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Abstract  

Background 

Preoperative evaluation of the number of lymph node metastasis (LNM) is the basis 

of individual treatment of locally advanced gastric cancer (LAGC). However, the 

routinely used preoperative determination method is not accurate enough. 

Patients and methods 

We enrolled 730 LAGC patients from 5 centers in China and 1 center in Italy, and 

divided them into 1 primary cohort, 3 external validation cohorts, and 1 international 

validation cohort. A deep learning radiomic nomogram (DLRN) was built based on 

the images from multi-phase computed tomography (CT) for preoperatively 

determining the number of LNM in LAGC. We comprehensively tested the DLRN 

and compared it with three state-of-the-art methods. Moreover, we investigated the 

value of the DLRN in survival analysis. 

Results 

The DLRN showed good discrimination of the number of LNM on all cohorts (overall 

C-indexes: 0.821, 95% CI: 0.785-0.858 in the primary cohort; 0.797, 95% CI: 

0.771-0.823 in the external validation cohorts; and 0.822, 95% CI: 0.756-0.887 in the 

international validation cohort). The nomogram performed significantly better than 

the routinely used clinical N stages, tumor size, and clinical model (p<0.05). Besides, 

DLRN is significantly associated with the overall survival of LAGC patients (n=271). 

Conclusion 

A deep learning-based radiomic nomogram had good predictive value for LNM in 

LAGC. In staging-oriented treatment of gastric cancer, this preoperative nomogram 

could provide baseline information for individual treatment of LAGC. 

 

Keywords 

Lymph node metastasis, Deep learning, Radiomic nomogram, Locally advanced 

gastric cancer. 
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Highlights 

1) Evaluation of the lymph node metastasis (LNM) is the basis of individual treatment 

of locally advanced gastric cancer (LAGC); 

2) Deep leaning radiomic nomogram (DLRN) based on CT images can preoperatively 

determine the number of LNM in LAGC; 

3) DLRN is significantly superior to the routinely used clinical N stages, tumor size, 

and clinical model; 

4) DLRN is significantly associated with the overall survival of LAGC. 
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Introduction 

Gastric cancer is the third leading cause of death from cancer worldwide1. The 

incidences in Asia, Eastern Europe, and South America are relatively high2,3.  

Locally advanced gastric cancer (LAGC), characterized by wall invasion deeper 

than the submucosa, is associated with a high rate of lymph node metastasis (LNM) 

and poor clinical outcomes4. According to the 8th American Joint Committee on 

Cancer (AJCC) TNM staging system, the severity of lymph node (LN) involvement is 

classified based on the number of LNMs as N0 (no LNM), N1 (1–2 LNMs), N2 (3–6 

LNMs), N3a (7–15 LNMs), and N3b (>15 LNMs)5.  

Accurate preoperative N staging is one of the bases of individual treatment of 

LAGC. Patients with different N stages have significantly different prognosis and 

may need a different extent of lymphadenectomy or neoadjuvant treatment4. The 

European prospective randomized Dutch trial showed that extended 

lymphadenectomy (D2) had a superior survival than limited lymphadenectomy (D1) 

in LAGC patients with N2 stage6. The European Society for Medical Oncology 

(ESMO) and National Comprehensive Cancer Network (NCCN) guidelines 

recommend preoperative N staging using medical imaging3-4. In particular, computed 

tomography (CT) imaging has been routinely used for preoperative N staging, with 

enlarged and round-shaped LNs as a sign of LNM5. However, the accuracy of CT is 

approximately 50%–70% for LNM7, which is unsatisfactory. 

Radiomics is an emerging technique that converts standard-of-care medical images 

into hand-crafted radiomic features and then selects critical features as a signature for 

quantitative cancer diagnostics8-11. Radiomic nomogram, a graphic representation of 

model that combines radiomic signature and clinical characteristics, has improved the 

prediction ability of peritoneal metastasis in LAGC12. In combination with deep 

learning features automatically learned from convolutional neural networks, 

radiomics showed excellent performance in cancer prognosis13. However, the use of 

deep learning radiomics to predict N stages in LAGC has yet to be reported. 

