition 

probability for inelastic scattering of light is of the order of one in 10® photons. 

This low transition probability explains the complexity of the experiments 

designed to measure the intensity of Raman scattered light.

Inelastic scattering involves two different photons, one incident and one 

scattered; depending on the "collision" time and the degree of coherence 

between the two associated wave functions, two-photon processes have been
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divided into Raman scattering and fluorescence. If the process can be 

considered instantaneous, in practice with a duration < 10 ^̂  s, then it is called 

"Raman scattering"; otherwise, it is called "fluorescence". This aspect will be 

studied in detail in Chapter 2 , where it will become obvious that the 

nomenclature is arbitrary, both processes being idealised parts of the same 

two-photon process.

The introduction will begin with the simplified picture in order to show the 

inadequacies of this nomenclature and to prepare the ground for the 

applications presented in the later chapters, which refer to the simultaneous 

part of the two-photon scattering. Figure 1.1 shows a basic diagram, based on 

quantum energy levels, of the infrared absorption (IR), Rayleigh (elastic) 

scattering, and Stokes and anti-Stokes Raman scattering processes, neglecting 

other processes such as visible and ultraviolet absorption, reflection, 

transmission or fluorescence. The diagram also ignores the relative intensities 

of the Stokes and anti-Stokes transitions, which depend on the relative thermal 

population of the starting levels (given by the Boltzmann statistical distribution).

Virtual
States

Anti-
Stokes

Stokes

IR

Rayleigh

Figure 1.1 - Energy level diagram of vibrational scattering and absorption.

From Fig. 1.1 it can be seen that, after being excited to a virtual upper state by

13



an incident photon of energy hv^, the system has the choice of relaxing back 

either to the initial level with the re-emission of a photon of the same energy 

hVo (Rayleigh scattering), or to another one, depending on the initial level, with

the emission of a photon of a different energy: h(vQ-vJ (Stokes) orh(vo+vj 

(anti-Stokes). Here h represents Planck's constant, the frequency of the 

incident photon, and the energy difference between the two initial levels.

In the case of infrared absorption and Raman (and resonance Raman) 

scattering, the initial levels correspond to the vibrational substates of the ground 

electronic state.

The Raman effect can be predicted by classical electrodynamics applied to 

polarisation and the argument has been transposed into quantum mechanical 

terms; the classical treatment starts with a beam of light of frequencyvg 

associated with a time-dependent electric field E of magnitude 

E -  EqCOs(2tcVo0, (^-1)

where Eq is the amplitude of the wave. When this field interacts with an 

isotropically polarisable medium, it induces a dipole moment 

p = aE, (^-2)

where the polarizability depends on the n normal coordinates k=1,2 ,...,n as:

a  = «(°) 3a + ..., k= 1,2 n ; (1-3)
>(0)

here is the polarizability in the equilibrium position, i.e. in the absence of 

molecular deformation. The normal coordinates depend on time

Q„ = Qrcos{27cv*0, /f=1,2 n C-4)

and substituting it back into Eqn (1.2) yields the expression for magnitude of the 

induced dipole

p = â °̂ EoCOs(27CVoO+Eo

r \  
da of [̂COS27T(Vo +vJf+COS27T(Vo-vjf] +... . (15)

,(0)
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The first term represents the Rayleigh scattering, with the same frequency as 

the incident field, while the next two terms represent the anti-Stokes and Stokes 

terms, respectively. Equation (1.2) assumes that the polarizability is isotropic, 

which is not always the case in practice; taking its anisotropy into account leads 

to the following relations for the induced moment:

^y ŷx^x ̂  ̂ yy^y ̂  ̂ yz^z

\̂ z =

or, in matrix form.
f  \

\^X

f

^xx %

\

«XZ
f  \

- Otyx ^yy «yz

a . w<  =  > p=âE.

(1.6a)

(1.6b)

(1.6c)

(1.7)

In an experiment conducted in an anisotropic medium the components of the 

polarizability intervene directly, while in an isotropic medium only average 

quantities can be measured. For such an isotropic medium, the intensity I of

the scattered Raman radiation in terms of the wavenumber and the

irradiance Iq of the incident radiation are related by the formula

Go
(1.8)

where k/2 refers to light collected along a direction perpendicular to that of the 

incident beam and ’f and 7 to the final and initial states (Fig. 1.1) of the 

scattering system, respectively; a„ is the polarizability associated with the

inelastic scattering process and Sq is the permittivity of free space.

An important factor in determining the number of bands in a Raman spectrum

The wavenumber is linearly connected to the frequency v by v=v/v, 
where v is the velocity of light in that medium.
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is the selection rules imposed by the symmetry of the wave functions involved 

in a transition. These rules arise from the requirement that the transition 

probability per unit of time, given by Fermi's Golden Rule, be different from zero

w„ = ^|<V,|rtTlv,>|^ 5̂ 0 <=> # 0 , (1.9)
n

where \\f, and are the wave functions of the initial and final states of the

transition, is the Hamiltonian operator of the transition, t is the cartesian

time-space continuum and h is Planck's constant. The integral is different from 

zero only when the integrand is non-zero, that is when the group theoretical 

product in the integrand contains a totally symmetric representation; the product 

of the three symmetries involved (initial state, final state and transition operator) 

has to be totally symmetric. This condition will remain in force under resonance 

Raman conditions as well, as it is valid for any transition between two states 

/ and f, the transform method developed in chapter three will take it into 

account by concerning itself only with totally symmetric modes of vibration and 

symmetry-preserving transitions.

Resonance Raman Scattering

Raman scattering brings significant information about the structure of the 

proundelectronic state, through vibrational data complementary to that obtained 

from infrared absorption spectroscopy. A subtle difference in the nature of the 

intermediate states (Fig. 1.1) produces very different data, characteristic of the 

excited electronic state and complementary to data obtained from visible and 

ultraviolet absorption spectroscopy. The effect occurring when the intermediate 

states are real instead of virtual is called resonance Raman scattering and 

gives rise to strongly enhanced bands at the same positions as regular Raman 

bands (v ,̂ Vg, Vg, etc), and also as overtones - bands occurring at regular 

intervals throughout the spectrum {2v ,̂ Sv̂ , etc) - and as combinations (e.g. Vg 

+ Vi, Vg + 2vi, etc). Overtone and combination bands can be detected on both 

the Stokes and the anti-Stokes side of the Rayleigh line, with the same thermal

16



distribution as the Raman bands.

Resonance Raman spectra can be predicted by the time-dependent 

perturbative methods and a derivation of the transition probability will be given 

here in order to illustrate this approach and expose its shortcomings. The 

evolution of the wave function with respect to the time, t, is given by the time- 

dependent Schrodinger equation [3-5]

Hx|/=i^,^ , (1.10)
dt

where it is assumed that the time-dependent Hamiltonian can be written as a 

sum between a stationary part and a small time-dependent perturbation V

H=H q +A.V , (1

with X denoting the perturbation parameter. It is also assumed that the 

unperturbed wave functions satisfy the Schrodinger equations

2  (0)

, n=1,2,3,...
dr

and represent a product between a stationary part and a time-dependent 

exponential part

, (1-13)

where \\f̂  {n = 1,2,3,...) are the eigenfunctions and the eigenvalues of the

time-independent equations

, n = 1 ,2 ,3 .......  (1.14)

The wave function of the system, \j/, can be expanded in terms of the 

unperturbed basis set

V = E C n(O V °’ (1.15)
n

and substituting it into Eqn (1.10) gives [3-5]:

17



ac.
|V |vL> ■

ot m
(1.16)

The coefficients are set according to the usual practice of perturbation 

theory [4,5]:

C„ = c f '  + \c^'> + +••• C IS )

and substituting them into Eqn (1.16) gives, for the first three orders.

= Y. c r < v r ' i v i v : >  >
of m

and

i t . ^  = Y  c r < v r i v k : ' > .
of m

(1.18a)

(1.18b)

(1.18c)

Equations (1.18a-c) can be solved successively, assuming a time-independent

perturbation V and the initial state / ; thus Eqn (1.18a) yields

C, = 1, c„  = 0 . (1.19a)

Substituting the above results into Eqn (1.18b) makes all but one term vanish

= < \|/f  |V |vi“’> 

and yields the first order coefficient as

(1.19b)

Now substituting in Eqn (1.18c) yields the second order coefficient as

c r  = z
V V .nm mi 1 -exp(it(s>„J _ 1 -exp(if(a„,.) (1.19c)

1'®nm I'M™

In using Eqn (1.19c) for obtaining the transition probability, it is assumed that 

only the second term of the right-hand side, containing the initial state, makes 

a contribution in the long time limit. Hence

18



^ ,2) ^  2 - 2 cos((d„,0 V Vnm mi

m

and by using the long-time limit for Dirac’s function 

1 1 -cos((o„,0
5((dJ = 1 lim

t (Or

the probability per unit time for a n <-/ second order transition is

2

d
w Z i  = ^

m

Similarly, the absorption probability per unit time is

VJ^5(cdJ  .

(1.20)

(1.21)

(1.22)

(1.23)

In the quantum treatment of radiation [6,7] the electromagnetic field is 

considered to be an ensemble of non-interacting harmonic oscillator modes, 

with n,̂  photons in the k-\h mode; each photon has the energy the

polarisation and the propagation vector of magnitude

|k^| =co/c (1-24)

(where c is the velocity of light) and perpendicular to the polarisation vector: 

ê^*k^=0 . (1 25)

This description of the radiation field, which neglects nuclear polarisation, leads 

to the following expression for the second-order transition probability (e^and 

being the electric charge and the mass of the electron):

X
( ê , r P J ( ê r P J J ‘ ^m/)

m

(1.26a)

By using the relationship between the total linear momentum of the electrons
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Pand the total dipole transition moment p , P^,=(imoO)/eo)p^, and restricting the

scope of Eqn (1.26a) to Raman scattering excited by a single-mode, 

monochromatic laser beam, the transition probability per unit time and unit 

volume becomes

® / 77; ^  laser ^ m i'^ ^ ia s e r j

(1.26b)

In the equation above, the transition moment has been assumed constant and 

the medium isotropic, such that |ê,-p,,.p=(|p^,|^)/3; represents the circular 

frequency of the incident laser light beam.

Equation (1.26b) is very similar to the Kramers-Heisenberg dispersion formula 

[6]; a damping constant can be added on a "phenomenological" basis, and in 

the fast modulation limit it is insensitive to the different mechanisms for 

coherence loss encountered in experiments. It is, however, a good illustration 

for the idea of resonance; when Üie denominator of the first term

becomes infinitely small, the ratio becomes infinitely large, and that term 

dominates the sum, leading to a very intense band in the Raman spectrum.

Experimental Techniques for Resonance Raman Spectroscopy

As mentioned earlier in this chapter the Raman effect is weak, requiring special 

detection systems to separate Raman-scattered light from other effects, mainly 

Rayleigh scattering. In fact, Raman spectroscopy appears as a low signal-to- 

noise, high intensity range technique; the experimental setup consists of the 

following subsystems: a light source (usually a laser), a sampling subsystem, 

the optical analyzer (a monochromator and its collection optics), a detector, an 

electronic subsystem, and a computer which collects, processes and displays 

the data. Figure 1.2 shows the block diagram of such a spectroscopic system; 

the details of each subsystem will be discussed in the following paragraphs and 

are not included in the block diagram.

20



Sampling
system

Collection
optics Monochromator Detector

Computer

A
Laser Control electronics <--------------

Figure 1.2 - Block diagram of a Raman spectroscopic system.

Lasers

The introduction of the laser as a light source for Raman spectroscopy is one 

of the factors credited with relaunching this technique in its use for collecting 

vibrational data, long dominated by infrared absorption spectroscopy, and it was 

based on the characteristic features of the laser radiation: monochromaticity, 

coherence and high intensity.

As the intensity of the scattered radiation is directly proportional to that of the 

incident beam (Eqn (1.8)) and the transition probability of the Raman effect is 

very low, a more intense incident beam is the most obvious way to boost the 

intensity of the signal to be collected. Even the low-power He-Ne laser, 

producing less than 10 mW output at 632.8 nm, was a significant improvement 

over high-pressure mercury lamps because it could be focused better and 

because all that low power was emitted in a very narrow spectral region; in fact, 

for conventional and resonance Raman spectroscopy the spectral bandwidth 

of gas lasers is considered infinitely narrow and the radiation they emit is 

considered to be monochromatic.
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The introduction of other noble gases as lasing media, the most common of 

which are argon and krypton in the Ar ,̂ Kr̂  and mixed Ar  ̂+ Kr  ̂ion lasers, has 

increased greatly the amount of power available; the lasers employed in the 

collection of data used in Chapter 5 can deliver routinely 100 mW of power and 

up to 10 W for certain experiments. The significantly increased output power 

is coupled with the availability of over 20 different output wavelengths between 

the two gases (as compared with only one for He-Ne), spanning the whole 

visible spectrum (406 - 799 nm).

The choice of exciting lines offered by the Ar  ̂and Kr̂  lasers provided the first 

opportunity to investigate the frequency dependence of Raman scattering 

intensity, leading to Raman excitation profiles (REPs); resonance Raman 

spectra could be obtained as well, when the frequency of the incident beam 

matches the gap between the ground state and an upper electronic band (Eqn 

(1.25)). For full tunability, allowing the investigation of resonance Raman 

spectra with structured absorption bands (e.g. KlVInO  ̂ [8], K ÎVInÔ  [9], [WSJ^’ 

[10]), dye lasers pumped by high power Ar"̂  or Kr̂  lasers can be used.

Another advantage of using the output of Ar  ̂ and Kr̂  lasers, especially the 

green and blue lines (530 - 458 nm), is the intensity gain produced by the 

proportionality of the intensity of the scattered radiation to the fourth power of 

the frequency (Eqn (1.8)). Increasing the frequency of the incident light by 

about 30 % (by using 488.0 nm excitation instead of 632.8 nm) leads to an 

almost three-fold increase in the intensity of the scattered light, in otherwise 

similar conditions.

However, when a higher incident frequency coincides with an absorption band 

of the sample, several effects which are normally neglected start to influence 

the intensity and sometimes the spectral composition of the scattered radiation; 

these effects will be dealt with in the next section, dedicated to sampling 

techniques and the interaction between the sample and the incoming laser 

radiation.
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Samples and their interaction with the incident radiation

Sampling arrangements have the role of holding the sample in the optimal 

position for exposure to the laser beam and collection of the scattered radiation, 

while providing a controlled environment during the experiment. The most 

common requirement is low temperature for solid state samples, although 

sometimes the requirement is a very high pressure (> 1 MPa) for the study of 

minerals and other solid samples, or variable pressure for the study of gases.

As mentioned in the previous section there are several competing effects 

generated by irradiating a sample of material with high intensity laser light; the 

resonance Raman effect, while providing valuable information about the 

geometry of a molecule in a resonant electronic state, can obscure other 

vibrational features of the spectrum through the strong enhancement of the 

fundamental and overtone bands of only one mode. When the obtaining of 

conventional Raman data is the goal of the experiment, resonance can be 

avoided by choosing an exciting frequency away from the absorption bands of

the sample; a higher frequency would take advantage of the factor and 

decrease the self-absorption, but if a higher frequency is not available or leads 

to increased absorption, a lower frequency would need to be chosen.

Relaxed and resonance fluorescence are effects which compete with the 

resonance Raman effect in relaxing the system from its excited state by 

dissipating some or all of the extra energy absorbed with the incident photon. 

They provide mechanisms for radiative energy dissipation that do not preserve 

the phase coherence with the incident field, leading to a high level of scattering 

radiation which arises from neither conventional nor resonance Raman effects 

and hence obscures the vibrational information. A common solution to this 

problem is to excite the Raman scattering with photons of a lower frequency 

than the energy gap between the ground and excited electronic states.

Self-absorption of the scattered radiation can reduce some of the gain obtained
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by using higher incident frequencies, leading in extreme cases to thermal- or 

photo-decomposition of the sample; the Beer-Lambert law applies as for normal 

absorption

/= /oe ‘‘" (1.27)

where I is the intensity of a light beam with the initial intensity after having 

passed through a layer of thickness x of material with the absorption coefficient 

|i. One possible solution to counter self-absorption is to decrease the 

thickness x  by arranging the scattering geometry such that the scattered light 

travels as little as possible through the sample before exiting towards the 

collection optics [11,12]. Another solution is to decrease the intensity of the 

incident light /, decreasing both the absorbed intensity (Eqn (1.27)) and the 

intensity of the Raman scattered light (Eqn (1.8)); the signal-to-noise ratio of the 

Raman spectrum can then be improved by a longer integration time in the 

detection stage.

The most common sampling arrangement for liquids is a capillary tube, 

although the high intensity of the laser beam interacting with the sample can 

degrade the latter rapidly through photo- and thermal decomposition; the use 

of the rotating cell [13-16] and of the flow-through cell [17-19] solves this 

problem by providing a continuously fresh sample at the point of scattering.

A widely employed sampling condition is low temperature, which narrows the 

bandwidth and improves signal-to-noise and resolution, while at the same time 

protects the sample from thermal decomposition. Low-temperature sampling 

cells (cryostats) can be used for investigating various readily prepared samples, 

such as films, pellets and single crystals; these devices have been widely 

described in the literature and work by keeping the sample in thermal contact 

with liquid nitrogen, which is readily available, non-toxic, and has a very low 

boiling point - approximately 80 K.

More sophisticated cryostats may include temperature control through a heater
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with variable output, and may replace liquid nitrogen with liquid helium in order 

to achieve temperatures in the range of 5 - 10 K. However complicated their 

design, all cryostats operating by keeping the sample in thermal contact with 

a cold liquid (at boiling point) are just sophisticated Dewar cells. A basic design 

for such a cryostat, essentially a Dewar recipient similar to the ones employed 

in our laboratory, is given in Fig. 1.3 for illustrative purposes.

The sample is positioned at the 

impact point, where only a very 

small volume is irradiated by 

the focused laser beam; the 

rest of the sample does not 

participate in the experiment 

and hence is not shown in Fig. 

1.3.

A different principle used in 

achieving low temperatures is 

that of adiabatic expansion of 

gases, used in the construction 

of domestic and laboratory 

refrigerators. Such a device 

(like the Air Products Displex)

 vacuum
glass
Dewar
cell

liquid
nitrogen

Raman
scattered

light

copper
bloc

scattering
point

(sample)

laser
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Figure 1.3 - Simple Dewar cryostat.

uses helium in a closed thermodynamic cycle and can achieve temperatures 

as low as 10 - 15 K; when fitted with a programable, variable output heater, 

closed-cycle helium refrigerators can be programmed to provide stable 

temperatures of between 10 and 350 K. Appendix 2 describes experiments 

that involve the preparation and spectroscopic analysis of a mixture of small, 

unstable sulphur clusters, isolated and trapped in a matrix of frozen argon 

obtained by using such a low-temperature sampling arrangement.
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Collection of scattered light

After being scattered by the sample through various processes, light has to be 

spectrally analysed in order to separate the useful information from the very 

intense background; this requires a system that collects as much of the 

scattered light as possible without altering its spectral distribution, rejects very 

efficiently the background radiation (stray light and Rayleigh-scattered), and 

detects light at very low intensity levels.

The collection lens is usually a photographic camera lens, achromatic between 

400 and 550 nm, and transmitting more than 70% of the incident light 

throughout the spectral range of interest for Raman scattering from 

chromophores (400 to 800 nm). Figure 1.4 shows the spectral transmittance 

curve for a typical such lens. The accurate positioning of the collection lens 

along the optical axis of the system is crucial, as more than 80% of the 

detected signal can be lost through a 5 pm misalignment of this very important 

optical element.

spectrum transmittance
100

700COOSCO4M
wave iength(nm)

Figure 1.4 - Spectral transmittance of a typical photographic camera lens.
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A particularly disturbing effect for resonance Raman scattering of high order 

overtones - leading to an overall Stokes shift of more than 1500 - 2000 cm"" - 

is chromatic aberration; the lenses usually employed for light collection are 

corrected against this aberration only for blue and green light, between 400 and 

550 nm. This aberration, affecting all lenses, produces differently sized focal 

"points" for different wavelengths, 1 and 2 in Fig. 1.5; if the collected light is 

focused onto the entrance aperture of the spectrometer, this aperture - usually 

a slit - will "cut" the focal disk to an extent dependant on the wavelength of the 

incident light, distorting the relative spectral distribution of the collected light.

This spectral distortion of the 

collected light before it is analysed 

propagates into a distortion of the 

band intensities in the measured 

spectrum; the study presented in 

Appendix 1 will show the extent of 

this aberration in a typical lens.

The chromatic aberration cannot be 

corrected satisfactorily throughout 

the whole spectral range, so its 

impact has to be minimised by 

minimising the spectral range to be 

analysed; thus, using more

entrance

Figure 1.5 - The effect of chromatic 
aberration on the focusing of the 
collected light.

efficiently the information contained in the intensity of the first two or first four 

harmonics becomes even more important. The chromatic aberration can be 

eliminated completely by replacing the collection optics based on lenses by 

mirror-based optics but this experimental solution is very costly; by contrast, the 

transform method (to be discussed in Chapter 3) aims to provide an 

inexpensive tool, accessible to most laboratories.

27



Analysis of the scattered light

Typical single-channel Raman and resonance Raman spectrometers used are 

double monochromators, with the Czerny-Turner design shown in Fig. 1.6; a 

motorised precision mechanism positions the coordinated diffraction gratings 

G1 and G2 at a particular angle, allowing only light of a particular wavelength 

to pass through the entrance slit S ,̂ the middle slit Sg and the exit slit S3 , and 

hit the detector.

Figure 1.6 - Schematic diagram of a Czerny-Turner double monochromator.

The detector has a high sensitivity to light of low intensity, over a wide spectral 

range; typically, thermoelectrically-cooled photomultiplier tubes are used for 

single channel detection, while thermoelectrically-cooled photodiode arrays and 

charge-coupled detectors have become common for multichannel detection.
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The photomultiplier tube is based on the photoelectric effect and on secondary 

electronic emission and transforms photon energy into the energy of electric 

pulses with an efficiency of around 15 %; pulses are collected at the anode and 

the signal is collected and processed by associated electronic circuitry which 

also provides stable high-voltage power for the cathode of the photomultiplier 

tubes. After being collected pulses are amplified, filtered against thermal and 

radioactive noise, formatted to a standard 5 V voltage and counted; modern 

counters are embedded in personal computers that process the resulting count 

into a spectrum, while controlling the mechanical parts of the monochromator 

as well. The computer software controlling modern spectrometers, most of 

which are fitted with multichannel detectors, also corrects the spectra collected 

for the spectral response of the instrument; the following section will be 

dedicated to the subject of spectral response.

Appendix 2 illustrates most of the experimental techniques described in this 

section through a series of spectroscopic experiments performed as a research 

project separate from the main body of the present work. This present work 

owes a number of ideas and a good amount of impetus to that project and 

other preliminary work.

Spectral response of the spectroscopic system

Light travelling between the laser and the detector interacts with many different 

systems including the sample, each with its own response to the incident 

radiation; the purpose of spectroscopy is to separate the response of the 

sample from the response of all other systems. The monochromator and the 

detector are the only two systems with a significant influence on the measured 

spectrum apart from the sample itself; the monochromator is designed to 

discriminate between different wavelengths and the detector will have a 

frequency-dependent efficiency from the quantum nature of the detection 

process.
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It is usually assumed that the response of basic optical components (mirrors, 

lenses, prisms) is constant throughout near-infrared, visible and near ultraviolet; 

the spectral response of the collection optics, monochromator and detector is 

determined by replacing the sample and the laser source (Fig. 1.2) with a 

standard calibration lamp with known spectral emissivity, calibrated by the 

National Physical Laboratory.

