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Abstract. Concurrent Kleene Algebra (CKA) extends basic Kleene
algebra with a parallel composition operator, which enables reasoning
about concurrent programs. However, CKA fundamentally misses tests,
which are needed to model standard programming constructs such as
conditionals and while-loops. It turns out that integrating tests in CKA is
subtle, due to their interaction with parallelism. In this paper we provide
a solution in the form of Concurrent Kleene Algebra with Observations
(CKAO). Our main contribution is a completeness theorem for CKAO.
Our result resorts on a more general study of CKA “with hypotheses”, of
which CKAO turns out to be an instance: this analysis is of independent
interest, as it can be applied to extensions of CKA other than CKAO.
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1 Introduction

Kleene algebra with tests (KAT) is a (co)algebraic framework [17,19] that allows
one to study properties of imperative programs with conditional branching, i.e.
if-statements and while-loops. KAT is build on Kleene algebra (KA) [6,16], the
algebra of regular languages. Both KA and KAT enjoy a rich meta-theory, which
makes them a suitable foundation for reasoning about program verification.
In particular, it is well-known that the equational theories of KA and KAT
characterise rational languages [27,21,16] and guarded rational languages [17]
respectively. Efficient procedures for deciding equivalence have been studied in
recent years, also in view of recent applications to network verification [3,8,28].

Concurrency is a known source of bugs and hence challenges for verifica-
tion. Hoare, Struth, and collaborators [11], have proposed an extension of KA,
Concurrent Kleene Algebra (CKA), as an algebraic foundation for concurrent
programming. CKA enriches the basic language of KA with a parallel composition
operator · ‖ ·. Analogously to KA, CKA also has a semantic characterisation
for which the equational theory is complete, in terms of rational languages of
pomsets (words with a partial order on letters) [23,24,15].
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The development of CKA raises a natural question, namely how tests, which
were essential in KAT for the study of sequential programs, can be integrated into
CKA. At first glance, the obvious answer may appear to be to merge KAT with
CKA, yielding Concurrent Kleene Algebra with Tests (CKAT) — as attempted
in [12]. However, as it turns out, integrating tests into CKA is quite subtle and
this naive combination does not adequately capture the behaviour of concurrent
programs. In particular, using the CKAT framework of [12] one can prove that
for any test b and CKAT program e:

0 ≤KAT b · e · b ≤CKA e ‖ (b · b) ≡KAT e ‖ 0 ≡CKA 0

thus b · e · b ≡CKAT 0, meaning no program e can change the outcome of any test b.
Or equivalently, and undesirably, that any test is an invariant of any program!

The core issue is the identification in KAT of sequential composition · and
Boolean conjunction ∧. In the concurrent setting this is not sound as the values
of variables — and hence tests — can be changed between the two tests.

In order to fix this issue, we have presented Kleene Algebra with Observations
(KAO) in previous work [13]. Algebraically, KAO differs from KAT in that
conjunction of tests b ∧ b′ and their sequential composition b · b′ are distinct
operations. In particular, b∧b′ expresses a single test executed atomically, whereas
b ·b′ describes two distinct executions, occurring one after the other. As mentioned
above, this distinction is crucial when moving from the sequential setting of KA
to the concurrent setting of CKA, as actions from another thread that happen
to be scheduled after b but before b′ may as well change the outcome of b′.

This newly developed extension of KA enables a novel attempt to enrich CKA
with the ability to reason about programs that also have the traditional condi-
tionals: in this paper, we present Concurrent Kleene Algebra with Observations
(CKAO) and show that it overcomes the problems present in CKAT.

The traditional plan for developing a variant of (C)KA is to define a separate
syntax, semantics, and set of axioms, before establishing a formal correspondence
with the base syntax, semantics and axioms of (C)KA proper, and arguing that
this correspondence allows one to conclude soundness and completeness of the
axioms w.r.t. the semantics, as well as decidability of equivalence in the semantics.
Instead of such a tailor-made proof, however, we take a more general approach
by first proposing CKA with hypotheses (CKAH) as a formalism for studying
extensions of CKA, akin to how Kleene algebra with hypotheses [5,18,20,7] can
be used to extend Kleene algebra. We then apply CKAH to study CKAO, but
the meta-theory developed can also be applied to extensions other than CKAO.

Using the CKAH formalism, we instantiate CKAO as CKAH with a particular
set of hypotheses, and we immediately obtain a syntax and semantics; we can
then use the meta-theory of CKAH to argue completeness and decidability in a
modular proof, which composes results about CKA [15] and KAO [13].

The technical roadmap of the paper and its contributions are as follows.

– We introduce Concurrent Kleene Algebra with Hypotheses (CKAH), a for-
malism for studying extensions of CKA; this is a concurrent extension of
Kleene Algebra with Hypotheses (Section 4). We show how CKAH is sound
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with respect to rational pomset languages closed under an operation arising
from the set of hypotheses. We propose techniques to argue completeness
of the extended set of axioms with respect to the sound model as well as
decidability of equivalence, capturing methods commonly used in literature
to argue completeness and decidability for extensions of (concurrent) KA.

– We prove that CKAO can be presented as an instance of CKAH, for a certain
set of hypotheses (Section 5). This gives us a sound model of CKAO ‘for free’.
We then prove that the axioms of CKAO are also complete for this model,
and that equivalence is decidable, using the techniques developed previously.

We conclude this introduction by giving an example of how hypotheses can be
added to CKA to include the meaning of primitive actions. Suppose we were
designing a DSL for recipes, specifically, the steps necessary, and their order. A
recipe to prepare cookies might contain the actions mix (mixing the ingredients),
preheat (pre-heating the oven), chill (chilling the dough) and bake (baking the
cookies). Using these actions, a recipe like “mix the ingredients until combined;
chill the dough while pre-heating the oven; bake cookies in the oven” may be
encoded as mix∗ · (chill ‖ preheat) ·bake. Now, imagine that we have only one oven,
meaning that we cannot bake two batches of cookies concurrently. We might
encode this restriction on concurrent behaviour by forcing the equation

(e ·bake ·f) ‖ (g ·bake ·h) = (e ·bake ‖ g) ·(f ‖ bake ·h)+(e ‖ g ·bake) ·(bake ·f ‖ h)

As a consequence of this hypothesis, one could then derive properties such as

bake ‖ (bake ·mix) = bake · bake ·mix+ bake ·mix · bake

In a nutshell, this paper provides an algebraic framework — CKAH— together
with techniques for soundness and completeness results. The framework is flexible
in that different instantiations of the hypotheses generate very different algebraic
systems. We provide one instantiation — CKAO — that enables analysis of
programs with both concurrency primitives and Boolean assertions. This is the
first sound and complete algebraic theory to reason about such programs.