To address this, we aimed to develop a deep learning radiomic nomogram (DLRN) 

for N staging in LAGC. We focused on preoperatively discriminating pathologic N0, 
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N1, N2, N3a, and N3b, since an accurate staging is the basis of individual treatment.   

Patients and Methods 

Patients 

This retrospective study was approved by the Institutional Review Board of all 

participating hospitals, and the requirement for informed consent was waived.  

Patients were enrolled with the following criteria. Inclusion criteria: (a) 

pathologically diagnosed as LAGC (pT2-4aNxM0); (b) D2 lymph node dissection 

with at least 16 LNs during the surgery; (c) CT performed less than 2 weeks before 

surgery. Exclusion criteria: (a) preoperative therapy (radiotherapy, chemotherapy, or 

other treatments); (b) previous abdominal malignancies or inflammatory diseases; (c) 

difficult to segment the tumor because of unsatisfactory gastric distention; (d) artifacts 

on CT images seriously deteriorating the observation of LNs. 

As shown in Figure 1 and Supplementary A1, 679 LAGC patients were enrolled 

from five centers in China and divided into four cohorts: a primary cohort for training 

(PC, n=225) and three validation cohorts (VC1, n=178; VC2, n=145; VC3, n=131). 

An international validation cohort (IVC, n=51) was collected from Italy. Besides, a 

follow-up cohort (n=271) was used for survival analysis in LAGC. 

Clinical characteristics 

The clinical characteristics of the patients are shown in Table S1. The gold 

standard for N stages was pathologically assessed after surgery. The clinical N and 

clinical T stages were determined based on preoperative CT images by experienced 

radiologists, according to the 8th AJCC TNM staging system5,14.  

CT imaging 

All patients in PC, VC1, and VC2 underwent both unenhanced and biphasic 

(arterial and venous phase) contrast-enhanced CT before surgery. Patients in VC3 and 

IVC underwent only biphasic contrast-enhanced CT. The CT image acquisition 

settings are shown in Supplementary A2 and Table S2.  

Procedures 

Figure 1 shows the flowchart of this study. The DLRN modeling pipeline is shown 
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in Figure 2. 

Tumor region segmentation 

Tumor regions of interest (ROIs) were manually delineated on multi-phase CT 

images by an experienced radiologist (reader 1). For each CT phase, only one slice 

with the largest tumor area was chosen visually by the radiologist and a 2-dimensional 

ROI of the tumor was delineated using ITK-SNAP software (version 3.6.0; 

http://www.itksnap.org). After 3 months, 30 patients in the PC were randomly selected, 

and their ROIs were segmented again by reader 1 and another radiologist (reader 2) to 

construct two re-segmentation datasets for the assessment of intra-/inter-reader 

reproducibility of radiomic features. 

Radiomic feature extraction 

A total of 112 deep learning features and 289 hand-crafted features were extracted 

from each ROI, totaling 1203 features from the three ROIs per patient 

(Supplementary A3). We adapted the DenseNet-201 architecture to develop our deep 

convolutional neural networks (DCNNs) for deep learning feature extraction15. The 

hand-crafted features included shape, global texture, and local texture. 

Radiomic signature building 

Feature selection and signature building were performed in PC (Supplementary 

A4). Three signatures were respectively built from the three ROIs as follows: 1) 

Intra-/inter-class correlation coefficients (ICCs) and coefficient of variation (CV) 

were calculated on the re-segmentation dataset and a simulated slice thickness dataset 

(Supplementary A5), respectively. The stable features with ICCs>0.8 and CV<15% 

were selected to adapt different segmentations and different slice thicknesses. 2) The 

features were divided into several clusters by hierarchical clustering and the most 

representative medoid feature in each cluster was reserved. 3) Three methods, 

including support vector machine (SVM), artificial neural network (ANN) and 

random forest (RF), were compared and the best method was used to construct three 

predictive signatures. 

