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Abstract

Prion diseases are a group of rare neurodegenerative conditions characterised

by a high rate of progression and highly heterogeneous phenotypes. Whilst the

most common form of prion disease occurs sporadically (sporadic Creutzfeldt-Jakob

disease, sCJD), other forms are caused by inheritance of prion protein gene mutations

or exposure to prions. To date, there are no accurate imaging biomarkers that can

be used to predict the future diagnosis of a subject or to quantify the progression

of symptoms over time. Besides, CJD is commonly mistaken for other forms of

dementia. Due to the large heterogeneity of phenotypes of prion disease and the

lack of a consistent spatial pattern of disease progression, the approaches used to

study other types of neurodegenerative diseases are not satisfactory to capture the

progression of human form of prion disease.

Using a tailored framework, I extracted quantitative imaging biomarkers for

characterisation of patients with Prion diseases. Following the extraction of patient-

specific imaging biomarkers from multiple images, I implemented a Gaussian Process

approach to correlated symptoms with disease types and stages. The model was used

on three different tasks: diagnosis, differential diagnosis and stratification, address-

ing an unmet need of automatically identify patients with or at risk of developing

Prion disease.

The work presented in this thesis has been extensively validated in an unique

Prion disease cohort, comprising both the inherited and sporadic forms of the disease.

The model has shown to be effective in the prediction of this illness. Furthermore,

this approach may have used in other disorders with heterogeneous imaging features,

being an added value for the understanding of neurodegenerative diseases.

Lastly, given the rarity of this disease, I also addressed the issue of missing data

and the limitations raised by it.

Overall, this work presents progress towards modelling of Prion diseases and

which computational methodologies are potentially suitable for its characterisation.





Impact

The methods reported in this thesis have the potential of improving the diag-

nosis and understanding of prion diseases, in particular, the inherited form of this

illness. The diagnosis of prion is challenging while the patient is alive due to the ab-

sence of specific imaging and non-imaging biomarkers to characterise prion disease.

Consequently, this disease is often mistaken for other neurodegenerative diseases,

which leads to a high misdiagnosis rate, hampering the collection of relevant data.

The extraction of imaging and non-imaging biomarkers to identify prion disease

is complex. The heterogeneity of the symptoms, as well as the limited sample sizes

highly impact the search for spatial and temporal brain patterns that can anticipate

the clinical onset. The work presented in this thesis has shown potential to be used

in the clinical environment. Specifically, this work presents a tool to automatically

identify the prion disease patients using the imaging biomarkers validated in this

document. Such a tool could be used to guide prion disease patients, and their

families, to the National Prion Clinic to provide the best assistance during the course

of symptoms. Furthermore, these approaches could lead to a better understanding of

the disease progress and the anticipation of the prodromal phase of the disease, where

the treatment to delay symptoms can be more efficient. The correct identification

of the prodromal stage would allow more timely and aggressive clinical trials.

The proposed methods, namely the approaches developed to deal with hetero-

geneous patterns and missing data, can be transferred to the study other rare or

acute diseases. These results have also promoted the creation of new projects fo-

cused on the sporadic form of prion disease, in collaboration with the clinicians in

the National Prion Clinic in UK. This work has shown an impact on the scientific

community through the dissemination via journals and presented in conferences of

the field. Lastly, this work also has benefits outside of academia, namely as a tool

for clinical use, possibly also benefiting the quality of life of patients and families of

prion disease patients.





Acknowledgements

I would like to give thanks Dr Marc Modat for his contributions of time, ideas,

and all the energy that he focuses on my work. He had shown me how to define

which researches topics are worthy to pursue and how to efficiently multi-task. I

also would like to thank him for giving me the opportunity to do this PhD, during

which I undoubtedly have grown as a person and researcher.

I also would like to express my thanks to Prof. Simon Mead. He always has

believed in the relevance of my research to the field, which has given me the moti-

vation to keep working and pursuing better results in a topic so difficult as Prion

diseases. Furthermore, I am thankful to the people in the National Prion Clinic, who

were really attentive and spend their time to discuss results, present suggestions and

guide me in this project. It is also remarkable how people, patients and their fam-

ilies, have been contributing to the understanding of Prion disease. Without their

availability to participate and share their clinical information, this disease would be

even more difficult to study and understand.

During the time of my PhD, I had the opportunity to encounter many people

that despite not being directly related to my project they offer me valuable insights

and discussions. Two of these people were Dr Carole Sudre and Dr Jorge Cardoso,

who read my work and answer to my questions (many questions!) during the course

of my PhD. I also appreciate all the support given by the people in the CMIC and

TIG groups, who received me and gave me the conditions to develop my research.

In particular, I would like to thank to my research group, CoolKids, that have made

my experience in both UCL and KCL funnier and lighter. I also want to thank to

Rodrigo for all the motivation and belief he gave me to start this PhD.

I would like to thanks to my closest friends in London: François, Stefano and

João. These three people, being as different as possible, have been able to support

and give me the personal and emotional tools that made this work possible.
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Prion diseases, also known as Transmissible Spongiform Encephalopathies

(TSEs)s, are a group of progressive neurodegenerative conditions, which cause cog-

nitive impairment and neurological deficits [2].

The infectious agent of prion diseases is critically comprised of abnormal iso-

forms of a protein (PrPC) encoded by PRNP. The normal prion protein (PrPC)

is protease sensitive, soluble, and has a high α-helix content. The function of this

protein is still uncertain. The abnormal form of the prion protein (PrPSc) is a

beta-sheet rich and partially protease resistant isoform of the cellular prion protein,

which accumulates mainly in the nervous system, representing the hallmark of the

disease (Figure 1.1). The conversion of PrPC to PrPSc is a post-translational event

and it involves a conformational change of the protein, as detailed in Figure 1.2. Its

transmission can occur by an autocatalytic mechanism [3, 4].
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Figure 1.1: Conversion of PrPC to PrPSc. H and S indicate α-helix and β-strand, respec-
tively. The two β-strands S1 and S2 are proposed to ”seed” β-sheet elongation
as the short α-helix H1 unfolds and is converted to the PrPSc conformation.
H2 and H3 remain stabilised via linkage of a disulfide bond. Image adapted
from [5].

These illnesses exist in mammals, both humans and non-humans. Scrapie, a

disease affecting sheep and goats, was the first prion disease to be identified in the

1730s. In more recent years other prion diseases have been seen in animals, the

most common of which is bovine spongiform encephalopathy (BSE). Furthermore,

TSE can also affect other mammals like minks (transmissible mink encephalopathy),

deer and elk, captive wild ruminants and felines (spongiform encephalopathy) [6].

Various forms of the disease have been identified since Creutzfeldt and Jakob first

described the illness later known as CJD in the 1920s. Human prion diseases are

classified as CJD, Gerstmann-Straussler-Scheinker syndrome (GSS), fatal familial

insomnia (FFI) and Kuru [7].

1.1 Human Prion Disease

The most common human form of Prion disease is the CJD. Prion disease

presents a wide spectrum of phenotypes in part due to the different prion strains

that can exist. The different phenotypes show heterogeneity in the disease dura-

tion, clinical onset, symptomatology and on its distribution of brain microstructural

changes, namely the spongiosis, neuronal loss, gliosis, reactive astrocytosis and de-

position of prion protein [2, 8]. Most of the CJD phenotypes are characterised by

the high rate of progression, and the reduced expected time of survival after di-

agnosis, which varies between six weeks and three years [7]. The human forms of
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Figure 1.2: Representation of prion misfolding and transmission. β-rich PrP has an in-
creased propensity to oligomerize, recruiting other β-rich monomers or un-
folded PrP, which results in the irreversible formation of PrPSc. Subsequent
cleavage of elongating fibrils leads to the propagation of infectious PrPSc

”seeds”. Image adapted from [5].

prion diseases may also be grouped together according to whether they are sporadic

(unknown cause), inherited, or acquired (from humans or other mammals).

1.1.1 Sporadic CJD

The sporadic form is the most common among the subjects with CJD, which

accounts for about 85% of the cases. This form of CJD is characterised by the

occurrence of neuronal loss and the vacuolisation within cell bodies and dendrites,

which gives a spongiform appearance to the cortex and deep nuclei (Figure 1.3).

The sporadic form of CJD affects both genders equally, and the average age

at the clinical onset is sixty years old, being rare in people under forty years or

over eighty years. sCJD has not a particular geographic incidence or a seasonal
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Figure 1.3: Histologic study of sporadic form of human prion disease. The brain sections
reveal vacuolation that has been referred to as spongiform degeneration. Most
sections also reveal significant neuronal loss [10].

clustering. The causes of infection in patients with sCJD are still unknown. The

exposure to infected people does not seem to increase the risk of infection [9], hence it

is hypothesised that sCJD follows exogenous infection. Tonsilar and gastrointestinal

tissues containing the abnormal prion protein were found, proposing ingestion as

route of infection. This hypothesis is supported by the fact that some cases have

been found in case-control studies, which those seem to be related with subjects diet

namely by eating brains. However, in other cases, diet can be discarded as a major

source of sCJD, because lifelong vegetarians have also developed sCJD.

Finally, it has been reported that cases of sCJD originated by transmission

among humans by medical procedures. Nevertheless, it is also accepted that the

sporadic form of CJD may result from endogenous generation of prion, caused by a

random misfolding of the prion protein, which might lead to a cascade of misfolding

of normal prion protein into the pathogenic isoform. The sCJD is characterised

by the rapid progression of the symptoms with prominent cognitive decline. The

median time of life after clinical onset is only five months, and 90% of the patients

die within one year [7, 9]. A third of the patients affected by sCJD present with

fatigue, disordered sleep and decreased appetite. The second third of the cases

has shown behavioural or cognitive changes; whereas the last suffers visual loss,

cerebellar ataxia, aphasia, or motor deficits [6, 9].

1.1.2 Inherited Prion Disease

Inherited Prion Disease (IPD), also designated as familial prion disease, is

caused by autosomal dominant inheritance of mutations in the PRNP gene, which
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in total are responsible for 10-15% of the incidence of human prion disease [7].

Currently, over thirty different mutations in PRNP have been found in patients

presenting IPD (Figure 1.4). Although, about 95% of familial cases are caused by

four point mutations (at codons 102, 178, 200 and 210) and insertions of five or

six octapeptide repeats [6]. A genetic factor influences the susceptibility of an in-

dividual to develop prion disease, namely a common variation in the prion protein

gene itself. A polymorphism at the codon 129 may influence the susceptibility to

some IPD phenotypes. There are two possible genetic types, which in turn specify

the body to produce different amino acids at this position. These amino acids are

called Methionine and Valine, or M and V for short. MM and MV frequencies in

the population are roughly equal (40-50%). It has been known for some years that

individuals, who are MV, show a lower risk of developing prion disease than the

subjects who are MM or VV [11]. The IPD has an earlier age of clinical onset when

compared with sCJD, even if the range of ages of clinical onset is longer and may

vary between 20 years old to 85 years old. Note also that the clinical course of IPD

is longer than sCJD, which may last 5-11 years, for some mutations.

Given the heterogeneity of clinical phenotypes, IPD can be further divided in

three groups: GSS, FFI and CJD. These clinical categories of IPD may be seen

as extremes of phenotype, in reality the syndromes overlap considerably. The GSS

syndrome is characterised by a clinical onset between 20 and 70 years old and a

progressive cerebellar ataxia followed by dementia. The FFI origins a refractory

insomnia, hallucinations, automatic dysfunction and dementia. This syndrome is

also characterised by neuropathological changes in the thalamus, namely in the an-

terior ventral and mediodorsal nuclei, and the olivary nuclei [6, 7]. Lastly, some

subjects affected by IPD have shown rapidly progressive dementia, with myoclonus

and pseudoperiodic discharges on electroencephalogram (EEG). The most common

worldwide PRNP mutations are E200K, D178N, P102L and OPRI, whereas in the

UK the 6-OPRI mutation is the most frequently detected in PRNP. Table 1.1 de-

scribes the neuropsychologic profiles of these insertional mutations.

Briefly, E200K is the most common cause of IPD. The phenotype associated to

E200K is highly heterogenic. Note also that, by the examination of unaffected rela-

tives, asymptomatic mutation carriers were detected in old age, which supports the

hypothesis that the penetrance is incomplete [12]. The D178N was initially reported

by Medori et al. [13], who described this illness as a large case series of untreatable

insomnia, dysautonomia and myoclonus. These symptoms are not specific to this
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mutation, since other mutations, such as V210I, FFI and sCJD may also present

these clinical manifestations. In fact, Goldfarb et al. [14], established a haplotypic

relationship between codon 129 and 178, whereby the mutation on a 129M chro-

mosome leads to FFI, and the mutation on a 129V chromosome leads to familial

CJD. The P102L mutation is the classic example of GSS syndrome, in which the pa-

tients have been manifested the aforementioned phenotype [15]. Other mutations are

also associated with this syndrome, namely F198S, A117V, P105L, G131V, Y145X,

H187R and some D178N mutations [16]. The genetic susceptibility factor has shown

a small influence in the P102L phenotype, which causes an earlier clinical onset for

codon homozygous cases. Finally, the octapeptide repeat insertion (OPRI) muta-

tions assembles the insertions of more than three additional octapeptide repeats in

the N-terminal region of PrP. The polymorphism at PRNP codon 129 is responsible

for the phenotype heterogeneity, namely the different ages of onset and rate of pro-

gression of the clinical manifestations (Table 1.1). Note that the heterozygosity at

codon 129 have a delayed age of onset by around a decade compared with patients

homozygous at codon 129. Moreover, the disease phenotype is also influenced by the

number of times that the octapeptide repeats. The degree of spongiosis and astro-

cytosis is higher in the cerebellum of patients with 8- or 9-OPRI mutations. On the

other hand, PrP deposition was visualised by immunocytochemistry as elongated

deposits in the molecular layer of the cerebellum for smaller number of replications

of the octapeptide. Small OPRI mutations has also a later age of onset and shorter

duration. The OPRI mutations have also shown significant behavioural changes,

namely an existence of pre-morbid personality disorder characterised by criminality,

aggression, delinquency and hypersexuality [6, 15].

1.1.3 Acquired CJD

The acquired CJD is caused by the transmission of infection from mammals

to humans or from human to human. The acquired form of human prion disease is

rare, however the transmission of these syndromes are untreatable and fatal. Several

measures were introduced to decrease the risk of transmission; however, considering

the prolonged incubation periods, the absence of tests to identify the infection during

the incubation period and the high resistance of prions to disinfection, many cases

of acquired prion disease were not anticipated. Thus, it is still crucial to developed

metrics of vigilance to identify novel mechanisms of prion transmission and new
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Figure 1.4: Representation of prion disease pathogenic mutations. The grey bar repre-
sents the prion protein gene, the definite or suspected pathogenic mutations
are shown above this representation. Neutral or prion disease susceptibil-
ity/modifying polymorphisms are shown below. Image adapted from [7].

Table 1.1: Description of neuropsychological profile of inherited form of prion disease,
caused by insertional mutation. Mean age at clinical onset in years.

Mutations
Age at

clinical onset
Progression Clinical manifestations

Duration
(in months)

E200K 61 [31 - 78] Fast
Peripheral neuropathy, supranuclear gaze palsy
and sleep disturbance.
Rapidly progressive dementia.

5

E196K 69 [66 - 80] Fast Myoclonus and pyramidal, cerebellar or extrapyramidal signs. —

D178N 50 [20 - 72] Fast
Untreatable insomnia, dysautonomia and myoclonus.
Progressive ataxia with later dementia.

5 - 48

P102L 49 [25 - 70] Slow Progressive ataxia with later dementia. 48

5-OPRI 45 [26 - 61] Slow
Cortical dementia, often with apraxia, cerebellar ataxia.
Pyramidal and extrapyramidal, myoclonus, chorea, seizures.

3 - 84†

6-OPRI 34 [20 - 53] Slow
Cortical dementia, often with apraxia, cerebellar ataxia.
Pyramidal and extrapyramidal, myoclonus, chorea, seizures.

3 - 84†

A117V 39 [20 - 64] Slow Progressive ataxia with later dementia. 49

Y163X 30 [42 - 70] Slow Progressive ataxia with later dementia. —

† The median time of survival after clinical onset is 7 years, and may vary between3 months and 21 years.

cases of infection [1]. The acquired form of CJD may be classified according to the

transmission pathway and the disease phenotype.

Iatrogenic CJD

The acquired form of CJD may be denominated as iatrogenic CJD when the

transmission occurs due to mechanisms of iatrogenic transmission, such as by the
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contact with biological material in, or adjacent to, a contaminated brain, or material

used during surgical procedures. The first evidence of iatrogenic transmission of

CJD took place in 1974, via a corneal transplant. Will et al [1], identified the total

number of cases of iatrogenic CJD (Table 1.2), in which the route of inoculation has

been parenteral, either by surgery or by intramuscular injection.

Variant CJD

The first article describing a new variant of CJD in the UK was published in

1996, entitled ”A new variant of Creutzfeldt-Jakob disease in the UK”, in which it

was suggested a relation between 10 cases, with unusual clinical phenotype for CJD,

to the epidemic of BSE in UK [17].

The variant Creutzfeldt-Jakob disease (vCJD) presents a distinctive phenotype

from the sCJD. The vCJD affects younger people (median age of onset is 29 years

old), and the disease has a longer course, about 14 months. The patients suffer early

psychiatric symptoms and the existence of painful sensory symptoms is common.

Neuropathological studies have shown a high level of PrP deposition with many

plaques of abnormal prion protein (Figure 1.5, panel B). Until recently, all the variant

cases of human prion disease had been homozygous at codon 129 for methionine;

however, more recently a patient, who had received blood from a donor diagnosed

with vCJD, was diagnosed with vCJD, presenting a codon 129 heterozygous [17].

The hypothesis that the vCJD is a result of a BSE transmissions to humans is

sustained by the common signature of this syndromes in the brain: the vCJD creates

alterations in MRI in pulvinar region of thalamus, whilst the sporadic form of CJD

shows alterations predominantly in the basal ganglion and putamen. The risk of

transmission of vCJD by iatrogenic mechanisms is not discarded. However, there is

currently no evidence of transmission of vCJD through these routes, but this does

not preclude such a possibility because the incubation period could be long and the

Table 1.2: Total cases of iatrogenic CJD world-wide at 2003. Data from [1].

Mode Cases Incubation (years) Clinical Manifestations

Neurosurgery 4 1.6 Visual, cerebellar and dementia
Dura matter 136 6 Visual, cerebellar and dementia
Corneal transplant 3 15.5 Dementia
Depth electrodes 2 1.5 Dementia
Human growth hormone 162 12 Cerebellar
Human gonadotrophin 5 13 Cerebellar
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A B

Figure 1.5: Histologic study of the variant form of human prion disease. A - Reactive
astrocytosis in the thalamus, glial fibrillary acidic protein antibody; B- PrP
deposition in the cerebral cortex. Image adapted from [18]

.

period of current observation is short.

Kuru

Kuru was first identified in 1957 in Okapa, Papua New Guinea. This syndrome

is geographically restricted to Okapa area, and between 1957 and 2003 over 2700

cases among 30 000 people were identified. Initially, kuru affected predominantly

women and children of either gender. However, the disease epidemic declined and

the proportion of women and men affected became similar. In fact, the children

born after 1959 are not affected by the disease and there is no evidence of verti-

cal transmission. Endocannibalism1 was pointed as transmission path, since this is

consistent with the other aforementioned ways of transmission - ingestion of contam-

inated food - and the epidemic declined with the end of this practice in late 1950s.

Kuru is characterised by a progressive cerebellar ataxia and cognitive changes de-

veloped only in advanced stages of disease. Conversely to sCJD, myoclonus was not

registered in Kuru cases, and in the majority of patients the dementia was absent.

The incubation period ranges from 4.5 years to at least 40 years (mean incubation

period has been estimated to be about 12 years), and the total illness duration in

adults ranged from 6-36 months.

1The excess of cases in females and children is consistent with the available descriptions of the
rituals, since they, and not the men, ate the internal organs, in particular the brain.
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Figure 1.6: Histologic study of the acquired form of human prion disease, namely Kuru
syndrome. Section of the patient’s cerebellum. The black arrow points a Kuru
plaque. Image adapted from [10].

1.2 Clinical Challenges

Currently, the growing interest in the human form of prion diseases is not caused

by the increasing incidence, since its incidence is now considered stable at between

0.5 and 2.5 cases per million people per year. The interest on CJD concerns the

nature of the transmissible agents, the unpredictable species barriers, the variable

distribution of infectivity in tissues and strain variations found, which leads to the

broad spectrum of phenotypes and incorrect diagnoses. As aforementioned, Prion

disease presents a wide spectrum of phenotypes due to the different prion strains

that can exist. The different phenotypes show heterogeneity in the disease dura-

tion, clinical onset, symptomatology and on its distribution of brain microstructural

changes, namely the spongiosis, neuronal loss, gliosis, reactive astrocytosis and de-

position of prion protein [2, 8]. Consequently, the clinical diagnosis of both forms of

CJD can be challenging during life, particularly in the earlier stages of the disease as

the different phenotypes can mimic other neurodegenerative diseases. An autopsy

study found that 40% of cases of neuropathological prion disease were undiagnosed

while alive [7]. Whilst the definitive diagnosis is still only possible by brain biopsy,

the improved understanding of the pathogenesis of prion diseases have allowed defi-

nition of recognisable clinical features and replicable diagnostic criteria in vivo [19].

The diagnosis criteria are currently based on a set of neurological, cognitive and

psychiatric observations [20, 21]. Recently, an updated diagnostic algorithm was

suggested by Manix et al. [22], in which the procedures mentioned above provide

useful biomarkers that support the need for histopathological tests and the subjects

diagnosis.
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To date, there is no proven cure for CJD, but clinical studies are underway to

investigate possible treatments. Even without a cure, it is crucial to address the

current rate of misdiagnosis of CJD cases, in order to increase the sample size and

conveniently perform studies to better understand the mechanisms of the disease

and possible treatments. By identifying the patients with CJD or at risk of de-

veloping symptoms, the recruitment to clinical trials will become easier and timely

appropriate to test the in-silico treatments. Furthermore, several drugs have de-

layed the onset of disease in laboratory animals if given before symptoms start, even

if none have halted or cured the disease once animals are unwell [11]. Therefore,

two main research pathways are aroused by the current clinical challenges of dealing

with CJD:

1. Investigation of possible ways to delay and maintain the symptoms of CJD

through drug trials;

2. Investigation of new diagnostic criteria that allow the current misdiagnosis

rate to be addressed.

Note however that the efficacy of the clinical trials is intimately linked with a

timely diagnosis of CJD, specially the identification of prion infection before the clin-

ical onset. Sandberg et al. [23], has performed a study in animals that actually have

proven that prion propagation is preceded by a clinically silent exponential phase.

