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Abstract

The motivation behind this study is twofold. First to assess the accuracy o f ERS-1 long 

arc ephemerides using state of the art models. Second, to develop improved methods for 

determining precise ERS-1 orbits using either short or long arc techniques.

The SATAN programs, for the computation of satellite orbits using laser data were used. 

Several facilities were added to the original programs: the processing o f PRARE range 

and altimeter data, and a number of algorithms that allow more flexible solutions by 

adjusting a number of additional parameters.

The first part o f this study, before the launch of ERS-1, was done with SEAS AT data. 

The accuracy of SEASAT orbits computed with PRARE simulated data has been 

determined. The effect of temporal distribution of tracking data along the arc and the 

extent to which altimetry can replace range data have been investigated.

The second part starts with the computation of ERS-1 long arc solutions using laser 

data. Some aspects of modelling the two main forces affecting E R S -l’s orbit are 

investigated. With regard to the gravitational forces, the adjustment o f a set of  

geopotential coefficients has been considered. With respect to atmospheric drag, 

extensive research has been carried out on determining the influence on orbit accuracy of 

the measurements of solar fluxes (Pio.7 indices) and geomagnetic activity (Kp indices) 

used by the atmospheric model in the computation of atmospheric density at satellite 

height.

Two new short arc methods have been developed: the Constrained and the Bayesian 

method. Both methods are dynamic and consist of solving for the 6 osculating elements. 

Using different techniques, both methods overcome the problem o f normal matrix ill- 

conditioning by constraining the solution. The accuracy and applicability o f these 

methods are discussed and compared with the traditional non-dynamic TAR method.
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Chapter 1 

Introduction

Since the advent of the first satellites carrying radar sensors, precise orbits have become a 

requisite for the effective exploitation o f data generated by the instruments on board these 

spacecraft. For the first European Space Agency remote sensing satellite (ERS-1) this is 

a major requirement. Launched in July 1991, ERS-1 is the forerunner of a new  

generation o f space missions aiming to make a substantial contribution to the scientific 

study and understanding of our environment. Circling the Earth in a near polar orbit, it 

provides global and repetitive observations o f the environment using advanced 

microwave techniques.

Amongst other instruments ERS-1 carries a Radar Altimeter, which measures the height 

of the satellite relative to the ocean surface with an accuracy of better than 10 cm. To use 

these data for geodetic and oceanographic applications, the satellite's position, in 

particular its radial component, should be known with an accuracy close to that of the 

altimeter measurement itself.

The experience gained with SEASAT showed that for altimetric satellites, global 

ephemerides at decimetre level are possible only if a precise tuned gravity field model is 

available. In the absence of such a model this accuracy can only be achieved over regions 

of intensive tracking using short arc techniques.

The present global gravity field models were derived from tracking data from a number 

of satellites. Although they claim to be global, indeed they are tailored to the satellites 

used in their solution. When applied to the computation of other satellites' orbits with 

different orbital parameters, some coefficients, in particular high degree resonant 

coefficients, may cause significant perturbations. The failure o f PRARE (Precise Range 

and Range Rate Equipment), a new tracking system especially designed for ERS-1, due 

to the fatal damage o f the instrument soon after launch, highly compromised the 

development of a tailored gravity field model for ERS-1. Without PRARE, the only 

tracking data available are laser data, which in general are sparse and with poor 

geographical distribution.

In addition to the gravitational forces, surface forces, in particular atmospheric drag, 

cause large errors on ERS-1 ephemerides. This is due to the fact that part of the ERS-1



28

mission is taking place during a period of high solar activity, making the effects of 

atmospheric drag more significant.

Through the German Processing and Archive Facility (PAP), ESA provides precise 

ERS-1 orbit restitution as an on-line product. Two products have been announced: a 

preliminary solution to be available within ten days of data collection, and a precise orbit 

generated after six months. The quoted accuracy o f these solutions is given in Table 1.1 

(Doherty, 1992).

Table 1.1

Accuracy of ERS-1 orbits provided by ESA

Preliminary Precise

along-track 8.00 m 2.00 m

across-track 2.00 m 0.60 m

radial 1.50 m 0.40 m

ERS-1 generates a series o f near real time products. To analyse these products, the user 

community requires orbital information with suitable accuracy, usually better than the 

preliminary solution mentioned above and as close as possible to real time.

The motivation behind this thesis is therefore twofold:

• To assess the accuracy of ERS-1 long arc solutions (typically o f three days) using 

the state of the art models.

• To develop improved methods for determining precise ERS-1 orbits, using either 

short or long arc techniques.

In this development two main factors are considered. On one hand the solution obtained 

should be as precise as possible, by modelling all known forces affecting a satellite's 

motion. On the other hand, it is aimed to determine solutions that do not depend on data 

that are only available a long time after data collection. In other words the solution should 

be as close as possible to real time.

The software used is the SATAN software package written at the Royal Greenwich 

Observatory, designed for the computation o f satellite orbits using laser data. Several 

facilities were added to the original programs, including the processing of PRARE range
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and altimeter data, and a number of algorithms that allow more flexible solutions by 

adjusting a number o f additional parameters.

At the beginning o f this study ERS-1 tracking data were not yet available. Because it is 

extremely difficult to simulate altimeter data in a realistic way, and given the similarity 

between the two satellites, the first part of this study was done with SEASAT data. The 

tracking data types used were actual altimeter measurements and PRARE simulated data. 

The fact that PRARE will not be able to contribute to the tracking of ERS-1 does not 

invalidate these results, as PRARE ranges are very similar to laser data. The latter still 

have the advantage that the accuracy o f most o f the present lasers is better than the 

assumed PRARE accuracy (7 cm). Despite the delay in the launch o f ERS-1, some 

tracking data were nevertheless available in time to be processed in this project. The last 

part of this study was concerned with the computation of ERS-l's orbit by processing its 

own data.

This thesis is divided into 11 chapters, each one describing a specified topic.

Chapters 2 to 7 describe the necessary background for satellite orbit determination, the 

mathematical tools and developed algorithms. To compute a satellite orbit, it is necessary 

to relate positions of objects on the Earth (station coordinates, geoid) with objects in 

space (the satellite, objects in the solar system); a correct understanding o f the 

relationships between all these quantities is therefore necessary. These relationships, 

concerning time and reference systems commonly used in orbit determination, are 

described in chapter 2. Chapter 3 describes the main characteristics o f the SATAN  

software package used in this study, with emphasis on the new algorithms implemented 

in the programs. A summary of previous studies related to orbit determination for 

altimetric satellites similar to ERS-1 is presented in chapter 4. Chapter 5 describes and 

compares SEASAT and ERS-1 orbits and sensors, with emphasis on the parameters that 

are relevant for orbit determination. The methodologies used for the processing of 

PRARE and altimeter data are described in chapters 6 and 7 respectively. The method 

used for simulating PRARE data is described, as well as the new algorithm developed in 

this study for the processing of altimeter data.

The SEASAT results for the long arc ephemerides are the subject o f chapter 8. First, the 

accuracy of SEASAT orbits using laser and simulated PRARE data is determined. 

Second, the effect o f temporal distribution o f the tracking data along the arc is 

investigated, by using several configurations with only a few passes from one or two 

PRARE stations. Then altimetry data were added to these range data and the extent to 

which altimetry can replace range data was determined.
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The only suitable ERS-1 tracking data available for this study were laser data. The 

altimeter data available were a fast delivery product, with an accuracy not appropriate for 

tracking purposes. The ERS-1 results are described in chapter 9. This study starts with 

the computation o f ERS-1 orbits using laser data and the state of the art models for this 

satellite. Then some aspects o f modelling the two main forces affecting ERS-Ts orbit are 

investigated. With regard to the gravitational forces, the adjustment o f a selected set of 

geopotential coefficients is investigated. With respect to atmospheric drag, extensive 

research was carried out on determining the influence on orbit accuracy from actual 

measurements o f solar flux (F10.7 indices) and geomagnetic activity (Kp indices), used 

by the atmospheric model to compute density at satellite height.

Chapter 10 presents the research carried out on the development of short arc techniques. 

The motivation for this study is the fact that most o f the applications do not require a 

precise ephemeiis over a long arc, but only within a limited region. Two new short-arc 

methods are developed in this study. Both methods are dynamic and involve solving for 

the 6  initial osculating elements. Solving for these 6  elements usually leads to ill- 

conditioned solutions with high correlations between the solved-for parameters. The first 

method, the so-called "constrained" method, overcomes this problem by applying 

constraints to the solved-for parameters. These constraints are dependent on station 

configuration. The second method, called the "Bayesian" method, uses the covariance 

matrix from a previous "a priori" solution, usually a long arc, in a Bayesian least square 

scheme to constrain the short arc. These two methods are also compared with the 

traditional non-dynamic TAR method, whereby corrections to a previous long arc 

solution, along the three directions, along-track (T), across-track (A) and radial (R), are 

solved for and applied to obtain a corrected satellite track.

Finally the main conclusions and recommendations are presented in chapter 11.

ERS-1 orbits computed with state of the art models yield rms range residuals o f 1.5 

metres. Two main forces were found to be responsible for these large residuals. During 

periods o f quiet geomagnetic activity the main errors are from gravitational origin, while 

for periods o f strong geomagnetic perturbations, the main source of orbit error is due to 

drag mismodelling.

The time lag introduced in the geomagnetic Kp indices (TLKP) was found to have a 

strong influence on the orbit adjustment. A difference of 2 hours in the TLKP causes the 

rms o f fit to laser ranges to vary from 1.6 m to only 0.4 m. Hence the use o f Kp data 

with an appropriately adjusted time lag is essential for precise orbit determination.

The influence o f solar flux indices was found to be of slight importance since the 

adjustment o f daily drag coefficients will absorb any existing bias in the indices. As a
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consequence o f this result, predicted values o f the solar flux can be used by just 

modelling the long wavelength component o f their variation, without significantly 

degrading the solution. This prediction can be important if  rapid ephemerides are 

required.

Results with altimeter data for SEASAT have shown that this data type can fill gaps of 

range data as long as two days, provided at least one pass of range data exists at the end 

of the arc. Altimetry is therefore a very useful tracking data type for interpolating, but not 

for extrapolating range data.

The two short arc methods developed in this study produced very precise orbits. For arcs 

of up to 30 minutes the accuracy of these solutions is at decimetre level. For longer arcs, 

up to one orbital revolution, the accuracy gradually diminishes as the length of the arc 

increases.
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Chapter 2 

Earth Rotation, Time and Reference Systems

2.1 Introduction

In satellite orbit determination two types o f reference systems are required. The equations 

of motion are usually written in a quasi-inertial system so that positions and velocities 

refer to this system. Positions of the bodies within the solar system affecting the 

satellite's motion are also given in an inertial system. However the effect of the Earth’s 

gravitational attraction, or the positions of the ground tracking stations, are described in a 

terrestrial system. Consequently a correct understanding o f these reference systems and 

the transformation between them is required. The transformation between an inertial and 

a terrestrial system involves a correct modelling of the Earth's motion relative to fixed 

space.

This chapter reviews the background to the reference systems used in this study and to 

the related earth rotation parameters and time systems used in orbit determination.

2.2 Earth Rotation

The ecliptic is the mean orbit plane of the Earth's movement around the sun; it moves 

slowly due to planetary perturbations. The attractions of the sun and the moon on the 

oblate mass distribution of the Earth cause a movement of the Earth's axis of rotation 

around the pole o f the moving ecliptic. The long period part o f this motion is called 

precession. It is a slow circular motion of the pole with respect to the inertial space with 

a period of about 25,700 years. Superimposed on precession, there is a short period 

motion with periods from 14 days to 18.6 years known as nutation (Figure 2.1).

Both movements are described by the motion of the instantaneous equator and equinox 

with respect to the fixed equator and equinox o f a given epoch. When the effects of 

nutation are removed, the resultant fictitious equator and equinox are called the mean 

equator and equinox of that epoch. When the effects o f nutation are included, they are 

referred to as the true equator and equinox of the date.
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Precession changes the celestial longitude of a point on the Earth by about 50 arcsec per 

year. Nutation affects both celestial longitude and celestial latitude with a maximum 

amplitude of about 2 0  arcsec.

PrecessionPole o f Ecliptic

Pole of Equator

Precession — 
and Nutation

, Ecliptic 

Equator

Earth

Figure 2.1 - Precession and Nutation

In addition to this forced movement, the pole of the Earth has a free motion called polar 

m otion. As defined by the International Earth Rotation Service (lERS), this is the 

motion of the celestial ephemeris pole (the axis o f maximum moment of inertia) with 

respect to a reference point fixed to the Earth's crust (lERS, 1992). This reference point 

is usually selected to be near the average position of the true pole over a certain time 

interval, usually 6  years, and is called the mean terrestrial pole of that interval.

Polar motion includes a strong periodic component with a period of 14 months 

("Chandler term"), another component with an annual period, and a secular trend 

towards west. Usually this motion is described in terms of cartesian coordinates (xp,yp) 

expressed in seconds o f arc (Moritz, 1979). The origin of such a system is at the adopted 

conventional pole, the x axis along the Greenwich Meridian, and the y axis along 

longitude 90°W (Figure 2.2).
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Until 1987, both IPMS (International Polar Motion Service) and BIH (Bureau 

International de l'Heure) published polar coordinates. In 1988, the IPMS and the earth 

rotation section o f the BIH were replaced by the lERS, which is now responsible for 

providing the information necessary to define a Conventional Terrestrial System (GTS) 

and a Conventional Inertial System (CIS).

Pole of Rotation

Conventional Pole

Figure 2.2 - Polar Motion

Since 1968, the pole used to define the Conventional Terrestrial System has been the 

mean pole of the period 1900-1905, also known as the average 1903 pole or the 

Conventional International Origin (CIO). The CIO frame was initially defined by the 

adopted values of the astronomic latitude of 5 observatories of the IPMS, all around the 

39° 08' parallel. Initially, polar motion was determined from latitude and/or time 

observations of stars at a number of observatories. More recently, techniques like VLB I, 

and lunar and satellite laser ranging observations, are being used to determine Earth 

Rotation Parameters (ERP), including polar motion.

2.3 Time systems

2.3.1 Dynamical time

Dynamical time is the uniform timescale that governs the motions of bodies in a 

gravitational field, the independent argument in the equations o f motion of a body 

according to some particular gravitational theory.

There are two types of dynamical time (King et al., 1985):
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• Barvcentric Dynamical Time (TDB) is measured in the most nearly inertial 

system to which we have access through gravitational theory, which has its origin at the 

barycentre of the solar system. A clock fixed on the Earth will exhibit periodic variations 

as large as 1.6 milliseconds with respect to TDB due to the motion o f the Earth in the 

sun's gravitational field. However, in describing the orbital motion o f a near Earth 

satellite we do not need to use TDB, nor account for these relativistic effects, since both 

the satellite and the earth itself are subject to nearly the same perturbations.

• Terrestrial Dynam ical Time (TDT) is the system used for satellite orbit 

computations as observed from the Earth. It is a uniform timescale for motion within the 

Earth's gravity field. It has the same rate as an atomic clock on the Earth. This was 

previously called Ephemeris Time (ET).

32.184 s

0  s

Dynamical Time

Atomic Time

UTC

Figure 2.3 - Relationship between different time systems. Adapted from (King et al., 

1985).

2.3.2 Atomic time

International Atomic Time (TAI) is the fundamental timescale for all the Earth's time 

keeping. It results from analysis by the BIH until March 1985, and since then by the 

Bureau International des Poids et Mesures, o f data from atomic standards o f many 

countries. Its unit is the International System of Units (SI) second. It is a continuous 

timescale and serves as the practical definition of TDT:

TDT = TAI + 32.184 s (2 . 1)
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The Earth's rotation with respect to the sun is slowing down by a variable amount 

which, at present, averages about 1 second per year. In order to create a time system that 

would take this into account. Coordinated Universal Time (UTC) was introduced. It runs 

at the same rate as TAI, but is decreased by 1 second jumps (leap seconds), when 

necessary, normally at the end of June or December each year, so that it is kept within 

one second of U T l. It differs from TAI by an integral number of seconds.

2.3.3 Sidereal time and UTl

The angle o f the Earth's rotation with respect to the true equinox o f date is called 

Greenwich Apparent Sidereal Time (OAST) and is usually designated by 0. Another 

angle is that which describes the Earth's rotation with respect to the mean equinox of 
date. This is called Greenwich Mean Sidereal Time (GMST) or 0^ . The variation of 0j^ 

is due to the rotation of the Earth (o)) and to the precession of the equinox, described by 

the angles (p, and X (Sinclair, 1987).

0 ^*= CO +\i/cos(p - X (2 .2 )

Integrating :

0 ĵ  = constant+J codt +j  (xjfcostp -  % )dt ^2 3 )

The second integral is called the "accumulated precession in right ascension" (M) and is 

given by precession theory. Its value, as given by the lAU (1976) precession model, is:

M = 4612".4362 T + 1". 39656 T^ - 0".00(X)9267 T  ̂ (2.4)

with T in centuries from J20(X).

The integration of the first integral is more complicated because the rate of rotation of the 

Earth (co) is not constant. It varies due to tidal friction (long term variations), to core 

mantle interaction (medium terms), and to seasonal and atmospheric effects (short 
terms). Therefore to calculate this integral, a nominal constant value coq  ̂ non-

uniform timescale. Universal Time (U Tl) are introduced, so that:

/ œ dt = cûQ . T |jpi (2.5)

where Ty^i is a time interval on the UTl scale.
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Thus the UTl definition is (Sinclair, 1987): a non-uniform timescale relative to which the 
Earth has a numerically constant rotation rate of cùq . relative to an inertial frame.

U T l is calculated by

U T 1=U T C  + AUT1 (2.6)

where AUTl = UTl-UTC is determined from actual measurements. It is computed and 

published by the lERS.

Ecliptic t0

Ecliptic tmean equinox t0

^ mean equinox t
Mean equator t0

true equinox t Mean equator t

True equator t

Greenwich Meridian

Figure 2.4 - Nutation and Sidereal time. Extracted from (Sinclair, 1987).

The new expression for GMST adopted by the International Astronomic Union (lAU) in 

1982 is:

GMST = U T l + 6 h 41® 50S.54841 + 8640184*812866 T 

+ 0S.093104 T2 - 6*2  x 10-6 T3 

T = [ JD(UTl) - 2451545.0 ] /  36525 .

(2.7)
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In these expressions U T l is the time of day on the U T l scale from Oh, and JD(UT1) also 

includes the fractional part of the day.

Finally, CAST is calculated by applying to GMST the nutation effect (known as the 

equation o f the equinox):

OAST = GMST + A v  cos( £ + Ae) (2.8)

A\j/ and A£ are the nutation in longitude and obliquity respectively (see section 2.4.3).

2.4 Reference Systems

When dealing with problems of orbit determination, two types of reference systems are 

usually required: an Earth-fixed or terrestrial and a space-fixed or inertial. If this idea is 

very simple, in practice the realisation of such systems and the establishment o f the 

transformations between them is a complex task. In general, each observational 

technique uses different realisations o f both the terrestrial and inertial frames. Since the 

realisation of the MERIT project (Melbourne et al., 1983), an attempt has been made to 

use the same frames (Mueller, 1981), (Wilkins and Mueller, 1986).

2.4.1 Celestial Systems

Ideally a celestial system should be inertial (move through space with a constant 

translational velocity but without rotation) or at least quasi-inertial (without rotational 

motion but its origin may have acceleration). The requirement for an inertial frame is that 

this is the frame in which Newton's laws hold, and any rotation of the frame will appear 

as an unmodeUed coriolis force on the satellite (Sinclair, 1987).

An example of a quasi-inertial frame is a system whose direction with respect to the stars 

remains unchanged and whose origin is at the Earth's centre of mass, as the Earth has a 

curvilinear non-uniform motion around the sun (Moritz, 1979). Such systems are 

realised in practice by various techniques such as: VLB I to extragalactic radio sources, 

observations to the stars, to moon or the planets and artificial satellite tracking. The most 

accurate are the systems determined by VLBI in which the system is attached to 

extragalactic radio sources.

By resolution of the International Association of Geodesy (LAG) and the International 

Astronomical Union (LAU), the Conventional Inertial Svstem TCISl used after 1 January
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1984 is defined by the mean equator and equinox at 12 h TDB on 1 January 2000  

(Julian Date 2451545.0), designated J2000.

Mean ecliptic o f J2000

Geocentre

Vernal
equinox Mean Equator of J2000

Figure 2.5 - J2000 Conventional Inertial System (CIS)

2.4.2 Terrestrial Systems

A conventional terrestrial system is defined by a set o f adopted station coordinates. It 

moves and rotates, in some average sense, with the Earth (Mueller, 1988).

The Conventional Terrestrial System (CTSi is defined with the z axis towards the CIO 

pole and the x axis on the intersection of the equator with the Greenwich Meridian.

The definition o f the CIO and o f the Greenwich Meridian was initially based on the 

adopted coordinates o f the five International Latitude Service (ILS) stations making 

astronomic zenith observations. These were assumed to be motionless relative to each 

other, and without variations in their respective verticals relative to the Earth. Later the 

BIH and more recently the lERS have tried to maintain the same frame for a much larger 

number o f instruments that are also making U T l determinations at a much greater 

number of locations around the world. The new techniques o f SLR, LLR, Doppler and 

VLBI have aU attempted to maintain the same frame by forcing their polar motion series 

to fit into the BIH series. The present CTS is conceptually defined similarly to the CIO- 

BIH system, i.e., it is attached to observatories located on the surface of the Earth. The 

main difference is that these can no longer be assumed motionless with respect to each
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other. The lERS is the entity responsible for the deAnition and realisation of the CTS, by 

combination o f data provided by space techniques presently participating to lERS, 

namely VLBI, LLR and SLR (Boucher and Altamini, 1992).

Mean rotation axis (1900-1905)

Greenwicl 
Meridian I

Geocentre

Mean equator (19(X)-1905)

Figure 2.6 - Conventional Terrestrial System (CTS)

2.4.3 Transformation between CIS and CTS

The relationship between the CIS and the CTS systems is established by an appropriate 

modelling of the precession, nutation, polar motion and UTl-UTC. The first two are 

modelled theoretically because they are forced movements; the last two are determined 

from direct measurements.

The transformation between the two systems is usually performed in four main steps 

(Figure 2.7).

Using vector notation

X X
y = S . N . P . Y (2.9)
z CTS Z CIS

or inversely

X X

Y = P^ S^ y (2 . 1 0 )
Z CIS z CTS
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where

• [ x,y,z ] is the position vector in the CTS.

• [ X,Y,Z ] is the position vector in the CIS.

• P is the rotation matrix accounting for precession between J2000 and the required

epoch.

P = R 3(-Z A )R 2(eA )R lK A ) (2.11)

The matrices R i, R2  and R3 are rotations about the X, Y and Z axis respectively. These 

are orthogonal matrices ^R~  ̂ = R^j of the form;

" 1 0  0 cosa  0  -sina cosa  sina 0

R l(a ) = 0  cosa  sina R2 (a ) = 0  1 0 R 3(a) = -sina cosa  0

0  - s in a  cosa sina 0  cosa 0  0  1

(2 .12)

The rotation angles as given by the IAU,(1976) Theory of Precession, are :

Ça  =(2306’'.2181 + r .39656T -0”.000139T^)t + (0".30188-0".000344T)t^

+  0".017998t^

ZA = (2306".2181 + l'’.39656T -0" .000139T ^ )t +  (r .0 9 4 6 8  + 0".000066T)t^ (2.13) 

+  0".018203t^

6 a  = (2004" .3109-0" .85330T -0" .000217T ^ )t + (-0".42665 -  0".000217T)t^

-0".041833t^

T = [ JD (base epoch) - 2451545.0] /  36525

is the interval in Julian Centuries (36525 days of TDB or TAI), between J2000 and the 

base epoch.
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t = [ JD (current date) - JD (base epoch)] / 36525

is the interval in Julian centuries between base epoch and current date. Usually base 

epoch is J2000, so T=0 and t = [ JD (current date) - 2451545.0] /  36525

CIS
Mean equator and equinox of J2000 

P (Precession) 

Mean equator and equinox o f date 

N (Nutation)

lU s.I
I

True equator and equinox of date 

Sidéral time;
True equator and Greenwich Meridian

Polar motion 

Mean pole and Greenwich Meridian 

CTS

I
Figure 2.7 - Schematic representation of the transformation between the CIS and 

the CTS

• N is the rotation matrix accounting for nutation for the required epoch

N = Ri(-e -Ae ) R3 (-A\i/) Ri(e ) (2.14)

e  = 23° 26' 21". 448 - 46". 8150 T - 0". 00059 T^ + 0". 001813 T  ̂ (2.15)

is the obliquity of the ecliptic. It varies between 22°. 14 and 24°.43 with a period of  

41.000 years.

T = [ JD (date) - 2451545.0] /  36525

A\\f and Ae are given by the nutation theory as sums o f many periodic terms. The 

Theory of Nutation adopted by the lAU  (1980) is based on the Wahr (1981 ) model.
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• S is the rotation matrix accounting for Earth rotation

S = R2 (-xp). R i(-y p ). R3 (0 ) (2.16)

(xp,yp) are polar motion components defining the angular separation o f the z axis of the 

CTS with the axis of the Earth for which the nutation (N) is computed. In the lA U  

(1980) nutation model this axis is the axis o f maximum moment o f inertia. The 

correspondent pole is referred as the Celestial Ephemeris Pole and differs from the 

instantaneous axis of rotation by small quasi-diumal terms. The polar motion angles are 

computed and distributed by the lERS. 0 is Greenwich Apparent Sidereal Time (OAST) 

and is calculated as indicated in section 2.3.3.
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Chapter 3 

Orbit Computation

3.1 Introduction

Satellite orbit computation is a complex exercise requiring expert knowledge in a wide 

range o f subjects, from celestial mechanics to numerical analysis. The development of 

computer programs for the computation o f satellite ephemerides is therefore a difficult 

and time consuming exercise. Large software packages have been developed at 

specialised centres such as the GEODYN program at the Goddard Space Flight Center 

(GSFC). However a very large computer is needed to run GEODYN, and setting up and 

running the program involves a considerable amount of effort. The software employed at 

University College London is the satellite analvsis (SATAN) package of programs 

written by A. T. Sinclair and G. M. Appleby at the Royal Greenwich Observatory 

(RGO). This is a much more compact package of programs which run on a much smaller 

computer. During this project they were implemented on a jiVAX 2000 computer, with a 

single precision of 7 to 8 figures and a double precision of 16 decimal places.

This package was used as a starting point for this thesis, and was subsequently adapted 

and expanded to meet the specific needs of this project. This chapter gives a brief 

description of this software, with more detailed information on the new algorithms added 

to the programs.

3.2 The SATAN Programs and Software Development

The SATAN package consists of two main programs: ORBIT and RGODYN (Sinclair 

and Appleby, 1986). The first computes satellite position and velocity at specified dates 

by numerical integration of the equations of motion. The second determines corrections 

to the parameters that define the orbit by fitting it to laser observations.

Throughout this study several facilities were introduced into the programs:

- Solution for multiple drag coefficients

- Solution for orbital elements of initial position and velocity instead of cartesian 
coordinates

- Solution for a user selected set of geopotential coefficients
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- Possibility of applying constraints to the solve-for parameters

- Bayesian least squares solution in addition to conventional least squares

- Processing o f PRARE range data

- Processing of altimeter data

3.2.1 Program ORBIT

Program ORBIT performs the numerical integration of the equations of motion (Sinclair, 

1988):

r  = f ( r,  r . t )  = rg + rb + ra + rrp + rtides (3.1)

where

- acceleration due to the Earth's gravitational field

Tb - acceleration due to third bodies (sun, moon and planets )

- acceleration due to atmospheric drag

^rp - acceleration due to radiation pressure
%
^tides - acceleration due to solid earth and ocean tides

The integration method used is an eighth order Gauss-Jackson method with an iterative 

starting scheme. Given the position and velocity at an initial time ti, the starting scheme 

calculates the position and velocity for the next 8 points t2 , . . . ,  ig. For a subsequent time 

tio, the position and velocity are calculated as functions of the previous nine values and 

the total acceleration at time tiQ.

The step length is fixed for each integration. This limits the use o f the programs to 

satellites of low eccentricity. For each satellite, the step length should be selected to give 

the required accuracy. It has to be short enough to cope with the short period 

perturbations caused by the high order tesseral harmonics of the gravitational field.

The celestial reference frame used for the integration is the equator and equinox of J2000. 

However, the acceleration due to the gravitational field has to be calculated in a terrestrial 

reference frame (the real equator of the Earth, as defined by the geopotential coefficients). 

So, at every step of integration, the satellite position is transformed to the terrestrial 

reference frame and the acceleration is evaluated. The acceleration is then transformed to 

the J2000 frame for the numerical integration. The rotation matrices used in the
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transformation between the two systems are those o f the FK5 system: lA U  (1976) 

precession, lAU (1980) nutation, and lAU (1982) sidereal time as described in section 

2.4 .3 .

The timescale used is an atomic timescale that is equal to UTC at the starting epoch of 

integration (called ATC). So ATC is calculated by subtracting from TAI the leap seconds 

that occurred until the starting epoch, but if  a leap second occurs during the span of the 

integration, it will not be applied.

The program also calculates the partial derivatives o f satellite position and velocity with 

respect to the solve-for parameters that affect the orbit. These partial derivatives are 

necessary for subsequent use in RGODYN to fit the orbit to observations. In its 

original form the program included the calculation of the partial derivatives with respect 

to the initial state position and velocity vectors, a drag coefficient and its rate of change, 

solar radiation coefficient and the product CM. The main modifications introduced into 

this program were the implementation of the solution for multiple drag coefficients and 

for a selected set of geopotential coefficients.

The force model used, described in section 3.3, is the recommended one in project 

MERIT standards (Melbourne et al., 1983), and includes effects due to :

• The Earth's gravitational field

• Gravitational attraction of the sun, moon and the planets

• Atmospheric drag

• Radiation pressure

• The solid Earth and ocean tides

3.2.2 Program RGODYN

For most of the applications, the accuracy achieved when computing an orbit by simple 

integration of the equations of motion is not sufficiently good. This is due to the inabihty 

of the force model to describe accurately the forces that act on a satellite. In practice, the 

satellite is tracked from a number of stations on the Earth, and orbital parameters are 

estimated by fitting the orbit to observations.

In its initial form, RGODYN performed the adjustment of the orbit to laser observations 

only. The processing of PRARE range and altimeter data has been added to the program, 

allowing any combination o f the three data types. The program takes each observation 

(O) in time, computes a corresponding quantity (C), according to initial conditions, and 

forms the "0-C" residuals. In addition, it computes the partial derivatives of the 

observed quantity with respect to the solve-for parameters, and adds their contribution to
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the normal equations. After all observations have been processed, the normal equations 

are solved to derive corrections to the initial parameters. In this way, an updated set of 

parameters is determined.

The least squares procedure implemented in RGODYN was the traditional method of 

"observation equations" described in section 3.4.1. This algorithm assumes that there is 

no "a priori" information on the initial set of parameters. When such information exists, it 

may be used to help to constrain the new solution. Hence, the Bayesian Least Squares 

technique described in section 3.4.3 was also implemented in the program.

The new formulae implemented in RGODYN for the partial derivatives of PRARE Range 

and altimeter data with respect to satellite parameters are presented in section 3.5. The 

algorithms for the computation of the computed (C) values are described in chapter 6  for 

PRARE and laser range data, and in chapter 7 for altimeter data.

3.3 The Force Model

3.3.1 The Earth's Gravitational Field

The Earth's gravity field, expressed as a potential, the geopotential, W, at a point 
(r, q>, X), can be written as:

W = V + 0 (3 .2)

0  is the centrifugal potential, due to the Earth's rotation, which for points outside the 

Earth is nil.

For a satellite at a distance r the only component of W that needs to be considered is the 

gravitational potential V. The distribution of density within the Earth departs considerably 

from radial symmetry. Therefore, gravitational attraction varies with latitude and 

longitude, in addition to the geocentric distance (Sinclair, 1988):

P f [sin*]

(3.3)

GM

i  = 2  m=1

X  X  C^mCos mX + S^m sin mA, r o P^m [sin*]
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where:

G - universal gravitational constant 

M - mass of the Earth 

<|) - geocentric latitude 

X - longitude

r - geocentric distance to the satellite
P^, - Legendre and associated Legendre polynomials

j£- zonal coefficients

Qm» - normalised tesseral coefficients 

ro - equatorial radius of the Earth 

K^m - normalising factor (m?K))

and

An alternative notation is to omit the zonal terms explicitly, and include them in the 

tesserals by summing from m=0 to £. Then,

Q o  (3.5)

K ^ o = V T 7 T T  ( 3 . 6 )

The J's represent the variation of the gravitational field with latitude; the C's and the S's 

with latitude and longitude. The predominant effects are from the lower order zonal 

harmonics. The largest asymmetries are due to the equatorial bulge and the pear shape 

of the Earth.

In the SATAN programs, the Earth's gravitational potential is input as a set of normalised 

coefficients which can be specified to any degree and order.

The satellite acceleration due the Earth's gravitational field is:

]Tn — (3.7)

In program ORBIT the computation o f r g  follows a method by Merson and Odell 

(1975) and modified by Sinclair (1988). Merson and Odell derived expressions for the



50

acceleration caused by the gravity field using a set of axes in which the XY plane is the 

true equator of date, and the X axis points towards the equinox o f 1950.0. Sinclair 

rewrote Merson’s formulae by redefining the system of axes so that the X,Y plane is the 

earth fixed equatorial plane, and the X axis points towards the Greenwich meridian. 

Using this system of axes the acceleration due the gravity field can be written as:

Xg = -A X  + P 

Ÿg = -A Y  - Y 

Zg = -A Z  + B

(3 8 )

where

A =
rr (1 ) t  rr ( m+11, \

1 " [— ] P f+1 ■‘‘ X  ["Fj ^ ^ + 1
^ = 2  ^ = 2  m=1

_ G M
P  =

~  « fr ( m ) /  \
X  X  ^  L ~ H  ^ ^ ' " P m -1 )

i —2. m=1
(3.9)

*" K. Fr (m)  / \
% (C ^ n'P m -r

i  —1  m=1

B =_ G M r r ^ l ^  (1) c rr I t  i m + 1)/ \
X  [ t j  ■*' X  X ^ ^ " ’ [t ' ] ^ ^  ( S ^ m P r n )

^ = 2 ^  = 2  m=1

In these formulae all the symbols are as described in equation (3.3) except for:

a m =  cos* (̂j) cos m X

m
P ^ = c o s  <j)sinmX

(3.10)

The coefficients , pm are computed by recurrence relations. The  ̂ are functions 

o f sin<{)but differ from the associated Legendre polynomials P^m(sin<| ) ) .  They are 

defined as:

GOs'̂ it)
(3.11)
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and computed using a method described by Sinclair (1988).

3.3.2 The Direct Attraction of the Sun, Moon and the Planets

The Earth is not the only body to affect satellites' motion. The sun, the moon and the 

planets also affect satellites' orbits. The direct attraction o f the moon is the most 

significant effect. Although the sun is more massive, it is also much farther and therefore 

its effect is less.

The perturbing acceleration due to a "third body" is (King et al., 1985) :

rb- r  rb
Tb = Gmb

rb- r
3 3

Tb
(3.12)

where

rb - geocentric position vector of the third body 

r  - geocentric position vector of the satellite 

my - mass of the third body

The geocentric position vectors of the sun, moon and the planets are calculated by 

interpolation on ephemerides published by the Jet Propulsion Laboratory (JPL).

The programs include perturbations by the Sun, Moon, Venus, Mars, Jupiter and Saturn.

3.3.3 Atmospheric Drag

Atmospheric drag is a force which arises from the friction between the satellite surface 

and the surrounding atmosphere. Due to this effect, the satellite loses energy which 

results in secular changes in the semi-major axis a and in the mean anomaly M.

For low satellites such as ERS-1 or SEAS AT, the drag acceleration is given by:

(3.13)rd - - 1 Cd p  A  Vrel ^

where:

p - atmospheric density 
C j - drag coefficient

V - satelhte velocity
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Vre I-satellite velocity relative to the atmosphere = V - Vatm 

A - satellite cross sectional area 

m - satellite mass

Since the air density decreases rapidly as height above the Earth increases, the effect of 

air drag is predominant at low altitudes. A satellite in an orbit o f appreciable eccentricity 

is mostly affected within a small section of the orbit where it is closest to the Earth. To a 

first approximation therefore, the effect of air drag is to retard the satellite as it passes the 

perigee, with the result that it does not swing out so far from the Earth at the subsequent 

apogee (King-Hele, 1964). From this perturbation results that the apogee height is 

reduced while the perigee height remains almost constant, and so the orbit becomes more 

circular.

For satellites at heights below 500 km this is the dominant of the surface forces. Above 

this height, radiation pressure makes itself felt, and above 700 km it may become more 

important than atmospheric drag. Actually, these figures vary with the phase of the solar 

cycle, since the atmosphere expands or contracts with solar activity. At sunspot 

minimum, the effect of radiation pressure becomes comparable with that of atmospheric 

drag at about 600 km, while at sunspot maximum it does not become so below 1 1 0 0  km 

(Jacchia, 1965).

Several difficulties exist in modelling the drag force (Moore, 1987):

- The effective cross-sectional area is very difficult to describe as most of the 

satellites have irregular shape.

- To know the velocity of the atmosphere relative to the satellite, it is necessary to 

know the velocity o f the atmosphere relative to the geocentre. The atmosphere rotates 

west-to-east with some north-south rotation.

- Various atmospheric density models of increasing complexity have been derived. 

The density of the atmosphere at satellite height varies due to a variety o f phenomena. 

The main types of variations are a diurnal and an annual variation and variations due to 

solar and geomagnetic activity. This subject is discussed further in section 9.4.2.

The original SATAN programs used a linear model for modelling the drag coefficient, 
i.e., it included a constant Cd and its rate of change C j :

»» 2

rd = " ^  ( Cd +Cd ) p Vrel (3.14)

The option to solve for multiple drag coefficients has been introduced into the programs. 

The algorithm is explained in section 3.6. Atmospheric density is computed using
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Jacchia's atmospheric model (Jacchia, 1972), with an efficient procedure for its 

evaluation (Oliver, 1982).

3.3.4 Radiation Pressure

The radiation incident on a satellite produces a repulsive pressure upon its impact on the 

spacecraft equal to the difference between the incident and reflected momentum flux. This 

radiation can be the directly emitted solar radiation, the radiation reflected by the Earth 

and its atmosphere (albedo) or the infrared radiation (IR) emitted by the Earth and its 

atmosphere. The dominant effect is from the direct solar radiation.

The acceleration due to the direct solar radiation pressure is given by Melbourne et al., 

(1983):

=  V P s  c ,  A  i : ^ s
m _  _  3 (3.15)

r -  r s

where:
V = 0 when the satellite is in the Earth's shadow

V = 1 when it is in sunlight 

0 < V < 1 if  it is in the penumbra region.

V -  eclipse factor

Pg - solar radiation pressure constant = 4.5605x10"^ Newton/m^

Cj- - reflectivity coefficient depending on the reflective properties of the satellite 

A - cross sectional area of the satelhte on which radiation falls

, r  - geocentric position vector o f the sun and the satellite 

m - satelhte mass

Passage through Earth's shadow is modelled using a cylindrical model for a spherical 

Earth. A  penumbra effect is included by using a sinusoidal shadow function.

A first order model for the Earth's albedo and infrared radiation pressures is given by 

McCarthy and Martin (1977). According to this model, the acceleration on the satelhte 

due to radiation from an Earth's surface element dS is (Wakker et al., 1983a):

^ a lb e d o + I r CrY Pscose + Fir] ~  cB
L -  m _  _  3 (3 . 16)7C

r -  r se

where:
Cr - direct solar radiation scaling factor
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y  - albedo o f the surface element 
Pg - solar radiation pressure constant

Fir - force exerted by the infrared radiation emitted by the surface element (emitted 

flux/velocity of light)

0  - angle between the surface element's normal and the sun 

a  - angle between the surface normal and the satellite 

A - satellite's cross-sectional area (as viewed from the Earth's surface element) 

m - satellite mass

Tse , r  - geocentric position vector of the surface element, and the satellite

The values o f Fir and y at a surface element are interpolated from tables based on Haar 

and Suomi (1971). The total acceleration produced on the satellite is computed by 

integrating the equation over the whole Earth surface visible to the satellite. This is done

by dividing the visible surface into 13 different area elements grouped about the sub­

satellite point The contributions of these areas are summed to yield the total acceleration 

due to albedo and IR radiation.

