
Friston, S. (2020). Low-Latency Rendering With Dataflow Architectures. IEEE Computer Graphics and

Applications, 40(3), 94–104. https://doi.org/10.1109/MCG.2020.298018

Low Latency
Rendering with
Dataflow
Architectures
Sebastian Friston
University College London

Department: Dissertation Impact
Editor: Jim Foley, foley@cc.gatech.edu

ABSTRACT

Recent years have seen a resurgence of VR
(Virtual Reality), sparked by the repurposing of
low-cost COTS components. VR aims to
generate stimuli that appear to come from a
source other than the interface through which
they are delivered. The synthetic stimuli
replace real-world stimuli, and transport the
user to another, perhaps imaginary, ‘place’. To
do this, we must overcome many challenges,
often related to matching the synthetic stimuli
to the expectations and behaviour of the real
world. One way in which the stimuli can fail is
its latency – the time between a user’s action
and the computer’s response. We constructed
a novel VR renderer, that optimised latency
above all else. Our prototype allowed us to
explore how latency affects human computer
interaction. We had to completely reconsider
the interaction between time, space and
synchronisation on displays and in the
traditional graphics pipeline. Using a
specialised architecture – dataflow computing
– we combined consumer, industrial and
prototype components to create an integrated
1:1 room-scale VR system with a latency of
under 3 ms. While this was prototype
hardware, the considerations in achieving this
performance inform the design of future VR
pipelines, and our human factors studies have
provided new and sometimes surprising
contributions to the body of knowledge on
latency in HCI.

1 INTRODUCTION

The concept of Virtual Reality has developed
alongside those of the first graphical displays,
displays that promised to provide a window
into the “mathematical wonderland” of the
computer [1].

The archetypical VR system is one that
completely subsumes human vision. Pre-
dominance of the visual system means that
graphics displays are still front and centre. VR
is not just seeing however, but believing.

VR differs from other HCI systems in that users
integrate the stimuli in a way that they believe,
or at least behave as if, it is from a ‘real’ place
– and usually that that place is different from
the real world in which they inhabit.

Providing stimuli that can be integrated this
way allows us to create a virtual world of our
design, that is very real in the eyes of the user.
This world can be used for entertainment,
training, communication, remote working,
psychotherapy - or even just more effective
manipulation of the computer’s mathematical
wonderland.

VR systems use many of the same
technologies as other HCI systems, but to
present stimuli in a way in which it appears to
come from a real, physical place. This means
matching the stimuli to the user’s sensory
expectations. An example of this is how in VR
displays provide stereoscopic views from the
perspective of the eyeball, so the geometry of
the light matches what would be reflected
from a real 3D environment around the head.
This is quite different from the traditional first-
person view, in which users see the world
through the window of the monitor.

The synthetic stimuli must match in more ways
than just geometrically however, it must also
match temporally.

In HCI, latency typically refers to the end-to-
end delay between a user’s action and the
perceived response to that action. Latency is
unavoidable, and comes from every stage in a
discrete computer system: including sensor
sampling intervals, processing and buffering
[2].

While for many traditional tasks a small delay
(on the order of milliseconds) will not be
noticeable, latency begins to affect continuous
interaction. When a user attempts online
control - such as steering or aiming in a game,
or even just looking around in an HMD (Head
Mounted Display) – they form a loop with the
computer. Delays bound the frequency, as
they would any other feedback loop.
Effectively, the ‘bandwidth’ of the loop is
limited.

This concept is formalised by Fitts’ Law – a
fundamental observation in HCI that relates
models of human motion to information
throughput [3].

In addition to reduced performance, latency in
VR can induce additional negative effects,
including simulator sickness and breaks-in-
presence. In the latter, the illusion that the
synthetic stimuli is coming from another place
breaks down and the utility of the virtual world
is undermined [4].

Humans do not expect latency in VR because
the real world in which they have developed
has no latency, yet computers have
unavoidable latencies between every stage.

Studies have been conducted to find the limits
at which latency begins to have these effects,
but for many years were limited in how low
they could go by the technology forming the
apparatus. Studies often had to rely on analog
simulacrums of virtual reality systems [5].