The propagation phase is not rate-limited by prion protein concentration, which

rapidly reaches a maximal prion titre, immediately followed by a distinct switch to

a plateau phase after which the clinical symptoms start [23]. It is hypothesised that

the treatments can be more effective during this period of incubation, hence the

need for new ways to identify microstructural brain changes to recognise the prion

infection before clinical onset. Therefore, most of the research developed in the

context of CJD aims to identify useful biomarkers to diagnose and characterise this

disease. The search for biomarkers is currently moving towards brain imaging data,

given their sensitivity and non-invasive nature, but it is also focused in other clinical

metrics such as functional and behavioural scales. The following section highlights

the most recent attempts to effectively identify novel biomarkers to diagnose the

CJD.
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1.3 Diagnosis of Prion disease

Several measures have been studied in order to improve the sensitivity and speci-

ficity of CJD diagnosis during life; namely noninvasive techniques such as magnetic

resonance imaging (MRI), computed tomography (CT), positron emission tomogra-

phy (PET) or single-photon emission computed tomography (SPECT); furthermore,

the detection of the 14-3-3 protein in cerebrospinal fluid (CSF) and periodic sharp

wave complexes on the EEG provides important corroborative evidence for the clin-

ical diagnosis [22, 24–26]. Although these metrics may not diagnose CJD with a

high degree of certainty, in particular for IPD patients, these procedures nonetheless

provide insight into the pathophysiologic aspects of the disease.

1.3.1 Imaging Data

The use of neuroimaging techniques to investigate the CJD symptoms is being

applied to achieve higher accuracy in its diagnosis, even in early stages, by evidenc-

ing the main brain changes, such as neuronal loss, spongiform change and reactive

astrocytosis in the absence of an inflammatory reaction. [27].

Structural Magnetic Resonance Imaging

Three dimensional T1 weighted (T1w) and T2w are acquired to evaluate the

structural changes in the brain. Either MRI sequences allows qualitative and quan-

titative analysis to be performed in order to identify longitudinal and cross-sectional

anatomical changes due to CJD. The disease progression can be evaluated through

a qualitative assessment of T2w images, specifically by identifying the hyperinten-

sities in the cortex; nevertheless, the T2w allows also a quantitative assessment of

the illness severity by T2 relaxometry maps. Using T2w images, Barboriak et al.,

found high signal in the basal ganglia, thalamus and in the cortex.[28]

Uemura et al. [29], also found lesions in the pallidum and white matter, whereas

Schroter et al. [24], found hyperintensities in the cerebellum (Figure 1.7). In 2004,

Matsusue and collaborators [30], demonstrated the presence of lesions in cerebellar

grey matter, followed by lesions in the cerebellar white matter around lateral ven-

tricles and brainstem [24, 29, 30]. Siddique and collaborators [8], investigated the

cross-sectional, longitudinal and post-mortem cerebral magnetization ratio transfer

(MTR) as a surrogate for prion disease pathology. They found highly significant

correlations between MTR and prion disease (p < 0.01).
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Vita et al. [31], using quantitative T2w images, have shown gray and white

matter atrophy in patients with the inherited form of CJD, namely in the parahip-

pocampal gyrus, mid-orbital gyrus, superior temporal gyrus, insular cortex, middle

cingulate, supramarginal gyrus and post-central gyrus. In the same study, Vita et

al. [32], also detected gray matter atrophy in sCJD patients. However, these al-

terations were not overlaping with the structures detected in patients with IPD,

using the same measure. The sCJD patients have shown alterations in the puta-

men, thalamus and anterior limb of the internal capsule, as well as in the innumerous

cortical areas, such as the anterior cingulate cortex, rectal gyrus, Heschl gyrus, su-

perior temporal gyrus, middle frontal gyrus, middle cingulate cortex and fusiform

gyrus [31, 32].

Alner et al. [15], explored the potential to use the cortical thickness as a

biomarker to characterise inherited form of prion disease, specifically 6-OPRI and

P102L. The results of this study have shown significant differences in the mean cor-

tical thickness between 6-OPRI patients and controls in temporal, cingulate, frontal,

parietal and occipital lobes. On the other hand, only the mean cortical thickness of

parietal lobe was relevant to distinguish controls and P102L patients [15].

Later, Vita and collaborators [33], also detected significant differences between

controls and symptomatic subjects using MTR, namely in the caudate, hippocam-

pus, putamen and cortex. Brain progressive structural changes were also identi-

fied by applying longitudinal voxel-based morphometry (VBM): significantly greater

rates of grey matter decline were observed, predominantly in the pons, the corpus

callosum, the thalamus and the putamen, when comparing controls and symptomatic

subjects [33–35].

Fluid-Attenuated Inversion Recovery Imaging (FLAIR)

Several studies have explored the potential of FLAIR in the detection and eval-

uation of human prion disease. Murata et al. [36], studied 13 patients diagnosed with

CJD and detected signal abnormalities in the basal ganglia, thalamus and cortex,

using FLAIR images. Similarly, Collie and collaborators [27], found hyperintensities

in the pulvinar, denominated as pulvinar sign, caudate, periacqueductal gray matter

and mediodorsal thalami nuclei [27, 36].

Kallenberg and collaborators [37] (Figure 1.8, panel A), as well as Young et



40 Chapter 1. Introduction

Figure 1.7: T2w magnetic image of a male subject with CJD. Hyperintensities in the basal
ganglia and frontal cortex (black arrow). Image adapted from [24]

.

al. [38] (Figure 1.8, panels B and C), diagnosed CJD using FLAIR images, identifying

hyperintensities in the cingulate cortex [37, 38]. The FLAIR imaging technique was

used in numerous studies of human prion disease (Table 1.3), in which DWI and T2w

images were also acquired, once the combined use of these techniques has proven to

be an added value in the diagnostic of human prion disease. However, comparing

the rate of correct diagnostic obtained using FLAIR, T2w and DWI, it is possible

to infer that the FLAIR is more accurate to detect the earlier stages of the disease;

nonetheless, FLAIR is less accurate in detecting lesions when compared with DWI,

once in same cases the hyperintensities become less prominent during the course of

the disease, as it was shown by Shiga et al. [38, 39].

Diffusion-Weighted Imaging

DWI is a medical imaging technique that exploits the exquisite sensitivity of

magnetic resonance imaging to diffusion processes to measure microscopic tissue

orientation characteristics in vivo. DWI characterises the three-dimensional diffusion

of water as a function of spatial localisation. This technique is highly sensitive to

the changes in the diffusion pattern allowing the assessment of the microstructural

architecture of brain tissues. Consequently, DWI has became the most relevant

and sensitive sequence to detect and characterise human prion disease, namely the

sporadic form of this illness. In fact, the combined use of DWI and FLAIR sequences

has increased the diagnostic specificity and sensitivity up to 91%, compared with

previous studies only using T1w and T2w MRI [53]. The high-intensity lesions, in
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Figure 1.8: CJD detection using FLAIR images. CJD detection using FLAIR images. The
image A shows a FLAIR image with abnormalities in the left hemisphere and
the dorsal part of the cingulate gyrus [37]. The image B, an axial FLAIR, shows
the insular cortex slightly hyperintense (arrows) to neocortex. The image C,
axial FLAIR image, shows relative hyperintensity in cingulate cortex [38].

either DWI and FLAIR, appear before any sign of brain atrophy. Kallenberg and

collaborators [37], identified typical lesions, caused by CJD, visible in DWI images

(Figure 1.9).

Aside from the qualitative assessment of DWI performed to detect signal abnor-

malities due to the presence of CJD, it is also useful to use measures derived from

DWI, such as diffusion tensor imaging (DTI), to describe the progress of the dis-

ease and infer its severity. Hyare et al. [50], calculated the mean apparent diffusion

coefficient (ADC) for the caudate, putamen and pulvinar nuclei to evaluate the pos-

sibility of using DWI MRI as an imaging biomarker of disease severity. The results

seem to suggest that the brain volume loss in inherited prion diseases is followed by

the increased cerebral ADC, correlating with the increased disease severity [50, 54].

Hyare et al. [55], extracted DTI measures, such mean diffusivity (MD) to evaluate

the relevance of the diffusion patterns in the putamen as useful biomarker to diag-

nose CJD. Their results suggest that the putamen radial diffusivity has potential as

a secondary outcome measure in future therapeutic trials in human prion diseases,

since it provides useful information regarding brain changes caused by CJD. More-

over, a step-wise linear regression analysis, with dependent variable decline in clinical

rating scale and covariates age, gender and disease duration, showed the decline in

putamen radial diffusivity was the strongest predictor of decline in Medical Research

Council Scale (MRC) (p < 0.001) [55]. Nevertheless, the DTI measures, specifically

MD measurements, can show either increased or decreased values depending on the

brain region and the micro-structural changes happening at a specific stage of the
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Figure 1.9: CJD detection using DWI images. The image A shows a DWI image with
abnormalities in the left hemisphere and the dorsal part of the cingulate
gyrus [37]. The image B, an axial DWI, shows the insular cortex slightly
hyperintense (arrows) to neocortex. The image C shows hyperintensity in
cingulate cortex [38].

disease. These biphasic behaviour is independent of the CJD subtype or the PRPN

mutation. As an example, Vita et al. [56], reported increased cerebral MD in pa-

tients with the 6-OPRI mutation also previously found in patients with other forms

of CJD, namely in cerebral cortex of patients with the E200K mutation and in the

thalamus of vCJD patients. In this study, it was hypothesised that the increased

of signal reflected increased gliosis. Conversely, findings of decreased MD have been

reported in both sCJD and IPD patients, specifically within the basal ganglia and

thalamus, which was assumed to be a result of spongiform changes [56, 57]. Further-

more, these changes in the diffusivity patterns can also be explained by macroscopic

brain changes as atrophy. In detail, the increased diffusivity has been associated

with loss of neuronal cell bodies, synapses, and dendrites, causing an expansion of

the extracellular space and, consequently, a more evident diffusivity. In prion dis-

eases, this increasing in diffusivity can also be explained by gliosis processes followed

by neuronal loss, which become dominant over spongiform changes [56].

Other imaging modalities

Whilst MR imaging presents hyperintensities, as an expression of vacuolitic

process happening in the brain, and/or structural changes such as volume loss, the

18F-fluorodeoxyglucose (FDG) PET–CT shows the hypometabolism, which may

either represent a consequence of neuronal damage, or neuronal loss, or even a

result of dedifferentiation in certain brain areas [26]. 18F-FDG PET–CT has proved
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to be useful to detect CJD in its early stages; although, the brain alterations shown

by this technique in the initial stage of CJD are also found in a large variety of

neurodegenerative diseases [58]. Conversely, the hyperintensities spotted in MR

images are highly supportive for a diagnosis of CJD, specially in MR modalities

such as fluid-attenuated inversion recovery imaging and diffusion weighted imaging.

For this reason, the data available in the current study is mainly MRI data.

1.3.2 Non-imaging data

The clinical diagnosis of CJD is not exclusively reached using imaging data. In

fact, rating scales designed to probe neurological, cognitive, psychiatric and general

functional status have been used to identify the clinical onset and to track the

evolution of clinical symptoms. Nowadays, a clinical scale, MRC Scale, is used by

the National Prion Clinic to characterise the different stages of CJD condition and

to evaluate the effectiveness of trials and future treatments. The scale was developed

by Thompson and collaborators to tackle the lack of a validation measure of clinical

progression during the PRION-1 trial [59].

Analysis of the performance of eight scales, including Rating scales designed to

probe neurological, cognitive, psychiatric and general functional status, in PRION-

1 in terms of validity, practicality and statistical power in simulated clinical trials

supported the need of orientated measures relative to global, neurological, cognitive

or psychiatric scales. However, concerning the pathological features of CJD – namely

the rapid progression of the disease which may not be well described due to the high

decline of the patients between visits, floor effects, such as large numbers of patients

with very low score, in most of the scales, except Glasgow Coma Score –, and the

size of the sample available to produce reproducible analysis of the different forms

of CJD, the scales available, and previously applied to other types of dementia, were

not completely successful when used in prion disease [59]. The MRC Scale is a single,

functionally-orientated and validated outcome measure, designed especially for the

demands of the prion disease clinical trial. It combines elements of three rating

scales, which had shown to be useful in PRION-1 analysis: the Modified Barthel

Activities of Daily Living Index (Barthel), the Clinical Dementia Rating Sum of

Boxes, and the Glasgow Coma Score [59–61]. The MRC Scale is defined from 20 to

0, where 20 denotes the clinically asymptomatic subjects and 0 corresponds to the

most severe symptoms.
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The final scale evaluates physiological functions, the autonomy of the patient,

and its cognitive decline and it has been shown to be useful to characterise the

progression of the disease for the most forms of CJD. In fact, the MRC Scale was

able to summarise into a single outcome measure the patients symptoms and to

capture rapid global decline in a subject with sCJD. The MRC Scale is not able to

capture changes in patients with slowly progressive forms, namely with the inherited

form of human prion disease. The MRC Scale does not capture the cognitive decline

during the disease progression. To overcome this limitation, which compromises the

accurate definition of the onset of disease in inherited prion disease, it is essential

the joint analysis of neuropsychological tests [59].

Finally, both spinal fluid tests (cerebrospinal fluid), and blood tests are used

as diagnostic tests. They look for a wide range of biochemical and metabolic disor-

ders, vitamin deficiencies, signs of viral infection, specific antibody tests and thyroid

problems, that can recognise the presence of prion disease [11]. Genetic tests may

also be performed to investigate changes in the DNA causing inherited disorders.

The identification of genetic abnormalities leading to CJD can be used to identify

subjects at risk of developing prion disease. The recruitment of these subjects’ into

clinical trials is critical to understand the mechanisms of the disease and the evolu-

tion of the biomarkers before and after onset. Furthermore, by tracking the brain

changes that anticipate the clinical onset, new metrics for more effective diagnosis

can be considered.

1.4 Research Objectives

As detailed before, identifying the specific time of onset for each patient might

lead to delay many of the symptoms associated with this disease. Also, the accu-

rate knowledge of the disease progression pattern and the anticipation of clinical

symptoms might lead to more aggressive clinical trials, which can contribute to

the surveillance of symptoms and improvement of the life quality of prion diseases

patients. To overcome the current misdiagnosis rate and to address the research lim-

itations that hamper the understanding of human prion diseases, this project aims

to identify and extract quantitative imaging biomarkers that can be used to char-

acterise the evolution of the disease over time. In addition, I also investigated the

potential of using the extracted imaging biomarkers to identify CJD among other

types of dementia, and how to differentiate its subtypes.
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The following sections describe the main contributions of this thesis that address

these research objectives.

1.4.1 Thesis Contributions

The main contributions of this thesis are organised in three main parts, as

following:

1. Extraction and selection of imaging biomarkers - I developed a tailored frame-

work to extract quantitative imaging biomarker to identify and characterised

CJD. To my knowledge, this is the first study that takes advantage of comple-

mentary information, extracted from three different MRI sequences, to identify

subject-specific imaging biomarkers. As a result, two research outputs were

presented, demonstrating the viability of the extracted biomarkers.

(a) Liane S. Canas, Benjamin Yvernault, Carole Sudre, Enrico De Vita,

M. Jorge Cardoso, John Thornton, Frederik Barkhof, Sébastien Ourselin,

Simon Mead, Marc Modat, ”Imaging biomarkers for the diagnosis of Prion

disease,” Proc. SPIE 10574, Medical Imaging 2018: Image Processing,

1057405 (2 March 2018);

(b) Harpreet Hyare, Enrico De Vita, Marie-Claire Porter, Ivor Simpson,

Gerard Ridgway, Jessica Lowe, Andrew Thompson, Chris Carswell,

Sébastien Ourselin, Marc Modat, Liane Dos Santos Canas, Diana

Caine, Zoe Fox, Peter Rudge, John Collinge, Simon Mead, John S Thorn-

ton, ”Putaminal diffusion tensor imaging measures predict disease sever-

ity across human prion diseases”, Brain Comunications, Published April

2020

2. Modelling of imaging biomarkers through Gaussian Processes - In order to

characterise the disease status of each subject using the available multi-source

features, I designed a Bayesian framework to find the function that best fits the

relationship between imaging features and the subjects diagnosis. The model

was used as a proxy to binary diagnosis, differential diagnosis and subjects

stratification. The results of this model have been submitted as a journal con-

tribution, demonstrating the relevance and novelty of using machine learning

models to diagnose CJD. Lastly, the methodological advances obtained from

the design of the model were presented in two peer-reviewed conferences.
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(a) Liane S Canas, Benjamin Yvernault, Carole H Sudre, Jorge Cardoso,

John Thornton, Frederik Barkhof, Sébastien Ourselin, Simon Mead, Marc

Modat. ”Multikernel Gaussian Processes for patient stratification from

imaging biomarkers with heterogeneous patterns”. In Learning from Lim-

ited Labeled Data: Weak Supervision and Beyond, NIPS, Long Beach,

2017

(b) Liane S. Canas, Benjamin Yvernault, David M. Cash, Erika Molteni,

Tom Veale, Tammie Benzinger, Sébastien Ourselin, Simon Mead, Marc

Modat, ”Gaussian processes with optimal kernel construction for neuro-

degenerative clinical onset prediction,” Proc. SPIE 10575, Medical Imag-

ing 2018: Computer-Aided Diagnosis, 105750G (27 February 2018);

(c) Liane S Canas, Carole H Sudre, Enrico De Vita, Akin Nihat, Tze How

Mok, Catherine F Slattery, Ross W Paterson, Alexander J M Foulkes,

Harpreet Hyare, M Jorge Cardoso, John Thornton, Jonathan M Schott,

Frederik Barkhof, John Collinge, Sébastien Ourselin, Simon Mead, Marc

Modat, ”Prion disease diagnosis using subject-specific imaging biomark-

ers within a multi-kernel Gaussian process”, Neuroimage: Clinical, Pub-

lished, October 2019

3. Dealing with missing data - Due to the fast progression of prion disease, there

are often missing samples caused by the impossibility of acquiring all the data.

To avoid dropout that would reduce the sample size, I investigated ways of

dealing with missing data, without compromising the sample. Hence, I devel-

oped a novel framework for classification, regression or stratification, where

Gaussian Processes are conditioned by the uncertainty of the imputed val-

ues. Firstly, an imputation scheme is used to account for data heterogeneity

through a robust observation model. Second, when training using the real and

imputed values, I considered the uncertainty of each individual imputation in

the optimisation of the overall model. This method not only estimates the

missing samples, avoiding dropout, as well as identifies possible sources of bias

created by the imputation methods. The results suggest that the imputation

method efficiently estimates the missing samples.

(a) Liane S. Canas, ... , Simon Mead, Marc Modat, ”Uncertainty Embed-

ding for Partial Data in Gaussian Processes”, Paper in Preparation
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1.4.2 Thesis Outline

This thesis starts with an introduction focusing on the clinical and scientific

motivation, the research objectives of this work and the contributions of this project

to the field of study (Chapter 1). In Chapter 2, I introduce the relevant background

to the development of this project, as well as the relevant literature related to the

proposed methods. Chapter 3 presents the work regarding the extraction and se-

lection of imaging biomarkers to characterise both forms of CJD: IPD and CJD. A

comparison with current state-of-the-art methods is presented, motivating the need

for a novel framework to extract and select subject-specific biomarkers. In Chap-

ter 4, I describe a Bayesian model for the diagnosis of CJD, tailored to tackle the

limitations of the current models when used in the context of prion diseases, such

as small dataset and heterogeneous features. Chapter 5 introduces a multi-class

classification model, where the assumptions considered in Chapter 4 are extended

to account to multiple classes used for stratification and differential diagnosis. The

model is evaluated using both the National Prion Monitoring Cohort (NPMC) and

YOAD datasets. The robustness of the stratification model, when used to predict

the clinical onset, is also assessed in this chapter. In chapter 6, I address the limita-

tions raised by incomplete data and how to deal with this issue when in presence of

limited data. A two-step framework is introduce in this chapter to estimate the miss-

ing samples, while reducing the statistical impact of the imputation techniques in

the original sample. Lastly, Chapter 7 presents the main conclusions of this project,

limitations of the proposed methods and the future work that could improve the

obtained results.
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Neuroimaging has made it possible to measure macro- and micro-structural

changes over the course of brain pathologies, such as Alzheimer’s disease (AD).

During the past decades, the biomarkers extracted from neuroimaging data have

been continuously integrated in machine learning algorithms in order to extract

specific brain patterns during the course of these diseases. These models have proven

to be a useful tool for subjects diagnosis and prognosis [62].

In this chapter, I present an overview of the machine learning methods used in

the context of neuroimaging studies, in particular in the study of AD. A summary
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about dimensionality reduction techniques adopted in these frameworks, including

feature extraction and feature selection methods, is presented in sections 2.1 and 2.2.

The following sections, section 2.3 and 2.4, introduce the models used for the subjects

diagnosis and prognosis, respectively. Finally, in section 2.5, the applicability of

these methods to prion disease characterisation is presented. A standard notation

for data and variables for machine learning models is adopted here. The input data is

defined as [xid, yic], where X = [xid] ∈ X is the feature space and Y = [yic] ∈ Y is the

response variable, for a subject i = {1, . . . ,N} given a set of d = {1, . . . ,D} features

and set of labels C = {1, . . . ,C}. Without losing generality, both classification and

regression models are defined as machine learning models. Lastly, the response

variable is discrete in classification task, whilst for regression problems the response

variable is continuous.

2.1 Feature Extraction and Feature Embedding

The main goal of a machine learning algorithm is to estimate the underlying

function between the input and the output data. Machine learning algorithms must

rely on a large number of samples and features to do it.

In neuroimaging studies, the term ”features” typically refers to the informative

measures derived from the post-processing step applied to the raw medical data,

namely to the imaging data as MRI scans. This post-processing step includes fea-

ture methods designed to encode the relevant features to explain specific biological

processes, either pathological or healthy processes. The features extracted from

various imaging modalities can be in isolation or combined to make use of the com-

plementary information provided by several modalities [63].

The methods adopted to extract meaningful features depend on (1) the type of

information that is relevant to the machine learning task and (2) the imaging modal-

ity. Figure 2.1, illustrates the feature extraction methods used to derive informative

measures from specific imaging modalities.

Structural MRI techniques (Figure 2.1, top scheme), give relevant information

about the brain structure, namely about structural changes, such as thinning of the

cortical surface, structural variation in several brain regions and regional tissue den-

sities caused by cerebral neurodegeneration. These features serve as markers of the

stage and aggressiveness of the neurodegenerative aspect of illnesses, such as AD [62].

The three main feature extraction methods for assessing structural variation con-
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Figure 2.1: Feature extraction methods for imaging data. Main methods used to process
raw imaging data in order to derive informative measures to be used as input
in machine learning algorithms.
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sidered are: (1) density maps, (2) cortical surface and (3) pre-defined regions-based

methods. In detail, the density map-based methods quantify patterns of atrophy

by computing the density map of white matter (WM), grey matter (GM) and CSF

brain tissues. These maps can be generated by methods such as voxel-based mor-

phometry (VBM) [64] or regional analysis of volumes examined in normalised space

maps [65]. Cortical surface-based methods can also be used to extract measures of

atrophy of the brain. Nick Fox et al. [66], use brain boundary shift integral (BBSI) as

a measure of brain atrophy and demonstrate its application to study AD. Similarly,

Dickerson et al. [67], analysed measurements of the cortical surface to identify signs

of brain atrophy in AD patients. Lastly, predefined regions-based methods are also

use to extract relevant features to characterise neurodegenerative diseases. These

methods are based on the prior knowledge of the magnitude and spatial pattern

of this illness that were acquired by studies previously conducted on histological or

imaging data [62]. The analysis of specific brain regions requires the segmentation of

the brain tissues and its parcellation in to regions of interest. Several segmentation

and parcellation methods have been successfully used to extract structural features

to characterise AD [68–70].