The calculation of the spectral response of an instrument starts with the 

assumption that the response of that system is linear in intensity and therefore 

responds to an oscillatory input of intensity

(128a)

in a linear manner [20], producing an output of intensity

W » )  = (128b)

related to the input through the response function of the system, R, in the 

following relationship

W N  = ^ J « ( 0 ) - x ) U ( x ) d x .  (1.29)

Recognising that Eqn (1.29) represents a convolution of the input intensity 

function, Eqn (1.29) can be written in a compact form as

= (1-30)

or as a relationship between the corresponding inverse Fourier transforms

C a x )  = R ’( x ) O x ) . (1211)

Writing the previous equation for the Raman scattered radiation R and for the 

standard source S gives

(132a)

C u ,.(^  = f l '(x )C ^ (x )  (132b)

and the response of the system can be calculated from Eqn (1.32b) by 

performing the inverse Fourier transforms
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R-\x)  =
'output^

'input
(1.33)

d̂v

and so the real input of the system can be calculated as a function of the 

known response of the system and of the measured output

R-'(x)
'dx .

(1.34)

The spectral response of the instrument is calculated in practice from the 

emissivity of the source and the measured spectrum of the lamp, by using fast 

Fourier algorithms in Eqn (1.34).

A method of estimating the result of the previous procedure would be very 

helpful for saving development and computer calculation time; by considering 

any spectral structure as a sum of an infinity of monochromatic lines of spectral

width dv ', Eqn (1.29) can be written in its differential form

d/ouip» = linpu,iy)Riy-v')dv'. (1.35)

The standard source S has a broad spectral emissivity function that can be 

taken to be Gaussian for illustrative purposes:

Înputs LpufgGXp
(V'-Vs)'

a |
(1.36)

where Vg is the maximum point and ag = FWHH/(2\/in2) (where FWHH is the 

full-width at half-height of the Gaussian). The response of the instrument to 

monochromatic light of frequency v' is taken to be also a Gaussian, centred 

on the frequency of the incident light

a :
Fliy) =

and with a  ̂defined in the same way as ag.

(1.37)
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Thus Eqn (1.35) becomes

'̂ (y'

as a:
dv' (1.38)

by taking into account that the maximum response can only be = 1. After 

integration and rearranging the resulting expression, Eqn (1.38) becomes

louiputS'̂ ) = Ci,xconsf.xexp
(V-Vg)=

as 1 +
a.

(1.39)

As the Raman spectrometers are designed to have a narrow response function 

to incident monochromatic light, «  ag and Eqn (1.39) becomes

Luiputjy) “ C-xconsf.xexp|
(v-Vg)=

a |
(1.40)

Comparing Eqn (1.40) with Eqns (1.36) and (1.30) shows that, in Raman and 

resonance Raman practice, the convolution can be approximated with the 

multiplication of the input function by the response function at every frequency 

point; thus, the determination of the spectral response reduces to collecting the 

digital spectrum of a standard calibrated lamp and dividing each data point by 

the emissivity given in the calibration table of the lamp. Correcting a spectrum 

for the spectral response of the instrument consists then in dividing each data 

point in the spectrum by the value of the response function of the instrument.

The resulting spectral response curves of three typical spectrometers are 

shown in Fig. 1.7: two SPEX double monochromators operated in single

channel mode, fitted with 1800 mm"* (for model R6) and 1200 mm'  ̂ (for model 

1401) holographic gratings and RCA GaAs photomultiplier tubes (type C- 

31034), and a DILOR triple monochromator operated in multichannel mode, 

fitted with three 1800 mm"* gratings and a diode array detector.
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Figure 1.7 - Spectral response curves of different spectrometers.

It can be seen in Fig. 1.7 that even for a 1000 cm"* scan the relative intensity 

of peaks will be altered by the non-linear spectral response; in the case of the 

resonance Raman spectrum of the 846 cm'^ vibration of KlVInO^, produced by 

excitation with light of 514.5 nm wavelength (19453 cm'^) and collected by a 

SPEX 1401 instrument configured [8] as in the paragraph above, the relative 

change in the intensity of the third overtone is approximately 80 %. As shown 

in later chapters, using the transform method requires correcting the collected 

resonance Raman data for the spectral response of the instrumentation.
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II. Density Matrix Formalism for Multiphoton Molecuiar

Spectroscopies

Introduction

Chapter 1 has presented very briefly the traditional approach to optical 

spectroscopy - the second-order perturbation theory and the Kramers- 

Heisenberg formula - for both optical absorption and Raman scattering. While 

the Kramers-Heisenberg formula is correct in the case when all states of the 

chromophore and of its environment are included, in practice the latter are not 

known explicitly and have to be taken into account statistically. This approach 

introduces band shapes and widths on a strictly phenomenological basis, 

without taking into account the difference between different broadening 

mechanisms. For this reason, it is impossible for the Kramers-Heisenberg 

formula to discriminate between resonance Raman and resonance fluorescence 

and indeed, to predict any resonance fluorescence at all.

Theoretical studies [21-30] have shown that the mechanisms generating the 

loss of coherence between states control the nature of the secondary emission 

and the occurrence of resonance Raman scattering and resonance 

fluorescence. A recent study [31] has confirmed the theoretical results of [26- 

30,32] through experiments where either resonance Raman scattering or 

resonance fluorescence have been found to dominate the total intensity of 

secondary emission, depending on the dominant mechanism of coherence loss.

This chapter will show that resonance Raman scattering represents only a part 

of the laser-induced resonance secondary emission from electronically excited 

states, and is usually accompanied by a certain amount of resonance 

fluorescence. This is why the study of resonance Raman scattering has to start 

with a broader view of the two-photon processes, followed by an examination 

of the conditions under which resonance two-photon processes can occur and
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resonance secondary radiation can be separated into resonance Raman

scattering and resonance fluorescence.

The separation between resonance Raman scattering and resonance 

fluorescence will be based on the separation of the damping constant, and of 

its corresponding quantum operator, into terms of distinct phenomenological 

origin. The mathematical formalism required to achieve this separation is 

based on the density matrix of a multilevel system in interaction with a 

dissipative system (a "heat bath") [27]. The formalism thus developed will be 

extended to include the interaction with a radiation field [28-30,32] and then 

applied to the calculation of the transition probability for one- and two-photon 

processes.

This chapter will continue by separating the formulae for the transition 

probabilities into terms corresponding to one-photon absorption and emission, 

Raman scattering, and fluorescence. The role of different mechanisms will be 

discussed and conditions for the occurrence of various processes will be 

established. At the end of the chapter the experimental results of [31] will be 

examined in more depth , providing the ground for the approximation adopted 

in chapter 3 with regard to resonance fluorescence. Only then the theoretical 

basis for the transform relation between resonance Raman scattering and 

optical absorption spectra will be fully in place and the discussion can proceed 

towards establishing this transform relation, the aim of Chapter 3.

The Density Matrix Formalism

The starting point of this review of the formalism is the physical meaning of the 

density matrix, best illustrated by the case of a system with two levels, {1, 2}, 

the wave function [32]

v(f,0 = + C2(0Va(') (2.1)

and the Hamiltonian operator
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H = H , + V . (2-2)

Here and \\f (̂r) are the eigenfunctions of the unperturbed Hamiltonian

Ho, V is  the interaction Hamiltonian, and the coefficients C (̂t) and C /y  can be 

obtained from the solution of the time-dependent Schrodinger equation

H v  = . (2.3)
dt

It is found that the coefficients C /fj and satisfy the relations

= - j E l C , , (2.4a)
df h ' h ^

and

^  . (2.4b)
df h  ̂ h '

The density matrix of a system with the wave function above is then defined as

Pii -  ^ 1 ^ 1  > Pi2 = ' P21 ”  ~ Pi2 > P22 = Q Q  i ^ ‘^ )

and the density operator corresponding to the matrix can be written then as

p = |\j/><vl ■

The density matrix can be used to calculate the expectation value of an 

operator M , starting with the definition of its expectation value

(m ) = <\j/(r,0|M|ij/(r,0> ;

from the expression for the wave function (Eqn (2.1)) and the definition of the 

density matrix (Eqn (2.5)), it follows that

(m ) = C;C,M„ + C2*C,M2, + (2-8)

or, in matrix form, the expectation value of M will be the trace of the product 

between M and p

(m > = Tr(pM) = Tr(Mp) . (2.9)
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The time dependence of the density matrix of an isolated system is given by 

its equation of motion, which can be obtained by differentiating the density 

matrix with respect to time (Eqn (2.5))
r \  ( \

, iE. iV..
-(^1

iEi iV
6t df df \  /

cancelling the like terms yields

^  -  P M  = -^[V,p]n .

The other terms can be obtained similarly

^  = -^ (V „ P „  -  Pa,V„) = - i[V ,p ],, ,

^  = -^ (E , -  E,)p„ + iv , , (p „  -  p^) ,

and

= -^ (E j -  E,)p2, + ^Vg/pg; -  p„)

(2.10)

(2.11a)

(2.11b)

(2.11c)

(2.1 Id)

and the equation of motion for the density matrix can be written in operator 

form as

(2.12)

Equation (2.12) is called also the Liouville equation and the Liouville operator 

is defined as

L = ^ H , •]
n

(2.13)

The above treatment for a pure-state, two-level system, is not very useful in 

practical terms because real systems are collections of multi-level systems. 

The extension of the previous approach to a mixed-state, multi-level system will 

start also with the wave function of a system in the state y:
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Defining Py as the probability of the system to be in the state with the wave 

function gives the following expression for the density matrix

Pn. = E  P/C®(/)[c«(o]* ; (2.15)
i

in this case of a mixed-state, multi-level system, the density matrix element

is a measure of the probability density that the state m mixes with the state n. 

The density operator is to be written as

p = E  (2.16)
i

and the corresponding Liouville equation is

Q f n k m' n'

the matrix element of the Liouville operator is given by

= {(H„..8„„, -  S„„,H„„,) , (2.18)

where 0^ ,̂ and are ordinary Kronecker symbols. In operator form the 

Liouville equation and operator are, respectively

.ËÈ = -iLp (2.19)
dt

and

L = I [H ,- ] .  (2.20)

Density Matrix Formalism for a Molecular System in Interaction with a 

Heat Bath

The review of the basis of the density matrix formalism establishes the 

terminology to be used in later work throughout this chapter and provides a 

connection between the physical reality to be modelled and the mathematical 

equations describing that model. However, a useful model needs to represent
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an interesting problem in the simplest possible terms, so the next step of the 

present treatment is to separate the "reality", considered to be an isolated 

system, into two interacting parts: the system of interest - the "system" - and 

the rest -the "reservoir" or the "heat bath". Specifically, the "system" would 

represent the molecular system and the "bath" would represent all mechanisms 

through which the "system" interacts with its environment. This would account 

for all energy transfers, radiative or not, between the system and its 

environment, e.g. intermolecular collisions and low-frequency, internal modes 

of vibration.

The purpose of the separation between the "system" and the "bath" is to 

eliminate the "bath" part of the density matrix, so as to obtain a simpler 

equation of motion, involving only the reduced density matrix of the system of 

interest. Microscopic variables of the reservoir would not occur in this reduced 

equation, the effect of the reservoir on the "system" would be described 

conveniently through rate constants, and only a statistical assumption at the 

initial time would be required. The expressions for the rate constants will be 

derived and a phenomenological interpretation of the rate constants will be 

given.

For practical applications the "system" itself will be separated into another 

"system" and the radiation field but for the start there will be only a "system",

with the Hamiltonian , and a "bath", with the Hamiltonian H^; the interaction

between the system and the bath has the Hamiltonian H^. The Hamiltonian of 

the total system will be then

H = Hg + H^ + Ĥ  = Ag + Ĥ  (2-21)

and similarly for the corresponding Liouville operator 

L = L, .  L , .  L, .  Û  .  L, . (2.22)

Applying the Laplace transform, defined by
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p(p) = je " ' p(Odf , (2-23)
0

to the Liouville equation for a mixed-state, multi-level system (Eqn (2.19)), 

yields [27,33]

p(p) =
p + iL

A transition operator M(p) will be defined as [27,28,33]

(2.24)

1 1

p + iL p + iLo
1 + M(p) 1

P + iLo
(2.25)

which is to be substituted into the expression for the Laplace transform of the 

density operator (Eqn (2.24)), yielding

p(p) =
P + iLo

1 + M(p) 1

P + iLr
(2.26)

The density matrix of the "system" at time t can be found by calculating the 

trace of the total density matrix over the quantum states of the "bath" 

pw(0 = Tr,p(0 . (2.27a)

p'='(p) = Tr,p(p) . (2.27b)

To eliminate the "bath" variables, it is assumed [27] that at f = 0

p(0) = p<*'(0)p<'’'(0) ; (2.28)

using this initial condition in the Laplace transform of the density matrix of the 

"system" yields

1 .  ( W  ' - r -
P + iL,

(2.29)
P + iL,

with the trace of the transition operator expressed as 

(M(P)) = TrjM(p)p<'"(0)] .

By introducing the memory function (or memory kernel) [28,34]

(2.30)
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the Laplace transform of the density matrix of the "system" can also be 

expressed as [27]

p‘"’(p) = ------- — r  (2.32)
p + iL̂  + (Mc(p)) 

or rewritten as [27]

pp' '̂(p) -  p"’(0) = -iî-sp‘'’(p) -  ( m „(p))p ‘̂ >(P) •
The Liouville equation of motion for the density matrix of the "system" can now 

be obtained by performing the inverse Laplace transform of Eqn (2.33)

= -iL,pW(f) - fdt(M,(T))p<">(f-T) , (2.34)
df {

with

ioo+c
(M(t)) = ^  J  dp(M (p))exp(pr) . (2.35)

By using the identity

exp
df

-T-^ p(4(0 = f  (-^)" d"p*̂ HO ,  (̂S)(M) , (2.36)
n-0  n\ d r

the Laplace transform of the density matrix of the "system" can also be written 

as

= - iL ,M O  -  jdT(lVI,(T)) expl" -  % A lp  W(Q . (2.37)
df d f/

Approximating the time derivative operator by -iL^ under the exponential in

Eqn (2.37) yields the generalised master equation for the density matrix of a 

system in contact with a heat bath

Û. = -iL.o<'>(fl -
df

= -iL^'=i(Q -  Jd'c(M,(t))exp(ixLJp'">(f) . (2.38)

It is to be noted that the generalised master equation achieves the separation 

between the variables of the system of interest and those of the heat bath and 

depends only on the density matrix and the Liouville operator of the "system".
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This equation provides the starting point for the treatment of any optical 

spectroscopy, as no assumption has been made about either the character or 

the magnitude of the interaction between the system of interest and its 

environment. The diagonal elements of the density matrix describe the time 

evolution of the population of the system, while the off-diagonal elements 

provide the information about the phase, bandwidth and band positions in the 

optical spectra.

In order to obtain relations applicable to spectroscopic problems, damping will 

be introduced through the Markov approximation: the duration of the interaction 

between the system and its environment is infinitely small compared with the 

time required by the density matrix to change, such that the time integral in the 

generalised master equation can be extended from zero to infinity. Thus the 

damping operator can be defined as

f  = JdT(Mj.(x))exp(iTLJ (2.39)
0

and the equation of motion becomes

-  fp(®>(0 • (2.40)

The damping operator can be defined by correspondence with the time- 

independent damping constant only in the Markov approximation; when this 

approximation does not hold, one has to deal directly with the memory function. 

The physical quantity corresponding to the damping operator is the damping 

constant, to be derived in the following discussion; this will lead to the 

separation of the damping constant in two parts, of distinct phenomenological 

origins.

Applying the physical interpretation of the elements of the density matrix of the 

"system" leads, in the second order of approximation with respect to [27], 

to the following equation for the diagonal matrix element
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^ = - E W p ! ? „ ;  (2-41a)

and for the off-diagonal matrix element

dp%*.
df

It can be seen in the previous equations that the time evolution of the diagonal 

elements of the density matrix depends only on the rate constants (r), 
characterising changes in the population of the state ; the evolution of the

off-diagonal elements between different states and depends on the band

shifts (co) as well as the rate constants (r) describing the population changes 

in both states involved.

The definition of the damping operator shows that calculating the matrix 

elements of this operator requires the calculation of the matrix elements of the

memory function (M ç(t)) (or equivalently (M j.(p))). Thus, the Laplace transform 

of the memory function can be written as

= - ( m (p))' ’̂ = / L , _ ! ^ L , \  (2.42)
\  P + iLo /

or, for its diagonal matrix element

- £ E p ? . . ( 0 )
'  '  '  n, nJ

f  \

P  ̂  ̂ 0 Jnn-_n'N'
(2.43)

In the previous equation n̂ , n ’̂  are quantum numbers corresponding to 

"system" states, n \  are quantum numbers corresponding to "bath" states

and the shorthand notation N=n̂ n̂ ,̂ has been used.

Using the definition of the Liouville operator and the assumption that the 

thermal average of the Liouville operator of the interaction is zero, (C j= 0 , and

replacing for convenience the notation for the interaction Hamiltonian A =
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in the previous equation yields

p & m

X ^a/a/'52
M

l l- l  |2 ll-l^ 12 
\ ^ m n \ \ ^ m n \

1 H ' |2 \ ^ n n \ \H ' |21 ^ N N \

P+icô /v P"̂ i®A//ŵ P +  iCOyy//̂ P *®A/A/' _

(2.44)

which reduces for the case of n^^ris to

{^c(P) ) ^  I n̂,n„n'A
b rit,

1 1 (2.45)

or, by reversing the Laplace transform, to

(McW)!1 = - 4 E  E  P%:(0) I l^cos (0)„̂ „̂;„.T) . (2.46)
* ’ ■ ^  n ,  n '

The matrix element form of the definition of the damping operator now gives, 

in the case of n̂ ^̂ n's,

2tc.
n̂,n-n'y, " I I '

 ̂ "b n.

The case for n̂ =n's yields similarly

<Mc(p))!1 „ = 4 e  E  E  p%.(0) I

(2.47)

n, m,

a •b’*b ••s'’b̂ ''s'’b
'b Hb

= ^ e e e p ;?;..(o) i h u ,„̂ j ^
n n, m,^n, m,

or, by reversing the Laplace transform.

/ \

1 + 1

y X
2 1

P'^'®n,n^n>,
A P ‘̂ ’®n>^,nA

K
1

4-
1

(2.48)

P ̂  P ̂  ’̂ n,n,

5Z 52 PnbL(̂ ) I I ̂  j ) (2.49)
m.̂ n, n. m.

The matrix element form of the definition of the damping operator now gives, 

in the case of n = n '
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n m ,* n , n^ m ^

52 m̂,m̂.n,n, “  52  ^n'n^n,n, “  52
(2.50)

n,̂ n̂

Combining the results for n^^ns and n^=n's, the master equation for the 

diagonal elements of the density matrix of the "system" now becomes

dpLl
df

(2.51)

The calculation of the off-diagonal matrix element of the damping operator is 

analogous to that of the diagonal element and starts with calculating the 

corresponding matrix element of the Laplace transform of the memory function

(2.52)
p + iL„

/

where the shorthand notation N'=n/)'t,, has been

utilised. Again, as for the diagonal matrix element, using the definition of the 

Liouville operator and the assumption that the thermal average of the Liouville

operator of the interaction is zero, (C )̂ =0, and setting for convenience H =H  ̂

in the previous equation yields

p i m
X

y
f / / I I  ^

M" P + '(OM'/V P"̂ i®M'/V _

(2.53)

which, after expanding the sums over the Kronecker symbols and grouping the 

resultant terms, becomes
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m . m .

IK

p + iœnig fTt̂ , m gfî

IH |2I ngn,,m'gml, I

- 4 E E p l : ( o )
H H i

(2.54)

n'b n„

n,ni,,ngn̂  '","b>"'s"b

Performing the inverse Laplace transform of the previous equation and 

substituting the result in the definition of the damping operator yields

pil(O)
r „ .„ ,„ .„ = E E E

- E E
"b n'.

(2.55)

where the complex function q is defined as

(2.56)

and can also be written as q(x)=7iô(x)-iP(1/x), where P(1/x) is the principal 

value of 1/x. Thus the matrix element of the damping operator can be 

separated into its real and imaginary parts

(2.57)

The real part is called the dephasing rate constant and consists of the inelastic 

part and the elastic part the matrix eiement of

the damping operator is written now

n̂,n;n,n,) m̂gn;.m,n) Ï I HI ] (2.58)

The elastic term is called pure dephasing because it does not

accompany a population change and is written as

(2.59)
'b Pt

The imaginary part represents the energy level shift due to the interaction 

between the system and the heat bath and can be written as
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E  Pnl(O)
m' ml

H L  _,_,r IH' 12

V
P'*’ n,n̂ ,m'mb

|_|/ |_|̂
2 P r,(̂ ) "X,n,n, m,n„m,n,

p . ' » . . . .  ^

(2.60)

The equation of motion for the off-diagonal element of the density matrix is now 

obtained by replacing the real and imaginary part of the corresponding matrix 

element of the damping operator in Eqn (2.41b)

dpL^
df

_lfr +r ^2 '   ̂ n̂ n;.n̂ nj ^
.(s) (2.61)Pm,n, ■

The above equation shows that the spectral position of each band, through the 

energy level shift, is temperature-dependent. As the phase information about 

the system is contained in the off-diagonal element of its density matrix, the 

above equation also shows that the Lorentzian spectral bandwidth of a 

molecular system depends not only on the total decay rate of each molecular 

state, but also on the pure dephasing characterising each pair of molecular 

states. This fact is not captured by any other method of treating molecular 

spectroscopy and represents the key advantage of the density matrix method 

over all the others.

Density Matrix Formalism for a Molecular System in Interaction with a 

Radiation Field and a Heat Bath

The formalism developed in the previous section will be extended now by 

including the interaction between the system and the radiation field. The results 

will then be applied to the specific cases of one- and two-photon spectroscopy, 

leading to expressions of the transition probability for optical absorption and 

resonant secondary radiation. These expressions are the two components of 

the transform relation, to be established in Chapter 3.
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The starting point of this application is the definition of the probability rate for 

a /-photon transition of a multilevel molecular system from the initial state 

belonging to the manifold [a] to all possible final states belonging to manifold 

[n], in the Markov approximation [29]

WO) = lim , (2.62)
t —>«> p df

requiring the derivation of the master equation for one- and two-photon 

processes involving the system, the radiation field and the heat bath.

The derivation will proceed as in the earlier discussion of a system in contact 

with a heat bath, starting with the equation of motion for the whole system

i â  = -iLp (2.63)
dt

with the Liouville operator defined as

L ^ i[H , • ] (2.64)

and the Hamiltonian of the total system

H = H„ + A '. (2 .65 )
The total unperturbed and interaction Hamiltonians are, respectively,

A,  ̂ A , + A , + A, (2.66a)

and

A' = AL + A,, . (2.66b)

The Hamiltonians and the corresponding Liouville operators of the molecular 

system, the heat bath, the radiation field, the system-radiation field interaction 

and system-heat bath interaction are denoted by the subscripts s, b, r, sr and 

sb, respectively.