For the sake of brevity, some proofs appear in the extended version [14].

2 Preliminaries

We recall basic definitions on pomset languages, used in the semantics of CKA,
which generalise languages to allow letters in words to be partially ordered. We
fix a (possibly infinite) alphabet Σ. When defining sets parametrised by Σ, say
S(Σ), if Σ is clear from the context we use S to refer to S(Σ).

Posets and Pomsets Pomsets [9,10] are labelled posets, up to isomorphism.

Definition 2.1 (Labellet poset). A labelled poset over Σ is a tuple u =
〈S,≤, λ〉, where S is a finite set (the carrier of u), ≤u is a partial order on S
(the order of u), and λ : S → Σ is a function (the labelling of u).
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We will denote labelled posets by bold lower-case letters u, v, etc. We write
Su for the carrier of u, ≤u for the order of u, and λu for the labelling of u. We
assume that any labelled poset has a carrier that is a subset of some countably
infinite set, say N; this allows us to speak about the set of labelled posets over Σ.
The precise contents of the carrier, however, are not important — what matters
to us is the labels of the points, and the ordering between them.

Definition 2.2 (Poset isomorphism, pomset). Let u,v be labelled posets
over Σ. We say u is isomorphic to v, denoted u ∼= v, if there exists a bijection
h : Su → Sv that preserves labels, and preserves and reflects ordering. More
precisely, we require that λv ◦ h = λu, and s ≤u s′ if and only if h(s) ≤v h(s′).

A pomset over Σ is an isomorphism class of labelled posets over Σ, i.e., the
class [v] = {u : u ∼= v} for some labelled poset v.

We write Pom(Σ) for the set of pomsets over Σ, and 1 for the empty pomset.
As long as we have countably many pomsets in scope, the above allows us
to assume w.l.o.g. that those pomsets are represented by labelled posets with
pairwise disjoint carriers; we tacitly make this assumption throughout this paper.

Pomsets can be concatenated, creating a new pomset that contains all events
of the operands, with the same label, but which orders all events of the left
operand before those of the right one. We can also compose pomsets in parallel,
where events of the operands are juxtaposed without any ordering between them.

Definition 2.3 (Pomset composition). Let U = [u] and V = [v] be pomsets
over Σ. We write U ‖ V for the parallel composition of U and V , which is the
pomset over Σ represented by the labelled poset u ‖ v, where

Su‖v = Su ∪ Sv ≤u‖v= ≤u ∪ ≤v λu‖v(x) =

{
λu(x) x ∈ Su

λv(x) x ∈ Sv

Similarly, we write U · V for the sequential composition of U and V , that is,
the pomset represented by the labelled poset u · v, where

Su·v = Su‖v ≤u·v = ≤u ∪ ≤v ∪ (Su × Sv) λu·v = λu‖v

Just like words are built up from the empty word and letters using concatena-
tion, we can build a particular set of pomsets using only sequential and parallel
composition; this will be the primary type of pomset that we will use.

Definition 2.4 (Series-parallel). The set of series-parallel pomsets ( sp-
pomsets) over Σ, denoted SP(Σ), is the smallest set s.t. 1 ∈ SP(Σ), a ∈ SP(Σ)
for every a ∈ Σ, and it is closed under parallel and sequential composition.

The following characterisation of SP is very useful in proofs.

Theorem 2.5 (Gischer [9]). Let U = [u] ∈ Pom. Then U ∈ SP if and only if
U is N-free, which is to say that if there exist no distinct s0, s1, s2, s3 ∈ Su such
that s0 ≤u s1 and s2 ≤u s3 and s0 ≤u s3, with no other relation between them.
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One way of comparing pomsets is to see whether they have the same events
and labels, except that one is “more sequential” in the sense that more events
are ordered. This is captured by the notion of subsumption [9], defined as follows.

Definition 2.6 (Subsumption). Let U = [u] and V = [v]. We say U is
subsumed by V , written U  V , if there exists a label- and order-preserving
bijection h : Sv → Su. That is, λu ◦ h = λv and if s ≤v s′, then h(s) ≤u h(s′).

Subsumption between sp-pomsets can be characterised as follows [9].

Lemma 2.7. Let sp be  restricted to SP. Then sp is the smallest precongru-
ence (preorder monotone w.r.t. the operators) such that for all U, V,W,X ∈ SP:

(U ‖ V ) · (W ‖ X) sp (U ·W ) ‖ (V ·X)

CKA: syntax and semantics. CKA terms are generated by the grammar

e, f ∈ T(Σ) ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

Semantics of CKA is given in terms of pomset languages, that is subsets of SP,
which we simply denote by 2SP. Formally, the function �−� : T → 2SP assigning
languages to CKA terms is defined as follows:

�0� = ∅ �1� = {1} �e+ f� = �e� ∪ �f� �e · f� = �e� · �f�
�e∗� = �e�∗ �a� = {a} �e ‖ f� = �e� ‖ �f�

Here, we use the pointwise lifting of sequential and parallel composition from
pomsets to pomset languages, i.e., when U ,V ⊆ SP(Σ), we define

U · V = {U · V : U ∈ U , V ∈ V} U ‖ V = {U ‖ V : U ∈ U , V ∈ V}

Furthermore, the Kleene star of a pomset language U is defined as U∗ =
⋃

n∈N Un,
where U0 = {1} and Un+1 = Un · U .

Equivalence of CKA terms can be axiomatised in the style of Kleene algebra.
The relation ≡ is the smallest congruence on T (with respect to all operators)
such that for all e, f, g ∈ T:

e+ 0 ≡ e e+ e ≡ e e+ f ≡ f + e e+ (f + g) ≡ (f + g) + h

e · (f · g) ≡ (e · f) · g e · (f + g) ≡ e · f + e · h (e+ f) · g ≡ e · g + f · g

e · 1 ≡ e ≡ 1 · e e · 0 ≡ 0 ≡ 0 · e e ‖ f ≡ f ‖ e e ‖ 1 ≡ e e ‖ 0 ≡ 0

e ‖ (f ‖ g) ≡ (e ‖ f) ‖ g e ‖ (f+g) ≡ e ‖ f+e ‖ g 1+e ·e∗ ≡ e∗ ≡ 1+e∗ ·e

e+ f · g � g =⇒ f∗ · e � g e+ f · g � f =⇒ e · g∗ � f

in which e � f is the natural order e+ f ≡ f . The final (conditional) axioms are
referred to as the least fixpoint axioms.