The effects o f radiation pressure are most visible on the semi-major axis, a, and 

eccentricity e, but, unlike atmospheric drag, can either increase or decrease the orbital 

parameters. The effect is dominant for satellites at heights above 1000 km.

One o f the main difficulties found in modelling the effects of radiation pressure is the 

computation of the area to mass ratio because the area exposed to the radiation for non- 

spherical satellites varies along the orbit.

Effects o f direct solar radiation pressure. Earth's albedo and infrared radiation are 

included in program ORBIT.

3.3.5 The Solid Earth and Ocean Tides

In section 3.3.2, it was explained how the gravitational attraction of the sun and moon 

causes the precession and nutation movements, which are movements of the Earth as a 

whole. Because the Earth is not perfectly rigid, the changes in the attractions o f the 

disturbing bodies also produce small movements or tides which vary from place to place. 

The joint attractions o f the sun and the moon cause displacements of the matter in the 

interior, oceans and atmosphere of the Earth. These tidal deformations cause a periodic 

rearrangement o f the Earth's mass, which in turn alters the Earth's gravitational 

attraction, inducing additional accelerations on a near Earth satellite.
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Solid Earth tides

The potential exerted at a point on the Earth's surface by an external body at a distance ry 

from the geocentre is (Melchior, 1978):

o o  n
U = Qnb % ----- Pn (cos 6 ) (3 17)

0  - angle between the geocentric position vector o f the point and the geocentric 

position vector of the perturbing body 
ro - Earth radius

ry - geocentric distance of the perturbing body 

my - mass of the perturbing body

Considering only the second order term,

2

Ü2 = Gmb — —  P 2 (cos 0 )

r b

For a purely elastic Earth, the deformations due to tides cause a variation in the Earth's 

gravitational potential equal to:

AV = k2 U2 (3.19)

where k2  is the nominal second degree Love number.

The Love numbers (h and k) are dimensionless parameters introduced by Love in 1909 in 

the theory of spherical elasticity. In 1912, Shida introduced a third number £. These three 

numbers allow a very practical representation of all deformation phenomena produced by 

a potential which can be developed in spherical harmonics (Melchior, 1978).

At the satellite (geocentric distance r) the potential due to the tidal deformation is given by 

Dirichlet's theorem:

AV = r 0
3 5

k2 U2 = —Y  ( 3cos 0  - 1 ) (3 .2 0 )
r ry

The higher order terms in the potential have little influence on the satellite because their

n + l
r ft

amplitude quickly decreases with
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The perturbing acceleration due to the tidal induced potential AV, caused by either the sun 

or the moon, is equal to grad (AV) and is given by King et al. (1985):

^et -
k 2 G mb r o
^ 3 4  
2 r b r

( 3 - 1 5  coŝ G ) — + 6 cos 0 ^  
r rb

(3.21)

Using this simple model, the total acceleration due to solid Earth tides is obtained by 

writing this equation for the sun and the moon and adding the two accelerations.

Actually, Love numbers are not constant but depend on frequency due to resonant effects 
produced by the Earth's liquid core. So, in the expression of AV, k2  should be replaced 

by a set o f coefficients k2 m multiplying the different frequencies. The effects due to 

frequency dependence of Love numbers are usually expressed in terms o f corrections to 

the Earth's gravitational potential coefficients.

The model implemented on the programs is the MERIT recommended model for solid 

Earth tides (Melbourne et al., 1983, Appendix 5). The effect is calculated in two steps: 
first, the perturbed acceleration is computed considering a frequency independent k2 , 

using equation 3.21; secondly, corrections for the error that arises from using k2  are 

applied to the geopotential coefficients.

Ocean tides

The effect due to oceanic tides is more complicated to model than for solid Earth tides. 

Schwiderski (1980) gives one such model in which the tidal constituents are expressed in 

terms of spherical harmonics. This is the MERIT recommended model for ocean tides 

and it is implemented as periodical variations in the geopotential coefficients (Melbourne 

et al., 1983, Appendix 6 ).

Station tidal displacement

The total displacement o f a station on the Earth's surface due to the solid Earth tides is 

computed using Wahr's theory, where only the second degree tides are needed for a 

centimetre level precision (Melbourne et al., 1983). This formulation uses frequency 

independent Love and Shida numbers. The formula for the vector displacement is 

(Melbourne et al., 1983):

1=2 M r j

-

2 .

4  Ÿ 7 )
2

r
r

(3.22)
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mj - mass of moon (j=2) or the sun (j=3).

M - mass of the Earth

t j - geocentric position vector of the moon or sun 

r - geocentric position vector of the station 
h2  - nominal second degree Love number = 0.6090  

I2  - nominal Shida number = 0,0852

The station's tidal displacement is of the order of 50 cm. Hence it has to be modelled and 

applied when processing the tracking data acquired at a particular station. This formula 

gives the deformation to about 2 cm precision. A correction can be applied to account for 

the error introduced by using frequency independent Love numbers. This correction is 

maximum at 45° latitude, with an amplitude of 1.3 cm (Melbourne et al., 1983). 

Therefore it is neglected in this study.

3.4 Least Squares

3.4.1 Observation equations

The procedure of the best estimation of orbital parameters by least squares is explained 

(Cross, 1983).

Let us consider the theoretical relationship between the observed quantities and the 

parameters:

f (X') = i' (3.23)

V - vector of the true values of the quantities to be observed (e.g. range)

X' - vector of the true values o f the parameters to estimate (e.g. orbital 

parameters).

In practice there is no access to these true values, but only to approximate values X© 

(calculated) and I (observed) of X and V respectively. Hence corrections x and v have 

to be determined, so that:

X' = Xo + X

» . (3.24)
V  -  i  + V
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Note the use o f capital letters to mean parameters (X) and lower case letters to mean 

corrections to the parameters (x). This notation was followed for simplicity to avoid the 

use of differential notation for corrections.

The relationship between parameters and observations can be rewritten:

f ( X o  + x) =  ̂ + V (3.25)

Usually these equations are not linear. Linearisation can be obtained by expanding f in 

a Taylor series and retaining only the first order terms:

f ( X o )  +  Æ . X =  ^  +  V 
8X

(3.26)

or :

In matrix form

â f _ .  X =  \ l ~  f( X o ) l  +  V
ax

(3.27)

A X =  b  +  V (3.28)

where A is the matrix of the partial derivatives (for m observations and n parameters):

A =

8 x1 8 x2

8 f 2  8 f 2

8 xi 8 x 2

8 ^  8 fm 
8 xi 8 x 2

A
8 xj

8x,

8f m
8x,

f =

h '

h

fm

(3.29)

and b is the vector of the "observed minus calculated" residuals:

b = £ -  fOio) (3.30)

The least squares estimate for x is defined as the solution which minimises:

vT W V = minimum (3.31)

- 1
where W = and is the covariance matrix o f the observations. For uncorrelated 

observations, W is simply a diagonal weight matrix:



w =  d i a g . ( w i , W2  W m )

VA/ i =  _S2o
a
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(3.32)

a i - standard deviation of observation i

Go - standard deviation of unit weight, usually unknown

The least squares solution for x, X , is given by the solution o f the normal equations:

(AT W A ) X = aT W b (3.33)

which is:

X = (AT W A )-1 AT W b (3.34)

The symmetric matrix N = aT W A is called the normal equations matrix.

The residuals after the fitting process are given by:

V = A X - b (3.35)

The sum of the squares of the weighted residuals after fitting can easily be computed by:

vT W V = bT W b - xT  N X (3.36)

The covariance matrix for the parameters is:

(3.37)

C î = c l  N -' =

^ 1  ^ 1 2

2
<^21 ^ 2

_^nl

Giu

^ 2 n

The covariance matrix for the residuals is:

Cv= Oo^ ( W-1 - A N-1 aT )

The covariance matrix for the estimated observed quantities is:

C 2=  Go^( A N-1 aT ) =G o^ W-1 - Cv

(3.38)

(3.39)

Standard error of unit weight:
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^0 =
V W v

m - n
(3.40)

Orbit determination is usually an iterative process where the procedure explained above is 

repeated the number of times necessary for the corrections to become negligible. In fact, 

at step 1 we have:

and at step n:

b o  =  ^  -  f(X o)

X 1 =  (AT W A )-1 a T  W b o

Xi = Xq + x i

b n -1 -  ~ f(Xn -1 )

Xn =  (AT W  A )-1 a T  W b n -1 

Xn = Xn-1 + Xn

(3.41)

(3.42)

3.4.2 Observation equations with added constraints

The method explained in the previous section applies when, for each equation, there is 

only one observed quantity (e.g. range or range-rate) and all the parameters are assumed 

to be independent. If some o f the parameters are not independent but are subject to r 
equations of condition, which in the linear form are written as:

C X = d (3.43)

the least squares solution for x is the solution of the normal equations (Allan, 1993)

(3.44)

where k are auxiliary parameters, the Lagrange multipliers. The standard error o f unit 

weight becomes

2 V W V

a'̂ wa X A'̂ Wb

c 0 _ k d

^0  = m - n +r (3.45)
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where (m - n + r) is the number o f redundant observations. This algorithm is used in 

Chapter 10 to apply constraints to parameters in short arc solutions.

3.4.3 Bayesian Least Squares

The procedure explained in section 3.4.1, the so-called traditional Least Squares, 

assumes that there is no particular information on the initial set o f parameters Xq. 

However, sometimes these parameters come from a previous solution with an associated 

covariance matrix, and it may be useful to use this “a priori” information to constrain the 

new solution.

Let Xq be the initial set of parameters, 8% the associated “a priori” covariance matrix and 

Wx=Bx"^ ■

The Bayesian solution for X is the solution for which

vT W V + (X - Xo)"*" Wx (X - X q ) = m i n i m u m  (3.46)

In statistical terms, the Bayesian solution is the solution which maximises the “a 

posteriori” density function (Eddy et al., 1990)

p ( X / ^ ) = E ( ^ k ^  (3.47)

where

p(^) - probability density function for data vector ^

p(^/X) - conditional density function for data vector given that vector X has

occurred

p ( X ) - “a priori” probability density function for parameter vector X

p(X/^) - “a posteriori” conditional probability density function for parameter

vector X, given that vector data i  has occurred.

M aximising p(X/^) is equivalent to maximising the product p(X). p(^/X), because p(^) 

is a constant valued function.

Assuming that p(X) and p(X/^) are normal distributions:

(3.48)P(X) = 5 î l ^  exp

2 p "

1 (X o-X )^ W x (X o-X )
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2 p
m

- 1_ v \ v  V
(3.49)

where all quantities are as defined above, n is the number of parameters, m the number 

of observations and W = C“1 (C - covariance matrix of the observations i).

So, maximising the a posteriori density function p(X/f) is equivalent to maximising the 

product p(X) . p(^/X) and thus, to minimise:

vT W v + (Xo -X)T Wx (Xq -X) 

Considering an iterative process, we have at step n: 

b n -1 = (. - f(Xn-1 )

V = A Xn - bn-1 

The Bayesian solution for Xn is the solution for which

vT W V + (Xn - Xq)T Wx (Xn - Xq) = minimum

The covariance matrix for the parameters is:

Cx -  a . A WA + Wx

-  1

(3.50)

(3.51)

(3.52)

and is given by

Xn = [ aT W A + Wx [AT W bp-l + Wx ( Xq - Xn-l) ] (3.53)

Xn = Xn-1 + Xn

(3.54)

and the standard error of unit weight is:

2 V W v + ( Xn-Xo) W x( Xn-Xo)

m-n
(3.55)
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3.5 Partial derivatives

In order to form the normal equations, the partial derivatives o f the observed quantities 

with respect to the solve-for parameters have to be computed for all data types.

If /  is an observed quantity at time t, and p is a satellite solve-for parameter, usually I is 

a function of p through satellite state vector Q = [ X , Y, Z, X, Ÿ, Z ] at time t, i.e. there 

are functions g and h such that :

i  =  h ( Q )

(3.56)
Q = g (P)

The computation of

d i _  d£ dQ

a?  = ^  • a?  (3.57)

can then be separated in two parts: the part which is independent of the data type , ^ ,dp
and the part which is different for each data type, ^  .

dQ

Unless specified, it is assumed that all coordinates are referred to an inertial system 

which in the case of program RGODYN is the J2000 system.

3.5.1 Partials of satellite position and velocity with respect 
to solve-for parameters

The partial derivatives of satellite position and velocity at a given time t, with respect to
r)0

various parameters, —  , are computed by program ORBIT by numerical integration, 
dp

Considering the equations of motion in the form.

X = f ,(x , Y, Z, X, Ÿ, Z, P i ,  t)

Ÿ = f2(x, Y, Z, X, Ÿ. Z, Pi, t) (3.58)
Z = f)(x , Y, Z, X, Ÿ, Z, Pi, t)
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the differential equations for the partials are derived by forming the partial derivatives of 

the equations of motion and rearranging (Sinclair, 1988) :

dt' 3pi dp

d̂ 0f2
dt' 3pj 3pi

d̂ afa
dt' api api

ati ax  ̂ afi ar  ̂ az  ̂ afi ax av  ̂ az 
exp âx api ar ap, az apj ax P̂i av az P̂i

+ 8Ÿ + ËÎ2 az
exp SX api ar api az api ax P̂i aV P̂i az

+ ^̂ 3 ax , aŸ , 3Î3 az
exp Bpi av api az api ax api av api az api

(3.59)

The computation o f the partials of f with respect to X ,Y ,Z is done using formulae 

described by Sinclair (1988). For every solve-for parameter the explicit partial derivatives
afi]
—  must also be calculated. The partials of position and velocity with respect to

the required parameters are then obtained by integrating these equations. Since the 

dependence o f f  on velocity is weak, usually only the partials with respect to position are 

computed. These partials are only needed to low accuracy because the correction 

procedure is only accurate to first order.

In the original programs, the parameters considered were the start vector in terms of 

cartesian coordinates Q q = [ Xq, Yq, Zq, Xq, Yq» ^  1» Ihe constant GM and the drag

and solar radiation coefficients. Two major modifications have been introduced into the 

programs: solution for a selected set of geopotential coefficients and for the start vector in 

terms of orbital elements instead of cartesian coordinates.

Solution for start vector in terms of orbital elements

Solving for the start vector in cartesian coordinates is the usual practice, especially when 

using numerical methods to integrate the equations of motion. However, sometimes it is 

convenient to solve for the start vector in terms of orbital elements, instead o f cartesian 

coordinates, as correlations between the parameters are more meaningful.

Let Eq be the start vector in terms of orbital elements :

Eq”  (^o » ^o » Ô ’ ^ o  ’ ®o » ^ o  ) (3.60)



65

where a - semi-major axis 
e - eccentricity
i - inclination
M - mean anomaly
CO - argument of perigee
n  - right ascension of ascending node

For near circular orbits there is a high correlation between M and co, and in this case it 

may be advantageous to use the following equivalent set of elements :

Eq— (&0 » » ô ’ ^ o  ®o » ®o ’ ^ o  ) (3.61)

In any case

dQ dQ dQo

dEo dQo 3Eo
(3.62)

ao
-zr- is computed by numerical integration as explained above. 
dQo

aO)
The formulae for -zr- in the case Eq= (&o » ®o ’ ô » ^ o  > ^o > ^ o  )> I^e usual 6 orbital 

aEo

elements, are well known from Kaula (1966). When the modified set of parameters given

dOo
in (3.61) is used, the matrix of the partial derivatives in equation (3.62) have a

aEo

slightly different form.

Let A be the matrix of the partial derivatives of the start vector in terms o f position and 

velocity Q q = [ X q, Y q , Zq , Xq . Ÿo» ^  ] with respect to the 6 osculating orbital 

elements E o= (^o , Cq , io , Mq , cOq > ^ o  )•
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A  =

"ax a x a x a x

aa de ai aM d(û a n
a y a y

da de ai aM d(û a n
a z a z a z a z

da de ai aM dCû a n
a x a x a x a x a x a x

da de ai aM dcû a n
a t aŸ aŸ aŸ
aa de ai aM d(û a n
a z a z a z a z a z

.da de ai aM dcû a n .

(3.63)

The subscript "o" was omitted in the matrix to avoid heavy notation. The corresponding 

matrix B of the partial derivatives of Q o = [ X q, Y q, Zq, Xq, Ÿo» ^  ] with respect to

Eg= (&o » Ô » Ô ’ ^O ®0 ’ ®0 » ^O )

A  =

"ax a x a x a x a x a x ax"
aa de ai aM acû aM a n
a y a y a y Ü a y a y
aa de ai aM acû aM a n
a z a z a z a z
da de ai dM acû aM a n
a x a x a x a x a x a x a x

da ae ai aM aco aM a n
aŸ aŸ aŸ aŸ aŸ aŸ aŸ

da de ai aM aco aM a n
a z a z a z a z a z a z a z

_aa de ai aM aco aM a n .

(3.64)

This form of the start vector in terms of the 6 modified osculating elements is used in 

Chapter 10 in short arc computations.

A djustm ent o f geopotential coefficients

As explained above, the inclusion of more solve-for parameters requires the computation 

of the explicit partial derivatives of the acceleration f  in equation (3.58) with respect to
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these parameters. In the case of the geopotential coefficients these partials are derived by 

differentiating equations (3.8) with respect to each coefficient:

Partials with respect to zonals :

3fl X

(3.65)

dJ^ dJ^ dJ^

Partials with respect to fesserais C/m

= .  X + -Ê Ê -
ac^m ac^m

ai2 _ _ d/K Y _
aC^m aC^m aĈ rn

afs _ ^ ̂  dB

(3.66)

ac^m ac^m ac^m

Similar expressions hold for the partials with respect to S^m, hy just replacing Q m  by 

S^m in the above equations.

Denoting by H the common factor:

£

(3.67)3
r

the partials of A, B, P and y with respect to each coefficient can be expressed as:

cA _ Lj
dJ£ = -H P^+1

^  = -H  r p V '
dJ(

AA ( m + 1 )  ;^A ( m + 1 )
—  = H P^+1 am  # -  = H P^+iy'  ̂ t " .Cl-1 rrn
^£m  db^m (3.68)

ac^m as^m m
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^  = H r m ^  = H r m K fn P ^ ’ prn-l

^Y =_ ^P 
3S^rn 3Ĉ rn

These partials are first computed in the terrestrial system and then transformed into the 

J2000 system by using the appropriate transformation.

3 .5 .2  Partials of the observed quantity with respect to satellite 
position

In this study, three different tracking data types were used: laser, PRARE and altimeter 

observations. These data types are described in Chapters 6 (laser and PRARE) and 

Chapter 7 (altimetry). This section gives the formulae for the partial derivatives o f these 

quantities with respect to satellite position. All the partials with respect to satellite velocity 

are zero, since none of these observed quantities is a function o f velocity.

Partials o f R ange (Laser or PRARE)

Range vector from station T to satellite S :

R = S - T (3.69)

i= [ X s ,  Ys.Zsl 

T = [ Xy, Yy, Zp ]

Range distance :

R = [(X s -Xt )2 + (Ys -Yt )2 + (Zs -Zt )2 ]1 '2  (3.70)

Partials of range with respect to satellite cartesian coordinates:

an Xs- Xt
axs R 

3R Ys- Yt

5Ys R
9R ^ Z s- Zt 
aZs R

(3.71)
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Partials o f  altim eter height

Partials of h with respect to satellite geocentric coordinates X, Y, Z :

= costp cosX
ax

^  = COSÇ sinX (3.72)

ah
-  =sm<p

where (p is geodetic latitude and X is longitude.

These expressions give the partials in the terrestrial system. To compute them in the 

J2000 system the required transformation has to be applied. Note that these expressions 

are precise, not just approximate. The demonstration of these formulae, derived by the 

author of this thesis, is presented in Appendix A.

3.6 Multiple Drag Coefficients

It has been current practice in long arc solutions, if  enough tracking data are available, to 

solve for multiple drag coefficients instead of a single coefficient for the whole arc. This 

greatly improves the orbital fit by absorbing some of the along-track error.

The use of multiple drag coefficients instead o f a single coefficient involves two main 

aspects:

i) redefinition of the formula for the acceleration due to the drag force

ii) computation of the partial derivatives of satellite position and velocity with 

respect to each coefficient.

i) In the case of a single coefficient, the acceleration due to drag force can be written as 

(see equation 3.13):

rd = Cd . D (3.73)

where

5 = - l p A v j Y  (3.74)

Let us consider an arc A , with start and end dates t© and t© respectively, which is 

divided into n arcs A| :
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A = [to,  tn]

Ai = [tj-1, tj] , 1=1,N (3.75)

so that a different drag coefficient Cj applies for each arc A i.

Cd can now be considered a vector o f length n :

(3.76)

and the formula for the acceleration due to drag becomes a function of n branches:

, 1 2  n .
C(J — ( Cy, Gy , ... , Gy )

rd  =

c J . D  t e  A

C d • D t e  A 2
(3.77)

Cd- D t e  A^

Therefore, at every step of the integration of the equations of motion, the corresponding 

Gd is used. The fact that acceleration is now a discontinuous function does not mean that 

the resulting satellite position and velocity will have sharp variations at the discontinuity 

points. This is a consequence of the numerical integration method itself. In the case of 

Gauss-Jackson method, at every step, satellite position and velocity are a function of 

acceleration at that time, plus function values at the previous 9 steps. Therefore a sharp 

change on the acceleration due to a change of the drag coefficient leads to smooth 

changes in position and velocity.

ii) The computation of the partial derivatives is not so simple. As the equations of motion 

are solved by numerical integration, at every step, satellite position and velocity are a 

function of not only the parameters that define the orbit at that time but also, in an implicit 

form, o f all parameters that have affected the orbit since the beginning of the arc. As 

explained in section 3.5.1 the partial derivatives of satellite position and velocity with 

respect to the solve-for parameters (including Gd) are computed by numerical integration 

(equation 3.59). For each drag coefficient there is an equation of the form:

at _
j

’ a t ”
i

+ ' a t '
I ( 3 .78)

acy explicit [sCdJ implicit

To set up these equations the explicit partial derivatives
at

aCy .m u st be computed, 
explicil ^
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According to equation 3.77 they are :

’ at'
D t e  Ai

(3.79)

.^ d explicit 0 t ^ Aj

To compute the implicit dependence one only need to include the partials with respect to 

position. This is because the dependence o f f on velocity is very weak and, as the 

correction procedure is of first order, the partials are only needed at low  accuracy 

(Sinclair, 1988). This implicit dependence is computed as:

d f
3f ax

[a c ij implicit 0

d f  BY d f  d Z+ ----  — + —   r- t e  A j for j < i 

t € Aj for j > i
(3.80)

Therefore, for each arc Ai :

8f
8Cd

■ at ■ ■ at ■ at ■ at ■
1 2 i-1 i

[acdj Imp [aCdJ Imp acd _ imp

, 0  0

imp + e x p

(3.81)

In other words, at every step of the integration t, inside arc A|, the implicit dependence
J .of f  with respect to each drag coefficient is computed as

• if j > I is null as f  does not depend at all on .

acd

• if  j= i then is fully computed, both the explicit and the implicit components,

SCd

as f is an explicit function of Ĉ j

• if j < i then on only the implicit part has to be computed, as f  is only an

ac'd

implicit function of c |j , due to the fact that c|j has affected the function on 

previous steps.

As the partial derivatives themselves are computed by numerical integration, the problem 

arises of how to change the computation from explicit to implicit and vice-versa when 

changing the arc, since the integration method used (Gauss-Jackson) needs an iterative
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starting scheme. During this study, intensive research was done on how to implement 

this algorithm with the addition o f minimal computational effort. Here the main 

conclusions are presented.

1 2 3
Cd Cd Cd

Arc 1 E I 0 I 0

Arc 2 I E I 0

Arc 3 I I E

1
Cd Cd

3
Cd

Arc 1 E 0 0

Arc 2 I T  E 0

Arc 3 I I T  E

B

Figure 3 .1 -  Schematic representation of two equivalent algorithms for implementing the 

solution for multiple drag coefficients.

To simplify the schematic representation of the algorithm, let us suppose that the number 

of drag coefficients to solve for along the arc is 3. Two different algorithms were found 

to be equivalent. Figure 3.1 describes these algorithms. In this figure the following 

symbolic representation was used :

E - the partial derivatives are computed considering both the explicit and the implicit

parts.

I - only the implicit part was computed

1 0 -  although the implicit part is computed (because it is needed as starting values 

for subsequent arcs), it is not output (the output is zero).

Î  - the computation is restarted at the beginning of the arc. When this symbol does 

not appear, the change from implicit to explicit and vice-versa is done without using the 

starting procedure, i.e., the integration continues normally only with different formulae.

Results show that it is irrelevant whether the integration is restarted at the beginning of 

each arc or continued sequentially. Algorithm A is faster than B because the starting 

procedure is slower than the Gauss-Jackson integrator. Considering the computation 

time and simplicity of the algorithm, the adopted model which was implemented in the 

programs was model A.
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3.7 Conclusions

This chapter has described the main features of the SATAN programs and some of the 

modifications that have been introduced during this project. Additional algorithms 

developed in this study for processing PRARE range and altimeter data are described in 

chapters 6 and 7 respectively. These programs were used in all the research work carried 

out during this project which is described in chapters 8 to 10.
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Chapter 4

Background to orbit determination 
for altimetric satellites

4.1 Introduction

This chapter summarises the background to techniques that have been used in the 

computation of the orbit o f low orbiting remote sensing satellites.

Orbit computation for low satelhtes such as ERS-1 is usually performed by means of two 

types o f solutions: short arcs and long arcs. These two solutions have different 

requirements and possess different characteristics with respect to a number of points:

• spanning interval

• amount and distribution of tracking data

• accuracy of dynamic models

• accuracy of tracking stations

Typically a short arc covers a time interval o f a few minutes, less than one orbital 

revolution. For a low polar orbit a long arc should encompass at least 3 days, unless 

there are plenty o f well distributed tracking data along the arc. This is because the 

ground track pattern of low orbiting polar satellites repeats itself after a time interval close 

to 3 days. Therefore this is the minimum time for the satellite to go through all the 

perturbations due to the Earth's gravitational field except resonance. If a shorter interval 

is used, an artificially good fit to data can be achieved but, away from tracked areas, the 

solution may have large errors.

For short arcs, the amount and distribution of tracking data along the arc are crucial. 

These will determine the stability o f the solution, as well as the number and type of 

parameters to adjust. The precision of these solutions is that of the tracking data, and they 

are highly inaccurate away from the fitted arc. The type o f dynamic model used is of 

slight importance, since the model errors are absorbed in the fitting process.

The most important factor for long arcs is the accuracy of the dynamic model, i.e. how 

well it describes the forces that act on the satellite and their variability. Their accuracy is 

limited by the accuracy of the model used, in particular the gravity field and atmospheric 

drag models. These are smooth solutions that, in principle, are of similar accuracy at all
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parts, even where not fitted to data. The amount and distribution of the tracking data used 

is of minor importance.

Sinclair (1985) considers a third type of solution: medium arcs from 10 minutes to one 

revolution. These solutions achieve a precision of fit only slightly worse than that of the 

tracking data, but they depend to some extent on the orbit model used. The amount and 

distribution of data are still as important as in short arcs, the accuracy o f the tracking 

stations being less important.

Orbit solutions can still be classified as dynamical and non-dynamical.

A  dynamical solution usually consists of an iterative process. First an orbit is computed 

by numerical integration using a model for the forces that act on the satellite. During the 

next step some o f the parameters that define the force model are adjusted by fitting the 

orbit to observations. These improved parameters are then used to compute an improved 

orbit.

A  non-dynamical method determines corrections to a computed orbit in such a way that 

the corrected track of the satellite is no longer an exact solution of the equations for its 

motion. Examples of non-dynamical methods are the TAR method described in section 

4.2 and crossover analysis of altimetry data (section 4.5).

4.2 Short arcs

Short arc computations require the use of special techniques. The quality of the solution 

is strongly dependent on the number and type of parameters to adjust.

To compute an orbit over a short arc up to 10 minutes, Sinclair (1985, 1989) considers 

two methods:

• Method 1: To generate an orbit by numerical integration and fit it only to the data 

points o f the short arc by solving for the 6 parameters of the start vector at some 

convenient close starting epoch. This method may lead to very high correlations between 

the solved-for parameters. An alternative is to first determine a long arc orbit that includes 

the short arc, and then fit the long arc orbit to the short arc data points by solving for 

corrections to the 6 osculating orbital elements at some epoch. This gives virtually 

identical results with the advantage that constraints can be applied to them more 

meaningfully. In both methods, it is found that the gravity field, and the models for drag 

and radiation pressure used, have no influence on the quality of the solution.
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• Method 2: To determine a long arc orbit and fit it to the short arc data points by 

solving for corrections along the three following directions: along-track (T), across-track 

(A) and radial (R), the so-called TAR corrections.

A  good fit to the short arc data points can be obtained by both methods, but the solution 

can sometimes be spurious.

The TAR corrections can be represented as simple constants, linear variations with time, 

or periodic variations of the orbital period. The best way o f representing the corrections 

seems to be the last method. The advantage of using TAR corrections is that correlations 

related to the configuration of the track relative to the stations are more apparent, and can 

be controlled by limiting the number of parameters. The disadvantage is that the corrected 

track is no longer an exact solution of the equations for its motion.

Using the TAR method, Sinclair (1989) researched the type of configuration the network 

of the tracking stations should have to give an accuracy of less than 10 cm over a short 

arc. The configuration required is either:

• Two stations, close to the ground track of the satellite, one at each end of the arc.

• Four stations, two at each end of the arc, preferably on either side of the track, 

with significantly different minimum zenith angles.

If range data from a single pass of a station are used, then very high corrections are 

found between various solved-for parameters.

Hauck and Herzberger (1986) and Hauck (1988) used similar techniques for short arc 

solutions where station coordinates were simultaneously solved. They used two 

methods: the first is similar to method 1 described above; the second method solves for 4 

corrections to the following parameters: T, R, inclination and ascending node.

For short arc solutions, the coordinates o f the tracking stations have to be accurately 

known. The tracking data only locate the satellite relative to the stations. Hence its 

location relative to the centre of the Earth is dependent on knowing the station 

coordinates. Errors in the latitude and longitude of the stations will cause errors in the 

position of the satellite of the same order in the T and R directions, the effect on R being 

smaller (Sinclair, 1989). However, an error in the height of the station will cause errors 

of the same order in the radial component.

On a simulation study for ERS-1, Wakker et al.( 1983a) found that a radial accuracy of 

better than 10 cm can be achieved for an arc o f about 15 minutes that is tracked 

intensively by several laser or PRARE stations, but the errors increase rapidly away from 

this region. The results also show that, for these short arcs, the gravity model errors lead
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to only very small orbit errors of less than 4 cm, and that the surface model errors have 

almost a negligible effect on orbit accuracy. The dominant error in this case is the station 

coordinates error.

4.3 Medium arcs

Sinclair (1985) investigated how a short arc technique could be extended to longer arcs, 

up to half a revolution. He used an artificial method whereby two orbits were computed 

for the satellite Starlette (height 960 km and inclination 49.8°) using two different gravity 

models, GEM 1 OB and PGS1331. GEMIOB is a general purpose geopotential model 

developed by GSFC, complete to degree and order 36, while PGS1331 is a tuned gravity 

field for Starlette. The GEMIOB orbit was fitted to the PGS1331 orbit in 2 ways: by 

fitting at points every 0.3 minutes along the whole arc, and by fitting at points every 0.3 

minutes along the first and last 9 minutes of the arc. This latter method was intended to 

simulate a situation where the arc would be tracked by stations at each end of the arc. It 

was found that the first method gives rather strange results, completely different from the 

effect of fitting to range data, giving radial errors larger than the along-track and across- 

track errors. The second method gives a better overall result with an rms radial error of 6 

cm to 57 cm, depending on arc length.

For these medium arcs, if  the arc is well determined at the ends, there will be an error 

within it due to the hmitations of the orbital model. These errors will not be as large as in 

long-arc solutions, because the long-period errors of the model, and those close to the 

orbital period, will be absorbed by the fitting process.

Short and medium arc computations can be very useful for ERS-1. Due to the limitations 

in the existing force models for this satellite, this may be the only alternative if  very 

precise positions are required. In this study intensive research has been done on the 

development of alternative short and medium arc methods. These results are presented in 

Chapter 10.

4.4 Long arcs

Generally, long arc solutions are less influenced by data distribution but are very 

dependent on the accuracy o f the force models being used, especially the models for the 

gravity field, atmospheric drag and radiation pressure. Together with the start vector, 

drag and solar radiation coefficients are usually adjusted in the orbit computation 

process.
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Studies being done for Starlette (Sinclair, 1985) suggest that to obtain an orbit that 

achieves close to the optimum radial accuracy o f the model being used at all parts, the 

amount and distribution of tracking data is not critical but should cover at least 3 days, 

should be very well distributed geographically (i.e. from all continents), and should 

include 15 or more passes. For arcs longer than 8 days, the accuracy gradually 

deteriorates, and the use o f single solved-for coefficients for drag and radiation pressure 

becomes inadequate. Generally, for arcs longer than 3 days, or arcs covering a period of 

strongly enhanced solar and geomagnetic activity, multiple daily drag coefficients should 

be used. The adjustment of multiple drag coefficients will absorb any slowly varying 

along-track orbit error due for example to mismodelling of geopotential coefficients.

For long arc solutions the main source o f orbit error is the gravity field model. At 

present, the best gravity models for orbit determination seem to be the GEMTn series 

(Table 4.1). GEMTl is a general purpose model, derived from satellite only tracking data 

from 17 satellites, complete to degree and order 36 (Marsh et al., 1988).

The accuracy of a geopotential model is limited by two types of modelling errors:

- commission errors due to mismodelling of the coefficients.

- omission errors due to fact that each model is truncated at a particular degree and

order.

The commission error for GEMTl is 1.60 m. GEMT2 uses data from 31 satellites, is 

complete to degree and order 36 and contains more than 600 coefficients above degree 

36, up to degree 50, to better accommodate zonal, low order, and satellite resonant 

terms. The commission error for GEMT2 is 1.30 m for the 36x36 portion o f the field 

and 1.41 m for the full model (Marsh et al., 1990a).

Gravity models derived from satellite data only are limited by the fact that the available 

data do not cover all the relevant inclinations and semi-major axes. Such models possess 

heavily correlated coefficient values, and will be unsuitable for the computation of orbits 

of satellites with other different parameters (Zandbergen et al., 1988).

For irregularly shaped satellites like ERS-1 or SEAS AT the cross-sectional area for 

atmospheric drag or radiation pressure has large variations. For these satellites it is 

important that these areas are modelled accurately. Wakker et al. (1983a) show that the 

modelling of the variable cross-sectional area of SEASAT considerably affects the orbit 

solution.
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Table 4.1

Summary of geopotential models used in this study

Geopotential

model

Degree RMS Commission error of 

the geoid (m)

Data utilised in the models

GEMTl 36 1.60 Data from 17 satellites including 

SEASAT

GEMT2 50 (incomplete) 

Complete to degree 36

1.30 - for the 36x 36 portion 

of the model

1.41 - for the whole model

Data from 31 satellites including 

SEASAT and GEOSAT

OSU89A

OSU89B

360 0.32 - for the portion of the 

field common to GEMTl 

0.60 - for the whole model

GEMTl model + l®x 1® gravity 

anomalies + SEASAT and 

GE0S3 altimetry

GRIM4_C2 50 0.54 Data from 19 satellites including 

SEASAT, GEOSAT and SPOTl 

(DORIS) + l°x 1° gravity 

anomalies + SEASAT and 

GEOS 3 altimetry

SEASAT orbits

To assess the accuracy to be expected for ERS-1 orbit, and given the similarity between 

the two satellites, the SEASAT orbit has been extensively computed by a number of 

investigators. These studies reveal the progress that has been achieved on force 

modelling and data processing during the last decade.

The SEASAT orbit used in the Geophysical data records had errors o f the order of 1.5 

m.

For arcs from 3 to 6 days' length, Wakker et al. (1983b) determined SEASAT orbits 

using adjustable daily drag coefficients, area tables for atmospheric drag, and the 

SEASAT tuned gravity field PGS-S4. These orbits exhibit laser range residuals from 

0.5 m to 1.23 m and rms values o f 0.8 m in radial and across-track direction and 3 m 

along-track.

Using GEM Tl, SEASAT area tables and daily drag coefficients, Wakker et al. (1987) 

obtained solutions with rms laser residuals of 48 to 62 cm.
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Zandbergen et al. (1988) investigated the kind o f accuracy that could be achieved by 

tailoring GEMTl to SEASAT. In this exercise, crossover data were added to the laser 

data, because of the sparseness of the latter, and 360 coefficients were solved for. It was 

found that for 3 day arcs, using this tailored model, the radial orbit error is reduced to 30 

cm rms, with laser range residuals from 28 to 45 cm. The same kind o f accuracy could 

be obtained for ERS-1, the only difference being that GEMTl is already a very accurate 

model for SEASAT, which is not true for ERS-1.

Using crossover differences. Marsh et al (1990a) predicted a radial error of 28 cm for 

SEASAT orbits computed with GEMT2.

Chapter 8 describes the work performed during this study on the determination of the 

SEASAT orbit by using GEMTl and GEMT2.

ERS-1 simulations:

For ERS-1 several simulation studies have been done.

For arcs of 3 days, assuming a gravity field error model equal to 30% of the differences 

between GEM 10 and GEMIOB, Wakker et al. (1983a) estimated a global rms orbit error 

for ERS-1 of 0.6 m in the radial and across-track components and 2.4 m in along-track. 

Note that GEMIOB ( 3 6 x 3 6  model), contains many coefficients which are not present in 

GEM 10 (22 X 22 model).

For this satellite, long arc solutions are crucially dependent on the existence of a good 

tuned gravity field model, in which the unmodelled high order resonant coefficients are 

absorbed by the lower terms. The optimum accuracy of the long-arc orbits computed 

with this tuned model is expected to be 50-70 cm (rms range residuals). Provided this 

good tuned field giving rms range residuals of 50 cm is available, the expected rms radial 

error for ERS-1 is 30 cm (Sinclair, 1985).

The failure of the PRARE tracking system highly compromised the development of a 

precise tuned field for ERS-1. While this field is not available, the best geopotential 

models for this satellite are probably the models that include DORIS (Doppler 

Orbitography and Radiopositioning Integrated by Satellite) data. DORIS is an uplink 

Doppler tracking system that measures the satellite radial velocity relative to stations 

located at the Earth (Boucher and Dufour, 1992). It was used for the first time on the 

French remote sensing satellite SP0T2, a sunsynchronous satellite at 832 km altitude and 

an inclination of 98.7°. The system includes a dedicated tracking network of 50 fairly
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well distributed stations, providing numerous data that can be used for gravity field 

determination.

Several geopotential models have been derived using DORIS data: GRIM4_S2 and 

GRIM4__C2 (Biancale et al, 1993), (see Table 4.1) and TEG-2B (Boucher and Dufour, 

1992). Since these models include data from SPOT, which has an inclination very similar 

to that of ERS-1, they should give better results for ERS-1 than the GEMTn models.

Chapter 9 describes the work carried out during this study on the determination of ERS-1 

orbit using GEMT2 and GRIM4_C2.

4.5 Use of altimetry as tracking data

Altimeter data alone can only be used to recover the radial component o f the orbit error, 

as they lack information on the across-track component and give extremely weak along- 

track information. To be used in a global solution, they have to be mixed with other types 

of data.

With only one laser station no accurate orbit determination is possible, but one or two 

laser stations together with altimeter data may replace an extensive ground based tracking 

system (Wakker et al., 1983a). Orbits computed with only one laser station and 

crossover points are found to be as good as orbits computed with a full network o f laser 

stations (Wakker et al., 1987).

The use of altimeter data to improve global orbit solutions has been investigated by 

several authors, using either dynamic (Wakker et al, 1987) or non-dynamic (Fernandes, 

1988), (Goad et al, 1980), (Wakker et al, 1987) methods. Two main approaches are 

adopted: the use of altimeter measurements themselves, with appropriate sampling and 

filtering, and the use of crossover differences (Wakker et al, 1987), (Zandbergen et al, 

1988).