DLRN construction 

Univariate analysis was used to select statistically significant clinical 
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characteristics (p<0.05). Multivariable linear regression analysis was conducted to 

build the DLRN from the clinical characteristics and radiomic signatures. We mainly 

considered contrast-enhanced radiomic signatures in our DLRN. But the incremental 

predictive value of unenhanced radiomic signature to DLRN was also investigated 

using the net reclassification index (NRI). 

The association of DLRN score with pathologic N stages was assessed using the 

Spearman correlation analysis. Logistic regression was used to predict the probability 

belonging to each N stage with the DLRN score. Additionally, a classification 

procedure was proposed based on cutoffs of the logistic regressions above to split 

patients into subgroups of N stages. Furthermore, multivariable logistic regression 

was performed to build a clinical model based on clinical characteristics for 

comparison. 

Performance evaluation 

Harrell’s C-indexes16 of the DLRN, radiomic signatures, significant clinical 

characteristics, and clinical model were compared in all cohorts. The confusion matrix 

of DLRN was also depicted. Moreover, stratification analysis was presented on 

clinical characteristics and CT scan parameters.  

Furthermore, we performed subgroup analysis and calculated pairwise C-indexes 

on discriminating non-N0 vs. N0, N2-3b vs. N0-1, N3a-3b vs. N0-2, and N3b vs. 

N0-3a. The calibration curve was plotted to assess the calibration of the DLRN on the 

subgroup analysis. Among the subgroup analysis, non-N0 vs. N0 is of special concern 

since it may determine the surgical strategy for lymphadenectomy. Decision curve 

analysis was conducted to evaluate the clinical usefulness of our DLRN in guiding 

lymphadenectomy by quantifying the net benefits. 

We further validated our DLRN on the Italian cohort using the Spearman 

correlation coefficient and overall C-index. Besides, we evaluated the association 

between DLRN score and overall survival (OS) in the follow-up LAGC cohort using 

Kaplan–Meier curves. 

Statistical analysis 

Statistical analysis was conducted with R software (version 3.5.0; 
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http://www.Rproject.org) and MATLAB. A two-sided p<0.05 was used as the criterion 

of statistically significant difference. In the univariate analysis, the differences in 

clinical characteristics between the patients in different groups were assessed using 

independent t-test or Mann–Whitney U test for continuous variables and Fisher exact 

test or chi-square test for categorical variables. Analysis of variance (ANOVA) and 

Kruskal–Wallis H test were implemented for comparing three or more groups. 

 

Results 

Chi-square test and t-test showed that there was no significant difference in 

gender or age between PC and VCs in China (p>0.05) except for patients’ age in the 

VC2 (p=0.0040). As shown in Table S1, the pathologic N stage was significantly 

associated with tumor size, clinical N stage, clinical T stage, gender, and CA19-9 in 

the PC (p<0.05). 

During the radiomic signature building step (Supplementary A6 and Figure S1), 

SVM was optimally selected to build three radiomic signatures, including arterial 

signature (6 features), venous signature (6 features), and unenhanced signature (7 

features). The final features are shown in Table S3 and Supplementary A6. 

The multivariable linear regression analysis in the PC showed that arterial 

signature, venous signature, and clinical N stage were independent predictors for 

pathologic N stage (Table S4), while the clinical T stage, tumor size, gender, and 

CA19-9 were removed. These predictors were combined into the DLRN (Figure 3A). 

The NRI analysis revealed that the addition of an unenhanced signature into DLRN 

did not show significantly better performance (NRI 0.0482; p=0.1870). 