Modern apparatus are achieving lower real
latencies, and the thresholds of perception are
becoming clearer. Latency affects different
modalities in different ways however. The
visual system is one of the most sensitive, but
many senses are important for VR. As latency
is a function of action, which part of the body
is used to interact will also have an effect.
Latency is an established and enduring topic in
HCI. Even with new apparatus the effects of
latency at very low levels is not yet completely
understood.

In this thesis we addressed the problem of
latency from two directions. The first was to
understand the effects and limits of latency in
HCI. This was supported by the second, which

was to construct an ultra-low latency VR
system.

The traditional graphics pipeline is designed
for throughput not latency. To achieve our
goals, we had to re-consider the trade-off
between simulation and sampling, the
ordering and synchronisation of the pipeline,
and the relationship between time and space
in common display technologies.

Beyond this though, VR system components
don’t work in isolation. To build our system we
combined consumer, industrial, and prototype
hardware. Iterating through a set of
prototypes, we created a 1:1 room-scale VR
system with a latency of less than 3 ms.

Our apparatus demonstrates various
techniques and considerations for achieving
low latency VR systems, and proves it is
possible to make systems with such low
latency.

Our human factors experiments into low
latency question previously held assumptions,
and possibly explain artefacts seen but
unexplored in prior studies.

This article describes how modelling the
relationships between space and time in
discrete components presents new
opportunities for computer graphics, how we
leveraged these to build a state-of-the-art VR
system, and what the future of rendering for
VR could look like.

2 LOW LATENCY VIRTUAL

REALITY

No discrete-time computer system can have
zero latency, but coupled with predictive
compensation, attempts have been made to
reduce it to imperceptible levels.

The designs in this thesis are inspired by a
lineage of highly specialised rendering
hardware, including image warpers [6] and
lightfield renders [7].

Such systems reframe the problem of image
generation.

Instead of the two-stage process of generating
a single image at a fixed point in time, then
swapping to the display as an atomic
operation, alternate architectures recognise
the limits of discrete systems and treat images
as an evolving structure. Images are refined
with increasing frequency as they near the eye
[8]. Frameless rendering originally promised to
improve computational efficiency, but moving
away from frames is the first step in improving
VR displays in a number of dimensions [9].

3 BEYOND FRAMES

When considering a display it is common to
think in terms of refresh rate, and it’s
common, even now, to compare commercial
HMDs in this fashion.

Considering a display as having a fixed,
absolute update period presents us with a
lower bound on latency: no matter how fast
the graphics device, a given pixel can never be
updated faster than the refresh period.

Figure 1 – Profile of an Oculus CV1 display captured by
placing four photodiodes across the screen. The
horizontal axis is the distance across the display and the
vertical axis is the luminance of the area under the diode.

Frame rate however is an abstraction. At the
millisecond and pixel level, displays and display
technologies have varied behaviour.

The scanout pattern of a display defines a
relationship between real-world time and
location on a display at which data is or is not
visible. We can use this relationship to
overcome the limits due to the update period.

We used an Oculus DK2, which has a rolling-
scan display. This display illuminates pixels in a
narrow vertical band that moves across the
display. This is shown in Figure 1, captured
with a high-speed camera. The apparent width
of the band will depend on the exposure time.
The true profile can be captured with, for
example, a set of photodiodes and an
oscilloscope, as shown in Figure 2 for an
Oculus CV1.

Displays do this in order to reduce persistence,
and therefore motion blur. The scanout
pattern however means we can model when
and how long a pixel will be visible to the user.
We can then generate a frame with non-linear
time, knowing that when the user sees a given
pixel it will appear in the correct location, even
if the display is moving.

Research subsequent to the thesis has
developed techniques that allow this to be
done on traditional GPUs using prediction [10],
but the original implementation used a
deterministic computing platform to do it
entirely in real-time.

Figure 2 - Disassembled HMD (upper) and a quick
exposure close-up (lower) of the display showing a band
of illuminated pixels during scanout.

4 DATAFLOW COMPUTING: JUST

IN TIME PIXELS

Dataflow computing is a parallel computing
architecture in which operations are laid out in
space, rather than time (Figure 3).

Logically, this form of computing can be seen
in node-based programming languages: for
example Unreal’s Blueprints, Lego
Mindstorms’ LabVIEW-based NXT-G, or any of
the number of node-based shader tools. In
Dataflow computers however, this
representation is also realised at the silicon
level.