Radial orbit errors are not random in nature but geographically correlated. This 

geographically correlated error is found to be latitude dependent and is believed to be, in 

an rms sense, half of the total error.

The use of crossover differences has the advantage that they are not affected by the large 

errors in modelling the mean sea surface (geoid errors). However, they do not allow the 

recovery of the geographically correlated part of the error because this is cancelled in the 

differencing process. Although the orbit error is the predominant part, they also contain 

tidal errors and time dependent oceanic effects (eddies, meanders, rings and atmospheric
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storms). In the crossovers, the 1 cycle per revolution portion of the error is unobservable 

at the northernmost and at the southernmost latitudes but is perfectly observable at the 

equator. This is related to the way crossovers are formed. A lso, crossovers that are 

formed at extreme latitudes have time lags that are almost exact multiples o f one 

revolution and so there is no observability of the orbit error (Wagner, 1985). For frozen 

orbits (o) «  n!2y m= 0) like SEASAT and ERS-1 orbits, there are further components of 

the orbit error that are unobservable in crossover differences: the constant offset, the 2 

cycles per revolution term and the periodic zonal terms (Moore and Rothwell, 1990).

The use of filtered residual sea surface heights usually leads to an overestimation of the 

value o f the radial orbit error because it tends to incorporate some geoid errors. On the 

contrary, crossover residuals lead to an underestimated value as they contain the 

geographically uncorrelated part of it. By using Legendre functions this geographically 

correlated error was found to be, for SEASAT, o f the order o f 50-80 cm radially 

(Wakker et al., 1987). The correlated and uncorrelated parts o f the error are found to be, 

in an rms sense, of the same order (Zandbergen et al., 1988).

Engelis (1988) and Engelis and Knudsen (1989) used a combined solution where the 

stationary sea surface topography was simultaneously determined with orbit and long 

wavelength geoid improvement, by using both residual sea surface heights and crossover 

discrepancies. In these solutions the errors due to the geopotential are absorbed by the 

adjustment of geopotential coefficients. It was found that the total radial orbit error had an 

rms of 1.02 m. The main components of this error are a constant of about 85 cm and the 

error due to the geopotential, with an rms of about 40 cm. Excluding the constant 

correction, which is attributed to an error in the semi-major axis of the GRS80 ellipsoid, 

the rms of the remaining error is of the order of 50 cm. Using this method, the rms of 

crossover differences was found to go from a previous level of 90 cm to a level of 28 cm 

after the adjustment.

Marsh et al. (1990b) performed a simultaneous solution for the gravitational field  

(PGS3520), satellite orbit and the quasi-stationary surface topography using altimeter 

and conventional tracking data. SEASAT orbits computed in this solution have an 

estimated radial accuracy of 20 cm rms.

4.6 Spectrum of the orbital error

To establish optimum techniques for short arc determination, or for the analysis of 

altimetry data, an understanding o f the spectrum of the ephemeris error is required.
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The major errors are due to the gravity field. The spectrum of these errors can either be 

determined analytically (Figure 4.1) or by examining the differences o f two orbits 

computed with two different field models (Figure 4.2). The second method is much more 

practical but lacks information on the part of the error that is common to both solutions.

The frequency spectrum for the gravity model induced orbit error spans resonant 

(secular), long period, daily, and short period terms o f the order o f one revolution 

(Tapley and Rosborough, 1985). Long period and resonant terms are usually absorbed 

by the solve-for parameters within the orbit determination process, provided that accurate 

tracking data are used. Consequently, the error in actual ephemerides has mainly short 

period and daily terms. The remaining error in a satellite ephemeris has a geographically 

correlated portion that does not average to zero. Using conventional orbit determination 

methods, this can only be removed from the ephemeris through gravity model 

improvement or through near continuous tracking.

In particular, the errors of any computed orbit along the TAR directions have a major 

variation with time that is approximately periodic with a period of one orbital revolution 

(Figures 4.3 and 4.5). The reason for this is that the osculating elements can in principle 

be represented as arbitrary constants plus forced periodic and secular terms. Errors in the 

force model lead to errors that have a wide range of periods, but when they are expressed 

as TAR variations they are close to the orbital period (Sinclair, 1989). In addition to this, 

in the orbit determination process, the adjusted parameters will have errors as they absorb 

errors due to the force model. These errors cause orbit errors which in the TAR  

directions are exactly 1 cycle per revolution. Along with this dominant 1 cycle per 

revolution term, the along-track error has a much wider spectrum, with many significant 

terms of long wavelength.

Engelis (1988) gives a detailed analytical analysis of the radial orbit error. The radial 

error from gravitational origin has frequencies that are a linear combination of the orbit 

frequency co + M (one cycle per revolution), the apsidal frequency co o f a complete 

revolution of the perigee, and the frequency Ô -  0 of a complete rotation of the Earth 

with respect to the precessing orbital plane. This error is mainly periodic with 

frequencies close to 1 and 2 cycles per revolution with time independent amplitudes, 1 

and 2 cycles per revolution with amplitudes linearly increasing with time, many long 

wavelength terms o f frequencies between zero and two cycles per revolution and a 

constant bias term.

Errors due to initial state errors have the same form and opposite sign to these errors and 

are a function of the constants of integration. If the observations to the satellite are global 

and very accurate, these errors can be simultaneously removed during the adjustment of 

the initial state vector. Similarly, resonant errors are likely to be absorbed by drag
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parameters that are estimated during the adjustment. In practice, 1 cycle per revolution 

errors o f constant and time dependent amplitudes remain after the adjustment. Residual 

drag and resonant errors often exhibit a signature (bow-tie pattern) that is zero at the 

middle of the arc and is maximum at its extremities (Figure 4.4).

Moore and Rothwell (1990) present a detailed analytical analysis of the radial error due to 

gravitational and non-gravitational origin, with application to altimeter crossover 

differences. For the gravitational error, the conclusions are similar to the results by 

Engelis (1988). The error due to air drag is dominated by a quasi secular change in the 

radial distance r, with a small sinusoidal term of increasing amplitude superimposed. For 

radiation pressure the errors are similar to drag errors but the sinusoidal term is more 

significant.

If inadequate tracking data are used to determine an orbit, the major discrepancies 

(compared to the optimum orbit for the force model being used) w ill be o f the orbital 

period. In particular, the radial error is always close to the orbital period, whether it is 

caused by an inadequate force model or insufficient data. This is why short arc 

extrapolations have to be very limited: although the radial error can be made very small 

locally, within a quarter of a revolution it will have increased to its maximum (Sinclair, 

1985).
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Chapter 5 

ERS-1 and SEASAT

5.1 Introduction

At the time o f the beginning of this study, ERS-1 had not yet been launched. SEASAT 

was the satellite closest to ERS-1 with regard to the type o f orbit and characteristics of 

the measuring instruments, and with easily available data. Therefore, the first part o f this 

study (Chapters 8 and 10) was concerned with the computation of SEASAT's orbit, as a 

preparation for the subsequent work on the determination of the orbit of ERS-1 (Chapter 

9).

This chapter describes and compares the characteristics of these two satellites with 

respect to the parameters that are relevant for orbit determination.

5.2 ERS-1

5.2.1 Mission objectives

ERS-1 was launched from Kourou, in French Guiana, aboard Ariane flight V44, on 17 

July 1991. It is the European Space Agency’s first satellite devoted entirely to remote 

sensing from a polar orbit. It provides global and repetitive observations o f the 

environment using advanced microwave techniques, which enable measurements and 

imaging to take place independently of weather or sunlight conditions.

The main objectives o f the mission are (Duchossois, 1991) and (Francis et al.,

1991):

• to increase our understanding of ocean-atmosphere interactions with the aim 

of deepening our knowledge of climate.

• to determine improved weather and sea-state forecasting.

• study ocean circulation and transfer of energy.

• to determine reliable estimates of the mass balance o f the Arctic and 

Antarctic ice sheets.

• monitor the dynamic coastal processes and pollution.

• improve detection and management of land use change.
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• develop land applications such as forest or geological mapping, or crop 

monitoring and snow and ice studies.

5.2.2 Spacecraft and instruments

The satellite is tailored aroimd a multipurpose platform developed in the framework of the 

French SPOT programme, with some modifications to meet the unique needs of the 

ERS-1 mission. The platform provides the major services for the satellite and payload 
operation, in particular attitude, orbit control, power supply and telecommunications with 
the groimd segment.

The principal constituents of the ERS-1 payload are active microwave instruments. To 
sense the Earth from a mean altitude of 780 km, powerful radar pulses are needed, to 
provide sufficient illumination of the Earth's surface and produce detectable echo signals. 
Therefore the satellite has to be very large with large antennae.

SA R  anienna

Wind 
Scalteroincicr Microwave Sounder

«
PRARE

ATSR 

Radar Alluneler  Solar Array

Figure 5.1 - The ERS-1 Spacecraft



93

The satellite shape is very irregular and complex as shown in Figure 5.1, weighing about 
2400 kg and measuring 12m x 12m x 2.5m (ESA, 1992). The main payload support 
structure has a 2m x 2m base and is some 3m high (Frances et al, 1991). The largest of 

the sensors, the Synthetic Aperture Radar has a 10 m long antenna.

To generate enough electrical power for all the mission operations a 12m x 2.4 m solar 

array is included. During the 66 minutes sunlit period of each orbit, the solar array 

provides electrical power to all the onboard systems. It also charges the spacecraft's 

batteries, so that they can provide the energy necessary for payload operations during the 

34 minutes eclipse period.

To fulfil the objectives of the mission, the satellite carries a set of five main instruments 
(ESA, 1992):

1 - An Active Microwave Instrument (AMI), operating in C band (5.3 GHz). It can 

operate in one of the three modes: image mode, wave mode or wind mode. To perform 

these functions, two separate radar instruments are incorporated:

• A Svnthetic Aperture Radar (SAR) which can operate in one of the two modes:

i) Image mode, generating two dimensional images, 100 km in width, 
displaced 250 km to the right of the sub satellite track (Figure 5.2). The SAR 10m x Im 

antenna is aligned parallel to 
the satellite track and has a 
viewing direction that is 

offset by 23° from the (-Z) 
axis towards the (-X) axis.
The antenna directs a narrow 
radar beam onto the Earth's 

surface. An image is build up 
from the time delay and 

strength of the return signals, 

which depend mostly on the 

roughness and dielectric 

properties of the surface and 
its range from the satellite.
The spatial resolution of 

these images is 30 m in range 
and between 8 and 30 m in 
azimuth.

Spacecraft 
Altitude 
(785 km)

Sub-Satellite track

23

250 km

Figure 5.2 - SAR imaging geometry
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The SAR's range resolution is obtained from the travel time of the transmit pulse by 

phase coding the pulse with a linear chirp, and compressing the echo by matched 

filtering. Azimuth resolution is achieved by recording the phase as well as the amplitude 

of the echoes along the flight path. The set of the echoes over a flight path of about 800 

m will be processed (on the ground) as a single entity, giving a resolution equivalent to a 

real aperture 8(X) m in length (the “synthetic aperture” of the radar).

ii) W ave m ode, to derive wave spectra from small SAR images ( 5 x 5  km) at 

intervals of 200 km along track.

• A Wind Scatterometer. to measure wind speed and wind direction over ocean. It 

uses three sideways looking antennae, one pointing normal to satellite flight path and the 

other two pointing 45° forward and backwards, respectively. These antennae 

continuously illuminate a 500 km wide swath providing measurements o f radar 

backscatter from the sea surface on a 25 km grid.

Because of the high data rate generated (1(X) Mbit/s), the AMI can only operate in the 

image mode for about 10 minutes per orbit. The wind and wave modes however, are 

capable of interleaved operation, the so-called wind/wave mode.

2 - A  Radar Altimeter (RAl. operating in the Ku band (13.7 GHz), with nadir pointing, 

to measure echoes from ocean and ice surfaces. It has two measurement modes, 

optimised for measurements over ice and ocean respectively. In the ocean mode it is used 

to measure altitude, significant wave height and ocean surface wind speed. In the ice 

mode the instrument operates with a coarser resolution, providing information on ice 

sheet surface topography and sea/ice boundary. The height measurement precision is less 

than 10 cm when averaged over 1 second. More detail on this instrument is given in 

Chapter 7.

3 - An Along Track Scanning Radiometer and Microwave Sounder (ATSR-M), a passive 

instrument consisting of an advanced four channel infrared radiometer (IRR) and a two 

channel nadir viewing Microwave Radiometer (MWR), designed to determine:

• Infrared Radiometer: sea surface temperatures; cloud top temperatures; cloud 

cover and classification; land, sea and ice surface radiance.

• Microwave Sounder: total atmospheric water content; liquid content and rain 

areas; land and ice surface emissivity.

4 - A  Precise Range and Range Rate Equipment (PRARE), an active microwave 

instrument to allow for precise tracking of the satellite, and ionospheric correction of the 

altimeter signal. Unfortunately, the PRARE suffered fatal damage to the Random Access
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Memory, due to radiation after a few hours o f nominal operations. An improved version 

of PRARE is being built for ERS-2. Chapter 6 gives detailed information on this 

instrument.

5 - A  Laser Retro-Reflector array (LRR), a passive optical device operating in the 

infrared, to allow for very accurate laser tracking o f the satellite from ground stations. It 

is mounted on the Earth-facing side of the spacecraft and consists o f an array o f comer 

cubes, one nadir-looking in the centre, surrounded by an angled ring o f eight comer 

cubes.

5.2.3 Mission phases

The ERS-1 mission is sub-divided into six main phases (ESA, 1992) and (Louet and 

Francis, 1992):

- orbit acquisition

- commissioning phase

- first ice phase

- multi-disciplinary phase

- second ice phase

- geodetic phase

During each phase, the main parameters and characteristics of the mission are kept 

unchanged. The transition between different phases is accomplished by a number of 

manoeuvres to adjust the orbital pattern to the various requirements for ground coverage.

• The Launch and Early Orbit Phase (LEOP) took place during the first two weeks after 

launch.

• The Commissioning Phase took place during the first 5.5 months o f the mission, 

immediately after the LEOP. During this period the so-called Venice orbit was used, 

providing a 3-day repeat cycle passing over the city o f Venice, selected for the Radar 

Altimeter's calibration. The main goals during the commissioning phase were to:

- calibrate and validate the on-board instmments

- phase-in and commission the near-real-time ground segment components.

• During the Ice Phases a 3-day repeat orbit is still used, but with a slightly different 

longitudinal phase, selected especially for the ice experiments to ensure highly repetitive 

coverage of ice zones during Arctic winters.
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Table 5.1 

Timetable for ERS-1 mission phases

P h ase R epeat Cycle
(days)

Start End

Commissioning 3 0 3 / 0 8 / 9 1 1 0 / 1 2 / 9 1

First Ice 3 2 8 / 1 2 / 9 1 3 0 / 0 3 / 9 2

Multidisciplinary 35 1 5 / 0 4 / 9 2 3 1 / 1 2 / 9 3

Second Ice 3 0 1 / 0 1 / 9 4 3 1 / 0 3 / 9 4

Geodetic 176 1 5 / 0 4 / 9 4 -----

• The Multi-disciplinary Phase corresponds to a period where the satellite is in a 35-day 

repeat cycle orbit. During this period the SAR will be capable of imaging any part of the 

world within station coverage, and the density of the altimeter tracks increases to give a 

separation between ground tracks of just 39 km at 60° latitude.

• The Geodetic Phase will take place only at the end of the mission. A repeat cycle of 176 

days will be used allowing the acquisition o f high density altimeter measurements, 

aiming at a better determination of the geoid over the oceans.

The timetable for the first mission phases is presented in Table 5.1 (ESA, 1992)

5.2.4 ERS-1 orbit

ERS-1 is in a near circular, polar, sunsynchronous orbit with a mean altitude of 780 km 

and an inclination of 98.5 degrees. This high inclination has been selected to give the 

satellite visibility of aU areas of the Earth as the planet rotates beneath its orbit.

The characteristics of the three main types o f orbits used during the ERS-1 mission are 

presented in Table 5.2 (ESA, 1992).

For the spacecraft to be in a periodic motion relative to the rotating Earth the satellite 

orbital period must be a rational fraction n/m  of the Earth's spin period (Rosengren,

1992). After m spacecraft orbits and n Earth rotations, the satellite will be back over the 

same point. For ERS-1 the orbital periods of 3/43 and 35/501 days have been selected.
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For the 3-day repeat cycle, at the equator, each successive track is displaced 2796 km 

west of the previous one. Every day the satellite begins a new cycle of passes, which are 

displaced 932 km from the previous day cycle (Figure 5.3). The 35-day repeat cycle 

results in an adjacent crossing of the equator of only 80 km thus allowing a much finer 

coverage (Figure 5.4). The orbital parameters are maintained to ensure the ground track 

repeatability to within ±1 km at any point in the orbit.

Table 5.2 

ERS-1 Orbit characteristics

C om m issioning Ice M u lti-d isc ip lin ary

P h ase P h a ses P h a ses

Repeat cycle 3 days 3 days 35 days

Semi-major axis (km) 7153.138 7153.138 7159.496

Inclination 98.516° 98.516° 98.543°

Mean altitude (km) 785 785 782

Orbits per cycle 43 43 501

Ascending node reference 24.36°E 128.02°W 20.96°E

Mean local solar time at

descending node (± 1 min.] lOh 30m lOh 30m lOh 30m

The combination of ERS-1 inclination and mean altitude causes the orbit to be retrograde, 

with a period close to 100 minutes.

Orbital parameters have been selected to provide an orbit in which there is no precession 

of the perigee, i.e., the argument of the perigee is kept fixed at a mean value of 90°. Such 

an orbit with a small eccentricity and perigee over the North pole is called a frozen orbit.

The ERS-1 orbit is sun-synchronous, i.e., the precession of the orbit caused by the non- 

spherical components of the Earth's gravity field, exactly opposes the mean angular rate 

of the Earth in its orbit around the sun. Consequently the orbital plane will always 

maintain its position relative to the mean sun, crossing the equator with the descending 

node at 10:30 am ±  1 minute mean local time.

However the direction of the true sun relative to ERS-1 orbit plane varies along the year 

due to two main factors. First, the movement of the Sun relative to the Earth takes place 

in a plane (the ecliptic) which is inclined by 23°.4 relative to the equator. Secondly,



Figure 5.3 - ERS-1 ground tracks for the 3-day repeat orbit.
oo



Figure 5.4 - ERS-1 ground tracks over Europe for the 35-day repeat orbit
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because the velocity of the sun relative to the Earth is not constant, the hour angle o f the 

true sun departs from the hour angle of the mean sun by an amount given by the so called 

“Equation o f Time”, which amounts to ±15 minutes. Therefore the true local solar time at 

the descending node (TLST) is not equal to the constant value o f the Mean Local Solar 

Time (MLST) but has an annual variation o f ±15 minutes (Figure 5.5).

TLST = MLST + Equation of Time = lOh 30m + Equation of Time

In consequence o f these movements the inclination o f the sun relative to the ERS-1 

orbital plane has an annual variation with minimum 17° at the beginning o f June and 

maximum 27° at the beginning of February (Figure 5.6). Therefore the spacecraft solar 

array needs only be rotated about one axis (the spacecraft X  axis, normal to the orbit 

plane) to maintain pointing to within 5° of the Sun's direction. During each orbit the solar 

array rotates through 360° with respect to the satellite, around the X axis, to maintain its 

Sun pointing. This information is important for the modelling of the cross-sectional areas 

for atmospheric drag and radiation pressure, as will be discussed in section 9.2.4.

5.2.5 ERS-1 attitude system

ERS-1 is a three-axis stabilised earth pointing spacecraft (Figures 5.1 and 5.7)

The attitude control system orientates the yaw (+Z) axis towards the local vertical 

(geodetic pointing with respect to the reference ellipsoid) and the pitch (X) axis normal to 

the instantaneous ground velocity  

vector (and not normal to the 

instantaneous orbital velocity vector, 

as in the previous Earth satellites).

The (-Z) axis and therefore the 

Radar Altimeter and the ATSR-M  

are directed towards the sub satellite 

nadir point relative to the Earth's 

surface (Rosengren, 1992).

The (-Y) face of the spacecraft is in 

the “forward” direction, i.e., the 

direction o f motion o f the sub 

satellite point relative to the Earth's 

surface. This attitude control 

technique, called yaw steering  

mode, has been selected to provide

+Z (Yaw)

direction 
of flight

+ X (Pitch)

+Y (Roll)

Figure 5.7 - ERS-1 Satellite Fixed Reference 

System
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more favourable conditions for the operation of the AMI in the wind mode. In this way 

the AMI SAR antenna and AMI wind mode mid-beam boresight are looking towards the 

zero Doppler line.

The direction of the pitch axis oscillates slightly during each orbit, to keep it oriented 

normal to the composite ground velocity vector, taking into account the Earth's rotation.

Table 5.3 

Attitude accuracy for ERS-1

Pitch Roll Yaw

Bias and long-term drift 0.11° 0.11° 0.21°
Harmonic and random 0.03° 0.03° 0.07°

The attitude accuracy is as specified in Table 5.3 (ESA, 1986). Absolute rate errors in 

each platform axis are less than 0.0015 °/sec over all frequencies.

ERS-1 has a range of attitude sensors (Francis et al, 1991). The long term reference in 

pitch and roll are obtained from an infrared Earth sensor. The yaw steering is obtained 

once each orbit from a narrow-field sun sensor aligned to point at the sun as the satellite 

crosses the day/night terminator. The short term attitude and rate reference are obtained 

from an inertial platform, with a pack of three gyroscopes. In addition the spacecraft 

possesses two wide-field sun acquisition sensors for use in the initial stages o f attitude 

acquisition, and in safe mode, when the satellite is in sun rather than in Earth pointing 

(Francis et al, 1991).

5.3 SEASAT

5.3.1 The SEASAT spacecraft and instruments

SEASAT was the first satellite to assess the value of microwave sensors for remote 

sensing o f the oceans. It was launched on June 27, 1978, and operated only until 

October 10, when a short circuit in the power system occurred.

A simple comparison of Figures 5.1 and 5.8 shows that SEASAT and ERS-1 spacecraft 

have significantly different shapes. SEASAT was a modified version of the Agena
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system that has been extensively used for Earth-orbiting missions (Bom et al, 1979). It is 
basically a cylinder with large appendages. The satellite is about 13 m long and weights 
about 2195 kg. The largest of the sensors, the SAR antenna is 10.7 m long by 2.2 m 

wide. The spacecraft includes two 7.4 m  ̂solar panels.

TRANET beacon  
antenna

Solar array (two)
(single axis Spacecraft 

tracking) bus • Agena 
6.1 m

Telemetry ,  
tracking & 
command  

(TT&C)  
antenna

Sensor 
module 
6.1 m

SAR antenna

SASS
antennas

SMM R

SAR data link VIRR

Laser retroref lector  
ALT

- T T & C  antenna

Figure 5.8 - SEASAT Spacecraft. Extracted from (Tapley and Bom, 1980).

By comparison, ERS-1 could be described as a box with external payloads and large 

panels. The dimension of this main box (platform + payload) i s 2 m x 2 m x 3 m .  The 

ERS-1 SAR antenna has dimensions (10 m x 1 m) similar to SEASAT SAR, but the 

solar panels are considerably larger, each covering an area about 14 m .̂ Due to its highly 

irregular shape, ERS-l's cross-sectional area for the surface forces, in particular for 

atmospheric drag, will exhibit a much wider variability than for SEASAT (cf. section 
9.2.4).
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The SEASAT spacecraft included five sensors. The first three were active radar 

instruments, the last two, radiometers:

1 - Radar Altimeter - a nadir viewing instrument to measure altitude above mean sea 

level, significant wave height and wind speed at nadir. The precision o f altitude 

measurement is about 10 cm for 1 second averaged data. Detailed information on this 

instrument is given in Chapter 7.

2 - Synthetic Aperture Radar (SAR) - an active imaging system operating in the L 

band (1.275 GHz) to derive wave spectra. The SAR antenna was oriented along track, 

which resulted in a ground swath 100 km wide, centred 23° off nadir.

3 - Microwave Scatterometer - an active microwave sensor to measure surface wind 

speed with an accuracy o f ±10 cm, and wind direction with an accuracy o f ±20°.

4 - Scanning Multichannel Microwave Radiometer (SMMR) - to determine sea 

surface temperature, surface wind speed and atmospheric water content.

5 - Visible and IR Radiometer- a passive imaging system to measure sea surface 

and cloud top temperatures, and to identify cloud, land and water features.

The SEASAT tracking systems included: a unified S band transponder, a TRANET 

Doppler beacon, and a laser retro-reflector array (Wakker et al, 1983b). A total of 14 

laser stations have tracked SEASAT, but some of them produced a reduced set of passes 

or passes with significant data problems (Wakker et al, 1987).

5.3.2 SEASAT orbit and attitude system

The SEASAT orbit was near circular, with an altitude of about 800 km, a period of 101 

minutes and an inclination of 108 degrees.

During the SEASAT mission two orbit cycles were used. From July 3 to August 17 a 

near 17 day repeat cycle was used, with a semi-major axis of 7166 km, giving an 

equatorial spacing between adjacent tracks of 165 km. During the period August 18 to 

September 10 the satellite was manoeuvred into a 3 day repeat cycle orbit, with a semi­

major axis of 7172 km, an argument of perigee of 90° (frozen orbit), and an equatorial 

spacing of 932 km. The satellite remained in this orbit until its failure.

Table 5.4 compares some characteristics of the SEASAT and ERS-1 3-day repeat orbits 

and ground track patterns. It is obvious that there is a great similarity between these 

orbits. The major difference is that SEASAT's orbit has a smaller inclination and is not
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sun-synchronous. The maximum latitudes covered by SEASAT and ERS-1 are 72° and 

81°.5 respectively, showing that ERS-1 allows a better sensing of the polar regions.

Table 5.4

SEASAT and ERS-1 mean orbital elements 

for the 3-day orbit

S E A S A T E R S -1

semi-major axis (km) 7169.0 7153.1

inclination (deg) 108.0 98.5

eccentricity 0.0008 1.165x10-3

nodal period (min.) 100.8 100.5

revolutions per day 14 1/3 14 1/3

argument of perigee 90 90

0) rate (7day) - 1.7 0
Q rate (Vday) 2.04 0.986

eq. spacing between successive tracks 2796 km 2796 km

eq. spacing between adjacent tracks 932 km 932 km

One consequence of the 10 degrees difference in the inclination, is that the satellites are 

sensitive to different coefficients of the geopotential. Therefore a tuned field for SEASAT 

such as GEMT2 (tuned in the sense that incorporates SEASAT’s own data) is not 

necessarily an accurate model for ERS-1.

Figure 5.9 - SEASAT Attitude 

Reference System

+Y (Pitch)

direction
of flight 

—

+ X (Roll)

y  +Z (Yaw)
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The SEASAT attitude reference system (Figure 5.9) is a geodetic, orthogonal reference 

set (X, Y, Z) with origin at the satellite centre of mass where:

• Z - axis is perpendicular to the reference ellipsoid at the sub-satellite point, 

positive toward nadir.

• X - axis is defined by (r  X r) X Z where r  is the radius vector o f the 

satellite toward the geocentre.

• Y - axis completes the right-hand coordinate set.

This attitude system is similar to ERS-l's system when the satellite is in the fine pointing 

mode.
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Chapter 6 

PRARE and Laser Data

6.1 PRARE System Description

This chapter describes the PRARE and laser tracking systems and the process used in 

this study to simulate PRARE data for SEASAT.

PRARE (Precise Range and Range Rate Equipment) is a new tracking system designed 

to be tested on ERS-1 for the first time (Haiti et al., 1984). Unfortunately, the instrument 

was damaged by radiation soon after launch and could not be recovered. However, this 

does not invalidate the study being done on PRARE simulated data, as a new instrument 

(PRARE-2) is being built for ERS-2.

It is a space-based two-way, two-frequency range and range rate measurement system.

Two microwave signals are sent to Earth from the satellite, one in S band (2.2 GHz), the 

other in the X  band (8.5 GHz). Because the S band signal is more affected by the 

ionosphere than the X band, it encounters a different time delay. The difference in the 

time delay, in the reception of the two simultaneously emitted signals, is measured at the 

ground station. Here it is transmitted to the on board memory where it is used to calculate 

the ionospheric correction and applied to the data.

At the ground station the X band signal is transposed to 7.2 GHz and retransmitted to the 

space segment, to determine on board the two-way signal delay. This time delay is used 

to calculate the two-way slant range between ERS-1 and the ground station. In addition, 

the received carrier frequency is evaluated in a Doppler counter, to derive the relative 

velocity of the spacecraft to the ground station (range rate).

Together with the ionospheric delay data, meteorological ground data are also sent with 

the up-link signal to calculate the tropospheric correction.

The PRARE system consists of three components (Wilmes at al., 1987):

• the space segment -with minimum interface to the spacecraft

• the ground segment - the network of ground tracking stations

• the control segment - the master station for control operations, data transfer to 

and from the spacecraft payload and for processing of the tracking data.
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The ground stations are small transportable units with a parabolic dish antenna o f  

60 cm diameter. Four ground stations can be served simultaneously. To allow the 

tracking of more than four stations in any coverage zone, time multiplexing is used. More 

than 15 PRARE stations were expected to be tracking ERS-1. Due to the system failure 

all this planning will have to be postponed to ERS-2.

The main advantages of PRARE over conventional systems are:

- the smaller, easily transportable and fully automatic ground stations

- use of very high frequencies which accounts for the extreme accuracy

- use of PN- codes (pseudo random noise) for signal modulation, which brings a 

high accuracy, operational flexibility and leads to wide band system

- the use of two-way ranging allowing for better compensation for propagation 

effects

- the use of two frequencies allowing the correction for ionospheric effects

- the all weather capability

The estimated accuracy o f PRARE is better than 7 cm for X band ranging and about 0.1 

mm/s for range rate measurements (Wilmes at al., 1987).

6.2 PRARE Processing

To first simulate and later process PRARE data, the measurement system has to be 

accurately modelled.

The PRARE range measurement principle is explained in Figure 6.1.

The pulse is sent from the satellite at time ti and arrives at station at time t%. Here it is 

transposed to another frequency and sent back at time tg, reaching the satellite at t4 . In the 

time taken for this to occur, station and satellite have also moved. The observed quantity 

is the time difference ( t4  - ti).

Thus, the "observed" one-way range is the quantity Rq :

Ro = 0.5 ( Ri + R2 ) = 0.5 ( t4  - t i ) . c + corrections (6.1)

where c is the velocity of light.

The "calculated" one-way range is obtained by first computing the time that the pulse 
takes to go from the satellite to the station, , and secondly the time that it takes to reach 

the satellite on the way back, %2 •
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S(t4)S(t1)

R2

X(t2) X(t3)

Figure 6.1 - PRARE range measurement principle.

The "Calculated" one-way range, Rc, then becomes:

Rc = 0.5 ( Ri + R2 ) = 0.5 (%! + %%) • c (6.2)

Calculation of T%:

known: S(to) - satellite position at a tabulated time to (close to ti), in J2000 frame

Vg (to) - satellite velocity at to, in J2000 

T - station position in the Conventional Terrestrial System 

c - speed of light

• compute satellite position at time t%:

S(ti) = S(to) + Vg .( tj - to )

• compute t2 and station position at t2 , by iteration:

• compute NP(ti) - the precession-nutation matrix for time ti

• tau(l)=0 

DO j = 1 , 3
• t2 = ti + tau(j)

• compute SS(t2) - the Earth rotation matrix for time t2 .
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• compute station position in J2000 frame, at time t2 :

T(t2) = (NP)T(t2). SST(t2). T

• apply tides:

T(t2 ) = T(t2) + tides

• tau(j+l) = I S(ti)-T(t2 ) I /  c 

END DO
• Tj = tau(3)

Note that within the DO loop, NP only needs to be calculated once for all j's , because 

precession and nutation can be considered constant during the measurement time. On the 

contrary, SS represents the velocity of the station, rotating with the Earth, and thus it has 

to be calculated for each time.

Calculation of To :

known: S(ti) - satellite position at time tj in J2000 frame

T(t2) - station position at time t2 in J2000

• compute t4  and satellite position at t ,̂ by iteration:

• tau(l)=0  

DO j = 1 , 3
• t4  = t2 + tau(j)
• diff = t4 - ti 

• S = S + V s . d i f f

• tau(j+l) = I S -T l / c  

END DO

• T2 = tau(3)

• R c = 0 . 5  (Ti + T2 ) . c

Note that in this computation the station displacement during the time (tg-fz) was 

neglected, which should be very small. This fraction of time is hardware dependent (time 

taken, at the ground station, to transpose the X band signal from 8.5 to 7.2 GHz) and a 

correction can be applied if information on its value is provided.
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6.3 PRARE Range Data Simulation

For use in this study, PRARE range data were simulated for the SEASAT satellite. Two 

sets of data were generated, one for using on long arc solutions, with an interval between 

observations o f 30 seconds and another for short arc analysis with an interval o f 5 

seconds.

S im ulation  algorithm  

A - Long Arcs

1. The period chosen is the 3 day period from Oh September 18 to Oh September 

21, 1978, corresponding to the Modified Julian Dates MJD e  [43769.0 ,43772.0].

2. The reference orbit used on this simulation, is a solution computed using all laser 

data available for the period MJD e  [43769.0 , 43772.25], the field GEMT2, and a step 

length of 1.25 min. The computation of this reference orbit is described in Chapter 8.

3. A  set of 18 well-distributed stations were selected, with assumed approximate 

positions according to the PRARE programme status at the time o f this exercise. The 

assumed coordinates o f these stations on the GRS80 ellipsoid (a = 6378137 m 1/f = 

298.257) are presented in Table 6.1. Figure 6.2 shows their geographical distribution.

4. For each station, a set of dates were generated, at 30 seconds interval for the 

same 3-day period.

5. The reference orbit was used to compute the satelhte position at these dates.

6. Using the algorithm described in section 6.2 the two-way slant range from 

satelhte-to-station-to-satellite was computed.

7. To these computed range values, a random number with zero mean and standard 

deviation of 7 cm (PRARE range accuracy) was added.

8. A minimum elevation angle of 20° was used.

This procedure generated 225 passes for these 18 stations, corresponding to a total of 

2639 observations. These data are summarised in Table 6.1. The code used for station 

number is such that each new PRARE station has a number starting with 3. For stations 

that are very close to previous laser sites the laser codes were kept.
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Table 6.1 - Simulated PRARE Data for long arcs

Station Symbol Location Longitude

CE)

Latitude

O

Height

(m)

Passes Points

3002 TRO Tromps0 Norway 18.0 70.0 100 19 257

3003 AZO Azores/Portugal 334.0 38.0 350 9 108

3004 HIG G'Higgins/Antarctica 303.0 -63.0 100 21 260

3005 FAL Falkland/UK 300.0 -52.0 100 13 153

3006 BUE Buenos Aires/Argentina 302.0 -34.0 100 8 99

3009 FOR Fortaleza/Brazil 321.5 -4.0 10 7 80

3011 GRO Greenland/Uennmaik 316.0 60.0 500 21 235

3013 SVA Svalbard/Norway 12.0 79.0 100 16 167

3014 HAR Hartbeesthoes/S. Afr. 27.6 -25.8 1200 8 89

3017 KER Kerguelen Isl./France 70.0 -49.0 0 12 138

3019 DJA Djakarta/Indonesia 105.8 -6.3 50 7 79

3020 TOW Townsville/Australia 146.0 -19.0 100 7 80

3022 FAI Fairbanks/Alaska 212.4 64.9 200 20 263

3023 MUR Me Murdo/Antartica 167.0 -78.0 1000 17 188

3027 ULA Ulan Bator/Mongolia 107.0 48.0 1500 10 123

7067 BER Bomuda Island 295.3 32.4 -23 9 97

7121 HUA Huanine/French Polyn. 209.0 -16.7 47 8 85

7834 WAT Wettzell/Gennany 12.9 49.1 661 13 138
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Figure 6.2 - Spatial distribution of PRARE stations for long arcs

w
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Table 6.2 - Simulated PRARE Data for short arcs

Station Symbol Location Longitude

CE)

Latitude

O

Height

(m)

Passes Points

3002 TRO Tromps0/Norway 18.0 70.0 100 3 262

3003 AZO Azores/Portugal 334.0 38.0 350 2 113

3004 m e O'Higgins/Antarctica 303.0 -63.0 100 1 67

3005 FAL Falkland/UK 300.0 -52.0 100 1 87

3006 BUE Buenos Aires/Argentina 302.0 -34.0 100 1 84

3009 FOR Fortaleza/Brazil 321.5 -4.0 10 1 88

3011 GRO Greenland/Dennmaik 316.0 60.0 500 2 156

3013 SVA Svalbard/Norway 12.0 79.0 100 3 209

3019 DJA Djakarta/Indonesia 105.8 -6.3 50 1 87

3020 TOW Townsville/australia 146.0 -19.0 100 1 76

3023 MUR Me Murdo/Antartica 167.0 -78.0 1000 3 204

3027 ULA Ulan Bator/Mongolia 107.0 48.0 1500 1 120

3028 FSl False station no 1 145.0 40.0 50 1 37

3029 FS2 False station no 2 120.0 50.0 1000 2 145

3030 FS2 False station no 3 125.0 -5.0 50 1 75

7067 BER Bermuda Island 295.3 32.4 -23 2 85

7834 WAT Wettzell/Germany 12.9 49.1 661 1 36
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Figure 6.3 - Simulated PRARE stations for short arcs
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B - Short arcs

The same procedure was repeated to simulate data for short arc solutions, with the 

following differences:

1. Period: first 310 minutes of day 43769, corresponding approximately to the first 

3 revolutions.

2. The reference orbit used is the same solution used on long arcs, with the 

difference that a smaller step size of 0.5 minutes was used. This step is more suitable for 

short arc computation, as it is necessary to interpolate satellite position and velocity at 

dates only 5 seconds apart.

3. From the previous set of stations, 14 were found to track the satellite during this 

period. To these 14 stations 3 more were added with convenient locations, to allow  

certain configurations for test purposes. These stations were called “False stations”.

4. An interval between observations of 5 sec was selected.

This procedure generated 27 passes for these 17 stations, corresponding to a total of 

1931 observations. These data are summarised in Table 6.2

6.4 Laser Processing

In laser tracking, a short laser pulse is sent by the ground station to the satellite where it is 

reflected back by comer cubes. The delay time of the pulse is measured and used to 

derive the range from the satellite to the respective ground station.

Lasers are the most accurate tracking systems so far. Depending on the quality of the 

systems, they produce measurements with a single shot precision of 1 to 10 cm. The 

main problem with lasers is that they need clear skies to operate. They are quite 

expensive, require much maintenance and are not easily transportable.

The laser measurement principle is explained in Figure 6.4. The laser pulse is fired from 

the station at time ti, it arrives at satellite at time t%, is reflected back and reaches the 

station at tg. In the time taken for this to occur, station and satellite have moved. The 

observed quantity is the time difference ( tg - ti).

The "observed" one-way range is given by:

Ro = 0.5 ( R i + R2 ) = 0.5 ( tg - t i ) . c + corrections (6.3)
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The computation o f the "calculated" one-way range is analogous to the method used for 

PRARE data. The only difference is that the measurement starts at the station instead of 
starting at the satellite. Now Tj is the time that the pulse takes to go from the station to 

the satellite and %2 die time that it takes to reach the station on the way back.

S(t2) S(t3)S(t1)

R2

X(t3)X(t1)

Figure 6.4 - Laser range measurement principle

The "Calculated" one-way range is :

Rc = 0.5 ( Ri + R2 ) = 0.5 ( %% + T2 ) . c (6.4)

The main correction that needs to be applied to laser observations is a correction for the 

tropospheric effects. The model currently adopted is the Marini and Murray (1973) 

formulae which is implemented in RGODYN.