Most neurodegenerative diseases are associated with loss of myelin, thereby

compromising the integrity of WM and leading to abnormal diffusivity patterns.

Therefore, DWI and Diffusion tensor imaging (DTI) are used to analyse water diffu-

sion at the microstructural level of the brain for determining the abnormal diffusion

pattern of AD [62]. The DTI-based features can be grouped according to the way

that they are extracted as (1) tractography [71], (2) connectivity network measure-

ments [72] and (3) discriminative voxel analysis [73] (Figure 2.1, second scheme).

Functional connectivity between various brain regions are often compromised

due to the neurodegenerative process induced by AD [62]. The changes in the func-

tional connectivity are generally measured using fMRI. The evidence of disrupted

functional connectivity and its association with AD led researchers to develop mea-

sures to properly quantify the functional connectivity and to capture the global

distribution of its abnormalities for AD patients [74]. The quantification of this

measure involves spatial parcellation of fMRI data according to a structural brain

template and the calculation of pair-wise connectivity between the activation in all

pairs of regions, as illustrated in Figure 2.1.

Finally, the characteristic patterns of glucose metabolism on brain FDG-PET

and the amyloid deposition on amyloid PET can help differentiating AD from
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healthy controls. Four main methods that use the cerebral glucose metabolism rate

are detailed in Figure 2.1: voxels as feature-based, discriminative voxel selection-

based, atlas based and projection based methods.

Irrespective of the feature extraction algorithms, the number of features often

supplants the number of samples available, requiring the reduction of the dimension-

ality of the feature space. Some feature embedding methods can both extract the

features from raw data while transforming the original feature space into a lower-

dimensional subspace. Feature embedding methods can be divided into linear and

nonlinear techniques [75]. The linear methods include Principal Component Anal-

ysis (PCA) and linear discriminant analysis (LDA) [76, 77]. PCA is one of the

most classical linear dimensionality reduction methods, widely used in neuroimag-

ing studies. In brief, this approach finds the optimal subspace that represents the

data distribution. Thus, a mapping matrix consisting of the first d feature vectors

are used. Note that these vectors correspond to largest feature values from the

covariance matrix and consequently are sufficient to explain the data variance to

capture the patterns to explain the output via a machine learning model [76]. There

are also many nonlinear techniques, such as Kernel PCA, Multidimensional scaling

(MDS) and Isometric Feature Mapping (Isomap), that are used to encode non-linear

dependencies between the input and the output [77–80].

The feature extraction transforms the original feature space in to a lower di-

mensional subspace [77], in which features encode the patterns used to estimate the

function that better explains the output.

More recently, deep learning models are used for both feature extraction and

classification models [77]. These techniques have became the state-of-art in many

fields, including the medical imaging field [81]. In particular, convolutional neural

networks (CNNs) have proven to be powerful tools for a broad range of computer

vision tasks [81, 82], since deep CNNs automatically learn mid-level and high-level

patterns obtained directly from raw data, such as images, hence no prior assumptions

regarding the data are required. These methods have been widely used for lesion

detection, segmentation and shape models and subjects classification [81]. Further-

more, these techniques can deal with different sources of data, including MRI, CT,

ultrasound etc., without any specific pre-processing step. However, they required

a large sample size to be conveniently trained, which is not often possible in the

medical imaging context. Consequently, they are often inappropriate to study very

heterogeneous and rare diseases.
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In neuroimaging studies, even if the number of samples is reduced, hampering

the use of deep learning techniques, after feature extraction the number of fea-

tures often supplants the number of samples available. When compared with the

size available samples, large features spaces cause many issues, such as the need

for more storage and greater computational complexity during the training of the

model. Additionally, by having a higher number of features without increasing the

number of training samples, the dimensionality of the feature space would increase

as well as its sparsity. Due to this sparsity, the optimisation of the machine learning

model would likely overfit, thus hampering the generalisation ability and reducing

the predictive power of the model. Therefore, it is reasonable and important to

ignore the input features with reduced effect on the output, since by including irrel-

evant input features the computational cost of the algorithm increases, whereas the

performance of the model might be compromised. To tackle these issues, feature

selection methods can be used in statistical analysis and machine learning frame-

works, as they allow the relevant features to be chosen to explain the output. The

following section introduces some of the most used feature selection algorithms used

to handcraft the best subset of features, to improve the performance of the machine

learning model.

2.2 Feature Selection

By using feature selection approaches, the performance of the machine learning

models can be improved. In fact, the obtained subset of feature will lead to more ro-

bust models, namely by (1) avoiding over-fitting and improving model performance,

(2) providing faster and more cost-effective models training and by (3) gaining a

deeper insight into underlying processes that generated the data [62, 77, 83, 84].

Feature selection methods can be organised into three categories: filter, wrap-

per and ensemble methods, as presented in Figure 2.2, where feature space (FS),

hypothesis space (HS) and the subset of features selected (SFS) are considered differ-

ently by the machine learning model (MLM), depending on the type of implemented

method [83].

2.2.1 Filter methods

Feature selection based on filter techniques assess the relevance of the features

based only in the intrinsic properties of the data [83]. These methods apply a ranking
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Figure 2.2: Taxonomy of feature selection techniques. For each main group of feature
selection techniques it is presented their main advantages and disadvantages,
when compared with other feature selection methods. The schemes present the
workflow of the different techniques where FS: Feature Space; SFS: Selected
Feature Space; HS: Hypothesis space; MLM: a generic machine learning model,
either classifier or regression model, that uses the feature selected within the
learning task.
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system to order the variables according to a scoring criteria and a threshold is

then used to remove the variables below it. Essentially, a feature is discarded if

it has lower or no influence on the response variable [84]. Note also that most

of the proposed filter methods are univariate: each feature is considered separately,

ignoring features dependencies, which may lead to worse performance of the machine

learning algorithm due to redundancy [83].

Filter methods, contrarily to other feature selection method, are applied prior

to any machine learning model; therefore, only the selected subset of variables is

used as input during the training phase (Figure 2.2) [77, 83]. As a consequence, the

filter methods ignore the interaction with the model; i.e., the search in the feature

subset space is separated from the search in the hypothesis space in which the model

selection is done [83]. The main challenge of these methods is how to measure the

relevance of the variables to the data or to the response variable. Several metrics are

used to establish the relevance of the features, such as Maximum Variance, Laplacian

score and Fisher score [77]. In the context of medical imaging, the most common

metrics used as scoring criteria to rank features are the correlation criteria and the

mutual information [84, 85], as detailed below.

Statistical tests: t-test

Among the various ranking methods, the t-tests have been successfully used as

feature selection method [86]. Wee et al. [87], used a filter-based approach to select

the most relevant region of interest (ROI) in the brain for AD and mild cognitive

impairment (MCI) predictions. In this study, only the features with p-values smaller

than the predefined threshold, measured via between t-test, were used for subsequent

analysis. Due to the limitations of these techniques, the features retained by this

approach may still inevitably be inter-correlated. Therefore, another filter-based

approach, minimum redundancy and maximum relevance (mRMR) [88],

is used to further reduce the feature dimensionality. The mRMR algorithm was

initially developed for feature selection of microarray data and genetic information.

It tends to select a subset of features having the most correlation with a class –

relevance – and the least correlation between themselves – redundancy. In this

algorithm, the features are ranked according to the mRMR criteria. Relevance

can be calculated by using the F-statistic when features are continuous, or mutual

information for discrete features; whereas, the redundancy can be calculated by using
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Pearson correlation coefficient (for continuous features) or mutual information (for

discrete features). The efficiency of mRMR as feature selection method was assessed

by Wee et al., that proved that the features selected by this technique improved the

classification performance [89].

Tang et al. [90], also used a t-test approach to further select the relevant brain

features obtained from principal component analysis (PCA). The resulting features

were used to differentiate AD patients from healthy controls, boosting the classifier

performance.

Correlation Criteria

The Pearson’s correlation, Equation 2.1, is also used to detect dependencies

between the features and the response variable [84, 85]. This ranking metric finds

only linear dependencies between the jth feature of xij ∈X = [x.1, . . . ,x.D], and the

response variable yi, for the sample i.

ρj(xj) =

N

∑
i=1

((xij − x̄j) (yi − ȳ))

√
N

∑
i=1

(xij − x̄j)
2
N

∑
i=1

(yi − ȳ)
2

(2.1)

Davatzikos and collaborators use the Pearson coefficient, as defined by Equa-

tion 2.1, to identify brain ROI in which the tissue density is well correlated with the

clinical score [91]. Wee et al. [72], also quantified the discriminative power of a fea-

ture to the classification, as well as its generalizability, by measuring its correlation

with the labels. The Pearson’s coefficient was used to rank the features, as proposed

by Fan et al. [92]. The larger the absolute value of Pearson’s correlation coefficient

is, the more relevant to the classification task the feature is. The generalizability

of the features when used in different samples was then evaluated via leave-one-out

cross-validation when measuring the correlation of the feature with respect to the

clinical labels via Pearson correlation coefficient [92]. This feature selection method

was effective in the identification of brain ROI with WM alterations, even though

the wrapper methods, also analysed in this study, have lead to an improvement of

the accuracy of the classifier [72].



58 Chapter 2. Machine Learning applied to Neuroimaging data - Background

Mutual information

Mutual information (MI) can be used as filter feature selection method, where

the dependency between each feature and the labels is used as a scoring rank [84]. MI

can be used to compare discrete variables, where the concept of Shannon’s entropy

(Equation 2.2, upper row) is used to estimate the uncertainty in the response variable

y, and the conditional entropy (Equation 2.2, bottom row) implies that by observing

variable xj , the uncertainty in the response variable is reduced. Simply, the MI

measures how much an input variable (feature) can explain the response variable.

As a result, Equation 2.3 gives the MI between the response variable and each

feature.

H(y) = − ∑
y∈Y

p(y) log p(y)

H(y∣x) = − ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)

(2.2)

MI(y,x) = H(y) −H(y∣x) (2.3)

In the case of continuous variables, MI can also be interpreted as the Kullback-

Leibler divergence (KL), Equation 2.4, where DKL(y ∥ x) gives the mutual infor-

mation between each feature and the labels in terms of their probabilistic density

functions p(y), p(x) and p(y,x) [88, 93].

MI(y,x) =∆ DKL(y ∥ x) = ∫ ∫ p(y,x) log(
p(y,x)

p(y)p(x)
) dxdx (2.4)

For both cases, if x and y are independent, the MI will be zero, and greater than

zero if they are dependent. The features are ranked using the MI and a threshold is

set to select d <D features.

Peng et al. [88], had improved the classification accuracy by selecting the subset

of features via MI, proving the effectiveness of this method to select the relevant

variables. Korolev et al. [94], also implemented a MI approach to select the relevant

biomarkers in the context of neuroimaging data. By adopting this feature selection

method, Korolev and collaborators were able to identify the increasing risk of MCI

subjects to developed AD [94].

The main advantages of the filter methods are their computational efficiency
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and their ability to avoid over-fitting, proving to work well for certain dataset.

Furthermore, filter methods do not rely on the machine learning algorithms used

for further analysis using the selected subset. Thus, they do avoid introducing a

bias on the models’ estimation, caused by changing the data to fit the learning

algorithm. Nevertheless, the filter methods show some limitations, since they might

select a subset of features that is not the optimal, but rather redundant, because the

correlation between the features is not taken into account. Some of these limitations

are addressed by wrapper and embedded methods, as detailed below.

2.2.2 Wrapper methods

Unlike filter methods that use a feature relevance criteria, wrapper methods

rely on the learning model to obtain a subset of relevant feature. Therefore, these

methods embed the model hypothesis search within the feature subset search (Figure

2.2) [83]. Wrapper methods are black-box systems that use the current prediction

information as the objective function to evaluate the variable subset [77, 84].

Wrapper methods evaluate the optimal subset of features heuristically. Heuris-

tic search methods and sequential selection algorithm are used to guide the search

for an optimal subset. The widely used heuristic approaches are mainly evolution-

ary algorithms, including genetic algorithms (GA) and Particle Swarm Optimisation

(PSO), and others. However, note that when the number of dimensions is high, the

computational time and complexity of these methods also increase [77, 95].

These methods, even if not used as often as filter methods, have already been

used to select relevant features to characterise AD patients. Beheshti and collabo-

rators used a hierarchical feature selection method to reduce the high-dimensional

dataset, which combines feature ranking with a GA to reduce the dimensionality,

and to select optimal features for the high performance MCI conversion prediction

and AD classification. The performance of this method was evaluated using PCA

data reduction and raw-feature vectors. The results showed the potential of wrapper

methods to further reduce the feature space, for neurodegenerative studies [96].

2.2.3 Embedded methods

Lastly, feature selection can also be achieved through embedded methods, as

presented in Figure 2.2. Embedded methods include feature selection as part of

the training process of the model. These methods do not require splitting the data
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into training and testing sets, for both feature selection and training of the model,

avoiding also double-dipping issues. Therefore, embedded feature selection methods

are particularly useful for small data sets [77].

Since the selection of the features is based on the ranking of the features dur-

ing the training stage of the model, the weights (rank) of the features can be used

as classifier weights. By conducting sensitivity analysis of the weights, feature se-

lection can be achieved; i.e., the change in weight can be viewed as changing the

relevance of a feature. Some studies have suggested to use the change in the ob-

jective function to select the meaningful features [84]. This concept of using the

weights as the ranking and the search using the change in the objective function is

applied to the SVM classifier to perform recursive feature elimination, also defined

as the SVM-RFE method [86, 97]. In the SVM-RFE method, the L2 -norm is used

in the SVM minimisation problem. It is shown in the literature that other functions

can be used, which help in feature selection. Similar to optimising the SVM and

assigning weight to features, the same can be done using Neural Networks. Mul-

tilayer perceptron networks are trained and feature weights are calculated using a

saliency measure calculated from the trained network [98]. In this study a penalty

is applied for features with small magnitude at the node and the nodes connecting

to these input features are excluded. This type of node removal, also called Network

Pruning, is commonly used to obtain the optimum network architecture for Neural

Networks [98]. These methods are mainly used in the context of classification tasks,

and the feature selection is a step embedded in the full framework. Therefore, these

methods and examples of their applications to medical imaging problems will be

detailed in section 2.3.

2.3 Subjects Diagnosis

The diagnosis of symptomatic subjects among healthy controls can be achieved

through classification models, using the features extracted and selected from neu-

roimaging data. Similarly, the differential diagnosis of these patients, as well as

their stratification according to symptoms severity, can be modelled in a multi-class

fashion.

The modelling of imaging biomarkers can be performed either via parametric or

non-parametric models, depending on the initial assumptions and understanding of

the disease to be analysed. In the parametric models, the parameters of the function
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that models the features are fixed, and most of them are known except for a few

parameters, which are estimated using training data [99, 100]. When the pattern

of the features is close to the assumed parametric model, parametric classifiers are

expected to perform very well. However, these classifiers often lead to poor perfor-

mance when one or more model assumptions are violated. Since it is challenging

to validate the assumptions a priori, these models tend to perform poorly. On the

other hand, non-parametric models are more flexible, since they do not rely on ini-

tial assumptions regarding the samples pattern. Nevertheless, these models are also

not ideal and can perform worse than parametric models, especially in the presence

of small training samples and statistical instability [100, 101]. Therefore, their ma-

jor limitation is their inability to include additional information, such as a priori

assumptions that can condition the problem leading to a better estimation of the

model [99, 100].

In the study of neurodegenerative diseases, both types of models have been

implemented, showing their flexibility to be used to model both imaging and non-

imaging biomarkers, aiming at subjects diagnosis. The following sections present an

overview of some of the examples of parametric and non-parametric models, as well

as their application to this field.

2.3.1 Parametric Models

Logistic Regression

Logistic regression, Equation 2.5, is a discriminative parametric model used to

predict the odds of a given label, φi, based on the values of the independent variables

(covariates), xi, and the vector of the model’s parameters β [102].

logitφi = log
φi

1 − φi
= xTi β (2.5)

This model is widely used in the analysis of either binary or binomial responses and

several explanatory variables. The parameters of the logistic regression model can

be determined via maximum likelihood [102, 103]. Given a dataset {xi, yi}, where

yi ∈ [0,1], for i = 1, . . . ,N subjects, the likelihood function is given by:

p(y∣β) =
N

∏
i=1

φyii {1 − φi}
1−yi (2.6)

where y = (y1, . . . , yN)T and φi = p(C1∣xi) for a given class C1. Note that the proba-
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bility of the other possible class is given by p(C2∣xi) = 1 − p(C1∣xi). The parameters

of the model are then optimised using the cross-entropy error function [103].

Logistic regression can also take the form of a multi-class paradigm, in which

the probability of the response variable yi is given by the product of the probabilities

of each class Ck, k ∈ {1, . . . ,C} [103]. Therefore, the likelihood function becomes:

p(y∣β1, . . . ,βK) =
N

∏
i=1

K

∏
k=1

φ
yi,k
i,k (2.7)

where it is used a 1-of-K coding scheme in which the target vector, yi, for a feature

vector xi belonging to a class Ck is a design vector with all values to 0, except k,

which has value 1. This formulation can be used either for differential diagnosis or

subjects stratification.

The logistic regression is widely used for the diagnosis of AD. Rao Lee et

al. [104], applied a sparse logistic regression to classify AD patients among healthy

controls. In this study, they used a high dimensional feature space composed of

voxel-wise grey matter volumes derived from structural MRI, hence the need for an

adaption of the conventional logistic regression to a sparse logistic regression. The

methods implemented were able to automatically select clinically relevant regions

for AD, while simultaneously performing the classification with better accuracies

than other methods such as linear discriminant analysis (LDA) [104]. Note that

the sparse logistic regression is implemented by means of a prior on the weight vec-

tor, which penalises the log-likelihood and regularises the estimation of weights of

the different covariates. The penalty term, which incorporates both an L1 and L2

penalty on the weight vector, is the elastic net penalty, also used in regression and

classification problems when aiming the reduction of the feature space.

Moradi et al. [105], presented a novel method for predicting the MCI-to-AD

conversion from one to three years before clinical diagnosis, using MR data. Logistic

regression was used as feature selection method. The features that maximise the

performance of the logistic regression in the classification of AD, were selected as

the most relevant features to identify MCI conversion. The results had shown the

versatility of this method to both classify AD and to select the most significant

features to identify early signs of dementia [105].

More recently, logistic regression was also used to study prion diseases. Forner

et al. [106], implemented a statistical analysis, including logistic regression, to assess

the ability of CSF biomarker to diagnose sCJD subjects. Logistic regression was used
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also to compare the predictive value of CSF biomarkers against MRI biomarkers for

the sCJD diagnosis. This study shows the potential of logistic regression to be also

used for the diagnosis of CJD, being a convenient model with simple interpretation,

when the biomarkers are already identified.

Finally, Wang et al. [107], combined multimodal data, including MRI,

phenotyping-morphometry and structural connectomics in an AD diagnosis tool.

Three machine learning algorithms were tested, including logistic regression. The

best performance regarding the classification of MCI versus AD was achieved by the

combination of PCA and logistic regression, for the morphometry and connectome

features, only supplanted by random forest (RF) when using CSF biomarkers.

These studies have shown the potential of logistic regression for subjects diagno-

sis. However, note that for high dimensional feature spaces, sparse forms of logistic

regression need to be considered, to avoid the complexity of the model and expen-

sive computations. Furthermore, this method highly relies on previous assumptions

regarding the biomarkers selected, given its parametric nature.

Support Vector Machines

SVM’s can be described as linear models of the form of:

y(x) = βTψ(x) + b (2.8)

where ψ(x) denotes a fixed feature-space transformation and b is a bias parameter.

Assuming that the training dataset is linearly separable in the feature space, the

choice of the parameters β and b satisfies y(xi) > 0 for samples defined with target

values +1 and y(xi) < 0 for target values -1 [103]. There can be many solutions

that separate the classes as mentioned. Therefore, it is considered as an optimal

solution the model that gives the smallest generalisation error. The SVM approach

tackles this issue through the concept of the margin (Figure 2.3), which is defined

to be the smallest distance between the decision boundary and any of the samples.

Additionally, the decision boundary, also defined as hyperplane, is chosen to be the

one that maximises the margin [103, 108].

The perpendicular distance of a point xi from a hyperplane defined by y(xi) > 0

is given by
∣y(x)∣
∣∣β∣∣ . Besides, the optimisation strategy only considers the solutions for

which the samples are correctly classified, such as given Equation 2.8 and the real

targets ti, tiy(xi) > 0. Thus, the distance of a point xi to the hyperplane is given by
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Support vectors
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Figure 2.3: Schematic representation of a linear SVM. The margin is defined as the per-
pendicular distance between the decision boundary – hyperplane, represented
by the full black line – and the closest of the data points, defined as sup-
port vectors. Maximising the margin leads to a particular choice of decision
boundary. The location of this boundary is determined by the support vectors
represented here with the grey outline.

Equation 2.9. Finally, the maximum margin solution is found by solving Equation

2.10.

tiy(xi)

∣∣β∣∣
=
ti(β

Tψ(xi) + b)

∣∣β∣∣
(2.9)

arg max
β,b

{
1

∣∣β∣∣
min
i

[ti(β
Tψ(xi) + b)]} (2.10)

Note that, in the scenarios where the dataset is not linearly separable in the feature

space X , the feature space becomes linearly separable by using a nonlinear feature

space transformation, defined implicitly by a non-linear kernel function. This ap-

proach will be further detailed in section 2.3.2. Furthermore, other adaptations of

the linear SVM have been used to improved classification performance, such as rele-

vance vectors machines (RVM). RVM can be used to provide posterior probabilistic

outputs due to its Bayesian formulation [109]. A brief overview of these methods

will be also discussed in the section 2.3.2.

SVM’s became popular in various fields of research for solving classification and
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regression problems. The main advantage of SVM is that the determination of the

model parameters correspond to a convex optimisation problem, consequently, any

local solution is also a global optimum [103]. In neurodegenerative studies, SVM

have shown good performance for the diagnosis of patients, dealing with multiple

sources of data, such as MRI data, functional data, genetics, etc., [110]. However,

in most of the these studies the feature space X is not linearly separable, hence the

need to use a non-linear, non-parametric SVM. Examples of applications of SVM

to study neurodegenerative diseases will be explored in section 2.3.2, given their

non-parametric nature.

In summary, the two parametric models widely used for subjects’ diagnosis

with neurodegenerative diseases are logistic regression and SVM. SVM is essentially

a decision machine; thus, it does not provide posterior probabilities, whereas logistic

regression estimates the posterior probabilities. The logistic regression is also more

sensitive to outliers than SVM, since the cost function of logistic regression diverges

faster than the hinge loss used in the optimisation of SVM. Besides, the logistic

loss does not go to zero even if the sample is classified confidently. This might lead

to minor degradation in accuracy, when compared with SVM. On the other hand,

SVM tries to maximise the margin between the closest support vectors, while logistic

regression maximises the posterior class probability.

Nevertheless the good performance of these models in neuroimaging data anal-

ysis, the non-parametric models are more flexible and do not require strong prior

assumptions. The following section will present an overview of the non-parametric

models used in the context of neurodegenerative diseases and their main advantages

when compared with parametric approaches.

