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ABSTRACT 

Recent years have seen a resurgence of VR 
(Virtual Reality), sparked by the repurposing of 
low-cost COTS components. VR aims to 
generate stimuli that appear to come from a 
source other than the interface through which 
they are delivered. The synthetic stimuli 
replace real-world stimuli, and transport the 
user to another, perhaps imaginary, ‘place’. To 
do this, we must overcome many challenges, 
often related to matching the synthetic stimuli 
to the expectations and behaviour of the real 
world. One way in which the stimuli can fail is 
its latency – the time between a user’s action 
and the computer’s response. We constructed 
a novel VR renderer, that optimised latency 
above all else. Our prototype allowed us to 
explore how latency affects human computer 
interaction. We had to completely reconsider 
the interaction between time, space and 
synchronisation on displays and in the 
traditional graphics pipeline. Using a 
specialised architecture – dataflow computing 
– we combined consumer, industrial and 
prototype components to create an integrated 
1:1 room-scale VR system with a latency of 
under 3 ms. While this was prototype 
hardware, the considerations in achieving this 
performance inform the design of future VR 
pipelines, and our human factors studies have 
provided new and sometimes surprising 
contributions to the body of knowledge on 
latency in HCI. 

1 INTRODUCTION 

The concept of Virtual Reality has developed 
alongside those of the first graphical displays, 
displays that promised to provide a window 
into the “mathematical wonderland” of the 
computer [1]. 

The archetypical VR system is one that 
completely subsumes human vision. Pre-
dominance of the visual system means that 
graphics displays are still front and centre. VR 
is not just seeing however, but believing. 

VR differs from other HCI systems in that users 
integrate the stimuli in a way that they believe, 
or at least behave as if, it is from a ‘real’ place 
– and usually that that place is different from 
the real world in which they inhabit. 

Providing stimuli that can be integrated this 
way allows us to create a virtual world of our 
design, that is very real in the eyes of the user. 
This world can be used for entertainment, 
training, communication, remote working, 
psychotherapy - or even just more effective 
manipulation of the computer’s mathematical 
wonderland. 

VR systems use many of the same 
technologies as other HCI systems, but to 
present stimuli in a way in which it appears to 
come from a real, physical place. This means 
matching the stimuli to the user’s sensory 
expectations. An example of this is how in VR 
displays provide stereoscopic views from the 
perspective of the eyeball, so the geometry of 
the light matches what would be reflected 
from a real 3D environment around the head. 
This is quite different from the traditional first-
person view, in which users see the world 
through the window of the monitor. 

The synthetic stimuli must match in more ways 
than just geometrically however, it must also 
match temporally. 

In HCI, latency typically refers to the end-to-
end delay between a user’s action and the 
perceived response to that action. Latency is 
unavoidable, and comes from every stage in a 
discrete computer system: including sensor 
sampling intervals, processing and buffering 
[2]. 



While for many traditional tasks a small delay 
(on the order of milliseconds) will not be 
noticeable, latency begins to affect continuous 
interaction. When a user attempts online 
control - such as steering or aiming in a game, 
or even just looking around in an HMD (Head 
Mounted Display) – they form a loop with the 
computer. Delays bound the frequency, as 
they would any other feedback loop. 
Effectively, the ‘bandwidth’ of the loop is 
limited. 

This concept is formalised by Fitts’ Law – a 
fundamental observation in HCI that relates 
models of human motion to information 
throughput [3]. 

In addition to reduced performance, latency in 
VR can induce additional negative effects, 
including simulator sickness and breaks-in-
presence. In the latter, the illusion that the 
synthetic stimuli is coming from another place 
breaks down and the utility of the virtual world 
is undermined [4]. 

Humans do not expect latency in VR because 
the real world in which they have developed 
has no latency, yet computers have 
unavoidable latencies between every stage. 