Dataflow graphs are described in a high level
language then compiled to a spatial computing
platform, such as an FPGA (Field
Programmable Gate Array) - a gate-level
reconfigurable chip. Our platform was
provided by our collaborator, Maxeler
Technologies Ltd, who build both spatial
computing hardware and software stacks [11].

Dataflow computing has a history in graphics
[12] but recently is only found in specialised
applications such as Finite Difference Wave
Propagation Modelling [13].

The reason for this is the unique
characteristics of the architecture. As Dataflow
computers must assign physical logic to each
operation, branching is highly inefficient - like
older shader units. But for suitable algorithms,
they can achieve true parallelism – up to the

number of operations in the algorithm itself.
This means a dataflow computer can provide a
result on every clock tick. The latency or length
of the algorithm is unchanged, but the
throughput is massively higher than any CPU
or even traditional GPU. Further, the
throughput is not just high, but deterministic.

This means we can clock the dataflow
computer at the same rate as a display, and
reliably have a new pixel on each tick,
regardless of the length of the algorithm.

In this thesis, the algorithm was short – so
short that it was well below the scanout
interval. Coupled with our rolling-scanout
display, we could generate pixels only a few
microseconds before they would be sent, and
displayed, allowing us to modify the content of
a frame, while it was scanning out.

Figure 4 - Frameless image generator showing a white
bar moving back and forth across a desktop display.

Figure 4 shows a prototype drawing a white
bar moving across the screen. The bar’s
position is set by the CPU at discrete intervals.
The aliasing from line-to-line expresses the

Figure 3 - Comparison of Control Flow (left) vs. Dataflow (right) Computing

CPU loop frequency in lines – every step
indicates a new update.

The ghosting in Figure 4 also illustrates how
display persistence can result in motion blur
when the same technologies are used to
present images in VR.

4.1 LATENCY AND IMAGE FIDELITY
Both latency and persistence introduce error
into the perceived image. Latency results in
spatial differences between what the user
should be seeing and what they actually see,
while persistence means they see out-of-date
content for longer.

In one study, we used a high-speed camera to
compare images generated by our frameless
renderer to those from the traditional
pipeline. Both renderers drew the view from
inside a skybox. We captured head motion
data from a real user in a HMD to drive the
camera and generate the ground truth. For
this, we ray-traced a whole-screen image for
each tracker sample (Figure 5). This emulated
what an ideal display, with zero latency &
persistence, and running at 1000 fps, would
show at the sample’s time.

Using objective Image Quality Measures
(IMQ), we showed the frameless renders had
significantly higher fidelity than traditional
GPU equivalents under motion, when
compared to the ground-truth.

Figure 5 - Ray-casted ground truth. All stimuli was
synthesised and rendered as if it would be displayed to a
real user in an HMD, down to the per-colour distortions to
compensate for chromatic aberration in the lenses. This
image would have been compared to a real frame such as
that shown in Figure 2.

Table 1 shows linear regression coefficients
when we model IMQ results as a function of
user motion. We fit three orientation terms

and velocity, but here show only velocity as
the interesting term, as it represents
‘sensitivity’ to motion.

In an ideal world, the system would always
show the correct perspective everywhere at
any time, regardless of motion, so the
coefficients would be zero.

Based on the actual values and our knowledge
of the systems, we make four observations:

1. Higher latencies should be more sensitive
to velocity. This is seen in every case
except for 1 ms Frameless RMSE. We
suspect based on the small effect size this
was due to noise, given that we were
capturing with a real camera with many
uncompensated factors.

2. The more sophisticated and sensitive to
structure the IQM, the more we'd expect
to see differences between rendering
methods. We see this as SCOR and VIF
measures show larger differences
between Traditional and Frameless than
RMSE.

3. As exposure time increases so does the
proportion of ‘old’ pixels, and so we’d
expect higher error. This is what we see in
the larger coefficients for the 13 ms
conditions compared to 1 ms. We also see
that they are smaller for Frameless
compared to Traditional, since the
Frameless renderer would have been
updating across the frame as well.