2.3.2 Non-parametric Models

Kernel Machines

Kernel machines, also denominated as kernel methods, consist in a set of meth-

ods in which the feature space X is transformed in a new different feature space by

means of a kernel function ψ(X) [103]. In other words, kernel methods embed the

data in some Hilbert spaces, H, and search for linear relations in these spaces [111].

Formally, considering the feature space X , and an embedding space H, it applies

the mapping ψ ∶ X Ð→ H [111]. Given two samples, xi,xj ∈ X , a kernel function
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k returns the inner product between the two embedded samples in the space H

(Equation 2.11). The kernel function returns a kernel matrix K ∈ RN×N , which also

corresponds to the Gram matrix Kij computed using a covariance function.

k(xi,xj) = ⟨ψ(xi), ψ(xj)⟩ (2.11)

The kernel is a symmetric function and it produces a positive, (semi)definitive

matrix [112]. The choice of kernel is crucial for the success of the kernel method, even

if the selection of a proper kernel is not trivial [111, 113]. There are several forms of

kernel functions commonly used in different kernel methods, such as kernel SVM and

Gaussian Process (GP). Many kernel functions have the property of being a function

only of the difference between the arguments, which are known as stationary kernels

because they are invariant to translations in input space. Additionally, specific cases

of these functions, which depend only on the magnitude of the distance between the

arguments, are defined as radial basis functions. A set of basis kernel functions is

introduced in Appendix B [103, 112]. Some studies have addressed the difficulty of

kernel selection for a specific dataset [113–115]. However, the most practical and

often used way to select and design the appropriate kernel still remains the empirical

approach.

Several classification models can be reformulated in terms of a dual represen-

tation in which the kernel function arises naturally [103]. The kernel SVM’s are

an example of that, in which the feature space is transformed using a ψ(X) kernel

function. Figure 2.4 demonstrates the transformation of the feature space, using the

a kernel function.

As previously mentioned, the RVM models are a good alternative to SVM,

given their probabilistic nature. These models use Bayesian inference to obtain

parsimonious solutions for regression and probabilistic classification [116]. The RVM

has an identical functional form to the support vector machine, but given that

provide a probabilistic estimation of the label, the likelihood function is given by:

p(y∣β, σ2
) = (2πσ2

)
−N/2 exp{−

1

2σ2
∣∣y −Kβ∣∣2} (2.12)

where y refers to the response variable, β is the vector of the weights and K is

the kernel matrix obtained by a given covariance function (Appendix B). Note that

RVM is actually equivalent to a Gaussian process model with Gaussian covariance

function. Compared to SVM, the Bayesian formulation of the RVM avoids the set
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Figure 2.4: Schematic representation of a kernel SVM. The decision boundary is repre-
sented by the full black line, and the shadow area defined in the left side of
the image. The function ψ(X) represents the feature space transformation.

of free parameters that usually requires the use of a cross-validation optimisations

scheme. Conversely, RVM uses an expectation maximisation learning method, hence

it is at risk of local minima convergence. This is unlikely result from the standard

sequential minimal optimisation (SMO)-based algorithms employed by SVM models,

which are guaranteed to find a global optimum (of the convex problem). Neverthe-

less, they still give more reliable posterior estimations when compared with methods

such as logistic regression.

In neuroimaging studies, both the linear and Gaussian kernels are commonly

used to transform the feature space, for subjects diagnosis. In several studies, kernel

methods are used to reduce the high dimensionality of the feature space, usually

comprising the number of voxels of a 3D MR image, and to encode the brain patterns.

Davatzikos et al. [91], used a non-linear SVM to detect patterns of brain structure

characterising MCI, the prodromal phase of AD. In this work, from each support

vector, the path of fastest change was constructed; in detail, for each sample that

was close to the interface between MCI and controls the path of fastest change was

extracted from the SVM gradients. From this information, they built an average

spatial map to evaluate the brain’s changes per region. The best classification rate

was achieved for the hippocampus using the non-linear SVM [91].

Mourão-Miranda et al. [117], also used kernel SVM to analyse functional mag-

netic resonance imaging (fMRI). The study introduces a new framework, a spatio-

temporal SVM, where the imaging features are encoded using a linear kernel SVM.

The new method was compared with traditional SVM [117]. They show that by using
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the spatio-temporal approach, they can perform a dynamic discrimination analysis,

showing how the regions discriminating between two cognitive states change over

time. The results show that the spatio-temporal SVM discloses relevant transient

responses in distributed brain systems that would be ignored by other models, such

as SVM and generalised linear models. The model was validated only in healthy

subjects, but it is flexible to be used for different purposes such as subjects’ diagno-

sis [117].

The relevance of SVM in clinical context was assessed by Klöppel et al. [118].

Using a linear SVM, they classified GM segment of MR scans from pathologically

proven AD subjects and cognitively normal elderly subjects. The AD subjects were

correctly classified using whole brain images, with an curracy up to 96%. The

intermediate cases, MCI, were correctly identified among AD and healthy controls,

with an accuracy of 86%. Therefore, the results sustained the hypothesis that SVM

correctly identify AD patients among healthy controls. Furthermore, these methods

are also effective in the differential diagnosis of two forms of dementia: AD and

frontotemporal lobar degeneration [118].

Zhang and collaborators also used a linear SVM to encode features from two

imaging modalities and CSF information, as detailed in Figure 2.5 [119]. In this

framework, the kernel parameters, for each modality, are jointly optimised with the

SVM parameters, in an iterative way. After the kernel parameters are estimated,

those parameters are used to combine the multiple kernel into a mixed kernel, as

detailed in Figure 2.5, and then the SVM estimates the subjects status according

to the mixed kernel. The proposed multi-kernel approach provides an efficient way

to combine data from different modalities. The results showed that the combined

approach outperforms the models using only the information from one modality, for

both AD versus healthy controls, and MCI versus healthy controls classification.

Furthermore, this study also proves the flexibility of the kernel-SVM to be used to

combine the information from both imaging and non-imaging data [119].

Later, Zhang et al. [120], used the aforementioned multimodal approach to es-

timate continuous variables, namely the mini mental state examination (MMSE)

and the Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog), via

a support vector regression framework, as well as categorical variables via multi-

modal SVM. From a subset of features, previously selected using a multi-task feature

selection, they used the multi-modal SVM, including multi-modal support vector

classification and multi-modal support vector regression, to train the final support



2.3. Subjects Diagnosis 69

Figure 2.5: Representation of the multimodal data fusion and classification proposed by
Zhang et al.. Image adapted from [119]

vector classification and regression models, respectively. The authors also consider

that since a common subset of features is used to train both the classification and

regression task, the models are actually performing a multi-modal multi-task learn-

ing [120]. The results showed that the proposed multi-modal multi-task method can

effectively perform multiple-tasks learning from multi-modal data.

Ramı́rez et al. [121], proposed a fully automatic computer-aided diagnosis tool

to improve the early detection of AD. The proposed approach uses a non-linear

SVM to classify the subjects, based on imaging features extracted from imaging

modalities, such as PET and SPECT. Their approach also reduces the dimensionality

of the initial feature space, in order to find the most informative ROIs and the most

discriminant image parameters with the aim of improving the accuracy of the system.

Among all the features evaluated, coronal standard deviation and sagittal correlation

parameters were found to be the most effective ones for reducing the dimensionality

of the feature space and improving the diagnosis accuracy when a radial (RBF) basis

function kernel SVM is used. The proposed model yielded to 90.38% accuracy in the

diagnosis of the early stages of AD and outperformed existing techniques including



70 Chapter 2. Machine Learning applied to Neuroimaging data - Background

the voxel-as-features (VAF) approach. Note that different kernel functions were

considered in this study, highlighting the flexibility of the kernel machines to deal

with different functions [121].

Dyrba and collaborators explored the used of a multi-kernel learning model to

encode the information from different imaging modalities, aiming the diagnosis of

symptomatic AD subjects [73]. Multi-kernel SVM enables the contribution of each

modality to the classification results to be controlled more closely and to use com-

plementary information provided by the modalities within the model. The results

did not show significant improvement when using multimodal information, rather

than using a single modality. However, this method shows the possibility of using

multimodal information to better characterise the evolution of the disease [73].

Similarly, Ahmed et al. [122], also proposed the multi-kernel learning for multi-

modal signatures fusion to recognise MCI patients against AD subjects and healthy

controls. Here, a global fusion framework was used to combine the signatures com-

puted from structural MRI, DWI and CSF to distinguish between healthy controls,

MCI and AD subjects. The multi-kernel algorithm combines the multiple kernel as

a weighted linear combination of the kernels. During the training stage both SVM

parameters and the weights are estimated withing the same optimisation scheme.

Conversely to the results presents by Dyrba et al., [73], the concatenation of the in-

formation from the different modalities benefit the classification performance [122].

Future studies need to confirm whether or not multimodal imaging provides

additional diagnostic accuracy in prodromal stages of AD or in differential diagnosis

between different types of dementia [73].

Finally, other kernel methods, such as RVM, were also used aiming the diagnosis

of AD, even if used as a surrogate approach for diagnosis. Franke et al., used a RVM

to estimate the subjects brain age from T1w-MRI [123]. The estimation of the brain

age was then used as a surrogate measure of the brain damage for both healthy and

AD subjects.

Kernel methods are very powerfull to encode information from different modal-

ities to diagnose neurodegenerative diseases. Most of these methods are discrimina-

tive approaches, which leads to simple models with a direct estimation of the likeli-

hood of the predictions. Besides, the discriminative approaches are very appealing to

deal with classification problems since their solution is directly modelled, as p(y∣X).

However, to deal with missing input values, outliers and unlabelled data points in a
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principled fashion it is very helpful to have access to p(X), and this can be obtained

from marginalizing out the class label y from the joint as p(X) = ∑y p(y)p(X∣y)

in the generative approach. Furthermore, by using a generative approach is also

possible to incorporate any prior information that can help to model the data in

case of very noisy samples. To tackle the limitations of discriminative models, spe-

cially when in presence of noisy labels and missing samples, generative models can

be used, even if considering the added complexity of these models. The following

section introduces a generative non-parametric model, as well as some examples of

its application for neuroimaging studies.

Gaussian Process

Machine learning studies, such as [124], have shown that for small datasets,

without strong assumptions about the behaviour of input features, generative models

are the most appropriate choice for classification, as they perform better. Nonethe-

less, discriminative models can also perform well in presence of small samples or

missing data. Particularly, GP based approaches allow robust modelling even in the

circumstances of highly uncertain or incomplete datasets. GP models learn a fit of

the probability distribution of the response variable y given the input observation sx

through the estimation of the posterior distribution, p(x∣y), selecting the the most

likely label y.

Ramsmussen and Williams have defined formally a Gaussian process as a col-

lection of random variables, any finite number of which have a joint Gaussian distri-

bution [112]. In other words, a Gaussian process is completely defined by its mean

function, m(X), and covariance function, k(xi,xj) for i, j ∈ [1, . . . ,N], as described

in equations 2.13 and 2.14 respectively.

m(X) = E [f(X)] (2.13)

k(xi,xj) = E [(f(xi) −m(xj))(f(xi) −m(xj))] (2.14)

Therefore, GP is defined as:

f(X) ∼ GP(m(X), k(xi,xj)) (2.15)

In realistic scenarios, such as the study of neurodegenerative diseases, it is typical

to not have access to function values themselves, but only noisy versions thereof y =
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f(X) + ε [112]. By assuming additive independent identically distributed Gaussian

noise ε with variance σ2
N , the prior on the noisy observations becomes:

cov(yi, yj) = k(xi,xj) + σ
2
Nδij

where δij is a Kronecker delta which is one iff i = j and zero otherwise, and i and

j are two different samples. Note that σ2
Nδij is equivalent to σ2

NI, where I is an

identity matrix. For noisy observations, the joint distribution of the observed target

labels, y and the function labels, f(X∗), at the test1 locations under the prior is

defined as demonstrated in Equation 2.16, where K(., .) represents the covariance

matrix obtained using a specific kernel function2, with hyperparameters globally

defined as θ.

⎡
⎢
⎢
⎢
⎢
⎣

y

f∗

⎤
⎥
⎥
⎥
⎥
⎦

∼
⎛
⎜
⎝
0,

⎡
⎢
⎢
⎢
⎢
⎣

K(X,X) + σ2
NI, K(X,X∗)

K(X∗,X), K(X∗,X∗)

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

(2.16)

Deriving the conditional distribution considering Equation 2.16, and the definition

of a Gaussian process presented in Equation 2.15 the predictive functions for a

Gaussian process are:

f∗∣x,y,X∗ ∼ N (̄f∗, cov(f∗)), where (2.17)

f̄∗ =∆ E[f∗∣X,y,X∗] =K(X∗,X) [K(X,X) + σ2
NI]

−1
y (2.18)

cov(f∗) =K(X∗,X∗) −K(X∗,X) [K(X,X) + σ2
NI]

−1
K(X,X∗) (2.19)

The aforementioned equations can be further simplified to express a more compact

notation, where K∗ =K(X∗,X) to denote the vector of covariances between the test

samples, X∗, and the N training samples/subjects, and K =K(X,X).

f̄∗ =KT
∗ [K + σ2

NI]
−1

y (2.20)

V [f∗] = k(x∗,x∗) −KT
∗ [K + σ2

NI]
−1
K∗ (2.21)

1The * subscript refers to the unseen samples, also defined here as testing samples. The corre-
sponding training sets are denoted by the same notation, without *.

2Similarly to the kernel methods described in section 2.3.2, the kernel function is defined by
Equation 2.11, taking different forms as described in Appendix B.
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Note also that the mean function (Equation 2.13), and the covariance function

(Equation 2.14) of the (Gaussian) posterior process is now given by equations 2.20

and 2.21, respectively. The evidence of the predictions is finally given by marginal

likelihood of the predictions p(y∣X), Equation 2.22, which corresponds to the inte-

gral of the likelihood times the prior [112].

p(y∣X) = ∫ p(y∣f,X)p(f∣X)df (2.22)

Under the assumptions of a Gaussian process model the prior is Gaussian, such as

f∣X ∼ N(0,K). Consequently, the likelihood is a factorised Gaussian y∣f ∼ N(f, σ2
NI).

Using the integration described by Rasmussen et al. [112], the logaritmic marginal

likelihood is then given by:

log p(f∣X) = −
1

2
fTK−1f −

1

2
log ∣K ∣ −

N

2
log 2π,

log p(y∣X) = −
1

2
yT (K + σ2

NI)1y −
1

2
log ∣K + σ2

NI∣ −
N

2
log 2π.

(2.23)

where σ2
N is the sample noise and N is the number of samples, here also representing

the number of subjects. The best parameters of the model can be found through

the maximisation of the marginal likelihood, Equation 2.23, where both the sample

noise σ2
N and the hyperparameters of the kernel function θ are optimised.

The concepts detailed above are applied in a GP model definition, when intend-

ing to build a regression model. However, these concepts can be modified envision

a classification task, such as binary classification. The main principle behind binary

classification using GP, as diagnostic tool, is to use a prior over the latent func-

tion f(X), and ”squash” this through the logistic function to obtain the prior on

π(X) =
∆ p(y = +1∣X) = σ(f(X)). In other words, this formulation consists in gen-

eralisation of the linear logistic logistic regression model, where the linear function

f(X) function is replaced by a GP formulation, and correspondingly the prior is

replace on the weights by a GP prior [112].

The inference step of a GP classifier model is achieved by two main steps:

1. Initially the distribution of the latent variable corresponding to a new sample is

computed, as detailed in Equation 2.24, where p(f∣X,y) = p(y∣f)p(f∣X)/p(y∣X)

is the posterior over the latent variables [112];

2. Secondly, using the distribution over the latent function f∗ the probability
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prediction is computed, as detailed in Equation 2.25 [112].

p(f∗∣X,y,X∗) = ∫ p(f∗∣X,X∗, f)p(f∣X,y)df (2.24)

π(X) =
∆ p(y = +1∣X,y,X∗) = ∫ σ(f∗)p(f∗∣X,y,X∗)df∗ (2.25)

However, given the non-Gaussian likelihood considered in Equation 2.24, the

integral is analytically intractable. Similarly, Equation 2.25 can be also in-

tractable [112]. Therefore, there are approximations that can be considered to

estimate the integral values, such as Laplace and expectation propagation (EP) ap-

proximations, or solutions based on Monte Carlo sampling [112, 125]. Some studies

have explored the performance of GP classifiers when using different approximation

functions [126, 127]. However, the choice of the approximation used is highly de-

pendent on the balance of the accuracy of the estimation o the parameters versus

the computational time required for that estimation. Therefore, the choice of the

approximation used should be based on the aim of the model and the constrains

aforementioned.

The concepts of GP models were used for the diagnosis of AD patients. Young

and collaborators have introduced GP classifier as a way to identify MCI conver-

sion [128]. The fully Bayesian framework naturally produced probabilistic predic-

tions, which were well correlated with the actual chances of converting to AD within

3 years in a population of 96 MCI-stable and 47 MCI-conversion subjects. Further-

more, this study also showed the flexibility of GP to be used in a similar manner than

the kernel methods describe in section 2.3.2, which can integrate multimodal data.

Specifically, Young et al. [128], included information extracted from volumetric MRI,

FDG-PET, CSF, and APOE genotype within the classification process through the

use of a mixed kernel. Similarly to the MKL approaches, the GP approach aids the

combination of different data sources by learning parameters automatically from

training data via type-II maximum likelihood. The proposed method was compared

to a more conventional approach based on cross validation and an SVM classifier.

The results for predicting MCI conversion based on the combination of all three

types of data showed a balanced accuracy of 74%. This is a substantially higher

accuracy than could be obtained using any individual modality or using a multiker-

nel SVM, and is competitive with the highest accuracy yet achieved for predicting
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conversion within three years on the widely used Alzheimer’s disease neuroimaging

initiative (ADNI) dataset [129].

Similarly, Challis et al. [130], investigated the performance of Bayesian Gaus-

sian process logistic regression (GP-LR) models with linear and non-linear covariance

functions, when used to classify both AD and MCI patients. The GP-LR models

can be interpreted as a Bayesian probabilistic framework analogue to kernel SVM

classifiers. In this study, the class probability estimates were considered as measure

of the confidence of the model’s predictions. Hence, these class probabilities, seen

as confidence score, may be extremely useful in the clinical setting. The proposed

methods were applied to a sample of 77 subjects; 27 with a diagnosis of probable

AD, 50 with a diagnosis of amnesic MCI and a control sample of 39. The input

data considered in this study comprises only MRI data. The results support the

hypothesis that GP-LR models can be effective at performing patient stratification,

since the implemented model achieved 75% accuracy in the identification of sub-

jects with amnesic mild cognitive impairment among healthy subjects, and 97%

accuracy disambiguating amnesic mild cognitive impairment subjects from those

with Alzheimer’s disease [130].

More recently, Fruehwirt et al. [131], combined multivariate pattern analysis

and GP classification to analyse elctrophysiological data, namely event-related po-

tentials (ERP) to study the neurodegenerative processes in AD patients. The new

method integrated interregional synchrony of ERP time signatures to account for

the temporal information of ERPs. In this study, Fruehwirt et al. [131], showed that

the proposed framework is useful to build neurophysiological markers to be used as

features in classification tasks for single subjects diagnosis. Furthermore, the study

also demonstrated the added-value of using a GP model, hence it outperformed the

probabalistic methods used as baseline, with the highest AUC overall (0.802) being

achieved using the new spatiotemporal method in the prediction of rapid cognitive

decline [131].

These studies demonstrate the feasibility of using non-parametric models,

namely kernel methods, to study neurodegenerative diseases. GPs models are partic-

ularly interesting to study small samples with noisy labels and/or missing samples.

Therefore, these models are specially interesting to be used in clinical context, where

the data is often incomplete and the clinical diagnostic, used as label, can be in-

consistent. However, the methods described above, including both parametric and
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non-parametric models, only allow the identification of patients among healthy con-

trols or the differentiation of the several stages of the disease. Therefore, they lack

metrics to anticipate the clinical onset of symptoms and the prediction of conversion

to illness statuses, such as AD and other neurodegenerative diseases.

To address this issue, some studies have proposed to perform subjects progno-

sis, in order to not only identify symptomatic subjects in the early stages of the

disease, but also to predict the onset of clinical symptoms in a defined period of

time for subjects apparently normal at the current time-point. Subjects’ prognosis

is often achieved by anticipating the clinical onset by modelling the disease evolution

based on the population [107, 132–135], whereas other studies proposed to model

the biomarkers evolution during the course of the disease to indirectly predict the

conversion of asymptomatic subjects to symptomatic status [136–139].

The section 2.4 details both parametric and non-parametric models used aiming

subjects’ prognosis in context of neurodegenerative diseases. The concept of mixed-

effects model (MEM) will be presented in section 2.4.1, as an example of parametric

models used to predict the evolution of the biomarkers over the course of the dis-

ease, before and after onset. Section 2.4.2 introduces the non-linear MEM and GP

regression as examples of non-parametric models used to both model the evolution

of biomarkers and the subjects’ prognosis.

2.4 Subjects Prognosis

Alternatively to subjects diagnosis approaches presented in section 2.3, mod-

elling the patterns of biomarkers that are used to characterise and understand the

disease progression is also an effective way to predict the subject’s status in early

stages of the disease. The evolution of the clinical manifestations encoded by imag-

ing or non-imaging biomarkers can be studied through disease progression models,

which often take the form of regression models. In order to understand and predict

the evolution of clinical manifestations, several types of disease progression mod-

els have been applied. These models are largely used to accurately stage subjects

in clinical trial and to predict their prognosis. Similarly to classification models,

disease progression models rely on machine learning techniques, such as statistical

pattern recognition, to learn the behaviour of biomarkers over time, using the learnt

patterns to estimate the function that best describes the disease progression and

consequently leads to subjects’ staging [140].



2.4. Subjects Prognosis 77

Paradigms with known physiological connotation can be explored with the afore-

mentioned techniques, by using parametric models (section 2.4.1). Nevertheless,

novel scenarios can also be explored, in which it is possible to ponder new paradigms

without strong initial assumptions (section 2.4.2). Therefore, disease progression

models may not only be used as an approach to generically model a neuroscience

problem, but may also be a way to explore and validate new neurophysiological

hypothesis. The models used to define disease progression can be summarised as

in Table 2.1. Note, however, that the aforementioned table does not detail all the

models that may be used for subjects prognosis.

Given that the aims of this thesis are focused on the understanding of CJD,

I considered two varieties of disease progression models, including both their para-

metric and non-parametric formulations. The two models, detailed in the sections

2.4.1 and 2.4.2, explore the main advantages of the models introduce in table 2.1:

namely the (1) extraction of a common biomarker trajectory from population sam-

ples, (2) interaction between the biomarkers and (3) inclusion of an individual rate

of progression. Some applications of these models to neuroimaging data are also

presented in these sections.

2.4.1 Parametric Models

Mixed-effect models

For the studies of neurodegenerative diseases, longitudinal studies have proven

to be useful to characterise the temporal trajectories of disease-related biomarkers.

In fact, longitudinal analysis approaches, such as linear and non-linear mixed-effect

models have been largely used to explore the evolution of disease-related features

over time [141].