Studies have been conducted to find the limits 
at which latency begins to have these effects, 
but for many years were limited in how low 
they could go by the technology forming the 
apparatus. Studies often had to rely on analog 
simulacrums of virtual reality systems [5].  

Modern apparatus are achieving lower real 
latencies, and the thresholds of perception are 
becoming clearer. Latency affects different 
modalities in different ways however. The 
visual system is one of the most sensitive, but 
many senses are important for VR. As latency 
is a function of action, which part of the body 
is used to interact will also have an effect. 
Latency is an established and enduring topic in 
HCI. Even with new apparatus the effects of 
latency at very low levels is not yet completely 
understood. 

In this thesis we addressed the problem of 
latency from two directions. The first was to 
understand the effects and limits of latency in 
HCI. This was supported by the second, which 

was to construct an ultra-low latency VR 
system. 

The traditional graphics pipeline is designed 
for throughput not latency. To achieve our 
goals, we had to re-consider the trade-off 
between simulation and sampling, the 
ordering and synchronisation of the pipeline, 
and the relationship between time and space 
in common display technologies.  

Beyond this though, VR system components 
don’t work in isolation. To build our system we 
combined consumer, industrial, and prototype 
hardware. Iterating through a set of 
prototypes, we created a 1:1 room-scale VR 
system with a latency of less than 3 ms. 

Our apparatus demonstrates various 
techniques and considerations for achieving 
low latency VR systems, and proves it is 
possible to make systems with such low 
latency. 

Our human factors experiments into low 
latency question previously held assumptions, 
and possibly explain artefacts seen but 
unexplored in prior studies. 

This article describes how modelling the 
relationships between space and time in 
discrete components presents new 
opportunities for computer graphics, how we 
leveraged these to build a state-of-the-art VR 
system, and what the future of rendering for 
VR could look like. 

2 LOW LATENCY VIRTUAL 

REALITY 

No discrete-time computer system can have 
zero latency, but coupled with predictive 
compensation, attempts have been made to 
reduce it to imperceptible levels. 

The designs in this thesis are inspired by a 
lineage of highly specialised rendering 
hardware, including image warpers [6] and 
lightfield renders [7]. 

Such systems reframe the problem of image 
generation. 



Instead of the two-stage process of generating 
a single image at a fixed point in time, then 
swapping to the display as an atomic 
operation, alternate architectures recognise 
the limits of discrete systems and treat images 
as an evolving structure. Images are refined 
with increasing frequency as they near the eye 
[8]. Frameless rendering originally promised to 
improve computational efficiency, but moving 
away from frames is the first step in improving 
VR displays in a number of dimensions [9]. 

3 BEYOND FRAMES 

When considering a display it is common to 
think in terms of refresh rate, and it’s 
common, even now, to compare commercial 
HMDs in this fashion.  

Considering a display as having a fixed, 
absolute update period presents us with a 
lower bound on latency: no matter how fast 
the graphics device, a given pixel can never be 
updated faster than the refresh period. 

 

Figure 1 – Profile of an Oculus CV1 display captured by 
placing four photodiodes across the screen. The 
horizontal axis is the distance across the display and the 
vertical axis is the luminance of the area under the diode. 

Frame rate however is an abstraction. At the 
millisecond and pixel level, displays and display 
technologies have varied behaviour. 

The scanout pattern of a display defines a 
relationship between real-world time and 
location on a display at which data is or is not 
visible. We can use this relationship to 
overcome the limits due to the update period. 

We used an Oculus DK2, which has a rolling-
scan display. This display illuminates pixels in a 
narrow vertical band that moves across the 
display. This is shown in Figure 1, captured 
with a high-speed camera. The apparent width 
of the band will depend on the exposure time. 
The true profile can be captured with, for 
example, a set of photodiodes and an 
oscilloscope, as shown in Figure 2 for an 
Oculus CV1. 

Displays do this in order to reduce persistence, 
and therefore motion blur. The scanout 
pattern however means we can model when 
and how long a pixel will be visible to the user. 
We can then generate a frame with non-linear 
time, knowing that when the user sees a given 
pixel it will appear in the correct location, even 
if the display is moving. 