The derivation will seek to isolate the density matrix of the system by 

eliminating both the bath and the radiation field variables; this will be achieved 

by applying the appropriate projection operator to both sides of the Laplace
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transform of the Liouville equation (Eqn (2.63))

(p + iL)p(p) = p(0). (2.67)

Applying the projection operator Â=p(^)(0)Tr^ to both sides of Eqn (2.67), and 

assuming that p(0) = p̂ ®̂ (0) p̂ ^̂ (O) p̂ '̂ (O), yields [32]

[p + iL ,+ iL ,+ (Z  (P))JP‘"'’(P) = P""(0) . (2 68)

where p̂ ®'̂ =Tr̂ p and

(E  (P)).=TrJiL;,HL',,(1 -Â)(p+iL) \1  -Â)L'jp<'’>(0). (2-69)

A second projection operator â=p '̂^(0)Tr  ̂ is applied to the intermediate result

(Eqn (2.68)) in order to obtain the reduced density matrix of the molecular 

system

[p+iL,+#(p))]pW(p) = p<">(0). (270)

In the previous equation {...}=Tr .̂..p '̂^(0) and

M(P) = iL.r- + (E  (p)>, - [iLsr--(E (P)> J(1 -« )  (2 71)
x[p+iL,+iL,+i^,+(E (p))j '(1 -a )K r (E  (P)) J •

Applying the inverse Laplace transform to the reduced density matrix (Eqn 

(2.70)) yields the equation of motion of the molecular system

=-iL,pW (0- jdT<M(T))p<">(1-T) , (2.72)

where

ioo+c

{M(t)} = —L  r dp{M(p)}exp(pr). (2.73)
Piri J

|oo+C

In the Markov approximation - when changes in the density matrix of the 

system happen in an infinitely short time - the time integral in Eqn (2.72) can 

be extended to infinity and the equation of motion can be written as

= ( - iL , - k ) M Q  ■ (2.74)

where
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r

k  = lim fd%{IVI(T)}exp(iLgT). (2-75)

Equation (2.74) is the master equation for multiphoton processes involving a 

multilevel molecular system coupled to a heat bath; it is the starting point for 

applying the density matrix formalism to processes involving any number of 

photons. The transition operator can be expanded as

{M(p}} = + iÛ^^\p)) + ... , (2-76}

where the superscripts correspond to the number of photons involved in the 

process. The transition operators for one-, two- and three-photon processes 

are, respectively,

(m ‘"(P)) =(L;,G(p)0  , (2-77a)

<M®(p)) = - C ; 0 (p)L ;0 (p)L;,0(p)L'J (2.77b)

and

<M®'(p)} = <L;G(p)L;â(p)L;,Ô(p)CG(p)L;G(p)Lg , (2-77c)

where the resolvent operator G(p) is

G(p) = [p + iL ,+ iL ,X E  (P)> J '. (2.78)

For an arbitrary number k>2 of photons, the transition operators are connected 

through the following recurrence relationship

M'‘*(P) = -Ce<'‘ ''(p)L; , (2.79)

where

C*'‘ ' ’(p) = â(p )M ‘* ”(p)â(p). (2.80)

Using these relationships, the matrix element of the k-Xh order transition 

operator between the initial state A and the final state N of the system in the 

presence of the radiation field is

h L M ' /

where H =H'sr̂  N^nn^, M=mm^, A=aa^ and /_=//  ̂ and the subscript s for the

50



molecular system has been omitted; the matrix element of the Liouville operator 

is

• (2.82)
n

Taking the trace of the matrix element of the transition operator over the 

radiation field variables, Eqn (2.81) can be written as

Any application of the matrix density formalism to the spectroscopy of optical 

processes involving an arbitrary number of photons will be a particular case of 

the system of equations (2.74, 75, 77a-c). The number of photons involved in 

the process to be studied will determine the order of the transition moment 

(Eqn (2.76)) to be employed, while the nature of the states A, A/, M and L will 

determine the shape of its matrix element. The nature of the molecule-field and 

molecule-heat bath interaction will determine the shape of the trace operators 

and of the Hamiltonians and hence, through the dephasing rate constants and 

the spectral positions, the final form of the transition probability.

One-Photon Processes: Absorption and Emission

Regardless of the nature of the initial and final states (absorption or emission), 

the derivation of the formula of the transition probability rate for a one-photon 

process starts with its definition, in the Markov approximation [29,30,32]

IV<1) = lim 5 : ^  = E  E  lim jdTllVI '’>(t))„„aaP?i(0) . (2 84)t n Uf a n f q

where the trace of the transition operator (Eqn 2.77a) over the field variables 

is

<M''’(P)>™:aa=(L's.G(p)L;;„.,, • (2-85)

By neglecting in the resolvent operator the effect of the interaction between the

molecule and the radiation field, G(p) can be written as
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G(p) = Ô'°'(p) = 

where

(P)). = ( L > - i L , . i L , ) - ’L;> . (2-87)

With this approximation for the resolvent operator, the trace of the transition 

operator (Eqn (2.85)) can be written as

(M'"(P))™.a = <l; g '“'(p)lX , ,  = E E p i i ( 0 ) [ i i ; G " ’{P )L 'j„„,,.a ,.
", ", (2.88) 

= E E p il (o ) [M '" (P )U ,„  •
n, a,

and its matrix element between the initial state A and the final state N  as

MSJU(P) = - ^ E  E  [<H»«H%G%(p) + H'„„H'.,G5Up))8«Al (2 .3 9 )

-  {H'«^:,,G<°L(p)+HLH%G%(p))8^^6^J , 

where the matrix element of the resolvent operator is [29,30,32]

G%(P) = ^mNA(P) = + (2.90)

and the dephasing rate constant between the a and n molecular states,

calculated in the previous section, is (0))nana’

For a one-photon process A and N are different states, so the matrix element 

of the one-photon transition operator is

[M''Hp ) U «  = l|H% ^|m e[G % (p)] . (2.91)

Performing the inverse Laplace transform on the previous equation, with Eqn 

(2.90) for the matrix element of the resolvent operator, yields

<M'”(P))„.aa = ^ E E  plA(0)Re |Hn„,aa,PeXp[-T(itO„„^,,_-iACD„,-rJ] . (2.92)
n n, a.

This leads to the following expression for the transition probability rate of a one- 

photon process:

P + iL ,+ iL ,X E '° ' (P)>,
(2.86)
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= lE E E E P > ) p l i ( 0 ) | H ™ I ^ R e
n a n, a

(2.93)

or, by using the Identity I Jdte' = {a-ib) ' , b>0:

= - 4e E E E p i 1 ( 0 ) p L l ( 0 ) I , ■■ • (2.94)
^  n a a, (CO^.+ACOj +1^^

The expression above will be used in the next chapter towards a transform 

relation between the one- and the two-photon transition probability rates. 

Further assumptions on the actual shape of the interaction Hamiltonian and of 

the density matrix of the radiation field will lead to a more detailed formula for 

the one-photon transition probability rate, to be derived in the following 

paragraphs.

in the dipole approximation for the quantized field description (Eqns (1.24-27)), 

the Hamiltonian of the molecule-radiation field interaction is [29,30,32]

/  M/2
27i"h
coL'

V y

(â,+â/) . (2.95)

This leads to the following expression for the trace of the Laplace transform of 

the transition operator:

= - ^ ^ R e E E p ”A(0)exp[-T(l(o„„^,,+IAco„,+rj]
A77ô L  a, (2.96)

^  < a a jê,-P(â/+ a/) |nn^><nn^\(a / + a,,)e,,-P|aa,>

/ , (m m )'''
where the subscript I is associated with the photon mode and the polarisation 

and â and are the photon creation and annihilation operators which satisfy 

the commutation relation [â,â^] = ^. Expanding the matrix elements and using 

the relations â\n>=n^^^\n-1>, a^|/7>=(/7 + 1)̂ ^̂  |/? + 1> and <n\n^>=8^^, in the 

equation above yields
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E  pi%,(0)exp[-T(i(On,,aa/iAw,,+rj]
ATIô L  n, a, (2.97)

" " 4 ---------------------- ^ ----------------------

and, after performing the summation over the Kronecker tensor elements, 

PlTp^ Ip  -P  |2
' " "  E  piA(0 )exp[-x(iA(a„,+rj] gg\

A77onL̂  I ^ 1  a, v • /

xla,exp[-i x{o>„̂  -  (o,)]+(a,+1 )exp[-i T(o) ,̂+co,)]) .

Using the relationship between the /7-th matrix element of the total linear 

momentum operator of the electrons P and that of the total dipole moment \ i , 

P̂ ,.=(iA77oCÔ /eo)|ĵ ,., in Eqn (2.98) gives the final form of the one-photon transition 

operator:

2

’(P)>™:aa = ~ ^ \è , V n Æ  pL;(0)eXp[-x(iACO„,^rJ] (2.99)
n L  I (O f a,

x<a,exp[- i -  ©,)]+(a,+1 )exp[- i x(co„̂ +©,)]) .

The first and second terms represent one-photon absorption and one-photon 

emission processes, respectively. By using the first term of the previous 

equation for the trace of the transition operator, the formula of the transition 

probability rate for one-photon absorption becomes

E E E PÏÏ(0 )pL >)û)„jê,-M „j=a,^ -!^ _ , (2 .1 0 0 )

where = cô g+Acô a and cOna/cO/ = cô a have been used.

Considering the statistical nature of the radiation field, the density matrix for the 

thermal excitation of photons in a single mode at temperature T is (kg is 

Boltzmann’s constant)

p « ( 0 )  -  [ 1  - e x p ( - W / / ( g T ) ] ^ e x p ( - a , % a ) / ; ( g T ) | a , > < a J  , ( 2 . 1 0 1 )

a.

with the diagonal matrix element
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pi%(0) = [1-exp(-to/A^gT)]exp(-a,t.(o//fBT) . (2.102)

By using the identities

f  te  ^ V  = - i - f '  ( e - y  ^  A ( e  " - 1) ' = - _ 2_  (2 .103)
k k a x T  dx  (1 - e  y

and the mean photon number a^=1/[exp(tico//CgT)-1], the transition probability 

for one-photon absorption becomes

W2 = i^TEpS(0)co„Jê-M„J^ _ . (2.104)

The absorption cross-section can be obtained, in units of cm ,̂ by using the 

formula for the intensity of light, /='hœ^^c/L^ in units of erg s'̂  cm  ̂ (c is the 

velocity of light):

« 2  = ^Epa(0)co„Jê,-p„J^ _ \  . (2.105)
((0„,-0 )y+rt,

For randomly oriented systems, the average over all orientations of the dipole 

vector has to be carried out, yielding

« 2  = ^EEpa(0)(o„jM„J^ _ \  . (2.106)

Two-Photon Processes: Secondary Radiation, Raman Scattering and 

Fluorescence

As it has been seen already in the case of one-photon processes, the density 

matrix formalism yields the transition probability for a// processes involving the 

same number of photons. In the case of two-photon processes this means that 

the distinction between Raman and fluorescence scattering does not exist a 

prior/and, depending on the experimental circumstances, these two aspects of 

secondary radiation may or may not be separated.

The derivation of the two-photon transition probability rate starts with its
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definition

= lim E  = E  E  lim [dT<M'^'(T))„„^,,pïï(0) , (2-107)
f -)oo p o r  a n ( 0

where the trace of the matrix element of the transition operator (Eqn (2.77b))

over the field variables is

= - C G ( p)L;G (p)L ;0 (p)0„„^,, . (2-108)

By neglecting in the resolvent operator the effect of the interaction between the 

molecule and the radiation field, G(p) can be written as

(2.109)Ô(p) = g '°>(p) = P + ik + iL r (E ° '(P ) )

where

( E ° ’ (P)). = ( t > - i L a - i U ' 0 -

From the recurrence relation between the transition operators corresponding to 

consecutive numbers of photons (Eqn (2.81)) the two-photon operator can be 

expressed as a combination of the appropriate one-photon operators:

M/vaa/w(P) -  — [^WmHm GUv(P)Gm (P)Mmw:m (P)
"h L M

*  H'„^'^,GSUp)G5[(p)Ma^.(p) (2.111)
-  H'„^'^,G%%(P)G%p)IVI%Li(p)

-  H'M«H%G%Up)G%(p)IVI%LM(p)]

or, by using = G^^(p) [29,30,32],

Mn«A/((P) -  —jR ® E E  [H NwH l/,G Mw(P)G u(P) ̂ ^L«u(P) ^

N̂I\̂ ÂL̂ M̂hÂP)̂ ÂL(P)̂ M̂N:AL(P)] •

With H'an ^ 0 the two matrix elements of the one-photon transition operator in 

the equation above are, respectively

MÜU(P) = - l E  h ;nH'.^'SXp)5m, (2-113)
f i I
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and

 ̂ I (2.114)
-  ^ H 'ma» U g Z{P)-G ^>P)] ■

Replacing these two matrix elements in Eqn (2.112) yields the matrix element 

of the two-photon operator [27,29-31]

m Z . M  = - ^ R e E E  [gSUp)g‘,>)g'.SUp) ^g.iis)

+ G&p)G%(p)(G%(p)+G%p))] .

It has been shown [32,35] that, by using the relation

G‘SnG'̂ [G'°L = G%G<%G% + G'“'G'“UG*1 -  GZ(P)) (2.116)
= g Z g ^ g Z  + G '^^% G% [-1 + ( r « , - r ^ « + W G % ] ,

where p has been omitted for simplicity, the transition operator can be 

separated into three parts, corresponding to three different processes - 

simultaneous, sequential and mixed - according to the timing between their 

component one-photon processes. The terms are described, respectively, by;

= A R e G ^ p ) |E  H % ^ % (p )H L r , (2-117)
T) M

[M siq(P)]A/M>W “ 52 H >AlH /.a/H A/AfH m a ( ^ MA ~  ^M L  ̂  ̂ A l) (2 118)

X G2(P)G%(p)G%(p)G%(p)
and

[m S^p) U «  = ^ R e E E  (g .ng )

X Ĝ Akp)GUp)GZip)GZ{P) ■

By inserting Eqn (2.115) into the relation of definition (Eqn (2.107)) and 

performing the direct and inverse Laplace transforms involved, the two-photon 

transition probability rate is given by the formula
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IV® = 4BeE E  E  E  E  pi1(0)pil(0)

X

a a, N M L 

1

H  la /H  /v/mH m a

1 1 1
(2.120)

The transition probability rates for simultaneous, sequential and mixed two- 

photon processes are, respectively,

2

M / j : - & E E p > ) p l l ( o ) E
NA

 ̂ ® W/4 N̂A
E l

MA

M '̂ M̂Â M̂A
(2.121a)

^s% = E  p2(o)pi%xo)E E  E
a a

MA

X

N M L

r  — r  4- r ̂ A/fyA  ̂ ML  ̂ AL

î M̂A ^Ml)
and

(2.121b)

>\A/M/2 = ^ReEEE pi1(0)p2,(0). ^
a a, A/ ® /\A /‘̂ r^ A / ^  ^

E E  R LA/R A/AfR M/4

X M̂/4 ^MN'̂ ^AN
( ’®M/4 ^M/a)(*®/4L ^/4l) ( ’®MA/ ^MA/)

(2.121c)

Separating the elastic and inelastic terms in the damping constants (Eqn (2.58)) 

in the denominators in Eqns (2.122) and (2.123) yields

r  -V  +v = r
 ̂ MA  ̂ ML  ̂ AL  ̂ AA  ̂ MA  ̂ ML  ̂ AL

and

r  _ p  , p  _  p  , p ( d )  _ p ( d )  , p ( d )

 ̂ MA ^ M N ^  AN ~   ̂ A A ^  MA  ̂ M N ^ ^  AN •

(2.122a)

(2.122b)

If the initial state of the system is stable (most common case) then r _ -> 0  and

p  p  , p   V p(<^) p ( ^ )  , p ((^ )

 ̂ M A ~^  M L^ ^  AL  ̂ M A ~^  M L^^  AL

and

p  _ p  , p   V p ( d )  _ p ( d )  , p ( d )

 ̂ MA  ̂ MA/ AN  ̂ MA  ̂ M N ^   ̂ AN ■

(2.123a)

(2.123b)

This result shows the extent to which pure-dephasing, the origin of the elastic 

part of the damping constant, controls the intensity of the sequential and mixed
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two-photon processes. It can be seen that the separation of secondary 

radiation (all two-photon scattering processes) into pure Raman, pure 

stimulated emission and mixed processes cannot be achieved except for the 

special case of no pure-dephasing present, when only the value of the pure 

Raman scattering term is different from zero.

This is the most important conclusion of this chapter, as the need for separation 

between pure Raman scattering and pure stimulated emission intensities has 

occurred during some of my early experimental work (Appendix 2). The 

interpretation of the results will not be possible on the basis of the transform 

theory, used in interpreting the rest of the experimental data (chapter 5).

Pure-dephasing and Secondary Radiation: an experimental view

Examining the three terms (Eqns (2.121a-c)) of the two-photon transition 

probability, it can be noticed that iVJi, leads to a spectrum with resonances at

the ground electronic state vibrational frequencies cô ,̂ while Wfeq leads to 

resonances at frequencies corresponding to the spacing between vibrational 

levels of the excited and ground electronic states cô ,̂ and

shows resonances of both types, hence its "mixed" character. WsZ (Eqn

(2.121a)) is very similar to the Kramers-Heisenberg formula and corresponds

to the Raman part of a two-photon process. and exist only in the

presence of pure-dephasing and it is generally accepted [31,35-37] that the 

mixed term can be neglected.

Experimental studies [31] have confirmed this conclusion and identified two 

main mechanisms for pure-dephasing: quasi-elastic collisions of the "system" 

molecules, undergoing resonance scattering, with the molecules of the "solvent" 

(material-induced pure-dephasing) and stochastic fluctuations of the exciting 

radiation field interacting with the "system" (radiation-induced pure-dephasing).
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Quasi-elastic collisions can make a noticeable contribution to the coherence 

loss (damping) between two states involved in a transition when the mean 

collision time is comparable with the lifetime of the states involved. This 

contribution will not be noticeable in low density or low temperature samples, 

when the mean collision time is relatively long. Experiments presented in Part 

I of [31] show that material-induced pure-dephasing is negligible in the absence 

of collisions - the mean time between collisions is much longer than the lifetime 

of the excited state decay. For solid state samples, this means that this pure- 

dephasing mechanism can be neglected, which is particularly relevant for the 

experimental cases studied in chapter 5.

Random fluctuations in the exciting radiation field can contribute to the line 

broadening when the linewidth of the exciting radiation is comparable with the 

reciprocal of the lifetime of the states involved in the transition. Experiments 

presented in Part II of [31] show that pure-dephasing of transitions with 

corresponding bandwidths of 1 cm'̂  is negligible for excitation with lines 

narrower than 1 cm'̂  - both single-mode dye lasers and noble gas ion lasers 

(Ar ,̂ Kr"̂ ) fall into this category. This is particularly relevant to the experimental 

cases studied in chapter 5, as the Raman linewidths observed there are much 

greater than the linewidths of the laser light producing the excitation and so the 

radiation-induced pure-dephasing can be neglected.

The work will proceed towards a transform relation by assuming that both main 

mechanisms of pure-dephasing produce negligible contributions to damping. 

Hence, the resonance secondary radiation observed experimentally is assumed 

to contain only resonance Raman radiation, with a transition probability being

given by 1/14̂ . Experimental cases which do not fit this assumption can be

studied as in [36] by employing a multimode, "total simulation" approach, based 

on the equations derived in [37]; this approach requires ample computing 

resources and it will not be pursued here.
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III. Transform Relation between Resonance Raman and

Absorption Spectra

Introduction

H. A. Kramers and R. de L. Kronig [38,39] have shown that the real and 

imaginary parts of the complex electric susceptibility are related through a pair 

of simple mathematical relations, called dispersion relations, analogous to the 

transform relation between a Hilbert pair. As a consequence, the complex 

polarizability is fully determined when the absorption coefficient is known at all 

frequencies and it has been shown [40-52] that, under certain assumptions, the 

absorption and resonance Raman scattering cross-sections can be related 

through a Kramers-Kronig dispersion (or transform) relation.

Resonance Raman scattering intensity and cross-section are usually calculated 

under certain "standard assumptions": resonance Raman scattering involves 

only one excited electronic state and one vibrational mode; the vibrational 

Hamiltonian is quadratic in the normal coordinate of the mode in resonance (the 

mode is not coupled with any others and its vibrational frequency is the same 

in the ground and excited electronic states); the electronic transition moment 

does not depend on the normal coordinate of the mode undergoing resonance 

(the Condon approximation); the electronic and vibronic (nuclear) variables are 

independent of each other (the Born-Oppenheimer approximation).

The aim of this chapter is to establish a transform relation between resonance 

Raman scattering and optical absorption cross-sections, in the least restrictive 

model possible. The assumptions of a single electronic state (Albrecht's A-term 

[53] scattering only) and a single, uncoupled mode involved in resonance 

Raman scattering will be preserved. Beyond that, the Born-Oppenheimer 

approximation will be relaxed to a very large extent, the electronic transition 

moment will be allowed to depend in the first order on the normal coordinate 

of the mode undergoing resonance (linear non-Condon contributions) and the
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vibrational force constant will be allowed to depend linearly on the same normal 

coordinate (the vibrational frequency will be allowed to change by up to 20% 

between the ground and excited electronic states).

The transform relation will be established here for an arbitrary order of 

scattering, employing the time-correlator formalism developed by Hizhnyakov 

and Tehver [41] according to the assumptions listed in the previous paragraph. 

The result will be a multivariable, non-linear, non-analytic equation which will 

be solved numerically, using the method to be developed in Chapter 4, and the 

results will be given in Chapter 5 for a number of experimental cases.

The Kramers-Kronig Dispersion Relations

In the linear approximation of the electromagnetic theory, the polarisation P(f) 

of a physical system is related linearly \o an applied electric field E(t) through

P (f)={2n )''^ jx (t-t')E {t')d t'. (3.1)

By using the convolution theorem [20] between Fourier transforms, Eqn (3.1) 

becomes

P ( ( o )  = % ( m )  *  E ( c o )  , ( ^ ’2 )

where %(co) is the complex linear polarizability. H. D. Kramers and R. L. Kronig 

have shown [38,39] that the real and imaginary parts of %(co) form a Hilbert pair

R e[x((a)]= lp  (3.3a)
n ^  x-(û

lm[x(co)] = - - P  f 5 îM ^ d x  , (3.3b)
71 ^  X -C O

where P represents the principal value of the integral; for experimentally viable 

frequencies (real and positive), Eqns (3.3a) and (3.3b) become

R e [x ((û )]= |p J .^ !î^ M ^ d x , (3.4a)
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Im[x(to)] = - — P j 5 ^ ^ d x  . (3-4b)

Equations (3.4a) and (3.4b) represent the Kramers-Kronig dispersion relations; 

in conjunction with the relationship between the absorption coefficient |i(m) 

(from the Beer-Lambert law, Eqn (1.27)) and the complex linear polarizability, 

|i(co) = (2co/c)lm[1 they yield the following relationship between the

complex polarizability x(co) and the absorption cross-section ABS(o)) [40-42,55]:

%(m) s <D(m) = I p  . (3.5)
7Ü I  X̂ -CÔ  (0

Obtaining the detailed relationship between the resonance Raman scattering 

cross-section and the absorption cross-section will be the scope of the time 

correlator formalism described in the following sections.

The Resonance Raman and Absorption Time-Correiators

The calculation of the time correlators starts by considering the Raman 

scattering from a sample of randomly oriented molecules, between an initial 

molecular eigenstate /, and a final molecular eigenstate f, the incident laser 

frequency is cô  and all the light scattered in all polarizations over 4ti steradians 

at (0̂ -%  (integrated over the linewidth) is measured. The scattering cross- 

section per molecule is given as [53]

, (3.6)
y C  n p,o

in which [(%p̂ (o)J]y) is just the matrix element of the molecule-based po-th 

Cartesian tensor element of the complex molecular electrical susceptibility (the 

"molecular polarizability") and the circular Bohr frequency corresponding to the 

/,/-th energy gap is % =  AE/h. The frequency domain expression for [ap( (̂mj] ,̂

is the anisotropic version of the transition probability rate (Eqn (2.121a))

expressed as cross-section, in which the incident field has been assumed to be 

monochromatic and the thermal population of all other molecular levels apart 

from a=i, is taken to be negligible at equilibrium:
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r \
< f |p |e x e |a | />  < f |a |e x e |p | /> (3.7)

y

the sum is over all molecular eigenstates e, represents the dephasing rate 

constant for an e,i coherence, and p and a are molecule-based Cartesian 

components of the macroscopic electric dipole operator.

When near- or in-resonance with an electronic transition, the principal 

contribution to [otpçj(cûL)]̂ , will be from the resonance that arises in the first term 

of Eqn (3.7). To arrive at general transform expressions for the resonant 

scattering of fundamentals and overtones, including non-Condon effects, by 

employing the recursion relations developed by Hizhnyakov and Tehver [52], 

the terms of Eqn (3.7) that are near resonant are placed in the time-domain by 

writing the complex denominator through its half-Fourier transform:

[«p„(o>l)]« = i j d T e < f | p | e x e | o | / > e x p [ - i T ( m , - ryj] . (3-8)
0 ®

The sum on e in Eqn (3.8) can be closed provided that the dephasing rate 

constant, is algebraically separable (ye, = y© + y), as already is the frequency 

difference (cOg, = cOg- cô ). In the most general case, when the pure-dephasing

constant yŜ  depends on both indices e and /, the separation is made

impossible by the very notion of pure-dephasing (Eqns (2.58), (2.61)). The 

separation is achieved only in the assumption of negligible pure-dephasing, as 

discussed at the end of Chapter 2.