Linear mixed-effect model can handle unbalanced data with high inter-subject

variability in the time-points acquisition, as well as with missing data points. There-

fore, these types of model offer a parsimonious yet effective approach to model the

mean and covariance structure of longitudinal data. In other words, linear mixed

effect-model allow the specific variance of a subject’s biomarkers to be modelled

according to the mean values of these biomarkers in the population. Considering a

linear model with a response variable y ∈ Y, the distribution of y is given by Equa-

tion 2.26, where w is the vector of known prior weights, β is the vector of estimated

weights, X is the matrix of input variables belonging to the feature space X with
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N subjects and D covariates/features, o is the vector of offset terms and σ is vector

with the noise of the population, also defined as the scale parameter [142].

y ∼ N(Xβ + o, σ2w−1
) (2.26)

In a linear mixed-effect model, the model expressed in Equation 2.26 takes the

form of Equation 2.27, where Z is the matrix containing the random effects covariates

and b is the vector of the weights related to these covariates.

y ∼ N(Xβ +Zb, σ2diag(w−1
)) (2.27)

with b ∼ N(0,σ2
ND), where σ2

ND is the matrix of variance-covariance. Note that

this formulation can be simplified in order to express the response variable in terms

of the time variable as:

y(t) =
F

∑
f=1

βfXf(t) +
R

∑
r=1,

brZr(t) +Σ (2.28)

where y is the time-dependent response variable for a subject, x(t) represents the

value of x at time t, corresponding to the fixed-effects, Z(t) represents the value of Z

at time t, which denotes the random-effects, β and b are respectively the coefficients

associated to the fixed and random effects, and Σ is the independent and identically

distributed zero-mean Gaussian measurement noise, with Σ = σ2diag(w−1). The

parameters in the model, both β and b are estimated either by maximum likelihood,

or by restricted maximum likelihood, based on the marginal density of the response

variable [143, 144]. If MEM is a non-linear function in b, then the model is defined

as non-linear MEM and the estimation of the parameters requires approximations

to the log-likelihood, such as Lindstrom and Bates approximation [144].

MEM are mature approaches, well known in the statistics community. Several

studies have shown that MEM are a powerful and versatile framework to analyse

real-life longitudinal neuroimaging data, envisioning subjects’ prognosis. Bernal-

Rusiel et al. [141], used linear MEM to analyse clinical longitudinal neuroimaging

data. The proposed approach provided a quantitative empirical evaluation of the

performance of linear MEM, competing with alternatives popularly used in prior

longitudinal structural MRI studies, namely repeated measures ANOVA and the

analysis of annualised longitudinal change measures (e.g. atrophy rate). In fact, the
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results suggested that the linear MEM approach offers superior statistical power in

detecting longitudinal group differences, when compared with the aforementioned

approaches [141]. Following this approach, Bernal-Rusiel et al. [145], introduced

an extension of the linear MEM modelling approach to be applied to the mass-

univariate analysis of longitudinal neuroimaging data. The proposed method, called

spatiotemporal linear MEM or ST-LME for short, builds on the flexible linear MEM

framework and exploits the spatial structure in image data. The model was used for

the analysis of cortical surface measurements (e.g. thickness). The proposed ST-

LME method was validated using two brain MRI datasets obtained from the ADNI

and Open Access Series of Imaging Studies (OASIS). The experiments showed that

ST-LME increased the statistical power and repeatability of findings, while providing

good control of the false positive rate [145].

Luo et al. [146], introduced a multilevel response model to analyse the multi-

variate longitudinal data of mixed types, such as continuous and categorical data

extracted from clinical studies. This study analyses several hierarchical joint models

with the hazard of terminal events, such as death or clinical dropout, dependent on

shared random effects from various levels. Luo and collaborators conducted exten-

sive simulation study to evaluate the performance of various models under different

scenarios. The proposed hierarchical joint models were applied to the motivating

deprenyl and tocopherol antioxidative therapy of Parkinsonism study to investigate

the effect of tocopherol in slowing down the progression of Parkinsons disease [146].

The results had shown that the proposed model provides accurate parameter esti-

mates, in addition to subject-specific disease severity estimation. Furthermore, it

also provided additional insight into the correlation between the multivariate lon-

gitudinal outcomes and the dependent terminal event at both subject and centre

levels. Luo et al. [146] also aim to develop a nonparametric statistical model, in-

cluding a multilevel item response model, to define and estimate the time-dependent

treatment effect.

Sabuncu and collaborators had also explored the associations between longitu-

dinal neuroimaging measurements and the time of clinical onset of AD [147]. These

associations were tested by using a linear mixed-effect model, in order to capture

the temporal variation in serial imaging data. The results obtained by Sabuncu et

al., using this model, suggested that linear mixed-effect model can offer excellent

statistical power to detect associations between longitudinal imaging features and

clinical symptoms [147].
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More recently, Rohrer et al. [148], have also used linear mixed-effects models

in the context of the genetic frontotemporal dementia initiative (GENFI). In this

case, a linear mixed-effects model was implemented to examine whether the differ-

ences existed between non-carriers and mutation carriers in the association between

the clinical scores or the neuroimaging features and the time to expected onset

of clinical symptoms. Once more, the obtained results suggest that linear mixed-

effects modelling is a powerful tool to analyse longitudinal data, since the model

detected measurable markers that showed rates of decline before symptom onset

in frontotemporal dementia [139]. Nonetheless the promising results obtained by

linear mixed-effect models, these models tend to analyse the contribution of each

biomarker independently. Furthermore, as suggested by Bilgel et al. [135], linear

mixed-effects models do not always account for the fact that subjects enter a study

at various disease stages and progress at different rates. Taking into account the

limitations of linear mixed-effect models, Bilgel et al. [135], have proposed a mul-

tivariate non-linear mixed effect model, which accounts for such differences across

subjects. Bilgel et al., suggested to adapt the disease score principle to study longitu-

dinal neuroimaging data by making substantial innovations to the progression score

model and parameter estimation procedure. In this approach, the progression score

s is modelled as a linear function of time t, for each subject and allow for the predic-

tion of separate slopes and intercepts to account for the variability across subjects.

The progression score sij , for the subject i at the time-point (visit) j, is assumed

to be an affine transformation of the subjects’s age at tij , as described by Equation

2.29 [135]. The subject-specific variable αi and βi account to the differences between

subjects in terms of rate of progression and baseline disease progression respectively.

sij = αitij + βi (2.29)

The complete version of the model assumes a form a mixed-effect model (Equa-

tion 2.30), where f and b incorporate the fixed-effects, and sij corresponds to the

random-effects; the biomarker evolution over time is defined by yij and ε is the in-

dependent and identically distributed zero-mean Gaussian measurement noise, with

variance σ2.
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yij = aaasij + bbb + εεεij (2.30)

The results obtained by using this model suggest that the method can be extended

to analyse several types of imaging data, to extract individualised summary scores

indicating the disease progression and to provide trajectories that may be compared

between brain regions. However, the current formulation does not capture dynamic

processes over longer periods; one way to overcome this issue is by investigating the

relationship between progression scores and time, and by selecting an appropriate

function to link these variables. Another limitation of the proposed framework is

the assumption of a linear trajectory of the biomarkers over time.

On the other hand, Schiratti et al. [149], proposed a generative statistical model

for longitudinal data, described in a univariate Riemannian manifold setting, which

estimates an average disease progression model, subject-specific time shifts and ac-

celeration factors. The model tackled the limitations of linear MEM, which do not

take into account the fact that subjects may be at different stages of disease pro-

gression. Schiratti et al. [149], considered that the time shifts account for variability

in age at disease-onset time, whilst the acceleration factors account for variability

in speed of disease progression. Lastly, for a given individual, the estimated time

shift and acceleration factor define an affine re-parametrization of the average dis-

ease progression model. The model was used to analyse ADNI data. The obtained

results showed that the proposed framework can distinguish between slow versus

fast progressing and early versus late-onset individuals [149].

Guerrero et al. [150], also proposed a framework based on non-linear MEM

to derive global and individual marker trajectories for a training population. In

detail, the framework consists of two main parts: (1) for a new unseen patient,

specific models are instantiated using a stratified marker signature that defines a

sub-population of similar cases within the training database; (2) from this sub-

population, personalised models of the expected trajectory of several markers are

subsequently estimated for unseen patients. When applied to the prognosis of sub-

jects to AD, the defined patient-specific models of markers were shown to provide

better predictions of time-to-conversion to AD than population based models [150].

In summary, due to the substantial inter-subject variability in clinical stud-
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ies, models that attempt to describe biomarker trajectories for a whole population

will likely lack specificity to represent individual patients. Therefore, individualised

models provide a more accurate alternative that can be used for tasks such as popu-

lation stratification and subject-specific prognosis. These models can be built based

on MEM approaches, which consider both the information retrieved from the pop-

ulation data while considering individualised trajectories of the disease progression.

Despite the good performance of parametric MEM, these models strongly rely on

prior assumptions about the disease progression. Therefore, non-parametric models

can be helpful when the knowledge regarding the progression of the biomarkers is

limited. Additionally, non-parametric models can also be advantageous when in the

presence of noisy and small samples. Therefore, in the next section, two examples of

non-parametric models are introduced to tackle the limitations of parametric disease

progression models, as well as their application in clinical studies.

2.4.2 Non-parametric Models

Non-parametric Mixed-effect models

Non-parametric MEM are an extension of generalised MEM, however they pro-

vide tools to model both the mean and covariance structure non-parametrically for

Gaussian distributed data [151]. Attending to the definition of MEM introduced in

the Equation 2.27, the conditional distribution of y on the random effects b is now

given by:

E[y∣b] = µi

V[y∣b] = ai(φ)ν(µi)
(2.31)

where yi is the response variable for the subject i, ν(⋅) is a known variance function,

and ai(φ) are known functions of the dispersion parameter φ, and the estimated

variance is defined by V[y∣b] [151]. Note that µi depends on b random effects,

while φ is independent of b. Lastly, considering a link function g, the conditional

predictor is then modelled by Equation 2.32, where a non-parametric function f is

also used to model the fixed effects.

g(µi) = f(xi) +ZTi b (2.32)
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Similarly to parametric MEM, non-parametric MEM have been used aiming the

subjects’prognosis in context of neurodegenerative diseases. Donohue et al. [152],

proposed general semiparametric MEM model to estimate simultaneously the patho-

logical stage (timing) and long-term growth curves for the biomarkers considered.

The resulting estimates of long-term progression were fine-tuned using cognitive

trajectories derived from the short-term. Using a synthetic dataset, Donohue et

al. [152], demonstrated that the method can recover long-term disease trends from

short-term observations. The method was also used for subjects’ staging with re-

spect to disease pathology, providing subject-specific prognostic estimations of the

time until onset of symptoms. The method was applied to ADNI data to assess

its robustness and effectiveness in real data. The estimated growth curves were in

general agreement with prevailing theories of the AD cascade [152].

Dalca and collaborators [153], presented a semi-parametric model. It incor-

porated the population trend and the subject-specific information to predict the

subsequent value of a specific biomarker and also the subsequent anatomical image.

The model developed considered the change of a phenotype ∆yt = yb − yt from the

baseline to the timepoint t, using a linear regression (Equation 2.33), where β is the

subject-specific regression coefficient, ∆ψt is the time interval between scans, and

ε is the independent and identically distributed zero-mean Gaussian measurement

noise, with variance σ2 [153].

∆yt = ∆ψtβ + ε (2.33)

Note however that β is defined by a non-linear mixed-effect model (Equation

2.34), where β̄ is the global regression coefficient, common to the entire population,

and H defines the deviation from this coefficient based on the subject’s specific

features, namely the genetic information (g), clinical information (c) and the image

features (fb). A Gaussian process was implemented to compute H, as suggested

previously by Ge et al. [154] using a different kernel covariance k to obtain the

kernel matrix K, which encode the features pattern. The parameters of the model

are estimated via the restricted maximum likelihood approach, as initially proposed

by Harville et al. and used in MEM studies [143, 151, 154].



2.4. Subjects Prognosis 85

β = β̄ +H(g, c, fb)

H ∼ GP(000, τ2
HK)

(2.34)

Dalca and collaborators have highlighted the potential of using these methods

as a prediction method to be used in context of disease progression models [153].

Schmidt-Richberg et al. [155], implemented a non-parametric approach to also

model the evolution of the biomarkers related to the progression of AD. Rather than

MEM, the authors used a quantile regression to learn statistical models describing

the evolution of biomarkers. In this study, two separate models were constructed

using (1) subjects that progress from a cognitively normal (CN) stage to MCI and

(2) subjects that progress from MCI to AD during the observation window of a

longitudinal study. These models were then automatically combined to develop a

multi-stage disease progression model for the whole disease course. A probabilistic

approach was derived to estimate the current disease progress (DP) and the disease

progression rate (DPR) of a given individual by fitting any acquired biomarkers

to these models. This method is particularly advantageous since it is applicable

even if individual biomarker measurements are missing for the subject. Employing

cognitive scores and image-based biomarkers, the presented method is used to esti-

mate DP and DPR for subjects from ADNI. The results showed the potential use

of these metrics as features for different classification tasks [155]. Later, Schmidt-

Richberg et al. [156], applied the proposed approach to three possible applications

for disease progress estimation. The authors demonstrated the versatility of the

proposed approach, by using it for classification, construction of a spatio-temporal

disease progression atlas and prediction of future disease progression, using ADNI

data [156].

Gaussian Process Regression

The GP models, introduced in section 2.3.2, allow to define the distribution of

a response variable y over functions and hence can model sequential observations as

a function of time. Therefore, GP models are very promising when the time series

is hard to discretise in time as is the case with clinical time series data in which

observations are often missing and spaced irregularly in time [157]. Furthermore,

given their properties, GP models are particularly interesting for the prognosis of
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AD and other forms of dementia while used as regression models.

For the particular scenario of disease progression models, GP models fit the

patients biomarkers and their clinical time series. As mentioned in section 2.3.2, GP

are parameterised by their mean functions and covariance function, where the mean

function is the function of time. Since patients may be encountered at different

age and under different circumstances (e.g., different stages of the disease), there

is no good way to align their time origins. Consequently, the only way to feasibly

align them is to set their mean functions equal to a constant as m(t) = M , which

makes the mean function of a GP time invariant [157]. The mean function can be

obtained from the average of all the observations from all the patients, which gives

a constant mean reflecting the population data. Differently, the covariance kernel

function measures the similarity of two biomarker values f(t) and f(t)′ based on

their input time t and t ’. In general, the covariance function should reflect the

properties of the modelled time series, such as its smoothness or periodicity [157].

A study developed by Hyun et al., supports that GPs are a good approach to

model longitudinal neuroimaging data [158]. Hyun and collaborators proposed a

spatial-temporal Gaussian process framework to accurately delineate the develop-

ment trajectories of brain structures and function, whilst incorporate the spatial and

temporal features of longitudinal neuroimaging data to improve the accuracy and

sensitivity of the predictions. Considering a longitudinal dataset with N subjects,

a response variable yi(d, ti) that corresponds to a specific neuroimaging measure

at voxel d and a vector of covariates (such as age, gender and diagnostic status)

denoted by xi(ti), for the subject i, at the time-point t, the measurement model of

a spatial-temporal Gaussian process is defined by:

yi(d, t) = µ(d,xi(t)) + ηi(d, t) + εi(d, t), for i ∈ 1, . . . ,N (2.35)

where µ(d,xi(t)) is the mean structure that characterises the effects of the covari-

ates defined by xi(t); the ηi(d, t) are the random functions that characterise both

individual features variations from µ(d,xi(t)) and the long range dependence of

longitudinal imaging data; the εi(d, t) denotes the the errors associated to the local

spatio-temporal dependence structure of longitudinal data. It is considered that

ηi(d, t) and εi(d, t) are independently and modelled by Gaussian processes with

mean 0 and mean µ(d, t), respectively; the variances are defined by the following
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expressions:

Ση((d, t), (d
′, t′)) =

∞
∑
l=1

λlψl(d, t)ψl(d
′, t′) (2.36)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

cov(εi,k(d)(d,t), εi,k(d′)(d′,t′)) = ∑ε((d, t), (d′, t′);θk) for k(d) = k(d′)

0 otherwise
(2.37)

where ψl(d, t) denotes the orthogonal eigenfunctions corresponding to the ordered

eigenvalues obtained by a functional principal component.

The estimation procedure is separated into three stages:

1. Estimate the parametric (or nonparametric) regression function µ(∶, ∶);

2. Estimate the covariance function Σn((d, t), (d
′, t′));

3. Estimate the unknown parameters in the covariance model using a restricted

maximum likelihood estimation (ReML).

The proposed model had shown good results when applied to real data such as

the ADNI cohort, predicting the surface of the lateral ventricle surface with a lower

uncertainty when compared with other methods (the model achieved a reduction of

error between 9 and 11%) [158].

Lorenzi et al. [159], used disease progression model to quantify the diagnos-

tic uncertainty of individual disease severity in an hypothetical clinical scenario,

with respect to missing measurements, biomarkers, and follow-up information. The

model was formulated within a probabilistic setting, via a GP regression model. This

study had shown that the subjects staging provided by the model was in agreement

with the clinical diagnosis [159]. Further, using follow-up measurements, they were

able to largely reduce the prediction uncertainties. This approach had also shown

that the transition from healthy to pathological stages is mostly associated with

the increase of brain hypo-metabolism, temporal atrophy, and worsening of clinical

scores. The results presented by Lorenzi et al. [159], suggest that GP regression

models provide an accurate probabilistic assessment of the pathological stage of un-

seen individuals, while representing a valuable instrument for identifying the clinical

value of biomarkers across disease stages.
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Figure 2.6: Personalised GPs model proposed by Peterson et al. The population model
is first trained using all past visits data of N patients (xTR; yTR), where the
time difference between two visits is 6 months. The model personalisation to
the target patient (N+1) is then achieved by sequentially adapting the model
predictions of the future metrics yt+1 (using the posterior distribution of GPs
-fGP), informed by the visits data up to time stept. The shaded fields in the
output represent the time-points for which no visit data is available for a given
patient. Image adapted from [87].

More recently, Peterson et al. [87], introduced a personalised GP (pGP) to pre-

dict the main biomarkers of the AD progression (MMSE, ADAS-Cog13, CDRSB

and CS) based on each patients previous visits. In this study, a time-point consists

in a patients visit, which refers to the data collected at a single time-point sample

during the ADNI cohort. The model is initialised by learning a population model

using multi-modal data of previously seen patients using the base GP regression ap-

proach. Then, this model is adapted sequentially over time to a new patient using

the notion of domain adaptive GPs. The main contribution of this approach is the

novel adaptation strategy for personalising the GP population model, as detailed in

Figure 2.6. The results presented by Peterson et al., leads to significant improve-

ments in the prediction performance of the future clinical status and cognitive scores

for target patients when compared to the population [87].

These studies support that GP regression models are interesting to study neu-

rodegenerative diseases, particularly to be used as prognosis tool and anticipation

of clinical onset.

Nevertheless, GP models also come with limitations, namely the fact that the

mean function of the GP is a function of time and in order to make the GP inde-

pendent from the time origin, which needs to defined as a constant value. However,

this significantly limits the model ability to represent changes or different modes

in time series dynamics, hampering its used in context of scenarios where the time

normalisation is not straightforward.
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In summary, mixed-effect models, both the parametric and non-parametric

forms of these models, are still one of the most common approaches to charac-

terise disease progression as a continuous time-dependent function. However, these

models have still limitations, since most of them assume a parametric shape of the

biomarkers trajectories and a common progression for all the subjects, ignoring the

potential diversity of symptoms and rates of progressions presented by the sub-

jects. Moreover, these models tend to define different functions for each biomarker,

assuming the independence of the observed features. Conversely, Bayesian frame-

works, namely the Gaussian processes formulations, are a practical way to process

the longitudinal data, since they are the appropriate choice to model time-series,

particularly in the presence of missing time-point or for making long term predic-

tion. However, these models require a more complex formulation in the presence

of time inconsistencies. Currently, the models used for subjects’ prognosis are still

hampered by the need to provide an initial temporal alignment of the samples.

2.5 Summary

Machine learning techniques have been broadly used on neuroimaging data to

classify, stratify and predict the outcome of patients. Both parametric and non-

parametric model have shown good results in the diagnosis of neurodegenerative

diseases, such as AD.

However, the current models, detailed in this chapter, are not appropriate for

Prion disease analysis, hence the need of a new model that may be able to overcome

the limitations of the current frameworks and to be able to model conveniently

this illness. The new formulation will need to account for (1) different rates of

progression of the disease, (2) interactions and correlations between biomarkers, (3)

heterogeneity of features even among patients at the same stage of the disease, and

(4) independent of the time origin in the samples considered. The following chapters

tackle the limitations of the existent models, adapting the current formulations to

the specificities of CJD.
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In the clinic environment, the diagnosis of CJD relies on the visual read of

MRI scans, as they present signal abnormalities induced by micro-structural changes

caused by CJD. The lack of quantitative biomarkers, as well as the difficulty to

accurately identify the onset of the disease and the fast rate of progression of CJD,

have limited the clinical understanding of the progression of CJD [6, 160] and the

development of automated tools for diagnosis and prognosis.

In an attempt to overcome the aforementioned issues, research is directed to-

wards identifying the right biomarkers that characterise and discriminate the ill-

ness. In this chapter, I introduce a framework to extract and select relevant imag-

ing biomarkers from MR images. The proposed framework aims the extraction of

subject-specific biomarkers, and it is validated on a cohort composed by both the

sCJD and IPD forms of prion disease. I also implement conventional approaches
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for dimensionality reduction, in order to demonstrate the advantages of a subject-

specific feature selection framework to characterise CJD.

The proposed framework is validated on the National Prion Monitoring Cohort

(NPMC) dataset. The dataset is detailed in section 3.1. Section 3.2 describes

the methods used for feature extraction. The results of the feature selection are

described in section 3.3. Lastly, the correlation between the features obtained from

both the group-wise approaches and the proposed method and the clinical scores is

analysed in section 3.4.

3.1 National Prion Monitoring Cohort (NPMC)

The data used in this study were obtained from the NPMC. NPMC (2008-)

is a prospective observational interval-cohort study of patients with any form of

prion disease in the UK or willing to travel to the UK. It includes regular follow-up

clinical and psychological assessments of sCJD patients, patient with IPD and their

relatives, who may be known carriers of PRNP gene mutations, at-risk but not had

a genetic test or healthy controls. The current dataset comprises (a) symptomatic

patients with confirmed prion disease, for both the inherited and sporadic forms of

the disease; (b) healthy subjects without a clinical diagnosis of IPD who carry PRNP

gene mutations and are therefore at increased risk of disease in the future, defined

in this study as asymptomatic subjects; (c) healthy individuals without a confirmed

diagnosis but at increased risk, (d) healthy individuals without either prion disease or

increased risk, defined as healthy controls (HC). From the aforementioned sample, I

defined a group composed by the subjects at clinical onset (CO): subjects within one

year of a clinical diagnosis and an MRC scale of 20, including both symptomatic

subjects with no severe neurodisability within this time frame and asymptomatic

patients with the diagnosis later confirmed. This new group is used to examine

specific brain changes occurring close to the clinical onset. To avoid the overlap of

criteria used to defined both the CO and IPD groups, the IPD group is composed by

symptomatic subjects with MRC Scale equal or lower than 20, in which the scans

were acquired outside the time frame specified; i.e., one year or more after clinical

onset.