Laurence and Struth [23] proved this axiomatisation to be sound and complete.
A decision procedure was proposed in [4].
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Theorem 2.8 (Soundness, completeness, decidability). Let e, f ∈ T. We
have: e ≡ f if and only if �e� = �f�, and it is decidable whether �e� = �f�.

Readers familiar with CKA will notice that the algebra defined here is not in
fact CKA as defined in [11]. Indeed the signature axiom of CKA, the exchange law,
has been omitted. However, as we show in Section 4.2, the standard definition of
CKA, as well as its completeness proof [15], may be recovered using hypotheses.

3 Pomset contexts

The linear one-dimensional structure of words makes it straightforward to define
occurrences of subwords: if one wants to state that a word w appears in another
word v, one can simply say that v = xwy for some x and y. Due to the two-
dimensional nature of pomsets, it is not straightforward to define when a pomset
occurs inside another pomset, because the pomset could appear below a parallel,
which is nested in a sequential, which is in a parallel, etc. In what follows we
define pomset contexts, that will enable us to talk about pomset factorisations in
a similar fashion as we do for words, and prove some useful properties for these.

Definition 3.1. Let ∗ be a symbol not occurring in Σ. A pomset context is a
pomset over Σ ∪ {∗} with exactly one node labelled by ∗. More precisely, C is a
pomset context if C = [c] with exactly one s∗ ∈ Sc with λc(s∗) = ∗.

Intuitively, ∗ is a placeholder or gap where another pomset can be inserted.
We write PC(Σ) for the set of pomset contexts over Σ, and PCsp(Σ) for the
series-parallel pomset contexts over Σ.

Given a C ∈ PC and U ∈ Pom, we can “plug” U into the gap left in C to
obtain the pomset C[U ] ∈ Pom. More precisely, let U = [u] and C = [c] with
u disjoint from c. We write C[U ] for the pomset represented by c[u], where
Sc[u] = Su ∪ Sc − {∗} and λc[u](s) is given by λc(s) if s ∈ Sc − {∗}, and λu(s)
when s ∈ Su; lastly, ≤c[u] is the smallest relation on Sc[u] satisfying

s ≤u s′

s ≤c[u] s
′

s ≤c s′

s ≤c[u] s
′

s∗ ≤c s s′ ∈ Su

s′ ≤c[u] s

s′ ∈ Su s ≤c s∗
s ≤c[u] s

′

It follows easily that ≤c[u] is a partial order. We may also apply contexts to lan-
guages: if L ⊆ Pom and C ∈ PC, the language C[L] is defined as {C[U ] : U ∈ L}.

We now prove some properties of contexts that will be useful later in our
technical development. First, we note that pomset contexts respect subsumption.

Lemma 3.2. Let C,D ∈ PC, U ∈ Pom. If C  D, then C[U ]  D[U ].

Series-parallel pomset contexts can be given an inductive characterisation.

Lemma 3.3. PCsp is the smallest pomset language L satisfying

∗ ∈ L

U ∈ SP C ∈ L

U · C ∈ L

C ∈ L V ∈ SP

C · V ∈ L

U ∈ SP C ∈ L

U ‖ C ∈ L
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We will identify totally ordered pomsets with words, i.e., Σ∗ ⊆ SP. If the
pomset U inserted in a context C is a non-empty word, and the resulting pomset
is a parallel pomset, then we can infer how to factorise C.

Lemma 3.4. Let C ∈ PCsp be a pomset context, let V,W ∈ Pom, and let U ∈ Σ∗

be non-empty. If C[U ] = V ‖ W , then there exists a C ′ ∈ PCsp such that either
C = C ′ ‖ W and C ′[U ] = V , or C = V ‖ C ′ and C ′[U ] = W .

Application of series-parallel contexts preserves series-parallel pomsets.

Lemma 3.5. Let C ∈ PCsp. If U ∈ SP, then C[U ] ∈ SP as well.

If we plug the empty pomset into a context, then any subsumed pomset
can be obtained by plugging the empty pomset into a subsumed context. If the
subsumed pomset is series-parallel, then so is the subsumed context.

Lemma 3.6. Let C ∈ PC and V ∈ Pom with V  C[1]. We can construct
C ′ ∈ PC such that C ′  C and C ′[1] = V . Moreover, if V ∈ SP, then C ′ ∈ PCsp.

An analogue to the previous lemma can be obtained if instead of the empty
pomset one inserts a single letter pomset a.

Lemma 3.7. Let C ∈ PC, V ∈ Pom and a ∈ Σ with V  C[a]. We can construct
C ′ ∈ PC s.t. C ′  C and C ′[a] = V . Moreover, if V ∈ SP, then C ′ ∈ PCsp.

4 Concurrent Kleene Algebra with Hypotheses

Kleene algebra has basic axioms about how program composition operators
should work in general, and hence does not make any assumptions about how
these operators work on specific programs. When reasoning about equivalence
in a programming language, however, it makes sense to embed domain-specific
truths about the operators into the axioms. For instance, if a programming
language includes assignments to variables, then subsequent assignments to the
same variable could be merged into one, giving rise to an equation such as

x ← m ≤ x ← n · x ← m, (1)

which says that the behaviour of first assigning n, then m to x (on the right)
includes the behaviour of simply assigning m to x directly (on the left).

Kleene algebra with hypotheses (KAH) [5,18,20,7] enables the addition of
extra axioms, called hypotheses, to the axioms of KA. The appeal of KAH is that
it allows a wide range of such hypotheses about programs to be added to the
equational theory, while retaining the theoretical boilerplate of KA. In particular,
it turns out that we can derive a sound model for any set of hypotheses, using the
language model that is sound for KA proper [7]. Moreover, the completeness and
decidability results that hold for KA can be leveraged to obtain completeness
and decidability results for some specific types of hypotheses [5,20,7]; in general,
equivalence under other hypotheses may turn out to be undecidable [18].
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In this section, we propose a generalisation of so-called Kleene algebra with
hypotheses to a concurrent setting, showing how one can obtain a sound (pomset
language) model for any set of hypotheses. We then discuss a number of techniques
that allow one to prove completeness and decidability of the resulting system for
a large set of hypotheses, by relying on analogous results about CKA.