A non-Hermitian Hamiltonian is introduced, H, which consists of the full 

(Hermitian) molecular Hamiltonian, H, and an anti-Hermitian damping operator, 

D, such that (in circular frequency):

H|e> = Q)g|e>, D|e> = iyg|e>; or H\e> = (cOg + iy^)|e> . (3.9)

Introducing H  defined in this way into Eqn (3.8) and closing on the complete
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molecular eigenstate basis set (|e>}, yields

[^po(®i) fi = i JdTe'^“^<f|pe ''^^^ae‘̂ ^|/> . (3.10)
0

By defining the time correlator [ApĴ j as [40-42,55,56] (see also [52] for 

conjugate form)

[Apjf, = i0(T)<f|pe , (3-11)

where 0(x) is the Heaviside step function, the matrix element of the molecular 

susceptibility (Eqn (3.6)) for the two photon f < r-  / transition can be written as

. (3.12)

Within the same assumptions as for resonance Raman scattering, and using

Eqn (2.94), the matrix element of the molecular susceptibility for a one-photon

transition from the /-th molecular level into all reasonably excited states in an 

isotropic medium can be written as

K p((Ol)]„ = , (3.13)

with the absorption correlator being given by

[App]„ = i8(T)</|pe ■ (3.14)

With the relations above, the task of connecting the resonance Raman and 

absorption scattering cross-sections has been reduced to expressing the 

resonance Raman correlator as a function of the absorption correlator. This will 

be achieved by letting the exponential operators in the correlators to operate 

on the / and f eigenstates, which will require the consideration of two issues: 

the nature of the molecular states / and f -  and hence the need for some form 

of Born-Oppenheimer approximation - and the particular shape of the 

Hamiltonians, i.e. the nature of the vibronic coupling. Before proceeding with 

these two issues, a brief look at the temperature and ensemble effects is 

needed, for it may affect the relationship between the absorption and resonance 

Raman scattering cross-sections.

65



The Limited Born-Openheimer Approximation

Considering the 3A/-6 nuclear coordinates of a polyatomic molecule, electronic 

absorption and Raman scattering are multimode In essence, often Involving a 

significant part of this 3/V-6 dimensional space. On the other hand, Raman 

scattering can focus on the scattering of a single mode at a time, the remaining 

3A/-7 space participating in the REP much as it does in ABS. This can be 

formalised [55] in a most general form by requiring that the molecular 

Hamiltonian be parameterized only in the normal coordinate of the scattered 

vibration, the remaining 3A/-7 nuclear coordinates and all electronic coordinates 

serving as true variables.

This limited Born-Oppenheimer approximation rests upon the assumption that 

mode-mixing (Duschinsky rotation) between the mode of interest and the 3A/-7 

space is negligible; when this not the case, the Born-Oppenheimer 

approximation limited to one coordinate must be relieved and extended to 

include the full sub-space of the mixing modes. In fact the present one

dimensional adiabatic approximation might be thought of as the usual complete 

(3A/-6 space) parameterization of the electronic Hamiltonian, followed by 

perturbative corrections of the eigenstates and eigenvalues to all orders in the 

3A/-7 displacement coordinates. The molecular eigenstates can be separated 

now between the mode of interest and the 3N-7 space:

|/> |g^)|/>, (3.15a)

\f> —> \g ')\f>  (3.15b)

and

|e> —> |e ') |e >  . (3.15c)

This limited adiabatic approach [55,59] allows considerable generality in the 

(3A/-7) non-Raman space, including variable damping parameters as well as 

non-adiabatic effects to all orders. The usual potential energy hypersurfaces 

are formally absent, leaving only one-dimensional potential energy curves in the
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scattered coordinate. The molecular eigenenergies are parametric only in 

(the normal coordinate of the scattered mode) and are expanded in around 

equilibrium positions. The molecular eigenstates will cluster in groups {e’}, {ÿ} 

to produce (normally) nearly harmonic potential curves and with

well-defined equilibrium positions and second derivatives (force constants). 

This grouping corresponds to the conventional concept of a resonant and a 

ground electronic state each with well defined vibrational levels.

The Effect of Temperature and Ensemble Averaging

In the laboratory, an observed linear absorption cross-section, ABS(co), 

represents an ensemble-averaged cross-section over all initial states 

recognizing both the thermal distribution of molecules over initial states as well 

as a possible site distribution, or inhomogeneity of vibronic frequencies. Thus 

for y, representing the weighting of thermal and other broadening effects of

the initial state {\g ')\j> }, the observable absorption cross-section is [55] 

ABS(cù) = - ^  E  ,aj((n,) (3.15d)
9'J

and similarly for the observed resonance Raman spectrum or Raman excitation 

profile (REP(o))):

REP(cü) • (3.15e)
g'J

In both cases the g* label on the cross-sections is suppressed for convenience.

As the absorption cross-section (Eqn (3.13)) is //near in the correlator while the 

resonance Raman scattering cross-section is quadratic in the correlator (Eqns 

(3.6) and (3.14)), Eqns (3.15) and (3.16) represent ensemble averaging of the 

correlator on the linear and quadratic level, respectively. The link between ABS 

and REP is formally ensemble and temperature dependent; this problem has 

been addressed by the early studies of the transform relation [41,55], where 

sample cases have been explored. Further work by Chan and Page [57,58] 

has found that the temperature averaging implied in ABS represents a good
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approximation for the REP, for systems with many thermally-populated low- 

frequency modes which lead to absorption spectra with overlapping vibronic 

structures . This conclusion has been accepted here, and the systems studied 

in Chapter 5 are deemed suitable from this point of view.

It has to be pointed out that temperature averaging is implicitly present at 

amplitude level in the 3A/-7 space, in the limited adiabatic treatment used here. 

It is expected that for the systems treated here —  scattering from modes whose 

frequencies are considerably larger than kT (see Chapter 5) —  this approach 

to temperature and ensemble averaging is satisfactory.

The Correlators in the Limited Born-Oppenheimer Approximation

For resonance Raman scattering, two potential energy curves are involved 

[52,60], ^ 2 (^ 3 ) (upper) and V /O J  (lower), with the Hermitian nuclear 

Hamiltonians Hg and H .̂ For harmonic potentials these operators are

Hg = Tg + Vg = cOg

Hi = Ti + = (0̂

having eigenkets {ly»  and { !;» , respectively.

(3.16a)

(3.16b)

Furthermore, for the n-th overtone transition of a given mode in the ground 

electronic state the molecular states can be written as (Eqn (3.15a,b)):

|/> lsr')ly,> = \g ')\j>  (3.17a)

|f> |g')iy, + n,> = \g ') \ i  + r>  , (3.17b)

in which the subscripts 1 for the ground state are henceforth removed for 

simplicity. For the molecular eigenstate associated with resonances, Eqn 

(3.15c) becomes:

|e> -> |e')|/g> . (3.17c)

Equations (3.17a,b) recognize the partitioning of the molecular Hamiltonian, H:
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H Hg, + , with H g , \ g ' )  = (Og,\g') , (3.18a)

and Eqn (3.17c) the partitioning of H:

H ^  Hg, + Hg , with Hg,|e^) = C0g.|e') , (3.18b)

in which and Ĥ , are not just the electronic Hamiltonians evaluated at

ground and excited state equilibrium positions of the Raman-active normal 

coordinate, but also include the full 3A/-7 nuclear coordinates of the non-Raman 

space without further approximation. The sum over molecular eigenstates also 

recognizes this factoring of state space with:

. (3.19a)
e e' k

in which the states (e') are those that carry transition dipole strength between 

the ground state and the resonant electronic band. Furthermore, whenever the 

damping parameter appears, it, too, is partitioned into the two spaces (in the 

limit of negligible pure-dephasing):

Y e, Y e V  + Yy, = Y e ', ' + Y  , (3.19b)

in which represents the damping contribution from the Raman sub-space

only and it is conventionally taken to be a constant, y, for all relevant For 

many applications at ordinary temperature is often a Raman mode with 

negligible thermal excitation, whose yŷ  = 0. In that case yŷ  = y and the decay 

parameter of the Raman mode in the excited ‘electronic’ state does not change 

with its degree of excitation; however, the y^y contribution to the damping can 

vary with the energy of excitation in an unconstrained manner. Li and 

Champion have explored a model that relieves the constant y assumption as 

applied to transform theory [61].

The limited Born-Oppenheimer approximation leads now to the relabelling of the 

scattering cross-section:

(3.19c)

With this limited adiabatic point of view (Eqns (3.15, 3.17-3.19)) and the 

harmonic oscillator Hamiltonians (Eqns (3.16, 3.18)), closing the sum on /g, but
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not on e' in Eqn (3.8) gives

= i/d xe '’ “̂ e T7

x E  <y+n|(9 'IP le ')e  “ =(e' |a|g' )e |/> e x p [-ix (m y ,, - iy ,̂,,)] .
(3.20)

e'

Writing the Cartesian components of the electric transition moment in the non- 

Raman space as (M )̂g>e>=(9' (A/^)g,g,=(e^|o|g^), the Raman correlator

(Eqn (3.11)) becomes:

[App(x)],.„,y = e (3.21)
e'

and the matrix element of the molecular polarisability (Eqn (3.6)) becomes now 

J],„.y = Jdt e ''‘̂ [A,„(t)],„,; . (3-22)

Equation (3.21) is close to the expression given by [52] except for the use of 

the limited Born-Oppenheimer approximation and a more conventional 

expression for the Raman polarizability (Eqn (3.7)). Throughout this work the 

development is consistently the (negative) conjugate of that presented In [52]; 

wherever the phase of the representation of correlators and polarisabilities is 

(|) in [52], here it is tc -  (]). This remark will allow the use of the recursion 

relations developed in [52], although formally their starting equation is the 

complex conjugate form of the more conventional form employed in Eqn (3.7).

At the same time the absorption correlator (Eqn (3.14)) becomes 

[App(x)],; = i 0(T)e e <j\ (M,)^,^ e e \j> (3.23)

and the corresponding matrix element (Eqn (3.13)) can be written as

[«pp(« )̂lw = }dxenA^^(x)]„ . (3.24)

This is just the diagonal matrix element of the pp-th Cartesian tensor
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component of the vibronic absorption correlator. The crucial point of the 

derivation of a transform relation is to link the pp-th Cartesian tensor component 

of the diagonal [(y,y)] vibronic absorption correlator (Eqn (3.23)) to the off- 

diagonal version l(j+n,j)] (Eqn (3.21)). In the present case, the next step will be 

to establish a relationship between the resonance Raman and absorption 

correlators in the non-Condon approximation (Eqn (3.23), (3.21)) and the 

correlators written in the Condon approximation, for which recurrence relations 

exist in all orders [52]. Recognizing that the ladder operators of two different 

harmonic oscillators are linearly related, Hizhnyakov and Tehver have 

presented a particularly succinct algebra for accomplishing this task [52].

The Relationship between Non-Condon and Condon Correiators

The n-th order Raman correlator (Eqn (3.21)) will be examined while 

considering only the resonance with a uniquely polarized transition (p = a) and 

a linear dependence of the molecular transition moment on the

coordinate of the Raman- active vibration - a linear non-Condon coupling. Thus

(MX'e' -  [1 +âj)] , (3.25)

in which m is the dimensionless vibronically induced transition moment in units 

of the allowed transition moment and and are the raising and lowering 

(ket side) operators in the space of the ground state oscillator. The parameter 

m is a dimensionless average parameter representing the linear non-Condon 

coupling of the transition moment to the Raman-active mode (whose ground 

state harmonic potential is characterized by the raising and lowering operators 

a| and â )̂. This non-Condon coupling parameter, m, can be read also as the 

fractional change of the transition moment caused by one rms displacement

along the Raman mode coordinate in the ground state [55]. (Mp)gv continues

to contain implicitly all of the nuclear coordinates of the (3A/-7) non-Raman 

space including their unconstrained ‘Condon’ and ‘non-Condon’ role [55,62]. 

It is only the Raman active coordinate that has been treated explicitly at the 

linear non-Condon level.
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In considering a specific molecule-based Cartesian transition moment (p), the 

possibility of a rotating moment with (e\ ÿ ) has been excluded; also, to 

maintain the separability of the Raman space from the non-Raman space the 

dimensionless non-Condon coupling constant, m, has to be assumed 

independent of the 3A/-7 variables {e\ ÿ ), being therefore an "average" non- 

Condon coupling parameter in (e% g’). These constraints, however, are 

standard in the usual full Born-Oppenheimer approach to the problem.

The derivation will proceed with the introduction of a simplified notation:

M = [1 +m (â,+âj)] , B = e ''"' , 6  = e''"' . (3-26)

The matrix element in the correlator (Eqn (3.21)) can be written now as

<J-n\ = |{/wX%f <y-n|M BM0|;> (^.27)

and then the n-th order resonance Raman correlator (Eqn (3.21)) becomes

= ie w e  e '’'•'‘̂ >|(Mp)̂ ’/<y+/7|MBMC|y> , (3.28)
e'

where [\J^)]jj,n  = a!J^(t) for the single polarisation considered in the present 

linear non-Condon approximation.

Given that <n| =<0|(aj"(n!)^^^, the powers of the ladder operators are written

for convenience as (â^)"=Â^(1); by taking y = 0 to dominate the correlator for

the j  part of the thermal average in Eqs. (3.15), (3.16) Chco.,»kgT) the 

resonance Raman correlator in the present model becomes

» ie(T)(n!) ''"e -I'Y , @ <0|Â„(1)MBMC|0> (3.29)
e'

and the absorption correlator (n = 0)

Ao'̂ '̂ (x) = i0 (t)e -i'X :e  '"'•'■̂ i(Mp)̂ ’/< 0 |M ê M C |0 >  . (3.30)
e'

The approximate thermal averaging achieved at the correlator level [52,63], 

remains in effect here as well, as far as the 3A/-7 non-Raman space (the 

averaging over is concerned; it is only the Raman space (the j  space) that
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has been truncated to the unexcited level.

The derivation will proceed now by first transforming M into a function only of âg 

and a j, the raising and lowering operators for the harmonic potential of the 

excited electronic state. The second M in the non-Condon matrix element is 

passed through B by using a commutation relation, the result is reconverted 

to a function of and a /, then together with the remaining M the net 

operation is performed on the left upon Â„(1).

The general linear relationship between the two sets of raising and lowering 

operators of two harmonic potential energy curves 1 and 2 is [52,60]

a j = p + p a j + râ̂  (3.31a)

and its complex conjugate

= p + qâ  ̂ + ra / , (3.31b)

where [p, q, i] are dimensionless constants fixed by the Manneback equations 

(Appendix 3); p relates to the displacement for the two potential energy curves, 

q and r to the changes in their characteristic frequencies. Combining Eqns 

(3.31 a,b) in Eqn (3.25) yields

lOl = 1 . (3.32)
q+r q+r

Using the completeness relation \n><n\=1  and the effect of operators on
n

molecular eigenstates it follows that

^ \n ,x n , \  (3.33)

which can be used to prove the identity

73



</| BÂ„(1 )C I /> =e BÔÂ„(1 ) I /> =</| CÂ̂ „(1 )B 1 /> =e """'</| Â̂ „(1 )ÔB | ;> (3-34)

and consequently

(4^e + a,e"““)B . (3.35)BM = B  ̂ _2m p^

V q+r q+r

Reverting now to the and â / operators by using Eqns (3.31 a,b) yields

BM = 1 _ 2/7?P  ̂
q+r q+r

B

m
q+r

â /Ê +m
q+r q+r

a,B .
y

(3.36)

With Eqn (3.36) for BM, <0|Â^(1)MBMC|0> is constructed as

<0|Â„(1)MBMC|0> = 1 +
q+r

-  2) <0|Â,(1)BÔ|0>

777 1 + -? _ e ‘"“^+-i_e  
q + r  q + r y

mn
V yq+r q+r 

in which all terms of order rrf have been neglected .

<0|A,,X1)BC|0> (3.37)

<0|Â,.,(1)BÔ|0>,

Setting n = 0 in Eqn (3.37) leads to the non-Condon expression for the 

absorption (with <0|Â_,(1)BC|0> = 0):

<0|l\/IBMC|0> =

+ 777 l_Q-nco,
q+r q+r

<0|Â,(1)BC|0>  

<0|Â,(1)BC|0> .
(3.38)

Using the definition of the correlator (Eqn (3.210) in Eqn (3.37) leads to the 

relation expressing the 77-th order non-Condon correlator in terms of the /7-th 

order Condon correlator for which recurrence relations exist [52]:
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A T M 1 *JH E(e''“‘‘ *e '" '^ -2 )
q *r

1/2

^n(T)

1 +_2_e

mn 1/2

q^r q^r

1 +.
q^r qr+f

AmlW

K i W

(3.39)

Equation (3.39) coincides, for /? = 1, with that obtained by Hizhnyakov and

Tehver for Ai'^ (̂x), the first-order Raman correlator with non-Condon effects

[52]; however, they have not obtained the general expression, for an arbitrary 

order, presented here and in [60]. Setting n = 0 in Eqn (3.40) gives the non- 

Condon absorption correlator

Ao"^(t) = 1

m

q - r

1 +.

(3.40)

q * r
ZLe

q *r
A,'=(t) .

From Appendix 3 the parameters {p, q, r) in Eqns (3.31) - (3.40) are given by

p = -A q = r = (3.41)
2(V2VJ'/  ̂ ' 2(V2V,)'/^

in which A is the displacement of the equilibrium position of the excited-state

one-dimensional potential energy curve, , with respect to that of the ground

state curve, , along the Raman mode coordinate {à=R^ -R^ ), |x is the

reduced mass of the Raman oscillator, and Vg and are the wavenumbers of 

the Raman mode in the excited and ground states respectively, in cm"\

Equations (3.39) and (3.40) establish the desired relationship between non- 

Condon and Condon correlators for n-th order RRS, preparing the ground for 

the introduction of the recursion relations among the Condon Raman correlators 

developed in [52] and finally to link the non-Condon Raman correlators at any 

order to the non-Condon absorption correlator. Using the result in conjunction 

with Eqns (3.20) - (3.23) will then yield the transform relation between the
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respective cross-sections, which constitute the goal of this chapter.

The Transform Relation

Hizhnyakov and Tehver have given recursion formulae for the Condon 

correlators derived from the polarizability component. As mentioned

earlier in this chapter, a more conventional choice of phase, the matrix

element, is used here instead. Hence it is the complex conjugates of the HT 

correlators which are required; thus for n even {n = 2k)\

and for n odd (n = 2k + )̂

-  «2- r . l > r r

Because the present treatment is consistently conjugate to that of [52], the 

parameters in Eqns (3.42a,b) must be the conjugates of those found in [52]:

—  _  -ix o ), .1 -2 iT © 2  j

4 = 4 - -----—  and Ç = 8 -2 ------, (3.43a)
1-8e

with

 ̂ = — and 6 = — . (3.43b)
q q

The parameters {p, q, i) are given in Eqns (3.41). The other two parameters,^ 

and Ô in Eqns (3.43a,b), become:

Vo ,.,o Vr

with [|i] = 1 amu, [v] = 1 cm \  [A] = 1pm, and

_ p _ (|xv,)“ A— !— = -2.43557x 10^hv,)'“ A— ! _  , (3.44a)
' ' V, +V2 ' ' V, +Vg

8 = -£ = . (3.44b)
V2+V,

The expression of the non-Condon absorption correlator (Eqn (3.23)) can be
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greatly simplified. For n =  ̂ ( k =  0) Eqn (3.42b) becomes:

A?(t) = ÇA?(t) . (3-45a)

Rearranging the terms in Eqn (3.40) and using the approximations

6 ^ « 1 , 8 « 1  ->0), m 5 « 1 , m ^ « ^  , (3.45b)

the non-Condon absorption correlator in terms of the Condon one (Eqn 3.40) 

becomes

aS" (̂t) = ( l  + 2m^)p^(x) (345c)

or, to order m ,̂

Ao(x) = (1 -  2mÇ)Ao‘=(x). (3 4Sd)

For a wide range of real cases (Chapter 5), where the approximations 

formulated in Eqn (3.45b) are valid, the parameters Ç and Ç can be written as:

4 = ^ (e "“* - l ) ( l - 6 e  

and

Thus, Eqn (3.39) becomes for n = (even):

A r (x )= E

n.
?

s=0 2s (2s+1) 2s 

X (1 -2 m ^ )[(n ,-1 )!r -Aq"°(T)

f l_ S ! 2'^'"(2s-1)!

and for n = (odd):

n -1

S=0

n 1/2

2s+1 ” (2s+2)(2s+1)

x ( 1 - 2 m ^ ) [ ( n , - 1 ) ! r ^

+ n ^ C

n„-1

-Ao"C(t)

n .-1

^2S^-T

n.-1
-s ! 2~ ^

/
(2s)!

(3.46a)

(3.46b)

(3.47a)

(3.47b)

where the coefficients C, Ç, and C are given by:
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1 +
1+5

C. -  

and

e "“.=+6 2)

ITÛ), -ITÛ),

1 + 2 Z + 8 e
1+6  1+6

(3.48a)

(3.48b)

/  A
_  -iT (û , p  ^  ixcû.

C = m 1 6e
1+6 1+6

(3.48c)

Replacing the coefficients C, C+ and C (Eqns (3.48a-c)) in the non-Condon 

correlators (Eqns (3.47a,b)), expanding all terms, cancelling the small terms by 

using the approximations formulated in Eqn (3.45b) and introducing the

notations p = e = nJ2, = (r?^-1)/2, = 2m|(/Cg-s)/(2s+1) and

s A77 (̂/c -̂s)/(s + 1), Eqns (3.47a,b) become, respectively, for n = (even):

S  (k-s)\2''- %2s)\
f ^

(8+xr,)P' +1 -8 + 2 s fZ -x , P + 2 s -^ -1 -x ,
V  ̂ /

(3.49a)

and for n = (odd):

X

(8+xJpA2 m1 -6+(2s+1)— -Xg 3+ m(2 s + 1 )_ -1  -x /n ^ K P '

(3.49b)

Using Eqns (3.46a,b) for  ̂ and Ç, expanding and Ç*, {k = k̂ , frj and 

approximating (1+6py as 1+y'6p, yields the final form of the relationship 

between the resonance Raman and absorption correlators, respectively, for n 

= Hg (even):
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A -(x )  -  (n i ) ' - f  _ h 2 1 _ y  1
"•'  ̂ t i  2"-"(2s)! f ! ( V s - 1 - 0 ! ^  ü !(V s -ü )!

x { ( 2 s 5 - x j r - '" * ’ +[1 -2 s ( 8 - ^ )  - x j r - ' "

4 2 s ^ - 1 - x j p " ' " "  + x ,0 " -'" - 'lA r(T )

and for n = (odd):

A-(x) = ( .  . ) - E  E  H ) '  E  '
"” ° i i  2""'(2s+1)! j iH k -s - t ) \ ro  i^.(K-s-u)\

x{[(2s+1)8+x#""% [1 -(2 s -1 )(8 -|)-x jp " -

+[(2s+1)^-1 -xjp"-*' “ Vx„p"" ' “ ")Ao"'=(x) .