The data from the 125 subjects include MRI scans, neurological and neuropsy-

cological assessment and scoring on the MRC Scale [21]. MRI was acquired using

a Siemens Magneton Trio (Siemens, Erlanger, Germany) 3 Telsa with conventional
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body coil for transmission and a 32-channel head-only receive coil. Structural imag-

ing used 3D T1-weighted images (T1w) MPRAGE sequence with repetition time 2.2

s, echo time 2.9 ms, inversion time 900 ms, echo spacing 6.7 ms, flip angle 10○, ma-

trix size 256×256×208, voxel size 1.1×1.1×1.1 mm. 2D Axial FLAIR were acquired

using a standard clinical FLAIR-TSE sequence with a voxel size of 0.9 × 0.9 × 5.2

mm. The diffusion weighted imaging (TR/TE 9500/93ms) were acquired using 64

non-colinear directions at b = 1000s/mm2 and 8 images with b=0. For all subjects a

T1w image was acquired as well as either a FLAIR, a DWI, or both. The sample’s

demographics are detailed in Table 3.1. The quality of the MR images was assessed

visually. None of the 125 scans had shown significant artefacts that would lead to

the exclusion of these subjects from this study. Lastly, an independent sample of

healthy controls is used for normalisation purposes (as detailed in section 3.3). The

sample comprises MRI data acquired at the Dementia Research Centre London,

using the MRI machine mentioned above. The scanning protocol includes the ac-

quisition of 3D T1w MRI, FLAIR and DWI. Both T1w and FLAIR were acquired

with the same protocol used for the acquisition NPMC dataset, whist the DWI was

acquired using multiple shells. For better harmonisation, this work only used the

shell that had the most similar b-value (b=700) to the one used for the prion data

acquisition (b=1000). The similarity of the MRI acquisition protocols as well as

the use of the same scanner ensures the viability of using this sample for data nor-

malisation. However, I acknowledge the limitation raised by the differences in the

DWI acquisition as a potential bias in the results of the feature selection. The data

demographics of this sample are detailed in Table 3.1.

3.2 Features Extraction

The framework is designed to extract quantitative features from the three MRI

pulse-sequences: T1w, FLAIR, DWI for each subject. The different sequences pro-

vide complementary information about brain microstructural changes caused by

CJD. The framework, Figure 3.1, consists of three sections: (A) data pre-processing

that includes artefact correction, bias field correction, correction of the effects of

eddy currents in DWI scans and rigid registration; (B) and (C) specific feature

extractions according to type of MRI sequence and quantification. In section (A)

both DWI and FLAIR scans are rigidly registered to T1w scans using the NiftyReg

open-source software [161].
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Tensor based 
measures4

FLAIR based 
measures3

Structural  
measures2

Volume per ROI Mahalanobis 
distance

Mean Diffusivity

B

C

Rigid Registration1A

Median Mahalanobis 
distance per ROI

Mean Diffusivity 
(MD)ROI averaging

Regression of confounding effects

Figure 3.1: A: data pre-processing step, including rigid registration using (1) NiftyReg
[161]. B: Feature extraction per MRI sequence, applying (2) GIF algorithm
[162] to T1, using (3) BaMoS algorithm to extract the intensity distributions of
FLAIR [163], and computing the diffusion tensor from DWI using (4) NiftyFit
[164]. C: The quantitative features were computed from the images obtained
in the section B of the framework.

.
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To identify nerve cell loss and consequently atrophy of cortical and deep GM ar-

eas, I extracted volumetric information from T1w MRI scans using automated region

of interest delineation. The Geodesic Information Flows (GIF) [165] algorithm, that

relies on multi-atlas segmentation propagation, is used to parcellate the brain into

multiple regions. The volume of each 128 individual brain region is then computed.

These regions are fully detailed in Appendix D. Hyperintensity abnormalities visible

on FLAIR images need to be carefully considered since the degree and distribution

of these histological changes tend to vary significantly among the different time of

scanning [166, 167]. To characterise the degree of abnormality in each subject’s

brain, I consider as a feature the distribution of signal intensities in GM tissues in

FLAIR images. Using the Bayesian Model Selection (BaMoS) algorithm [163], I

automatically segment the normal and abnormal appearing tissue types. Knowing

that CJD mainly causes lesions in the GM tissues, I compute the Mahalanobis dis-

tance [168], between the normal appearing WM intensity distribution and the GM

intensities for each region of interest as defined by T1w derived parcellation. The

Mahalanobis distance per region, dM(GM,WM) is computed as

√

(µGM − µWM)T ⋅ S−1
WM ⋅(µGM − µWM), (3.1)

where µGM is the mean of intensities in each GM region, µWM is the mean intensity

of WM tissue after excluding the lesions detected as outliers, and SWM corresponds

to the covariance of the WM tissue distribution.

The obtained values are a quantitative measure of signal abnormalities in GM

and they can be used as a feature with the assumption that the larger the amount

of hyper-intensity in a given region of interest, the larger the Mahalanobis distance.

The assessment of the hyper-intensities in the brain mimics the clinical practice, in

which CJD is typically diagnosed based on the presence of these signal abnormalities.

The most typical brain microstructural change caused by CJD is vacuolation,

or spongiosis. Spongiosis can result from abnormal membrane permeability and

increased water content within neuronal processes; however, the molecular mecha-

nisms behind vacuolation are still unclear [169]. Spongiosis is visible in DWI scans

as an increase in the diffusion signal and it can be quantified using the MD mea-

surements. I initially process the DWI scans using the NiftyFit pipeline, described

in [164], in which MD measurements are computed according to [170]. The median

MD value per ROI is computed and used as a feature.
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I regress out the impact of confounding effects, such as age and the total in-

tracranial volume, by comparison with a healthy population. This correction is

applied a priori to all the features extracted from different sequences.

I evaluate the statistical significance of the features extracted before feature

selection. Table 3.2 shows the brain regions and their respective p-value computed

using a two sample t-test comparing the different groups with the healthy pop-

ulation. Neither the Asymp. nor the CO presented any significant difference in

features compared to the healthy controls. The features extracted from FLAIR are

insufficient to identify brain regions that are relevant to diagnose CJD.

Table 3.2: The two sample t-test was used to identify which brain regions show significant
differences between symptomatic subjects and the healthy population. The p-
values indicate the test rejection of the null hypothesis at 5% significance level,
considering the Bonferroni correction.

DWI

IPD

Brain Regions P-value
Right cuneus 1.74E-5
Left central operculum 2.48E-5
Right anterior cingulate gyrus 2.91E-5
Right inferior frontal gyrus 3.54E-5
Right angular gyrus 3.61E-5

sCJD

Right frontal operculum 1.03E-6
Left entorhinal area 1.05E-6
Cerebellar Vermal Lobules VI-VII 1.99E-6
Cerebellar Vermal Lobules I-V 2.35E-6

Structural

IPD

Brain Regions P-value
Left cuneus 6.01E-8
Right cuneus 7.55E-5
Left central operculum 5.03E-6

sCJD

Left cuneus 2.45E-9
Right cuneus 1.11E-6
Left central operculum 3.89E-6
Left hippocampus 5.00E-5
Right hippocampus 5.49E-5

Figure 3.2 shows the p-values of the brain regions significantly different from the

healthy population, projected into the MNI152 linear template [171] using the MRI-

croGL visualisation software1. The brain regions are considered as significantly

different from the healthy population for the p-value < 3.80×10−04, after Bonferroni

1https://www.nitrc.org/plugins/mwiki/index.php/mricrogl:MainPage

https://www.nitrc.org/plugins/mwiki/index.php/mricrogl:MainPage
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correction, presented in the Figure 3.2 with light orange.

1.0E-6 5.0E-4 1.0E-3

A: sCJD – Tw1 B: sCJD – DWI

C: IPD – Tw1 D: IPD – DWI

P-Value

Figure 3.2: The colour map encodes the p-value obtained from the two sample t-test, for
each brain region showing . A: structural features extracted from IPD subjects;
B: DWI features obtained from IPD scans; C: sCJD structural features; D:
DWI features extracted from sCJD data.

3.3 Features Selection

In neuroimaging studies, the samples size is often quite small, when compared

with the feature space dimension. As a result, the numbers of potentially available

features greatly outnumber the observations.

The study of CJD using MRI data is as well hampered by the reduced number

of samples available. The number of observations/subjects available is in fact much

lower than the number of feature extracted: 89 subjects (among healthy controls and

symptomatic subjects) for 128 × 3 features. Due to the reduced number of samples,

the problem of finding correlation between subjects at the same stage of the disease

by using the set of features extracted is ill-posed.

To prevent the aforementioned issues, I reduce the dimensionality of the feature

space, before using any machine learning model. A set of different feature selection

approaches are compared in the following sections. Given the conflicting signals

from different MRI sequences, the feature selection is performed independently for
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each sequence. The resulting features will give complementary information about

the undergoing physiological processes in the brain. Two different hypothesis are

considered to select the most relevant features: (1) group-wise approaches and (2)

subject-specific feature selection.

3.3.1 Group-wise biomarkers selection

For most neurodegenerative diseases, group-wise approaches are used to select

the relevant features. This can be done as the features are consistent and homo-

geneous across subjects and throughout the disease stages. Even though CJD had

shown in clinical practice to be highly heterogeneous across subjects, I compare three

approaches – an unsupervised method and two supervised approaches – commonly

used to select relevant features from neuroimaging data.

Stepwise regression

Stepwise regression can be used as a feature selection method as it selects the

best subset of models to explain the response variable. It is a systematic method

for adding and removing terms from a multilinear model based on their statistical

significance in a regression. The method begins with an initial model and then

compares the explanatory power of incrementally larger and smaller models. At

each step, the p-value of an F-statistic is computed to test models with and without

a potential term. If a term is not currently in the model, the null hypothesis is that

the term would have a zero coefficient if added to the model. If there is sufficient

evidence to reject the null hypothesis, the term is added to the model. Conversely,

if a term is currently in the model, the null hypothesis is that the term has a zero

coefficient. If there is insufficient evidence to reject the null hypothesis, the term is

removed from the model.

The assessment of the subset of models can be performed either by forward

stepwise, backward selection or bidirectional elimination. In brief, the forward se-

lection of variables chooses the subset models by adding one variable at a time to the

previously chosen subset. Forward selection starts by choosing as the one-variable

subset the independent variable that accounts for the largest amount of variation in

the dependent variable. This will be the variable having the highest simple correla-

tion with y response variable. At each successive step, the variable in the subset of

variables not already in the model that causes the largest decrease in the residual
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sum of squares is added to the subset. In contrast, backward elimination of variables

chooses the subset models by starting with the full model and then eliminating at

each step the one variable whose deletion will cause the residual sum of squares to

increase the least. This will be the variable in the current subset model that has the

smallest partial sum of squares.

I implemente a bidirectional elimination scheme to identify the most relevant

brain structures in the brain to identify CJD. In this experiment, both IPD and sCJD

are considered. The asymptomatic and subjects at clinical onset were excluded

avoiding noisy labels during the feature selection step. The feature selection was

performed for each MRI pulse-sequence independently. The initial feature space,

composed by 128 features, was reduced to 15 features.

The results of the stepwise selection, Figure 3.3, show that only the DWI data

has relevant information to identify symptomatic subjects among healthy controls.

These results are in agreement with the clinical assumptions, since in clinical envi-

ronment DWI is taken as the most reliable imaging data. Both T1w and FLAIR

data seem to not have significant information to identify CJD.

These results sustain the assumption that a group-wise approach is not sensitive

enough to select meaningful features to identify the heterogeneous features of CJD.

However, since the subset of models produce by stepwise regression can be over-

simplifications of the real models of the data [172], I apply also a more conservative

model that considers not only the correlation between the features and the response

variable, but also the correlation between the features in order to validate the as-

sumption that group-wise approaches are not appropriate to select the features to

characterise CJD, as detailed below.

Least absolute shrinkage and selection operator and Elastic net

Both least absolute shrinkage and selection operator (LASSO) and Elastic Net

are feature selection techniques that combine both machine learning and feature

selection steps by enlisting a regularisation framework. Their formulation includes a

penalty term that constrains the size of the estimated coefficients [173]. Therefore,

they resemble ridge regression except in the fact that both techniques set more

coefficients to zero when the penalty term increases, which results in a model with

fewer predictors. As such, they are a good alternative to stepwise regression or other

model selection and dimensionality reduction techniques [174, 175].
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***

***

Figure 3.3: Dimensionality reduction using a stepwise regression. The initial feature space
was reduce to 15 dimensions. The mean of the 15 features is computed across
subjects per group. A: Structural features obtained from T1w MRI; B: Fea-
tures extracted from FLAIR scans; C: biomarkers computed using the DWI
scans. The red crosses represent outliers, whilst the grey asterisks represent a
statistical significance of p − value < 0.001, after Bonferroni correction. HC –
healthy controls; Asymp. – asymptomatic subjects; CO – clinical onset; IPD
– inherited prion disease and sCJD - sporadic CJD.

LASSO technique solves the problem expressed by Equation 3.2, where N is

the number of observations, yi is the response at observation i, xi is data, a vector

of p predictors at observation i; λ is a positive regularisation parameter, which

controls the sparsity of the model and consequently the generalisation ability of the

model. The parameters β0 and β are scalar and p-vector size respectively, and as λ

increases, the number of nonzero components of β decreases.

minβ0,β

⎛

⎝

1

2N

N

∑
i=1

(yi −β0 − xTi β)
2
+ λ

p

∑
j=1

∣ βj ∣
⎞

⎠
(3.2)
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LASSO has proven to be very successfully in neuroimaging studies, since it is

able to cope with a large number of predictors and fewer observations, as it yields a

small set of model coefficients with the majority of coefficients set to zero [104, 176].

However, LASSO tends to select only one variable when a group of predictors are

highly correlated, whilst the elastic net encourages grouping effect in presence of

highly correlated predictors and it has no limit of the number of variables selected.

Elastic net (Equation 3.3) is an hybrid of ridge regression and LASSO regularisa-

tion. Like LASSO, elastic net can generate reduced models by generating zero-valued

coefficients. The L1 penalty promotes the sparsity, whilst L2 enforces the stability

of the solution and acts as a bound on the number of features selected [174, 175].

minβ0,β (
1

2N

N

∑
i=1

(yi −β0 − x
T
i β)

2
+ λPα(β)) (3.3)

where

Pα(β) =
(1 − α)

2
∥ β ∥2

2 +α ∥ β ∥1=

p

∑
j=1

(
(1 − α)

2
β2
j + α ∣ βj ∣)

By using the elastic net in place of LASSO, I am not only concerned with the

selection of the most significant biomarkers to explain the data but also to find the

ones with more relevance in the disease characterisation and their interaction and

mutual influence. In fact, based on the formulation of elastic net algorithm, I can

define the interaction between the biomarkers (covariates) through the definition of

the parameter α. I define an α equal to 0.75 and the λ value is optimised in each

step of the framework using a nested cross-validation algorithm to avoid overfitting2.

The experimental design adopted here is equivalent to the experimental design used

for stepwise selection approach.

The elastic net only identified relevant features from DWI data (Figure 3.4).

Among the identified brain regions, the basal ganglia (caudate, insula, amygdala and

frontal opercullum) was the most significant region to distinguish the symptomatic

2The nested cross-validation is a convenient approach to train a model in which the hyperparam-
eters also need to be optimised. Note that the nested cross-validation estimates the generalisation
error of the underlying elastic net model and its (hyper)parameter search. The model selection,
aiming the feature selection, without employing the nested cross-validation, would use the same
data to tune the model parameters and evaluate the model performance. This set-up can poten-
tially ”leak” relevant information into the model and overfit the data. The magnitude of this effect
is primarily dependent on the size of the dataset and the stability of the model [177]. Therefore, to
prevent this effect, I employ a nested cross-validation to fit the model hyperparameters during the
model selection.
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patients from controls, with an associated p-value below to 2.9×10−5. These results

are in agreement with previous studies, which also identified the basal ganglia as

abnormal for CJD patients.

***

***

Figure 3.4: Feature selection via LASSO. The initial feature space was reduced to 15 di-
mensions. The mean of the 15 features is computed across subjects per group.
A: Structural features obtained from T1w MRI; B: Features extracted from
FLAIR scans; C: biomarkers computed using the DWI scans. The red crosses
represent outliers, whilst the grey asterisks represent a statistical significance
of p−value < 0.001, after Bonferroni correction. HC – healthy controls; Asymp.
– asymptomatic subjects; CO – clinical onset; IPD – inherited prion disease
and sCJD - sporadic CJD.

Nevertheless, this approach still excludes all the potential features from T1w

and FLAIR images. The potential reasons for that are: (1) the heterogeneity of

features discussed above, or (2) the existence of noisy labels due to different stages

of the disease of the symptomatic subjects considered.

To analyse the impact of the noisy labels in the selection of features, I implement

an unsupervised feature selection method, described in the following section.
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Isometric feature mapping

The isometric feature mapping or isomap, is a nonlinear dimension reduction

procedure. Its underlying principle is to embed a set of observations in an Euclidean

feature-space while preserving as close as possible their intrinsic metric structure:

the geodesic distances between points on the observation manifold [178].

The algorithm is initialised with the computation of the Euclidean distance

dχ(i, j) between all pairs i, j from N data points in the high-dimensional features

space X . In this first step, the algorithm determines which points are neighbours on

the manifold , based on the distances dχ(i, j) between all pairs i, j. Each point is

connected to all points of its K -nearest neighbours. These neighbourhood relations

are represented as a weighted graph G over the data points, with edges of weight

dχ(i, j). Secondly, the isomap estimates the geodesic distances dM(i, j) between

all pairs of points on the manifold M by computing their shortest path distanced

dG(i, j) in the graph G. This step is initialised by dG(i, j) = dχ(i, j) if (i, j) are

linked by an edge, whereas dG(i, j) = ∞. Then for each value of K = 1,2, ..., k in

turn, replace all entries dG(i, j) by min{dG(i, j), dG(i, k) + dG(k, j)}. The matrix

of final values DG = {dG(i, j)} will contain the shortest path distances between all

pairs of points in G . The final step applies classical multi-dimensional scaling to the

matrix DG, constructing an embedding of the data in a d–dimensional Euclidean

output space X ′ that best preserves the manifold’s estimated intrinsic geometry. The

coordinate vectors xi for points in X ′ are chosen to minimise the cost function E =

∣∣τ(DG)τ(Dχ′)∣L2 where Dχ′ denotes the matrix of Euclidean distances {dχ′(i, j) =

∣∣xi − xj ∣∣} and ∣∣A∣∣L2 is the l2- matrix norm which takes the form of
√

∑i,j A2
i,j .

The τ operator3 converts distances to inner products, which leads to a more efficient

optimisation [179, 180].

I have created an isomap representation of the feature space that better char-

acterises the group of subjects at a specific stage of the disease. The initial feature

space Xm, where m is the MRI sequence, m ∈ {T1w,FLAIR,DWI} was reduced to

15-dimensional feature space, similarly to the aforementioned approaches. Figure

3.5 shows the mean value per group of the 15-highest distances, selected as features.

The results show that the isomap is able to identify meaningful features from

all MRI pulse-sequences. Consequently, the unsupervised model can be more appro-

3For two vectors x and x’, the τ operator transforms a distance into a inner product as τ ∣∣x−x’∣∣ =
√

< x − x’,x − x’ >.
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Figure 3.5: Feature selected using the isomap, a non-linear dimensionality reduction tech-
nique. The initial feature space was reduced to 15 dimensions. A: Structural
features obtained from T1w MRI; B: Features extracted from FLAIR scans; C:
biomarkers computed using the DWI scans. The red crosses represent outliers,
whilst the grey asterisks represent a statistical significance of p−value < 0.001,
after Bonferroni correction. HC – healthy controls; Asymp. – asymptomatic
subjects; CO – clinical onset; IPD – inherited prion disease and sCJD - spo-
radic CJD.

priate to select the relevant features to characterise CJD, when compared with the

supervised approaches. Furthermore, the results show that the noisy labels ham-

per the performance of the supervised models, which leads to a bad performance of

embedded feature selection methods, namely the methods detailed in section 3.3.1.

Nonetheless, the use of isomap as feature selection method would require a more

extensive analysis in order to justify the features obtained from MRI data.

3.3.2 Subject-specific biomarkers

Due to the assumption of spatial heterogeneity of brain changes caused by prion

disease, I implement a subject-specific features extraction and selection. This ap-
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proach selects the most significant features to characterise the evolution of symptoms

for each subject, neglecting the spatial origin of features in the brain. In detail, given

the hypothesis that the disease does not follow a geometrical pattern in the brain,

the quantification of abnormality rather than its location is thus used to quantify

the progression of the disease4. To characterise the amount of abnormality of signal

for the different types of feature, I apply a framework previously validated with IPD

data [181], in which the different features were converted into z-scores by comparison

with measurements obtained from an independent population of healthy subjects,

described in Table 3.1. The use of an independent sample ensures that the normali-

sation of the features via z-scores is not biased towards the control population when

the identification of symptomatic patients. The z-scored values are then ranked per

type of feature and only the highest values for each MRI sequence are considered

for subsequent learning and inference stages. As a consequence, only regions of the

brain that most differ from the healthy control sample are kept for each subject,

and the resulting sets of feature are subject-specific. Figure 3.6 shows the mean of

the 15 most significant features per subject and across groups.

In more detail, Figure 3.7 shows the probability density of the regions selected

for each group, smoothed by a kernel density estimator. The Figure 3.7 details also

the unbalanced sample size, already mentioned in Table 3.1; e.g., the clinical onset

group has a much smaller sample than the remaining groups. For all groups, T1w

and FLAIR show a higher density in the first quartile that is caused for smaller

z-scores values. Thus, the features extracted from these MRI pulse-sequences are

less relevant to characterise symptomatic subjects. On the other hand, DWI fea-

tures have broader probability density, showing a higher dispersion of the values of

the selected features particularly for the symptomatic subjects. These results are

explained by the different stages of the disease presented by the patients.

Given that the subject-specific approach is able to find several significant fea-

tures from T1w and DWI scans, I investigate which set of features allows for the

best differentiation of the groups using a multi-comparison test. The resulting p-

values are corrected for multiple comparison using the Bonferroni method. Table

3.3 presents the detailed results of the statistical analysis. The mean of the highest

ranked features extracted from both T1w and DWI are significantly different across

4This assumption is based on previous clinical studies, where it was reported considerable vari-
ability in radiologic patterns for sCJD [19]. Given the similarities of the MRI findings for both
sCJD and IPD [46, 52], the assumption of variability of radiologic patterns can be extended to IPD
subjects.
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Figure 3.6: Subject-specific feature selection. The initial feature space was reduced to 15
dimensions. A: Structural features obtained from T1w MRI; B: Features ex-
tracted from FLAIR scans; C: biomarkers computed using the DWI scans. The
red crosses represent outliers, whilst the grey asterisks represent a statistical
significance of p − value < 0.001, after Bonferroni correction. HC – healthy
controls; Asym. – asymptomatic subjects; CO – clinical onset; SI – stage I
and SI - stage II of the disease.

groups, whereas the features extracted from FLAIR images have not shown statis-

tical significance across groups. Furthermore, this experiment also indicates that

DWI and T1w features enable the diagnosis of sCJD vs HC with high statistical sig-

nificance, whilst the T1w features identify the disease stage of IPD (versus Asymp.)

with highest statistical significance.