4. This effect should be more pronounced as
exposure time decreases. This is because
the Traditional renderer continues to
scanout out of date content while the
framless renderer constantly updates. This
is what we see, with the SCOR and VIF
being smaller for Frameless than
Traditional – so far as to be statistically
insignificant for VIF.

One outlier we couldn't explain is the positive
correlation for the SCOR metric, since the
correlation should be insignificant at best.

Coefficient Estimates for three IMQ multiple linear
regression models (p < 0.05)

Exposure
Time 1 ms 13 ms

Predictor Frameless Traditional Frameless Traditional

Root Mean Square Error Measure

Velocity 1.010 1.089 1.008 1.531

R2 0.434 0.449 0.296 0.383

Spearman's Rank Correlation Coefficient Fidelity Measure

Velocity 0.039 -0.144 -0.490 -0.802

R2 0.192 0.215 0.436 0.481

Visual Information Fidelity Measure

Velocity

-0.033 -0.715 -0.410

R2 0.155 0.142 0.236 0.108

Table 1 - Correlation Results

An apparent outlier is the 13 ms VIF metric,
but this is actually a reasonable reasonable
result: the Frameless system will skew frames
as they change during a scanout. With a high
exposure, VIF - the most sophisticated IQM -
may consider this distortion more egregious
than those due to differences in time. When
the number of older pixels is reduced in the 1
ms condition, this effect disappears. Future
studies may be improved by designing new
metrics for frameless rendering.

5 AN ULTRA-LOW LATENCY VR

SYSTEM

The nature of dataflow computing forces us to
address the trade-off between simulation vs.
sampling common to many fields, but
represented in computer graphics by the
rendering-continuum [14].

The most efficient dataflow graph is one with
the fewest conditionals. Our end goal was to
design a pure image-based renderer, such as a
lightfield renderer. In a general-purpose VR
system this would form the end-stage of a
more elaborate rendering pipeline or cascade,
discussed further in Section 8. Over a set of
prototypes we iterated from sprite-based
compositors towards this goal. By the project’s
end we had a hardware accelerated ray-caster,
with the ray-intersection test set
approximating the sampling directive in an
image-based renderer. While we would have
liked to iterate further, the ray-caster had
nearly ideal temporal performance, and
supported all the environments necessary for
our experiments.

Our ray-caster architecture is shown in Figure
6. In a dataflow graph, a unit of data enters
the graph and is transformed as it moves (left
to right in Figure 6) through a sequence of
operations. In our design, these units start as
pixel locations and are transformed into pixel
colours. Locations are generated in a sequence
matching the scan of the display, with the
resulting colours transmitted via DVI. The core
of the ray-caster is a set of sequential closed-
form ray-intersection tests. The tests are
sequential because it was easier to code them
that way. They could just as easily be parallel
with an accumulator – on a spatial computing
platform they run with true parallelism, and
take the same amount of space, either way.
The result of the tests defines the
environment map location to sample for that
pixel. The sample determines the colour of the
pixel scanned to the display.

Figure 6 - Architecture of Low Latency Ray-caster

While responsiveness is important in
computer graphics, it is rare to encounter a
problem with hard real-time requirements.
Our graph had to synchronise with a physical
display; DVI does not tolerate jitter. The
challenge was a design that overcame the non-
idealities of the platform, such as the DDR
controllers, that break the abstraction of
determinism.

For example, the memory bandwidth is less
than the display’s, so we had to implement a
caching system. Since the ray order is
determined by the scanout pattern, we could
use a ray coherency based cache to reduce
memory accesses. The ray step size across a
surface is dependent not only on camera field
of view, but also distance, so the cache uses
mip-maps chosen by the previous step-size to
ensure an average hit ratio of 8:1.
Imperfections were smoothed with a FIFO
buffer. Buffering introduces latency, but at the
pixel level by only trivial amounts: on our
display one line (1920 pixels) was equivalent to
6.8 μs.

Coherency-based caching is only the start
however; the features of the spatial
computing platform provide the opportunity
to make unique optimisations.

For example, we can use determinism to break
dependencies between sections of the graph
by duplicating logic. This can be seen between
the Ray Distortion Kernels. The cache logic is
implemented on both sides, so the upstream
logic knows what memory pages have to be
sampled and when, and the downstream logic
can rely on the upstream logic issuing a read
request for them, without the two ever having
to communicate. A similar design pattern is
seen at the end of the graph for the
generation of the DVI control signals.