This is the desired link between the n-th order Raman correlator and the 

absorption correlator at the non-Condon level (in its linear approximation). The 

transform relation for n-th Raman excitation profiles, developed by using the 

Fourier transform (Eqn (3.12)) of the non-Condon n-th order Raman correlator 

(Eqn (3.39)), produces the n-th order non-Condon polarizability (pp-th tensor 

element) (with cô  = co)

a^ (̂co) = JdTe*^"An^(x) . (3.51)

The frequency displacement operator p=e appears in A„^(t) as various

powers through Eqns (3.50a,b) and it simply shifts the frequency of the Fourier 

kernel (Eqn (3.51)); thus [60]

j^dxe'"»p\.. = Jdxe'’ *"‘“ ’̂ ... (3.52)

and the Fourier transform of the Raman correlator (Eqn (3.51)) in the presence 

of a term containing p® (Eqns (3.50a,b)) will produce a Raman polarizability 

whose frequency argument has been down-shifted by scOg from the incident
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laser frequency, co. The Fourier transform of Eqns (3.50a,b) yields for n = n̂ \

N̂C _ ( - iy  ^  1
 ̂ s=o 2̂ *'®(2s)! f=o f!(/Cg+s-1-Q! u=o u\(k̂ -s-u)\

X {(2s5+Xg)0[co-(ng-f-ty+1)(02] (3.53a)
+[1 -2s(ô -  m/ )̂ -  xJ0[co -  (/ig -  f- u)(0 2 ]

+ (2s mĴ -1 -xJ0[(D -(n̂ -t-u-̂  )cOg]
+ XgO[(0 -  (/7g -  f -  u - 2)cû2]̂

and for /7 =  n  ’

a-(co) = (n i ) - E  E  _ U L _ E  '
° ts  2"- '(2s+1)! ^  u!(/f„-s-u)!

X {[(2s+1)5 + xJO[co-(n^-f-L/+1)002] (3.53b)
+ [1 -  (2s+1 )(5 -  mli) -  xJO[(o -  (n  ̂- 1- 07)002]

+[(2s+1 ) m/^ -1 -  xJO[oo - ( / ig - f - 07-1)002] 
+x^O[oo-(A7^-f-07-2)oo2]) .

Finally, the /7-th order Raman excitation profile, REP^(oo), as the measured

value of the scattering cross-section relative to frequency, is obtained by using 

Eqns (3.53a,b) in Eqn (3.6);

REP„((ù) = consfla^'V)!"- (354)

The proportionality constant depends on many different factors involved in the 

detection process used and is difficult to calculate in practice. Also, although 

it is assumed to be a constant, frequency-dependent effects like the self

absorption of the scattered resonance Raman radiation in the sample or the 

spectral response of the detection system can invalidate this assumption. 

Carefully designed and executed experiments, including various corrections 

(Chapter 1, Appendix 1), alleviate this problem to the extent that the 

proportionality constant in Eqn (3.54) is indeed a constant in most cases; also, 

it is an essential requirement only for absolute REP measurements and it will 

be shown in Chapter 4 how this can be circumvented at no loss of generality.
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The polarizability function in Eqns (3.53a,b), O(co), is available from the 

experimental absorption spectrum (Eqn (3.5)); it can be seen from Eqns 

(3.53a,b) that the n-th order complex polarizability, and hence the resonance 

Raman scattering cross-section in the n-th order, depends on four different zero 

order quantities, each of them to be calculated at a different frequency. This 

imposes certain requirements on the absorption data employed in the 

calculation of the n-th order resonance Raman scattering cross-sections and 

of the excited state parameters, as it will be seen in chapters 4 and 5.

It can be seen also from Eqns (3.53a,b) that the leading term is the one 

corresponding to s=0, with no frequency shift; this observation shows that the 

result obtained here is consistent with previously published work [40-52,55], 

where the change of the vibrational frequency between the ground and the 

excited electronic state has been neglected. A comparison between the 

magnitude of the variously shifted polarisabilities would show however (Chapter 

5), that the other terms cannot always be neglected; the reason is the 

frequency shift, which leads to the calculation of the polarizability in points of 

higher or lower intensity on the absorption curve. Especially for spectra 

exhibiting overlapping vibronic structure, this effect can be significant and has 

a bearing on the extent and the resolution of the absorption spectra to be 

collected and used in the calculations.
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IV. Numerical Implementation of the Transform Method

The mathematical problem as a system of equations in several variables

Practical applications of the transform method in resonance Raman 

spectroscopy are based around Eqns (3.53a,b) and (3.54); they establish the 

relationship between the measured value of the scattering cross-section of a 

resonance Raman transition as a function of molecular parameters and the 

value of the absorption coefficient measured across the visible spectrum. The 

instrumental parameters involved in this relationship are contained in the 

constant appearing in Eqn (3.54) and will be taken into account here.

The interpretation of resonance Raman spectra in terms of the molecular 

geometry and force constants in the excited electronic state involves the values 

of three parameters, controlling the intensity distribution between different 

harmonics of the spectrum and the overall intensity of the resonance Raman 

scattering: the bond length change A between the ground and the excited 

electronic states, the force constant as reflected in the vibrational wavenumberv^

in the excited electronic state and the non-Condon factor m. Thus, treating 

these three parameters and the instrumental constant as unknowns of a system 

of simultaneous equations, a minimum of four equations is required in order to 

have a fully, albeit minimally, determined solution. The four equations 

represent four different instances of Eqn (3.54), corresponding to four different 

values of the measured scattering cross-section; they can be obtained by using 

two different approaches, depending on the experimental situation.

In the first approach the resonance Raman spectrum exhibits at least four 

harmonics, measurable with a sufficient degree of accuracy, and Eqn (3.54) can 

be written in turn for each harmonic of order one to four:
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const

const

const

const

aî̂ (̂cûL.Vg.A,A77) = REP(cùl- cûJ

0C2̂ (û)l, Vg, A, m) = REP(cOl -2co )

a3^((DL,Vg,A,m) = REP(cOl- 3 co )

aï* (̂cûL.Ve,A,m) = REP(cOl- 4 co ) ,

(4.1a) 

(4.1b) 

(4.1c) 

(4. Id)

where cô  is the circular frequency of the exciting radiation, REP(cûL-yœg) is the 

Raman excitation profile and cô  is the circular Raman frequency corresponding

to the vibrational energy gap in the ground state. The instrumental constant 

(which must be independent of the scattering order) can be eliminated by 

dividing Eqns (4.1b,c,d) by Eqn (4.1a); the system (4.1 a-d) can be written as:

(4.2a)a2^(“ u^e>A ,^) REP((0L-2cûg)

aî'^(cûL.Ve.A,m)

a3^(cûL,v^.A,/77)

2 REP(coL-Q)g) 

REP(û)^-3(0g)

a5^^(cûL.Vg,A,m)

aï^(cÙL,v^,A,m)

2 R E P (cOl - cû̂ ) 

R E P (cûl-4©^)

a^^(cûL.Vg,A,A7?) 2 REP(cûL-o)g)

(4.2b)

(4.2c)

The second approach is suitable to the situations in which several resonance 

Raman spectra can be collected, corresponding to several different 

wavelengths for the exciting light, but in which no spectrum exhibits at least four 

well defined harmonics; this is a very common experimental situation,therefore 

making the second approach very useful for practical applications. For 

example, if only the fundamental and the first overtone are observed in the 

spectrum, the system of simultaneous equations (4.2a-c) can be written as:

« 2 ^(®L ' Vg, A, m) ̂  REP(cOl "

a5^ (̂û)L,Vg,A,m) REP(o)^-(ûg)

Vg, A, m) “ REP(cùL-2cOg)

aî'^(©L.Vg,A,m)^ REP(cûL̂ -cOg,)

(4.3a)

(4.3b)
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and

«2 (c0L ,̂v ,̂A,m) REP(©l3-2cô )

REP{(0, -coj
(4.3c)

aî"^(cûL.v^,A,m)

The nature of Eqns (4.2a-c) and (4.3a-c) will determine the choice of method

for solving them; examining the expressions of for n = 1 - 4 (Eqn (3.53a,b))

reveals that some of the unknowns appear at powers higher than three, making 

an analytic solution impossible to obtain. With the aid of the Mathematica(R) 

computer program^, Eqns (3.50a,b) - the precursors of Eqns (3.53a,b) - yield;

=  m  -  x i  +  ( d * x i )  /  b ^ 2  +  [ m  +  ( 1  -  d )  *  x i ]  /  b ;

A / " "  =  { - d  -  2 * m * x i  +  x i ^ 2  +  ( 2 * d * x i " 2 )  /  b " 3  +  [ ( - 2  +

2 * d )  *  x i ^ 2 ]  /  b  +  [ d  +  2 * m * x i  +  ( 1  -  4 * d )  *  x i ^ 2 ]  /  b " " 2 }

/  2 " ( l / 2 ) ;

A^ ^^  =  { 3 * d * x i  +  3 * m * x i ' ^ 2  -  x i ^ 3  +  ( 3 * d * x i ' ^ 3 )  /  b ^ 4  +

[ 3 * d * x i  +  3 * m * x i ' " 2  +  ( 1  -  9 * d )  *  x i " ' 3 ]  /  b " 3  +  [ - 3 * d * x i  

-  3 * m * x i ^ 2  +  ( 3  -  3 * d )  *  x i ^ 3 ]  /  b  +  [ - 3 * d * x i  -  3 * m * x i ^ 2

+  ( - 3  +  9 * d )  *  x i " 3 ]  /  b " 2 }  /  6 " ( l / 2 ) ;

A / ^  =  { - 6 * d * x i ^ 2  -  4 * m * x i ^ 3  +  x i " 4  +  [ ( 6  -  1 6 * d )  *  x i ^ 4 ]

/  b ' ^ 2  +  ( 4 * d * x i " ' 4 )  /  b ^ 5  +  [ 6 * d * x i ^ 2  +  4 * i n * x i ^ 3  +  ( 1  -

1 6 * d )  *  x i ^ 4 ]  /  b ' ^ 4  +  [ 1 2 * d * x i ' ^ 2  +  8 * m * x i ' " 3  +  ( - 4  +  4 * d )

*  x i ' ^ 4 ]  /  b  +  [ - 1 2 * d * x i ^ 2  -  8 * m * x i ' ^ 3  +  ( - 4  +  2 4 * d )  *

x i ' ^ 4 ]  /  b " 3  }  /  2 4 "  ( 1 / 2 )  ,

where d  = 5 of Eqns (3.43b, 3.44b), x i  =  ̂ of Eqns (3.43b, 3.44a), b  =

p = e of Eqns (3.49a,b) and m = m is the non-Condon factor. It can be 

seen from the Mathematica output and from Eqns (3.53a,b), (3.54) and (4.2a-c)

 ̂ - Mathematica(R) has the capability of manipulating mathematical expressions 
and performing algebraic calculations in symbolic (as opposed to numeric) form [52]. 
Mathematica textual output included here is highlighted by being presented in a 
different font (lighter and fixed-spaced) from that of the main text.

84



that none of the three unknowns can be eliminated analytically, while one of the 

unknowns, v ,̂ appears both explicitly, in Ô and in and implicitly in the 

expression of Re[0(co)] (Eqns (3.5), (3.53a,b)).

Converting a system to a single equation in several variables

The previous section has shown that the systems (4.2a-c) and (4.3a-c) can be 

solved only numerically so the next step will be to adapt the problem to a 

numerical treatment and to assess the problem from a numerical point of view; 

only the system (4.2a-c) will be considered in this section, as all the 

conclusions and procedures developed here will apply equally to both systems 

(Eqns 4.2a-c and 4.3a-c).

There are no established methods for solving non-linear systems of 

simultaneous equations similar to (4.2a-c) [64,65]; however, there are several 

general methods for solving one non-linear equation in several variables, e.g. 

Newton's method and its derivations. The system (4.2a-c) will be converted 

into a single equation in several variables by moving both terms of each Eqn 

(4.2) onto the same side of the equals sign:

«2' (̂tOL.Ve.A,/T7f _ REP((Dl-2C0J ^ ^

a r K ,v „ A ,m ) '  REP(®,-û);

a3 (̂coL,Vg,A,/77)  ̂ _ REP(cOl- 3 cô )

a r (o )„ v ,A ,m f

a4^(cûL.Ve,A,m) _ REP(cûl-4 (û̂ )

= 0 (4.4b)

= 0 . (4.4c)

It is known from classical algebra that three quantities A, B, 0  are null 

simultaneously when and only when the sum of their squares + 0^ is

also null and therefore Eqns (4.4a-c) are equivalent to:
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oc2^(o)L,Ve,A,m)
2 T

REP((ÛL~2cûg)

a1^^(o)L,Vg,A,m)

a3^(cûL,Vg,A ,m )

2 REP(O)L-O)g)

2 T
R E P (m |^-3(0g )

a'J'^(cûL,Vg,A,m)

a4^(o )L ,Vg ,A ,m )

2 R E P ((O l - coP

2 1 
R E P ((Ù L-4o)g )

a r ((O L ,V g ,A ,m )
2 R E P {(0 l -0 )P

(4.5)

=  0 .

By defining the function X(Vg, A, m) as

«2 ̂ (cOl. Vg, A, m f  REP(o)l -

a r (a ,„ v „ A ,m f REP(m,-(o; 

o^°(WL,v^,A,m)p REP(03L-3c0g)

C(0),.v,A ./r7)p

a^^{(ù^^,v^,A,mf REP(cûL-4(0g)

(4.6)

a r (a ,„ v ,,A ,m f R E P K -% )

Eqn (4.5) can be written simply as;

X ( v , , A , m ) = 0 ,  (4.7)

with cOl, (ùg as given parameters. As a numerical solution to the Eqn (4.7) 

implies a finite resolution for the values of the unknowns, the problem becomes 

to find the set (v ,̂ A, m) that minimises X  rather than makes it exactly null; thus,

the problem of solving a system of three simultaneous equations in three 

unknowns is reduced to minimising a function of three independent variables.

At this point it would be useful to inspect the four-dimensional space where the 

minimum of X  lies. This will be accomplished by assigning to each point in a 

three-dimensional space (v̂ . A, m) a shade of grey from a palette corresponding 

to the logarithmic scale of values for {XJX^^  ̂ and plotting all the points so
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defined. The logarithmic scale has the advantage of preserving the monotony 

(trend) of the function and increasing the resolution at small values of the 

argument (around the minimum) while "compressing" the range of larger, 

uninteresting values. The palette has been chosen with black corresponding 

to the minimum and white to values larger than a certain threshold and up to 

the maximum value of X. Figure 4.1 illustrates the procedure by plotting X  for 

KlVInO^ (see also chapter 5) across the region of space containing the minimum 

of X®, with a low resolution for the three coordinates: 12 cm"* for the vibrational 

wavenumber in the excited electronic state, 1.2 pm for the bond length change 

and 0.05 for the non-Condon factor.

10

b oc id  s t r e t c h ,  / p m

7 0 0

7 5 0

8 0 0

Figure 4.1 - General view of a low-resolution plot of X  (Eqn (4.6)) for KlVInO^.

The Mathematica(R) script used to produce Fig. 4.1 is based on the graphics 

objectGraphics3D [list {primitives, directives} , list (options}], 
constructed of Point [ {x,y, z) ] primitives with the GrayLevel [i] graphics

 ̂- Early work has tried to extend the search for n e g a t iv e  A  and Vg>Vg, for several 
of the cases presented in chapter 5; the results have always been consistent with the 
conventional view of bond length in c re a s e  and vibrational wavenumber d e c re a s e  
between the ground and excited electronic states. The plot of the search space has 
thus been restricted to its meaningful part, for the sake of clarity.
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directive and some graphics options [66]; the coordinates (x, y, z) correspond 

to (Vg, A, m) and the grey shade i, a number between 0 and 1, to log(AyX^J.

The script is computer-generated by a program written in the C programming 

language; only a sample is shown bellow, the full script containing 880 lines;

Graphics3D[{

Axes->True, BoxRatios->{1, 1.2 ,1} , ViewPoint->Automatic }

The region of the solution space depicted in Fig. 4.1 can be vievæd from 

different angles in order to facilitate the visual inspection and the location of the 

minimum of X; Figs. 4.2a-c show the same region, viewed along each of the 

three independent axes. It should be stressed at this point that the viewing 

angles shown here are not necessarily the most suitable and that the choice 

of view depends on the case studied and on the preference of the observer.

Û . 05

NC £ * c t c r  <m)

k-1
75

80

- 0.1

Figure 4.2a - View along the wavenumber axis of the plot in Fig. 4.1
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10

0  0 5

- 0 . 05

7 0 03 0 0

w a v e n u m te i:  / c m - 1

Figure 4.2b - View along the bond-stretch axis of the plot in Fig. 4.1

b st.ice-t.cli /pn

0 . 05

10

700 750 800

i v A v e n u ia b e r  /c m .“ l

Figure 4.2c - View along the m  axis of the plot in Fig. 4.1.

It can be seen in Figs. 4.2a,b that the scale along the m  coordinate is not well 

chosen and the points appear to cluster around the plane defined by m = 0;
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Fig. 4.3 and Figs. 4.4a-c provide a more detailed view of the solution space 

than Figs. 4.1, 4.2a-c, by focusing on a smaller range of values for m .

0 . 01

0.  005

WC f a c t o r  (m)

10- 0 . 0 0 5

-0 . 01 bond stretch /pw

700

800

Figure 4.3 - Full view of a high resolution plot of X  (Eqn (4.6)) for KMnO^

800v  * .  ,

75ibs. 
wavtn-wnhe qri-10.  0 0 5

n c  f a c t o r  (m)

- 0 . 0 0 5

b o n d  s t r e t c h  / p m

Figure 4.4a - View along the wavenumber axis of the plot in Fig. 4.3.
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0 . 01

0 . 005

H C  f a c t o r  (r t i)

- 0  0 0 5

to3ft.d strltch / p w i

- 0  . 01
8 0 07 0 0

Figure 4.4b - View along the bond-stretch axis of the plot in Fig. 4.3.

bond, stretch /pn

0 . 005

1 o

5

0

700 750 800

w a v e n u m J D e r  / c r a - 1

Figure 4.4c - View along the m  axis of the plot in Fig. 4.3.

The three-dimensional diagrams in Figs. 4.1 - 4.4 suggest another useful way
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of inspecting the solution space: representing each point in a two-dimensional 

space by considering m to be a fixed parameter, and associating a grey palette 

to the scale of values of log(A/^jJ. This procedure would be equivalent to 

’slicing’ a three-dimensional representation across the m coordinate with planes 

of a fixed value for m, the resulting series of density plots being entirely 

equivalent to the original three-dimensional representation.

The main advantage of two-dimensional relative to three-dimensional images 

is that they are much easier to inspect visually; the price to be paid for this 

facility is the large number of such plots needed to cover an equivalent region 

of the (Vg,A,n?) space. As will be shown in later sections, dealing with such

large number of similar objects is a job computers are most suited to, and this 

will be the approach that will eventually emerge.

Another advantage of the two-dimensional relative to three-dimensional images 

is that the former require fewer resources than the later, allowing a higher 

resolution and a wider range of values for each coordinate: 550.0 to 800.0, in 

steps of 5.0 cm \  for the vibrational wavenumber in the excited electronic state, 

and 0.0 to 40.0, in steps of 0.5 pm, for the bond length change upon excitation.

The Mathematica(R) script used to produce Figs. 4.5a-e is computer-generated 

by a program written in C and is shown below in an abbreviated form:

G r a p h i c s 3 D [ {

{  G r a y L e v e l [ 1 . 0 ] ,  P o i n t [ { 5 5 0 . 0 ,  0 . 0 } ]  } ,

{  G r a y L e v e l [ 1 . 0 ] ,  P o i n t [ { 5 5 0 . 0 ,  0 . 5 } ]  } ,

{  G r a y L e v e l [ 1 . 0 ] ,  P o i n t [ { 5 5 5 . 0 ,  0 . 0 } ]  } ,

{  G r a y L e v e l [ 0 . 9 ] ,  P o i n t [ { 5 5 0 . 0 ,  0 . 5 } ]  } ,

{  G r a y L e v e l [ 1 . 0 ] ,  P o i n t [ { 8 0 0 . 0 ,  4 0 . 0 } ]  }  } ,

A x e s - > F a l s e ,  F r a m e - > T r u e  } ]
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The script is based on the graphic object Graphics [list {primitives, 
directives}, list{options} ], constructed of Point [ {x, y} ] primitives 

with the GrayLevel [i] graphic directive and some graphic options [66]; the 

coordinates (x,y) correspond to (v̂ .A) and the grey shade i, a number 

between 0 and 1, to log(>X7X^J.

Figures 4.5a-e will show five two-dimensional diagrams with the corresponding 

non-Condon factor displayed in the top right corner of each frame; these 

diagrams illustrate the important point that the non-Condon factor can have a 

significant influence on the resonance Raman spectrum, by visualising the 

changing position of the minima of X  with the changing non-Condon factor m. 

Also, another important observation to be drawn from Figs. 4.5a-e is that 

sometimes the minimum of X(v^,A,m) is not unique, a fact that will be further 

discussed in this chapter.
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Figure 4.5a - 2D plot of X  (Eqn (4.6)) for KMnO ,̂ m = -0.040.
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Figure 4.5b - 2D plot of X (Eqn (4.6)) for KlVInÔ , m = -0.020.
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Figure 4.5c - 2D plot of X  (Eqn (4.6)) for KlVInÔ , m = -0.000.
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Figure 4.5d - 2D plot of X  (Eqn (4.6)) for KlX/InÔ , m = 0.020.

4 0

30

•̂ 20

750 8 00650

WAvenTimber /cm -1

7 005 5 0 600

Figure 4.5e - 2D plot of X  (Eqn (4.6)) for KlVInÔ , m = 0.040.

Having inspected the solution space, the next step would be to choose a
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numerical method for minimising X{v^,A,m), or for solving X  = 0; the next

section is a brief review of some established methods, all of them iterative, that 

could be employed for this task.

Numerical methods for solving equations In several variables

The original problem of solving a system of three simultaneous equations in 

three unknowns (Eqns (4.2a-c), (4.3a-c)) has been converted first into solving 

a single equation in three unknowns (Eqn (4.5)) and then into minimising a 

function of three independent variables (Eqn (4.6)); as the minimum value of 

this function is zero, the methods used to find its minimum and its zeros will be 

completely equivalent.

Thus, the review of the numerical methods will refer to the equation 

f [ x ) =0 ,  x  = (x ,̂Xg x j  (4.8)

or to the minimisation of /(x), f :  D cR ^->R ; D is the domain where the 

function f is defined, positive when defined by Eqn (4.6), assumed to be 

continuous, and its first derivative assumed to exist and to be continuous. 

Normally the domain can be larger than the actual region of interest so it will 

be chosen such as to contain at least one minimum of f(x)\ in applications it will 

be restricted also by the conditions imposed on individual components of x, 

such as the approximations formulated in Eqn (3.45b).

All numerical methods employed in solving equations or in minimising functions 

improve an assumed solution into a new assumed solution iteratively, starting 

with an initial guess for the solution of the problem, and testing against a 

convergence critérium and the number of iterations. An iterative process is said 

to converge when the difference between two successive iterations becomes 

smaller than a preset value, within fewer iterations than a preset number.

In view of this definition of convergence, there are no methods with a good

96



global convergence in several variables; when a good initial guess is available, 

as provided by the visual inspection procedure outlined in the previous section, 

the first method to be considered is Newton-Raphson [64,65], based on the 

Taylor expansion of a function f[x) in the neighbourhood of x:

/(x+5x) = / ( X )  + ^  ^ 5 x j  + 0(5x^). (4.9)
y=i oXj

By identifying the partial derivatives matrix in Eqn (4.9) as the Jacobian row 

matrix J of f[x)

J, =  (4.10)
dXj

and by neglecting higher order terms 0(dx^), Eqn (4.9) becomes:

/(x+ôx) = f(x) + J'Ôx (4-11)

In a converging process x+6x is much closer to the solution than x  so that 

/(x+ôx) = 0 (/(x̂ ew) «  ^̂ oid)) and thus Eqn (4.10) becomes an equation for the 

correction to x, ôx:

J'ÔX = -/(x) (4-12)

and the new assumed solution becomes:

*new = ■’foPd'̂ SX . (4.13)

The Newton-Raphson method works very well for smooth functions with well- 

defined solutions for which a good initial guess exists; however, it can be seen 

from Figs. 4.4 and 4.5 that f(x) = X(v^,A,m) is not a smooth function and that

there can be several solutions (minima) close to each other. Under such 

circumstances the Newton-Raphson method would have a significant chance 

of failing and there would be no indication of this happening; clearly, more 

refined versions of the method would be required to improve the level of 

confidence in its results.