3.4 Correlation between imaging features and MRC

Scale

The MRC Scale captures the clinical features of Prion disease, summarising

in a single value the subjects’ performance in a set of functional and physiological
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DWI

T1w
FLAIR

Figure 3.7: The initial feature space was reduce to 15 dimensions. The mean of the 15
features is computed across subjects per group. A: Features extracted from
FLAIR scans; B: biomarkers computed using the DWI scans; C: Structural fea-
tures obtained from T1w MRI. ●: Healthy control subjects; ▲: Asymptomatic
subjects; ×: Clinical onset subjects; ∎: inherited prion disease symptomatic
subjects; ☀: sporadic CJD; ○: Median of the distribution.

Table 3.3: Evaluation of the statistical significance of the imaging biomarkers, after fea-
ture selection. The Kruskal-Wallis test result is shown with the null hypothesis
that the sample data from each group of subjects came from the same distribu-
tion. The bold p-values indicate the test rejection of the null hypothesis at 5%
significance level, considering the Bonferroni correction, p − value < 3.80 × 10−4.

T1w FLAIR DWI

HC vs Asym. 0.622 0.838 0.986
HC vs Conv. 0.082 0.941 0.242
HC vs IPD 9.92E-09 0.004 2.53E-06
HC vs sCJD 5.45E-07 0.008 9.96E-09
Asym. vs CO. 0.828 0.999 0.695
Asym. vs IPD 5.63E-08 0.195 7.55E-04
Asym. vs sCJD 0.006 0.266 8.22E-07
CO. vs IPD 7.32E-05 0.166 0.065
CO. vs sCJD 0.191 0.228 6.71E-04
IPD vs sCJD 0.115 0.999 0.728

All groups 2.47E-17 6.67E-04 2.21E-13

HC – healthy controls; Asym. – asymptomatic sub-
jects; CO – clinical onset; SI – stage I and SI - stage II
of the disease.

tests [21]. Currently, this appears to be the most valuable tool for assessing disease

progression [33]. To determine the correlation between the features selected and

the MRC scale, I implemented a non-parametric statistical test between the feature

sample and the MRC Scale scores. Table 3.4 shows the results of the Spearman’ ρ
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for each feature selection method. The features obtained from the subject-specific

approach show a higher correlation with the MRC scale, for both FLAIR and DWI

features. LASSO method is although more efficient in selecting features extracted

from T1w, which are highly correlated with the MRC scale.

As previously detailed, the feature selection is performed based on sample com-

posed by both IPD and sCJD, for all the methods tested. Despite this experimental

design, I tested the correlation for each group separately in order to evaluate pos-

sible differences between the two groups. The analysis of Table 3.4 suggests that

for certain type of features, such as DWI, the correlation for the sCJD patients is

negative whereas the IPD subjects show a positive correlation with the MRC Scale.

Table 3.4: Correlation between the selected features and the clinical score, MRC Scale.
The correlation between the average of the 15 highest features per group of
subjects and the MRC scale is assessed using a Student’s t distribution for
a transformation of the correlation. Spearman’s ρ is presented for both IPD
and sCJD forms of CJD. Grey colour highlights the highest correlations, either
negative or positive correlation.

T1w FLAIR DWI

IPD sCJD IPD sCJD IPD sCJD

z-scores 0.199 -0.358 -0.395 -0.555 0.354 -0.517

Stepwise Regression 0.286 -0.245 0.055 0.549 -0.183 0.245

Isomap 0.146 -0.244 0.181 0.235 0.176 0.215

LASSO 0.564 0.485 0.078 0.368 -0.206 -0.148

3.5 Discussion

Feature Extraction

Previous studies have shown signs of atrophy in temporal, cingulate, frontal,

parietal and occipital lobes caused by IPD [15]. By using the structural biomarkers

obtained via the proposed framework, I also identified statistical differences in the

occipital gyrus, specifically in the cuneus, for both IPD and sCJD. The left and right

hippocampus and central opercullum had been identified as meaningful regions to

identify CJD, as suggested by De Vita and collaborators [34]. However, I was not

able to identify signs of atrophy in the temporal and parietal lobes. My analysis

also identified signal abnormalities in DWI scans. Statistical significant differences

were observed in the sCJD sample, when compared with healthy controls, in the

left and right entorhinal areas, cerebellar vermal lobus I-VII. In turn, DWI signal
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differences were observed in the right cuneus, anterior cingulate gyrus, angular gyrus

and central operculum for IPD subjects. Previous studies [38, 39], have reported

signal abnormalities in DWI scans in the caudate, putamen and pulvinar nuclei.

However, this study did not reveal statistically significant changes in those regions.

This can be justified by the small dataset, or the segmentation of these regions that

might have compromise the feature extraction, excluding relevant features.

By comparing the imaging features extracted from healthy controls and symp-

tomatic patients, I observed that CJD disease burden weights equally on each hemi-

sphere. Furthermore, despite the initial assumption of spatial heterogeneity of the

brain changes, I identified some regions with higher prevalence among subjects with

the same form of CJD (Figure 3.2). These results are explained by the broad spec-

trum of symptoms stages found in the IPD and sCJD groups, which leads to conflict-

ing MRI signals [166]: paradoxical normal MRI appearances are observed in some

brain regions showing pathological changes such as gliosis and spongiosis.

Knowing that CJD mainly causes lesions in the GM tissues, I only computed

imaging biomarkers extracted from this brain tissue. As future work, it could be

explored the use of WM features, in order to evaluate the effectiveness of these

features in contrast with GM features, as suggested by [35]. Furthermore, a future

study could also benefit from a larger range of features, including cortical thickness,

voxel-based morphometry, fractional anisotropy measurements and clinical features

such as blood and CSF biomarkers.

Feature Selection

It is very challenging to select useful biomarkers that may be used to com-

prehensively characterise all the different subtypes of prion disease and to perform

an accurate diagnosis because of the heterogeneity of the clinical manifestations of

CJD. Therefore, in this chapter I compared several techniques to establish what is

the best framework to select the relevant imaging biomarkers to diagnose CJD.

The supervised feature selection techniques were able to identify relevant fea-

tures from DWI data. These results are consistent with previous studies, where

DWI had shown to be more sensitive to capture brain abnormalities caused by

CJD than T1w and FLAIR data [37, 39, 53]. On the other hand, the tested unsu-

pervised method was not able to identify meaningful imaging biomarkers from all

the MRI sequences. These results endorse the assumption that supervised meth-
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ods tend to perform better than unsupervised methods, even when in the presence

of few noisy labels and subjects at different stages of the disease equally labelled.

Furthermore, the features extracted from T1w and DWI data are insufficient to

characterise sCJD patients. These findings support the clinical assumption that

prion disease is highly heterogeneous even among subjects with the same mutation;

whereby the group-wise methods, previously used in context of neurodegenerative

diseases [72, 88, 89, 94, 118], tend to dilute relevant signals that could be used as

features in a classification model.

Bearing this in mind, I adopted a subject-specific feature selection method. By

selecting subject-specific biomarkers, I ensured that the lack of spatial pattern of

biomarkers does not compromise the extraction and selection of features that track

subtle brain changes. This feature selection method has also proven to be more

efficient in the detection of relevant features to identify symptomatic CJD among

healthy controls, when compared with other embedded feature selection methods, as

presented in Appendix A. In that supplementary analysis, the subject-specific fea-

ture selection showed better results than using an automatic relevance determination

(ARD) approach, when implemented in a classification task. The extracted imaging

biomarkers (section 3.3.2) have shown significant differences between healthy con-

trols and symptomatic subjects, for both IPD and sCJD. Nonetheless, the intensity

based features, computed from FLAIR images, did not show statistical relevance to

separate symptomatic subjects from healthy controls, after Bonferroni correction for

multiple comparisons.

Note though that by using absolute z-scores, I can potentially hamper the clin-

ical relevance of the features extracted, specifically for the MD measurements. In

detail, different regions of the brain can show abnormal MD measurements, at dif-

ferent stages of the disease. However, depending on the microstructural changes

caused by the disease, these values can be higher or smaller, when compared with a

normal population, evidencing the increasing or decreasing of the diffusivity linked

to either spongiosis or astrocytis gliosis changes, respectively. These brain changes,

depending on the process that is causing it, can also be correlated with changes

in other MRI pulse-sequences, such as T1w. By taking only the absolute z-scores,

the information regarding the specific process leading to the abnormal MD values

is ignored, as well as its correlation with other features. Therefore, this fact can

compromise the specificity of the DWI features, while preserving their sensitivity in

the diagnosis of CJD.
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The major limitation of this approach is the impossibility to assess what are

the brain regions selected as being statistical significantly abnormal since they differ

for each subject. In the future, by using a bigger sample, the frequency of the brain

regions identified as abnormal and its correlation with the stage of the disease should

be investigated.

Correlation between imaging features and MRC Scale

To determine the validity of the features considered as a biological meaningful

marker of disease progression and severity, I evaluated the correlation between the

features selected to characterise CJD and the clinical scores, such as MRC Scale.

Given that the MRC Scale measure of the severity of the clinical manifestations of

the disease, a strong correlation between the features selected and this score shows

that they are appropriate quantitative measures to be used in clinical context. Fur-

thermore, this experiment also gives insights regarding the best feature selection to

be translated in clinical context. From the analysis of Table 3.4, the subject-specific

feature selection, z-scores, is the method which extracts the imaging biomarkers

better explain the clinical scores, particularly for DWI and FLAIR data.

Previous studies [33], have also shown a strong correlation between the loss of

brain tissue (atrophy) and the MRC Scale. However, the group-wise approaches,

such as LASSO, seem to be better able to retrieve the features that are higher cor-

related with the MRC Scale, when compared with subject-specific approaches. Note

that De Vita et al., have reported a positive correlation between the tissue volume

and the MRC Scale difference in a given period of time; i.e., they found a significant

correlation between tissue volume change between the first and last examination,

and change in MRC Scale over the same period, across several brain areas, with

decreases in MRC Scale accompanied by decreases in local GM and/or, WM tissue

volumes [33]. My analysis compares the increasing of abnormality magnitude with

the decrease of the MRC Scale score. As a result, my experiments should report

a negative correlation when Z-score is used, and a positive correlation for the re-

maining methods. However, the IPD subjects show a positive correlation between

the DWI features and MRC Scale. These results can be explained by the reduced

number of IPD subjects with MRC Scale score lower than 16 (only one subject has

MRC Scale score below the mentioned threshold), which compromises the statisti-

cal power of the Spearman-rank test. In fact, 82% of the IPD sample (14 out of
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17 subjects) have MRC Scale score ≥ 18. Consequently, a bigger sample of IPD

subjects, and/or a sample with more dispersed MRC Scale scores would be required

to properly validate the obtained features.

Lastly, the features extracted from sCJD subjects’ data show a higher corre-

lation with the clinical scores when extracted from FLAIR and DWI; conversely,

the IPD subjects show a higher correlation for features extracted from T1w images.

These results suggest that the T1w can be more informative in the early stages of

IPD, whereas DWI and FLAIR are more reliable to characterise the progress of the

disease for sCJD subjects. Nonetheless, further analyses are required to validate

these hypotheses.

3.6 Summary

Based on the clinical assumption that CJD is highly heterogeneous even among

subjects with the same mutation, I chose to extract subject-specific biomarkers. The

biomarkers extracted had shown significant differences between healthy controls and

symptomatic subjects, for both IPD and sCJD.

Currently, only MRI features are considered. For a better understanding of

CJD, quantitative features from other sources could be included, such as blood and

CSF biomarkers. However, this is highly dependent of acquisition of more data.

To assess if these features obtained from Chapter 3 are valid and solid biomark-

ers considered for subjects diagnosis, stratification and differential diagnosis of CJD,

I used them as input features in a classification tool. To that end, Chapter 4 in-

troduces a Bayesian framework in which both genetic, demographic and imaging

biomarkers are combined within a Gaussian Process classifier, used to calculate the

probability of a subject to be diagnosed with CJD. This model assess not only the

validity of the imaging biomarkers to be used as features to identify CJD, but also

their reliability to be used to characterise the evolution of the clinical manifestations.

Therefore, in Chapter 5, I introduce an extension of the model presented in Chapter

4 used to stratify subjects, further validation the imaging biomarkers proposed for

CJD characterisation.





Chapter 4

Diagnosis of CJD using Gaussian

Process

Aiming to characterise the disease status of each subject based on their multi-

source features, I designed a Bayesian framework to find the function that better

fits the relationship between imaging features and the subjects’ diagnosis. Bayesian

frameworks, such as GP, are particularly interesting to study the CJD, since they

allow robust modelling even in the circumstances of highly uncertain or incomplete

datasets. GP is also able to perform predictions over the long term, being able

to be successively better as the number of samples increases [182]. Since GP is a

probabilistic model, it also provides an estimation of the likelihood of the predicted

class for each subject. Note that the class probability estimations are a measure of

the confidence of the predictions, which can be extremely useful in clinical context

as a proxy of the diagnosis precision and as an indicator of subjects’ prognosis.

The details of the model are described in section 4.1, including the definition

of the model parameters and their optimisation, as well as the details regarding the

inference method used. The performance of the proposed framework was assessed

in section 4.2, where the NPMC was used for validation purposes. The clinical

relevance of the framework is discussed in section 4.3, where the performance of other

comparable machine learning approaches for the diagnosis of CJD are discussed.

4.1 Model Description

I implement a non-parametric kernel-based model M, as follow:

M ∶ y = f(X) + ε,

f ∼ GP(µf ;K + Iσf), ε ∼ N(µε;σε)
(4.1)
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This model is used to predict the probability of the outcome yi ∈ Y, for a subject

i = {1, . . . ,N}, given a set of biomarkers X ∈ X feature space. For the binary

discriminative case, such as subjects’ diagnosis, the output of the regression model

M is transformed into a class probability using a cumulative density function, probit

likelihood function, which converts its argument that can lie in the domain (−∞,∞)

into the range [0, 1]. This procedure guarantees a valid probabilistic interpretation.

Therefore, the posterior probability of each class C for a subject i is then given by

Equation 4.2, where Φ(.) denotes the cumulative density function of the standard

normal distribution [112].

p(yi∣f(xi)) = Φ(yif(xi)) = ∫
yif(xi)

−∞
N(x ∣0,1)dx (4.2)

The function f describes the variance of the feature space X that explains the

response variable y. By implementing a GP with a prior mean function µf = 0 and

covariance kernel matrix K, I determine the pattern of the inductive generalisation

of the feature under consideration [112]. For this approach, given the normalisation

of the input feature space before the estimation of the model, it is reasonable to

assume a GP prior with mean 0.

As detailed in section 2.3.2, the estimation of the model requires the definition

of the covariance kernel function (section 4.1.2) and the estimation of its parameters,

via marginalisation of the likelihood function (section 4.1.1). By using the optimised

parameters, the class probability for a new subject j is given by the approximate

predictive mean for the latent function fj , as demonstrated in section 4.1.3. The

full framework is detailed in Figure 4.1, including the encoding of the feature space.

4.1.1 Marginal Likelihood approximation

For the purposes of subjects diagnosis, the likelihood of p(yi∣f(xi)) is a cumula-

tive density function, hence the posterior (Equation 4.3) is analytically intractable.

p(f ∣X,y) =
1

Z
p(f ∣X)

N

∏
i=1

p(yi∣fi)

Z = p(y∣X) = ∫ p(f ∣X)
N

∏
i=1

p(yi∣fi)df

(4.3)

To address this issue, I use the expectation propagation algorithm (EP) [125] to
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Figure 4.1: Scheme of the generative model used for subjects diagnosis - equation 4.1.
The inner section (red outline, component 2) illustrates the definition of the
kernel function (section 4.1.2). The component 1 (grey outline) corresponds
to the estimation of the hyperparameters of the model detailed in section
4.1.1. The component 3 (blue outline) corresponds to the inference stage of the
framework, in which a predictive label for a new subject j is computed using
the optimised model M, as described in section 4.1.3. The kernel matrices
are estimated via a SE kernel function. The obtained matrix Km, where m
includes T, F and D, encodes the multi-source of features T1w, FLAIR and
DWI, respectively.

approximate the likelihood by a local likelihood approximation as:

p(yi∣fi) ≃ ti(fi∣Z̃i, µ̃i, σ̃
2
i ) ≜ Z̃iN(fi∣µ̃i, σ̃

2
i ) (4.4)

where Z̃i, µ̃i, σ̃
2
i are site parameters, as defined by Rasmussen et al., [112]. Note that

the tilde-parameters denote the local likelihood approximations, whilst the plain

notations is used for the approximate posterior. Considering the Equation 4.4, the

posterior is then approximated by q(f ∣X,y) as:

q(f ∣X,y) =
1

ZEP
p(f ∣X)

N

∏
i=1

ti(fi∣Z̃i, µ̃i, σ̃
2
pi) = N(µ,Σ)

with µ = ΣΣ̃−1µ̃ and Σ = (K−1
+ Σ̃−1

)
−1

(4.5)

Finally, the normalisation term ZEP = q(y∣X) can be rewritten as defined by equa-

tion 4.6.

ZEP = q(y∣X) = ∫ p(f ∣X)
N

∏
i=1

ti(fi∣Z̃i, µ̃i, σ̃
2
i )df (4.6)

Considering the formulation detailed by Rasmussen et al. [112], the marginal likeli-
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hood is:

log(ZEP∣Θ) = −
1

2
log∣K + Σ̃∣ −

1

2
µ̃T (K + Σ̃)

−1µ̃ +
N

∑
i=1

logΦ
⎛

⎝

yiµ−i
√

1 + σ2
−i

⎞

⎠
+

+
1

2

N

∑
i=1

(µ−i − µ̃i)2

2 × (σ2
−i − σ̃

2
i )

(4.7)

where the Θ denotes the hyperparameters of the covariance function, and −i refers

to all the cases except i. Note that first two terms are the marginal likelihood for

a regression model for µ̃, each component of which has independent Gaussian noise

of variance Σ̃. The remaining three terms come from the normalisation constants

Z̃i. The first of these penalises the cavity distributions for not agreeing with the

classification labels. These approximation is not specific for the model presented

in this chapter, hence it is an adaptation of the EP presented by Rasmussen et

al. [112], fully described at Gaussian Processes for Machine Learning book. The

estimation of the predictive labels requires to find the best hyperparameters of each

kernel covariance function. The hyperparameters Θ of the kernel functions are

estimated via the maximisation of the marginal likelihood of the model, p(Θ∣ZEP ),

as described in Equation 4.8.

{Θ̂} = argmaxΘp(Θ∣ZEP ) =

argminΘ[− log p(ZEP ∣Θ) + log p(Θ)]

(4.8)

4.1.2 Kernel function definition

The covariance kernel function is responsible for encoding the assumptions

about the model that is learned. Therefore, it is crucial to define a covariance

kernel function that can conveniently explain the feature space, and it is appropri-

ated to describe the evolution of CJD. As demonstrated in section 3.2, the CJD

phenotype is better explained by the interaction between several types of features;

thus, a basis kernel function is insufficient to describe the variance of the features.

Besides, it is reasonable to assume that the features extracted from one MRI se-

quence do not show a consistent relationship with the features extracted from the

subsequent, during all stages of the disease [166]. Assuming that, the inter MRI
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sequence relationship can be modelled as a multi-task paradigm1 – a contribution

of independent functions that explain the biomarkers progression. A sensible way

to model a GP as a multi-task model is using an Additive GP. By implementing an

Additive, GP the proposed approach is able (1) to express superposition of different

processes contributing for the some output and (2) to improve model interpretabil-

ity, since it allows to learn the weightings of different functions and their orders

of interaction [113, 183]. The latent function f in model M, Equation 4.1, takes

then the form of f = ∑
M
m=1 fm, with fm ∼ GP(µfm ;Km + Iσfm), where M refers

to the number of sources of features – MRI pulse-sequences – taken into consider-

ation in the model. Given the kernel properties, the addition of GP with µf = 0

is equivalent to f ∼ GP(0;∑Mm=1 Km + Iσfm). Therefore, the matrix K, Figure 4.1,

which encodes the imaging biomarkers, is obtained by the addition of the kernel

Km matrices computed individually using the information extracted from the MR

pulse-sequences. The imaging biomarkers, encoded in individuals kernel matrices

Km, m ∈ {S, F, T} for T1w, FLAIR and DTI respectively, Figure 4.1, using a

squared exponential covariance function (SE), Equation 4.9, with hyperparameters

θ = [σ2, l2]. The SE function is widely-used within binary classification problems,

given its main assumptions: smoothness and stationarity.

kSE(x,x
′
∣θ) = σ2 exp(−

1

2

(x − x′)2

l2
) (4.9)

The model also accounts for the individualised pattern related to the genetic mu-

tation of the inherited form of CJD, defined as a categorical variable in the kernel

matrix Kc. To reduce the bias introduced by the high number of genetic mutations,

I grouped the subjects in two clusters according to the expected rate of disease pro-

gression associated with each mutation: (1) slow, and (2) fast, defined based in the

clinical knowledge2 about the different mutations, Equation 4.10. For IPD subjects

the rate of progression varies as mentioned; whereas the sCJD subtype is always

considered as having a fast progression.

kc(x,x
′
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if x − x′ = 0

0 otherwise
(4.10)

1Contrarily to a multi-task feature selection proposed by [120], I extracted the features indepen-
dently to preserve the complementary information given by the MRI sequences, as proposed and
detailed in section 3.6.

2According to clinical experience, the slow progression is seen for A117V, P102L, Y163X, 5– and
6–OPRI, whereas E200K, D178N, E196K and sporadic CJD evolve fast.
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It is important to note that this is not actually genetic information, but rather a

cluster of mutations with similar physiological behaviour. Using this kernel with the

aforementioned information, I intent to show the flexibility of my model to deal with

both categorical and continuous data, such as genetic and quantitative imaging data

respectively. The Km is lastly combined with the categorical covariance function by

means of the Hadamard product, Kc ⊙Km to produce a hierarchical model3.

The modified latent function f(X∣Θ) regarding the mutation information is

f ∼ GP(0;∑Mm=1(Km+Kc⊙Km)+Iσfm), where Θ is the vector of parameters of the

model, which includes the hyperparmeters of the kernel functions and the sample

variance: Θ = [θS ,θF ,θT , σ
2
f ].

4.1.3 Predictions

In the final section of the proposed model, illustrated in Figure 4.1 by component

3 (blue outline), I use the optimised model to estimate the predictive label y∗j for a

new subject j 4. The approximate predictive distribution for the binary classification

is given by:

q(y∗ = 1∣X,y,x∗j) = ∫ Φ(f∗)q(f∗∣X,y,x∗j)df∗ (4.11)

Solving the integral as demonstrated by Rasmussen et al. [112], the predictive prob-

ability is given by Equation 4.12, which gives a clinical reference to the status of the

subject, regarding the highest ranked quantitative biomarkers. Similarly, the mean

and variance of function f∗ is computed respectively using Equations 4.13 and 4.14.

The analysis of the latent models that compose f∗ provide the information about

the best combination of features to diagnose prion disease.

q(y∗ = 1∣X,y,x∗j) = Φ
⎛
⎜
⎝

kT∗j(K + Σ̃)−1µ̃
√

1 + k(x∗,x∗) − kT∗j(K + Σ̃)−1k∗j

⎞
⎟
⎠

(4.12)

Eq [f∗∣X,y,x∗j ] = kT∗j(K + Σ̃)
−1µ̃ (4.13)

Vq [f∗∣X,y,x∗j ] = k(x∗,x∗) − kT∗j(K + Σ̃)
−1k∗j (4.14)

3As suggested by Luo et al. [146], the hierarchical joint models can help to study different
behaviours of the same global model regarding a specific variable. This study has shown better
results when compared with other non-hierarchical models, once applied in a Bayesian framework
design to study Parkinson’s disease.