Definition 4.1. A hypothesis is an inequation e ≤ f where e, f ∈ T. When H
is a set of hypotheses, we write ≡H for the smallest congruence on T generated
by the hypotheses in H as well as the axioms and implications that build ≡. More
concretely, whenever e ≤ f ∈ H, also e �H f .

A hypothesis that declares two programs to be equivalent, such as in (1), can
be encoded by including both e ≤ f and f ≤ e in H.

Example 4.2. Suppose the set of primitive actions Σ includes the increments of
the form incrx, as well as a statement print, which writes the complete state
of the machine (including variables) on the standard output. Since we would like
to depict the state consistently, the state should not change while the output is
rendered; hence, print cannot be executed concurrently with any other action.
Instead, when a program containing print is scheduled to run in parallel with an
assignment, it must be interleaved such that the assignment runs either entirely
before or after print. To encode this, we can include in H the hypotheses

incrx ‖ print = incrx · print+ print · incrx

for all variables x. This allows us to prove, for instance, that

print · incrx · incrx · print �H (incrx ‖ print)∗

That is, if we run some number of increments and print statements in parallel,
it is possible that x is incremented twice between print statements.

To obtain a model of CKAH, it is not enough to use �−�, as some programs
equated by the hypotheses might have different semantics. To get around this, we
adapt the method from [7]: take �−� as a base semantics, and adapt the resulting
language using hypotheses, such that the pomsets that could be obtained by
rearranging the term using the hypotheses are also present in the language:

Definition 4.3. Let L ⊆ Pom. We define the H-closure of L, written L↓H , as
the smallest language containing L such that for all e ≤ f ∈ H and C ∈ PCsp,
if C[�f�] ⊆ L↓H , then C[�e�] ⊆ L↓H . Formally, L↓H may be described as the
smallest language satisfying the following inference rules:

L ⊆ L↓H
e ≤ f ∈ H C ∈ PCsp C[�f�] ⊆ L↓H

C[�e�] ⊆ L↓H

Example 4.4. Continuing with H and Σ as in the previous examples, note that
if L = �incrx ‖ print�, then incrx ‖ print ∈ L↓H . Choose C = ∗; we have
C[incrx · print] = incrx · print. Because incrx · print + print · incrx ≤
incrx ‖ print ∈ H and for all U ∈ �incrx ‖ print� we have C[U ] ∈ L ⊆ L↓H ,
we get C[incrx · print] ∈ L↓H and therefore incrx · print ∈ L↓H .
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We observe the following useful properties about the interaction between
closure and other operators on pomset languages.

Lemma 4.5. Let L,K ⊆ Pom and C ∈ PCsp. The following hold.

1. L ⊆ K↓H iff L↓H ⊆ K↓H .
2. If L ⊆ K, then L↓H ⊆ K↓H .
3. (L ∪K) ↓H =

(
L↓H ∪K↓H

)
↓H

4. (L ·K) ↓H =
(
L↓H ·K↓H

)
↓H

5. (L ‖ K) ↓H =
(
L↓H ‖ K↓H

)
↓H

6. (L∗) ↓H = (
(
L↓H

)∗
)↓H

7. If L↓H ⊆ K↓H , then C[L]↓H ⊆ C[K]↓H .
8. If L ⊆ SP, then L↓H ⊆ SP.

Remark 4.6. Property (1) states that −↓H is a closure operator. However, it is not
in general a Kuratowski closure operator [22], since it fails to commute with union.
For instance, let a, b, c ∈ Σ and H = {a ≤ b+ c}; then {b}↓H ∪ {c}↓H = {b, c},
while a ∈ ({b} ∪ {c}) ↓H .

Using Lemma 4.5, we can show that, if we combine the semantics from �−�
with H-closure, we obtain a sound semantics for CKA with hypotheses H.

Lemma 4.7 (Soundness). If e ≡H f , then �e�↓H = �f�↓H .

The converse of the above, where semantic equivalence is sufficient to establish
axiomatic equivalence, is called completeness. Similarly, we may also be interested
in deciding whether �e�↓H and �f�↓H coincide.

Definition 4.8. Let e, f ∈ T.

(i) If �e�↓H = �f�↓H implies e ≡H f , then H is called complete.
(ii) If �e�↓H = �f�↓H is decidable, then H is said to be decidable.

Note that, in the special case where H = ∅, we know that H is complete and
decidable by Theorem 2.8. One method to find out whether H is complete or
decidable is to reduce the problem to this special case. More concretely, suppose
we know �e�↓H = �f�↓H , and want to establish that e ≡H f . If we could find a
set of hypotheses H ′ that is complete, and we could map e and f to terms r(e)
and r(f) such that �r(e)�↓H′

= �r(f)�↓H′
, then we would have r(e) ≡H′

r(f). If
we could then “lift” that equivalence to prove e ≡H f , we are done. Similarly, if
we would know that �r(e)�↓H′

= �r(f)�↓H′
is equivalent to �e�↓H = �f�↓H , we

could decide the latter. To formalise this intuition, we first need the following.

Definition 4.9. We say that H implies H ′ if we can use the hypotheses in H to
prove those of H ′, i.e., if for every hypothesis e ≤ f ∈ H ′ it holds that e �H f .

Implication relates to equivalence and closure as follows.

Lemma 4.10. Let H and H ′ be sets of hypotheses such that H implies H ′.

(i) If e, f ∈ T with e ≡H′
f , then e ≡H f .

(ii) If L ⊆ Pom, then L↓H′ ⊆ L↓H .
(iii) If L ⊆ Pom, then (L↓H′

)↓H = L↓H .
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If H implies H ′ and vice versa, then H is complete (resp. decidable) precisely
when H ′ is. In general, however, this is not very helpful; we need something more
asymmetrical, in order to get from a complicated set of hypotheses H to a simpler
set of hypotheses H ′, where completeness or decidability might be easier to prove.
Ideally, we would like to reduce to H ′ = ∅, which is complete and decidable.

One idea to formalise this idea of a reduction is as follows.

Definition 4.11. Let H and H ′ be sets of hypotheses such that H implies H ′. A
map r : T → T is a reduction from H to H ′ when both of the following are true:

(i) for e ∈ T, it holds that e ≡H r(e), and
(ii) for e, f ∈ T, if �e�↓H = �f�↓H , then �r(e)�↓H′

= �r(f)�↓H′
.