The correction to a one-way range is (McCarthy, 1992): 

f(X) A + B
AR =

f((p, h) sin E +
B / ( A  + B) 

sin E + 0.01

(6.5)
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where

A = 0.002357 Po + 0.000141 eg

B = (1.084x10'*) Po To K + (4.734x10'*) ^ -------------------------------------------------  - (6 .6 )
" " To ( 3 - 1 / K)

K = 1.163 - 0.00968 cos 2(p - 0.00104 To + 0.00001435 Pq

where

AR - range correction (metres)

E - true elevation of satellite

? 0  - atmospheric pressure at the laser site (in 10"̂  kPa, equivalent to

millibars)

To - atmospheric temperature at the laser site (degrees Kelvin)

eo - water vapour pressure at the laser site (in 10*̂  kPa, equivalent to

millibars)
f  (X) - laser frequency parameter ( A, = wavelength in micrometres):

f ( , )  = 0.9650 + 2 : 2 2 ^  (6.7)
X X

f((p, h) - Laser site function:

f((p, h) = 1 - 0.0026 cos 2cp - O.OOOSlh (6 .8 )

where (pis the latitude and h is the geodetic height.

In 1991 a number of 40 fixed and mobile SLR stations were participating in the work of 

the lERS (lERS, 1992). These stations are mainly involved in the tracking of the geodetic 

satellite Lageos and the Etalon pair o f satellites. In addition to the tracking of these 

satellites, ERS-1 became a high priority target of SLR in 1991 (lERS, 1992). New 1992 

SLR targets include TOPEX/Poseidon and Lageos-II. The high quality o f the data 

acquired for the geodetic satellite Lageos (launched in 1976 to an orbit at a height of 5900 

km) has revolutionised satellite geodesy. Several research centres have been processing 

these SLR data, deriving high accuracy solutions for Earth Rotation Parameters and 

Station Coordinates (Chariot, 1992).
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Chapter 7 

Altimeter Data

7.1 Introduction

Following the advances in altimeter processing techniques during the last decade, 

altimeter data have been widely used as a tracking data type. For tracking purposes these 

data are usually processed by using one of the following techniques:

- the altimeter measurements themselves expressed as residual sea surface heights, 

with appropriate sampling and filtering to remove the errors from other sources

- crossover differences - altimeter height differences at the intersections of 

ascending and descending satellite ground tracks.

The advantages and disadvantages of each technique were discussed in section 4.5. In 

this study the first approach was adopted. An algorithm was developed and implemented 

in the RGODYN program, to process the residual sea surface heights. This algorithm is a 

low pass filter making use o f Fast Fourier Transforms (FFT).

This chapter describes and compares the SEASAT and ERS-1 altimeters and the 

algorithm developed in this study to process altimeter data for tracking purposes.

7.2 SEASAT and ERS-1 Radar Altimeters

In 1973 the SKYLAB altimeter was the first to give a continuous, direct measurement of 

the sea-surface topography. This altimeter was designed for obtaining the radar 

measurements necessary for designing the future improved instruments. The GEOS-3 

altimeter was actually the first globally applied altimeter system. SEASAT was the third 

in the series o f altimetry missions. Since SEASAT several space missions have been 

planned which included altimeters: GEOSAT in 1985 and more recently ERS-1 and 

TOPEX-Poseidon.

An altimeter is a nadir pointing radar instrument designed to make precise measurements 

of the echoes from the surface o f the ocean. From these measurements three main 

quantities can be derived:

• the height from the satellite to the ocean surface

• ocean wave height

• ocean wind speed
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This study is only concerned with the height measurement

The principle of altitude measurement by an altimeter is simple and straightforward. A  

short pulse is transmitted by the radar toward the surface beneath it at a time t%. The pulse 

propagates toward the surface, at a speed c, is returned by the surface, and an echo is 

received by the sensor at a time The height from the sensor to the ocean surface is 

therefore a function o f the time difference A t=  t% - ti;

. _  ^At
-  “" T  (7.1)

The accuracy of time measurement depends mainly on the duration o f the pulse x. The 

sharper the radar pulse is, the wider the frequency band required to carry it. The value of 

X is determined by the smallest wavelength to be resolved at the sea surface. For 

SEASAT and ERS-1 altimeters x is 3 ns giving a minimum resolved wavelength o f 0.5 

m.

When using such a short pulse the problem arises of how to give it sufficient power so 

that the strength o f the return signal is measurable. This is achieved by a pulse 

compression (chirp) technique. A  filter is applied to the sharp pulse, dispersing it into a 

much longer pulse T, and the frequency is swept linearly over range f  " to f  + such that 

f+-f' = B, where B is the signal bandwidth. This expanded chirp pulse carries the same 

information, but possesses more energy. On return, the reflected dispersed pulse is 

decompressed by applying an inverse filter, producing an effective pulse width o f x = 

1/B. For SEASAT and ERS-1, T = 20 (is, x = 3 ns and B = 300 MHz.

Ideally one would like to have a sharp pulse focused in a small area o f the sea so that all 

the measured area would be simultaneously illuminated. This is the so-called beam- 

limited geometry. However this would require a very large antenna with serious 

technological disadvantages. In the present altimeters the pulse-limited geometry is used 

instead, requiring only an antenna of small diameter (= Im for SEASAT and ERS-1).

The formation of the footprint is explained in Figure 7.1. This is formed when the pulse 

radiated from the altimeter antenna, as a spherical shell, intersects the ocean surface and 

produces a transient illuminated area. The leading edge o f the pulse will strike the sea 

first, just beneath the satellite and then move out in a circular front. The trailing edge will 

do the same a fraction o f time later. The illuminated area will be first a circle of growing 

area and then will become an annulus. The effective area (footprint) whose height is 

sampled is the illuminated circle just before it becomes an annulus. This area also 

depends on the wave height.
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Figure 7.1 - SEASAT altimeter footprint, a) Cross-sectional view; b) and c) Satellite's 

eye views. Extracted from (JPL, 1980).

For a calm sea, the footprint is a circle of radius (Robinson, 1985):

^min ~  V  2 h  C T (7.2)

For a rough sea with significant wave height h i/3 this radius increases to:

înax ~ *̂ 2 h ex'

2 2 16 h]n ln2
T' =T + -------^ ------

(7.3)

(7.4)
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For SEASAT and ERS-1, h «  780 km, x = 3 ns and so fmin = 1 2  km and r^ax = 5km 

for hi/3=5m. Therefore the swath width varies from 2.4 km for a calm sea up to some 10 

to 15 km in high seas.

The return signal is sampled and fitted to a model curve. The shape o f the curve varies 

with wave height, but for the height measurement the quantity of interest is the timing of 

the mid-point o f the leading edge slope (Figure 7.2). By comparing it to the known 

characteristics of the emitted pulse the travel time can be derived. Curve fitting can lead to 

errors, but these are reduced by averaging over a certain time interval. For SEASAT the 

accuracy for 1 second averaged measurements was «  10 cm. For ERS-1 it is expected to 

be better than 10 cm.

1.94 M SWH

0 .5 6  M SWH

15 -10 0 15 205 105
T im e  ( ns )

Figure 7.2 - Return pulse curve fitting for two sea states (Stewart, 1985). 

SWH=Significant wave height.

During 1 second the satellite travels about 7 km. Therefore the spatial resolution of each 

measurement is a strip o f variable width, depending on sea state, and 7 km length.

The ERS-1 altimeter has two measurement modes, optimised for measurements over 

ocean and ice respectively. In ice mode the altimeter works at a coarser resolution, to 

maximise the data return over the ice surfaces.

Table 7.1 compares the main characteristics of the SEASAT altimeter with the ERS-1 

altimeter in the ocean mode.



Table 7.1

SEASAT and ERS-1 altimeter characteristics
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S E A SA T E R S -1

Radar frequency 13.5 GHz 13.8 GHz

Pulse repetition frequency 1020 Hz 1020 Hz

Chirp pulse length 20 ^s 20 |is

Chirp bandwidth 320 MHz 330 MHz

Effective pulse length 3.125 ns 3.0 ns

Antenna diameter 1.0 m 1.2 m

Mass 94 kg 96 kg

DC power 165 W 130 W

Altitude accuracy (1 sec averages) 10 cm < 10 cm

7.3 Data Modelling

The radar altimeter measures the height of the satellite above the sea surface. To relate this 

quantity to the satellite position, it must be converted into a height above some reference 

ellipsoid.

The fundamental relationship between the main quantities involved in satellite altimetry is:

h = ha + N + SST (7.5)

where:

h - satellite height above the reference ellipsoid

N - geoid height above the same ellipsoid

SST - sea surface topography (sea height above geoid)
ha - altimeter measurement corrected for instrument and geophysical effects.
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The altimeter data used in this study were SEASAT data as provided in the Geophysical 

Data Record (GDR) tapes (JPL, 1980). The following corrections, also provided in the 

tapes for each measured point, were applied to data:

Instrument corrections:

• time tag adjustment - adjusts the time tag so that it refers to the time of signal 
reflection from the ocean surface.

• attitude (off nadir pointing) - uses attitude information to infer a correction for h 

due to satellite off-nadir pointing.

• centre of mass reduction.

• wave height - uses telemetered sea state information to correct h for the deviation 

of sea surface from a specular surface.

Geophvsical corrections:

• inverse barometer effect - change in the sea surface height above the geoid due to 

atmospheric pressure variations.

• tides (solid Earth and ocean) - periodic variations in sea surface height due mainly 

to the attractions of the moon and the sun.

• atmospheric effects (tropospheric and ionospheric) - an overestimate of the 

distance due to the reduction in the speed of light through the atmosphere. This can be 

separated into tropospheric (dry and wet) and ionospheric effects.

Equation 7.5 is a theoretical relationship. In practice only approximate values of these 

quantities are known, which are in error. So one can write (Figure 7.3):

h = he + dh = (ha + dh&) + (N + dN) + SST (7.6)

where
he - "computed" approximate height above ellipsoid 

dh - error in the "computed" height (orbit error)
dha - residual errors on altimeter measurement

dN - error in the computed geoid height due to inaccuracy of the geoid model 

SST - Sea Surface Topography (sea height above geoid)
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S ea  surface

Geoid
Ellipsoid

Figure 7.3- Altimeter measurement geometry

Figure 7.4 - Height above ellipsoid
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The "computed" height above the ellipsoid, he, can be computed from the satellite 

geocentric position vector (X, Y, Z) using the relationship between cartesian and geodetic 

coordinates:

X = ( v  + he) cos(p cosX
Y = ( v  + he) cos(p sinX ( 7.7)

2
Z = [v ( 1 - 6 e  ) + he] s in cp

The subscript E means that these elements are referred to the Earth's ellipsoid and are not 

to be confused with satellite orbital elements.

The "calculated" he is:

V x ^ Y ^he =  J  X- t -j L  - V ( 7 .8 )
C O S  ( p

V i s  th e  ra d iu s o f  cu rv a tu re  in  p r im e  v e r t ic a l an d  (p is  th e  g e o d e t ic  la t itu d e , w h ic h  c a n  b e  

c o m p u te d  b y  itera tio n  u s in g  th e  e x p r e ss io n s :

’ V2 2 /2
V =  8 e  ( 1 - 6 e  s i n  ( p )  ^7 9 ^

2
Z+ 6 e  V s incp

" V x V - "

The iteration can be started using an initial value for cp, given by the spherical 

approximation (j):

tanc|) =
2 (7.11)

The geoid height above the reference ellipsoid at a point with geodetic coordinates (cp,X), 

can be computed from one of the present geopotential models using Brun's formula:

where T is the disturbing potential:
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^=2

1
2

^ =2 m=1

(7.13)

r
X  X  [ C^moos m k  + S^m s in  mA, -y  P^m[sin(j)]

Ail the quantities are as defined in equation (3.3) except for:

* I . .GilipAJ^ = J ^ -  (7.14)

where J  ̂ are the zonals of the geopotential model, and J the coefficients defining the 

normal potential of the reference ellipsoid, y  is the normal gravity at latitude (p.

7.4 Filtering process

The expression for the total altimeter (O-C) residuals can be written in the form:

RESID = (ha +N ) - he = dh - (dN + dha + SST ) (7.15)

An inspection of this formula shows that these residuals are a sum of errors of different 

sources (Table 7.3):

• orbit error - as explained in section 4.6, it is mainly long wavelength, the main 

frequencies being of one and two cycles per revolution.

• SST - the sea surface topography can be as big as 1.5 m, but it is usually less than

0.5 m.

• geoid error - present geoid models are accurate for the longer wavelengths, close 

to the dominant errors of the satellite ephemeris error, but the errors increase rapidly for 

the smaller wavelengths. Wakker et al (1987) quote an accuracy for the present models as 

indicated in Table 7.2.

The adopted approach explores the knowledge that the orbit error is predominantly long 

wavelength with wavelengths higher than all other error sources. The method developed 

for this study is a fast algorithm using Fast Fourier Transforms (FFT).
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Table 7. 2 

Accuracy of present geoid models

X (km) accuracy

10,000 < 5 cm

2,000 40 cm

100 1.5 m

To be able to use these observations for orbit determination, it is necessary to find a 

process o f filtering these residuals to eliminate the component o f the error that comes 

from other sources.

Fourier Transform (FT) methods are widely used for spectrum analysis. If the data set is 

large the classic FT is slow , and FFT should be used instead, the number of  
computations being reduced from to N  log2 (N). However the use of FFT requires 

data to be evenly sampled with a number of points equal to a power of 2.

The altimeter data set does not meet any of these requirements. First, the altimeter 

measurement is not continuous, mainly due to land gaps. Second, one is usually 

interested in processing data within a specified interval which can have any number of  

points, depending on the length of the interval and on the sampling rate used.

The method presented here implements the use of FFT methods to any uneven set of 

points. It is based on an algorithm developed by Press and Rybicki (1989) to compute the 

periodogram of unevenly sampled data. The basic idea is to find an evenly spaced data 

set, with a number o f points equal to a power of 2, which produces a spectrum 

"equivalent" to the spectrum of the original data set. This is done by Press and Rybicki 

through a process called "extirpolation", similar to an inverse Lagrange interpolation. By 

this process, each point on the original interval is transformed into a set of evenly spaced 

function values on an expanded interval, with a number of points of the form 2^ , in such 

a way that the original points could be obtained by interpolating along these function 

values. Press and Rybicki implemented this method to compute the FFT and therefore the 

periodogram of an unevenly spaced data set.



Table 7.3 

Typical altimeter error budget 

(Tapley et al., 1982)
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Type of effect Source Amplitude

(cm)

Residual

after

modelling

(cm)

Wavelength

(km)

altimeter noise 5

altimeter bias 20 2

sea state electromagnetic bias 

+ tracker bias

7% swh 3% swh 5 0 0 - 1000

ionosphere free electrons 2-20 3 50 - 10,000

dry troposphere mass of air 240 1 1000

wet troposphere water vapour 1 0 -4 0 3 5 0 -5 0 0

liquid water clouds, rain 10-100 30-50

ocean tides moon, sun attraction 100 5 5 0 0 - 1000

solid earth tide moon, sun attraction 20 2 20,000

ocean currents equatorial 30 7 5000

western boundary 130 ? 10 0 -1 0 0 0

eastern boundary 30 7 1 0 0 -1 0 0 0

mesoscale eddies

rings

gyres

25

100

50

100

100

3

geoid mass distribution of 

earth

100 m 2 m 2 0 0 0 -5 0 0 0

orbital error gravity 10 km 140 40,000

drag 300 30 10,000

solar radiation 300 30 10,000

station location 100 10 10,000



130

During this study this method was further developed to build a complete filtering 

algorithm. This algorithm was implemented in a FORTRAN subroutine called DFFT 

(Discrete Fast Fourier Transform) which makes use of a set of other subroutines:

Subroutine SPREAD - "Extirpolates” an array of length N into an expanded array 

of size NDIM (Press and Rybicki, 1989)

Subroutine SHRINK - Reverses extirpolation made by SPREAD

Subroutine REALFT - Computes the FFT (if the input parameter ISIGN is set to 1) 

or the inverse FFT (if ISIGN is set to -1 )  of a real array of size N  =2^ (Press et al, 1986)

The main innovation introduced by this algorithm is the recovery o f the low est 

frequencies on the original data set (subroutine SHRINK), by a process which inverts the 

"extirpolation" done by subroutine SPREAD. This way the recovered data set is a 

smoothed version o f the original, after removing the highest frequencies. In this study 

this algorithm was used for the specific purpose of processing altimeter data, but can also 

be applied as a low pass filter to any unevenly spaced data se t

7.5 Processing Algorithm

Let ( X,Y ) be a set of N  unevenly spaced points (N any number). X is usually time and 

Y the values of a measured quantity at the corresponding times (Figure 7.5).

1 - Transform array Y into an equivalent array DATA of size NDIM evenly spaced 

points, by "extirpolation" (Subroutine SPREAD).

2 - Take FFT of DATA. DATA is transformed from the time domain to the 

frequency domain (Subroutine REALFT, with ISIGN=1).

3 - Choose an appropriate cut-off frequency (LFREQ) and neglect frequencies 

above LFREQ.

4 - Take inverse FFT of filtered DATA. DATA, now smoothed is transformed back 

to the time domain (Subroutine REALFT, with ISIGN=-1).

5 - Go back from smoothed DATA of size NDIM to equivalent YF of size N  , 

which is now a smoothed version of the original Y (Subroutine SHRINK).
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Figure 7.5 - Smoothing algorithm

time domain

The filtering process is controlled by a number of parameters. Here the main points are 

underlined:

1. The size of the expanded array DATA, NDIM is controlled by two parameters:

OF AC - Oversampling factor - Using an OFAC >1 basically has the effect of 

a better sampling o f the spectrum by increasing the number of sampled frequencies.

MACC - Number of interpolation points per 1/4 cycle of highest frequency. 

Each point on Y is transformed into a number of MACC points on DATA.
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2. How to choose LFREQ:

By analogy to the evenly spaced case, an unevenly sampled data array Y o f N  points, 

has N/2 independent frequencies. Let L be the length of the interval covered by these N  

points. Then the frequencies are:

f, = L  (7.16)

with corresponding periods

^' = i7  = r  ‘ (7. 17)

The maximum frequency is called the nyquist frequency.

If we could compute directly the FFT of array Y, then it would be easy to choose the 

appropriate LFREQ as the maximum frequency to retain. However the actual FFT that is 

computed is the FFT of array DATA of size NDIM and, in this case, there are NDIM/2 

independent frequencies. However a close inspection of the algorithm shows that the 

first N/2 frequencies of DATA are in fact the frequencies of the original data Y.

If imax is the index of the maximum frequency to retain (imax cycles per L) i.e. : 

f max = --7 --" is the maximum frequency to retain and

Pm in -  , is the minimum period
I max

LFREQ should be

LFREQ = i maxx OBC = x OFAC
Pmin

The index of the maximum frequency with significance is ^  x 0R4C .

• Although the frequencies on the original interval correspond exactly to the first 

frequencies on the expanded interval, the amplitudes have to be scaled. The need for this 

comes from the fact that an FFT of size jg computed instead of an FFT of size

^  X 0R4C . Thus the scale factor to be applied to the amplitudes on the expanded interval

to obtain the amplitudes on the original interval is
Nx ORÛC
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To test the efficiency o f the algorithm two examples are presented.

Example 1

A  set of (X , Y) unevenly spaced points was generated where Y is a sinusoidal function 

of X  . To simulate noise existing in real data, to each value of Y was added a random 

variable NOISE with zero mean and a  = 0.8. To simulate uneven spacing, 50 points 

were generated with a spacing between consecutive points o f 3 + R, where R is random 

variable with zero mean and o  =0.3.

Number of points: N=50

Length of the interval : L =150

DO i= l,50
Xi = 3 i  + R

©i = (2 tc/  L)Xj

Yj = 2 .5 + 2cos(cOi) + 3sin(2cOi) + 1.5sin(6cDi) +NO ISE  

END DO

According to the way these points were generated, there are 3 main frequencies, of 1, 2 

and 6 cycles in the interval L. Therefore the index of the maximum frequency to retain is 

•max = 6 .

Figure 7.6 illustrates the result when using

OFAC=MACC=2 

LFREQ=6 X OFAC =12

In the figure the dots represent the original data points and the continuous line the 

smoothed version of these data which contains only the 6 largest frequencies. The 

remaining signal, which contains all the frequencies from 7 to 25 is regarded as noise. 

The importance of the oversampling factor OFAC can be illustrated in this figure. Using 

an oversampling factor o f 1 means that the Fourier function (F) will be periodic in the 

interval L and therefore the smoothed curve will be such that F(1)=F(N). This is a 

serious constraint that will strongly influence the shape of the smoothing function at both 

ends of the interval. By applying an OFAC > 1 , for example OFAC = 2, the interval L is 

expanded to 2L and this constraint is then applied to the interval 2L, therefore becoming 

unnoticed in the original interval.
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Time

Figure 7.6 - Result o f smoothing data in example 1, using 0F A C =2, MACC=2, 

LFREQ=12.

Example 2

In this example a set of actual altimeter residuals is presented. According to equation 

7.15 these residuals are computed in the following way:

RESID = (ha +N ) - he

where

ha - actual SEASAT altimeter measurements after applying all instrument and 

geophysical corrections, using a sampling interval of 1 minute.

N  - geoid undulation computed using OSU89B geopotential model up to degree 

and order 180 (Rapp and Pavlis, 1990).

he - computed satellite height above ellipsoid using an ephemeris where all the 

forces described in section 3.3 were modelled and the GEMTl gravity field was used.

The ellipsoid used is the Geodetic Reference System 80 (GRS80) ellipsoid, as 

recommended in the SEASAT GDR tapes: ( a = 6378137 m, l/f=  298.257 ).
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It was found that using a sampling interval of 1 minute, the original data set of 1 sec 

measurements is highly reduced without loosing the long wavelength information of the 

signal. The main advantage of using a large sampling interval is the saving in computing 

time.

The spectrum of these residuals is shown in Figure 7.7. The two main frequencies 

correspond to 2 and 1 cycles per revolution with periods o f 50 min and 100 min 

respectively. These are the well known dominant frequencies o f the orbit error. Apart 

from some long period signals, the remaining frequencies with significance have periods 

smaller than 30 minutes, which can hardly be considered orbit error. At these 

wavelengths the geoid error becomes as important as the orbit error itself. Therefore it 

was decided to use a cut-off frequency just above 2 cycles per revolution.

The smoothing algorithm was apphed to this data set:

Number of points: N= 2886

Length of the interval L = 4299 minutes (= 3 days)

0FAC=2 

MACC=1 

Pmin = 48 min 
LFREQ = 180

0 .3  —I ...1 I 11111 I I I I 11,1 i l   j  ..-I I I 111 i I--------1— I—L.

0.2 -

0.1  -

0
100

Period (m inutes)
1000

Figure 7.7 - Spectrum of altimeter residuals (example 2)



136

8

6

4

2

0
1-

■2

-4

6

8
1440360 10800 720

Time (minutes)

Figure 7.8 - Residuals and smoothed curve (example 2)
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Figure 7.9 - Zoomed section of Figure 7.8
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Figures 7.8 and 7.9 illustrate the result. The second figure is a zoomed representation of 

a section of the first. The 2 cycles per revolution frequency is the dominant signal. The 

statistics of the plotted values over the whole interval (« 3 days) are:

average of total residuals (Y) : 0.88 m

rms total residuals (Y): 1.48 m

rms smoothed residuals (YF) : 1.13m

rms noise (Y-YF) : 0.98 m

These are typical values obtained when processing altimetry data. An important feature 

of these statistics is the average value o f these residuals o f approximately 1 m. This is a 

common feature in all SEASAT solutions and was explained by several investigators as 

being due to an error of similar value in the semi-major axis of the GRS80 ellipsoid.

If the assumption made above about the spectrum of the errors that constitute the altimeter 

residuals is correct, then the smoothed curve YF is the orbit error with an rms of 1.13 m.

This algorithm was implemented in program RGODYN to process altimetry data for 

tracking purposes. This is done in three main steps:

1 - program computes residuals for all observations (Y)

2 - applies smoothing algorithm, using an appropriate cut-off frequency, returning 

the smoothed residuals (YF).

3 - All the observations are processed again now using YF as the actual altimeter 

residuals, and the fitting process is completed.
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Chapter 8 

SEASAT long arcs

8.1 Introduction

The first part of this study, before the launch of ERS-1, was dedicated to the computation 

of SEASAT's orbit, as a preparation for subsequent application to the determination of 

the orbit of ERS-1, once its own data became available. The main components o f this 

study, which are the subject of this chapter are:

- to determine the accuracy of SEASAT long arc ephemerides, computed with the 

SATAN programs implemented at UCL and the state o f the art models for this satellite.

- to assess the accuracy of orbits determined with PRARE data.

- to investigate the effect of tracking stations' configuration in the orbit accuracy, by 

using reduced tracking networks.

- to investigate the potential of altimetry data to replace range data over considerably 

long time intervals.

The tracking data used were actual SEASAT laser and altimeter measurements and 

PRARE simulated observations.

8.2 Computational model

This section describes the computational model used in SEASAT solutions. This model is 

summarised in Table 8.1.

The period chosen for this study is the 3 day period from Oh September 18 to Oh 

September 21, 1978, corresponding to the Modified Julian Dates MID e  [43769.0 , 

43772.0]. This corresponds to a period during which SEASAT was flying on a 3-day 

repeat orbit, similar to the ERS-1 orbit used during the commissioning and ice phases.

For long arc analysis, arcs of 3 days' length were selected. This is the minimum length 

required to obtain a stable solution. This nominal length was chosen due to the large 

number of tests that were performed. A much larger arc length, such as 6 days, would 

substantially increase the computing time of each run.
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8.2.1 Reference systems

The adopted time scale and reference systems were described in Chapter 2 except for the 

Terrestrial System where the so-called GEM Tl system was used instead o f the 

BIH/IERS frame. This is the system adopted by the geopotential models GEMTl and 

GEMT2. Therefore if  these models are utilised in the computations, this system should 

be adopted as the terrestrial frame where the acceleration due to the Earth's gravity field is 

computed. The main difference between the BIH and GEMTl systems is a shift in the 

pole origin. The GEMTl system adopts an origin that coincides with the 1979-1984 6 - 

year average pole.

The transformation between BIH and GEMTl systems is described.

Transform ation BIH  -»  G E M T l:

Mueller et al. (1982) establish the relationship between the Earth Rotation Parameters 

(ERFs) for two different reference systems.

The two celestial (CIS) and two terrestrial (CTS) systems inherent in two different 

techniques (I and II) are generally not identical. Let the relationship between the two 

CIS's be

X II
X" I

Y = R i ( a j )  R% ((^^ R 3 (a ^ . Y (8 . 1 )
Z CIS Z CIS

and similarly the relationship between the two CTS's

n

— R i ( P i )  (P2) ^ 3 (^ 3)*
CTS

(8.2)
CTS

where a i and pi are small rotation angles about the axes i (cf. equation 2.12).

The transformation from CIS to CTS is

X
I

X
y = S  ̂ N  P Y
z CTS Z

(8.3)
CIS
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X
y

n

= s “ N P
X
Y

n

(8.4)
z CTS Z CIS

It is assumed that common nutation (N) and precession (P) matrices are used for both 
systems (I and II). S is the Earth rotation matrix S = R2 (-xp).R i(-yp).R 3 (0 ), in which

xp and yp are the coordinates of the pole, measured in arc seconds, and 0  is the 

Greenwich Sidereal Time (see section 2.4.3).

Substituting the left hand side o f equation (8.2) by the right hand side of equation (8.4),

-il r-.-iH

R i ( P l )  Rz(P2) RaCPs)- = S °  N P
CTS

(8.5)
CIS

and replacing
X
Y
Z

II

by its equivalent expression given in equation (8 .1):
CIS

R i( P i )R 2 ( P 2 ) R 3  (P3)
,n

= S N P  Ri (a i )  Rg(«2) R3(ctg)
CTS

(8 .6)
CIS

After some manipulation, neglecting second order terms,

I

= R i ( - p j + a j c o s 0  + a 2 sin0 ) R 2 (-P2 - cxj sin0  + a 2 cos0  ) .

I
CTS (8.7)

n.R3(-P3+ a ÿ S  N P
CIS

Comparing equations 8.7 and 8.3,

S^= R i (-pj + a j c o s 0  + a 2 sin0 ) R 2 (-p2 - ot j sin0 + tt2 cos0  ) 

. R 3 ("Pg + 0C3) S
(8.8)

Therefore the difference between the pole coordinates o f the two systems can be written 

as:

Ayp = y p ° - y p ^ = - P i  + tti cos0 + a 2 sin0  

Axp = x p ° - x p ^ = - p 2 - tt i sin0 + tt2 COS0

(8.9)
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The parameters for the BIH —> GEMTl transformation can be taken from Marsh et al. 

(1988):

p l=  1.46 mas 

P2= -3.80 mas

a l =  -0.22 mas (8.10)

a 2 =  0.62 mas

In this transformation (%g = Pg = 0 , i.e., there is no transformation in the UTl-UTC  

series. The GEM Tl model adopts the BIH-provided UTl-UTC series with no changes 

whatsoever (Marsh et al., 1988).

The transformation applied to the BIH polar motion series to refer them to the GEMTl 

system was

GEMTl BIH o  Q • Û -yp = y p  -P i + ttiCOS0 + a2Sin0 - y
GEMTl BIH o  . Û Û -  (8.11)

Xp = x p  -P 2 - tti sm0 +  tt2cos0 - X

In these expressions x and y are the coordinates of the 6 year average pole adopted as 

GEMTl origin.

X = 38.2 mas
(8. 12)

y = 280.3 mas

Using this transformation the BIH polar motion series is transformed to the so-called "a 

priori" GEMTl system, i.e., the reference system initially adopted by GEMTl. However 

the GEMTl solution includes the adjustment o f the ERPs, including polar potion. After 

the adjustment it was found that there was a significant shift along the y axis, o f

approximately 18 mas, between the "a priori" and the adjusted series. The parameters for

the transformation between the "a priori" and the "adjusted" series were found to be:

p i=  -17.30 mas 

P2= -2.30 mas

a l =  0.13 mas (8.13)

a 2 =  0.03 mas

These parameters were used again in equation (8.9), for the final transformation between 

the "a priori" and the "adjusted" GEMTl systems. Throughout this thesis the expression 

"GEMTl system" wiU be used to refer to the "adjusted" system.
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Table 8.1

Summary of the computation model used in SEASAT orbits

Period o f study From Oh September 18 to Oh September 21,1978  

MJD e  [43769.0 ,43772.0]

Celestial Reference System J2000

Terrestrial Reference System GEMTl system

Earth Parameters a=6378137 m 

1/f = 298.257 

GM = 398600.436 

c = 299792.458 km/s

Laser Station Coordinates GEMTl stations

Pole coordinates BIH coordinates transformed to GEMTl system

Geopotential Variable (GEMTl, GEMT2, GRIM4_C2)

Precession lAU, 1976

Nutation lAU, 1980

Earth Tides Wahr, 1980

Ocean tides Schwiderski, 1980

Atmospheric Drag Jacchia 1972 atmospheric model 

A/m = 0.0114 (m^/kg)

Radiation Pressure A/m = 0.0114 (m^/kg)

Ephemerides JPL DE-2(KX). Effects of Sun, Moon, Venus, Mars, 

Jupiter and Saturn included

Adjusted parameters Start vector, daily drag coefficients, radiation 

pressure coefficient

Step length for integration 1.25 minutes for long arcs 

0.50 minutes for short arcs

Laser data 20° cut-off elevation 

Marini-Murray tropospheric correction 

Centre of mass correction
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8.2.2 Integration step length

When computing a satellite ephemeris by numerical integration, if  a large number o f  

computer runs is to be performed, the integration step length should be as large as 

possible to reduce the computing time. However it has to be short enough to cope with 

the short period perturbations due to the Earth’s gravity field.

If a geopotential model such as GEMTl is employed, complete to degree and order 36, 

the shortest wavelength described by the model is:

= 5  1100 km (8.14)

According to the sampling theorem, to detect these perturbations the minimum sampling 

interval has to equal half this wavelength (550 km). The satellite velocity projected onto 

the Earth's surface is approximately 6.7 km/s. The time taken by the satellite to sweep 

this distance is

t m i n = f f S = 8 2 s  (8.15)

Therefore, for a 36 degree model, a step length of about 75 seconds (1.25 minutes) is 

adequate.

If a model containing terms up to degree 50 is used, such as GEMT2, the step length 

should decrease to about 60 seconds. It will be demonstrated that in practice it is not 

necessary to apply a step length smaller than 1.25 minutes, since the last coefficients in 

the geopotential model have little influence on the solution.

During this study the effect of step length on orbit computation was investigated, with the 

aim of establishing the minimum step that should be used for the computation of orbits of 

satellites such as SEASAT or ERS-1. To do this, a 3-day SEASAT orbit which had been 

computed using a step = 1.25 minutes, was re-integrated using the same model (GEMT2) 

and the same starting values but different step lengths. These solutions are named LI, 

L2, L3 and L4 and are described in Table 8.2. The rms of fit is the same for all solutions: 

0.30 metres.

The results show that truncation and convergence errors grow with step length (Table 

8.2). These parameters are error estimates associated with the numerical integrator 

(Sinclair, 1988). Comparing these errors for solution LI (step = 1.25) and L4 (step = 

0.5), the last are about 10  ̂smaller.
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The differences between these solutions are presented in Table 8.3. The differences 

between orbits LI and L2 are also plotted in Figure 8.1. The only component with 

significance in these differences is the along-track component. The differences in the 

across-track direction are always negligible. For the larger steps, the radial differences 

have an rms o f about 2 decimetres, but for the smaller steps they are also negligible. The 

differences in the along-track direction increase linearly with time, the maximum values 

being reached at the end of the arc. So, orbits integrated with the same initial parameters 

and force model but different step sizes, have an along-track difference that increases 

linearly with time. The limit, i.e., the value after which it is not worth decreasing the step 

any further, is 0.5 minutes. Now when step size is halved (0.25 minutes), the along- 

track difference after 3 days is 4  cm which is within the accuracy o f the observations.

Table 8.2

Orbits computed using the same force model and initial parameters 

but different step lengths

Orbit step

(minutes)

number of steps Max. convergence 

error (m)

Max. truncation 

error (m)

LI 1.25 3456 0.5x10-6 0.7x10-2

L2 1.00 4320 0.6x10-7 0.2x10-2

L3 0.50 8640 0.2x10-9 0.3x10-5

L4 0.25 17280 0.6x10-10 1.0x10-9

Table 8.3

Differences between solutions computed with different integration steps

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R (m) 

rms max

L 1 - L 2 44.72 77.81 44.72 77.81 0.05 0.08 0.24 0.41

L 1 - L 3 42.99 74.72 42.99 74.72 0.05 0.07 0.22 0.39

L 2 - L 3 1.74 3.09 1.74 3.09 0.00 0.01 0.02 0.04

L 3 - L 4 0.02 0.04 0.02 0.04 0.00 0.00 0.00 0.00

LI - L3A 0.01 0.03 0.01 0.03 0.00 0.00 0.00 0.01
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Figure 8.1 - T A R differences between orbits LI and L3, computed with the same force 

model and initial parameters but different integration steps (step=1.25 versus step=0.50 

minutes).
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These results do not imply that one cannot use steps larger than 0.5 min. To prove that, 

orbit L3 (step = 0.5) was fitted to the same laser tracking data that had been used on the 

computation o f orbit LI (step = 1.25). This solution is named L3A. The difference 

between these solutions after fitting is presented in the last row of Table 8.3. Although 

initially these two orbits (LI and L3) had a difference which after 3 days reached several 

metres, as the fitting process progresses they converge, and the final solutions are 

equivalent. Naturally the solved-for parameters will be different for both solutions, to 

compensate for the different step lengths.

In conclusion, the step length is an intrinsic characteristic o f each solution computed by 

numerical integration. If an orbit is computed using a given step value, then it must not be 

changed on further computations involving this solution. A further conclusion is that a 

step length as large as 1.25 minutes can be employed on the computation o f SEASAT 

orbits with geopotential models up to degree 50, without any appreciable loss of  

accuracy.

For the reasons explained above, a constant step length o f 1.25 minutes was used on all 

long arc computations.

8.2.3 Centre of mass correction for laser data

The laser data used in SEASAT computations are described in Table 8.4. The positions 

of the laser stations were directly extracted from the GEMTl file (Marsh et al. 1987), 

without need for any transformation.

The corrections applied to these data were the tropospheric correction using the Marini- 

Murray (1973) formulae and the centre of mass correction. For the first five stations the 

centre o f mass correction was provided with the data (last column of Table 8.4). A simple 

correction algorithm was applied to the last three stations for which no correction was 

available.

Figure 5.8 illustrates the spacecraft symmetric shape relative to the satelhte Z axis. The 

laser retro-reflector is positioned at the bottom of the cylinder, with its centre coincident 

with the base centre of the cylinder. The correction AR to be applied to the measured 

range to refer it to the satellite centre of mass can be written to sufficient approximation as 

(Figure 8.2):

AR = A cos 8 4- B sin 6 (8.16)

A - Distance between the centre of the laser retro-reflector array and the satellite 

centre of mass
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B - Radius of the laser retro-reflector array

0 - Angle defined by the range direction and the satellite geocentric vector.

Centre of mass

Laser
Retroreflfictoi Coirected range

□ m i]

X
Measured
range

Figure 8.2 - Centre of mass correction for SEASAT laser data.

Using the known corrections (AR) for 5 o f the stations, constants A and B were 

determined by least squares. The obtained values are:

A = 4.660 m 

B = 0.611 m

These values were then used to compute the centre of mass correction for the three 

remaining stations (7833, 7903 and 7921) by using equation (8.16). This simple 

procedure proved to be very efficient, supplanting the need for a more complicated 

algorithm.

8.3 Solutions with laser data; the Reference Orbit

One of the aims of this study is to assess the feasibility o f using reduced sets of tracking 

data for orbit determination. To determine the accuracy of these solutions the best 

possible orbit must be computed and used as a reference with which all other solutions 

could be compared.
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It is not possible to make an assessment of the exact error o f a computed ephemeris, 

because the “true” path of the satellite is not known. Two methods are frequently used 

for estimating the accuracy of a computed solution.

The first is the analysis of the rms o f fit to tracking data. As the spatial and temporal 

coverages o f these data are very limited, this method lacks information on areas where no 

data are available. For long arcs, if  the data are well distributed, the solution is usually 

uniform, which means that the error should be o f the same order all over the arc. 

However, with reduced sets o f tracking data, small rms values are a very poor indicator 

of the accuracy of the orbit over the non tracked parts.

Table 8.4

SEASAT laser data for the period MJD e  [43769.00,43772.25] - LASER 1

Station Symbol Location Longitude

CE)

Latitude

0

Height

(m)

Passes Points CM.

corr.

7062 SDI San Diego, 

California

243.15912 32.60080 992.1 5 921 Yes

7063 GRB Greenbelt,

Maryland

283.17221 39.02046 22.3 2 377 Yes

7067 BER Bomuda

Island

295.34392 32.35390 -19.3 4 259 Yes

7068 GND Grand Turk 

Island

288.86811 21.46057 -15.1 2 57 Yes

7069 PAT Patrick APB 

Florida

279.39429 28.22804 -20.1 4 484 Yes

7833 KOO Kootwijk,

Holland

5.809896 52.17840 93.5 2 31 No

7907 ARE Arequipa

Peru

288.50687 -16.46567 2492.3 5 148 No

7921 HOP Mount Hopkins 

Arizona

249.12192 31.68430 2352.9 4 42 No

The second method consists in computing the differences between solutions generated 

with different models. As both models are non exact, this mainly gives information on 

the accuracy of the less accurate model and does not detect errors common to both
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models. It has however the big advantage of being global, i.e., o f  giving information 

about all parts in the arc. These differences are usually expressed along the three 

components: along-track (T), across-track (A) and radial (R). In this thesis these 

directions are defined by the unit vectors:

T =  S % ( S x  S) 

S x  S
(8.17)

where S is the satellite geocentric position and S the satellite velocity.

To generate a reference orbit for SEAS AT, a solution was computed using all laser data 

available for the period MJD g [43769.0 , 43772.25]. The reason for using this slightly 

longer period of 3.25 days, is because there were no tracking data for the last 6 hours of 

September 20. This would obviously generate a poorly determined solution at the end of 

the arc, if a 3-day solution was computed.