Research subsequent to the thesis has 
developed techniques that allow this to be 
done on traditional GPUs using prediction [10], 
but the original implementation used a 
deterministic computing platform to do it 
entirely in real-time. 

 

Figure 2 - Disassembled HMD (upper) and a quick 
exposure close-up (lower) of the display showing a  band 
of illuminated pixels during scanout. 



4 DATAFLOW COMPUTING: JUST 

IN TIME PIXELS 

Dataflow computing is a parallel computing 
architecture in which operations are laid out in 
space, rather than time (Figure 3). 

Logically, this form of computing can be seen 
in node-based programming languages: for 
example Unreal’s Blueprints, Lego 
Mindstorms’ LabVIEW-based NXT-G, or any of 
the number of node-based shader tools. In 
Dataflow computers however, this 
representation is also realised at the silicon 
level. 

Dataflow graphs are described in a high level 
language then compiled to a spatial computing 
platform, such as an FPGA (Field 
Programmable Gate Array) - a gate-level 
reconfigurable chip. Our platform was 
provided by our collaborator, Maxeler 
Technologies Ltd, who build both spatial 
computing hardware and software stacks [11]. 

Dataflow computing has a history in graphics 
[12] but recently is only found in specialised 
applications such as Finite Difference Wave 
Propagation Modelling [13]. 

The reason for this is the unique 
characteristics of the architecture. As Dataflow 
computers must assign physical logic to each 
operation, branching is highly inefficient - like 
older shader units. But for suitable algorithms, 
they can achieve true parallelism – up to the 

number of operations in the algorithm itself. 
This means a dataflow computer can provide a 
result on every clock tick. The latency or length 
of the algorithm is unchanged, but the 
throughput is massively higher than any CPU 
or even traditional GPU. Further, the 
throughput is not just high, but deterministic. 

This means we can clock the dataflow 
computer at the same rate as a display, and 
reliably have a new pixel on each tick, 
regardless of the length of the algorithm. 

In this thesis, the algorithm was short – so 
short that it was well below the scanout 
interval. Coupled with our rolling-scanout 
display, we could generate pixels only a few 
microseconds before they would be sent, and 
displayed, allowing us to modify the content of 
a frame, while it was scanning out. 

 

Figure 4 - Frameless image generator showing a white 
bar moving back and forth across a desktop display. 

Figure 4 shows a prototype drawing a white 
bar moving across the screen. The bar’s 
position is set by the CPU at discrete intervals. 
The aliasing from line-to-line expresses the 

Figure 3 - Comparison of Control Flow (left) vs. Dataflow (right) Computing 



CPU loop frequency in lines – every step 
indicates a new update. 

The ghosting in Figure 4 also illustrates how 
display persistence can result in motion blur 
when the same technologies are used to 
present images in VR. 

4.1 LATENCY AND IMAGE FIDELITY 
Both latency and persistence introduce error 
into the perceived image. Latency results in 
spatial differences between what the user 
should be seeing and what they actually see, 
while persistence means they see out-of-date 
content for longer. 

In one study, we used a high-speed camera to 
compare images generated by our frameless 
renderer to those from the traditional 
pipeline. Both renderers drew the view from 
inside a skybox. We captured head motion 
data from a real user in a HMD to drive the 
camera and generate the ground truth. For 
this, we ray-traced a whole-screen image for 
each tracker sample (Figure 5). This emulated 
what an ideal display, with zero latency & 
persistence, and running at 1000 fps, would 
show at the sample’s time. 

Using objective Image Quality Measures 
(IMQ), we showed the frameless renders had 
significantly higher fidelity than traditional 
GPU equivalents under motion, when 
compared to the ground-truth. 