We call H reducible to H ′ if there exists a reduction from H to H ′.

It is straightforward to show that reductions do indeed carry over completeness
and decidability results, in the following sense.

Lemma 4.12. Suppose H is reducible to H ′. If H ′ is complete (respectively
decidable), then so is H.

Example 4.13. Let Σ = {a, b}. Let H = {a ≤ b}. We can define for e ∈ T the
term r(e) ∈ T, which is e but with every occurrence of b replaced by a+ b. For
instance, r(a · b∗ ‖ c) = a · (a+ b)

∗ ‖ c. An inductive argument on the structure
of e shows that r reduces H to ∅, and hence H is complete and decidable.

It is not very hard to show that reductions can be chained, as follows.

Lemma 4.14. If H reduces to H ′, which reduces to H ′′, then H reduces to H ′′.

Another way of reducing H is to find two sets of hypotheses H0 and H1, and
reduce each of those to another set of hypotheses H ′ [7]. The idea is that a proof
of e ≡H f can be split up in a phase where we find e′, f ′ ∈ T such that e ≡H0 e′

and f ≡H0 f ′, after which we find e′′, f ′′ ∈ T with e′ ≡H1 e′′ and f ′ ≡H1 f ′′.
Finally, we establish that e′′ ≡H′

f ′′, before lifting those equivalences to H,
concluding

e ≡H e′ ≡H e′′ ≡H f ′′ ≡H f ′ ≡H f

One way of achieving this is as follows.

Definition 4.15. We say that H factorises into H0 and H1 if H implies both
H0 and H1, and for all L ⊆ SP we have that L↓H = (L↓H0)↓H1 .

In order to use factorisation to compose simpler reductions into more compli-
cated ones, we need a slightly stronger notion of reduction, as follows.

Definition 4.16. We say that r is a strong reduction from H to H ′ if it is a
reduction such that for e ∈ T, it holds that �e�↓H = �r(e)�↓H′

.

Note that this additional condition essentially strengthens the second condition
in Definition 4.11. Factorisation then lets us compose strong reductions.
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Lemma 4.17. Suppose H factorises into H0 and H1, and both H0 and H1

strongly reduce to H ′. Then H strongly reduces to H ′.

The remainder of this section is devoted to developing techniques that can be
used to design reductions, based on the properties of the sets of hypotheses under
consideration. Using the lemmas we have established so far, these techniques may
then be leveraged to obtain completeness and decidability results.

4.1 Reification

It can happen that the hypotheses in H impose an algebraic structure on the
letters in Σ; for instance, as we will see later on, the letters in H could be
propositional terms, whose equivalence is mediated by the axioms of Boolean
algebra. In order to peel away this layer of axioms and reduce to a smaller H ′,
we can try to reduce to terms over a smaller alphabet, making the algebraic
structure on the letters irrelevant to equivalence. In a sense, performing this
kind of reduction is like showing that the equivalences between letters from the
hypotheses can already be guaranteed by replacing them with the right terms.

Example 4.18. Let Σ be the set of group terms over a (finite) alphabet Λ, that is,
Σ consists of the terms generated by the grammar g, h ::= u | a ∈ Λ | g ◦h | g.
Furthermore, let ≡G be the smallest congruence generated by the group axioms,
i.e., for all g, h, i ∈ Λ it holds that

g ◦ (h ◦ i) ≡G (g ◦ h) ◦ i g ◦ u ≡G g ≡G u ◦ g g ◦ g ≡G u ≡G g ◦ g

Lastly, let group = {g ≤ h : g ≡G h}. We can then define a reduction from group
to ∅ by replacing every letter (group term) in a term e with its reduced form,
that is, with the (unique) equivalent group term of minimum size. For instance,
if Λ = {a, b, c}, then we send the term a ◦ a ‖ b ◦ c ◦ c to the term u ‖ b.

For the remainder of this section, we fix a subalphabet Γ ⊆ Σ. When
r : Σ → T(Γ ), we extend r to a map from T(Σ) to T(Γ ), by inductively applying
r to terms. We can also apply r to a series-parallel pomset, obtaining a pomset
language. More precisely, when U is a pomset, we define r(U) as follows:

r(1) = {1} r(U · V ) = r(U) · r(V ) r(a) = �r(a)� r(U ‖ V ) = r(U) ‖ r(V )

Lastly, when L ⊆ SP, we write r(L) for the set
⋃
{r(U) : U ∈ L}.

The following then formalises the idea of reducing by replacing letters.

Definition 4.19. A map r : Σ → T(Γ ) is a reification from H to H ′ if

(i) For all a ∈ Σ, it holds that r(a) ≡H a.
(ii) r is expansive on Γ , i.e., for all a ∈ Γ , a � r(a).
(iii) H ′-closure preserves Γ , i.e., for all L ⊆ SP(Γ ), also L↓H′ ⊆ SP(Γ ).
(iv) For all e ≤ f ∈ H, it holds that r(e) �H′

r(f).
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Example 4.20. Continuing with the previous example, let r be the map that
sends a group term to its reduced form; we claim that r is a reification from
group to ∅. By definition, we then know that for a group term g ∈ Σ, we have
r(g) ≡G g, and hence r(g) ≡group g. Furthermore, the reduction of a reduced term
is that term itself; hence, the second condition is satisfied. The third condition
holds trivially. Lastly, if e ≤ f ∈ group, then e, f ∈ Σ such that e ≡G f . Since
reductions are unique, we then know that r(e) = r(f), and hence r(e) �∅ r(f).

We have the following general properties of a map r, which we will use in
demonstrating how to obtain a reduction from a reification.

Lemma 4.21. Let r : Σ → T be some map.

(i) For all C ∈ PCsp, we have r (C) ⊆ PCsp.
(ii) For all L ⊆ SP and C ∈ PCsp, we have r (C[L]) =

⋃
D∈r(C) D [r(L)].

(iii) For all e ∈ T, it holds that r(�e�) = �r(e)�.

The following technical lemma is a consequence of property (iv).

Lemma 4.22. If r is a reification and L ⊆ SP(Σ), then r(L↓H) ⊆ r(L)↓H′
.

Using this, we can then show how to obtain a reduction from a reification.

Lemma 4.23. If H implies H ′ and r is a reification from H to H ′, then r is a
reduction from H to H ′.