A quasi-Newton method proposed in [65] checks at every iteration that some 

progress towards the solution is being made i.e. f[x^eJ «  Â o\d) and whenever
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this is not the case the full correction to x, Ôx, is replaced with a smaller step 

in the same direction hbx, 0 < ^ < 1 . Finding the appropriate X becomes then 

a sub-task to be performed at every iteration, thus increasing the computational 

load per iteration and the number of iterations required to reach a solution and 

eventually cancelling the advantage of the fast convergence of the original 

Newton-Raphson method.

Another method for solving equations in several variables is Broyden’s method, 

which reduces to the secant method in the one-dimensional case [64,65]; it is 

more robust than Newton-Raphson’s method and offers better, but slower, 

global convergence. It is not significantly better than Newton-Raphson because 

it cannot cope with noisy functions and thus it does not provide a method 

suitable for the variety of equations that the transform method produces. The 

compromise between global convergence, robustness and speed is a recurrent 

problem of all established methods of solving equations in several variables, 

caused by the complexity of calculating a gradient (or equivalently the Jacobian 

matrix) and then correcting the existing vector x̂ ĵ  into another vector x̂ ew-

The nature of the problem can be changed by replacing the search for a 

solution of Eqn (4.8) with the search for a minimum of /(x); there are several 

established minimisation methods in several variables and in principle any 

function has a minimum over a given interval. The restriction still to be 

observed is that the minimum be zero and well within the boundaries of the 

domain; in the case of several minima, all null within the preset precision, visual 

inspection of the solution space will sort out singularities from real minima, to 

be further sorted along physical considerations.

One common problem of all established minimisation methods is that the 

search for a minimum ends on local as well as on true, domain-wide minima; 

the method of the steepest descent will be reviewed briefly for illustrative 

purposes, its failure in the early stages of my work having been the main 

reason for proposing a new method in the next section.
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The Steepest Descent method for minimising f[x) calculates the local gradient 

of fat Xj for the Mh iteration and finds the new solution Xĵ  ̂ corresponding to the 

minimum value of f along the local gradient; then a new local gradient is 

calculated at and the procedure is reiterated until the local gradient is less 

than a preset value, i.e. a minimum has been found. As with other methods, 

the Steepest Descent ends on a minimum regardless of its being local or 

domain-wide, or of the number and position of other minima in the domain.

Proposed grid method for minimising multidimensional functions

Having reviewed the numerical methods considered for the solution of Eqn 

(4.7), either directly or as a minimisation problem, it becomes clear that a 

suitable numerical method has to:

1. - find and list all local minima within the domain;

2. - be able to cope with noisy functions;

3. - be fast enough for implementation as an independent program on personal 

computers.

As no method could be found to fulfil all of the above criteria, a new method is 

proposed [67], consisting of high resolution calculation and sorting of the values 

of X(Vg, A, m) across a iv .̂ A, m) grid of suitable step size along each coordinate,

spanning a sub-domain chosen by visually inspecting a low-resolution three- 

dimensional image of the whole domain.

The starting point of the method is the inspection of figures analogous to Figs. 

4.1 and 4.2a-c; in the case chosen as example, KlVInO ,̂ this eliminates a 

sizeable portion of the domain, towards larger absolute values of the non- 

Condon factor m and wavenumbers larger than 800 cm'\ It would be 

premature to draw any conclusions from the visual inspection of a low- 

resolution image with regard to the position of the minima within the chosen 

sub-domain; the noise in the data is such that only a high-resolution computer 

search can find the minima with any degree of confidence. The visual
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inspection and the computer search complement each other, none of these two 

procedures being reliable enough when used individually.

The grid method is very fast, as it calculates only the value of the function 

X(Vg,A,/r?) along the nodes of the grid and the small program required is very

sensitive to optimisation as will be shown in a later section dedicated to the 

computer program. However, the search for ever better precision can cancel 

the benefits of simplicity and speed of the method; halving the step size along 

each of the three coordinates increases the computing time roughly by a factor 

of eight and there can be no program optimisation that could keep pace with 

such an increase in workload. A balance has to be maintained between 

precision, performance and intrinsic data noise, by use of the visual inspection 

before and after each computer search; at the end, when a number of possible 

minima have been identified, a significance test based on physical arguments 

will decide the solution.

The robustness of the method with respect to experimental uncertainty has 

been tested at an early stage, by comparing two calculated Raman Excitation 

Profiles, corresponding to two different data sets. The sets differed by the 

estimated experimental error in measuring the band intensities of Eqns (3.54) 

and (4.1 a-d). The tests have been performed for every set of results presented 

in chapter 5; there always was a visible difference between the two plots and 

hence the method was deemed to be able to cope with experimental error.

The grid method compares well with the established minimisation methods, 

being more thorough than any other method and therefore fulfilling the first 

criterion listed at the beginning of this section. Its ability to cope with data- 

induced noise is good, as the grid can always be shifted by an amount smaller 

than the step size along any one of or even all coordinates and the new set of 

results compared with the previous set; thus, the method fulfils the second 

criterion formulated above.
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Finally, the calculation and sorting program runs on any personal computer of 

the IBM PC type, under any DOS compatible operating system, and after 

recompilation on any computer with a 0  compiler - virtually any computer in use 

today. Obviously, the faster the computer the faster the program will run and 

Appendix 4 contains test data which show the significant effect a faster 

computer can have on the execution speed of the program. However, all of the 

practical applications shown in Chapter 5 have been run on a less powerful 

machine, no run taking more than 2 -3 hours. As regards the visual inspection 

part of the method, the Mathematica package has been ported also on most 

computers in use today, running at an acceptable speed even on less powerful 

machines, like the one employed for the applications in Chapter 5.

Having defined the problem, in Eqns (4.1) to (4.7), and a numerical method to 

solve it, one last but important mathematical point needs to be addressed 

before describing the actual computer program: the Kramers-Kronig transform 

itself, relating the experimental absorption to the real and imaginary parts of the 

complex electronic polarizability (Eqn (3.5)).

Numerical Kramers-Kronig transform of the absorption spectrum

The absorption spectrum is a tabulated function, with values measured at 

regular intervals along either a frequency or a wavelength scale; the standard 

Kramers-Kronig transform relation (Eqn (3.5)) needs to be modified by taking 

into account that electronic absorption is significant only across some region of 

the frequency spectrum and virtually zero everywhere else. Thus, the real part 

of Eqn (3.5) can be written as

(4.14)

J . 0  { x{x-(i)) Jx(X-(0) y.y .,3  J X(X-0))
as any part of a definite integral with a zero integrand is null; here N  is the 

number of data points in the absorption file and < co <
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The integrals under the summation signs of Eqn (4.14) can be calculated 

analytically, assuming that the data points are sufficiently close to each other

such that can be approximated by a straight line between any two
X

adjacent data points. The remaining integral will be calculated also analytically, 

but assuming a quadratic fit for across the integration domain; now
X

Eqn (4.14) can be written as

Re[4.(co)] = E  .  E  , (4.15)
J .0  X - C O  (  X - C O  y.^,3 X - 0 3

where the coefficients Bj, bj come from the linear interpolation

a/9 + 

a /9 .,+ 4 "

ABS(x )̂
+  b :  =  _________ —

4  (4.16)
ABS(X;„) 

Xj>1

and a, b, c from the quadratic interpolation 

ABS(x)
ax. + bX: + c = --------- —

Jo Jo w

4..1
ABS(x;̂ .2)

At the time of reading the absorption data file, the program defines and

populates two arrays, Xj = Vy and = [ABS(Xy)]/Xyi with this notation and after

performing the integrals in Eqn (4.15), the real part of the complex polarizability 

becomes
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Re[«)(a))] = y„-y„+K,3-K

y  y;.i(»-^)-y/<a--<;.i)
7=0 -^+1 ~ ^ j

a, 2

In
(O -X ,

®"^o^3
X ,- ( 0

y  Jo j

In
co-x7+1
CÛ-X,

(4.18)

Equation (4.18) is similar to that obtained by Chan and Page in [57], apart from 

two different points: their interpolation across the asymptote x=(o is linear 

rather than quadratic and their extrapolation of the absorption spectrum at the 

'tails' is linear rather than quadratic. The difference between a linear and a 

quadratic interpolation can be up to 10 % of the value of Re[0(co)], so the 

quadratic solution has been adopted in this work in spite of the extra 

computational time required.

Computer programming of the Transform Method

The implementation of the transform method and its application to the 

calculation of excited state parameters consists of several programs, each 

performing a specific task; these programs have been designed, written and 

maintained separately, as required by their different functionality. Throughout 

this section, programs written in the 0  programming language will be referred 

to as 'C programs' in the same way that the 'Mathematica scripts’ are programs 

written in the language of the Mathematica(R) interpreter. The Mathematica 

scripts have been shown in earlier sections; they have not been integrated with 

0  programs in order to avoid problems associated with increased complexity.

0  has been chosen as the programming language of this work after 

performance tests involving different languages and different types of computer 

(Appendix 4), simulating the kinds of calculation deriving from the transform 

method; although the availability of technology has been a restrictive factor, it
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was the speed and portability of C that has recommended it for this work.

The main C program calculates and sorts the values of X(v^,A, m) at the nodes 

of a iVg, A, m) grid, listing the local minima encountered and writing their position

to a file for later inspection; as mentioned in an earlier section, the program is 

organised such as to maximise its execution speed by minimising the number 

of operations needed to scan the whole grid and a few optimisation techniques 

will be described in the following paragraphs.

The order of nesting the loops corresponding to each of the three parameters 

can change the execution time by a large factor, especially the position of thev^ 

loop; the Kramers-Kronig transform needs to be performed at every step along 

the Vg coordinate and it is very time-consuming. Positioning it as the outermost

loop ensures that it is not performed unnecessarily; the calculated values of the 

real and imaginary part of the complex polarizability are stored in two arrays, 

part of a structure that can be accessed by calculations performed within the 

inner loops.

The speed of access to this structure is optimised by passing the pointer to the 

structure, and then pointers to the array elements within, rather than the 

elements themselves; it is significantly more efficient to pass a pointer of two 

or four bytes long than several hundred elements eight bytes each; earlier 

versions of the program, prior to the use of this technique, were considerably 

slower.

The program has a command line interface where it receives the name of the 

system to process and all the information required and produced by the 

program is read from, and written to, data files tagged with the name of the 

system, e.g. KMN.ABS, KMN41 .DAT and KMN41 .OUT for KlVInO .̂ The domain 

is defined in the file KIVIN.SRC, that can be edited very easily with any text 

editor; the absorption and the resonance Raman data files are never changed,

104



except in case of reassessment of the experimental data they contain.

As mentioned in an earlier section, a calculation can run over a period of two 

to three hours, the machine being unable to perform other tasks during this 

time or interact with its operator. A more efficient way of operation has been 

employed, by grouping several calculations in a batch, often run overnight 

without the intervention of the operator; the results are saved during each 

calculation in separate output data files, tagged with the name of each system.

Four other programs have been designed and written to provide feed-back on 

the results of the calculations of the main program but, as the main program, 

all calculate the values of X(v^,A,m). Two programs closely related to each 

other have been mentioned already, in the section describing the solution space 

and the Mathematica scripts; they generate the scripts by calculating X(Vg, A, m)

at every point {v^,A,m) throughout the specified domain. One other program 

generates the Raman excitation profile for a given set of iv̂ . A, m) parameters 

and order of scattering by calculating X(v^,A,m) at different frequencies and 

another program generates resonance Raman intensities for the first four 

harmonics in the RRS spectrum, again for a given set of parameters (v̂ . A, m) ;

the data sets generated by these two programs are then plotted out by using 

a commercial graphics package. The complete listing of the main program is 

given in Appendix 5.
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V. Applications of the Transform Method

Introduction

The purpose of this chapter is to apply the transform method developed in 

chapters 3 and 4 to real chemical systems. There are two main applications 

proposed: first, to calculate the changes in bond length and vibrational 

wavenumber upon excitation and second, to check on the extent to which the 

assumptions of the model hold, for each of the systems studied.

It was thought previously [40,43] that the transform method would be suitable 

only as a supplementary check on the assumptions used in multimode 

simulation models, based on the sum-over-states [36,37] or on the time 

evolution of the wave packet [59,68,69] approaches. It will be shown here (as 

in [60,68]) that the applications of the transform relation extend to the direct 

calculation of the excited state parameters.

Also, the assumptions will be tested by simulating the band intensities of the 

first, second, third and fourth order harmonics and the RRS excitation profiles 

of the fundamental and first overtone, and by comparing them with the 

experimental values. The availability of published data will be a limiting factor 

in the latter comparison, excitation profiles being usually recorded only up to the 

second overtone.

Data Requirements and Methodology

All transform calculations require the absorption spectrum (in digital form), the 

value of the reduced mass of the oscillator representing the mode of interest, 

and the vibrational wavenumber of that mode in the ground electronic state. 

The choice of procedure for the multidimensional fit determines what additional 

data may be required. Minimal requirements for the procedures used here are
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either:

a) - intensity data at one excitation wavelength and the intensities of the first 

three overtones of the resonance Raman spectrum relative to that of the 

fundamental, or

b) - intensity data at three excitation wavelengths and the intensity of the first 

overtone relative to that of the fundamental for each of the three wavelengths.

Data can be obtained either from papers already published, subject to some 

restrictions and corrections, or directly from experiment. While for testing 

purposes both possibilities can be considered, only the latter is open for new 

systems.

The choice of data already published over those freshly recorded balances two 

criteria, convenience versus data quality. The quality of the data already 

published cannot be improved upon, but it can determine which cases will be 

selected for testing. Proper choice of systems and well executed experiments 

should offer excellent testing grounds; however, after being rigorously tested 

and where appropriate, corrected as necessary, published data offered the 

desired balance between convenience and reliability. The fact that all data 

have been produced in the same laboratory, using the same well known and 

understood standards, increases confidence in its quality.

The suitability of published data is assessed by calculating the real and 

imaginary parts of the complex polarizability from the optical absorption data 

and by examining the change of their value when changing the number of data 

points employed (i.e. the resolution of the data). The example presented in 

Table 5.1 shows that, past an optimum value, increasing the number of data 

points will not increase the precision of the calculation, limited by the 

approximations of the model (Chapter 3, Eqn (3.45b)). Each system has been 

tested individually for the optimum number of data points, as a structured 

absorption spectrum will require a higher resolution than a featureless one.
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Table 5.1
The effect of the number of data points on the precision of Re(a) and lm(a)

Number of data points Re(a) /{erf  s lm(a) / (e rf  s

10 9.985 X 10'® 2.083 X  10 ®

20 8.012 X 10'® 1.676 X 10 ®

30 8.107 X 10'® 1.681 X 10®

40 8.093 X 10'̂ 1.680 X 10 ®

50 8.095 X 10'̂ 1.680 X 10 ®

100 8.095 X  10'® 1.680 X 10 ®

2000 8.095 X 10'® 1.680 X 10 ®

Excitation wavenumber: 20000 cm \

Excited state vibrational wavenumber: 400 cm'̂

Re(a), lm(a) - the real and imaginary parts of the calculated complex 

polarizability, for [NBuJglMoSJ

Corrections have been made, where appropriate, for two factors influencing the 

measured band intensity in the resonance Raman spectrum and in excitation 

profiles: the spectral response (efficiency) of the spectrometer and the factor 

(Eqn (3.6)). As published data have been corrected already for one or both of 

these factors, care has been exercised in handling the data.

The smallest value accepted in the literature for the relative error in the band 

intensity is ± 5 %; on bands of lower intensity, as in the wings of an excitation 

profile or for higher order overtones, the error can be ± 10 % and even up to 

± 20 %, depending on the signal-to-noise ratio. This means that fitting the 

more intense bands in the spectrum or the points of higher relative intensity in 

the excitation profile becomes relatively more important. As no quantitative 

measure exists for the relative error of the data employed, no estimate has
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replaced it in the graphs displayed at the end of each section.

The systems used throughout this chapter have been selected according to the 

likelihood that they will satisfy the assumptions of the model, presented in 

Chapter 3; only few of the examples chosen will exhibit features leading to the 

conclusion that one or several of the initial assumptions have been invalidated. 

Systems likely to fit these assumptions well have either linear or tetrahedral 

symmetry and examples analysed here, of tetrahedral (MXJ, linear chain or 

multiply-bonded (M=M) structure, have such symmetry.

MX4 Systems

The systems tested here belong to the T̂  point group, of tetrahedral symmetry, 

and consist of a central metal atom surrounded equidistantly by four identical 

atoms belonging to the groups Via or Vila (Fig. 5.1). The complexes involving 

the metal atom (M) can be neutral, as in titanium and tin tetrahalides, or 

negatively charged (all the other systems studied). The counterions are usually 

ammonium derivatives (potassium only in KMnOJ.

Due to their T  ̂ geometry, the MX4 

systems analysed here possess only 

one totally symmetric mode of vibration 

so the assumption that the mode of 

interest does not mix with other modes 

should hold well. Their geometry also 

makes them susceptible to Jahn-Teller Figure 5.1 - T̂  geometry,

distortions [71] and to splitting of the

excited state into substates, breaking the assumption of a single electronic 

state. As long as the Jahn-Teller distortions and induced splittings are small, 

resonance with a single electronic state is assumed.

The nature and temperature of the samples are presented in Table 5.2,
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together with some of the data employed in the calculations.

Table 5.2

Data employed in the calculations on MX4 systems

System
Absorption spectrum RR spectrum

/amuSample T /K Vrna/cm-' Sample T /K V,ase/cm ^

KMn04:KCI04 [71] solid 293 17950* solid 293 19435 16

[NBU4UW S4] [10] solid 14 25000 solid 80 24585 32

[NH4y W S 4] [10] solid 14 25000 solid 80 24585 32

[NBu4]2[MoS4] [72] solid 14 21300 solid 80 20986 32

[NEt4][FeCl4] [73] sol. 293 27500 sol. 293 27488 35.5

[NBu4][FeBr4] [73] sol. 293 21200 solid 80 20986 79.9

TiBr4 [74] sol. 293 28600 sol. 293 27488 79.9

Snl4 [75] sol. 293 27500 sol. 293
**

N/A 127

I i l4 [76] sol. 293 19400 sol. 293 19435 127

- Vqo, as the absorption spectrum is highly structured 
* *

- several excitation wavelengths and the respective intensity of the first 

overtone relative to that of the fundamental have been used, 

solid - pressed powder; the sample is mixed with KBr, KCI, Csl, KNO3 or K^SO  ̂

sol. - solution in cyclohexane or nitromethane.

Pr - the reduced mass of the totally symmetric mode

It can be seen in Table 5.3 that the assumption of linear dependence of the 

electronic transition moment on the normal coordinate of the totally symmetric 

mode also holds, the linear correction parameter m being less than 0.1 in all 

cases. However, some of the examples show a change of more than 18.2 %
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(Appendix 3) in the vibrational wavenumber of the totally symmetric mode, 

breaking the assumption that the force constant is linear in the normal 

coordinate. The paucity of experimental data points in the respective excitation 

profile hinders the comparison between experimental and calculated results, 

leaving those cases open to further investigation and discussion.

Table 5.3 

Results for MX4 systems

System
/cm'^

Ve

/cm'^

|0v|/v,

%

AtM-X)

/Â

A(M-X)

/pm
M r% m

KMnO^iKCIO^
848.6 

± 0.5

747.0

±5 .0
11.9 1.59

4.4

± 1.0
2.7

0.00

± 0.01

[NBu^lJWSJ
477.6 

± 0.5

413.0 

± 5.0
13.5 2.32'

11.5 

± 1.0
4.9

-0.01

± 0.01

[NHJ^IWSJ
488.0 

± 0.5

417.0 

± 5.0
14.5 2.32'

11.2 

± 1.0
4.8

-0.01

± 0.01

[NBuJglMoSJ
451.1 

± 0.5

395.0

±5.0
12.4 2.32^

10.0 

± 1.0
4.3

0.01

± 0.01

[NEtJ[FeCIJ
334.2 

± 0.5

258.0

±5.0
22.7* 2.30^

29.0 

± 1.0
12.5

0.01

± 0.01

[NBuJIFeBrJ
203.2

±0.5

142.0 

± 5.0
30.0* 2.35"

33.0 

± 1.0
14.0

0.00

± 0.01

TiBr^
232.7

±0.5

155.0 

± 5.0
33.2* 2.31

30.5 

± 1.0
13.2

0.00

± 0.01

SnL
151.2 

± 0.5

136.5 

± 5.0
10.0 2.64

**
8.3 

± 1.0
3.1

0.00

± 0.01

TÜ4
161.2 

± 0.5

142.0 

± 5.0
11.8 2.72®

8.0 

± 1.0
2.9

0.01

± 0.01
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- technically outside the limits of the model, 18.2 % (Appendix 3)
* *

- using the ratio between the intensity of the first overtone and of the 

fundamental

Estimates [77,78]:

' - from r(W-CI) = 2.26 A in WCIg

 ̂ - from r(Mo-CI) = 2.27 A in M0CI5

" - from r(Fe-CI) = 2.30 A in [FeClj"

- from r(Fe-CI) = 2.30 A in [FeCIJ and r(Br-Br) = 2.28 A in Brg

® - from r(Ti-Br) = 2.31 A in TiBr ,̂ r(Br-Br) = 2.28 A in Br̂  and r(l-l) = 2.66 A in
I2

Notes to symbols:

Vp^Vg = vibrational wavenumber in the ground electronic state 

Vg = vibrational wavenumber in the resonant excited electronic state 

8v=(Vg-Vg)/Vg = the relative wavenumber change in the mode of interest 

between the ground and excited states

a(M-X) = metal-ligand bond length. M = Mn, W, Mo, Fe, Ti or Sn; X: O, S, Cl, 

Br or I

A(M-X) = metal-ligand bond length change upon excitation 

m = linear non-Condon correction parameter (Eqn (3.25))

The results in Table 5.3 compare well with those given in other sources, where 

data were available for comparison; unfortunately such data were available for 

only few of the systems considered, as the parameters calculated here may not 

have been measured directly in any study before. Table 5.4 compares the 

results of the present method applied to MX4 systems with previously published 

results; graphs comparing the simulated and experimental resonance Raman 

spectrum and excitation profile for each system are grouped at the end of this 

section (Figs. 5.2-5.10,(a,b)).
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Table 5.4

Comparison between present and previously published results for MX4 systems

System

Vg/cm ^ A /pm

present

work
other work

present

work
other work

KMnO,:KCIO« 747.0 ± 5.0 740.0 ±5 .0  [71] 4.4 ± 0.5 4.6 ± 0.5 [58]

[NBuJJWSJ 413.0 ±5.0 410.0 ± 10.0 [10] 11.5 ± 1.0 10.0 ±1 .0  [59]

[NBuJJMoSJ 395.0 ± 5.0 410.0 ± 10.0 [72] 10.0 ± 1.0 10.0 ± 1.0 [60]

TÜ4 142.0 ±5.0 145.0' [79] 8.0 ± 1.0 7.8 ± 1.0 [61]

- assumed in the calculation in [79]

The vibronic structure present in some absorption spectra (KlVInO ,̂ 

[NBuJgiWSJ and [NBuj2[WSJ) permits the direct measurement of the 

vibrational wavenumber of the totally symmetric mode in the excited electronic 

state. In all cases mentioned, the results of the present method match, within 

the errors, those obtained directly from the absorption spectrum. The results 

for the bond length change also match, within the errors, those obtained by 

other workers [10,71,72,79] through total simulation using a sum-over-states 

approach.

A problem present in some graphs (like those for [NEtJ[FeCIJ, TiBr  ̂and SnIJ, 

is the relative error (as discussed in a previous section) of the experimental 

data points in the excitation profiles. [NEtJ[FeBr4] is also the only system for 

which the intensity of the first overtone relative to that of the fundamental 

increases monotonously, even beyond 1.0, with the wavenumber of the exciting 

radiation. Assuming that the experimental data set is reliable, the [FeBr4]' ion 

appears to undergo drastic changes upon excitation, which cannot be modelled 

within the present approach. This conclusion appears to be confirmed by the
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exceedingly large values obtained for and for A; the fact that they appear to

parallel those for [NEtJ[FeCIJ and TiBr  ̂ is not relevant, as the latter have very 

few points on the excitation profile to compare with.