20

10 -

0 -

-10 —

-20

©

Satellite Track

Time (days)

Figure 8.3 - Temporal distribution of SB AS AT laser data (LASER 1) for the period MJD 

G [43769.0 , 43772.25]. Each circle represents one pass. For each pass the Y axis 

represents the minimum angular distance between the satellite and the tracking station. If 

the station is on the left or on the right of the satellite track, the angular distance is 

considered respectively positive or negative.
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The laser data available for this 3.25 day period comprise 25 passes from 8 stations. The 

quality of these data varies from station to station. In this solution the same accuracy was 

assumed for all stations with a standard deviation o f 0.2 m. In the final iteration, 

considering a rejection level of 2 m and a minimum elevation o f 20°, a set of 2319 

measurements was processed, distributed as indicated in Table 8.4. This laser data set is 

referred to as LASER 1.

Figure 8.4 illustrates the poor spatial distribution of these stations showing that most of 

them are located in North America. However the passes are fairly well distributed along 

the arc, as is illustrated in Figure 8.3.

Table 8.5

SEASAT orbits computed with different geopotential models

Orbits Tracking data Model rms (m)

LI LASERl GEMT2 0.30

L5 LASERl GEMTl 0.46

L6 LASERl GRIM4_C2 0.29

PI PRAREl GEMTl 0.64

Table 8.6

Differences between SEASAT orbits computed with different geopotential models

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R (m) 

rms max

L1-L5 1.34 3.62 1.07 3.44 0.72 1.89 0.37 1.05

LI -L6 0.96 2.47 0.73 2.44 0.57 2.30 0.27 0.98

LI - PI 1.27 3.45 1.01 3.43 0.67 1.74 0.37 1.11

P1-L5 0.45 0.88 0.39 0.84 0.20 0.30 0.06 0.09

The geopotential model used to generate this reference orbit was the best available model 

for SEASAT at the time of these computations: GEMT2. The adjusted parameters were 

the start position and velocity, the solar radiation coefficient and 3 drag coefficients, one
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for each of the first two days and one for the last 1.25 days. This generated a solution 

with range rms residuals of 0.30 m. Due to the poor spatial distribution o f the tracking 

data the rms of fit is probably an optimistic indicator o f the ephemeris accuracy over the 

non-tracked parts. The actual global accuracy can be two to three times worse.

To have a more realistic estimate of the accuracy of this solution, the same computation 

was repeated using two different geopotential models: GEMTl and GRIM4_C2 (Table

8.5). The differences between these solutions are presented in Table 8.6.

The solutions computed with GEMT2 and GRIM4_C2 have similar accuracy since they 

possess the same rms o f fit. However their differences amount to 0.7, 0.6 and 0.3 m in 

the TAR directions respectively, with a global rms of 1 metre (Figure 8.5). These figures 

are a more realistic indicator of the actual accuracy of these ephemerides.

GEM Tl solution (L5) exhibits a larger rms than GEMT2 and GRIM4__C2 orbits, 

showing that the last two models are more accurate for SEASAT than GEM Tl.

These figures are in agreement with published results for SEASAT. Wakker et al. (1987) 

computed GEM Tl solutions with rms in the range 48 to 62 cm. Using crossover 

differences, Marsh et al (1990a) predicted a radial error of 28 cm for SEASAT orbits 

computed with GEMT2. The 30 cm rms in the laser range residuals exhibited by 

solutions LI and L6 contain errors in all components and therefore cannot be compared 

directly with the 28 cm radial error obtained using crossover analysis. However the 

differences between these two orbits (L1-L6) is of 27 cm in the radial direction which is 

a clear indication of the actual radial error in these solutions.

Orbit LI described above will be referred to throughout this chapter as the reference orbit.

8.4 Solutions with PRARE and altimetry data

8.4.1 Solution with a full PRARE network

Having established the accuracy of SEASAT orbits obtained with laser data and various 

geopotential models, the aim is now to assess the accuracy of solutions computed with 

PRARE data.

As described in section 6.3, PRARE range observations were simulated for a network of 

18 well-distributed stations. The orbit used to generate these observations was the 

reference orbit LI. This full network of 18 PRARE stations is named PRAREl (Table 

8.7).
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Since these PRARE observations were generated using the state o f the art geopotential 

model for SEASAT (GEMT2), in the analysis o f these data the same model cannot be 

used, since any solution computed with the same model would fit exactly to the 

observations (the rms of fit would be equal to the standard deviation o f the observations, 

7 cm). Therefore, for the analysis of these PRARE data the GEMTl geopotential model 

was used. This procedure was intended to simulate our imperfect knowledge o f the 

gravity field. When comparing orbits computed with these PRARE data and GEMTl 

with the reference orbit L I, the errors due to the gravity field are modelled as the 

differences between GEMTl and GEMT2. This was believed to be a realistic estimate of 

the gravity field error for ERS-1. Later on, in Chapter 9, it will be demonstrated that this 

estimate is too optimistic.

In this analysis, errors due to the surface forces drag and radiation pressure were not 

considered. Most of the errors due to mismodelling of these forces are in the along-track 

component and are absorbed by solving for daily drag coefficients.

An orbit was computed using all PRAREl data and GEMTl (orbit PI in Tables 8.5 and

8.6). Since these data are very well distributed in both spatial and temporal dimensions 

(see Figure 6.2), this solution represents the best SEASAT orbit that can be computed 

using the GEM Tl model. The rms of fit o f this solution is 0.64 m. This rms of fit is 

greater than the rms of fit of the orbit computed with the same model and LASERl data 

(orbit L5). This is a clear indication that a smaller rms o f fit does not necessarily mean a 

better orbit. Although orbit PI has a larger rms than orbit L5, the global accuracy of the 

two orbits is comparable since the difference between them (0.45 m rms) is of the order 

of the rms of fit (Table 8.6).

We can conclude that orbits with PRARE data have the same accuracy as laser orbits. The 

dominant error in all these solutions is due to errors in the geopotential. The differences 

between orbits LI and PI are an indication of the remaining errors on SEASAT  

solutions computed with GEM Tl, irrespective of station configuration. These are of the 

order of 1.0, 0.7 and 0.4 m in the T, A and R directions respectively.

8.4 .2  Solutions with reduced PRARE networks and altimetry 
data

In practice the tracking data available have a spatial distribution that is far from the ideal 

coverage represented by the PRAREl tracking network. This section describes the 

research being done on the influence of tracking data distribution in the orbit accuracy and 

the extent to which altimetry data can be used to replace range data.
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Wakker at al. (1983a) have considered the combination of altimetry with laser data, but in 

these solutions the distribution of the laser data was fairly regular with at least one pass 

per day. In practice sometimes there are intervals of one day or more during which there 

are no passes of range data. In the present study the influence of tracking data distribution 

along the arc is investigated in more detail.

To study the effect of tracking data distribution on the ephemeris accuracy, several 

configurations with only a few passes from one or two PRARE stations were considered. 

The reason for using PRARE instead o f laser data is because at the time o f this study it 

was expected that PRARE would play an important role in the tracking o f ERS-1. 

According to the simulation process, the standard deviation of these PRARE observations 

is Gp = 0.07 metres.

Results obtained with five o f these configurations, named PRARE2 to PRARE6, are 

presented. These configurations are defined in Table 8.7. The temporal distribution of  

these data sets is represented in Figures 8.6 to 8.10.

The altimeter data set employed in these computations consists of SEASAT altimeter 

measurements for the period MJD e  [43769.0,43772.0]. Although the original data set 

contains one measurement every second, to use these data for tracking purposes it is 

more appropriate to adopt a larger sampling interval. Since we are only interested in 

retaining the long wavelength component of these measurements, this procedure highly 

simplifies the data processing without information loss. Two sampling intervals were 

found to produce the same results: 30 sec and 60 sec. For simplicity a sampling interval 

o f 60 seconds was employed, resulting in a data set of 2901 points covering the 3-day 

period.

These altimeter data were processed using the algorithm described in Chapter 7. This 

processing is controlled by a number of parameters:

Oversampling factor (OFAC) - As was explained in the previous chapter, the 

oversampling factor should be greater than 1. Since the Fourier functions are periodic in 

the sampled interval (3 days), using an OF AC = 1 causes the orbit error to be exactly 

equal at the beginning and end of the arc. To avoid this, an OFAC = 2 was used in all 

computations. This way the original interval is expanded into 6 days, and the periodicity 

constraint is applied to this interval, becoming undetectable in the original interval.

Cut off frequencv (LFREQ) - This was chosen in such a way that the minimum 

period retained (PMIN) is close to 48 minutes. This is equivalent to using a cut-off 

frequency of two cycles per revolution. It is found that higher frequencies are corrupted 

with geoid errors and therefore should not be incorporated in the orbit error.
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Standard deviation of the altimeter measurements - Oa - It is very difficult to obtain 

a realistic estimate of the accuracy of the filtered altimeter measurements when used for 

tracking purposes. Assuming that the filtering process is correct, one estimate can be the 

so called altimeter "Noise", computed as the difference between the original altimeter 

residuals and the filtered residuals. Results suggest a value around 1 metre. In practice it 

is not relevant if  the adopted value is close to the truth. The altimeter standard deviation 

should be regarded as a scaling factor, which determines the relative weight o f these 

measurements in the final solution, when mixed with PRARE observations with a sigma 

Op = 0.07 m.

Table 8.7

Tracking data sets used in SEASAT computations for the period 

MJD G [43769.00 , 43772.25]

Name Description

LASERl Laser data for 8 stations: 7062, 7063, 7067, 7068, 7069,7833, 7907, 7921

PRAREl PRARE data for 18 stations

PRARE2 3 passes from PRARE station 7834 - 31 points

PRARE3 5 passes from PRARE station 7834 - 54 points

PRARE4 7 passes from PRARE stations 3011 and 7834 (2 + 5) - 79 points

PRARE5 8 passes from PRARE stations 3011 and 7834 (3 + 5) - 91 points

PRARE6 8 passes from PRARE station 3003 - 94 points

ALTl Altimeter data - 2901 points at a sampling interval of 60 sec; Geoid computed 

from OSU89B (Rapp and Pavlis, 1990) considering terms up to degree and 

order 180

For each of these data sets an orbit was computed using PRARE data only. These 

solutions are named P2 to P6 (Table 8.8). In the next step altimeter data were added to 

each PRARE data set resulting in orbits P2A, to P6A.

Table 8.8 summarises the results obtained. For the solutions computed solely with range 

data, the only solution parameters presented in the table are the rms and maximum values 

of fit to data. For the solutions computed with range and altimeter data, several altimeter 

parameters are presented. The fifth column represents the rms of the altimeter residuals 

after fitting (only the filtered part). This parameter is an indication of the remaining radial
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error in the computed solution. The sixth column represents the altimeter N oise 

(difference between the total and the filtered residuals). This noise parameter is a measure 

of the accuracy of this tracking data type. The last column shows the average o f the total 

altimeter residuals. Several authors have found that this average has values from about 

0.7 m to one metre: 0.75 m (Rapp, 1987), 0.86 m (Marsh et al., 1990b) and 0.90 m 

(EngeUs and Knudsen, 1989). This bias is attributed to an error in the adopted GRS80 

ellipsoid (Moritz, 1980). For this reason, in most o f the computations, a constant 

altimeter bias (ALTBIAS) of -0.80 m was applied to all altimeter measurements.

Table 8.8

SEASAT orbits computed with PRARE and Altimetry

Orbit Tracking data

Ga

(m)

Altimeter

parameters

PMIN ALTBIAS 

(min) (m)

PRARE

residuals

(m)

rms

max

Altimeter

residuals

(m)

rms

max

Alt.

Noise

(m)

rms

A lt

Average

(m)

P2 PR A R E 2 — 0.23 0.51 — — —

P 2A PR A R E2 +  A L T l 0.1 48 -0 .80 0.18 0 .43 0.71 2 .18 0 .9 6 O il

P3 PR A R E3 Oil 0 .3 2

P 3A PRARE3 +  A L T l 0.3 48 -0 .80 0.29 0.61 0 .7 2  2 .05 0 .9 6 0 .13

P3B PRA RE3 +  A L T l 0 .3 48 0.00 0.41 0 .78 1.07 2 .93 0 .9 6 0 .87

P3C PRA RE3 + A L T l 1.0 4 8 -0 .80 0.09 0.23 0 .8 2  2 .6 0 0 .9 6 0 .18

P4 PR A R E 4 0.15 0 .5 0

P 4A PR A R E4 +  A L T l 0.3 48 -0 .80 0 .36 0 .8 2 0 .7 4  2 .1 0 0 .9 6 0 .15

P5 PR A R E 5 0.41 1.19

P 5A PRA RE5 +  A L T l 0 .5 48 -0 .8 0 0.43 1.10 0 .7 2  1.99 0 .9 6 0 .13

P6 PR A R E 6 0.25 0.81

P 6A PR A R E6 + A L T l 0.5 48 -0 .8 0 0.81 2 .39 0.71 2 .1 6 0 .95 0.10

The results obtained for each tracking configuration are described.

1 - The first configuration (PRARE2) was chosen to be close to the limit of a very poor 

3-day arc tracking network. It consists of only three passes of one station (7834) two at 

the beginning of the arc and one at the end (Figure 8.6). With only these tracking data it
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is not possible to compute a solution by solving for all the usual parameters. The normal 

matrix will be poorly conditioned and several parameters come up with correlations equal 

to 1. A simple solution is to solve for only the start vector, keeping drag and radiation 

pressure coefficients constant. This was the procedure used in the computation of orbit 

P2. The rms of fit o f this solution is 0.23 m, but this is only an indication of the accuracy 

of the orbit in the tracked areas. The global accuracy is very poor as indicated by the 

differences to the reference orbit (Table 8.9 and Figure 8.11). These differences 

demonstrate a strong one cycle per revolution signal, with an amplitude o f 15 m in the T 

component and about 4 metres in the A and R components. Such a large amplitude is a 

clear indication of a very unstable solution. Therefore with such a poor configuration no 

reliable solution can be obtained.

Table 8.9

Differences between reference and orbits computed with PRARE and Altimetry 

(Meaning of orbit names explained in Table 8.8)

Orbits Total (m) 

rms max

T (m) 

rms max rms

A(m)

max

R(m) 

rms max

LI -P2 9.17 19.92 8.43 19.77 2.13 4.25 2.92 4.80

LI -P2A 3.39 7.96 3.21 7.93 1.01 2.53 0.40 1.22

L1-P3 5.63 12.78 5.41 12.69 0.84 2.15 1.21 2.82

LI - P3A 1.72 3.70 1.30 3.66 1.06 2.63 0.38 1.24

LI - P3B 1.74 3.87 1.24 3.71 1.14 2.80 0.44 1.25

LI - P3C 3.14 6.31 2.91 6.22 1.09 2.72 0.41 1.27

L1-P4 4.37 9.63 4.17 9.51 0.87 2.20 0.96 2.40

LI - P4A 1.69 3.68 1.44 3.67 0.82 2.12 0.39 1.26

L1-P5 1.54 3.60 1.24 3.59 0.83 2.10 0.38 1.13

LI - P5A 1.46 4.18 1.14 4.18 0.83 2.11 0.38 1.23

LI P6 1.88 6.47 1.62 6.43 0.86 2.08 0.40 1.26

LI - P6A 2.16 7.09 1.93 7.05 0.85 2.07 0.45 1.44

A second orbit (P2A) was then computed by adding altimetry to these three passes of 

range data. The results are shown in Figure 8.12. To make the comparison o f the two 

orbits (P2 and P2A) easier, the same scale is used in the graphs of Figures 8.11 and 

8.12. A  similar procedure was adopted for all the other configurations. The improvement



161

is remarkable particularly in the radial component where the errors decreased from an rms 

of 2.9 m to 0.4 m. The amplitude o f the along-track error was also greatly reduced. The 

improvement in the A component is the less noticeable, confirming that altimeter data 

lacks information in this direction.

2 - The second configuration was created by adding two passes to the previous data set, 

close to the end of the second day (Figure 8.7). There still is a gap o f about two days 

during which there are no tracking data. A solution is now possible (P3) using the 

conventional solved-for parameters, although correlations as high as 0.9 still exist 

between some of the parameters. The differences to the reference orbit are still very large 

amounting to 5 .4 ,0 .8  and 1.2 m in the T, A and R directions respectively (Figure 8.13). 

The amplitude of these differences is now smaller than on the previous solution (P2). The 

main signature in these differences is the big increase in the T component errors, in the 

area of the arc where no tracking data are available, revealing that the accuracy of the 

solution is not uniform along the arc.

As before, an orbit was computed by adding altimetry to the PRARE3 data (orbit P3A). 

As shown in Figure 8.14, the altimeter data are strong enough to make the previous 

along-track pattern disappear, making the solution uniform along the whole arc.

To illustrate the influence of the altimeter standard error and the altimeter bias in the 

solution, two more solutions are presented for this configuration: P3B and P3C. These 

solutions are identical to P3 A except for:

P3B - no altimeter bias was applied (ALTBIAS = 0)

P3C - Altimeter sigma Ca =1 m

Comparing solution P3B with P3A we see that the averages of the altimeter residuals 

differ by about 0.8 m (last column of Table 8.8). The fact that the fitting process does not 

absorb this constant bias, indicates that this bias is not an orbit error. This is further 

illustrated in the differences between these two ephemerides (Figure 8.15). If this bias 

were part o f the orbit error then it would be absorbed and these orbits computed using 

different bias would have a constant shift in the radial component. These results justify 

the use of a constant altimeter bias in all other solutions.

Comparing orbits P3A and P3C we see the influence o f the altimeter sigma in the 
solution. The value of <7a =1 m is certainly closer to the true accuracy of the altimeter data 

than the value Oa = 0.3 m. However the influence of altimeter data in the solution in the 

first case is not strong enough to balance the lack o f range data. In fact it is found that
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when altimeter data are mixed with reduced networks of range data, the fewer range data 

points are used, the smaller should be the value o f altimeter sigma, L e., the larger should 

be the altimeter weight so that the solution becomes more constrained.

To understand the influence of the data standard deviations in the solution w e have to 
remember that each altimeter measurement is multiplied by a weight factor coa = 1/ ^a^’ 

and each PRARE measurement is multiplied by a factor cOp = 1/ Gp  ̂=l/(0.07m )2 = 200. 
Therefore if  Ga =1 m each PRARE measurement has a weight 200 times larger than each 

altimeter measurement. In the case o f the PRARE3 data set, composed of 54 points, the 

PRARE data will have a weight equal to 200 x 54 = 10 800 , much larger than the 2900 
altimeter measurements. In the solution P3A where Ga = 0.3 m the total altimeter weight 

becomes 2900 /  (0.3^) =  32000 therefore dominating the solution.

3 - The third configuration is composed of 7 passes from two stations, 3011 and 7834 

(PRARE4), maintaining a gap o f about two days during which no tracking data are 

available (Figure 8.8). The solution computed with only these data (P4) is very similar to 

the previous solution computed with 5 passes from only one station. The differences to 

the reference orbit reveal the same along-track pattern with larger errors in the area with 

no tracking data (Figure 8.16). Again the addition of altimetry (P4A) reduces the errors 

by a factor of 3 in both T and R directions removing the along track error pattern in the 

middle of the arc (Figure 8.17).

4 - The fourth configuration is constituted by 8 passes from the same stations (Figure 

8.9). The main difference relative to the previous configuration is that now the largest 

interval during which there are no tracking data is reduced to about one day. The orbit 

computed with only this PRARE data (P5) is now much better determined with a uniform 

error distribution along the arc (Figure 8.18). The addition of altimetry (P5A) apparently 

does not improve the accuracy of the solution (Figure 8.19), but the solved-for 

parameters are better determined, revealing smaller correlations between them. In this 

solution a slightly larger altimeter sigma was used (0.5 m), but the solution with sigma = 

0.3m is equivalent.

5  - The last configuration is formed by 8 passes from station 3003, the last pass being at 

the beginning o f the third day (Figure 8.10). Therefore there are no tracking data for the 

last 22 hours o f the arc. An orbit was computed with only these tracking data (P6), 

solving for the start vector, solar radiation coefficient and two drag coefficients, one for 

the first day and another for the last two days. The differences o f this solution to the
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reference orbit are presented in Figure 8.20. It is evident that the errors increase very 

quickly towards the end o f the arc, showing that these solutions are not reliable at any 

time after the time corresponding to the last pass. This confirms a well known result that 

ephemerides computed by fitting to tracking data cannot be extrapolated outside the 

tracking interval.

The addition of altimeter data (P6A) does not solve the problem (Figure 8.21). As in the 

previous solution the along-track errors have a large increase towards the end of the arc. 

The conclusions are that altimetry data are a very helpful tracking data type to fill gaps of 

range data but not to extrapolate range data for more than a few hours after the last pass.

To assess the feasibility o f using altimeter data alone, a solution was computed using 

altimetry data alone and using a set of starting values giving range rms of 280 metres and 

an altimeter rms (filtered residuals) of 2.14 m. After the adjustment to altimetry data alone 

the rms became 306 m for range and 0.59 m for altimeter. The differences of this solution 

to the reference are as large as 0.6 km along-track and 1.3 km across-track. However the 

radial difference is only 0.75 m. These results leave no doubt about the weakness of the 

along track and total absence of across-track information in altimeter data.

From these results several conclusions can be withdrawn.

Altimeter data alone cannot be used as tracking data for orbit determination. In spite of the 

weakness of this data type when used alone, only a few passes of range data are 

sufficient to add the necessary along-track information to obtain a stable and reliable 

solution.

The results show that altimetry can fill gaps of range data covering periods as long as two 

days. It is important to note that these gaps should be between passes o f range data and 

not for example at the end o f the arc. This means that altimetry can only be used to 

interpolate range data, but not to extrapolate.

The application to ERS-1 o f these results obtained for SEASAT, is limited to the 

existence of a suitable geopotential model for this satellite. This model should produce 

ERS-1 orbits with similar accuracy to SEASAT orbits derived with GEMTl. This means 

that the rms range residuals for a 3-day arc tracked by a suitable network of laser stations, 

should be about 0.6m. If the actual model gives an rms of fit larger than this by a certain 

amount, the results will have to be scaled by the same amount

The results presented in chapter 9 show that the present models for ERS-1 yield orbits 

with rms range residuals about three times these figures (= 1.5 m). This constitutes a 

serious limitation for the scientific applications of ERS-1 data requiring satellite positions
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at decimetre accuracy. This indicates the need for the development of short arc techniques 

whereby precise orbits can be obtained over regions of particular interest that are tracked 

by several stations. This is the subject of chapter 10 where the research carried out during 

this project on the development o f short arc methods is presented.
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Chapter 9 

ERS-1 long arcs

9.1 Introduction

This chapter describes the work done on the computation of the orbit of ERS-1. The aim 

of this exercise is twofold. First to assess the accuracy o f ERS-1 long arc ephemerides 

computed with the existing models. Second, to develop techniques to improve these 

solutions. Some aspects of the modelling of the two main forces affecting satellite's 

motion (the gravitational attraction and atmospheric drag) are investigated.

In these computations laser data were the unique tracking data type used. At the time of 

this study the only altimeter data available were the altimeter fast delivery URA product. 

The time tag of the altimeter measurements in the URA product is 1 millisecond. Since the 

satellite velocity is 7 km/s, during 1 milhsecond the satellite moves 7 metres in the along- 

track direction. By comparison, since the maximum radial velocity is 10 m/s, the 

maximum radial displacement during the same time is only 1 cm. Therefore the addition 

of these altimeter data to range data would improve the orbit in the radial direction, but 

certainly not in the along-track direction.

Another reason for not using these altimeter data is that the URA product does not 

provide the geophysical corrections, namely the corrections due to Earth and Ocean tides. 

For the first effect, it is straightforward to write an algorithm for computing the radial 

displacement o f a point due to Earth tides. The effect of ocean tides is much more difficult 

to model, requiring a knowledge of the phenomenon that is out of the scope of this thesis.

9.2 Computational model

At this stage the SATAN programs were set up for the computation o f SEASAT orbits. 

The adaptation of the programs for the computation of the orbit of the ERS-1, required 

the conversion and rewriting o f some of the algorithms. This section describes the main 

aspects of the computation model which had to be particularised for ERS-1. This model is 

summarised in Table 9.1.
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Table 9.1

Summary of the computation model used in ERS-1 orbits

Periods of study ARC_A - from 6 h February 4 to 9.6 h February 11 

MJDe [48656.25,48661.4]

ARC_B - from 19.2 h February 12 to 0 h February 16 

MJD e [48664.80, 48668.0]

Celestial Reference System J2000

Precession lAU, 1976

Nutation lAU, 1980

Earth Tides Wahr, 1980

Ocean tides Schwiderski, 1980

Atmospheric Drag Jacchia 1972 atmospheric model 

A/m = Variable

Radiation Pressure A/m = 0.01 (m^/kg)

Ephemerides JPL DE-2000. Effects of Sun, Moon, Venus, Mars, Jupiter and 

Saturn included

Adjusted parameters Start vector, daily drag coefficients, radiation pressure coefficient

Step length for integration 1.25 minutes for long arcs 

0.50 minutes for short arcs

Laser data 10® cut-off elevation 

Marini-Murray tropospheric carection 

Centre of mass correction

Geopotential GEMT1,GEMT2 GRIM4 C2

Terrestrial Reference 

System
GEMTl system GRIM4 system

Earth Parameters a=6378137 m 

l/f = 298.257 

GM = 398600.436 

c = 299792.458 km/s

a=6378136m 

l / f=  298.257 

GM = 398600.4368 

c = 299792.458 km/s

Laser Station Coordinates ITRF91 stations transformed to 

GEMTl

No plate motion applied

ITRF91 stations transformed to 

GRIM4

Plate motion: NUVELl NNR

Pole coordinates lERS coordinates transformed to 

GEMTl system

lERS coordinates transformed to 

GRIM4 system
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9.2.1 Reference systems

In all ERS-1 computations that used the GEMTn models, the adopted time scale and 

reference systems were the same adopted for SEASAT. In the solutions computed with 

the GRIM4_C2 geopotential model, the adopted system is the terrestrial reference system 

associated with the GRIM models. This is the same terrestrial system adopted in all 

station and geopotential model solutions produced at the Deutsches Geodaetisches 

Forschungsinstitut (DGFl) in Germany.

The main difference between the lERS and GRIM/DGFI systems is a shift in the pole 

position. The pole origin used by the GRIM models is the position o f the mean pole 

averaged over the period 1/1980 to 10/1986. The position of the GRIM pole origin with 

respect to the CIO/IERS pole is (Reigber et al., 1992):

Axp = 45 mas
(9.1)

Ayp = 286 mas

The BIH polar motion series were referred to the GRIM4 pole origin by applying a 

simple translation:

^Pgrim4 -  ^Pcio" ^ P
(9.2)

ypcRiM4 “  yPcio" ^yp

The Earth parameters used with GRIM4 are the parameters associated with this model 

(Table 9.1).

In addition to the complete set of coefficients up to degree 50, for the epoch 1984.0, the 

GRIM4 solution includes the rate of change of the C20 coefficient, C 20  • Therefore the

value of C20 used (C20 =0.48416514x10-3), is the calculated value for the epoch of the 

computations (1992.1), taking into account this rate o f change. Another solved-for 

parameter o f the GRIM4_C2 model is the value o f Coo = 0.999999992. This value 

should be multiplied by the a priori GM constant used in the model (GMq = 

3986400.440) to give the final value associated with GRIM4_C2 (GM = 3986400.4368).

9.2.2 Laser station coordinates

The positions o f the laser stations were extracted from the ITRF91 (lERS Terrestrial 

Reference Frame 91) solution (lERS, 1992) and (Boucher et al., 1992). The ITRF are
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annual solutions computed and published by the lERS. These ITRF91 coordinates were 

transformed to the GRIM4 and GEMTl systems using the following procedures:

A - Transformation ITRF91 -» GRIM4

• The ITRF91 solution gives the list o f the station coordinates referred to the lERS 

system, for the epoch 1988.0 ( [lERS, 1992] and [Boucher et al., 1992] ).

• The lERS gives the 7 transformation parameters from the ITRF91 to the 

individual Sets o f Station Coordinates (SSC) used in the ITRF91 solution, at the epoch 

1988.0. Amongst these SSCs it is the DGFII92 L 01 solution which uses the same frame 

as the GRIM4 model (Reigber et al., 1992).

• The transformation parameters from the 11RF91 to the DGFI/GRIM4 system  

were computed for epoch 1992.1 using the formula (lERS, 1992):

^1992.1 -  ^^19880 + T (1992.1-1988.0)

T i998.o are the transformation parameters at epoch 1988.0

(9.3)

T are the rate of change of the translation and rotation parameters. They refer to 

the annual station displacements according to the NUVELl NNR plate motion model 

(DeMets et al., 1990).

• The final parameters for the epoch 1992.1 (T i, T2 , T3 , D, R i, R%, R3 ) were 

used in the Bursa-Worf transformation, to obtain the station coordinates in the GRIM4 

system referred to epoch 1992.1:

X X Ti'
Y
Z GRIM4

(1992.1)

Y
Z

+
ITRF91
(1988.0)

T 2

T3

+
D “R 3 R 2 

R 3 D -R 2 
-R 2 R 1 D

X
Y
Z ITRF91

(19880)
(9.4)

These parameters are presented in Table 9.2.

Finally, when necessary, eccentricities were applied to the station coordinates so that they 

refer to the optical centre of the laser.



181

-30

-60

-90
180-180 60 120-120 -60 0

Longitude

Figure 9.1 - Laser stations used in the transformation between the ITRF91 and the 

GEMTl system.

Table 9.2

Parameters of the Bursa-Worf transformation between 1TRF91 and various systems

System Ti T2 T3 D Ri R2 R3
m m m 10-8 0.001" 0.001" 0.001"

GRIM4 (1988.0) 0.007 -0.030 0.000 -0.37 -284.4 -44.5 5.7
GRIM4 (1992.1) 0.023 -0.016 -0.020 -0.37 -284.2 -45.0 5.3
GEMTl 0.080 -0.048 -0.115 -0.44 -267.1 -33.4 -10.2

B - Transformation ITRF91 —» GEMTl

In this case, since no transformation parameters were available, they were computed 

using the following procedure:

• A set of 38 stations common to the ITRF91 and GEMTl (Marsh et al., 1987) 

solutions, with a fairly good geographical distribution, was chosen (Figure 9.1).

• Using the coordinates o f these 38 stations, the 7 parameters o f the 

transformation between the two systems were computed. These parameters are presented 

in Table 9.2.
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• These parameters were then used to transform the ERS-1 laser station 

coordinates, taken from the ITRF91 solution, to the GEMTl system.

In this transformation no plate motion was applied, since no plate motion model is 

associated with the GEMTl (Marsh et al., 1987) stations.

9.2.3 Centre of mass correction for laser data

The centre o f  mass correction for a laser Range = | S - t | is computed as (Zhu and 

Reigber, 1991):

- r  \ S - T
| s - t | (9.5)

where

• L = [ Xl , Yl > Zl J are the coordinates of the optical centre o f the laser retro- 

reflector in the Satellite Fixed Reference Frame (SFRF) (Figure 5.7).

• G = |^ X g , Yg » Z o ja re  the coordinates o f the satellite centre of mass in the 

same frame.

• S and T are the satellite and station geocentric vectors in the same Inertial 

System, for example the True of Date System (the geocentric inertial system defined by 

the true equator and equinox of date) or the J2000 system (CIS).

• M is the transformation matrix between the SFRF and the Inertial System 

The numerical value of L is:

L = [ -2 .8 5 0 4 ,-0 .7 0 0 , -0 9 5 0  1
 ̂ J (9.6)

The value of G at the beginning of the mission was:

G = [ -1 .8 1 3 3 ,0 .0 1 1 6 , 0.0120 1
L J (9.7)

When the satellite is in the yaw steering mode, the Satellite Fixed Reference System

points the Z axis towards the local vertical, the Y axis opposite to the direction o f the

instantaneous ground velocity vector and the X axis completing the right-handed system 

(Figure 5.7).
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The matrix M has the following form: 

M = M3 . M 2. M l (9.8)

The product M2 . M% is the transformation matrix between the SFRF and the so-called 

Local Orbital Reference Frame (LORF). M i is a simple rotation of 180° about the Z axis.

(9.9)

-1 0 0
Ml = 0 -1 0

0 0 1

The form of the matrix M2 depends on the satellite mode performance:

I (identity matrix) - in the fine pointing mode 

Mo = -I R g(-A^) R2 (-A ti) Ri(-A%) - in the yaw steering mode 

R2 O ) - in the roll - tilt mode

(9.10)

where
pitch: AÇ = - 0 . 335°sinU cosU  

roll: Ar| = 0.050° sin U 

yaw. AÇ = arctan(0.0683 cosU)
(9.11)

U is the satellite true anomaly and P is the roll angle in the roll-tilt mode, maximum Ipl 

will be around 9.5°.

The Local Orbit Reference Frame is defined by the directions of the unit vectors:

C : in the across track direction

D :

S x  S 

S X ( S X S)
which is close to the direction of the instantaneous

(9.12)

(9.13)
S X ( S X S ) 

velocity vector (along-track).

o
R: _ ,  the satellite radial direction.

Isl
(9.14)

Note that these vectors are closely related with the T, A, R vectors defined in equation 

8.17. In fact R is common to both systems, C = - A and D is very close to T. If the orbit 

was circular D and T would be the same.
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Finally, M3 is the transformation matrix between the local orbit reference frame and the 

inertial system:

M3 = [ c  ,D  , r ]  =
C x D x R x

= C y D y R y (9.15)

C z D z & z

It is very important that the centre o f mass correction is adequately computed and applied 

to data since for ERS-1 this correction has a large variation. For example, for the 

observations processed in the computations described in section 9.3 this correction takes 

values in the interval [-0.5 m , 1.5 m].

9.2.4 Modelling of the cross-sectional area for Drag and 
Radiation Pressure

For the purpose o f computing the satellite cross-sectional area in any direction, the 

spacecraft can be divided into three main areas (Figure 9.2):

• The satellite main body (platform + payload) which is roughly a box with 

dimensions: 2 x 2 x 3  m^.

• The solar array which rotates about the satellite A (or X) axis, making an 

approximately constant angle with the direction normal to the orbit plane (A axis) of 6 8 °± 

5°. The size of the array is 12 x 2.4 m .̂

• The SAR antenna, aligned with the direction of the satellite movement (T axis) 

and making an angle of 67° with the R axis. Its area is 10 x 1 m .̂

The vectors T, A, R shown in figure 9.2 are as defined in equation 8.17.

A - A tm ospheric drag

For the computation of the force due to atmospheric drag on the satellite, the area that 

needs to be considered is the projected area on the plane perpendicular to the satellite 

movement: plane ( R , A ). There are two main areas to consider:

• A constant area, the face of the satellite main box that is perpendicular to the 

direction of the movement: 3 x 2  = 6  m^.
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Figure 9.2 - Satellite main areas for atmospheric drag and radiation pressure.

A variable area, the projection of the solar array, rotating 360° around the A

axis, on plane ( R , A )  : 28.8 cos ( T . Pgun ) , where Hsun is the unit vector in the

direction of the Sun, expressed in the same system as the T, A, R vectors.

The cross-sectional area for atmospheric drag is modelled as:

2Aj) — 6  + 28.8 cos ( T . IXsun ) m (9.16)

It is clear from this expression that this area has a strong variation with minimum 7 m^ 

and maximum 32 m^. In this analysis the satellite is considered to be in fine pointing 

mode. When the satellite is in the yaw steering mode, the vectors T, A, R have small 

oscillations with respect to the satellite. These oscillations induce small area variations of 

the same order o f the neglected areas such as some spacecraft instruments and 

appendages. Therefore they can be neglected when compared to the total area.

A[)
The area-to-mass ratio for atmospheric drag is computed as —  where m is the satellite 

total mass (2157 kg).

B - R adiation  Pressure

For direct solar radiation the area that needs to be considered is the projected area on the 

plane perpendicular to the direction of the Sun.
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Three main areas can be considered:

• The solar panel which is always perpendicular to the Sun direction, with an area 

of 28.8 m2 .

The projection of the 3 sides of the satellite main box

cos ( T . M-sun ) m

cos ( A , lisun ) m (9.17)

cos ( R . M-gun ) m

The projection of the SAR antenna:

3.9 + 92 cos ( R . Itgmi ) m (9.18)

The total cross-sectional area for direct solar radiation ( A d s r ) is the sum of all these 

partial areas. It is found to vary between a minimum value o f  38 m2 and a maximum of 

47 m2. This is a simple algorithm which does not take into account detailed spacecraft 

geometry. This leads to an overestimate of the area since not all these areas are 

simultaneously visible by the Sun. To consider the shadow effect o f some of the 

instruments over another, the relative position o f all the satellite instruments would have 

to be accurately known.

For Earth Albedo and Infra-red Radiation the area to be considered is the projected area in 

the plane perpendicular to the R direction, the plane ( T , A ):

Main box: 6  m2

Solar array: 28.8 cos ( R . HgQ̂  )

SAR antenna: 9.2 m2

• Altimeter antenna: '|.15ni2

The total area for Albedo and IR ( A a ir) is the sum of all these partial areas. It is found to 

vary between a minimum of 20 m2 and a maximum of 45 m2.

The area-to-mass ratio for each of the perturbations is computed by dividing each of the 

areas Adsr and Aair by the satellite mass.
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9.3 ERS-1 solutions with laser data

The period of study used on all ERS-1 computations is a 15 day period, from 1 to 16 

February 199% MJD e  [ 48653.0,48668.0 ]. This corresponds to a period during which 

ERS-1 was flying on a 3-day repeat cycle (first ice phase). During this period two 

manoeuvre dates occurred: on February 04 at 02h 17m and 03h 08m and on February 

11 at 02h 33m. From this period two arcs where selected: ARC_A covering 5.15 days 

and ARC_B covering 3.2 days (Table 9.3).

Laser data for ERS-1 were kindly supplied by RGO in the form of normal points. One 

parameter supplied with each normal point is the standard deviation of the normal point. 

In the formation of the normal points, when this standard deviation is greater than a 

certain value, it is set to a constant value of 0.5 m. Therefore all the points with standard 

deviation equal to 0.5m were rejected.

Using the previous criterion, the tracking data for ARC_A are reduced to 15 passes from 

8 stations (Table 9.4). This laser data set for ARC_A is named LASER 1. The spatial 

distribution of these 8  laser stations is presented in Figure 9.3. The total number of 

normal points for this arc is 207, corresponding to a number of 6851 raw laser 

observations. The temporal distribution of these passes is displayed in Figure 9.5. In this 

figure, together with the passes that contribute to the solution, rejected passes using the 

above criterion are also plotted.

Table 9.3 

Arcs used on ERS-1 solutions

Arc name Start and end date 

(MJD)

Length

(days)

Tracking data

Stations Passes Normal

points

ARC_A 48656 .25  4 8 6 6 1 .4 0 5.15 8

(L A S E R l)

15 207

ARC_B 4 8 6 6 4 .8 0  4 8 6 6 8 .0 0 3 .20 6

(LA SER 2)

14 282
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Table 9.4
ERS-1 laser data for the period MJD e [48656.25 ,48661.40] - LASERl

Station Sym b ol L ocation Lxmgitude

C E )

Latitude

O

H eight

(m)

Passes N orm al

P o in ts

1181 PO T Potsdam , G D R 13.06538 52 .3 8 0 2 5 147.8 1 2 0

7 0 9 0 Y A R Yairagadee, Australia 115 .34675 -29 .0 4 6 5 8 24 4 .5 1 4

7097 B A S Easter Island, C hile 250 .61645 -27 .14775 1 19 .0 1 17

7109 QUI Q uincy, U S A 239 .0 5 5 2 6 3 9 .9 7 5 0 6 1109.5 1 7

7 2 1 0 M A U M aui, H aw aii 203 .74407 2 0 .7 0 7 2 4 3 068 .3 4 4 2

7835 G R S Grasse, France 6 .92119 4 3 .7 5 4 6 9 1322 .8 3 32

7839 GRZ Graz, Austria 15 .49344 4 7 .0 6 7 1 2 5 3 9 .4 2 4 4

78 4 0 RGO Hertmonceux, U K 0.33621 5 0 .8 6 7 3 9 7 5 .3 2 41

Table 9.5

ERS-1 laser data for the period MJD € [48664.8 , 48668.0] - LASER2

Station S ym b ol Location Longitude

C E )

Latitude

O

H eight

(m)

Passes Norm al

P o in ts

7097 HAS Easter Island, C hile 2 5 0 .61645 -27 .14775 119 .0 1 21

78 1 0 ZIM Zimmerwald, Switzerland 7 .4 6 5 3 0 4 6 .8 7 7 2 2 9 5 1 .0 1 9

7835 G R S Grasse, France 6 .9 2 1 1 9 4 3 .7 5 4 6 9 1322.8 3 55

7838 SIM Sim osato, Japan 135.93701 3 3 .57763 101.5 1 28

7839 GRZ Graz, Austria 15 .49344 4 7 .0 6 7 1 2 5 3 9 .4 5 114

7 8 4 0 RGO Hertmonceux, U K 0 .33621 50 .86739 7 5 .3 3 55
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Figure 9.4 - Spatial distribution of ERS-1 laser data for ARC_B (LASER2).
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Figure 9.5 - Temporal distribution of laser data for ARC_A (LASERl). Each circle 

represents one pass. For each pass the Y axis represents the minimum angular distance 

between the satellite and the tracking station. If the station is on the left or on the right of 

the satellite track, the angular distance is considered respectively positive or negative. The 

white circles represent rejected passes.
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Figure 9.6 - Temporal distribution of laser data for ARC_B (LASER2). The white circle 

represents a rejected pass.
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ARC_B is a shorter arc of 3.2 days, for which, after applying the same rejection 

criterion, there are 14 passes from 6  stations (Table 9.5). This laser data set for ARC_B 

is named LASER2. The spatial distribution of these 6  laser stations is presented in Figure 

9.4. These data comprise 282 normal points, corresponding to a total of 7359 raw laser 

observations. The temporal distribution of these passes is presented in Figure 9.6.