 

Figure 5 - Ray-casted ground truth. All stimuli was 
synthesised and rendered as if it would be displayed to a 
real user in an HMD, down to the per-colour distortions to 
compensate for chromatic aberration in the lenses. This 
image would have been compared to a real frame such as 
that shown in Figure 2. 

Table 1 shows linear regression coefficients 
when we model IMQ results as a function of 
user motion. We fit three orientation terms 

and velocity, but here show only velocity as 
the interesting term, as it represents 
‘sensitivity’ to motion. 

In an ideal world, the system would always 
show the correct perspective everywhere at 
any time, regardless of motion, so the 
coefficients would be zero. 

Based on the actual values and our knowledge 
of the systems, we make four observations: 

1. Higher latencies should be more sensitive 
to velocity. This is seen in every case 
except for 1 ms Frameless RMSE. We 
suspect based on the small effect size this 
was due to noise, given that we were 
capturing with a real camera with many 
uncompensated factors. 

2. The more sophisticated and sensitive to 
structure the IQM, the more we'd expect 
to see differences between rendering 
methods. We see this as SCOR and VIF 
measures show larger differences 
between Traditional and Frameless than 
RMSE. 

3. As exposure time increases so does the 
proportion of ‘old’ pixels, and so we’d 
expect higher error. This is what we see in 
the larger coefficients for the 13 ms 
conditions compared to 1 ms. We also see 
that they are smaller for Frameless 
compared to Traditional, since the 
Frameless renderer would have been 
updating across the frame as well. 

4. This effect should be more pronounced as 
exposure time decreases. This is because 
the Traditional renderer continues to 
scanout out of date content while the 
framless renderer constantly updates. This 
is what we see, with the SCOR and VIF 
being smaller for Frameless than 
Traditional – so far as to be statistically 
insignificant for VIF. 

One outlier we couldn't explain is the positive 
correlation for the SCOR metric, since the 
correlation should be insignificant at best. 



Coefficient Estimates for three IMQ multiple linear 
regression models (p < 0.05) 

Exposure 
Time 1 ms 13 ms 

Predictor Frameless Traditional Frameless Traditional 

Root Mean Square Error Measure 

Velocity 1.010 1.089 1.008 1.531 

R2 0.434 0.449 0.296 0.383 

Spearman's Rank Correlation Coefficient Fidelity Measure 

Velocity 0.039 -0.144 -0.490 -0.802 

R2 0.192 0.215 0.436 0.481 

Visual Information Fidelity Measure 

Velocity 
 

-0.033 -0.715 -0.410 

R2 0.155 0.142 0.236 0.108 

Table 1 - Correlation Results 

An apparent outlier is the 13 ms VIF metric, 
but this is actually a reasonable reasonable 
result: the Frameless system will skew frames 
as they change during a scanout. With a high 
exposure, VIF - the most sophisticated IQM - 
may consider this distortion more egregious 
than those due to differences in time. When 
the number of older pixels is reduced in the 1 
ms condition, this effect disappears. Future 
studies may be improved by designing new 
metrics for frameless rendering. 

5 AN ULTRA-LOW LATENCY VR 

SYSTEM 

The nature of dataflow computing forces us to 
address the trade-off between simulation vs. 
sampling common to many fields, but 
represented in computer graphics by the 
rendering-continuum [14]. 

The most efficient dataflow graph is one with 
the fewest conditionals. Our end goal was to 
design a pure image-based renderer, such as a 
lightfield renderer. In a general-purpose VR 
system this would form the end-stage of a 
more elaborate rendering pipeline or cascade, 
discussed further in Section 8. Over a set of 
prototypes we iterated from sprite-based 
compositors towards this goal. By the project’s 
end we had a hardware accelerated ray-caster, 
with the ray-intersection test set 
approximating the sampling directive in an 
image-based renderer. While we would have 
liked to iterate further, the ray-caster had 
nearly ideal temporal performance, and 
supported all the environments necessary for 
our experiments. 