Tin tetraiodide has given very different results for each of the two procedures 

outlined in Chapter 4 and in an earlier section of this chapter. The final result 

has been determined by comparison with a similar system (TilJ and between 

the experimental and calculated resonance Raman spectrum and excitation 

profiles (at the end of the present section). There have been two attempts to 

calculate v̂  and A forTil^; the results of the present method are consistent with

one set of results [79], the other set [80] not being even self consistent (a linear 

correction of 30 %, m = -0.3, requires a quadratic rather than the linear model 

employed in [80]).

A similar situation appeared for [NBu^yiVloSJ, albeit with a smaller discrepancy 

between the results of the two procedures. The corresponding graph at the 

end of this section shows the difference between the experimental and 

calculated resonance Raman spectrum; the non-Condon result is comparable 

with the result of a pure Franck-Condon model, but the experimental data 

appear far from fitting either model. Comparison with similar systems 

([NHJ2[WSJ, [NBu^yWSJ) indicate that the results obtained solely from the 

band intensities of the first four harmonics in the resonance Raman spectrum 

are not reliable. The explanation could be that the v̂  and v̂  wavenumbers

differ by only 4 %, leading to the overlapping of the main v̂  progression with 

the Vg + v̂ v̂  - or maybe with a VgVg progression - and to unreliable band 

intensities. As this overlap disappears when excitation takes place away from 

the maximum of the v̂  excitation profile, the band intensities can be measured

more accurately and so the results of the second procedure are definitely the 

more reliable.
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M=M Multiply Bonded Systems

The systems tested consist of two triply bonded metal atoms (Os or Rh) 

bridged by a ’cage’ of four identical ligands (OgCCH  ̂ or OgCCHgCI) and one 

axial ligand attached to each metal atom (either a Cl atom or PPhg). Thus the 

systems belong to the point group (Fig. 5.11).

Os, Rh

Figure 5.11 - Geometry of M=M systems.

The angle between the metal-oxygen and the metal-metal bonds is almost 90°, 

which should prevent the metal-metal stretching mode from mixing with any of 

the ’cage’ modes; however, mixing with the axial metal-ligand stretch should be 

expected. The excitation profiles [81-83] show, however, that the intensities of 

these other bands are much lower than that of the metal-metal stretch, and so 

the present treatment will neglect any mode mixing.

The absorption spectrum shows only one band in the visible region of the 

spectrum (with a very weak shoulder in the case of 0 s2(02CCH2CI)^Cl2) so
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resonance with a single electronic band is assumed. The nature and 

temperature of the samples are described in Table 5.5, together with some of 

the data employed in the calculations.

Table 5.5
Data employed in the calculations on metal-metal multiply bonded systems

System

Absorption spectrum RR spectrum

IL̂r

/amuSample T/K
^max

/cm 1 Sample T/K
l̂aser

/cm 1

0s2(02CCH3)4Cl2 [81] solid 20 26000 solid 80 24585 95.1

0s2(02CCH2CI)4Cl2 [82] solid 20 24500 solid 80 24070 95.1

Rh2(02CCH3)4(PPh3)2

[83]
solid 20 27000 solid 80 28056 51.5

Table 5.6
Results for metal-metal multiply bonded systems

System
/cm’^

v*
/cm‘^

|6v|/v,

%

a(M=M)

/A
A(M=M)

/pm

M r

%
m

0s2(02CCH3)4Cl2 229.0 

± 0.5

205.0

±5 .0
10.4 2.314

15.0 

± 1.0
6.5

-0.01

±0.01

0s2(02CCH2CI)4Cl2 236.0 

± 0.5

188.0

± 5 .0
20.3‘ 2.32'

21.8 

± 1.0
9.4

0.00

±0.01

Rh2(02CCH3)4(PPh3)2
289.0 

± 0.5

261.0

± 5 .0
9.7

2.450

[66]

23.4 

± 1.0
9.5

0.02

±0.01

* - technically outside the limits of the model, 18.2 % (Appendix 3); if the 

precision margin is taken into account, the result is within the limits.

 ̂ - estimated from a(M=M) = 2.314 A in 0 s2(02CCH3)4Cl2.
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Notes to symbols:

Vr, Vg, ôv, m - same as the symbols in Table 5.2

r(M-M) = metal-metal bond length (Os-Os, Rh-Rh)

A(M-M) = metal-metal bond length change upon excitation.

The relative bond length change for the M=M tested here is larger than for the 

MX4 systems but similar to the values obtained for linear chains (presented in 

the next section). It appears that the relative bond stretch upon electronic 

excitation is larger in systems with axial symmetry than for centrosymmetric 

ones.

The simulations of the resonance Raman spectra and of the excitation profiles 

compare well with the experimental data, especially for 0 s2(02CCH2CI)4Cl2 for 

which also better defined excitation profiles are available. A comparison 

between the experimental resonance Raman spectra and Raman excitation 

profiles, and those calculated with the transform method is given in Figs. 5.12- 

5.14(a,b), presented at the end of this section.

Unfortunately, there are no results in the literature with which to compare those 

of the present section; those of Woodruff et al. [84] have been obtained for 

non-bridged multiply-bonded systems ([Re2Brg]̂ ') and thus a direct comparison 

between the results is not possible.
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Halogen-Bridged, Mixed-Valence Linear Chain Systems

The systems tested consist of chains of Pt"-Pt'  ̂dimers (Fig. 5.15a) which upon 

excitation become chains of -Pt'"-- monomers (Fig. 5.15b), a model proposed 

by Piepho, Krausz and Schatz [85] and further extended by Prassides and 

Schatz [86,87]. This model has been used successfully by Prassides and 

Schatz [87] to calculate the location of the intervalence band and the resonance 

secondary radiation (resonance Raman scattering and luminescence) spectrum 

for Wolffram’s red salt, [Pt(EtNH2)J[Pt(EtNH2),CljCI, * 4HgO.

= Pt

Figure 5.15a - Ground state geometry of linear chain systems [85,86].

= Pt

Figure 5.15b - Excited state geometry of linear chain systems [85,86].

The totally symmetric mode of interest of the systems studied here is the axial 

stretch X-Pt'^-X; the polymeric structure of the molecular chain amplifies the 

vibration, leading to long progressions in Vgy (̂X-Pt' -̂X) which totally dominate

the resonance Raman spectrum. Substitution of the equatorial amines by other 

amines [88] does not change the wavenumber of the mode of interest by more 

than a few cm'\ so it can be assumed that that mode does not mix with others.
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Table 5.7

Data employed in the calculations on mixed-valence linear chain systems

System

Absorption spectrum RR spectrum

H r

/amuSample^ T/K ^m ax

/cm'T
Sample® T/K ^laser

/cm’^

[Pt(pn)2][Pt(pn)2Cy(C I04)4

[88]
solid 293 25000 solid 80 21836 35.5

{[Pt(en)2][Pt(en)2CIJ}3 

• [CUCU4 [88]
solid 293 19100 solid 80 17599 35.5

{[Pt(en)2][Pt(en)2Br2]}3 

• [CuBr4]4 [88]
solid 293 15870 solid 80 15453 79.9

[Pt((-)-dach)2]

• [Pt((-)-dach)2Br2]Br4 [88]
solid 293 15900 solid 80 13288 79.9

[Pt((-)-dacp)2]

• [Pt((-)-dacp)2Br2]Br4 [88]
solid 293 14300 solid 80 13288 79.9

[Pt(pn)2][Pt(pn)2Br2](CI04)4 

(red) [88]
solid® 293 19600 solid 80 17599 79.9

[Pt(pn)2][Pt(pn)2Br2](CI04)4 

(blue) [88]
solid® 293 16950 solid 80 17599 79.9

[Pt(NH3)2(SCN)2]

• [Pt(NH3)2(SCN)2l2] [88]
solid 293 18200 solid 80 17599 127

[Pt(pn)2][Pt(pn)2i2](CI04)4

[88]
solid 293 12800 solid 80 13288 127

 ̂ - mixture with alkali halides

 ̂ - mixture with alkali halides and an internal standard (K^SO  ̂or KNO3)
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- suspension in chloroform

The absorption spectrum contains only the intervalence band in the visible 

region and there is also little evidence of Jahn-Teller distortion of the systems 

studied so resonance with a single excited electronic state can be assumed.

Table 5.8

Results for mixed-valence linear chain systems

System
/cm' /cm"*

|6v|/v ,

%

/tPt-X)

/Â

A(Pt-X)

/pm
A/r% m

[Pt(pn)J[R(pn)2C y(C I04)4
313.2

±0 .5

232.0 

± 5.0
25.8* 2.31

31.0 

± 1.0
13.4

0.00

± 0.01

{[Pt(en)2][Pt(en)2CIJ}3 

• [CL1CIJ4

300.5 

± 0.5

230.0 

± 5.0
23.3* 2.33

25.2 

± 1.0
10.8

0.00

± 0.01

{[Pt(en)2][Pt(en)2BrJ}3 

• [CuBr4]4

168.6 

± 0.5

133.0 

± 5.0

*
21.1 2.54'

16.5 

± 1.0
6.5

0.00

± 0.01

[Pt((-)-dach)2]

■ [Pt((-)-dach)gBr2]Br4

161.4 

± 0.5

129.0

±5 .0
20.0* 2.70=

21.6 

± 1.0
8.0

0.00

± 0.01

[Pt((-)-dacp)J 

• [Pt({-)-dacp)2BrJBr4

163.1 

± 0.5

124.0

±5 .0
23.9* 2.70=

18.4 

± 1.0
6.8

0.00

± 0.01

[Pt(pn)2][Pt(pn)2Br2](CI04)4

(red)

174.5 

± 0.5

154.0 

± 5.0
11.5 2.713

15.4 

± 1.0
5.6

0.00

± 0.01

[Pt(pn)2][Pf(pn)2Br2](CI04)4

(blue)

174.8 

± 0.5

147.6

±5 .0
15.5 2.713

17.9 

± 1.0
6.6

0.00

± 0.01

[Pt(NH3)2(SCN)2]

• [Pt(NH3)2(SCN)2l2]

120.4 

± 0.5

92.3

±5 .0
23.3* 2.70"

25.7 

± 1.0
9.5

0.00

± 0.01

[Pt(pn)2][Pt(pn)2iJ(CI04)4
121.4 

± 0.5

109.0 

± 5.0
10.2 2.77

10.9 

± 1.0
3.9

0.00

± 0.01
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- technically outside the limits of the model, 18.2 %; if the precision margin 

is taken into account, the result is within the limits.

 ̂ - estimated from r(Pt-Br) = 2.42 A in [Pt(etn)J[Pt(etn)4Br2]Br4*4H20 [89];

 ̂ - estimated from r(Pt-Br) = 2.67 A in [Pt(pn)2][Pt(pn)2Br2]Br4 [90];

® - estimated from r(Pt-Br) = 2.42 A in [Pt(en)2][Pt(en)2Br2](CI04)4 [91] and

 ̂- estimated from r(Pt-l) = 2.69 A in [Pt(NH3)4][Pt(NH3)4l2][HS04]3[0 H]-H20 [88]

Notes to symbols:

Vp,  Vg, ÔV, m -  same as the symbols in Table 5.2

r(P\-X) = platinum-halogen bond length (X = CI,Br,l)

A(Pt-X) = platinum-halogen bond length change upon excitation

The values obtained for the vibrational wavenumber of the totally symmetric 

mode in the excited electronic state are large, some of them falling just outside 

the limits of the model, but consistent with large bond length changes. These 

large changes are in broad agreement with a bond length change of 22 pm for 

r(Pt'^-X) obtained by Prassides and Schatz [87] for Wolffram’s red salt. The 

good agreement between the results of the two methods should consolidate the 

acceptance of a large change in the Pt'^-X bond length in linear-chain 

compounds and, by implication, in other systems.

The simulations based on the transform method fit well the experimental data, 

with the exception of [Pt(NH3)2(SCN)2][Pt(NH3)2(SCN)2l2]; the graphs are given 

at the end of this section (Figs. 5.16-5.24(a,b)). In that case the experimental 

excitation profile appears as if resonance takes place also with a second, ’dark’ 

electronic state and the values obtained for the (assumed single) excited 

electronic state are not consistent with the rest of the results.

The good agreement between the results of Prassides and Schatz [87] and the 

experimental data, and the very different nature of their model calculations 

provides a good check for the present work. The advantage of the transform 

method is that it requires much less computational power than the dynamic
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solution of the vibronic Schrodinger equation and it yields not only the bond 

length change, but also the vibrational wavenumber of the mode of interest in 

the excited electronic state and the linear non-Condon correction parameter.
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Conclusions

The present work proposes a new method of obtaining molecular structural, 

vibrational and vibronic data by linking the resonance Raman excitation profile 

to the electronic absorption spectrum of the molecule. The mathematical 

formalism is based on the density matrix of the molecule-radiation interaction 

and on the Kramers-Kronig transform between the real and imaginary parts of 

the electronic polarizability.

The foundations of the work are laid in Chapter 1 and Appendix 1, describing 

the experimental technique, and Chapter 2, which describes the theoretical 

model employed and its interpretation in terms of Raman and fluorescence 

radiation. Although original data presented in Appendix 2 shows the 

importance of resonance fluorescence, only the resonance Raman aspect of 

secondary radiation is pursued in this thesis.

The original work begins in Chapter 3, relating resonance Raman data to the 

absorption spectrum through a set of equations depending on microscopic 

parameters, describing the molecular structure, and macroscopic quantities to 

be measured experimentally. Chapter 4 proposes a new mathematical method 

for solving the equation set, and Chapter 5 presents the results of applying the 

new method to chemical systems belonging to three different geometries.

The transform method proposed here (and introduced in [60]) is the first to 

provide three vibronic parameters for fitting Raman excitation profiles of any 

order, or the relative intensities of fundamental and overtone scattering excited 

at any one wavelength. The potential energy curve displacement parameter A, 

the wavenumber of the Raman mode in the upper potential energy curve Vg,

and the dependence of the transition moment on nuclear coordinate(s) -  the 

non-Condon term (parameter m) -  have all been used by others [40-52, 54, 55, 

57, 58] in more limited ways. The expressions offered here lead to values for
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all three vibronic parameters simultaneously, for scattering of any order.

The formalism also separates the Raman sub-space from the non-Raman 

space, thereby including temperature dependence and energy-dependent 

damping in the non-Raman space. The Raman space is treated as one

dimensional in the coordinate of the Raman mode, thus excluding Duschinsky 

rotation, and thermal excitation of the Raman mode is neglected; this enhances 

the efficiency of the method, but also creates its most significant limitation. The 

approximations appear to be realistic for many systems where there is only a 

single totally symmetric fundamental and for which the vibrational energy 

considerably exceeds k^T.

The present work represents the first systematic attempt to establish the 

transform method, within its limitations, as a tool for investigating the geometry 

and vibrational and vibronic properties of the excited electronic states. A 

substantial body of experience needs to be accumulated before the method will 

be fully accepted as a complement to other structural methods used in physical 

chemistry.
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Appendix 1 - Chromatic aberration and Resonance Raman
Spectroscopy"^

It has been noticed in our laboratory that the SPEX R6 instrument does not 

remain focused throughout a very wide spectral range, suggesting that the 

collection lens exhibits pronounced chromatic aberration. Tests assessing the 

chromaticity of this instrument have been conducted on a sample of ethanol, 

chosen for its wide wavenumber spread between the Raman bands - more than

2000 cm'\ the spectra are shown in Fig. A1.1.

ntensitv /rel. units

Spectrum recorded after signal optimisation 
at 2920 cm'

Spectrum recorded after signal optimisation 
at 883 cm '

100012001800 14002800 2600 2400 2200 2000

Wavenumber /cm

15003000

Figure A1.1 - The effect of chromatic aberration on Raman band intensities.

- from a report on the errors introduced in the collected spectra by the 
chromatic aberration of the collection lens of the Raman spectrometer.
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The test procedure is simple, reproducible and unambiguous: the spectrum is 

recorded first after the signal has been maximised with the monochromator 

selecting one of the bands, and then after moving the monochromator at the 

second band and maximising the signal solely by refocusing the collection lens.

If the intensity of the signal remains constant while the lens is refocused, the 

lens is achromatic and the system is correctly focused for both wavelengths. 

If refocusing the lens increases the intensity of the signal, the lens is chromatic 

and the ratio R between the two signal intensities, before and after refocusing, 

is a measure of the deviation from a truly achromatic behaviour; this ratio is 1.0 

for an achromat, and can only be lower than 1.0 for a chromatic lens. The 

results are summarised in Table A1.1.

Table A1.1

Signal intensity loss due to chromatic aberration.

Spectrometer Wavelength /nm

R measured after the system is 

initially focused on the band at:

883 cm^ 2930 cm"'

SPEX 1401

406.7 1.000 0.917

530.2 0.884 0.840

568.2 0.900 0.793

647.1 0.826 0.588

SPEX R6
501.7 0.236 0.250

363.8 0.160 0.158

The results obtained for the SPEX 1401 instrument have been included 

because its construction is very similar to the SPEX R6, but uses a commercial 

camera lens (Zeiss Planar T f/1.2 - 50 mm) for light collection; the results show
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that such a lens exhibits a small chromatic aberration in the blue and green 

regions, increasing moderately towards the red region of the visible spectrum, 

as specified by the manufacturer.

The custom-built collection lens employed on the R6 system exhibits a very 

large chromatic aberration; as an example of its effects on resonance Raman 

spectroscopy, the KlVInO  ̂ spectrum excited by irradiation with 514.5 nm light 

loses more than 80% of the intensity of its second overtone, while the intensity 

of the third overtone becomes too low to be measured. However, the published 

data [8-10,71-76], as used in Chapter 5, has been recorded in our laboratory 

with the SPEX 1401 instrument, which does not suffer from pronounced 

chromatic aberration.

The first possibility for correcting the chromatic aberration of a light collection 

system is to use a telescope-type objective, built with mirrors, instead of lenses. 

The main problem with this solution is that these objectives have a short 

operating distance - typically up to 24 mm - while the current generation of 

cryostats place the scattering point of the sample at more than 35 mm away 

from the window through which the Raman scattered light is collected (Fig. 1.3). 

Thus, telescope-type objectives are ruled out for work involving cryostats and, 

as low temperature is an important way of improving the signal-to-noise of 

Raman and resonance Raman spectra, this solution is not suitable to this 

laboratory at the present time.

A second possible solution to the chromatic aberration exhibited by the 

collection lens of the SPEX R6 instrument would be to replace its custom-built 

lens with a commercial camera lens® with a 360-900 nm spectral transmittance 

curve (Fig. 1.4), bringing the model R6 in line with the model 1401 instrument. 

Optical theory can be used to calculate the extent of the chromatic aberration

® - Information obtained from the research departments of Carl Zeiss, 
Nikon, Canon, Asahi Pentax and Minolta.
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and to write a computer program that would permit a more rigorous correction 

than that achieved solely through the manufacturing process of camera lenses. 

This correction, used in conjunction with the corrections for the instrumental 

spectral response (see the dedicated section in Chapter 1) and (Eqn 1.8), 

would result in the experimental precision required by the transform method.

The two main disadvantages of replacing the custom-made lens with a 

commercially available camera lens would be a frequency-independent 

decrease in throughput, by 25-30% for a f/1.2 lens as compared with the f/0.95 

custom-made lens, and the reduced transmittance in ultraviolet of the 

commercial lenses, with around 20% at 360 nm (Fig. 1.4). The reduced 

transmittance in the ultraviolet region would be partly compensated by the v'̂  

factor (Eqn 1.8) and increased quantum efficiency of the photomultiplier tube.

To summarise, the chromatic aberration has been proved to introduce 

significant errors in the measurement of band intensity in Raman spectra, 

affecting the ability of the transform method to deliver results to its full 

capabilities. The implementation of the transform method in calculations of 

excited electronic state parameters requires that the experimental procedure of 

obtaining resonance Raman spectra should be thoroughly understood, along 

with all the possible mechanisms for error and ways for their control. As facts 

presented here suggest, the only realistic solution to chromatic aberration in our 

experiments is to minimise it by employing commercial camera lenses for 

collecting Raman scattered light; software can be employed then to correct data 

even further.
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Appendix 2 - Spectroscopy of matrix-trapped molecular 

species^

Introduction

The aim of this study is to establish the structure of the S4 isomers and to 

provide reliable Raman and fluorescence ‘fingerprints* of all sulphur species 

produced in an argon discharge and isolated in an argon matrix.

Sulphur vapour has been passed with excess of argon through a microwave 

discharge and the resulting mixture deposited on a copper plate at a 

temperature of 14 K. This doped matrix has been irradiated with 40 mW of 

laser power at several wavelengths and the scattered light analysed with a 

DILOR XY multichannel spectrometer. Raman and fluorescence spectra of the 

matrix have been recorded and assignment of some of the bands to 8  ̂and S '̂ 

species present in the matrix has been carried out. The increased intensity of 

fluorescence in the spectral region of an absorption system believed to be due 

to 84 [92,93], with a maximum at around 530 nm, has been attributed to 

resonance fluorescence of the same system.

Small sulphur elemental and heteroatomic molecules

The idea of studying small sulphur elemental molecules occurred during 

preparations for the study of SJE  ̂(m,n=2,3,4), where E=0,N,F,CI, etc. These 

binary species are interesting for their possible involvement in the combustion 

of sulphur-containing fossil fuels in an atmosphere of Ng+Og+small amounts of 

halogen derivatives like chloro-fluoro-carbons (CFCs). These combustion 

processes can produce many reactive, short-lived species as intermediates and 

it has been assumed that similarly rich mixtures can be obtained by passing 

Ng+8 n or 02+8 n (1>n>9) in excess of argon through a microwave discharge.

6 from a report on experimental work, preliminary to the present thesis.
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The resulting mixtures will contain measurable amounts of elemental sulphur 

species, observable along the binary combinations in any spectroscopic 

investigation; hence the investigation of the mixtures containing binary species 

requires investigating the small S,0,N elemental molecules.

Gas-phase investigations using Raman spectroscopy [92,93] found all species 

of Sp (1>n>9) in open-chain and/or ring configuration; not all Raman bands 

have been unambiguously assigned, while the Raman and resonance Raman 

study of the colour centres in ultramarines [94,95] have identified vibrations 

corresponding to the Sg', 83' and 84. Raman studies conducted on the products 

of a discharged 80g stream deposited as a matrix at 80 K [96,97] have 

assigned the bands at 442 and 218 cm"* to 8g, while 3 strong bands at 585, 

601 and 688 cm'̂  have been assumed to belong to smaller sulphur species. 

These assignments have been confirmed by infrared spectroscopic studies 

carried out in the gas phase and in a variety of matrices [98].

The accepted knowledge about the small sulphur clusters is that fundamental 

Raman vibrations for the rings are to be expected below 500 cm \  for the 

anions below 600 cm \  and for the open chains above 600 cm'\ There is little 

information about the fluorescence of sulphur molecules; Lenain et al. [92] have 

observed a feature at 559 cm"* from the 514.5 nm excitation line in the Raman 

spectrum of overheated sulphur vapour, and assigned it to the resonance 

fluorescence of 8g.

It is known [99,100] that there are broad electronic absorption bands at 410+15 

nm for 83 and at 520+15 nm for one of the 84 isotopes. While 83 is widely 

believed to be a bent molecule with Cĝ  symmetry, calculations suggest 

[101,102] that several isomers of 84 have similar energies; the most stable is 

thought to be a D̂ĝ  rectangle-shaped ring close to a (8g)g structure, while a Cĝ  

open chain lies 0.4 eV higher in energy. The same calculations found that all 

triplet states of 84 lie well above the D̂ĝ  ground state.
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The matrix-isolation technique

The preparation of a matrix requires a high vacuum enclosure containing the 

substrate - a cold plate maintained at the temperature required by the gas 

employed to become a solid. A source of gas mixture sends a stream of 

molecules through the microwave discharge in an Evenson-Broida cavity and 

the resulting mixture is deposited onto the cold plate. Figures A2.1a,b describe 

the experimental setup in the two stages of the experiment, the preparation of 

the sample and the spectroscopic analysis of the resulting matrix.