Comparing the tracking data for both arcs, it is evident that ARC_A has a better 

geographical distribution. Most of the data for this arc come from a station in Hawaii 

(7210) and a set o f 4 stations in Europe. On the contrary, all data for ARC__B are from 

stations in Europe, apart from two passes, one from Easter Island and one from Simosato 

in Japan.

Solutions for ARC_A are named A l, to A5 and the corresponding solutions for ARC_B 

B lt o  B5.

Since no "satellite truth" is available, the only way of assessing the accuracy of the 

different solutions is to compare them with solutions computed using different models. 

To study the influence of the different perturbations on the orbit, several solutions were 

computed for both arcs using different models. The computation model used on the first 

solution computed for each arc (A l and B l)  is called the "base model" and is described in 

Table 9.6.

Table 9.6

Computation model used in solutions A l and B l (base model)

geopotential GRIM4_C2 and associated stations coordinates and Earth 

parameters

Solved-for parameters • start vector

• radiation pressure coefficient

• drag coefficients:

- ARC_A : 6  coefficients, one for each day

- ARC_B : 3 coefficients one for the first 1.2 days and 

one for each of the last two days.

Area-to-mass ratio • atmospheric drag - variable, as described in section 9.2.4

• radiation pressure - constant = 0 .0 1  (m^/kg)
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The models used in all the other solutions differ from the base model by only one 

characteristic as described in Tables 9.7 and 9.8. Apart from the property specified in 

these tables, all the other characteristics are common to the base model. For example, the 

computation model used in solutions A2 and B2 is equal to the base model except for the 

geopotential, where GEMT2 is adopted instead of GRIM4_C2.

Table 9.7 

Solutions computed for ARC_A

Orbit

Model

(differences relative to the base model)
R esiduals (m ) 

rms m ax

R esiduals on  

rejected points 

rms m ax

A l 1.58 5 .78 5 .16 11 .74

A 2 G EM T2 1.47 6 .2 2 3 .68 6 .09

A3 Variable cross-sectional area for Radiation Pressure 1.58 5 .74 5.12 11 .70

A 4 Constant cross-sectional area Tot A tm ospheric Drag 1.61 5 .8 6 5.08 11 .24

A5 Solving for a constant drag coefficient 4 8 .6 5 171 .28 69.03 188.01

Table 9.8 

Solutions computed for ARC_B

Orbit Model

(differences relative to the base model)

Residuals (m) 

rms max

B l 1.44 3 .49

B2 G EM T2 3.33 6 .98

B3 Variable cross-sectional area fœ  Radiatiœi Pressure 1.43 3.51

B4 Constant cross-sectional area for A tm ospheric Drag 1.42 3.51

B5 Solving for a constant drag coeffic ien t 3.68 13.00

Tables 9.7 and 9.8 present the laser residuals (rms and maximum values) for each 

solution. For ARC_A a significant number of passes (seven) had been rejected because 

of the size of the standard deviation of the normal point. Since these observations were 

not used in the computations, they can be used to test the orbit accuracy outside the
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tracked areas. For this reason, at the end of each solution the residuals at these points are 

computed and presented in the last column of Table 9.7. This is not done for ARC_B 

since there is only one rejected pass for this arc (Figure 9.6).

The differences between each solution and the solution computed with the base model are 

also computed and presented in Tables 9.9 and 9.10. The plots o f these differences are 

presented in Figures 9.7 to 9.14. To make the comparison between the different solutions 

easier, the same scale was used in the plots, whenever possible. However the magnitude 

of the differences has such a wide variation that is not possible to adopt a uniform scale 

for all graphs.

Table 9.9 

TAR differences for orbits in ARC A

Orbits Total (m) 

rms max rms

T (m) 

max rms

A(m)

max

R(m) 

rms max

A l  - A 2 7 .45 2 1 .8 4 7.01 2 1 .74 2.01 6 .42 1.54 4 .17

A l  A 3 0 .1 2 0 .3 0 0 .08 0 .27 0 .09 0.21 0 .0 2 0 .06

A l  - A 4 2.53 6 .6 4 2.41 6 .63 0.11 0 .30 0 .7 4 1.90

A 1 - A 5 216 .7 93 7 .4 2 0 6 .2 936 .7 26 .5 48 .0 61 .1 173.9

Table 9.10 

TAR differences for orbits in ARC B

Orbits Total (m) 

rms max rms

T (m) 

max rms

A(m)

max
R (m) 

rms max

B 1 - B 2 7 .5 4 19.31 7.11 19.23 2 .09 5.23 1.81 4.61

B l  -B 3 0 .1 2 0 .3 4 0 .1 0 0 .3 2 0 .07 0 .20 0 .03 0 .08

B 1 - B 4 1.00 2 .7 4 0 .9 6 2 .74 0 .05 0.13 0 .2 7 0.75

B l  -B 5 9.95 21 .38 8.81 21 .38 0 .7 8 1.32 1.59 3.77

To have an idea of the order of magnitude of the different forces acting on the satellite, the 

rms, minimum and maximum values of each force were computed for ARC_A and 

ARC_B. These are presented in Tables 9.11 and 9.12.
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It is clear from these tables that the gravitational forces are dominant. However the main 

component o f these forces comes from Newton's central force which is modelled very 

accurately. Also the planetary perturbations and effects due to tides are modelled with 

high accuracy. Therefore the main uncertainty in the gravitational forces comes from 

errors in the geopotential coefficients. With respect to the surface forces, drag is the 

dominant force in ARC_A, with larger amplitude o f variation, but for ARC_B radiation 

pressure has the same amplitude of variation with a larger rms.

Table 9.11

Acceleration caused by different perturbations, for ARC_A 

(Units are m/s^)

Perturbation Minimum RMS Maximum

Geopotential 7.75 7.78 7.79

Tides + Third Bodies 0.3x10-6 1.1x10-6 1.5x10-6

Drag 0.9x10-8 10.0x10-8 37.2x10-8

Radiation Pressure 1.0x10-8 7.8x10-8 10.8x10-8

Direct Solar Radiation 0.0 8.3x10-8 11.1x10-8

Albedo + IR radiation 0.9x10-8 1.7x10-8 2.7x10-8

Table 9.12

Acceleration caused by different perturbations, for ARC_B 

(Units are m/s^)

Perturbation Minimum RMS Maximum

Geopotential 7.75 7.78 7.79

Tides + Third Bodies 0.7x10-6 1.2x10-6 1.8x10-6

Drag 0.6x10-8 5.2x10-8 10.6x10-8

Radiation Pressure 1.0x10-8 9.0x10-8 12.3x10-8

Direct Solar Radiation 0.0 9.7x10-8 12.9x10-8

Albedo + IR radiation 0.9x10-8 1.9x10-8 2.9x10-8
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From the analysis of these results the following conclusions can be withdrawn.

1 - Errors due to radiation pressure are not dominant in these ERS-1 orbits. In fact the 

solution is not sensitive to the modelling of the cross-sectional area in the direction o f the 

Sun or the Earth. Solutions computed with a constant area show the same rms o f fit as 

solutions computed with a variable area. The differences between these solutions (A1-A3 

and B1-B3) are at decimetre level in the along-track component and at centimetre level in 

the other two directions. The dominant shape of these differences is the bow-tie pattern 

with errors that are minimum at the middle o f the arc and increase towards the ends, with 

a superimposed one cycle per revolution signal (Figures 9.8 and 9.12).

2 - Comparing orbits A4 and B4, computed by using a constant area-to-mass ratio for 

atmospheric drag (of 0 .0 1  m^/kg), with orbits A 1 and B 1 where a variable area had been 

used (according to the model described in section 9.2.4), the rms o f fît o f these orbits is 

of the same order. By the analysis o f these residuals, the orbit does not seem to be 

sensitive to the modelling o f a variable cross-sectional area for atmospheric drag.

However the differences between orbits computed using different models for the drag 

cross-sectional area (A 1-A 4 and B1-B 4) reveal the dominant bow-tie pattern 

superimposed to a one cycle per revolution signal (Figures 9.9 and 9.13). The amplitude 

o f these differences at the start and end of the arc reach several metres in the T and R 

components. This indicates that drag errors are large for these solutions, ARC_A errors 

being twice as large as errors on ARC_B.

These results do not necessarily imply that the area model is wrong. The satellite cross- 

sectional area is a strong function of latitude, since the solar array makes a complete 

rotation during one revolution. The tracking data can only sense this variation if  they 

come from stations well distributed in latitude. However in both arcs, all stations have 

latitudes within a narrow range. In particular, all ARC_B stations except one are at 

latitudes close to 40°. The same argument applies to radiation pressure. The main 

difference is that the cross-sectional area for atmospheric drag has a wider variation (7 to 

32 m^) than that for direct solar radiation (38 to 47 m^). Therefore the orbit is more 

sensitive to the modelling o f the first area than to the second one. The modelling of the 

area for Albedo and IR radiation has an even smaller effect since these perturbations are 

about one order of magnitude smaller than drag and direct solar radiation (Tables 9.11 

and 9.12).

Drag errors are the dominant errors in ARC_A. This is because there is a strong 

geomagnetic activity during this period. The 3 hour geomagnetic index Kp measures this
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geomagnetic activity. The indexes Kp plotted in Figure 9.18 experience strong variations 

during the ARC_A period, taking values in the interval [0.7 , 7.0] with an amplitude of 

6.3. On the contrary, the amplitude of the variation o f the Kp index for ARC_B is about 

half o f the previous arc, with values in the interval [0.3 , 3.7]. During the same periods, 

the solar flux are high values but with smoother variations (Figure 9.17). Again the 

amplitude of the variation for the first arc (25) is more than twice the amplitude for the 

second arc (10). The range of the solar flux values is [219 , 244 ] for ARC_A and [195 , 

205] for ARC_B.

Figure 9.15 plots the density variations function of the Kp index, for different values of 

the solar flux. For ARC_A, considering an average flux of 230, when the Kp takes 

values in the interval [0.7, 7.0] the density trebles its value, going from 6 .6  xlO'^"  ̂

Kg/m^ to 1.7 xlO'^3 Kg/m3 . These changes in density induce proportional variations in 

the drag force and therefore in the satellite perturbation.
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Figure 9.15 - Density variation functions of the Kp index, for different values of the solar 

flux

These strong solar and geomagnetic activities cause serious perturbations in the satellite 

orbit which are not modelled by a simple model for the drag force as described by 

equation 3.13. This becomes evident when orbits are computed by solving for a single 

drag coefficient (Co) for the whole arc. Solution A5, computed by solving for a single 

C d , has huge residuals with an rms of 48 m. By comparison the same solution for 

ARC_B, B5, has an rms of only 3.7 m. Considering the poor quality of these single Cd 

solutions it is remarkable the improvement obtained when solving for multiple drag 

coefficients as in orbits A1 and B l. The differences between these solutions is of the
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order o f hundreds o f metres for ARC-A (Figure 9.10) but only a few metres for ARC_B 

(Figure 9.14).

The use o f multiple drag coefficients is therefore an indispensable technique for the 

computation o f ERS-1 orbits. However it does not solve completely the problem of 

modelling the perturbations caused on the satellite by strong solar and geomagnetic 

activity. This topic will be further discussed in section 9.4.

3 - GRIM4__C2 seems to be a better model for ERS-1 than GEMT2. This is not 

surprising since it incorporates DORIS data from SP0T2, a satellite with an orbit very 

similar to ERS-l 's, with a height of 832 km and an inclination o f 98.7°. On the contrary, 

in the generation of GEMT2 there were no data from satellites with height close to 

ERS-l's and inclinations within 10 degrees of ERS-l's inclination (Marsh et al., 1990a).

For ARC_A, solutions computed with different geopotential models (A1 and A2) have 

rms of fit of the same order. By contrast, for ARC_B the rms of fit of GEMT2 orbit (B2) 

is twice as large as the corresponding GRIM4_C2 orbit (B l). However, the differences 

between the solutions (A1-A2 and B1-B2) are o f the same order for both arcs (Figure 9.7 

and 9.11).

The interpretation of these results is not straightforward. The dominant errors for ARC_B 

seem to be the geopotential errors while for ARC_A drag errors are dominant. By solving 

for multiple drag coefficients a great part of the along-track errors, including long period 

errors of gravitational origin, are absorbed.

It remains to be explained why for ARC_B the GEMT2 orbit (B2) has an rms more than 

tw ice as large as the corresponding solution for ARC_A (A2). Concerning the 

geopotential perturbation, the main difference between these two arcs is the different 

geographical distribution of the tracking stations. Most of ARC_A data come from North 

America, while the data for ARC_B are mainly from stations in Europe. The tracking data 

used on geopotential modelling come from a wide range of techniques, but in the past 

there was a concentration of tracking stations in North America. For this reason, the 

geopotential models derived from these data are better defined in that region, than for 

example in Europe, where the number of stations used to be substantially smaller. This 

argument is corroborated by the results obtained for SEASAT. In fact SEASAT orbits 

computed with GEMT2 have very small rms of fit partly because almost all the SEASAT 

laser data come from stations concentrated in the United States. The SEASAT laser data 

used in the solutions described in Chapter 8 all come from North American stations, apart 

from one station in South America and one in Europe (Figure 8.4 and Table 8.4). 

SEASAT solution LI computed using these data and GEMT2 has an overall rms of fit of
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only 0.3 m but the rms o f fit o f the two passes from the European station is as large as 

0.7 metres.

In conclusion, ERS-1 solutions computed using the base model described in Table 9.6 

have rms range residuals o f 1.5 metres. According to the differences between these 

solutions and solutions computed with GEMT2, the radial accuracy o f these ephemerides 

should be better than 1.5 metres, and the across-track accuracy only slightly smaller, 

around 2 metres. However the along track component can reach several metres ( « 7  m 

rms).

9.4 Influence of solar flux and geomagnetic data

The accuracy of ERS-1 orbits described in the previous section is far from ideal. This 

developed a strong motivation for research on methods to improve these results.

During a period of high solar activity, the drag force is a dominant perturbation of satellite 

motion. Strong variations in solar and geomagnetic activity cause large variations in the 

atmospheric density at satellite heights and consequently in the drag force exerted on the 

satellite by the surrounding atmosphere. Therefore the atmospheric model plays an 

important role in the computation of these ephemerides.

In this study some aspects concerning the modelling of the atmospheric density are 

investigated, in particular the use of actual measurements of solar flux and geomagnetic 

data.

9.4.1 Structure of the upper atmosphere

If the atmosphere were isothermal and of homogeneous composition, the density would 

decay exponentially with height. The real situation is much more complicated.

N icolet (1960) showed that above 250 km the observed density profiles could be 

reproduced, if for each of them the temperature was assumed to be a constant, and the 

composition varied with height according to the law of diffusion in a gravitational field. 

The constant temperatures above 250 km range from 650 K to about 2000 K or higher, 

depending on the solar activity and time of the day.

Figure 9.16 shows different temperature profiles corresponding to different levels of 

solar activity. The region from the beginning of the temperature rise, at about 90 km, to 

where the rise stops, is called the thermosphere. The height at which this stop occurs is
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called the thermopause. This threshold is shifted higher and higher with increasing solar 

activity.

The sharp increase in temperature in the region between 100 km and 250 km is due to the 

extreme ultraviolet radiation (e.u.v.) from the Sun that is absorbed just in that region.

The atmosphere can be considered homogeneous in composition from sea level until 

about 90 km, the so-called homosphere. From this height onwards several changes in 

composition occur, and above 1 2 0  km the atmosphere can be considered in diffusion 

equilibrium. This means that the density o f each constituent varies with height 

independently from all the other constituents. This region in which the atmospheric 

constituents behave differently from each other is called the heterosphere.

very high 
solar activity2000

average  ̂
solar activity

X 1000

sunspot
mimmum

8004000
height (km)

Figure 9.16 - Atmospheric temperature profiles for three stages of solar activity. From 

(Jacchia, 1972).

As the height increases the heavy constituents are left behind giving way to lighter 

constituents.

Most o f the recent atmospheric models assume that the atmosphere is in diffuse 

equilibrium above 1 2 0  km and then construct models for different temperature profiles 

assuming certain boundary conditions at the 1 2 0  km.

In the atmospheric model used in this study (Jacchia, 1972), the boundary conditions are 

applied to a lower height of 90 km and the exponential shape of the temperature profiles is 

replaced by other analytical expressions.
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9.4.2 Density variations of the upper atmosphere

The structure of the upper atmosphere varies due to a variety o f phenomena. Four main 

distinct types o f variations can be considered (Jacchia, 1972):

• Variations with solar activity

• Variations with geomagnetic activity

• The diurnal variation

• The semi-annual variation

A - Variations with solar activity

In the variations with solar activity one must distinguish between a slow variation due to 

the 11-year solar cycle and day-to-day variations. These are usually explained by 

considering that the ultraviolet solar radiation that heats the upper atmosphere consists of 

two components, one related to active regions on the solar disk (sunspots) and the other 

to the disk itself. The day-to-day variation is caused not only by the sunspots but also by 

their appearing and disappearing in the solar disk due to the Sun's rotation with a period 

of 27 days. The 11-year solar cycle is associated with the slower variation of the disk 

component.

In the Jacchia_72 model the variations with solar activity are input into the models by 

means o f daily values of solar flux at 10.7 cm, observed with a radio telescope at Ottawa, 

the so-called Fio.v- This solar flux is generally adopted as a serviceable index of solar 

activity. There is a remarkable parallelism between its variation and those of the upper 

atmosphere.

The Fio.7 solar flux consists o f a disk component and an active-area component which 

are not easily separable. However the disk component is linearly related to the flux 
averaged over 4 to 5 solar rotations (F 10 .7).

The temperature variations in the atmosphere occur with a time lag with respect to those 

of the solar flux. Different authors provide different values for this time lag from 0.5 days 

(Jacchia and Briggs, 1963) to 2.3 days (McDonald, 1963). The Jacchia_72 model uses a 

time lag of 1.71 days.
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B - V ariations with geom agnetic activity

In addition to varying due to solar activity, the Earth's atmosphere shows another type of 

variation, which is correlated with variations in the magnetic field o f the Earth. Intense 

magnetic storms occur when clouds o f charged particles, ejected from the Sun in the 

course o f a solar flare, collide with the Earth's atmosphere. A  solar flare is a short-lived 

phenomenon that usually lasts an hour or less. During these magnetic storms the 

temperature and density of the upper atmosphere increase. The temperature increase 

during a magnetic disturbance is, on average, enhanced at high latitudes.

The duration o f the atmospheric perturbation matches that of the magnetic storm but lags 

some 6 to 7 hours behind it. The time lag seems to be a little bigger at low and middle 

latitudes and smaller in the auroral zones.

The value of this time lag has been determined by different authors. In a study using drag 

analysis of 4 satellites, Jacchia et al. (1967) found an average value of 6.7 ±  0.3 hours. 

This is the value adopted in the Jacchia_72 model. By drag analysis of the satellite 

Explorer 9, Roemer (1966) determined a mean value of 5.2 ±  0.4 hours.

During magnetic storms the temperature variations seem to be linearly related with the 

planetary geomagnetic index Ap, while during quieter periods the relation is linear with 

the planetary index Kp, which is the logarithmic counterpart of Ap (Jacchia et al., 1967). 

These indices are the average of measurements, at a 3-hour interval, at 11 sub-auroral 

zone observatories located mainly in Europe (NGDC, 1992) and are widely used by the 

present atmospheric models to describe the irregular variations in the geomagnetic field.

Apart from the magnetic storms, small variations in the magnetic field of the Earth, such 

as are observed during magnetically quiet days, also affect the temperature and density in 

the upper atmosphere.

C - The diurnal variation

The diurnal variation is caused by the variations in the solar e.u.v. radiation due to the 

day/night change. The e.u.v. radiation is a major source of upper atmospheric heating. 

Therefore the temperature goes up after sunrise and falls at night, and atmospheric 

densities follow the same variation. Due to this effect, atmospheric densities reach a 

minimum around 4 a.m. and a maximum around 2 p.m. The temperature range is large at 

the equator and progressively decreases towards the poles.
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Figure 9.18 - Geomagnetic index Kp for the first 16 days of February 1992
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D - The sem i-annual variation

This is the least understood of all the variations. The density o f the upper atmosphere 

shows a deep minimum in July followed by a high maximum in October. In January there 

is a secondary minimum, followed by a secondary maximum in April.

9.4.3 Influence of F1 0 .7  and Kp time lags on the orbit

During the period corresponding to ARC_A there are very strong variations of the 

geomagnetic index Kp. These indices are input into the model for computing the 

atmospheric density at a specified time. High variations in the Kp indices induce high 

variations in the computed density and therefore in the drag force (Figure 9.15).

As explained before, the Kp indices are input into the model with a certain time lag with 

respect to the time o f the computation. Therefore, such sharp variations in the Kp index 

as occurred during ARC_A, if  they are not "in phase" with the actual satellite perturbation 

as sensed by the tracking data, result in a poor orbit adjustment with high residuals. The 

belief that the orbit adjustment is a function of this time lag was the motivation for 

research on the influence of this parameter on orbit accuracy.

2.5
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Time lag for Kp (TLKP) in hours

Figure 9.19 - Rms of orbit residuals as function of TLKP for ARC_A
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For this purpose, orbits A1 and B l described in section 9.3 were recomputed using 

different values for the Time Lag of the Kp index (TLKP). In all computations the same 

base model was used, the only difference between the various solutions being the TLKP 

value. The results are plotted in Figure 9.19 for ARC_A and 9.23 for ARC_B, in the 

thicker curves labelled as “single-point”.

An orbit was computed for each TLKP value corresponding to each circle point in the 

graphs. The Y axis represents the rms o f fit to range data in metres.

Table 9.13

Solutions computed for ARC_A using different TLF and TLKP

Orbit
TLF

(days)

TLKP

(hours)

Interpolation

method

Residuals (m) 

rms max

Residuals on 

rejected points 

rms max

Al 1.71 6.7 single point 1.58 5.78 5.16 11.74

A6 1.71 4.0 single point 0.38 1.01 2.34 8.41

A7 1.71 6.7 4-point average 0.80 3.25 3.92 11.42

A8 1.71 5.5 4-point average 0.54 2.20 3.26 9.98

A9 1.00 4.0 single point 0.45 1.46 2.32 8.59

Table 9.14

TAR differences for orbits in ARC_A using different TLF and TLKP

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R (m) 

rms max

Al - A6 9.05 29.34 8.66 29.32 1.60 2.59 2.10 3.90

Al - A7 5.96 20.57 5.65 20.57 1.11 1.76 1.54 3.30

A7-A8 2.49 6.30 2.38 6.30 0.44 0.69 0.58 1.06

A6-A8 5.97 28.84 5.95 28.83 0.08 0.17 0.50 2.36

A6-A9 0.79 3.26 0.77 3.26 O il 0.18 0.10 0.37

Using the TLKP adopted in the atmospheric model (6.7 h) the solution obtained for 

ARC_A has an rms of 1.58 m (solution A l). By using TLKP values from zero up to
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eight hours, it is found that the rms of fit has a clear minimum for a TLKP around 4 

hours, reaching an rms value of only 0.38 metres (solution A6 in Table 9.13). This 

means that a difference in the TLKP value o f 2.7 hours generates orbits with rms range 

residuals of more than one metre difference.

The same test was done for the Time Lag o f the solar Flux (TLF). Now orbit A6 was 

recomputed keeping a TLKP = 4.0 hours, but using different values for the TLF. The 

result for TLF = 1 hour is presented in Table 9.13. As expected, the solution is less 

sensitive to the variations o f the TLF value than to those o f the TLKP. This is because the 

amplitude of the solar flux variation is less than that o f the Kp indices. The solar flux is 

input as daily values and as averages for four solar rotations. Therefore a change in the 

time lag of these values by one or two days does not significantly affect the solution. The 

time lag adopted in the atmospheric model (TLF =1.71 days) seems to be appropriate. In 

fact the rms of fit increases when this value is either increased or decreased, proving that 

the time lag corresponding to the minimum residuals is close to the adopted value by the 

atmospheric model. The difference between solutions computed with different TLFs (A6 

and A9 in Tables 9.13 and 9.14) is small, revealing that this parameter does not 
significantly affect the solution.

In all these computations the Kp index for each time t was computed by interpolation 

from the 4 nearest 3-hour values, by using 4-point Lagrange interpolation. This process 

is referred to in the tables and in the graphs as the “single-point” method. The previous 

results show that the orbit adjustment is poor when the time lag o f the Kp indices is not 

“in phase” with the induced orbital perturbation. This suggests that, instead of using the 

measured indices, it might be preferable to use a smooth function o f these values, so that 

the sharp changes that occur during this period become smoother.

To study this effect, the previous computations were repeated, using for each time t the 

average of the 4 nearest 3-hour Kp values. This procedure is referred to as the “4-point 

average” method. The results for ARC_A are show in Table 9.13 and in Figure 9.19 

(thinner line).

As before, the orbit was computed for a range o f TLKP from zero to eight hours. On 

average the rms residuals of these solutions are smaller than the corresponding solutions 

using a “single-point” Kp value. For example, comparing solutions A l and A7 for which 

the model adopted TLKP = 6.7 hours was used, the rms residuals for the second orbit 

(0.80 m) are about half of the rms residuals for the first solution (1.58 m). This means 

that the satellite senses the sharp variations in the atmospheric density caused by strong 

geomagnetic activity in a smoother way. The time lag (TLKP) that corresponds to the 

minimum rms of fit (5.5 hours) is larger than the value found on “single point” solutions:
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4 hours. The difference between these minimum values is due to the different shape of the 

Kp curves in both cases (Figure 9.20).

There is no doubt that solutions with smaller rms (A6 and A8) are better than the others. 

This statement is further proved by the values o f the rms residuals at the rejected points, 

which are smaller for these solutions (last column of Table 9.13).
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Figure 9.20 - Single-point Kp indexes versus 4-point averages.

The differences between these solutions reveal a great deal of information which is not 

detectable by the analysis of the fitting residuals. Table 9.14 presents some o f these 

differences. Comparing orbit A l and A6, both computed using “single-point” Kp values, 

they have very large differences, particularly in the along-track component (Figure 9.21). 

However the differences between the corresponding solutions using “4-point averages” 

(A7 and A8) is are much smaller, revealing that these are smoother solutions which are 

not as sensitive to the TLKP value as the “single-point” orbits.

Surprisingly large are the differences between orbits A6 and A8, both giving very small 

residuals of fit. These differences are particularly large at the end o f the arc, during the 

last half day. This means that at this part of the arc the orbit is poorly determined. This is 

mainly due to two reasons. The first is due to the fact that at this part of the arc there are
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very large variations in the Kp index, inducing very sharp changes in the drag 

acceleration.

The second reason is related to the way the drag coefficients are solved-for. For this arc, 
one coefficient was adjusted for each day. However in the last day there is only one pass 

of tracking data, which is not enough to provide a good determination o f  the Cd 

coefficient for this day.

The results presented in Chapter 8 show that the addition of altimeter data would help to 

fill the data gap existing at the end o f the arc and would lead to a better determined 

solution. A posteriori, it seems that with the laser data available for this arc, it would have 

been preferable to have cut the arc at the end o f the 5th day, after the last pass for this 

day.

Similar computations were performed for ARC_B. The results are shown in Figure 9.23 

and Tables 9.15 and 9.16.
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Figure 9.23 - Rms o f orbit residuals as function of TLKP for ARC_B

As for ARC_A, the rms o f fit o f orbits computed using 4-point average Kp values is 

smaller than the corresponding single-point solution by about one metre. The influence of  

the value o f TLF is less than the influence of the TLKP value. The Jacchia_72 adopted 

value o f 1.71 days proves again to be adequate.
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The main difference in these results relative to the results obtained for ARC_A is the 

different value found for the TLKP corresponding to the best orbit adjustment. For 

ARC_B this value is equal to zero, both in the “single point” and in the “4-point average” 

solutions.

Table 9.15

Solutions computed for ARC_B using different TLF and TLKP

Orbit
TLF

(days)

TLKP

(hours)

Residuals (m) 

rms max

Bl 1.71 6.7 single point 1.44 3.49

B6 1.71 0.0 single point 0.47 1.12

B7 1.71 6.7 4-point average 1.12 2.52

B8 1.71 0.0 4-point average 0.36 1.15

B9 1.00 0.0 single point 0.53 1.19

Table 9.16

TAR differences for orbits in ARC_B using different TLF and TLKP

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R (m) 

rms max

B1-B6 7.33 20.45 7.22 20.44 0.57 0.98 1.15 2.78

B1-B7 1.69 4.27 1.64 4.27 0.18 0.31 0.36 0.87

B7-B8 4.94 13.25 4.37 13.24 0.59 0.99 1.16 2.85

B6-B8 3.14 8.89 3.11 8.89 0.20 0.32 0.39 0.92

B6-B9 0.52 1.11 0.50 1.11 0.06 0.09 0.12 0.26

It is difficult to analyse these results, since the phenomena that cause this time lag 

between a magnetic storm and the induced change in the atmospheric density at satellite 

height are not well understood. There is no clear explanation for the heating experienced 

by the upper atmosphere during geomagnetic disturbances and it is not known how the 

heating is distributed in height. It is known, however, that density variations during 

magnetic storms are observed at heights as low as 200 km (Jacchia ,1965), which are in
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phase with density variations at higher levels. The fact that the temperature (and therefore 

the density) variations show a time lag with respect to the geomagnetic (Kp) variations, 

could be interpreted as conduction time, if  it is assumed that most o f the energy is 

dissipated at heights of 120-130 km.

The time lag adopted by the Jacchia-72 model was determined by drag analysis of 4 

satellites. Three o f these satellites (Injun 3, Explorer 19 and Explorer 24) had highly 

eccentric orbits with perigee heights from 250 to 550 km and apogee heights around 24(X) 

km. The fourth satellite (Explorer 17) had an orbit with smaller eccentricity with perigee 

height of 270 km and apogee height of 800 km. In this analysis the time lag obtained for 

the last satellite (5.2 hours) is about two hours smaller than the average obtained for the 

first three (7.0 hours). Jacchia et al. (1967) claim that no clear indication of any variation 

of the time lag with the satellite perigee height was found. This is in contradiction with the 

explanation mentioned above, that the time lag is related to conduction time, if most of the 

heating caused by the magnetic storm occurs at low altitudes. If this was true then the

higher the satellite, the greater should be the time lag. If the average satellite height is 

considered, then the lower this height, the smaller the value of the time lag. However for 

highly eccentric orbits the average height is not a relevant parameter since the orbit is 

mostly affected within a small section of orbit around the perigee.

By analysis o f the histograms o f the various time lags determined by Jacchia et al, (1967) 

and Roemer (1966) from drag analysis on a number of satellites, we conclude that the 

"observed" time lags have a large variation, taking values in the interval [0,12] hours.

Therefore, the time lag found to correspond to a best fit orbit for ARC_A (4 hour for the 

"single-point" method and 5.5 h for the 4-point average method) is in agreement with the 

variability quoted for this parameter. The value found for ARC_B (0 h) is more difficult 

to explain. Although this value is within the quoted variability, the curve in Figure 9.23 

does not indicate a clear minimum but rather a linear variation. This value seems too low  

to correspond to any physical phenomenon, since it is unlikely that the satellite would 

sense the perturbation exactly at the same time that it occurs. Then how can the results 

represented in Figure 9.23 be explained ?

Figures 9.18 and 9.20 show that the index Kp during ARC_B has a variation that closely  

follows a one cycle per day signal. This variation can easily be absorbed by the daily drag 

coefficients provided that it is "in phase" with the intervals specified for each coefficient. 

In this case the best fit is achieved for a value of the TLKP of 0 hours, but this does not 

mean that this solution is better than the others. It only means that the induced 

perturbation fits better to the tracking data. This is confirmed if we compare the two orbits 

computed with TLKP = 6.7 h (B l and B7) with the two orbits computed using a TLKP =
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Oh (B6 and B8). The difference between these solutions is presented in Figures 9.24 and 

9.25. The difference between the first two solutions (B 1 - B7 in Figure 9.24) is smaller 

than the difference between the second ones (B6 - B8 in Figure 9.25). It seems that the 

last two solutions are poorly determined in the along-track component

In particular during the first 1.2 days of the arc, where a single drag coefficient is solved 

for this period, the difference between these solutions is large, reaching about 9 metres.

In conclusion, the value o f TLKP = Oh, found to correspond to a best orbit adjustment is 

too small. The results for ARC_A suggest that a value around 5h should be used instead 

of the Jacchia_72 value o f 6.7 h.

One important conclusion is that the accuracy of ERS-1 orbits computed for periods of 

high geomagnetic activity are strongly dependent on the time lag introduced in the Kp 

data. One solution could be to adjust this parameter within the orbit computation. 

However, to solve for TLKP together with multiple drag coefficients might lead to high 

correlations between these coefficients, since the TLKP would be another along-track 

parameter. Therefore this is only possible if  enough tracking data are available. In this 

adjustment some constraint would have to be applied to force the TLKP to take values 

within a certain interval, for example [3h, 7h].

9.4.4 Use of predicted solar flux data

Precise orbit determinations as described in the previous sections are dependent on the 

acquisition of several types of data, which can only be assessed some time after their 

collection. The data needed by the SATAN programs to compute an accurate orbit for a 

satellite such as ERS-1 are:

• Pole coordinates - These are published in bulletin A of the lERS with a delay of 

one or two weeks after data collection.

• Tracking data - In principle laser data should be available soon after their

collection, if not from a great number of stations, at least from a few.

• Geomagnetic and solar flux data - They are available from the National 

Geophysical Data Centre, in the USA, within a few weeks o f data collection. However 

the adopted atmospheric model uses the values of the solar flux for a period of two solar 

rotations (54 days) around the time of the computation. Therefore to use this model, the

orbit can only be computed at least two months after data collection.
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One of the aims o f this study is to be able to compute precise ERS-1 orbits as close as 

possible to real time. Therefore the use o f predicted solar flux instead o f  actual 

measurements is investigated.

For this analysis two sets o f solar flux data are used.

The first set is composed of daily values of the Pio.7 solar flux for a period of 22 years 

(two solar cycles). The analysis o f this data set (Figure 9.27) shows that points are very 

scattered and that the only predictable signal is the long wavelength component. The 

dominant frequency corresponds to the 11-year solar cycle. Superimposed to this main 

frequency there are other signals with much smaller amplitudes with periods from 2 to 

5.3 years, which are particularly noticeable at the solar maximums. Therefore a cut-off 

frequency was used such that only those signals with periods longer than two years are 

kept. In fact a sharper cut-off could have been used, keeping only the 11-year 

component. In any case the resulting curve will just keep the long-wavelength trend o f the 

phenomenon. This curve, represented in Figure 9.27 is used to predict flux values for the 

next 4 months after the last point in the curve.

Table 9.17

Solutions computed for ARC_A using predicted flux

Orbit

Flux data 

(TLF= 1.71 days)

Kp indexes 

(TLKP = 4h)

Residuals (m) 

rms max

Residuals on 

rejected points 

rms max

A6 Actual data Actual data 0.38 1.01 2.34 8.41

AlO Predicted data Actual data 0.45 1.42 2.76 8.87

A ll Predicted data All zero 1.19 5.85 8.25 27.54

Table 9.18

TAR differences for orbits in ARC_A using predicted flux

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R(m)  

rms max

A6 - AlO 2.63 10.73 2.56 10.73 0.31 0.56 0.50 1.67

A 6 - A l l 12.50 68.77 16.44 68.77 0.38 1.00 1.43 6.14
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A second set o f solar flux measurements was used. These data consist o f monthly 

averages for a period of 39 years (3.5 solar cycles), from 1953 to 1992. This covers all 

the available measurements until present (Figure 9.26). The dominant frequencies are 

close to those detected using the first data set. Using the same cut-off frequency, the 

resulting smooth curve is represented in Figure 9.26.

Table 9.19

Solutions computed for ARC__B using predicted flux

Orbit

Flux data 

(TLF= 1.71 days)

Kp indexes 

(TLKP = Oh)

Residuals (m) 

rms max

B6 Actual data Actual data 0.47 1.12

BIO Predicted data Actual data 0.71 1.42

E li Predicted data All zero 0.55 1.73

Table 9.20
TAR differences for orbits in ARC_B using predicted flux

Orbits Total (m) 

rms max

T (m) 

rms max

A(m) 

rms max

R (m) 

rms max

B6-B10 1.42 3.62 1.35 3.62 0.19 0.28 0.39 0.75

B6-B11 12.60 33.83 12.59 33.83 0.21 0.34 0.57 1.29

These two curves were used to predict the solar flux for the first 4 months o f 1992, 

covering the period of the computations. Figure 9.28 compares the results obtained from 

the two curves. For such a short period o f time as 15 days, the predicted flux is just a 

straight line. The two predictions differ by a small constant bias, but the linear trend is 

similar. When these predicted values are plotted together with the actual measurements, 

the prediction is nearly equivalent to assuming a constant flux for the whole period. Both 

predictions will give equivalent solutions since this bias w ill be absorbed by the drag 

coefficients.

If it is acceptable to predict the long wavelength trend o f the solar flux, for the 

geomagnetic indexes that is not possible at all, since the geomagnetic activity is not a 

regular and predictable phenomenon.
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Using the predicted values of the solar flux two solutions where computed for ARC_A  

as described in Table 9.17. In the first solution, called AlO, the solar flux used is the 

predicted flux but the actual Kp indexes are kept. In this solution the values adopted for 

the TLKP were the values corresponding to the minimum residuals in Table 9.13, i.e., 

TLKP = 4 h, keeping the value o f TLF = 1 .7 1  days. The reason for computing this 

solution is because the only data that actually need to be predicted for a long period are the 

flux data. The Kp indexes are only needed for the time of the computation and therefore 

can usually be obtained within a few weeks o f data collection.

The second solution, called A l l ,  uses predicted solar flux and neglects completely the 

geomagnetic data, attributing a value of zero to all Kp indexes. The difference between 

these solutions and the solution computed using actual data (A6) is presented in Table

9.18 and Figures 9.30 and 9.31.

Considering the actual accuracy of all these solutions, the differences between orbits A6 

and AlO is not significant,apart from the last half day o f the arc. It had already been 

noticed that this arc is not well determined in this region and therefore the solution should 

only be considered up to the last pass of the 5th day. Apart from this region the rms of the 

differences between these solutions is only 1.6 m, 0.3 m and 0.5 m in the T, A and R 

components respectively. Therefore the use of predicted solar flux does not significantly 

degrade the solution.

The same is not true if  the geomagnetic indices are not used as in solution A l l .  Now this 

solution departs considerably from solution A6, showing along-track differences with 

amplitudes as large as 20 m in the first 5 days of the arc. In the last half day the amplitude 

of the differences is again as large as in all the previous results.

Similar computations were repeated for ARC_B, the results being presented in Tables

9.19 and 9.20, and Figures 9.32 and 9.33. The results are similar to those obtained for 

ARC_A only the amplitude of the differences is smaller, since the geomagnetic activity 

for this arc is also smaller.