Our ray-caster architecture is shown in Figure 
6. In a dataflow graph, a unit of data enters 
the graph and is transformed as it moves (left 
to right in Figure 6) through a sequence of 
operations. In our design, these units start as 
pixel locations and are transformed into pixel 
colours. Locations are generated in a sequence 
matching the scan of the display, with the 
resulting colours transmitted via DVI. The core 
of the ray-caster is a set of sequential closed-
form ray-intersection tests. The tests are 
sequential because it was easier to code them 
that way. They could just as easily be parallel 
with an accumulator – on a spatial computing 
platform they run with true parallelism, and 
take the same amount of space, either way. 
The result of the tests defines the 
environment map location to sample for that 
pixel. The sample determines the colour of the 
pixel scanned to the display. 

Figure 6 - Architecture of Low Latency Ray-caster 



While responsiveness is important in 
computer graphics, it is rare to encounter a 
problem with hard real-time requirements. 
Our graph had to synchronise with a physical 
display; DVI does not tolerate jitter. The 
challenge was a design that overcame the non-
idealities of the platform, such as the DDR 
controllers, that break the abstraction of 
determinism. 

For example, the memory bandwidth is less 
than the display’s, so we had to implement a 
caching system. Since the ray order is 
determined by the scanout pattern, we could 
use a ray coherency based cache to reduce 
memory accesses. The ray step size across a 
surface is dependent not only on camera field 
of view, but also distance, so the cache uses 
mip-maps chosen by the previous step-size to 
ensure an average hit ratio of 8:1. 
Imperfections were smoothed with a FIFO 
buffer. Buffering introduces latency, but at the 
pixel level by only trivial amounts: on our 
display one line (1920 pixels) was equivalent to 
6.8 μs. 

Coherency-based caching is only the start 
however; the features of the spatial 
computing platform provide the opportunity 
to make unique optimisations. 

For example, we can use determinism to break 
dependencies between sections of the graph 
by duplicating logic. This can be seen between 
the Ray Distortion Kernels. The cache logic is 
implemented on both sides, so the upstream 
logic knows what memory pages have to be 
sampled and when, and the downstream logic 
can rely on the upstream logic issuing a read 
request for them, without the two ever having 
to communicate. A similar design pattern is 
seen at the end of the graph for the 
generation of the DVI control signals. 

The platform also allows for truly parallel 
memory accesses because separate memory 
controllers can be created for each physical 
DDR module. 

The camera view is set by the CPU and used by 
the function that transforms pixel locations 
into ray parameters. 

On GPUs, a post-processing stage distorts 
images by the inverse transform of the HMD’s 
lenses before scanning to the display. As we 
implement a ray-caster, we can map between 
the physical and virtual viewport locations 
before the ray parameters are defined. 

This avoids a synchronisation stage; but 
further, because the latency of a dataflow 
graph directly depends on the number of 
downstream operations, our lens distortion 
has no effective computational latency either. 

The camera is updated by the CPU 
asynchronously via dual-port memory. The 
update frequency is limited by the fastest 
tracker – the DK2’s Inertial Measurement Unit 
(IMU) at 1 kHz - well below the period of an 
individual frame. 

The counters that feed the graph are free-
running. The only communication with the 
CPU are the camera updates, and these are 
asynchronous. Unlike a traditional GPU that is 
synchronised to the CPU, our renderer is 
synchronised to the display. Our graph will 
continue to drive the display even after the 
CPU application exits - albeit with a static 
viewpoint. 

An image generator however is just one 
component of a VR system. 

Though asynchronous, the image generator 
occupies much the same place as a traditional 
GPU in the system architecture (Figure 7). 
Figure 8 shows the real hardware. The spatial 
computer is in the form of a PCIe co-processor 
card. The DK2 connects to it via a custom 
board that adapts the physical interface 
(electrical and form factor) between the 
headset and the card’s edge connector. 