The platform also allows for truly parallel
memory accesses because separate memory
controllers can be created for each physical
DDR module.

The camera view is set by the CPU and used by
the function that transforms pixel locations
into ray parameters.

On GPUs, a post-processing stage distorts
images by the inverse transform of the HMD’s
lenses before scanning to the display. As we
implement a ray-caster, we can map between
the physical and virtual viewport locations
before the ray parameters are defined.

This avoids a synchronisation stage; but
further, because the latency of a dataflow
graph directly depends on the number of
downstream operations, our lens distortion
has no effective computational latency either.

The camera is updated by the CPU
asynchronously via dual-port memory. The
update frequency is limited by the fastest
tracker – the DK2’s Inertial Measurement Unit
(IMU) at 1 kHz - well below the period of an
individual frame.

The counters that feed the graph are free-
running. The only communication with the
CPU are the camera updates, and these are
asynchronous. Unlike a traditional GPU that is
synchronised to the CPU, our renderer is
synchronised to the display. Our graph will
continue to drive the display even after the
CPU application exits - albeit with a static
viewpoint.

An image generator however is just one
component of a VR system.

Though asynchronous, the image generator
occupies much the same place as a traditional
GPU in the system architecture (Figure 7).
Figure 8 shows the real hardware. The spatial
computer is in the form of a PCIe co-processor
card. The DK2 connects to it via a custom
board that adapts the physical interface
(electrical and form factor) between the
headset and the card’s edge connector.

For tracking, we use a PhaseSpace active-
marker motion capture system running at 960
Hz. The PhaseSpace latency of ~3 ms is the
largest of any component in our system. A
linear complementary filter fuses the
PhaseSpace and HMD IMU data to reduce
spatial jitter.

A real-time thread running on a CentOS multi-
core PC updated the camera and primitive
parameters as fast as possible. As seen in

Figure 4, this was on the order of
microseconds.

Figure 7 – VR System architecture. The dataflow
computer takes the place of the GPU for the headset.

Figure 8 - Dataflow PCIe co-processor card connected to a
DK2

The result was a working room-scale VR
system, supporting 1:1 locomotion across
18m2. An example environment is shown in
Figure 9.

Figure 9 - Example of a depopulated virtual mimic of our
lab used for a walking-short study

6 THE EFFECTS OF LOW

LATENCIES

One of the first experiments performed using
a dataflow renderer prototype was not in VR
at all. The Fitts’ Law model of target
acquisition is a reliable measure in HCI, and we
used this to investigate latency on a traditional
desktop at levels below which it had been
explored before.

Figure 10 - Stimuli for the Pointing and Steering Tasks

The protocol for such an experiment is to hide
the users hand so their only visual feedback is
the cursor on the screen (Figure 10). Users
then performed target acquisition tasks and
path following tasks as the latency was varied.

Our system achieved a latency of 6 ms, with
the display scanout accounting for the
majority of this time. For this experiment we
used a 120 Hz monitor with a global scan.

Figure 11 - Fitts' Law trial motion profile

As the latency decreased our results showed a
highly repeatable and unexpected non-
linearity in performance. The non-linearity is
unexpected because it was previously
hypothesised that the effect of latency was
linear down to zero, as a consequence of it not
following Weber’s Law. Indeed, variants of
Fitts’ Law have modelled lag linearly [15]. The
true profile is shown (as the black, dashed line)
in Figure 11. User performance levels out
around 26 ms but not before undergoing an
anomalous peak in performance.

Considering total execution time, the cause is
not obvious, but by breaking down the users’
motion using the velocity profile, we can see a
statistically significant pattern emerge. Briefly,
that latency causes a velocity overshoot in a
specific stage that can be compensated for
under a range of conditions, coincidentally
improving performance. The effects of latency
do not stop here though, and despite the
apparent peak, latency is not beneficial: in any
other paradigm the same interference would
more likely be an impediment.

Such results have implications for HCI
researchers as the non-linear profile means we
must study latency at higher resolutions, the
lower it becomes.