As shown in Figure 3B, there was a significant positive correlation between 

DLRN score and pathologic N stage, which was also confirmed by the Spearman 

correlation coefficients (0.626-0.718, p<0.0001) in Table S5 and the confusion 

matrixes in Figure S2. As shown in Table 1, the DLRN showed a good discrimination 

of N stages in PC (overall C-index 0.821, 95% CI: 0.785-0.858), VC1 (0.777, 

0.735-0.819), VC2 (0.817, 0.775-0.860) and VC3 (0.787, 0.737-0.838). Moreover, the 

DLRN performed significantly better than the clinical N stage, tumor size, and the 
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clinical model (Table S4) on all the external VCs in China with p<0.05. The 

stratification analysis showed that the performance of our DLRN was not affected by 

the age, gender, Lauren type, tumor location, the version of CT system, and slice 

thickness (Figure S3 and Supplementary A7). 

The calibration curves of the subgroup analysis showed good agreement between 

the DLRN predicted outcomes and the real N stages (Figure 3C). Moreover, the 

DLRN could well discriminate non-N0 from N0 groups in all cohorts (C-indexes: 

0.777-0.821, Table S5). If we use this model to guide lymphadenectomy (non-N0 

patients receive lymphadenectomy and N0 patients do not), as shown in Figure 3D, 

the decision curves indicated that the DLRN could add more benefit to patients than 

single signatures, clinical model, none-lymphadenectomy scheme, and 

all-lymphadenectomy scheme.  

Clinicians may be interested in how many patients with CT-diagnosed N0 disease 

will be upstaged with DLRN (non-N0 by pathology). These cases could be named as 

occult LNM, which are with no typical CT signs (i.e., enlarged lymph node). The 

experimental results showed that DLRN could well detect these patients with occult 

LNM (81.7% [76/93] upgraded). 

We further validated our DLRN on the non-Asian cohort IVC (Table S6). The 

DLRN also showed good discrimination of N stage in IVC (overall C-index 0.822, 95% 

CI: 0.756-0.887). 

We evaluated the prognostic value of DLRN in the follow-up LAGC cohort 

(Table S6). The DLRN yielded a predictive accuracy for OS (C-index 0.646, 95% CI: 

0.596-0.696, p<0.0001). Patients with high DLRN score displayed worse OS (per 1 

increase; HR 1.982, 95% CI: 1.592-2.467, p<0.0001). As shown in Figure 4, the 

Kaplan-Meier curves divided by the median value of DLRN score were significantly 

different (log-rank test p<0.0001). Further, we performed univariate analysis and 

multivariate Cox regression on DLRN and clinical characteristics. As shown in Table 

S7, the DLRN had the highest C-index of predicting OS in the univariate analysis. 

The Cox regression identified the DLRN and invaded site as the independent 
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prognostic factors. The final Cox regression model yielded a C-index of 0.656 (95% 

CI: 0.606-0.705). 

 

Discussion 

This study was an international multi-center collaboration aimed at predicting the 

number of LNM in LAGC. Our DLRN showed high predictive ability and 

reproducibility across different centers. Moreover, the ROI segmentation and DLRN 

score calculation require less than 5 additional minutes per patient during a normal 

reporting session, which makes DLRN an easy-to-use tool for clinicians. We have 

already uploaded the model and several examples of CT images on our website 

http://www.radiomics.net.cn/platform.html as well as on Zenodo 

https://doi.org/10.5281/zenodo.3701430 for open access. 

According to the latest TNM staging system, regional LNs with enlarged 

short-axis diameter ≥1 cm and other abnormal signs on imaging are suspicious for 

nodal involvement5. However, this standard (the clinical N stage in this study) showed 

relatively poor performance in our cohorts. In contrast, our DLRN performed 

significantly better than the routinely used clinical N stage. Moreover, 81.7% of 

occult LNMs with no typical CT signs (missed by the radiologists) were detected by 

DLRN, which indicated that our model could be a supplement to current staging 

scheme.  