In conclusion, the use o f predicted solar flux together with actual geomagnetic indices 

does not significantly degrade the solution. Since the solar flux has a daily variation, this 

effect is absorbed by the drag coefficients. However the use of the geomagnetic indices is 

fundamental. The effect o f neglecting these measurements is proportional to the amplitude 

of the geomagnetic activity along the arc and can reach several metres.
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9.5 - Adjustment of geopotential coefficients

As part o f the effort to develop improved ERS-1 orbits with the existing models, the 

adjustment of geopotential coefficients is considered.

The development o f gravity field models involves the processing o f large amounts of data 

and powerful computers to run the programs. The SATAN package is a set o f relatively 

simple programs which are intended to run on a medium machine. The aim is therefore to 

implement on those programs a simple algorithm for the adjustment of a selected set of 

gravity field coefficients, and investigate how this procedure can help in the computation 

of more precise ERS-1 ephemerides. Since the only tracking data available was the 

reduced laser data set referred to throughout this chapter, it was known in advance that 

with these data it would not be possible to get a refined geopotential model that would 

give improved orbit accuracy for all parts o f the arc. This exercise must therefore be 

regarded as a preparation for future research by using a better data set.

9.5.1 Orbit errors due to geopotential coefficients errors.

In the expression o f the geopotential in terms of spherical harmonics, each term

containing the coefficients of degree  ̂ is multiplied by factor where

ro is the Earth's equatorial radius and r the geocentric distance to the satellite (equation 

3.3). Because o f this altitude attenuation factor, the higher the degree o f a spherical 

harmonic coefficient, or of its error, the less its effect on the potential and the gravitational 

acceleration on the satellite.

The errors in the coefficients of present models increase with t  and m until they reach 

about 100% of the coefficient itself at about degree and order 30. Above this, the 

combined effect o f all the estimated coefficients might reproduce the data used in the 

geopotential modelling, but their individual values may be 100% in error.

Using analytical theory it may be shown that many different terms in the gravity field lead 

to the same orbit perturbations. It is therefore possible to select a set of geopotential 

coefficients which may be adjusted relative to an existing gravity model, in order to 

achieve an improvement in the accuracy o f this model for a particular satellite.

The analysis of satellite orbit errors due to a geopotential model is usually based on 

Kaula's theory.
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The frequencies of the orbit errors due to a spherical harmonic of degree I and order m 

are (Kaula, 1966), (Colombo, 1984):

V ^ m pq=(^ -2p+q)(û ) + î5l) - qcû + m(f2-e ) (9.19)

where: • p = 0,1, ..., t

• q can take any values from - oo to + <» but for near circular orbits it is sufficient 

to consider lql<2 , i.e., only 3 values: 0, ±1.

• CO is the apsidal frequency of a complete revolution of the perigee.

• 0 - 6  is the frequency o f a complete rotation of the Earth with respect to the 

precessing orbital plane.

• Kl is the rate o f change of the mean anomaly (approximately one cycle per 

revolution).

Each of these frequencies is a linear combination of the orbital frequency co + Kl (one 

cycle per revolution), the apsidal frequency co and the frequency O -0 .

When the frequency is zero, the amplitude of the perturbation becomes infinite. In this 

case the orbit is said to be in a "perfect resonance".

At a height of about 1000 km a spacecraft completes a number of 13 to 14 revolutions in

' taken by the Earth to do a complete revolutiono n e  "nodal d ay" , th e  t im e  Tr> =
A  - 8

with respect to the precessing orbital plane. Calling this number N r , and assuming that 

(0 = 0, there are always combinations of i,  m and q such that

(£ - 2p+q )M +  m ( O - 8  ) = 0 (9.20)

for all coefficients o f order m = k N r  , k = 0 ,l ,2 , ...

If N r  i s  v e r y  c l o s e  to  an  in te g e r , th e  p e r tu r b a tio n s  a re  la r g e  b u t  p e r io d ic ,  w ith  lo n g  

p e r io d s , th e  s o -c a lle d  " d eep  reso n a n ce" .

For altimeter satellites flying in frozen orbits co is quite small (in theory should be zero) 

and N r  differs considerably from an integer, being about 1 4 .3 . In this case, the errors 

from coefficients whose order m comes closest to satisfy the resonance condition, can 

still produce long period effects much larger than those of the others. These terms are
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called "shallow resonant" terms. Altimeter satellites have orbits with shallow resonance at 

orders close to the whole multiples of 13 or 14.

For ERS-1 Nr  = 14.3 and therefore the resonant terms are: 

k=0 all zonals 

k = l m=14,15 

k=2 m=28,29  

k=3 m=43

After the resonant terms, the terms for which {i - 2p+q ) = 0 come next in importance. In

this case the frequency reduces to - q co + m ( Q - 0  ). For altimeter satellites this 

frequency is quite small compared to the dominant "once per revolution frequency" 

CO + M. Provided that q and m are small integers, these terms are much smaller than any 

other terms where {I - 2p+q ) 0. Since co is very small when compared to ( A  - 8  ) ,

the corresponding frequencies will be close to m cycles per day, the corresponding terms 

being called "m-dailies".

The total amplitude of the oscillation associated with a particular frequency is a sum of all 

terms for which (/-2p), q and m are constant. Terms of the same order m, and degree I 
of the same parity (even, odd), contribute to the same frequency. For example (16,14) 

and (14,14) produce errors o f the same type and the same happens with (15,14) and 

(17,14). For altitudes of 1000 km, lql<2 and these perturbations are more significant for 

terms with ^<10.

9.5.2 Choice of the coefficients to adjust

The adjustment of a sub-set of geopotential coefficients for a particular satellite has been 

analysed by several authors. Wakker et al, (1983b) adjusted a set of 7 pairs of C and S 

coefficients of the already tuned SEASAT model PGS-S4. The adjusted coefficients were 

all shallow resonant coefficients. During the present study it was found that some of these 

shallow resonant coefficients, leading to errors of the same frequency, (all terms o f the 

same order and same degree parity) reveal very high correlations when solved together. 

For example, (14,14) and (16,14) cause approximately the same type of errors and 

therefore only the dominant term (14,14) should be solved.

The geopotential model selected for this adjustment was GEMT2. Figure 9.35 represents 

the rms errors per degree of the GEMT2 coefficients. From this figure, the coefficients 

with largest uncertainties lie within a band 12 <  ̂< 30. Figure 9.34 shows the estimated 

error for each individual coefficient. According to this figure, the coefficients with the



Figure 9.34 - Estimated error for GEMT2 coefficients. ErrorxlO'^. Extracted from (Marsh et al., 1990a).
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largest errors are situated within a band with degree 13 <  ̂< 25 and order 1< m < 9. The 

blank squares in this figure represent the coefficients which are not modelled in GEMT2.

To determine the set o f coefficients to adjust, instead o f using the rather complicated 

Kaula formulation (Kaula, 1966), (Rosborough and Tapley, 1987), a simpler procedure 

was developed for this project. The algorithm implemented in program ORBIT for the 

adjustment o f geopotential coefficients includes the computation o f the partial derivatives 

of satellite position, (X, Y, Z), with respect to each geopotential coefficient. These are 

computed by numerical integration as explained in section 3.5.1. These partials can be 

used to compute the effect o f a certain coefficient on the position o f the satellite, during a 

specified time interval and therefore to determine which coefficients have more influence 

on the orbit accuracy. The adopted procedure is explained.

GEU-T2

■n

4S 50409525 30205 10 15

C E G R E E

Figure 9.35 - RMS of coefficient errors per degree for GEMT2. From (Marsh et al., 

1990a)

For each coefficient o f degree t  and order m , program ORBIT computes the partial 
derivatives of (X, Y, Z) with respect to each pair (C^m» These partials can be used 

to compute the errors on (X, Y, Z), (AX, AY, AZ), caused by errors on (C^m»
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. The formulae are given for the coefficients. Similar expressions hold

for

AX'
ax

^Im

AY
3Y

^Im

AZ
az

_^lm_

^^Im (9.21)

For these computations were assumed to be equal to the value o f the coefficients 

themselves, using Kaula's Rule of Thumb:

10 -5

i
(9.22)

This method gives an overestimate of the errors for the coefficients of the lowest degrees, 

but this does not constitute a problem since according to Figures 9.34 and 9.35 only 

coefficients above degree 12 wiU be considered.

These errors in (X, Y, Z) are then transformed into errors in the (T,A,R) directions, by 

applying the transformation:

AT" Tx Ty Tz
AA = Ay Az
AR Rx Ry Rz

AX
AY
AZ (9.23)

The matrix in the above formula is formed by the components of the (T,A,R) vectors in 

the (X, Y, Z) frame (the J2000 frame).

For a 3-day ERS-1 orbit, these errors were computed, at each step o f the integration 

(1.25 minutes), for each coefficient. At the end o f the integration the rms values o f these 

errors are computed. Table 9.21 presents the coefficients with degree >13 with the 10 
largest errors for each component. These errors are the sum of the errors caused by ^im 
and ^im.

To be able to compare the relative influence of each coefficient on the orbits of both 

satellites, the same procedure was repeated for a 3-day SEASAT orbit. Since GEMT2 is a 

precise geopotential model for SEASAT, in principle, a coefficient which gives much 

larger errors for ERS-1 than for SEASAT should be adjusted.



239

Table 9.21

GEMT2 coefficients with the 10 largest errors for ERS-1 (for degree >13)

T A R

(15,14) (15,14) (14,14)

(15,15) (17,14) (16,15)

(17.14) (15,15) (16,14)

(13,13) (13,13) (18,14)

(13, 3) (19,14) (13, 1)

(13, 2) (13,12) (14,13)

(13,12) (17,15) (20,14)

(14, 3) (21,14) (18,15)

(15, 3) (14,1) (15,14)

(14, 2) (19,15) (15, 1)

Table 9.22

GEMT2 coefficients giving larger errors for ERS-1 than for SEASAT 

(meaning of rows as explained in the text)

T (13,2) (13,3) (14,3) (14,4) (15,5) (19,4) (19,18) (23,6) (24,24) (25,8) (26,26) (28,28) 

(31,6) (34,6) (35,7) (43,43) (45,43)

A (13,12) (13,13) (14,2) (15,13) (15,14) (15,15) (17,14) (17,16) (18,1) (19,14) (30,29)

R (13,1) (14,14) (16,14) (16,15) (18,14)

From this comparison, a set of coefficients is found to induce substantially larger errors 

on ERS-1 than on SEASAT. These coefficients are presented in Table 9.22, classified in 

three classes:

T - the only component with significant errors is the along-track (T) component.
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• A  - Apart from the T errors, A errors are also very significant, being much larger 

than R errors.

• R - Apart from the T errors, R errors are very significant, being much larger than 

A errors.

Combining all this information a set o f coefficients was selected. In this selection the 

following criteria were adopted:

• Only terms above degree 13 (inclusive) are considered.

• Because coefficients that induce errors at the same frequency will have very 

high correlations, only those which produce the highest errors are chosen. For example 

terms (14,14), (16,14) and (18,14) produce very similar errors in the R component. In 

this case only the dominant term (14,14) is solved-for.

• Terms which induce long-period errors are given preference relative to short 

period terms. This is because the available tracking data for these ERS-1 arcs do not have 

a good geographical distribution. Therefore if short period terms are solved-for, the 

resulting field would reproduce the data, but would be very poor over the un tracked 

parts.

• The dominant resonant terms are included.

9.5.3 Orbits computed by adjusting a selected set of 
geopotential coefficients

Due to the poor distribution of the tracking data it was known in advance that only a small 

set of coefficients could be adjusted. From a careful analysis of the above results and after 

removing some highly correlated coefficients, a set of 14 pairs (C, S) were selected as 

indicated in Table 9.23.

One orbit was computed for ARC_A by solving for the usual parameters (start vector, 

daily drag coefficients, solar radiation coefficient) plus this set of 28 coefficients. The 

residuals after fit of this solution (called A 12) have an rms of 0.48 metres with a 

maximum of 2.01 metres. Apparently this is an improvement with respect to solution A2 

computed with the initial GEMT2 model.
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Using this adjusted model to compute an orbit for ARC_B, a solution is obtained with an 

rms of 3.1 metres, which is a slight improvement with respect to orbit B2 computed with 

the original GEMT2.

Table 9.23

Set of adjusted GEMT2 coefficients used in solution A l l

(13,3) (13,13) (14, 2) (14,4) (14,14) (15, 5) (15,14) (15,15) (17,16) (19,18)

(23, 6) (26,26) (31, 6) (35, 7)

However when solution A12 is compared with orbits computed with GRIM4_C2 large 

differences exist between these orbits. A comparison with orbit A1 is plotted in Figure 

9.36 (A1 - A 12). When this figure is compared with Figure 9.7 we can see that there is 

no real improvement. On the contrary, the differences in the A and R components are 

slightly larger.

Other combinations o f geopotential coefficients were used with similar results.

It is evident from these results that this technique cannot be applied to arcs of this length 

(approximately 5 days) by using data from a small number o f stations with poor 

geographical distribution, such as the laser data set used in this study. Another important 

factor is that, during this period the drag perturbation is very high and therefore this arc is 

unsuitable for the adjustment of geopotential coefficients. In fact if  w e try to solve for 

geopotential coefficients with only a single drag coefficient for the whole arc, the 

adjustment is very poor, revealing that the adjusted coefficients cannot absorb the along- 

track drag errors.

However this technique can certainly be applied if  a larger data set is available, covering a 

much longer interval. When the fully corrected ERS-1 altimeter data are available, these 

data can certainly help in this type of computation, by filling the long gaps existing in 

laser data. As pointed out by Zandbergen et al. (1988), for the adjustment of geopotential 

coefficients it will probably be better to use crossover points instead of the global filtered 

altimeter heights, to avoid the aliasing of the sea surface topography into the recovered 

model.
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In conclusion, more research needs to be done on the implementation of the above 

explained procedure for the adjustment o f a selected set o f geopotential coefficients. To 

obtain more reliable results, the method should be applied to a much longer arc, in order 

to get a better determination of the resonant coefficients. This determination should take 

place during a period o f quiet solar and geomagnetic activity, so that errors due to the 

mismodelling of the drag force are not absorbed by the geopotential coefficients.

9.6 Conclusions

The best geopotential model for ERS-1, at present seems to be GRIM4_C2. ERS-1 orbits 

determined with this model by adjusting for daily drag coefficients have rms range 

residuals of 1.5 m. The radial and across-track accuracy o f these orbits is of the same 

order, but the along-track errors are about 3 times larger.

During periods o f low solar and geomagnetic activity, these errors are mainly of 

gravitational origin (e.g. ARC_B ), but for arcs where this activity is high, manifested in 

sharp variations of the geomagnetic index Kp (e.g. ARC_A), the errors due to drag 

mismodelling become more important. The long wavelength component of these errors 

can be absorbed by solving for daily drag coefficients. When the tracking data are sparse, 

with long gaps close to one day, the choice of the intervals to which each o f the 

coefficients will apply is very important. In principle the intervals should be daily 

intervals, starting and ending at the start and end o f each new day, since there are a 

number of perturbations that have a daily variation. Each coefficient will be determined 

solely by the tracking data available for that interval. Therefore if, for example during that 

day there is only one pass, the coefficient will not be well determined, and if  there are 

sharp fluctuations of the drag force during the same period, the orbit will have large 

errors in this area.

The rms of fit of the computed ephemeris is strongly dependent on the value used for the 

time lag introduced in Kp data (TLKP). It was found, that for ARC__A a difference of 

about 2 hours in the TLKP value makes the rms of fit to laser ranges go from 1.6 metres 

to only 0.4 metres. If adequate data are available, this parameter should be adjusted 

within the solution. If such adjustment is impossible instead of the original Kp indices, it 

seems preferable to use a smoother representation o f the same indices. In this study a 

simple 4-point average filter was applied, but further research is needed to determine a 

more appropriate smoothing function.

By contrast with the results obtained for the TLKP, the time lag introduced in the solar 

flux indices Pio.7 , (TLF) seems to have a minor influence in the solution. These indices
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model daily and longer wavelength variations of the atmospheric density. Therefore any 

error in these indices is absorbed by the daily drag coefficients, provided adequate 

tracking data are available. A  consequence of this result is that if predicted values o f solar 

flux are used, by just modelling the long wavelength component of their variation (mainly 

the 1 1 -year solar cycle), the resulting ephemeris does not depart from the solution that 

would be obtained by using the actual measured indices. In this case the resulting 

adjusted drag coefficients will exhibit unrealistic values, to account for the effect of a bias 

on each daily index F10.7 .

The same is not true if  the geomagnetic indices are neglected. In this case the Kp indices 

cannot be predicted, since they model irregular unpredictable variations o f  the 

geomagnetic field. The errors induced by neglecting the geomagnetic indices depend on 

their variability over the interval considered. For arcs with sharp Kp variations, these 

errors may reach several metres. This constitutes a limitation to the generation of precise 

and rapid ephemerides. It is therefore crucial to have access to these measurements, as 

soon as they are released by the NGDC, in the United States.

In order to reduce the errors of gravitational origin, the adjustment of a selected set of 

geopotential coefficients was considered. Due to the few data passes that were available 

for this exercise, and the large drag errors existing in this arc, the results are not very 

conclusive. The same technique should be applied to a much longer arc, during a period 

of reduced solar activity. This subject needs further research into an appropriate choice of  

the coefficients to adjust and determination of "a priori" constraints to reduce the high 

correlations existing between some o f the parameters, in particular the resonant 

coefficients.
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Chapter 10 

Short arcs

10.1 Introduction

ERS-1 long arc orbits computed with the present models (Chapter 9) have an accuracy 

which are about one order o f magnitude below the accuracy required for most 

applications. In particular, the full exploitation o f satellite altimetry for oceanographic 

or geodetic purposes, requires a knowledge of the satellite radial position to within the 

accuracy of the altimeter measurement: from 5 to 10 cm.

At present this accuracy can only be achieved for short arcs that are intensively tracked 

by a number of stations.

The most widely used short arc technique is probably the TAR method referred to in 

section 4.2 (Sinclair, 1985, 1989), whereby corrections along the T, A and R directions 

are applied to a previously computed long arc solution. This method is very useful for 

very short arcs of up to 10 minutes (1/10 o f a revolution). Its main disadvantage is that 

it is non-dynamic, i.e., the corrected track is no longer an exact solution of the 

equations for the satellite motion. The accuracy of this method depends on the accuracy 

of the initial long arc solution. To obtain a radial accuracy o f the order o f 10 cm, the 

initial long arc solution should exhibit range rms residuals of about 0 .6  m.

The restrictive application of this method to only very short arcs was the motivation for 

research on alternative methods, valid for a substantially longer arc. The basic idea 

behind this is the following. Consider an arc o f up to about one revolution that is 

tracked on both ends of the arc. By fitting an orbit to these observations, in principle the 

solution will be well determined at both ends, in the tracked areas, but large errors may 

exist in the middle of the arc, where no tracking data are available. Thinking in terms of 

the "equilibrium" of the solution we may imagine it as a line that is suspended at both 

ends but sagging in the middle. To reduce this catenary effect the line could be 

stretched by reducing its length. The equivalent to stretching the line in a computed 

solution is reducing the number of degrees of freedom of the solution. In other words, if 

an orbit is well defined at the ends of the arc, it should be possible to constrain the 

solution so that the errors in the middle of the arc are reduced.

This idea evolved into the development for this project o f two dynamic methods for 

short arc computation, which will be called "Constrained" and "Bayesian" methods.
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This chapter describes the research done on the development o f these short arc 

techniques. In addition to the two methods mentioned above, the TAR method is also 

analysed with regard to its application to longer arcs.

The most important factors in short arc solutions are the geometrical configuration of 

the tracking data along the arc and the accuracy of the station coordinates. Provided the 

length o f the arc is short enough, the accuracy o f  the force model is o f slight 

importance. To be able to study the effect o f station configuration, a data set o f PRARE 

range data was generated for SEASAT, for the first three revolutions o f day September 

18, 1978 (MJD = 43769). This data set comprises 27 passes for 14 stations, a total of 

1931 measurements with an interval between observations of 5 seconds. The procedure 

used in this simulation was described in section 6.3.

The fact that SEASAT is used instead of ERS-1, does not invalidate the application of 

the results obtained for the former to the latter. This is because the force model does not 

significantly affect the accuracy of these solutions. Since both data types are similar, the 

results obtained with PRARE range data are applicable to laser data, with the advantage 

that most o f the present lasers have an accuracy even better than the assumed PRARE 

accuracy (7 cm).

The reference orbit used to simulate these data was described in section 8.3. This orbit 

was generated with the best available model for SEASAT and GEMT2 (orbit LI in 

Chapter 8 ). This solution will be referred to throughout this chapter as the reference 

orbit (REF). For the analysis o f these data the force model was changed by using 

GEM Tl instead o f GEMT2. The computation model used in all the short arc solutions 

is the same used in all SEASAT long arc solutions (Table 8.1), except for the number of 

solve for parameters. The integration step length used is 0.5 minutes.

Since all computations use simulated data, the accuracy of these solutions is assessed 

by computing their difference to the reference orbit (REF) used to generate the 

observations. This orbit represents the "true path" of the satellite relative to which all 

observations "fit exactly", in the sense that the rms of fit of the reference orbit to the 

tracking data is equal to the accuracy of the data themselves (7 cm).

10.2 Constrained method

In this method it is assumed that some good quality passes of range data are available at 

least from two stations one at the beginning and one at the end o f the arc.
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As in long arc computations, an orbit is generated by numerical integration and fitted to 

the observations. The main difference relative to a long-arc solution is that only the 6  

parameters of the start vector are solved for.

Instead o f  the classica l form ulation in terms o f  position  and velocity  

(X, Y, Z, X , Ÿ, Z), the start vector is expressed in terms of the 6  osculating elements 

(a, e, i, M, co, A) where

• a - semi-major axis

• e - eccentricity

• i - inclination

• M - mean anomaly

• CO - argument of perigee
•Cl - right ascension of the ascending node

For near circular orbits, such as ERS-l's, a change in the value o f the argument of the 

perigee co is almost equivalent to a change in the mean anomaly M. Using this 

formulation the parameters M and co are highly correlated, when solved together their 

correlation being very nearly 1. Therefore an alternative equivalent formulation is 

adopted whereby, instead of (M, co), the pair (M+ co, co ) is solved for.

The set of 6  solved-for parameters becomes:

(a, e, i, M+ co, co, Ü)

Solving for these elements is perfectly equivalent to solving for the classical 6  

osculating elements, with the advantage that smaller correlations exist between the 

parameters.

It is w ell known that the existing error in a computed ephemeris has a variety of 

periods, but when expressed in the TAR variations they are close to the orbital period. 

Therefore the dominant shape of the error is a one cycle per revolution signal.

Depending on the distribution of the tracking data along the arc, the orbit will be more 

or less well determined along each of the T, A and R directions. If the short arc is 

tracked by only one or two stations, by solving for all 6  osculating elements mentioned 

above, usually leads to high correlations between some of the parameters. These 

solutions can be very ill-conditioned, i.e., the errors may have very large variations, 

within a short interval. This problem can be resolved, by either reducing the number of 

parameters solved for, or by constraining the solution in some way.
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The reduction of the number of parameters is difficult, since each parameter influences 

the orbit in a different way. The method considered here overcomes this problem by 

applying constraints to the solved-for parameters.

Satellite

orbit

Perigee

Figure 10.1 - Satellite osculating orbital elements

For very short arcs it would usually be sufficient to solve for only one parameter along 

each o f the three T, A and R directions. However, the equations o f motion are 

expressed in terms o f position and velocity and it is not straightforward to write simple 

transformations to express them in terms of T, A, R elements. Instead, it is preferable to 

use the formulation in terms of the 6  osculating elements and apply certain constraints 

to these elements, these constraints being related to the TAR variations o f the 

osculating elements.

By simple geometrical considerations, for near circular orbits, the 6  osculating elements 

can be grouped into three categories, according to which of the TAR components the 

element is more related to:

1 - (M, co) - The argument of perigee locates the orbit relative to the ascending node 

and the mean anomaly M locates the position within the orbit relative to the perigee 

(Figure 10.1). Therefore the sum of these two parameters locate the position o f the
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satellite relative to the ascending node. For orbits o f low eccentricities, a small change 

in either M or co hardly affects the satellite radial position. Therefore a change in either 

of these parameters is equivalent to a linear change in the along-track (T) component. 

Furthermore, the effect is very nearly the same if  it is due to a change in M or a change 

in CO.

If the solution is ill-conditioned in the T direction, applying a simple constraint of the 

form dM+dco =0 it is equivalent to solving for only one along-track parameter, keeping 

the position of the ascending node unchanged.

2 - (i, A) - These parameters orient the orbit plane relative to the inertial space. A  small 

change in any of these parameters forces a small rotation o f the orbit plane as a whole 

and therefore affects mainly the across-track position (A). Nevertheless, the effects are 

not equivalent. In fact a change in produces a displacement o f the across-track 

component (dA^), which is maximum at the ascending and descending nodes and is 

zero at the middle points half way between the nodes (Figure 10.2). If the orbit is near 

polar, a change in the inclination i produces similar changes (dAi), but with a phase 

difference of half of revolution, i.e., they are zero at the nodes and maximum at the 

halfway points.

In very simple terms if  t is the time elapsed since the ascending node crossing then the 
across track displacements dAi and dA o caused by variations di and d fl can be written

as;

dAi = d i . K. sin
2n t

( 1 0 .1)

dA ^ = - dO . K. cos 2 tc t

( 1 0 .2 )

where T is the satellite period (100 minutes) and K is a units conversion constant.

By applying the constraint di + d fl = 0 the total across-track displacement becomes:

dA = dAi + dA ^  = di . K.
'2n t 2n t

sin + cosT T
(10.3)

The geometrical interpretation of these formulae is presented in Figure 10.2. It can be 

seen that this constraint forces the total across-track variation to be sinusoidal with an 

amplitude equal to 1.5 times the amplitude of each individual variation. This method is 

therefore equivalent to solving for only one across-track parameter.
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Figure 10.2 - Approximate form of the across-track error when the 

constraint (di + dQ = 0 ) is applied.

3 - (a, e) - These parameters define the size and shape of the orbital ellipse. A change in 

any of these parameters induces changes only in the radial component (R). Since the 

orbit is nearly circular, a variation in a produces a change in the satellite radial position 

which is approximately constant for all points. On the contrary, a change in the 

eccentricity causes a variation in R which is maximum at perigee and apogee, and zero 

at the halfway points.

These variations can be derived using only the in-plane equations o f motion, by 

considering only the Kep-lerian movement. For the Kep-(^rian movement, the 

geocentric radial distance o f the satellite is :

r = a (1 - e cosE) (10.4)

where E is the eccentric anomaly.

A variation da in a causes a variation dRa in R, given by:

dRa = da (1 - e cosE) (10.5)

Since e is very small (= 10" )̂ this variation is approximately constant at all points.

A  variation de in e causes a variation dRe in R, given by:



dRe = - a de cosE
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(10.6)

This variation is maximum at apogee (= a de) and at perigee (= -ade) and zero at the 

halfway points where E=± 90°.

2.5

dRa + dRe2
perigee

1.5
dRa

1

0.5
apogee

0

dRe-0.5

1

-1.5
30 0 30 60 90 120 150 180 210 240 270 300 330 360 390

Eccentric anomaly (degrees)

Figure 10.3 - Approximate form of the radial error when the constraint 

(da - a de = 0 ) is applied.

By applying a constraint o f the form da - a de = 0 (da = a de) then the total radial 

displacement is a sinusoidal function as plotted in Figure 10.3, being minimum (zero) at 

perigee and maximum (2 da) at apogee. This is therefore equivalent to solving for only 

one radial parameter, keeping the perigee unchanged.

By using this method a number o f 8 tracking configurations were studied. These 

configurations, named from 1 to 8  are described in Table 10.1 and Figures 10.4 to 

10.11. In these figures each line represents one pass. For each pass the Y axis represents 

the minimum angular distance between the satellite and the tracking station. If the 

station is on the left or on the right o f the satellite track, the angular distance is 

considered respectively positive or negative.

For each configuration one solution is first computed by solving for all 6  osculating 

elements (a, e, i, M+ co, co, Q). These first solutions are named SI, S 2 , ... S8 „ meaning 

Short-arc solution for arc/configuration 1 , 2 , .. .  8 .
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For each solution, the rms/max residuals of fit and the parameters exhibiting the highest 

correlations are present in Table 10.2. By analysis o f the geometry o f the tracking 

configuration and depending on the parameters which exhibit higher correlations, the 

decision is taken on which constraints should be applied for each solution. For each 

configuration Table 10.2 presents the results for the best solution and the constraints 

that have been applied. These constrained solutions are called SCI, SC2, ... SC8 , 

meaning Constrained Solution for configuration 1, 2 ,... 8 .

The first four arcs have very similar configurations. For all of them there are 4 stations, 

two at each end of the arc, one on each side o f the track (Figures 10.4 to 10.7). The 

main difference between them is the arc length.

The first arc has a length of only 32 minutes, about 1/3 of a revolution. For such a short 

arc, the solution obtained by solving for all 6  osculating elements (SI), although high 

correlations exist between several parameters, has a very small difference relative to the 

reference orbit. This means that, for such a short interval, this type o f configuration 

determines a solution with the same accuracy o f the observations (Figure 10.12). The 

application of some constraints to the parameters does not significantly affect the 

solution, although the individual parameters may be better determined. Solution SCI 

computed by applying the constraint (dM + dco = 0) is equivalent to the previous 

solution (Figure 10.13)

Arc 2 has a similar configuration but a length o f 6 6  minutes (2/3 of a revolution). By 

solving for the 6  elements (solution S2), the highest correlations exist between the pair 

(i, O). By applying the constraint di + dQ =0, the orbit substantially improves in the 

across-track direction as is evident from Figures 10.14 and 10.15. The rms error of the 

constrained solution is about 1 0  cm in all components.

As the length o f the arc increases, the errors become larger, in particular in the T 

direction, being minimum at the extremes of the arc, close to the tracked areas, and 

maximum in the middle.

The solution computed for arc 3, by solving for the 6  parameters (S3) has very large 

errors of more than one metre in the middle of the arc (Figure 10.16). The simple 

application of the constraint (dM + dco = 0), forces these errors to decrease to a level of 

20 cm rms (solution SC3 in Figure 10.17).

The first solution (84) computed for arc 4 (with a length o f 130 minutes), has similar 

type o f errors (Figure 10.18). However the application o f the same constraint (dM + dco 

= 0) does not reduce the error by any appreciable amount (Figure 10.19). It seems that 

the same techniques applied to arcs with lengths up to one revolution do not have the 

same applicability to longer arcs. In this case, the applied constraints, although not
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degrading the solution, cannot improve it either. These solutions can only be improved 

if  some tracking data exist in the middle o f the arc, as in configuration 8  (Figure 10.11). 

In fact this last arc is similar to arc 4, with the addition o f an extra pass in the middle of  

the arc. In this case a better solution is obtained by comparison to the S4 solution. 

Again, the application o f the constraint (di + df2 = 0) to the highest correlated 

parameters, reduces the across-track error from 37 to 11 cm (Figures 10.26 and 10.27).

The next two arcs (5 and 6 ) have the same type o f configuration, with two stations, one 

at each end of the arc, on opposite sides o f the track (Figures 10.8 and 10.9).

The first has a length of 32 minutes. A solution computed with only these two passes, 

by solving for all 6  osculating elements (S5) is very ill-conditioned with several 

parameters exhibiting correlation close to 1. The difference o f this solution relative to 

the reference orbit amounts to several metres. In particular, the across-track and radial 

components are very poorly determined with errors up to 10 metres. (Figure 10.20).

Table 10.1 Tracking configurations considered in short arcs

Configuration Spatial distribution Arc Length 

(minutes)

1 4 stations, 2 at each end of the arc, one on each side of 

±e track

32

2 " 66

3 " 100

4 " 130

5 2 stations one at each end of the arc, on opposite sides 

of the track

32

6 " 100

7 2 stations one at each end of the arc, on the same side 

of the track

100

8 5 stations, 2 at beginning 2 at the end and one in the 

middle of the arc.

130
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Table 10.2 - Short arc constrained solutions

Orbit Constraints applied to 

parameters

Residuals 

rms max

Maximum

correlations

S I — 0.07 0 .23 ( a , e) =  0 .99  

( a , M+co) =  0 .9 6

SC I dM + dû) =  0 0.07 0.23 —

S2 — 0.07 0 .2 2 ( i . N )  =  0 .9 6

SC 2 di+cKÎ =  0 0 .08 0.21 —

S3 — 0.08 0.21 ( e , M+ffi) =  0.81

SC3 dM + dû) =  0 0 .14 0 .34 —

S 4 — 0.07 0 .24 (M + ©, ©) =  0 .89

SC 4 dM + dû) =  0 0 .13 0 .3 6 —

S5 — 0.06 0 .12 (M+ ©, N) =  1 

( a , e) =  1 

( i ,© )= l

SC5 dM+ dû) = 0 

di+ dQ =  0 

-da +  ade =  0

0 .09 0 .30

—

S 6 — 0.07 0 .20 (a, 0 = 1  

(e, 0  =  0 .99

SC 6 dM+ dû) =  0 

-da +  ade = 0

0.07 0 .22 —

S7

—

0.07 0.23 (e , i) =  1 

(a, e )  =  1 

( i , M+©) =  0 .99

SC7 dM + dû) =  0 

d i+ d n  =  0 

-da +  ade =  0

0.11 0.31

—

S8 — 0.13 0.35 ( i , N )  =  0 .75

SC8 d i+ d Q  =  0 0 .14 0 .38 —
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Table 10.3

TAR differences between the reference orbit and short arc constrained solutions

Orbits Total (m) 

rms max

T (m) 

rms max

A (m) 

rms max

R (m) 

rms max

REF-Sl 0.10 0.14 0.04 0.08 0.05 0.12 0.07 O il

REF-SCI 0.09 0.13 0.04 0.07 0.05 0.12 0.07 O il

REF-82 0.22 0.37 0.09 0.17 0.16 0.28 0.12 0.25

REF-SC2 0.17 0.26 0.10 0.20 0.08 0.12 0.12 0.26

REF-S3 1.01 1.69 0.94 1.69 0.08 0.19 0.35 0.64

REF-SC3 0.30 0.46 0.20 0.38 0.10 0.17 0.19 0.36

REF-S4 0.69 1.14 0.56 1.13 0.31 0.49 0.25 0.48

REF-SC4 0.64 1.13 0.54 1.06 0.25 0.47 0.24 0.57

REF-S5 8.97 15.36 1.27 1.93 6.95 12.31 5.53 9.02

REF-SC5 0.40 0.45 0.27 0.37 0.21 0.36 0.21 0.29

REF-S6 2.25 3.14 1.87 3.11 0.91 1.31 0.88 1.82

REF-SC6 0.29 0.51 0.15 0.45 0.17 0.33 0.17 0.29

REF-S7 2.01 2.82 1.77 2.81 0.65 0.95 0.70 1.39

REF-SC7 0.49 0.82 0.40 0.82 0.15 0.30 0.23 0.48

REF-S8 0.48 0.72 0.24 0.43 0.37 0.60 0.20 0.47

REF-SC8 0.32 0.60 0.30 0.57 O il 0.27 0.19 0.41



256

20

15 T IM3027

10

5

0
-5 3002

3028■10

15

-20
5 15 250 10 20 30 35

Rgure 10/4 - C o n f ig i^ o n  1. In all figmcs &om 10^  to 10.11 the Y n i s  repicsents 
the angular distance (in degrees) between saldlite and station (see also Agure 8.3)

10 T
3029

3005

3006
-10 — 3028

7050 «03020 «0 10

Tmelmhams)

R g o e  lO i  - Configuration 2

20

15

10 3030
3029

5

0
-5

3028 3020■10

■15

■20
40 60

T im e (m h S e s )

Figure 10.6 • Configuration 3

80 100

3027

10 J

3002

3027
3002

120 14080 10020 40 600
T im e (B iiiu le t)

Figure 10.7 - Configuration 4

20
15 7834

10
5

0
-5

3028■10

■15

■20
0 5 15 25 3510 20 30

Tine (days)

Figure 10.8 - Configuration 5

302715

-10 “ 3020

-15 -

10040 60 800 20
T im e  (m inolM )

Rgure 10.9 • Configuration 6

20
302715

10 3030

5

0

-5

■10

■15

-20
0 20 40 60 80 100

T im e  (m inutes)

Figure 10.10 - Configuration 7

20

302715

10
30055 3002

0

3027-5

■10

■15

-20
40 60  80 

T im e (m in o le t)
100 120 140

Hgure 10.11 - Configuration 8



257

0.5

0.3

0.1

I
- 0.1

-0.3

-0.5

35 4020 25 300 5 10 15

Time (minutes)

Figure 10.12 - T, A, R differences between reference and orbit SI

0.5

0.3

0.1

- 0.1

-0.3

-0.5

35 400 25 305 10 2015
Time (minutes)

Figure 10.13 - T, A, R differences between reference and orbit SCI



258

0.5

0.3

0.1

- 0.1

-0.3

-0.5

0 10 20 70 8030 40 50 60

Time (minutes)

Figure 10.14 - T, A, R differences between reference and orbit S2

0.5

0.3

0.1

- 0.1

-0.3

-0.5
10 20 30 40 50

Time (minutes)

60 70 80

Figure 10.15 - T, A, R differences between reference and orbit SC2



259

1

S 0

-1

20 40 60

Time (minutes)

80 100 120

Figure 10.16 - T, A, R differences between reference and orbit S3

2

1

0

1

■2

80 1200 20 10040 60

Time (minutes)

Figure 10.17- T, A, R differences between reference and orbit SC3



260

2

1

0

1

•2

120 14020 40 80 1000 60

Time (minutes)

Figure 10.18 - T, A, R differences between reference and orbit S4

2

1

0

1

■2

120 1400 20 80 10040 60

S 0 -

Time (minutes)

Figure 10.19 - T, A, R differences between reference and orbit SC4



261

-10

15 20

Time (minutes)

Figure 10. 20- T, A, R differences between reference and orbit S5

0.5

-0.5

10 15 20 25

Time (minutes)

30 35 40

Figure 10.21 - T, A, R differences between reference and orbit SC5



262

20 40 60

Time (minutes)

80 100 120

Figure 10.22 - T, A, R differences between reference and orbit S6

4

3

2

1

0

1

•2

■3

-4

0 20 12040 60 80 100

Time (minutes)

Figure 10.23 - T, A, R differences between reference and orbit SC6



263

-3
20 40 60

Time (minutes)

80 100 120

Figure 10. 24- T, A, R differences between reference and orbit S7

-3
20 40 60

Time (minutes)

80 100 120

Figure 10.25 - T, A, R differences between reference and orbit SC7



264

1

0.5

G

-0.5

1

100 120 1400 20 40 60 80

Time (minutes)

Figure 10.26 - T, A, R differences between reference and orbit SB

1

0.5

0

-0.5

1

0 20 40 80 12060 100 140

Time (minutes)

Figure 10.27 - T, A, R differences between reference and orbit SC8



265

With such a poor configuration a solution is only possible if  strong constraints are 

applied to the parameters. In solution SC5, 3 constraints have been applied, one along 

each o f the three TAR directions. In this way, the errors are reduced from a level of 

several metres to about 20 to 25 cm rms in all components (Figure 10.21).

Arc 6  is similar to arc 5 but three times longer (100 minutes). Although the errors for 

solution S6  are not as large as those for S5, they still amount to several metres in the 

middle o f the arc. (Figure 10.22). Again, by applying constraints, this time in the T and 

R directions, these errors are reduced to a level o f 15 cm in all components (solution 

SC6  in Figure 10.23).

Finally one last arc (arc 7) is considered, with a length o f 100 minutes and only two 

passes, both on the same side of the track. This time high correlations exist between 

several parameters. The shape of the errors for the solution computed by solving for all 

6  osculating elements (S7) is very similar to those o f solution S6 . The application of 

constraints to this solution reduces the error by a factor o f 4 (Figures 10.24 and 10.25).