7 FUTURE OF LATENCY IN

VIRTUAL REALITY

As the new wave of VR adoption progresses,
so does the awareness of the importance of
latency. Traditionally considered in HCI as a
bandwidth issue, VR headset manufacturers,
SDK designers and developers are recognising
the severe effects of latency on the whole user
experience, including on the vulnerability to
simulator sickness and breaks-in-presence.

The recognition can be seen in technologies
such as timewarping in the Oculus VR SDK,
which refines frames using image warping.
Using up to date tracking data that was not
available when the frame was first generated,
and synchronising with the start of the scanout
to minimise the time between refinement and
display, this feature acknowledges the
importance of the relative real-world times
between image generation and perception.

Currently, though, the perception is still that
latency is a single per-frame value. In practice,
the lowest latencies will be achieved by
modelling display behaviour and considering it
as an integral part of the pipeline.

In subsequent collaborative work, the
principles described above were adapted to
traditional GPUs [10]. GPUs remain frame-
based renderers, but the implementation
utilised ray-tracing in the fragment shader to

generate images non-linearly in space and
time (Figure 12). The linear rasterization stage
no longer sampled the image but became an
acceleration pass, constraining the ray-tracing
problem to make it feasible. Prediction was
used to change the view across the display,
reducing latency due to scanout, while the
lens distortion was applied in a pre-processing
stage as above, reducing computational
latency and avoiding the synchronisation.

While a number of low-latency systems have
been proposed over the years, ours is still (c.a.
2020) the only one that supports a functional,
room-scale virtual environment. We hope
shortly to adapt our recent work on non-linear
rasterization on GPUs to popular game
engines, in order to drive larger and more
sophisticated virtual worlds with equally low
perceptual latency.

Figure 12 - Non-linearly rasterised image. Traditionally
such images would be produced by warping a linear
rasterization. This would introduce artefacts in highly
detailed areas such as the highlighted insets above, but
the fragment-shader ray-traced image is pixel perfect.

8 FUTURE OF GRAPHICS

PIPELINES

Non-linear time is only one aspect of how
future pipelines could benefit VR, and latency
in VR.

In our ray-caster prototype we showed how
latency could be reduced by pre-transforming
the sampler where non-linear rasterization is
available.

Non-linear rasterization is just one part of
future pipeline capabilities. We expect that as

the pipeline evolves it will move away from the
concept of frames. An alternative concept is
that of our group’s Ambient Fields [16], in
which we do not render an image at a single
point in time, but in a higher dimensional
representation that covers an interval in space
and time around the user’s viewpoint. This
representation can then be sampled
asynchronously by smaller, tighter loops,
perhaps highly coupled with the display. Such
a pipeline could not only provide lower
latency, but would be far more efficient than
current implementations, that often throw
away the information-rich fragment buffer
each frame.

Other groups have imagined future pipelines
as a series of cascaded transforms [8]. The
father into the pipeline, the simpler the
operations become, but correspondingly the
higher frequency they can run, and the lower
latency they have.

Of course, these ideas and others are not
mutually exclusive. The ideas of cascading
stages, ambient fields and non-linear
rasterization will be integrated in a new
project beginning this year to explore future
pipelines. In this architecture what we present
would be a near-end stage in a longer pipeline,
sampling an environment map of higher
dimension.

9 FUTURE OF SCENE

REPRESENTATION

The image generation component is not the
only thing that stands to be revised. As VR
technologies become more mature, so do the
use cases of mixed reality. Investment in
displaying virtual worlds is matched by
capturing the real one with higher fidelity.
Stereoscopic, lightfield and voxel based
volumetric capture are all being explored.
These higher dimensional captures of the
world are more abstract than traditional video
and have increased scope for integrating with
synthetic content.

A goal we did not have time to achieve was to
make full use of the memory of our

reconfigurable platform. With 10’s of GB of
low-cost DDR memory our single FPGA card
could demonstrate the potential for sampled
representations such as lightfields. To do so
would only require substituting the ray-
primitive intersection test for a more abstract
sampling function.

10 SUMMARY

The aim of Virtual Reality is to generate stimuli
that the user can believe, at least at some
level, is coming from another world, rather
than the interface itself. For this to be
successful, stimuli must be realistic in a
number of dimensions not traditionally
considered in computer graphics. One of those
is temporal. Traditional graphics pipelines have
been optimised for throughput rather than
speed, but recently the importance of
temporal realism is being recognised in more
and more quarters.