Our DLRN may help tailor neoadjuvant therapy, lymphadenectomy, or extent of 

lymphadenectomy in LAGC. There is growing interest in the use of neoadjuvant 

therapy before surgery for LAGC.4 Patients with neoadjuvant chemotherapy were 

proven to have fewer LNMs after surgery than those without17. This finding suggests 

that our preoperative DLRN may be helpful for tailoring neoadjuvant regimens. 

Moreover, the decision curve analysis showed that using our DLRN to guide 

lymphadenectomy could provide more benefit to patients than both 

non-lymphadenectomy and all-lymphadenectomy schemes. Even for patients with 

lymphadenectomy, there is a long-running debate over which lymphadenectomy 

extent (D0, D1, or D2) could be beneficial for patients4,6,18. Our nomogram is able to 
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evaluate the number of LNM preoperatively, which could, in turn, assist in choosing 

the extent of lymphadenectomy. 

This study was performed on three tumor ROIs from multi-phase CT images 

rather than one ROI from a single CT phase. Although the three ROIs showed 

different shapes and contents, their radiomic signatures were all significantly 

associated with the pathologic N stages (p<0.001). Furthermore, 13 out of 19 selected 

features in the three signatures were deep learning features, indicating that the 

DCNNs could extract correlative quantitative representation reflecting the extent of 

LNM. As shown in Figure S4, the activation maps of DCNN could highlight some 

regions of the tumors with a large number of LNM, while the same region was 

suppressed in tumors with small number of LNM. We suspect that the highlighted 

regions in the activation maps may be relevant to cancer progression. Besides, the 

global texture features were also adopted in the radiomic signatures, which might 

reflect the heterogeneity and invasiveness of the tumor. For example, the “gray-level 

co-occurrence matrix (GLCM) dissimilarity” feature qualifies the global distribution 

characteristics of gray-level variability in tumor ROI. The feature "GLCM 

cluster_tendency" tends to emphasize the ROI with significant textural patterns. 

Another finding was that our DLRN was significantly associated with the OS of 

LAGC patients. Previous studies have proven that LAGC patients with different N 

stages had different prognosis4. Our results further validated the association with N 

stages as well as the prognosis value of our DLRN. Furthermore, we conducted a 

cross-cancer analysis and transferred our model to a colorectal cancer cohort (n=80). 

Interestingly, all three radiomic signatures had the potential to discriminate LNM of 

colorectal cancer (Supplementary A8), indicating that other gastrointestinal cancers 

might have similar phenotypes with LNM. 

Our study has some limitations. First, this study involved a large number of 

patients from China but a small number of patients from Italy. A further prospective 

study on other Asian and large-scale non-Asian populations should be investigated. 

Second, gastric cancer can have different etiology and biology in different countries 

or races; how this influences our nomogram is still unclear. However, mixing patients 
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from different countries/races for training may improve the performance of the model. 

Third, besides CT, endoscopic ultrasonography (EUS) is also recommended for N 

staging4. The combination of EUS and CT may improve N staging accuracy. Fourth, 

the 2D features in one single slice rather than 3D features were used. Although the 

operation is more convenient for the radiologist, the 2D segmentation may not be 

representative of the entire tumor and some features may be affected from 2D vs. 3D. 

Finally, gastric cancer with microsatellite instability (about 10% percentage) is less 

likely to have LNM but is likely to have enlarged LNs due to immune infiltrate19 and 

its contribution in the nomogram should be further investigated. 

In conclusion, a deep learning radiomic nomogram had good predictive ability for 

N staging in LAGC, which could provide basic information for individual diagnosis 

and treatment in LAGC. 
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Figure legends 

Figure 1. Flowchart of this international multi-center study. 

Figure 2. Workflow of DLRN modeling for N staging in LAGC patients. 