Pow«r
*upply

High
vacuum

pump

Ar

Figure A2.1a - Preparation of solid argon matrices.
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Computer
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Figure A2.1b - Spectroscopic analysis of a solid argon matrix.

This study has employed a specially shaped quartz tube (Fig. A2.2) to 

evaporate the sulphur in a flow of argon, the flow of sulphur vapour being 

controlled through controlling the temperature of the reservoir. The resulting 

(Ar + SJ mixture is passed through the microwave discharge and the products 

are deposited as an argon matrix doped with various sulphur clusters. At the 

end of the deposition process the flow of gas is turned off and the cold plate 

is turned towards a window of the high-vacuum enclosure for the spectroscopy 

of the matrix, conducted in a 180° geometry.
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Apparatus used for dissociation of sulphur vapor in 
matrix isolation experiments

TUBE NEATER

EVENSON-
BNOtOA
CAVITY

THERMOCOUPLE

RESERVOIR
HEATER

Figure A2.2 - Sulphur vapour generator.

Experimental

The matrices have been deposited on a copper plate in the cold enclosure of 

an Air Products Displex closed-cycle He refrigerator; the vacuum was better 

than 3x10^ torr at room temperature and better than 6x10 ® torr at 14 K. 

Sulphur (flowers) has been heated in the quartz tube (Fig. A2.2) using 

cascaded variacs plugged directly into the mains. The temperature of the 

micro-oven has been increased by approximately 1.5 °C min"' from 80 °C up to 

about 125 °C where it remained stable within 5 °C. The flow of argon was 

maintained continuously, at a rate of 2 - 4 mmol h'\ and the microwave 

discharge was also maintained, at about 40 W power and optimal tuning.

Up to 115 °C the discharge looked pink, as a discharge in pure argon; above 

115 °C the colour turned progressively to sky-blue, because of Sg emission.

154



Matrix deposition lasted for about 3 hours; the estimated Ar:S ratio was 

between 50:1 and 100:1 and the resulting matrix was coloured light blue.

After the deposition the cold plate carrying the matrix was turned facing the 

spectrometer and irradiated with laser light, always 40 mW of power measured 

before the focusing and collection lens, and using no interference filter with any 

of the laser lines employed. Spectra have been recorded with a DILOR XY 

triple monochromator fitted with a multichannel diode-array detector.

The first experiment tested for Raman signal between 266 and 800 cm'\ using 

a 676.4 nm excitation line. With no microwave discharge, all sulphur 

desublimated on the walls of the tube before reaching the matrix and no signal 

was seen. By turning the discharge on, all the sulphur from the quartz tube 

was removed in about 5-10 mins and deposited onto the matrix and onto the 

walls of the vacuum enclosure. The matrix was then excited with 676.4, 647.1, 

568.2 and 530.8 nm and the best spectrum, obtained at 568.2 nm, is shown in 

Fig. A2.3.

w

o

BOO 600000 700 fSOO 400

Figure A2.3 - Raman spectrum of a mixture of 8  ̂clusters embedded in a solid 
argon matrix, excited by the 568.2 nm line of a Kr̂  laser.

155



The next experiment suffered from initial temperature overshooting up to about 

135 - 140 °C for about one minute and some sulphur has been deposited into 

the matrix as in the first experiment. The following series of experiments was 

carried out according to the procedure outlined earlier, the resulting matrices 

being irradiated with 676.4, 647.1, 568.2, 530.8 and 514.5 nm laser light. Apart 

from the Raman spectra (Fig. A2.3), only one other type of spectrum (Fig. A2.4) 

has been obtained, for all exciting lines of wavelength shorter than 568.2 nm.

" o
5000 30006000 4000 Wavanunbcr /cnT’

Figure A2.4 - Resonance fluorescence spectrum of a small sulphur cluster 
(assumed to be an S4 isomer), trapped in a solid argon matrix excited by the 
530.8 nm line of a Kr̂  laser.

Results and discussion

The first experiment gave a good Raman spectrum (Fig. A2.3), showing the 

main bands reported in the literature [92-98]; the intensity ratios of the 474.2 

cm'̂  versus the 217.2 and 150.5 cm bands changes as the excitation 

wavelength decreases, between 1.6 : 1.6 : 1 at 676.4 nm to 1.4 : 1.4 : 1 at 

647.1 nm and 5 : 1.3 : 1 at 530.8 nm. This may indicate that the Raman 

scattering from Sg is resonant, removing previous ambiguity [92] in assigning
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the 474 cm band to Sg or to Sg. Similarly, the 150 cm band is assigned to 

Sg, ruling out 87 (see [92]).

The Raman spectrum of the first matrix confirms its composition: mainly Sg, S7 

and Sg rings and some Ŝ /"" chains. This composition is due to the way the 

matrix has been deposited, with a high density of sulphur preventing the break

up of the big S„ rings (5 < n < 9) and matrix-isolation of the fragments on a 

large scale; on the contrary, later matrices obtained with a lower concentration 

of sulphur in the discharge show an increased proportion of small species.

The fluorescence signal obtained by irradiating the matrix with light of 530.8 nm 

wavelength (Fig. A2.4) consists of 5 different series of peaks from 12830 cm'̂  

to 16990 cm'̂  (780 to 589 nm), together with a strong feature at about 12550 

cm'̂  (797 nm). The spectra recorded at 514.5, 530.8 and 568.2 nm show a 

marked increase in the intensity of the respective bands from 514.5 to 530.8 

nm and their complete disappearance at 568.2 nm. The intensity of the 12550 

cm'  ̂feature, however, is not sensitive to changing the excitation line. While the 

fluorescence producing the progressions appears to be resonant when excited 

with 530.8 nm wavelength light, it is clearly not the case with the 797 nm 

feature. The first part of the signal could be assigned then to one of the S4 

isomers, which absorbs around 530 nm, while the second part remains to be 

identified.

Conclusions

There are several different methods of preparing the S„(Ar) matrix suitable for 

studying small sulphur clusters and both methods used in this study have been 

proved to be useful; thus the project has provided valuable experience in the 

technique of matrix isolation of small, unstable species.

Some ambiguities persisting in the literature about the assignment of some 

Raman bands have been removed by using several excitation lines and
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observing the changes in the relative intensity of different bands; the usefulness 

of Raman spectroscopy is limited, though, by the fact that the Sn(Ar) matrix 

contains always a mixture of species.

Resonance Raman and resonance fluorescence spectra have been recorded 

but the UV-VIS spectroscopic data available are not entirely satisfactory for the 

experiments described here; the UV-VIS spectroscopy of the matrix prior to the 

resonance experiments would help with the selection of the excitation lines to 

use. Nonetheless Raman, resonance Raman, and resonance fluorescence 

have been proven successful in fingerprinting sulphur molecules, as outlined in 

the introduction of this study.
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Appendix 3 - The Manneback equations

The parameters (p, q, r} found in the linear relationship between the raising and 

lowering operators of two harmonic potential energy curves, the excited state 

(2) and the ground state (1), need to be related to the two characteristic circular 

frequencies and cOg and the relative displacement, A, of the minima of the 

two curves (A = Rg(2) -  Rg(1)). In 1951 Manneback [103] published key 

recurrence equations relating the Franck-Condon amplitudes between two 

harmonic potential energy curves that have different characteristic frequencies 

cô and cOg, and displaced minima. The two fundamental formulae, called I and 

II in [103], are written in the bra/ket notation as

<b+1|c> = — L__[-b^^^k,y,<b-1 |c> + c^^^kî,<b|c-1> -  a„<b|c>]

and

<b|c+1> =

(b+1)

1 .[c^^^k„<b|c-1> + b^%M<b-1 |c> + b„<b|c>

(I)

(II)
(c+iy^

The parameters, following the notation from [103], are in bold face and 

subscripted by "M" for Manneback. Equations (2) and (3) of [103] relate these 

to a measure of the displacement, M, and the two frequencies, according to:

3 m = M
2cô

©1  + © 2

1/2
2©o

©1  + © 2

1/2

(A3.1)

kM =
2 (03,0)2)

0), +0);

1/2
© 1  - © 2  

©1 + © 2

The dimensionless displacement parameter M is further defined in terms of the 

actual difference in the location of the harmonic oscillator minima A:

M = — , where X =
X

h M/2 f M/2

2t c | l i

©1  + © 2

© 1 © 2V  ̂  ̂ y

(A3.2)

Here |x is the reduced mass of the oscillator and the reference distance, X, is 

the square root of the average of the mean square displacements of the 

oscillators in the two potentials. For practical use the units of A will be chosen
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to be picometers (pm), those of the wavenumber (v = co/(27cc)) to be cm'  ̂ and 

those of |i to be atomic mass units (amu) to give:

f  \1/2

M = 1.7222115 X 10'V  A
V1V2 (A3.3)

Equations I and II will be generated using Eqns (3.31 a,b), thereby linking the 

parameters {p, q, 1] to those of [103] and thus relate {p, q, r) to {cô , cOg* A). 

Given that

àl -  p + qài] + râ̂  , (A3.4)
â j = p  + qfâ, + râ î ,

with {|b>} the eigenkets of Hg:

âl\b> = (b+ir|b+1>, <b]âg = (b-1)'«<b+1| , (A3 5a)
âg|b> = (b)''2|b-1>, <b|âj = b'%<b-1 | , 
and similarly with {|c>} the eigenkets of H.,

âî|c> = (c+1)"2|c+1>, <c|â, = (c+1)“ <c+1 | , (A3.5b)
â,|c> -  (c)'®|c-1>, <c|âî = (c -1)’®<c-1| ,

the matrix element of âg between two arbitrary states b and c can be written, 

respectively, as

<b|a2|c> = (b+1)^^^<b+1 |c> (A3.6a)

and

<b I ag I c> = <b I (p+pâ, + râî) I c> (A3.6b)
= p<b|c> + c^'^q<b\c-^> + (c+1)^^^r<b|c+1>

or, by eliminating <b|a2|c> between Eqns (A3.6a) and (A3.6b), as 

(b+1)^^^<b+1 |c> = p<b|c> + c^^^p<b|c-1> + (c+1)^^^r<b|c+1> . (A3.7)

Similarly the matrix element of a j between two arbitrary states b and c can be 

written respectively as

<b|aj|c> = b^^^<b-1|c> (A3.8a)

and
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<b|aj|c> = <b|(p + qâî + râ j|c>
= p<b|c> + (c+1)^^^p<b|c+1> + c^^^r<b|c-1>.

(A3.8b)

<b|c+1> can be isolated from Eqn (A3.8b) as 

<b|c+1> = 1 b1/2 ' r <b-1 |c> - <b|c-1> - (p ] <b|c>
(c+1)’® . 9 , .9 , I 9 J -

and comparing coefficients of like terms in Eqns (II and IT) yields:

(ir)

(A3.9a)

Now <b+1 |c> can be obtained by eliminating <c|b+1> between Eqn (A3.7) and 

Eqn (IT) as

<b+1 lc> = 1

(b+1) 1/2

,2  ^2
i?.—<blc> + —[_<b|c> + b̂ ^̂ —<b-1|c>

Comparing coefficients of like terms in Eqns (I) and (I’) yields:

3m = -P
q-r^ kM = kiv, = -

(11

(A3.9b)

Equations (A3.9a,b) are consistent and with Eqn (A3.1) lead, finally, to

p = -M
(0)2+0),)

1/2

, q =
(0)2 + 0),)

r =
K -c o ,)

V 2

(A3.10)
2co, 2(0)2©,)

and, with Eqn (A3.3),

p = -1.2177874 X 10 A . (A3.11)

Based on the expression for r  (Eqn (A3.10)), can be considered small 

(r^<0.01 <=> r^<1) for a relative frequency change (o),-©2)/o), < 18.2%.

Thus, in Eqns (A3.10,A3.11) the parameters (p, q, r}, connecting the raising 

and lowering operators of the excited and ground states, have been expressed 

in terms of experimentally accessible quantities, ultimately establishing the 

relationship between the resonance Raman data (©,,©2) and the molecular

structure (|i,A).

161



Appendix 4 - Performance tests for the numerical 

implementation

The performance is an important factor in establishing a new numerical method 

and it is one of the aims of the present work to provide an accessible way of 

obtaining information about molecular structure. As computer implementation 

can deliver results within a wide performance range, simulation tests have been 

carried out prior to programming a computer for solving Eqns (3.53a,b, 3.54, 

4.2a-c, 4.3a-c, 4.6, 4.7, 4.18), in order to obtain an estimate of the performance 

to be expected from the program.

The bulk of the computational effort is represented by the calculation of the 

integral (Eqn (4.18)) and of the polarisability a„(o)) for each n = 1,2,3,4 (Eqns

(3.53a,b)); the test program has been written to include many operations similar 

to these tasks, repeated a large number of times through nested loops. The 

function to be calculated is

100
E  4-E sin exp(/sin(1/y))

' ' j
where N is the number of outer loops completed in one minute. The program 

performing the sum above has been compiled in different programming 

languages and a generic, language-independent version is given below for 

illustrative purposes:

s u m  =  0

f o r  i  =  1  t o  5 0 0 0 0

f o r  j  =  1  t o  1 0 0

s u m  =  s u m  +  ( ( s i n  ( j  *  e x p  ( s i n  ( 1 / j  ) ) / i  ) / i )  

n e x t  j  

p r i n t  i  

n e x t  i  .

The results of running the test program on different machines, after 

recompilation and optimisation, are presented in Table A4.1.
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Table A4.1
Performance of different computer systems (in program loops per minute).

Language

IBM PC compatible computers, Intel 

microprocessors

Sun

workstation

i286 i386SX25+i387 i486DX33 Sparc 5

BASIC 65 1200 1900 n/a

FORTRAN 75 2400 5200 n/a

0 350 3000 7000 16500

The results show that, apart from a marked increase in performance with the 

power of the hardware, the choice of computer programming language makes 

a significant difference in the speed of the calculation. Thus, the programs 

used in implementing the transform method in this thesis have been written in 

C and run on the hardware available then. As hardware becomes more 

powerful, the portability of programs written in C ensures that this 

implementation will not be made obsolete prematurely by the technological 

progress in computer hardware.
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Appendix 5 - Transform program

The program used in Chapter 5 to solve Eqns (4.1a-d) and obtain the

parameters A,Vg, m for different chemical systems is included here for reference

purposes; some of its routines have been included in other programs, used in 

fitting experimental Raman Excitation Profiles and Resonance Raman spectra.

#include <itiath.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>

struct abs { 
int n;
double x[3000], y [3000], ra[8], ia[8], dfr, xi, m;
double xi2, mx, dxi2, step, ni, ne; } ;

int main(int argc, char *argv[])
{ FILE *stream;

struct abs absorp, *a = &absorp; 
struct date d; 
struct time t; 
int i ;
char data[30], absorption[30], search[30], output[30];
char *string;
void trans(struct abs *);
double alphal(struct abs *), alpha2(struct abs *);
double alpha3(struct abs *), alpha4(struct abs *);
double miu_r, ct, nr, dsp, rtl, rt21, rt31, rt41;
double yl, y21, y31, y41, XI, Xm = 1.0;
double m_min, dsp_min, ne_min, m_max, dsp_max, ne_max;
double dm, dd, dn, ymin = 1.0, nc = 0 ;
strcpy(data, argv[1]);
streat(data,"41.dat");
strcpy(absorption, argv[1]);
streat(absorption,".abs");
strcpy(search, argv[1]);
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strcat(search,".src"); 
strcpy(output, argv[1]); 
strcat(output,"6.out");

stream = fopen(data, "r");
miu_r = atof(fgets(string. 10, stream))
nr = atof(fgets(string. 10, stream))
a->ni = atof(fgets(string. 10, stream))
yl = atof(fgets(string. 10, stream))
y21 = atof(fgets(string. 10, stream))/yl;
y 31 = atof(fgets(string. 10, stream))/yl;
y41 = atof(fgets(string. 10, stream))/yl;
ct = (-0.0002435574) * sqrt(miu_r * nr) ;
fclose(stream);

stream = fopen(absorption. " r " );
a->n = atoi(fgets(string. 20, stream)) - 1
for (i =0; i <= a->n; i++) {

a->x[i] = atof(fgets(string, 20, stream)); 
a->y[i] = atof(fgets(string, 20, stream)); 
if (ymin >= a->y[i]) ymin = a->y[i];

}

for (i = 0; i < a->n; i++)
nc = nc + (a->y[i+l] + a->y[i]) *

(a->x[i+l] - a->x[i]) / 2 ;
nc = nc - ymin * (a->x[a->n] - a->x[0]);
for (i = 0; i <= a->n; i++)

a->y[i] = a->y[i]/a->x[i]/nc; 
fclose(stream);

stream = fopen(search, "r")
m_min = atof(fgets(string. 9, stream));
dsp_min = atof(fgets(string. 9, stream)) +
ne_min = atof(fgets(string. 9, stream)) +
m_max = atof(fgets(string. 9, stream));
dsp_max = atof(fgets(string. 9, stream));
ne_max = atof(fgets(string. 9, stream));
dm = atof(fgets(string. 9, stream));
dd - atof(fgets(string. 9, stream));
dn - atof(fgets(string. 9, stream));
fclose(stream);

165



stream = fopen(output, "a");
getdate(&d); 
gettime(&t);
fprintf(stream,"\t%d. %d. %d\t%d:%02d\n",

d .da_day,d .da_mon,d .da_year,t .t i_hour,t.t i_min); 
fprintf(stream,"nO = %.If\tnmax = %.lf\tdn = %.If\n", 

ne_min, ne_max, dn); 
fprintf(stream,"do = %.2 f\tdmax = %.2f\tdd = %.2f\n", 

dsp_min, dsp_max, dd); 
fprintf(stream,"mO = %.3 f\tmmax = %.3f\tdm = %.3f\n", 

m_min, m_max, dm); 
puts("calculating...");

char *outformat = "%.If\t%.If\t%.3f\t%.7f\n";
a->ne = ne_min;
while (a->ne <= ne_max) {

a->dfr = (a->ne - nr)/(a->ne + nr);
trans(a);
dsp = dsp_min;
while (dsp <= dsp_max) {

a->xi = ct * dsp * a->ne/(a->ne + nr);
a->xi2 = a->xi * a->xi;
a->dxi2 = a->dfr * a->xi2;
a->m = m_min;
while (a->m <= m_max) {

a->mx = a->m * a->xi; 
rtl = alphal(a); 
rt21 = alpha2(a)/rtl - y21 
rt31 = alpha3(a)/rtl - y31 
rt41 = alpha4(a)/rtl - y41 
XI = rt21 * rt21 + rt31 * rt31 +

rt41 * rt41;
if (XI < Xm) {

Xm = XI;
printf("%.5f\t", XI); 
fprintf(stream,outformat,

a->ne,dsp,a->m,XI);
}
a->m = a->m + dm;

}
dsp = dsp + dd;
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}
a->ne = a->ne + dn;

}

gettime(&t);
fprintf (stream, "\t-------%d:%02d-------- \n" ,

t .ti_hour,t .ti_min); 
fclose(stream); 
return 0 ;

}
double alphal(struct abs *a)
{ double re, im, cO, cl, c2;

cO = a->m - a->xi; 
cl = a->xi * (1 - a->dfr) + a->m; 
c2 = a->dfr * a->xi;
re = a->ra[2] * c2 + a->ra[l] * cl + a->ra[0] * cO;
im = a->ia[2] * c2 + a->ia[l] * cl + a->ia[0] * cO;
return (re * re + im * im);

}

double alpha2(struct abs *a)
{ double re, im, cO, cl, c2, c3;

cO = a->xi2 - 2 * a->mx - a->dfr; 
cl = 2 * (a->dxi2 - a->xi2);
c2 = a->xi2 - 4 * a->dxi2 + 2 * a->mx + a->dfr;
c3 = 2 * a->dxi2;
re = a->ra[3] * c3 + a->ra[2] * c2 + a->ra[l] * cl +

a->ra[0] * cO; 
im = a->ia[3] * c3 + a->ia[2] * c2 + a->ia[l] * cl +

a->ia[0] * cO; 
return ((re * re + im * im)/2);

}

double alpha3(struct abs *a)
{ double re, im, cO, cl, c2, c3, c4;

cO = 3 * (a->mx + a->dfr) - a->xi2;
cl = 3 * (a->xi2 - a->dxi2 - a->mx - a->dfr);
c2 = - 3 * (a->xi2 - 3 * a->dxi2 + a->mx + a->dfr);
c3 = a->xi2 - 9 * a->dxi2 + 3 * (a->mx + a->dfr); 
c4 = 3 * a->dxi2;
re = a->ra[4] * c4 + a->ra[3] * c3 + a->ra[2] * c2 +

a->ra[l] * cl + a->ra[0] * cO;
im = a->ia[4] * c4 + a->ia[3] * c3 + a->ia[2] * c2 +

a->ia[l] * cl + a->ia[0] * cO;
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r e t u r n  ( a - > x i 2  *  ( r e  *  r e  +  i m  *  i m ) / 6 ) ;

}

double alpha4(struct abs *a)
{ double re, im, cO, cl, c2, c3, c4, c5;

cO = a->xi2 - 4 * a->mx - 6 * a->dfr;
cl = - 4 * (a->xi2 - a->dxi2 - 2 * a->mx - 3 * a->dfr);
c2 = 6 * a->xi2 - 16 * a->dxi2;
c3 = - 4 * (a->xi2 - 6 * a->dxi2 + 2 * a->mx + 3 * a->dfr);
c4 = a->xi2 - 16 * a->dxi2 + 4 * a->mx + 3 * a->dfr;
c5 = 4 * a->dxi2;
re = a->ra[5] * c5 + a->ra[4] * c4 + a->ra[3] * c3 +

a->ra[2] * c2 + a->ra[l] * cl + a->ra[0] * cO;
im = a->ia[5] * c5 + a->ia[4] * c4 + a->ia[3] * c3 +

a->ia[2] * c2 + a->ia[l] * cl + a->ia[0] * cO;
return (a->xi2 * a->xi2 * (re * re + im * im)/24);

}

void trans(struct abs *a)
{ int i, ], j1, j 2, j 3 ;

double ac, be, cc, en; 
for (i = 0; i <= 5; i++)
{ ]  = 0 ;

a->ra[i] = 0;
en = a->ni - i * a->ne;
while (a->x[j+2] < en) {

= 3 + 1;
a->ra[i] = a->ra[i] + (a->y[j1] * (en - a->x[j]) 

+ a->y[j] * (a->x[jl] - en))/ 
(a->x[jl] - a->x[]]) * 
log((en - a->x[j1])/(en - a->x[j]));

j = jl;
}

j2 = j + 2; 
j3 = j + 3;
ac = ((a->y[]3] - a->y[j])/(a->x[j3] - a->x[j]) - 

(a->y[j2] - a->y[j])/(a->x[j2] - a->x[j]))/ 
(a->x[j3] - a->x[j2]); 

be = (a->y[j3] - a->y[j])/(a->x[j3] - a->x[j]) - 
ac * (a->x[j3] + a->x[j]); 

cc = a->y[j] - be * a->x[j] - ac * a->x[j] * a->x[j]; 
a->ia[i] = ac * en * en + be * en + cc; 
a->ra[i] = a->ra[i] + ac * (a->x[j3] * a->x[j3] -
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a->x[j] * a->x[j])/2 +
(ac * en + be) * (a->x[j3] - a->x[j]);

a->ra[i] = a->ra[i] + a->y[a->n] - a->y[j3] + a->y[j] 
- a->y[0] + a->ia[i] * 
log((a->x[j3] - en)/(an - a->x[j]));

3 = ]3;
while (j < a->n) { 

jl = j + 1;
a->ra[i] = a->ra[i] + (a->y[jl] * (en - a->x[j]) 

+ a->y[j] * (a->x[jl] - en))/
(a->x[jl] - a->x[j])
* log((en - a->x[j1])/(en - a->x[j]));

j = jl;
}

a->ra[i] = a->ra[i]73.14;
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