This thesis was concerned with latency in
virtual reality, and required re-considering
many of the assumptions of the traditional
pipeline and its abstractions.

The future of VR will require re-evaluating
these abstractions, changing where and how
we represent the world, and seeing models of
the system’s physical dynamics become an
integral part of the pipeline.

This thesis only scratched the surface, but we
hope its conclusions, considerations, questions
and demonstrations can help to inform the
future of VR rendering.

11 ACKNOWLEDGEMENTS

This work was funded by the EPSRC
(EP/G037159/1) and Maxeler Technologies
Ltd. I wish to thank all of the individuals I was
fortunate enough to call colleagues
throughput my doctorate. My especial thanks
to Per Karlstrom and Georgi Gaydadjiev at
Maxeler, and most of all to my supervisor at
UCL, Professor Anthony Steed.

12 REFERENCES

[1] I. E. Sutherland, “The Ultimate Display,”
in Proceedings of the Congress of the
Internation Federation of Information
Processing (IFIP), 1965, pp. 506–508.

[2] M. R. Mine, “Characterization of end-
to-end delays in head-mounted display
systems,” 1993.

[3] R. W. Soukoreff and I. S. MacKenzie,
“Towards a standard for pointing
device evaluation, perspectives on 27
years of Fitts’ law research in HCI,” Int.
J. Hum. Comput. Stud., vol. 61, no. 6,
pp. 751–789, 2004.

[4] M. Slater, “Presence and The Sixth
Sense,” Presence Teleoperators Virtual
Environ., vol. 11, no. 4, pp. 435–439,
2002.

[5] J. Jerald, M. Whitton, and F. P. Brooks,
“Scene-Motion Thresholds During Head
Yaw for Immersive Virtual
Environments,” ACM Trans. Appl.
Percept., vol. 9, no. 1, pp. 4:2-4:23,
2012.

[6] M. Regan and R. Pose, “Priority
rendering with a virtual reality address
recalculation pipeline,” in Proceedings
of the 21st annual conference on
Computer Graphics and Interactive
Techniques - SIGGRAPH ’94, 1994, pp.
155–162.

[7] M. J. P. Regan, G. S. P. Miller, S. M.
Rubin, and C. Kogelnik, “A real-time
low-latency hardware light-field
renderer,” in Proceedings of the 26th
annual conference on Computer
Graphics and Interactive Techniques -
SIGGRAPH ’99, 1999, pp. 287–290.

[8] P. Lincoln et al., “From Motion to
Photons in 80 Microseconds: Towards
Minimal Latency for Virtual and
Augmented Reality,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 4, pp.
1367–1376, 2016.

[9] E. J. S. Zagier, “Defining and Refining

Frameless Rendering,” 1996.

[10] S. Friston, T. Ritschel, and A. Steed,
“Perceptual rasterization for head-
mounted display image synthesis,”
ACM Trans. Graph., vol. 38, no. 4, pp.
1–14, 2019.

[11] Maxeler Technologies Ltd,
“Programming MPC Systems.” 2013.

[12] P. J. W. Ten Hagen, I. Herman, and J. R.
G. De Vries, “A dataflow graphics
workstation,” Comput. Graph., vol. 14,
no. 1, pp. 83–93, 1990.

[13] O. Pell, J. Bower, R. Dimond, O.
Mencer, S. Member, and M. J. Flynn,
“Finite-Difference Wave Propagation
Modeling on Special-Purpose Dataflow
Machines,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 5, pp. 906–915, 2013.

[14] M. Zwicker, M. Gross, and H. Pfister, “A
Survey and Classification of Real Time
Rendering Methods,” 2000.

[15] I. S. MacKenzie and C. Ware, “Lag as a
determinant of human performance in
interactive systems,” in Proceedings of
the SIGCHI conference on Human
factors in computing systems, 1993, pp.
488–493.

[16] A. Steed, V. Pawar, S. Friston, and M. A.
Srinivasan, “Ambient fields:
representing potential sensory
information,” in 2016 IEEE 9th
Workshop on Software Engineering and
Architectures for Realtime Interactive
Systems (SEARIS), 2016, pp. 1–2.