In conclusion, the application o f simple constraints to the solved for osculating 

elements allows the computation of very precise short-arc orbits. The accuracy of these 

solutions depends on the tracking configuration and the length of the arc. Generally, the 

shorter the arc, the higher the accuracy. For arcs o f about 33 minutes these solutions 

have the same accuracy of the tracking data (= 10 cm). Between this length and one 

revolution, the accuracy may be slightly poorer, depending on the tracking 

configuration.

The choice of constraints to be applied to each individual solution is made by taking 

into account the correlations existing between the various parameters.

This is therefore a very useful technique, with application to much longer arcs than the 

TAR method. Its application to arcs longer than one revolution is less reliable, since as 

the arc length increases, the error in the force model starts to influence the solution.

10.3 Bayesian method

In most of the cases, before computing a short arc solution, a long arc has already been 

computed, which includes the short arc. Therefore if  the initial set of parameters comes 

from another solution, then the associated covariance matrix can be used as “a priori” 

information to constrain the new (short arc) solution.
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This procedure was explained in section 3.4.3. The usual least squares algorithm 

determines the solution for which

yT w  V = minimum (10.7)

where v are the residuals and W the inverse of the observations' covariance matrix.

If Xq is the set o f initial parameters, X the corresponding corrected set after the 

adjustment, and W% the inverse of the “a priori” covariance matrix associated with the 

parameters X q, the Bayesian solution for X is the solution which minimises

v T W v  + (X o-X )T  W x (X o-X ) = minimum (10.8)

This solution can be interpreted as a combination o f two separate solutions:

• A - the “a priori” solution which determined the set o f parameters Xo and 
associated covariance matrix (usually a long arc solution)

• B - the “single short-arc” solution that would be obtained if  no “a priori” 

information is available

If N is the normal matrix o f solution B then the normal matrix o f the combined 
Bayesian solution is N  + Wx- Therefore, if  no relative weights are applied, the 

combined solution corresponds to an “average” o f the two separate solutions.

This method is particularly useful when the normal matrix o f the short arc solution, N, 
is ill-conditioned. In this case, the addition o f Wx to the normal equations acts as a 

constraint to the solution.

In practice this constraint should be more or less strong depending on the quality o f the 

single short arc solution. Therefore, a weighting factor K is introduced, to control the 
influence of Wx relative to N. Instead of Wx, the scaled matrix K.Wx is then applied.

This method was applied to solutions S5 and S 7 referred to in the previous section. The 

“a priori” solution was a 3-day arc solution computed with observations from two 

PRARE stations. The rms of this solution for the 3-day observations was 0.39 metres. 

The solved for parameters and associated covariance matrix were then used in each of 

the short-arc Bayesian solutions.

In all these Bayesian solutions the solved for parameters are the 6  osculating elements 

in the form (a, e, i, M+ co, co, A).
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The results are presented in Tables 10.4 and 10.5. For comparison. Table 10.5 also 

presents, for each configuration, the differences of the two separate solutions (“a priori” 

and “single short-arc” ) relative to the reference orbit.

Table 10.4 - Short arc Bayesian solutions

Orbit Scaling factor (K) Residuals 

rms max

Maximum

correlations

S5

0.06 0 .1 2

(M+ CO, N) = 1 

( a , e) = 1 

( i , CO) = 1

SB5 0 .0 1 0.06 0.17 —

S7

— 0.07 0.23

(e , i) = 1 

(a, e) = 1 

( i , M+co) = 0.99

SB7 0 .0 1 0.09 0.23 —

Table 10.5

TAR differences between the reference orbit and short arc Bayesian solutions

Orbits Total (m) 

rms max

T (m) 

rms max

A (m) 

rms max

R (m) 

rms max

REF - “a priori” 

(ARC 5)

0.99 1.09 0.27 0.40 0.88 1.02 0.36 0.54

REF-S5 8.97 15.36 1.27 1.93 6.95 12.31 5.53 9.02

REF-SB5 0.23 0.29 0.15 0.19 0.15 0.26 0.07 0.14

REF - “a priori” 

(ARC 7)

1.16 1.55 0.89 1.28 0.70 1.01 0.27 0.54

REF-S7 2.01 2.82 1.77 2.81 0.65 0.95 0.70 1.39

REF-SB? 0.59 0.83 0.40 0.76 0.35 0.56 0.25 0.53
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For the arc 5 interval, the “a priori” solution has a global rms difference o f about 1 

metre (Figure 10.28). The dominant errors of this solution, during this interval, are in 

the across-track component. The error for the “single short-arc solution”, S5, computed 

by solving for all 6  elements is very large, amounting to several metres (Figure 10.20). 

The B.ayesian Solution SB5, resulting from the combination o f these two, using a 

scaling factor K=0.001, has very small errors of 15 cm rms in the T and A components 

and 7 cm in R.

For arc 7 similar results are obtained. The errors o f the Bayesian solution SB7 are 

considerably smaller that those for each of the individual solutions (compare Figures 

10.24, 10.30, and 10.31).

By applying the same technique to other arcs, it is concluded that the accuracy o f these 

combined solutions depends on the accuracy o f each o f the separate solutions. 

However, in all the tested arcs, the Bayesian solution was always better than any o f the 

two solutions computed separately. In fact if  the “a priori” solution is a long arc 

solution, it acts as a smoothing constraint to the unstable “single short-arc” solution, 

and therefore their combination leads to a better short arc orbit than any o f the 

individual solutions.

10.4 TAR methods

As opposed to the two previously described “Constrained” and “Bayesian” methods, 

TAR techniques developed by Sinclair (1985, 1989) are non-dynamical methods, where 

“a posteriori” corrections are applied to a previously computed long arc orbit, along 

each o f the three T, A  and R directions. This technique proved to be very efficient for 

certain types of configurations, for short intervals up to 1 0  minutes.

The application o f these techniques to longer arcs up to one revolution was 

investigated. These corrections are modelled by one of the following expressions:

1 - A  simple polynomial function in time. For example the correction AT in the 

along-track component is given by:

AT = To + Tit + T2t2 + T3t3

where To, T i ,T% ,Tg are solved for parameters and t is time difference relative to the 

middle of the arc.

2 - Periodic functions of the satellite orbital period, with constant amplitudes. 

The form of these functions for the T component is:



271

AT = To coscot + T i sincot + T2 cos2cot + T3 sin2cot

where (O is the orbital frequency (one cycle per revolution).

3 - Periodic functions o f the satellite orbital period, with constant and time 

varying amplitudes. The form of these functions for the T component is:

AT = Tq coscot + T i sincot + T2 1  coscot + T3 1  sincot 

Similar expressions hold for A and R.

The reason for using these formulations is due the spectrum exhibited by the orbital 

errors as described in section 4.6.

These techniques were applied to some o f the configurations considered above. It was 

found that the first and third methods give in general better results than the second.

Table 10.6 - Short arc TAR solutions

Orbit Method used Solved for 

parameters

Residuals 

rms max

Maximum

correlations

TIA Polynomial

(1)

To Aq,

Ti, Aj.Ri

0.08 0.30 (Ti, Ri) = 0.75

TIB Periodic with constant and 

time varying amplitudes 

(3)

To Aq, Rq^ 

Ti, A i.R i, 0.08 0.27 (Ti,Ri) = 0.76

T5A Polynomial

(1)

To Aq, Ro 0.09 0.27 (Tq, Ro) = 0.76

T5B Periodic with constant and 

time varying amplitudes 

(3)

To Ao, Ro 0.09 0.27 (Ao, Ro) = 0.77

Some o f the results obtained for arcs 1 and 5 are presented in Tables 10.6 and 10.7. 

Both arcs have a length of 35 minutes. The “a priori” long arc solution relative to which 

the corrections are solved for and applied to, is the same “a priori” solution used in the 

Bayesian method.

For the first configuration (arc 1), by solving for the first 6  parameters using either the 

method 1 or 3, solutions are obtained (TIA and TIB), which depart from the reference
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orbit by only 10 to 15 cm (Table 10.7). To be able to assess the improvement achieved 

by these solutions with respect to the “a priori” solution, the difference between these 

and the reference orbit are also given in Table 10.7.

Table 10.7
Differences between the reference orbit and short arc TAR solutions

Orbits Total (m) 

rms max

T (m) 

rms max

A  (m) 

rms max

R (m) 
rms max

REF - “a priori” 

(ARC 1 and ARC 5)

0.99 1.09 0.28 0.40 0.88 1.01 0.36 0.54

REF - TIA 0.23 0.52 0.14 0.40 0.12 0.25 0.14 0.26

REF-TIB 0.15 0.33 0.11 0.29 0.06 0.13 0.08 0.15

REF-T5A 0.56 0.86 0.35 0.49 0.30 0.55 0.33 0.67

REF - T5B 0.65 0.86 0.25 0.38 0.48 0.55 0.36 0.70

For arc 5 only three parameters were solved, since very high correlations occur between 

various parameters. In this case the corrected track departs from the reference orbit by 

30 to 40 cm on each component with a global rms differences of about 60 cm. These 

results are worse than the corresponding results obtained with both the constrained and 

the Bayesian methods for the same arc.

For arcs longer than 30 minutes the TAR technique is no longer applicable. For these 

lengths the corrected track is highly dependent on the accuracy o f the initial long arc 

solution.

10.5 Conclusions

Both the Constrained and the Bayesian methods described above, are very useful short 

arc techniques that can be applied to substantially longer arcs than the TAR method. 

This last method gives very good results for very short arcs up to 10 minutes with 

particular station configurations as mentioned by Sinclair (1989), but for arcs longer 

than 30 minutes they are no longer applicable.
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By properly applying a number o f constraints to the solved for parameters, the 

constrained method allows precise orbit determinations, even for configurations as poor 

as configuration 5 (only one station at each end o f the arc). For arcs of about 30 minutes 

(1/3 o f a revolution) the accuracy of these solutions is at decimetre level. For longer 

arcs, the accuracy d ecrea ses  as the length of the arc increases, up to about one 

revolution. For arcs longer than one orbital revolution (100 minutes) this technique is 

no longer applicable. At this length the force model errors become noticeable and it is 

not possible to eliminate them by smooth solutions as the described above.

The Bayesian method can be very useful for particularly unstable configurations. The 

final accuracy o f the solution depends both on the degree o f instability o f the short arc 

solution, and the quality of the long-arc ephemeris over that particular region. In any 

case the combined solution is a weighted average o f the two separate solutions, and 

therefore more reliable than any of the individual solutions separately. The choice of 

the relative weights that should be applied, depends on the instability o f the tracking 

configuration. This is detected by analysing the correlations between the solve for 

parameters. High correlations usually imply an ill-determined short-arc solution. 

Therefore the higher these correlations the more weight should be given to the long-arc 

solution.
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Chapter 11 

Conclusions and Recommendations

The SATAN software package, originally designed to process laser data, has been 

expanded to process two additional types of tracking data: direct altimeter measurements 

and PRARE range data.

PRARE data were simulated using the data format as specified by the German PAP for 

ERS-1. An efficient algorithm was developed for the processing o f altimetry data. The 

altimeter measurements are transformed into residual sea surface heights, by using an 

appropriate geoid model. Prior to being used in the orbit adjustment, residual sea surface 

heights are processed by a spectral analysis subroutine, where only the frequencies 

below a specified cut-off (usually two cycles per revolution) are kept. This spectral 

analysis is efficiently performed by using Fast Fourier Transform techniques. Therefore 

a large number of points can be processed without any substantial increase in computing 

time. These smoothed sea surface heights are then used as tracking data residuals in the 

orbit adjustment. In the fitting process any sampling interval can be specified, to balance 

the weight of altimeter data relative to other types of tracking data used in the solution.

In the altimeter processing the partial derivatives of the "observed" altimeter height above 

ellipsoid, with respect to cartesian satellite coordinates (X,Y,Z), were computed using 

new formulae derived by the author of this thesis. These formulae are exact and very 

simple when compared to the expressions used in the GEODYN program (Eddy et al, 

1990) or the formulae presented by Roth well (1989).

Throughout this project several additional facilities were introduced into the programs. 

These new algorithms allow the determination o f more flexible solutions by either 

solving for additional parameters or by constraining the normal equations matrix. A  

number of algorithms were added for the specific computation of ERS-1 orbits including 

the centre of mass correction for laser ranges and the modelling of the cross-sectional 

area for drag and radiation pressure.

Software validation was achieved using laser, altimetry and simulated PRARE for 

SEAS AT and laser from ERS-1. ERS-1 altimetry data have not been used, due to the 

poor accuracy o f the Fast Delivery Product available. However the software 

modifications required to process ERS-1 altimetry are straightforward.
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SEASAT orbits computed with the SATAN programs, exhibited rms laser range 

residuals of 0.3 metres or less. These figures are in agreement with published results for 

SEASAT. The best geopotential models for this satellite were found to be GEMT2 and 

GRIM4_C2, both yielding similar results. In the computation of the GRIM4_C2 orbit, 

the GEMT2 reference system and station coordinates were used, since the GEMT2 and 

the GRIM4 systems are very close (see sections 8.2.1 and 9.2.1). However the use of 

pole and station coordinates, properly referred to the GRIM4 system, should slightly 

improve the orbit computed with this model.

The accuracy of the orbits computed with these two gravity field models has been 

assessed by analysis o f their differences. GEMT2 and GRIM4__C2 come from two 

independent solutions. Since they yield orbits with the same rms o f fit, the differences 

between these orbits are a clear indication of the global accuracy of the ephemerides 

generated by these two geopotential models. These differences amount to 0.7, 0.6 and

0.3 m in the TAR directions respectively, with a global rms o f 1 metre. The same 

solutions computed with GEM Tl have an rms of 0.5 to 0.6 metres, with differences 

relative to the two previous solutions about 1.5 times larger than the figures quoted 

above.

In all SEASAT computations a constant cross-sectional area for drag and radiation 

pressure was adopted, and daily drag coefficients were solved for. The SEASAT NASA  

area tables for modelling the cross-sectional areas for drag and radiation pressure have 

not been used, since it had been shown (Rothwell, 1989) that the use of constant areas 

and multiple drag coefficients would give equivalent results. This is probably due to the 

limited geographical distribution of the SEASAT laser data, that could not sense large 

variations in the cross-sectional area.

It has been demonstrated that orbits computed with PRARE data have similar accuracy to 

orbits computed with an equivalent network of laser data. The advantage of having used 

simulated instead of real data, is that the effect of the amount and distribution o f tracking 

data can be studied. The results show that the rms of fit to tracking data is an optimistic 

indicator of the global accuracy o f long arc ephemerides. This is because actual tracking 

networks usually have poor geographical coverage.

The results obtained with altimeter data confirm that these data alone cannot be used for 

orbit determination, since they improve the orbit only in the radial direction. Despite the 

weakness o f this data type when used alone, only a few passes of range data are 

sufficient to add the necessary along-track information.

Investigation into the extent to which altimetry can replace range data, revealed that 

altimetry data can fill gaps o f range data covering periods as long as two days. However,
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these gaps should be between passes of range data and not for example at the end of the 

arc. This means that altimetry can only be used to interpolate range data, but not to 

extrapolate. In fact, if  an arc containing a few passes o f range data is extended by using 

altimeter data, the solution will be well determined until a few revolutions after the last 

pass of range data; the along-track errors will linearly increase and, half a day later, will 

amount to several metres.

The application to ERS-1 of the results obtained for SEASAT, is constrained by the lack 

of a geopotential model for the former satellite with suitable accuracy. In SEASAT  

computations the geopotential model errors were modelled as the differences between 

GEM Tl and GEMT2. Hence to obtain the same results for ERS-1, this model should 

yield ERS-1 orbits with similar accuracy to SEASAT orbits derived with GEM Tl. This 

means that the rms range residuals for a 3-day arc tracked by an appropriate network of 

laser stations, should be about 0.5 to 0.6m. Since the present best models for ERS-1 

give an rms of fit three times as large as this, these results have to be scaled accordingly.

ERS-1 orbits were determined using state of the art models and several algorithms 

developed during this project. The geopotential model that was found to yield the best 

overall results is GRIM4_C2. ERS-1 ephemerides determined with this model by 

adjusting for daily drag coefficients have rms laser range residuals o f 1.5 m. By  

comparison, the rms of fit of the same orbits computed with GEMT2, was o f the same 

order on one arc, but about twice as large (3.3 m) on another arc. The incorporation of 

DORIS data from SPOT (which has an inclination very close to that o f ERS-1) on 

GRIM4_C2 seems to have led to a shght model improvement. However these figures are 

still three times as large as the corresponding results for SEASAT. This means that the 

GRIM models are an improvement over GEMT2 but are still a long way from the 

required accuracy. The radial and across-track differences of the orbits computed with 

GRIM4_C2 and GEMT2 is of the order of 1.5 and 2 metres respectively, but the along- 

track errors are about 3 times larger (7 metres). Since these differences reveal mostly 

information on the less accurate model, the global accuracy of GRIM4_C2 solutions 

should be slightly better than these figures.

The main errors in ERS-1 solutions occurring during periods o f quiet geomagnetic 

activity are o f gravitational origin, but for arcs corresponding to periods o f high 

geomagnetic activity, manifested in sharp variations of the geomagnetic index Kp, the 

errors due to drag mismodelling become more important.

To reduce the errors o f gravitational origin, the adjustment o f a selected set o f  

geopotential coefficients has been investigated. Due to the reduced data set that was 

available for this project, and the large drag errors existing in this arc, the results are not 

very conclusive. The method developed in this study needs to be applied to a much
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longer arc, or a series of arcs. To avoid the absorption o f drag errors into the adjusted 

geopotential coefficients this adjustment should take place during a period o f reduced 

geomagnetic activity. Further research needs to be done in this subject, into an 

appropriate choice o f the coefficients to adjust and determination o f "a priori" constraints 

to reduce the high correlations existing between some of the parameters, in particular the 

resonant coefficients.

With regard to drag effects, the influence of solar flux and geomagnetic data used in the 

computation o f atmospheric density has been thoroughly investigated. The rms o f fit of 

ERS-1 ephemerides are a strong function of the value used for the time lag introduced in 

geomagnetic Kp indices (TLKP). It was found that a difference o f about 2 hours in the 

TLKP value causes the rms o f fit to laser ranges to vary from 1.6 metres to only 0.4  

metres. During periods of strong geomagnetic activity, the 3-hour Kp indices exhibit 

very sharp variations within periods of a few hours. These variations cause similar 

variations in the computed density and therefore in the induced perturbation on the 

satellite. If the Kp variations are not “in phase” with the satellite perturbation sensed by 

the tracking data, the orbit adjustment will be poor with large rms of fit.

These results suggest that this parameter should be adjusted within the solution. This a 

topic that needs further investigation. However it can be anticipated that this adjustment is 

only possible if  sufficient data are available. A change in the time lag is equivalent to an 

along-track shift in the satellite perturbation. Without good widely distributed tracking 

data, high correlations may exist between this parameter and the drag coefficients, since 

they both determine along-track corrections. If such adjustment is not possible, instead of 

the original Kp indices, it is preferable to use a smoother representation o f the same 

indices. A simple 4-point average filter used in this study was found to yield overall orbit 

adjustments better than the single-point ones. Further research should be carried out to 

determine a more appropriate smoothing function.

Similar investigation has been carried out to determine the influence of the time lag 

introduced in the solar flux indices F10 .7 , (TLF). Results show that, as opposed to 

TLKP, this parameter has a minor influence in the solution. The solar flux indices model 

daily and longer wavelength variations of the atmospheric density and any error in these 

indices is absorbed by the daily drag coefficients. This result is very important to 

understand the overall influence of the solar flux data in the orbit accuracy. Therefore if 

adequate tracking data are available, allowing a good recovery of the drag coefficients, 

any mismodelling in the flux indices w ill be absorbed by the corresponding drag 

parameters.

Ephemerides were computed by using predicted values of solar flux, by just modelling 

the long wavelength component of their variation (mainly the 11-year solar cycle). It was
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found that these orbits do not depart significantly from the solutions that would be 

obtained by using the actual measured indices. Any bias in these indices is absorbed by 

the corresponding drag coefficients which will exhibit meaningless values, either too 

large or too small. Unlike the solar flux indices, the geomagnetic indices cannot be 

predicted since they model irregular variations o f the geomagnetic field. The errors 

induced by neglecting the geomagnetic indices depend on their variability over the 

interval considered. For arcs with sharp Kp variations, these errors may reach several 

metres. This creates a restriction to the generation o f precise and quick ephemerides. 

Therefore for the generation o f rapid and accurate orbits it is essential to have access to 

these measurements, as soon as they are released by the NGDC.

The geometric models derived to compute the cross-sectional area for drag and radiation 

pressure did not seem to improve the solution relative to the use o f a simple constant area 

model. These areas (in particular the drag area) are strong functions of latitude. Since the 

tracking data available for this study come from stations all at very close latitudes, these 

data cannot sense large changes in the cross-sectional area. To determine the actual 

accuracy of these models a larger tracking data set should be used, with stations 

exhibiting a wide range of latitudes.

For two arcs occurring on periods of different levels of solar and geomagnetic activity, 

minimum, maximum and rms values for the acceleration due to the main forces that act 

on the satellite have been computed. Results show that for the arc occurring during a 

period of strong geomagnetic disturbances the acceleration due to drag has a much larger 

variation than the acceleration due to radiation pressure. However during the quieter 

period drag and radiation pressure exhibit similar variations, the rms of radiation pressure 

acceleration having a larger amplitude. In this study the effect of radiation pressure has 

not been investigated, but these results show that those effects cannot be neglected and 

they should be the subject of future research. From the forces that contribute to radiation 

pressure, the most important, and therefore the one that should be investigated in more 

detail, is the force arising from the direct solar radiation. Compared to this, the effects of 

albedo and IR radiation together are about one order of magnitude smaller, and can 

therefore be regarded as second order effects.

In all ERS-1 solutions the use o f multiple drag coefficients is crucial. The algorithm 

implemented in the SATAN programs during this project proved to be very efficient. By 

solving for daily drag coefficients the long wavelength component o f the along track 

errors can be absorbed. When the tracking data are sparse, with large gaps close to one 

day, the choice of the intervals to which each of the coefficients w ill apply is most 

important. Since there are a number o f perturbations that have a daily variation, in 

principle the intervals should be daily intervals, starting and ending at the start and end of
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each new day. Each coefficient is determined solely by the tracking data available for that 

interval. Therefore if  for example during a particular day there is only one pass, the 

coefficient w ill not be well determined, and if there are sharp fluctuations of the drag 

force during the same period, the orbit will have large errors in this area.

Two new short arc techniques (Constrained and Bayesian) have been investigated and 

compared to the TAR method.

On the constrained method, constraints are applied to the solved-for parameters, therefore 

reducing the number o f degrees of freedom of the solution and forcing it to become 

smoother. The choice o f the constraints to be applied to each individual solution is made 

by taking into account the correlations existing between the various parameters. By an 

appropriate choice o f the constraints, this method allow s very precise orbit 

determinations, even when applied to poor configurations such as two passes, one at 

each end o f the arc. For arcs of about 30 minutes the accuracy o f these solutions is at 

decimetre level. For longer arcs, the accuracy gradually diminishes as the length o f the 

arc increases until about one orbital revolution. For arcs longer than one orbital 

revolution (100 minutes) this method is no longer appropriate. At this length the force 

model errors start to manifest and smooth solutions of this type are no longer capable of  

absorbing these errors.

The Bayesian method has been shown to be very advantageous for particularly unstable 

configurations. By using this method the final orbit is a combined result of two separate 

solutions: the single short arc solution that would be obtained by just fitting the orbit to 

the observations in the short arc, and the "a priori" solution, usually a long arc 

ephemeris. The accuracy o f the combined solution depends both on the degree o f  

instability of the short arc solution, and the quality of the long-arc ephemeris over that 

particular region. It is therefore a weighted average of these two orbits. The choice o f the 

relative weights that should be applied to each o f them, depends on the stability o f the 

tracking configuration revealed by the correlations between the solve for parameters. 

Since high correlations usually imply ill-determined short-arc solutions, generally the 

higher these correlations the more weight should be given to the long-arc solution.

This study shows that short arc techniques as described above can be an alternative for 

computing ephemerides with decimetre accuracy. By using short-arc methods very 

precise and rapid ephemerides can be obtained, provided adequate tracking data are 

available. Since most o f the applications do not require an orbit over a long arc, but 

within a local region, it is hoped that these techniques will play an important role in the 

development of scientific applications of ERS-1 data.
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A number o f factors have conditioned the derivation o f some o f the results presented in 

this thesis, which otherwise could have been improved or expanded.

The first serious limitation was due to computing time. During most o f this project the 

software was running on a |iVAX 2000. For a 3-day arc the average CPU time taken to 

perform an iteration in this computer was approximately 30 minutes. This means that in 

the very unrealistic situation that only these programs were running on the machine, a full 

3-arc run o f two iterations would take about one hour. Fortunately towards the end o f  

this project the programs were implemented on a much faster computer, a VAX Station 

4060, where the CPU time of each run is reduced to one or two minutes.

Due to the limited time allocated for a project o f this nature, and because in science 

nothing is definite, this thesis has left open several areas that need further study.

An interesting topic of research is the inclusion of the TLKP as an adjusted parameter. To 

do this the addition of altimetry data to ERS-1 solutions is essential, due to the limited 

coverage of the present laser tracking network.

The performance of altimetry data on ERS-1 orbits, using the algorithm developed during 

this project, needs to be investigated. For this purpose the complete altimeter ocean 

product, including all the geophysical corrections, has to be used.

The accuracy of the geometric algorithms developed in this study for the computation of 

ERS-1 cross-sectional areas for atmospheric drag and radiation pressure need to be 

assessed. This can either be done by comparing these algorithms with the ESA derived 

models, or by using a network o f stations w ell distributed in latitude. If such a 

configuration is not possible, simulated data could be used in a similar fashion to the 

simulation study done on this project with SEASAT PRARE data.

Parallel to the effort to improve the modelling of the surface forces, the adjustment o f a 

set of geopotential coefficients needs further investigation. This might be essential while 

a complete tuned model for ERS-1 has not been determined.
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Appendix A 

Partial derivatives of height above ellipsoid with respect 
to (X, Y, Z)

A.l Introduction

For the implementation of the altimeter algorithm developed during this study (Chapter 

7), the partial derivatives of the height h o f a point above some reference ellipsoid with 

respect to the associated cartesian coordinates (x, y, z) are required. Since h cannot be 

expressed as an explicit function of (x, y, z) only, the derivation o f analytical formulae 

for these partials is not a simple task. An alternative is to use approximate formulae.

In this thesis very simple and exact formulae for these partial derivatives were derived. 

These formulae and their derivation are the subject of this appendix.

A.2 Spherical Coordinates

When the Earth is approximated by a sphere, instead of the usual geodetic coordinates 
(9 , X, h) we have the spherical coordinates ((}>, X, r) (see Figure 7.4).

The relationship between (x, y, z) and the spherical angular coordinates (<}), X, r) is:

X = rcos(|) cosX

y = rcos(j) sinX (A.1)

z = rsin(|)

where (|) is geocentric latitude, r is geocentric distance and X is longitude. Inversely,

X = arctan

<j) = arctan (A.2)

r =
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In this case the computation o f the partial derivatives of (x, y, z) with respect to the 

geocentric distance r can be done by using the expressions:

3r

dv
dz
Tx

COS(|) cosX = 

cos(j)sinA, =

sin<)) = — 
r

X

r

y
r

(A.3)

Inversely, the computation of the partial derivatives of r with respect to (x, y, z) is 

straightforward:

dx
3x

i l
3y

ar
3z

2 x

2 -^x^ + y^ + z^ 

2 y

2 +  y2 +  z^

2 z

fx + y + z

X

r

y
r

z
r

(A.4)

Comparing these two formulae we get an interesting result: the partials of (x, y, z) with 

respect to r are equal to the partials o f r with respect to (x, y, z).

dx dx
dx "

i l -  ÈL
dy ar

dx dz
dz "  a7

= cos(j)cosX 

= cos(|) sinX 

= sinc{)

(A.5)
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A.3 Geodetic Coordinates 

A.3.1 Relationship between cartesian (x, y, z) and geodetic angular 
coordinates (ç, X, h)

For most o f the geodetic applications we are interested in using geodetic instead of 

spherical angular coordinates.

Reviewing the relationship between cartesian (x, y, z) and angular ((p, X, h) :

X = (v + h ) costp cosA,

y = (v  4- h ) cos(p sinX (A.6 )

Z = [v (1 -e ^ )  + hj sintp

where a and e are the semi-major axis and eccentricity of the reference ellipsoid, (p is 

geodetic latitude, and v is radius of curvature in prime vertical:

= a (l - e^ sin^ tpj'^ (A.7)

Inversely, one would like to obtain expressions of (tp, X, h) in terms of (x, y, z). For X 
a simple relationship can be written as in the case o f spherical coordinates (equation 

A.2 ), since X is the same in both coordinate systems (spherical and geodetic):

X = arctan j  (A.8 )

The same cannot be established for tp and h. In fact q> is computed by iteration using 

the expression

tancp = " + ' T  (A.9)
/ , 2  . -.2'X + y'

This iteration can be started by using the spherical approximation given by equation 

A.2. Once (p has been computed then h can be obtained by:

h = J c L ± y — V (A. 10)
COS(p
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A.3.2 Partial derivatives of (x, y, z) with respect to (q>, X, h).

The partial derivatives o f (x, y, z) with respect to (q>, h) can be deduced by 

differentiating equations A . 6  with respect to (<p, X, h) :

J =

dx dx dx
d(p ax âh

È!. dy ay
d(p dX ah
dz dz az
d(p ax âh

where

A =

A cosX - B  sinX coscpcosX

A sinX B cosX coscp sinX

- A
cosq)
sincp

0 sm(p

coscp - (v + h)sin(p

(A.11)

d(p

B = (v + h)cos(p (A. 12)

2 .—— = —ST e sincp coscp 
dq>

The matrix J is called the Jacobean of the transformation (x, y, z) — ^  (cp, X, h).

A.3.3 Partial derivatives of (cp, X, h) with respect to (x, y, z) using 
numeric matrix inversion.

Since no explicit form exists for cp and h in terms of (x, y, z), one alternative form for 
computing the partial derivatives o f (cp, X, h) with respect to (x, y, z) is by matrix 

inversion of Jacobean J. In fact if  J is the Jacobean of the transformation

(x, y, z) — ^  (cp, X, h) (A.13)

as defined in equation A.11, then the Jacobean o f the inverse transformation

r - 1

(cp, X, h )  > (x, y, z) (A. 14)
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=

9cp 9cp dcp dx dx dx
dx dy dz dcp dX̂ dh
dX dX dy dy
dx dy dz dcp dX dh
dh dh dz dz dz
dx ay dz dcp dX dh

-1

(A. 15)

Therefore, for each point the computation o f these partials requires the inversion o f a 

(3x3) matrix. This can be computationally expensive if  a large number o f points has to 

be processed as in the case of altimeter analysis.

A.4 Exact formulae for the partial derivatives of (q>, X, h) with 
respect to (x, y, z)

In this section it will be demonstrated that very simple expressions exist for the partial 

derivatives o f h with respect to (x, y, z), similar to the expressions found for r in the 

case of spherical coordinates (equations A4 and A5). These formulae are:

dx
dx " dh

_ ^
dy dh

dh dz
dz " dh

= coscp cosX, 

= coscp sinA, (A. 16)

—  = —  = sincp

i.e., as in the case of spherical coordinates, the partials of h with respect to (x, y, z) are 

equal to the partials o f (x, y, z) with respect to h. The demonstration of these formulae 

is done in two steps:
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1. Computation of the determinant o f the Jacobean J , det(J).

, dy dz dy dz dx dz dx dy
d(p dX 3h 3(p 9h 3(p 9h

__ dz dy dx _  dy dx dz dx dz dy
3(p dX 9h 9(p 3X. 9h 9cp 9A, 9h

(A.17)

Since = 0  only 4 terms are left which can be arranged as: 
oA,

I ̂ I ■ t]"
Now substituting each of the partials by their expressions in terms of (cp, X, h), given 

in equation A.11.

det(J) = A B sincp cos X -  A —
coscp
sincp

- B  coscp sin X -  B coscp cos X

+ A B sincp sin^X

. „  . . coscp
= A B sincp -  A  —

sincp
-B  coscp

A B
sincp

sin^cp + cos^ cp

The final expression of det(J) is:

det(J)=
S incp

(A. 19)

2. Explicit computation of
9h 9h 9h  ̂
9 x ’ 9 y ’ dz

9h 9h 9h
9x dy dz 

of J (equation A. 15).

being elements of J  ̂ , they can be computed in terms of the elements
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dh
dx

ah
d y

ah

d z

dy dz dz ay
9cp dX 9cp ax

det(J)

dz dx dx dz
9cp ax 9cp ax

det(J)

dx ay ay dx
9cp ax 9cp ax

det(J)

A B cos(p cosX
sincp
A B
sincp

A B coscp sinX
sincp
A B

= coscp cosX

= coscp sinX

sincp

A B ^cos^X +  sin^ X j (A.20)

A B

sincp

= sincp

Equations A. 16 have therefore been proved. Apart from the advantage o f being exact, 

these formulae are very simple when compared to the expressions used in the 

GEODYN program (Eddy et al, 1990) or the formulae presented by Rothwell (1989).

A.5 Transformation of the partial derivatives from CTS to CIS

A ll the formulae derived above, hold in any cartesian geocentric (x, y, z) terrestrial 

system, in particular the Conventional Terrestrial System (CTS). For use in program 

RGODYN the partial derivatives in equation A. 16 have to be transformed into the 

Conventional Inertial System (CIS).

Let (x, y, z) be a position o f a point in the CTS, (X, Y, Z) the corresponding position in 

the CIS and R the transformation matrix between the two systems:

X X

Y = R y (A.21)

Z CIS z CTS

Differentiating with respect to h we get:
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~ d x -  - "dx'
dh

X
dh

dY dR
y + R

dh dh dh

d z dz

LahJCIS
z CTS LahJ

(A.22)

CTS

The form o f matrix R is given in equation 2.10. This matrix does not depend on the

point considered. It is only a function of time. Therefore ^  = 0 and we obtain:
dh

we finally get

"dx" dx
dh dh

dY
= R

dy
dh dh

d z dz
LahJ CIS _ah_

(A.23)

CTS

And since

Fdhl Fdxl
dx dh

dh dy
dy dh

dh dz

_Bz_ CTS LahJ

(A.24)

CTS

F d h l fd h ]
dx dx

dh
= R

dh
dY dy

dh dh
_dz_ CIS _dz_

(A.25)

CTS
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Appendix B 

Brief description of software included 

in the SATAN programs

The SATAN software package was originally written by A. Sinclair and G. Appleby at 

the Royal Greenwich Observatory. This appendix gives a list o f this software with a 

brief description of each program unit and the alterations that have been introduced into 

the programs during this project

The SATAN package consists o f two main programs, ORBIT and RGODYN and a 

relatively large set of subroutines. These are described in tables B .l to B.4.

Table B .l 
Description of program ORBIT

Program
name Description

Alterations 
introduced during 

this project

O R B IT

Computes satellite position and velocity at specified 

observation dates by numerical integration of the equations 

of motion. It also calculates the partial derivatives of satellite 

position and velocity with respect to the solve-for parameters 

that affect the orbit. The integration method used is an eighth 

order Gauss-Jackson method with an iterative starting 

scheme.

The force model includes effects due to :

• The Earth's Gravitational field

• Gravitational attraction of the sun moon and planets

• Atmospheric drag

• Radiation pressure

• The solid Earth and ocean tides

Implementation of the 

solution for multiple drag 

coefficients and for a 

selected set of 

geopotential coefficients.
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Table B.2 

Description o f program RGODYN

Program
name

Description Alterations introduced during this 
___________ project___________

RG O DYN

Determines corrections to the parameters 

that define the orbit by fitting it to 

observations. The original program 

processed only laser data. The fitting 

algorithm is the least squares method of 

obs^ation equations. The original 

program could be run in one of two modes;

• long-arc mode wh^eby a nonnal solution 

is obtained by determining corrections to 

a set of orbital parameters.

• short-arc mode whereby the orbit is 

adjusted to observations within a short 

arc by solving for corrections along the 

TAR directions.

• Processing of PRARE data

• Processing of altimetry data

• Solution for multiple drag coefficients.

• Solution for osculating orbital elements 

instead of position and velocity.

• Solution for a user selected set of 

geopotential coefficients.

• Bayesian least squares in addition to 

conventional least squares.

• Possibility of applying constraints to the 

solve-for parameters.

• TAR solutions using additional formulae 

for the corrections.
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Table B.3

List o f subroutines that were kept in their original form, 

as written by A Sinclair and G. Appleby, 

by alphabetic order.

Subroutine

name

Description

A L B P m Evaluates albedo and infrared force per unit area (PIR). Cf. equation 3 .16 . 

(V onder Haar and Suom i, 1971).

C A D Com putes atm ospheric density using Jacchia-72 m odel (Jacchia, 1972). S ee  equation  

3.13

CL3 D etenn ines coefficients for cubic Lagrangean Interpolation

D C H O L S D ouble precision C holeski matrix inversion

D E R IV Com putes partials o f  position and ve loc ity  wrt osculating elem ents in the order 

(a, e , i , M+Û), ©, Q )

E A R T H Com putes matrix to transform from true equator and equinox o f  epoch to a 

conventional terrestrial system  (equation 2 .16)

E L E M T S Converts position and velocity  to  oscu lating elem ents

F L U X Returns solar flux and Kp indices at a  sp ecified  tim e by interpolation

F L U X D A T A Sets up solar fluxes and geom agnetic ind ices for the interval o f  the com putations

G E O C Converts geodetic (cp,^h) to geocentric (X ,Y ,Z ). C f equation A .6

K E P L E R Converts osculating elem ents to position  and velocity

M A R IN I Com putes one-w ay refraction delay for laser ranges (equation 6 .5 )

P R E P R O C Reads SLR  observation file  in either M ER IT I or M ERIT II formats

SU P R E S Suppresses the solution for a particular parameter, g iven  its position  in the norm al 

matrix

T ID E F Q Com putes corrections to tesserals due to frequency-dependence o f  L ove num ber K 2  

for solid  Earth tides. A lso  applies ocean tide perturbations (M elbourne at al., 1983)

T ID E S Com putes station displacem ent due to so lid  Earth tides (equation 3 .22)

U T P O L E Gets p o le  coordinates, U T l-U T C  data and tim e conversion factors

X G E O Converts geocentric (X ,Y ,Z ) to geod etic  (q),A,,h). C f equations A .7  to A.IO
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Table B.4

List o f subroutines that were written or modified during this thesis, by alphabetic order.

Subroutine

nam e

Description Comments

ALTIM Reads SEASAT altimeter data in the GDR format written by J. Fernandes

CMERSl Computes centre of mass correction for ERS-1 (Laser 

or Altimeter)

written by J. Fernandes

DERIV2 Computes partials of position and velocity wrt 

osculating elements in the order 

(a, e , i , M, ©, O)

adapted from subroutine 

DERIV

DFFT Evaluation of the discrete Fast Fourier Transform of a 

real unevenly spaced array of size N

written by J. Fernandes

DRAG Computes acceleration due to atmospheric drag. Cf. 

equation 3.13.

use of multiple drag 

coefficients and modelling of 

a variable cross-sectional area 

for ERS-1 have been 

introduced

FOURl Computes the FFT or the inverse FFT of a complex 

array of size N=2^ (Press et al, 1986)

introduced by J. Fernandes

MATINV Double precision matrix inversion by the Gaussian 

method

introduced by J. Fernandes

MATVET Multiplies a matrix by a vector written by J. Fernandes

PRARERAN Reads PRARE range data file according to ESA 

format

written by J. Fernandes

PRODMAT Multiplies two matrixes written by J. Fernandes

REALFT Compute the FFT or the inverse FFT of a real evenly 

spaced array of size N=2^ (Press et al, 1986)

introduced by J. Fernandes

ROTATION Defines rotations R| (a) of angle a  about axis i 

(equation 2.12)

written by J. Fernandes

SHRINK Reverses “extiipolation” performed by SPREAD written by J. Fernandes

SOLRAD Computes acceleration due to solar radiation pressure, 

albedo and IR radiation (Equation 3.15).

modelling of a variable cross- 

sectional area for ERS-1 has 

been introduced

SPREAD “Extirpolates” an array of length N into an expanded 

array of size NDIM (Press and Rybicki, 1989)

introduced by J. Fernandes
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