Proof. The first condition, i.e., that for e ∈ T we have e ≡H r(e), can be checked
using the first property of reification by induction on the structure of e. It thus
remains to check the second condition; we do this by proving that for all e ∈ T(Σ)
we have r

(
�e�↓H

)
= �r(e)�↓H′

. To this end, we derive as follows:

r(�e�↓H) ⊆ r(�e�)↓H′
(Lemma 4.22)

= �r(e)�↓H′
(Lemma 4.21(iii))

⊆ r(�r(e)�↓H′
) (property (ii))

⊆ r(�r(e)�↓H) (Lemma 4.10(ii))

= r(�e�↓H) (property (i), soundness)

Specifically, in the third step, property (ii) ensures that for L ⊆ SP(Γ ) we have
L ⊆ r(L). We can use this property because H ′-closure preserves the Γ -language
by property (iii). This completes the proof.

4.2 Factoring the exchange law

In the basic axioms that generate ≡, there is no interaction between sequential
and parallel composition. One sensible way of adding that kind of interaction is,
as suggested by Hoare, Struth and collaborators [11], by adding an axiom of the
form (e ‖ f) · (g ‖ h) � (e · g) ‖ (f · h), known as the exchange law. Essentially,
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this axiom encodes the possibility of (partial) interleaving: when e · g runs in
parallel with f · h, one possible behaviour is that, first e runs in parallel with f ,
and then g runs in parallel with h. The core observation of this section is that
the exchange law can be treated as another set of hypotheses, as we show below,
and this can then be used to recover the completeness result of CKA [15].

Definition 4.24. We write exch for the set

{(e ‖ f) · (g ‖ h) ≤ (e · g) ‖ (f · h) : e, f, g, h ∈ T}
The semantic effect of adding exch to our hypotheses is that, if U is a pomset

in a series-parallel language L, and V is a series-parallel pomset subsumed by
U , then V is in the exch-closure of L. Intuitively, the exch-closure adds pomsets
that are more sequential, i.e., have more ordering, than the ones already in L.
Indeed, exch-closure coincides with the downward closure w.r.t. sp.

Lemma 4.25. Let L ⊆ SP and U ∈ SP. Now U ∈ L↓exch if and only if there
exists a V ∈ L such that U sp V .

We have previously shown that exch is complete [15]; as a matter of fact, the
pivotal result from op. cit. can be presented as follows.

Theorem 4.26. The set of hypotheses exch is strongly reducible to ∅.
When exch is contained in our hypotheses, it is not immediately clear whether

those hypotheses can be reduced. What we can do is try to factorise our hypotheses
into exch and some residual set of hypotheses, and prove strong reducibility for
that residual set. To this end, we first note that, in some circumstances, the
H-closure of the exch-closure remains downward-closed w.r.t. sp.

Lemma 4.27. Suppose that for each e ≤ f ∈ H we have that e = 1 or e = a for
some a ∈ Σ, and let L ⊆ SP. If U, V ∈ SP such that U sp V and V ∈ (L↓exch)↓H ,
then U ∈ (L↓exch)↓H .

Using this fact, we can now show that, under the same precondition, exch∪H
factors into exch and H. This factorisation is what we were looking for: it tells
us that whenever H strongly reduces to ∅, so does H ∪ exch.

Lemma 4.28. Suppose that for each e ≤ f ∈ H we have that e = 1, or e = a

for some a ∈ Σ. Then H ∪ exch factorises into exch and H.

Proof. Since H, exch ⊆ H ∪ exch, it should be obvious that H ∪ exch implies both
H and exch. It remains to show that, if L ⊆ SP, then (L↓exch)↓H = L↓H∪exch.
The inclusion from left to right is a consequence of Lemma 4.10(ii)–(iii).

For the other inclusion, we show that if A ⊆ L↓H∪exch, then A ⊆ (L↓exch)↓H .
The proof proceeds by induction on the construction of A ⊆ L↓H∪exch. In the base,
we have that A ⊆ L↓H∪exch because A = L; in that case, A ⊆ L↓exch ⊆ (L↓exch)↓H .

For the inductive step, A ⊆ L↓H∪exch because there exist e ≤ f ∈ H ∪ exch
and C ∈ PCsp such that A = C[�e�], and C[�f�] ⊆ L↓H∪exch. By induction, we
then know that C[�f�] ⊆

(
L↓exch

)
↓H . On the one hand, if e ≤ f ∈ H, then

A = C[�e�] ⊆
(
L↓exch

)
↓H immediately. On the other hand, if e ≤ f ∈ exch, then

�e� sp �f�, and hence C[�e�] sp C[�f�] by Lemma 3.2. By Lemma 3.5 and
Lemma 4.27, it then follows that A = C[�e�] ⊆ (L↓exch)↓H .
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4.3 Lifting

A number of reduction procedures already exist at the level of Kleene alge-
bra [20,7]; ideally, one would like to lift those procedures to CKA.

Example 4.29. The reductions in Example 4.13 and Example 4.18 worked out
for terms without ‖, and then extended inductively, by defining the reduction of
e ‖ f to be the parallel composition of the reductions of e and f respectively.

As a non-example, consider H = {a ≤ 1}. Even though this hypothesis can
be reduced to ∅ within Kleene algebra [5], it is not obvious how this would work
for pomset languages. In particular, if 1 ∈ L, then 1 ‖ · · · ‖ 1 ∈ L for any number
of 1’s, and hence a ‖ · · · ‖ a ∈ L↓H for any number of a’s. This precludes the
possibility of a strong reduction to ∅, because �1�↓H is a pomset language of
unbounded (parallel) width, which cannot be expressed by any e ∈ T [25].

We now establish a set of sufficient conditions for such a lifting to work. To
this end, we first formally define Kleene algebra syntax, axioms and semantics.

Definition 4.30. Write TKA for the set of Kleene algebra terms, i.e., the terms
in T that do not contain ‖. Furthermore, we write ≡KA for the smallest congruence
on TKA that is generated by the axioms of ≡ that do not involve ‖.

When e ∈ TKA, it is not hard to see that �e� contains totally ordered pomsets,
i.e., words, exclusively. Using these definitions, we can now specialise the notions
of hypotheses, context, and closure to the sequential setting, as follows.

Definition 4.31. The relation ≡H
KA is generated from H and ≡KA as before.

A context C ∈ PCsp is sequential if it is totally ordered, i.e., if it is a word
with one occurrence of ∗; we write PCseq for the set of sequential contexts.