Figure 3. DLRN and its performance. (A) DLRN with two contrast-enhanced 

radiomic signatures and clinical N stage. The points of arterial signature, venous 

signature and clinical N stage are obtained based on the top “points” bar with scale of 

0-100. Then, the total point is calculated by summing the three points. The predicted 

N stage is obtained by mapping the total point to the “total points” bar and the 

“predicted N stage” bar. (B) Box plots showing patterns of correlation between 

pathologic N stages and DLRN in PC, VC1, VC2, and VC3. (C) Calibration curves of 

DLRN in subgroup analysis on discriminating non-N0 vs. N0, N2-3b vs. N0-1, 

N3a-3b vs. N0-2, and N3b vs. N0-3a. (D) Decision curve analysis for guiding 

lymphadenectomy using DLRN, arterial signature, venous signature, clinical model, 

none-lymphadenectomy scheme, and all-lymphadenectomy scheme. 

Figure 4. Kaplan-Meier survival curves of OS on the follow-up LAGC cohort. 

 

Table legends 

Table 1. Overall C-index of DLRN and other predictors. 

 

The supplementary materials for online only: 

Supplementary A1: Patient recruitment 

Supplementary A2: CT image acquisition 

Supplementary A3: Radiomic feature extraction 

Supplementary A4: Method of radiomic feature selection and signature building 

Supplementary A5: Simulated slice thickness dataset building 

Supplementary A6: Results of radiomic signature building 

Supplementary A7: Stratification analysis 
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Supplementary A8: Cross-cancer analysis on a colorectal cancer cohort 

Figure S1. Heatmaps of radiomic feature expressions. 

Figure S2. Confusion matrixes for DLRN. 

Figure S3. Box plots showing patterns of correlation between pathologic N stages 

and DLRN score in stratification analysis. 

Figure S4. The diagram of N stages and DCNN activation maps.  

Figure S5. ROC curves for the three radiomic signatures to determine LNM vs. 

non-LNM on the colorectal cancer cohort. 

Table S1. Characteristics of patients in the PC and VCs for pathologic N stage groups. 

Table S2. The CT image acquisition parameters of the six centers. 

Table S3. Input features of the three radiomic signatures. 

Table S4. Construction of DLRN and clinical model via multivariable linear 

regression analysis. 

Table S5. Performances of the DLRN in PC and VCs. 

Table S6. Characteristics of patients in the IVC and the follow-up LAGC cohort. 

Table S7. Results of survival analysis for characteristics and models. 
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Table 1. Overall C-index of DLRN and other predictors. 

 PC VC1 VC2 VC3 All VCs 

DLRN 

0.821 

(0.785-0.858) 

0.777 

(0.735-0.819) 

0.817 

(0.775-0.860) 

0.787 

(0.737-0.838) 

0.797 

(0.771-0.823) 

Arterial signature 

0.766 

(0.719-0.812) 

0.738 

(0.688-0.787) 

0.761 

(0.704-0.818) 

0.716 

(0.652-0.780) 

0.738 

(0.705-0.770) 

Venous signature 

0.785 

(0.744-0.826) 

0.719 

(0.667-0.770) 

0.732 

(0.676-0.789) 

0.739 

(0.678-0.799) 

0.739 

(0.708-0.770) 

Unenhanced signature 

0.782 

(0.740-0.824) 

0.729 

(0.681-0.776) 

0.676 

(0.611-0.740) 
 

0.697 

(0.657-0.736)* 

Clinical N stage 

0.679 

(0.629-0.730) 

0.685 

(0.629-0.741) 

0.698 

(0.631-0.766) 

0.709 

(0.619-0.800) 

0.705 

(0.669-0.742) 

Clinical model 

0.689 

(0.642-0.736) 

0.652 

(0.593-0.711) 

0.671 

(0.605-0.737) 

0.732 

(0.661-0.804) 

0.675 

(0.638-0.713) 

Tumor size 

0.666 

(0.619-0.714) 

0.666 

(0.610-0.722) 

0.673 

(0.616-0.730) 

0.638 

(0.565-0.711) 

0.664 

(0.630-0.699) 

Note. * the value was calculated based on VC1 and VC2. 

 