For tracking, we use a PhaseSpace active-
marker motion capture system running at 960 
Hz. The PhaseSpace latency of ~3 ms is the 
largest of any component in our system. A 
linear complementary filter fuses the 
PhaseSpace and HMD IMU data to reduce 
spatial jitter. 

A real-time thread running on a CentOS multi-
core PC updated the camera and primitive 
parameters as fast as possible. As seen in 



Figure 4, this was on the order of 
microseconds. 

 

Figure 7 – VR System architecture. The dataflow 
computer takes the place of the GPU for the headset. 

 

Figure 8 - Dataflow PCIe co-processor card connected to a 
DK2 

The result was a working room-scale VR 
system, supporting 1:1 locomotion across 
18m2. An example environment is shown in 
Figure 9. 

 

Figure 9 - Example of a depopulated virtual mimic of our 
lab used for a walking-short study 

6 THE EFFECTS OF LOW 

LATENCIES 

One of the first experiments performed using 
a dataflow renderer prototype was not in VR 
at all. The Fitts’ Law model of target 
acquisition is a reliable measure in HCI, and we 
used this to investigate latency on a traditional 
desktop at levels below which it had been 
explored before. 

 

Figure 10 - Stimuli for the Pointing and Steering Tasks 

The protocol for such an experiment is to hide 
the users hand so their only visual feedback is 
the cursor on the screen (Figure 10). Users 
then performed target acquisition tasks and 
path following tasks as the latency was varied. 

Our system achieved a latency of 6 ms, with 
the display scanout accounting for the 
majority of this time. For this experiment we 
used a 120 Hz monitor with a global scan. 

 

Figure 11 - Fitts' Law trial motion profile 

As the latency decreased our results showed a 
highly repeatable and unexpected non-
linearity in performance. The non-linearity is 
unexpected because it was previously 
hypothesised that the effect of latency was 
linear down to zero, as a consequence of it not 
following Weber’s Law. Indeed, variants of 
Fitts’ Law have modelled lag linearly [15]. The 
true profile is shown (as the black, dashed line) 
in Figure 11. User performance levels out 
around 26 ms but not before undergoing an 
anomalous peak in performance. 



Considering total execution time, the cause is 
not obvious, but by breaking down the users’ 
motion using the velocity profile, we can see a 
statistically significant pattern emerge. Briefly, 
that latency causes a velocity overshoot in a 
specific stage that can be compensated for 
under a range of conditions, coincidentally 
improving performance. The effects of latency 
do not stop here though, and despite the 
apparent peak, latency is not beneficial: in any 
other paradigm the same interference would 
more likely be an impediment.  

Such results have implications for HCI 
researchers as the non-linear profile means we 
must study latency at higher resolutions, the 
lower it becomes. 

7 FUTURE OF LATENCY IN 

VIRTUAL REALITY 

As the new wave of VR adoption progresses, 
so does the awareness of the importance of 
latency. Traditionally considered in HCI as a 
bandwidth issue, VR headset manufacturers, 
SDK designers and developers are recognising 
the severe effects of latency on the whole user 
experience, including on the vulnerability to 
simulator sickness and breaks-in-presence. 

The recognition can be seen in technologies 
such as timewarping in the Oculus VR SDK, 
which refines frames using image warping. 
Using up to date tracking data that was not 
available when the frame was first generated, 
and synchronising with the start of the scanout 
to minimise the time between refinement and 
display, this feature acknowledges the 
importance of the relative real-world times 
between image generation and perception. 

Currently, though, the perception is still that 
latency is a single per-frame value. In practice, 
the lowest latencies will be achieved by 
modelling display behaviour and considering it 
as an integral part of the pipeline.  

In subsequent collaborative work, the 
principles described above were adapted to 
traditional GPUs [10]. GPUs remain frame-
based renderers, but the implementation 
utilised ray-tracing in the fragment shader to 

generate images non-linearly in space and 
time (Figure 12). The linear rasterization stage 
no longer sampled the image but became an 
acceleration pass, constraining the ray-tracing 
problem to make it feasible. Prediction was 
used to change the view across the display, 
reducing latency due to scanout, while the 
lens distortion was applied in a pre-processing 
stage as above, reducing computational 
latency and avoiding the synchronisation.  