Given a set of hypotheses H and a language L ⊆ Σ∗, we define the sequential
closure of L with respect to H, written L↓Hseq, as the least language containing L

such that for all e ≤ f ∈ H and C ∈ PCseq, if C[�f�] ⊆ L↓Hseq, then C[�e�] ⊆ L↓Hseq.

If ‖ does not occur in any hypothesis, then the definition of sequential closure
coincides with the closure operator from [7]. Thus, if L ⊆ Σ∗, then L↓Hseq ⊆ Σ∗.

The analogue of strong reduction for the sequential setting is as follows.

Definition 4.32. Suppose that H implies H ′. A map r : TKA → TKA is a sequen-
tial reduction from H to H ′ when the following hold:

(i) for e ∈ TKA, it holds that e ≡H
KA r(e), and

(ii) for e ∈ TKA, it holds that �e�
KA
↓Hseq = �r(e)�

KA
↓H′
seq.

H sequentially reduces to H ′ if there exists a sequential reduction from H to H ′.

To lift a sequential reduction to a proper reduction, the following class of
hypotheses will turn out to be useful.

Definition 4.33. A hypothesis e ≤ f with e, f ∈ TKA is called grounded if
�f� = {W} for some non-empty word (totally ordered pomset) W , and e ∈ TKA.
We say that a set of hypotheses H is grounded if every e ≤ f ∈ H is grounded.
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Example 4.34. Any hypothesis of the form e ≤ a1 · · · an for n > 0 is grounded.
On the other hand, the hypothesis a ≤ 1 that we saw in the previous example is
not grounded, since the semantics of 1 contains the empty pomset.

The closure of a language of words can be expressed in terms of its sequential
closure, provided that the set of hypotheses is grounded.

Lemma 4.35. Let H be grounded. If L ⊆ Σ∗, then L↓H = L↓Hseq. Moreover, for

L,L′ ⊆ SP, we have that (L ‖ L′) ↓H = L↓H ‖ L′↓H .

The above then allows us to turn a sequential reduction into a reduction.

Lemma 4.36. Suppose that H sequentially reduces to H ′. If H and H ′ are
grounded, then H strongly reduces to H ′.

5 Instantiation to CKA with Observations

In this section, we will present Concurrent Kleene Algebra with Observations
(CKAO), an extension of CKA with Boolean assertions that enable the specifica-
tion of programs with the usual guarded conditionals and loops. We will obtain
CKAO as an instance of CKAH by choosing a particular set of hypotheses. First,
we define the set of propositional terms or Boolean observations.

Definition 5.1. Fix a finite set Ω of primitive observations. The set of propo-
sitional terms, written TBA, is generated by

p, q ::= ⊥ | � | o ∈ Ω | p ∨ q | p ∧ q | p

The relation ≡BA is the smallest congruence on TBA s.t. for p, q, r ∈ TBA, we have

p ∨ ⊥ ≡BA p p ∨ q ≡BA q ∨ p p ∨ p ≡BA � p ∨ (q ∨ r) ≡BA (p ∨ q) ∨ r

p ∧ � ≡BA p p ∧ q ≡BA q ∧ p p ∧ p ≡BA ⊥ p ∧ (q ∧ r) ≡BA (p ∧ q) ∧ r

p ∨ (q ∧ r) ≡BA (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡BA (p ∧ q) ∨ (p ∧ r)

We will write p �BA q as a shorthand for p ∨ q ≡BA q.

We write At for 2Ω , the set of atoms of the Boolean algebra. It is well known
that every α ∈ At corresponds canonically to a Boolean term πα, such that every
Boolean term p ∈ TBA is equivalent to the disjunction of all πα with πα �BA p [2].
To simplify notation we identify α ∈ At with πα.

We can now use TBA in defining the terms and axioms of CKAO, which will
be given as a CKA over a specific alphabet with the following hypotheses:

Definition 5.2 (CKAO). We define the terms of CKAO, denoted TCKAO, as
T(Σ ∪ TBA), that is, as the CKA terms over TBA ∪Σ. We furthermore define the
following set of hypotheses over TCKAO:

bool = {p = q : p, q ∈ TBA s.t. p ≡BA q} contr = {p ∧ q ≤ p · q : p, q ∈ TBA}

glue = {0 = ⊥} ∪ {p+ q = p ∨ q : p, q ∈ TBA} obs = bool ∪ contr ∪ exch ∪ glue

The semantics of CKAO is then given by �−�↓obs.

Concurrent Kleene Algebra with Observations 395



The hypotheses bool contain the boolean identities, and glue identifies the
disjunction with the union (and their respective units as well). contr specifies that
if p and q hold simultaneously, then it is possible to observe them in sequence.
Note that the converse inequality is not included: observing p and q in sequence
has strictly more behaviour than observing p and q simultaneously, as some
intervening action can happen between the two observations.

The above definition gives us the semantics of CKAO as the standard pomset
language model obtained from taking the obs-closure of the semantics of CKA.
As a matter of fact, we find by Lemma 4.7 that if e, f ∈ TCKAO with e ≡obs f , then
�e�↓obs = �f�↓obs; hence, we already have a sound model of CKAO.

To prove completeness, we will use the techniques from the previous section.

First step: reification. We start by using reification to rid ourselves of the
hypotheses from bool and glue, and to simplify the hypotheses in contr. To this
end, let contr′ be the set of hypotheses given by {α ≤ α · α : α ∈ At}. Let
Γ = At ∪Σ ⊆ TBA ∪Σ. We define r : Σ ∪ TBA → T(Γ ) by setting

r(a) =

{∑
α�BAp

α a = p ∈ TBA

a a = a ∈ Σ

Lemma 5.3. The hypotheses obs reduce to exch ∪ contr′.

Proof. By Lemma 4.23, it suffices to show that r is a reification, and that obs
implies exch ∪ contr′. To see that r is a reification, we check the conditions.

(i): If a ∈ Σ, then r(a) = a ≡obs a immediately. Otherwise, if p ∈ TBA, then
we derive r(p) =

∑
α�BAp

α ≡glue
∨

α�BAp
α ≡bool p and hence r(p) ≡obs p.

(ii): If a ∈ Σ, then we already know that r(a) = a. Otherwise, if α ∈ At, then

r(α) =
∑

β�BAα

β = α

(iii): This property holds because all hypotheses in exch ∪ contr′ preserve
Γ -languages, i.e., if e ≤ f ∈ exch ∪ contr′ where �f� ⊆ SP(Γ ), then �e� ⊆ SP(Γ )
too. It follows that exch ∪ contr′-closure must preserve Γ -languages.

(iv): We should show that if e ≤ f ∈ obs, then r(e) �exch∪contr′ r(f). To this
end, we analyse the separate sets of hypotheses that make up obs.

– Let e ≤ f ∈ exch, then e = (g00 ‖ g01) · (g10 ‖ g11) and f = (g00 · g10) ‖
(g01 · g11), for some g00, g01, g10, g11 ∈ T. We then find that

r(e) = (r(g00) ‖ r(g01)) · (r(g10) ‖ r(g11))

r(f) = (r(g00) · r(g10)) ‖ (r(g01) · r(g11))

hence r(e) ≤ r(f) ∈ exch, and therefore r(e) �exch∪contr′ r(f).
– Let e ≤ f ∈ bool, then e = p and f = q such that p ≡BA q. In that case,

r(p) =
∑

α�BAp

α =
∑

α�BAq

α = r(q)
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– Let e ≤ f ∈ contr; then e = p ∧ q and f = p · q for p, q ∈ TBA. Then

r(p ∧ q) =
∑

α�BAp∧q

α �contr′
∑

α�BAp∧q

α · α

�
( ∑
α�BAp

α
)
·
( ∑
α�BAq

α
)
= r(p) · r(q) = r(p · q)

– Let e ≤ f ∈ glue. On the one hand, if e = p ∨ q and f = p+ q, then

r(p ∨ q) =
∑

α�BAp∨q

α ≡
∑

α�BAp

α+
∑

α�BAq

α = r(p) + r(q) = r(p+ q)

This also establishes the case for f ≤ e ∈ glue. On the other hand, if e = 0
and p = ⊥, then r(0) = 0 =

∑
α�BA⊥ α = r(⊥).

To see that obs implies exch ∪ contr′, it suffices to show that obs implies contr′.
To this end, note that if e ≤ f ∈ contr′, then e = α and f = α ·α for some α ∈ At.
We can then derive that α ≡bool α ∧ α �contr α · α, and hence e �obs f .

Second step: factorising. Since contr′ satisfies the precondition of Lemma 4.28,
we obtain the following.

Lemma 5.4. The hypotheses exch ∪ contr′ factorise into exch and contr′.

This means that, by Lemma 4.17 all that remains to do is strongly reduce
exch and contr′ to ∅; we have already taken care of the former in Theorem 4.26.

Third step: reducing contr′. In [13], we have already shown that contr′ sequentially
reduces to ∅. Since contr′ is grounded we find the following, by Lemma 4.36.

Lemma 5.5. The hypotheses contr′ strongly reduce to ∅.

Last step: putting it all together. Using the above reductions, we can then prove
completeness of ≡obs w.r.t. �−�↓obs, and decidability of semantic equivalence, too.

Theorem 5.6 (Soundness and Completeness of CKAO). Let e, f ∈ TCKAO.

(i) We have e ≡obs f if and only if �e�↓obs = �f�↓obs.
(ii) It is decidable whether �e�↓obs = �f�↓obs.

Proof. For the first claim, we already knew the implication from left to right
from Lemma 4.7. Conversely, and for the second claim, first note that that obs
reduces to exch∪contr′ by Lemma 5.3. By Lemma 5.4 and Lemma 4.17, the latter
reduces to ∅, if we apply Theorem 4.26 and Lemma 5.5. By Lemma 4.12, we then
conclude that obs is complete and decidable, hence establishing the claim.
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6 Discussion

The first contribution of this paper is to extend Kleene algebra with hypotheses [7]
with a parallel operator. The resulting framework, concurrent Kleene algebra with
hypotheses (CKAH), is interpreted over pomset languages, a standard model of
concurrency. We start from simple axioms, known to capture equality of pomset
languages [23]. CKAH allows to add custom axioms, the so-called hypotheses.
These may be used to include domain-specific information in the language. We
develop this framework by providing a systematic way of producing from the
hypotheses a sound pomset language model. We also propose techniques that
may be used to prove completeness and decidability of the resulting model.

An important instance of this framework is concurrent Kleene algebra (CKA)
as presented in [11]. The only additional axiom there, known as the exchange
law, may be added as a set of hypotheses. We prove that the resulting semantics
coincides with the (subsumption-closed) semantics of CKA and, more interestingly,
the completeness proof of [15] can be recovered as an instance of this framework.

The second contribution is a new framework to reason about programs with
concurrency: concurrent Kleene algebra with observations (CKAO). CKAO is
obtained as an instance of CKAH, where we add the exchange law to model
concurrent behaviour, and Boolean assertions to model control flow. The Boolean
assertions we consider are as in Kleene algebra with observations (KAO) [13] — in
fact, CKAO is a conservative extension of KAO. Using the techniques developed
earlier, we obtain a sound and complete semantics for this algebra. While CKAO
is similar to concurrent Kleene algebra with tests [12], it avoids the problems
of the latter by distinguishing conjunction and sequential composition. CKAO
provides the first sound and complete algebraic theory that seems sensible as a
framework to reason about concurrent programs with Boolean assertions.

Future work is to explore other meaningful instances of CKAH. Synchronous
Kleene algebra [29,26] is a natural candidate for this. We also want to try and de-
sign domain specific languages, specifically, a concurrent variant of NetKAT [1,8].

The class of hypotheses considered in this paper for which decidability and
completeness may be established systematically is somewhat restrictive; identify-
ing larger classes of tractable hypotheses is a challenging open problem.

Because of the compositional nature of our model, the CKAO semantics of a
program contains behaviours that are not possible to obtain in isolation. These
behaviours are present to allow the program to interact meaningfully with its
environment, i.e., when placed in a context. However, for practical purposes one
might want to close the system, and only consider behaviours that are possible
in isolation. Studying this semantics remains subject of future work.

In the semantics of concurrent programs with assertions, it would be natural
to see atoms as partial instead of total functions. This captures the intuition
that a thread might not have access to the complete machine state, but instead
holds a partial view of it. Pseudo-complemented distributive lattices (PCDL)
have been proposed [12] as an alternative to Boolean algebra, modelling this
partiality of information. We leave it to future work to investigate the variant of
CKAO obtained by replacing the Boolean algebra of observations with a PCDL.
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