While a number of low-latency systems have 
been proposed over the years, ours is still (c.a. 
2020) the only one that supports a functional, 
room-scale virtual environment. We hope 
shortly to adapt our recent work on non-linear 
rasterization on GPUs to popular game 
engines, in order to drive larger and more 
sophisticated virtual worlds with equally low 
perceptual latency. 

 

Figure 12 - Non-linearly rasterised image. Traditionally 
such images would be produced by warping a linear 
rasterization. This would introduce artefacts in highly 
detailed areas such as the highlighted insets above, but 
the fragment-shader ray-traced image is pixel perfect.  

8 FUTURE OF GRAPHICS 

PIPELINES 

Non-linear time is only one aspect of how 
future pipelines could benefit VR, and latency 
in VR. 

In our ray-caster prototype we showed how 
latency could be reduced by pre-transforming 
the sampler where non-linear rasterization is 
available. 

Non-linear rasterization is just one part of 
future pipeline capabilities. We expect that as 



the pipeline evolves it will move away from the 
concept of frames. An alternative concept is 
that of our group’s Ambient Fields [16], in 
which we do not render an image at a single 
point in time, but in a higher dimensional 
representation that covers an interval in space 
and time around the user’s viewpoint. This 
representation can then be sampled 
asynchronously by smaller, tighter loops, 
perhaps highly coupled with the display. Such 
a pipeline could not only provide lower 
latency, but would be far more efficient than 
current implementations, that often throw 
away the information-rich fragment buffer 
each frame. 

Other groups have imagined future pipelines 
as a series of cascaded transforms [8]. The 
father into the pipeline, the simpler the 
operations become, but correspondingly the 
higher frequency they can run, and the lower 
latency they have. 

Of course, these ideas and others are not 
mutually exclusive. The ideas of cascading 
stages, ambient fields and non-linear 
rasterization will be integrated in a new 
project beginning this year to explore future 
pipelines. In this architecture what we present 
would be a near-end stage in a longer pipeline, 
sampling an environment map of higher 
dimension. 

9 FUTURE OF SCENE 

REPRESENTATION 

The image generation component is not the 
only thing that stands to be revised. As VR 
technologies become more mature, so do the 
use cases of mixed reality. Investment in 
displaying virtual worlds is matched by 
capturing the real one with higher fidelity. 
Stereoscopic, lightfield and voxel based 
volumetric capture are all being explored. 
These higher dimensional captures of the 
world are more abstract than traditional video 
and have increased scope for integrating with 
synthetic content. 

A goal we did not have time to achieve was to 
make full use of the memory of our 

reconfigurable platform. With 10’s of GB of 
low-cost DDR memory our single FPGA card 
could demonstrate the potential for sampled 
representations such as lightfields. To do so 
would only require substituting the ray-
primitive intersection test for a more abstract 
sampling function. 

10 SUMMARY 

The aim of Virtual Reality is to generate stimuli 
that the user can believe, at least at some 
level, is coming from another world, rather 
than the interface itself. For this to be 
successful, stimuli must be realistic in a 
number of dimensions not traditionally 
considered in computer graphics. One of those 
is temporal. Traditional graphics pipelines have 
been optimised for throughput rather than 
speed, but recently the importance of 
temporal realism is being recognised in more 
and more quarters. 

This thesis was concerned with latency in 
virtual reality, and required re-considering 
many of the assumptions of the traditional 
pipeline and its abstractions. 

The future of VR will require re-evaluating 
these abstractions, changing where and how 
we represent the world, and seeing models of 
the system’s physical dynamics become an 
integral part of the pipeline.  

This thesis only scratched the surface, but we 
hope its conclusions, considerations, questions 
and demonstrations can help to inform the 
future of VR rendering. 
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