4The * notation refers to the inference for an unseen sample, using the optimised model.
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4.2 Experiments and Results

The model proposed in this chapter is validated on the NPMC dataset. The

features used to train the model are obtained using the subject-specific feature selec-

tion, detailed in section 3.3 in Chapter 3. Therefore the 15 hightest ranked features

from the three MRI pulse-sequences are considered as input in the following experi-

ments. Given the absence of a reliable state-of-the-art machine learning model used

for CJD diagnosis, the performance of the proposed model is compared with a stan-

dard multikernel SVM. The experimental design implemented to test both models

is detailed below.

4.2.1 Experiments

Proposed model

I evaluate the ability of the proposed model to correctly diagnose subjects for the

two subtypes of CJD independently. The diagnosis of these subtypes is performed

separately in order to avoid the counfounding effects related to the specific features

of each subtype.

For IPD diagnosis, I include the information regarding the rate of progression of

each mutation, as described by Equation 4.10; whereas for sCJD the kernel matrix

Kc is filled with 1, since there is not an assumption of different rates of progression for

sCJD. Further, to avoid missing information for healthy controls, these are randomly

assigned the value 1 or 2 to encode a virtual rate of progression when compared with

IPD subjects, assuming the value 1 for sCJD diagnosis. For both IPD and sCJD

subtypes, only the subjects clinically labelled as symptomatic at the time of the

first scan are considered (sample detailed in Table 3.1, Chapter 3). Exclusively the

subjects with the three MRI sequences have been included in this experiment, due

to the design of model M, which requires the joint modelling of the three sets of

features.

The model is trained using 75% of the overall sample, while keeping the input

ratio between the different groups. The testing set corresponds to the remaining

25% of each sample. The proposed approach is coded in MATLABTM , using the

optimisation routines available in GPstuff library5. In order to obtain a robust

evaluation, a cross-validation scheme with 500 runs is used for all experiments.

5GPstuff: Bayesian Modeling with Gaussian Processes, available from http://jmlr.csail.mit.

edu/papers/v14/vanhatalo13a.html [184]

http://jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html
http://jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html
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Kernel SVM

Following previous studies using kernel SVM to diagnose patients with AD [73,

118, 119], I implement two alternative kernel SVM approaches to diagnose both IPD

and sCJD patients independently:

1. SE-SVM: The term SE-SVM refers to a kernel SVM model for which a

squared exponential function (SE) is used to estimate the kernel matrix. Three

SE-SVM models are estimated for the individual source of features: T1w,

FLAIR and DWI. The models are estimated using the kernel function defined

in Equation 4.9. Both the distance to the class, but also the probability score

associated with each prediction are estimated. The class probability for an

unseen subject j corresponds to the average of the probability scores obtained

from the model estimations using the different sources of features. The model

is optimised based on the formulation described by Friedman et al. [174], im-

plemented in MATLABTM software. This analysis does not accounts for the

impact of the rate of progression.

2. Multi-Kernel Learning algorithm (MKL): An MKL model is used to

learn: (1) the parameters of the kernel matrices and (2) their relevance for the

estimation the of subjects’ status [185]. The MKL model is estimated based

on a weighted L2 -norm regularisation with an additional constraint on the

weights that encourages sparse kernel combinations. The final model corre-

sponds to a linear combination of multiple kernels. Similarly to the models

previously described, three squared-exponential kernels are used to encode the

imaging features, as defined by Equation 4.9. The parameters of the model are

optimised using an open-source toolbox, denominated SVM-KM [186]. Note

that this formulation does not accounts for the estimation of the likelihood of

the classes, hence no logaritmic loss has been estimated in this experiment.

These approaches follow the same training scheme described for the validation

of the proposed model (section 4.2.1). The evaluation of the aforementioned meth-

ods is performed through the estimation of the sensitivity, specificity, accuracy and

false rate of discovery (FDR) [187]. The receiver operating curves (ROC) and the

area under the curve (AUC) are computed using the formulation for ROC graphs

proposed by Fawcett et al. [188]. Further details about these metrics can be found

in Appendix C.
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4.2.2 Results

Figure 4.2 shows the predictive accuracy of the model M (Equation 4.2) when

using imaging biomarkers extracted from the three MRI modalities. The ROC curves

show that the model is more effective in the diagnosis of sCJD (AUC = 0.985±0.06),

when compared with the IPD classification (AUC = 0.937 ± 0.095), in both cases

versus a healthy population. Inspection of Figure 4.2 also shows that both the

kernel SVM approaches have a better performance in the diagnosis of sCJD subjects

(AUC of 0.99±0.04 and 0.93±0.05 for SE-SVM and MKL approaches, respectively),

compared with the proposed approach. However, these approaches are outperformed

when used for the diagnosis of IPD, showing a AUC equal to 0.92±0.08 and 0.90±0.14

for SE-SVM and MKL approaches, respectively.

Figure 4.2: Predictive accuracy of the classification models for both IPD and sCJD sub-
jects, when considering a dataset composed by the three MRI sequences (red
curves). The predictive accuracy for both IPD and sCJD subjects, using
squared exponential SE-SVM (blue curves) and MKL (yellow curves) ap-
proaches. The ROC curves are computed considering the predicted labels
of 500 iterations, as proposed by Fawcett et al., [188].

To investigate the influence of each feature to the subjects’ diagnosis perfor-

mances, it is also evaluated the accuracy of the predictive classes obtained using the
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latent models for the GP based model (section 4.2.2) and the individual SE-SVMs

models (section 4.2.2). Considering the formulation of the MKL model, I do not in-

vestigate the performance of the model when using the different sources, but rather

the weight associated with the kernel encoding the multiple sources of features.

Proposed model

Table 4.1 details the precision of the classification of sCJD patients using multi-

source of features. The biomarkers extracted from FLAIR images seem to be insuffi-

cient to diagnose sCJD subjects during the onset of clinical symptoms. Conversely,

the MD measures computed from DWI scans have the strongest influence in the

diagnosis of sCJD, followed by the structural features. The results also suggest

that the different sources of features show contradicting information, since including

multiple sources has worsening the classification performance. In particular, the

inclusion of features such as FLAIR in the model estimation when already including

both DWI and T1w.

The predictive accuracy of the model for the diagnosis of IPD subjects is also

evaluated, Table 4.2. Similarly to sCJD diagnosis, the intensity based features

extracted from FLAIR promote a lower accuracy when used as single feature in

the proposed approach. It can be observed that including the rate of progression

associated with specific mutations yields an improvement of the predictive accuracy.

Note also that the inclusion of the three source of features does not necessarily lead

to the best performance for all metrics, which can be justified by the introduction

of noise due to the features’ interactions.

Finally, the distribution of the logarithmic loss6, L, across bootstrapping it-

erations, Figure 4.3, for classification of IPD symptomatic subjects shows a lower

predictive power than the classification of sCJD patients. The lower L translates

the higher certainty of the model in the classification of sCJD subjects; whereas,

due to the less evident symptoms of IPD during the initial stages of the disease, the

probability of the individual predictive class is lower, translating the uncertainty of

the model in the diagnosis of this form of CJD.

6The logarithmic loss describes the uncertainty of the estimation associated to the predictive
labels, as detailed in Appendix C, Equation C.5.
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IPD

sCJD

Figure 4.3: Distribution of the logarithmic loss L of the binary classification task, for both
IPD and sCJD subjects. The histogram is computed across 500 iterations of
the model. The fit is computed using a Weibull distribution.

Kernel SVM

The predictive accuracy of the SE-SVM model is evaluated for each set of

biomarkers: T1w, FLAIR and DWI. Tables 4.3 and 4.4 show that the accuracy ob-

tained from the binary classification using SE-SVM is comparable with the predictive

accuracy of the proposed model, namely on the sCJD diagnosis. Furthermore, this

result is not outperformed by the MKL approach, which achieved an accuracy of

93.00±0.05 for sCJD diagnosis. SE-SVM identifies the DWI features as the most rel-

evant biomarkers to diagnose sCJD (Table 4.3); whilst, the features extracted from

T1w had shown higher performance in the diagnosis of IPD subjects (Table 4.4).

These results are in agreement with the results obtained with the GP-based model,

where the latent models trained using the aforementioned input features show higher

predictive performance.

Finally, Table 4.5 lists the mean value (and standard deviation) of the weights

associated to the kernel matrices in the final model, over 500 iterations. The weight

of the kernel matrices is intimately related to the relevance of these features to de-

termine the subjects’ status. The results show that the diagnosis of sCJD subjects is

achieved mainly using DWI features, which is in agreement with the results obtained

using both SE-SVM and the GP model. On the other hand, the diagnosis of IPD is
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based mainly on the T1w biomarkers, but both DWI and FLAIR equally contribute

to the model final prediction, showing a weight of 0.21 and 0.23 in the final model.

4.3 Discussion

Proposed Model

The imaging biomarkers extracted, as detailed in Chapter 3, were used in a

non-parametric Bayesian approach to predict the subjects status. The predictive

labels are based on a probabilistic labelling of the subjects based on the joint mod-

elling of the biomarkers pattern by a Gaussian Process. Both sCJD and IPD were

independently diagnosed by evaluating the predictive accuracy of the labels for both

subtypes. The reported results, reported in section 4.2.2, are indicative of the ef-

fectiveness of the model to detect prion disease patients, among healthy controls.

Furthermore, the model was also able to diagnose subjects in the early stages of

CJD, particularly for IPD symptomatic subjects with MRC scale of 20, a time at

which the diagnosis can be otherwise very challenging. The results also suggest that

the diagnosis of CJD can be achieved without all three MRI sequences, Table 4.1.

From the results obtained using the proposed model, I concluded that the DWI

scans are more informative to diagnose sCJD. Thus, the diagnosis of sCJD benefits

from the use of a single feature, in specific the MD measurements. Nevertheless,

the logarithmic loss L shows that the full model was more robust in the diagnosis

of sCJD, for which the uncertainty regarding the predictive label was lower.

Differently, the diagnosis of IPD subjects show a higher accuracy when using

only biomarkers extracted from T1w images, Table 4.2. Despite the fact that the

diagnose of IPD benefited mostly of T1w MRI images, by including other modalities

such as DWI the sensitivity of the predictive labels increases. Note that the jointly

modelling of T1w with either with FLAIR or DWI and the rate of progression is

equally sensitive in the IPD diagnosis, when compared with the joint modelling of

the three MRI images. In both scenarios, including the three MRI sequences, did

not show significantly better results when compared with the aforementioned latent

models. In addition, the inclusion of the kernel Kc had proved the flexibility of the

proposed model to deal with both categorical and continuous data, such as genetic

and quantitative imaging data respectively. Future work should make use of this

kernel matrix to encode any other relevant genetic data, such as SNP information.

This model could be an improvement in clinical environment, since it provides
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Table 4.5: Kernel matrices contributions of the MKL approach for subjects’ diagnosis. The
relevance of the different source of features is ranged from 0 (not relevant) to
1 (only relevant feature). The grey colour highlights the most relevant set of
features.

T1w FLAIR DWI

IPD 0.560 (0.134) 0.206 (0.112) 0.234 (0.114)
sCJD 0.202 (0.103) 0.016 (0.040) 0.782 (0.110)

relevant information regarding the biomarkers that are more useful for the earlier

diagnosis of CJD, avoiding unnecessary exams or a prioritisation of the clinical

assessment in more severe stages of the disease.

Notwithstanding the good results, the current formulation of the model does not

account the progression of the disease. Further, the proposed model only takes in

consideration cross-sectional data. Due to the reduced number of subjects and high

heterogeneity of the symptoms across patients, there is not an established function

to describe the progression of symptoms over time, hampering the use of longitudi-

nal data. This consists of a limitation of the formulation of the proposed approach.

Hence longitudinal information could improve the diagnosis of the subjects. Cur-

rently, this does not hamper the performance of the model on the classification of

CJD patients. Nonetheless, to identify signs of the onset of symptoms, promoted by

brain alterations occurring between two clinical assessments, the model should take

into consideration longitudinal information.

Kernel SVM

To assess the validity and accuracy of the proposed model, I compared the GP-

based model with two kernel based approaches: MKL and SE-SVM. The results,

Tables 4.3 and 4.4, show that the kernels based models were accurately predicting

CJD. In fact, both SE-SVM and MKL approaches outperformed the GP model

when diagnosing sCJD subjects. Nevertheless, the GP showed a significantly lower

logarithmic loss in both tasks, which is translated in a lower uncertainty of the

predictions given by this approach. Therefore, even with a higher accuracy, the

SE-SVM is not suitable to be used in clinical context given the uncertainty of the

predicted classes.

For the diagnosis of IPD subjects, the GP model outperformed the kernel-

based approaches, suggesting that this approach is more sensitive to identify earlier

stages of the diseases, where the clinical manifestations are less evident and noisy.
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Note also that the MKL approach identifies the features extracted from FLAIR as

relevant as the features extracted from DWI. These findings support the results

obtained using the GP model, where the combination of T1w with either DWI or

FLAIR features leads to an increase of the model sensitivity; whereas the SE-SVM

completely discards the relevance of the features extracted from FLAIR. Despite the

results obtained using SE-SVM and GP model that indicated a very low relevance of

the FLAIR features, the MKL showed that the biomarkers extracted from FLAIR

conditioned the optimisation of the model parameters with equal relevance than

the DWI features. Therefore, the FLAIR should not be disregard as a source of

information to characterise CJD.

The good results obtained by the kernel methods sustained the hypothesis that

subject-specific features are suitable to diagnose CJD, since these features even when

used in a different classifier lead to a good identification of prion disease.

4.4 Summary

This chapter introduced a non-parametric Bayesian approach to predict the

subjects status. I evaluated the effectiveness of the proposed method in a cohort of

patients with inherited and sporadic forms of prion disease. The model had shown to

be effective in the prediction of both inherited CJD (93.7% of accuracy) and sporadic

CJD (98.5% of accuracy). Compared with state-of-the-art approaches, the frame-

work achieved comparable results, outperforming the state-of-the-art approaches

when diagnosing IPD subjects.

This model is particularly useful if implemented in clinical context as a

computer-aided-diagnosis tool, potentially reducing the current misdiagnosis rate

of prion diseases. In fact, this is one of the objectives of applying machine learn-

ing models to study prion diseases. By using these type of diagnostic models, the

clinicians could be alerted to the potential presence of CJD, even when the clinical

manifestations resemble more common forms of dementia. Therefore, this chapter

introduced a clinically relevant algorithm to address the current clinical challenges

of CJD.

However, the model did not provide yet an effective characterisation of the

different stages of the disease, neither a prediction of clinical onset for IPD. Further,

the proposed method only took in consideration cross-sectional data. Due to the

reduced number of subjects and high heterogeneity of the symptoms across patients,
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there is not an established function to describe the progression of the disease over

time.

To improve the knowledge about the evolution of the disease over time, in the

Chapter 5, I extend the current framework to perform subject’s staging according to

the MRC Scale and by consequence the severity of brain changes. The new model

can be seen as a disease progression model, defined as an additive multi-class GP.





Chapter 5

Multi-class Gaussian Process for CJD

characterisation

To date, there is no accurate measure that can be used to quantify the evolu-

tion of symptoms over time, as a proxy of subjects’ prognosis, or to anticipate the

clinical onset of asymptomatic subjects. Being able to diagnose CJD at the early

stages of the disease would enable the patients to be involved in clinical trials, which

is currently challenging as patients can die in less that 12 months from diagnosis

[18]. Therefore, the prediction of the time to clinical onset of IPD patients is one

of the aims of this study. To predict the subjects prognosis, I extended the model

introduced in Chapter 4 to perform a multi-class classification aiming the subjects

staging according to the clinical symptoms. Moreover, to address the current mis-

classification rate of CJD, I also applied the multi-class GP framework to identify

CJD among other neurodegenerative diseases.

This chapter describes a multi-class Gaussian Process Classification (GPC) used

aiming both the CJD stratification and its identification among other neurodegen-

erative diseases. The multi-class GP framework is detailed in section 5.2, followed

by its evaluation when used on clinical data in section 5.3. By using a common

model, which includes the same kernel function and optimisation scheme, I demon-

strate the potential of model M to be extended to work both as a prognosis and

differential diagnosis tool, as well as its current limitations if translated to clinical

context (sections 5.4 and 5.4, respectively).
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5.1 Context

Subjects’ Stratification

The models used to predict subject’s prognosis in context of neurodegenerative

diseases require the age/time normalisation among the subjects. This step is crucial

for these approaches, since only with a proper normalisation it will be possible to

analyse the subjects at different stages and time-points jointly [149, 150, 159]. The

subjects’ age normalisation is a challenging step for CJD patients, due to the wide

range of ages at the clinical onset, as described in Chapter 3. Attending to the

data limitations, namely the reduced number of subjects with data before and after

clinical onset, the estimation of the exact time to clinical onset became an ill-posed

problem when formulated as a regression task. To tackle these issues, I define the

subjects’ prognosis as a multi-class classification task, where the subjects’ status is a

class in an ordinal scale based on the severity of the symptoms. This formulation is

not a continuous measure of time to onset, in years; hence, it does not answer to the

problem introduced in this chapter. Nevertheless, the stratification of the subjects

according to the severity of symptoms, or the proximity to clinical onset stage, can

be interpreted as a surrogate measure of the subject’s outcome. Note also that the

probabilistic outcome also give information regarding the transition between stages;

i.e., admitting that the disease stages follow an ordinal distribution, it is sensible to

assume that a subject i at the time-point t will progress to the closest upper stage

as yi,t+1 = C + 1.

Differential Diagnosis

Due to its rarity, CJD is, in fact, commonly mistaken for other neurodegen-

erative disease, which results in a higher rate of undiagnosed subjects. As a con-

sequence, these patients are not conveniently treated according to their symptoms.

Besides, by reducing the misdiagnosed cases, the sample size of CJD studies will

increase, leading to a more robust analysis and to a better understanding of the

disease. Taking advantage of the flexibility of the GP formulations, I here adapt the

model M to be used as a differential diagnosis tool, in particular to identify CJD

among other symptoms of dementia, caused by diseases such as YOAD.
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5.2 Model definition

The generative model, Equation 4.1, can be adapted to predict the stage of

the disease for a subject i given the set of features X ∈ X . The estimated proba-

bilistic class provides a clinical input regarding the severity of symptoms of CJD. I

implement a multi-class classification GP based on individualised likelihood factors

computed for the target classes defined by yi = {C1, . . . ,CC},C > 2 for the subject

i. The estimation of the class probability is given by a multinomial probit likeli-

hood1, which can be generalised to account for non-constant error variances. For

this purpose the Equation 4.2 has been modified as following:

p(yi∣fi) = Ep(ui)
⎧⎪⎪
⎨
⎪⎪⎩

C
∏

j=1,j≠yi
Φ(ui + f

yi
i − f ji )

⎫⎪⎪
⎬
⎪⎪⎭

(5.1)

where fi is a vector fi = [f1
i , ..., f

C
i ]
T to account for the number of classes under con-

sideration for a subject i. In the Equation 5.1, the auxiliary variable ui is distributed

as p(ui) = N(ui∣0,1).

5.2.1 Marginal Likelihood approximation

Similarly to binary classification, the posterior of a multi-class GPC is analyt-

ical intractable; thus, it requires the approximation of the likelihood. To keep the

consistency across classification tasks, this approximation is achieved by means of

EP algorithm. The EP approximation is in fact particularly efficient for the multi-

task likelihood problems. Note however that in case of binary GPC, the estimation

of the tilde distributions (defined in Equation 4.4) requires solving one-dimensional

integrals. Assuming the probit likelihood function, these univariate integrals can be

computed efficiently without numerical quadratures [112, 125]. For the multi-class

paradigm the solution is more complex, since it is required to evaluate the multi-

dimensional integrals [127]. For this, the approximation of the tilde variables can be

done by Laplace approximation [112]. The problem with the Laplace approximation

approach is that the mean is replaced with the mode of the distribution and the co-

variance with the inverse Hessian of the logarithmic density at the mode. Because of

the skewness of the tilde distribution caused by the likelihood function, the Laplace

approximation method can lead to inaccurate mean and covariance estimates in

1The likelihood used here could be potentially be replaced by an ordinal likelihood, as proposed
by Chu et al., [189]. However, for simplicity, the multinomial likelihood is used here, which still
ensures the multi-class nature of the problem even if it disregards the ordinal behaviour of the
categories where lie the disease’s stages.
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which case the resulting posterior approximation does not correspond to the full EP

solution. To overcome this issue, following the method proposed by Riihimäki et

al., the marginalisation of the likelihood is achieved via nested EP approximation,

which does not require numerical quadratures or sampling to estimate the predictive

probabilities [127, 190].

5.2.2 Kernel function definition

In this particular case of the model M, the imaging biomarkers are encoded

in the model using a linear combination of logistic kernel functions (Equation

5.2). Here, the logistic function h(x) is fully defined by the w scalar that is the

weight of the mean function, by the intercept of the linear part b and the regres-

sion coefficient of the linear part a. Given a zero mean function, as assumed in

this model, on the Gaussian prior for weight w ∼ N(0, σ2) the prior for h(x) is

h(x) ∼ N(0,H(x)H(x)Tσ2) where H(x) = [h(x1), ..., h(xn)]
T. Finally, for N input

samples, the diagonal matrix Σ contains the prior variances of the bN terms. This

function is used to encode the variance of the biomarkers over the different stages

of the disease.

h(x) = w(logit−1
(ax + b) − 0.5)

H(x) = [h(x1), ..., h(xn)]
T,Σ = diag(σ2

1, ..., σ
2
N)

klogit(x,x
′
∣Θ) = H(x)ΣH(x′)T

(5.2)

The particular use of Equation 5.2 is motivated by the results achieved by the au-

tomatic kernel selection scheme, proposed by Duvenaud et al. [113]. This algorithm

was modified to be used on the specific scenario of the study of neurodegenerative

diseases, as detailed in Appendix B. Note that the automatic selection of the ker-

nel function is not performed specifically for CJD, due to the sample size. In fact,

using the same sample for both kernel selection and the optimisation of the model

parameters for subjects’ staging would lead to double-dipping, hampering the ro-

bustness and generalisation of the results. Hence, an independent sample, composed

of 320 patients diagnosed with inherited Alzheimer’s disease, is used to select the

appropriate kernel to encode both clinical and imaging data. The data is part of

the Dominantly Inherited Alzheimer Network (DIAN) study [191].
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5.3 Experiments and Results

5.3.1 Subjects Stratification

Experiments

Using cross-sectional data, the model is trained to perform subjects’ stratifica-

tion on the HC, asymptomatic subjects, IPD and sCJD. The target classes defined

by yi = {C1, . . . ,CC},C ∈ {1, . . .5} for the subject i correspond to the five predefined

stages of the disease: (1) healthy control (HC), (2) asymptomatic subjects (Asym.),

(3) subjects with an MRC Scale score of 20 i.e., asymptomatic2 or early symptomatic

but no accrued neurodisability, within one year inside of the clinical onset window

(CO), (4) to (5) symptomatic subjects divided in 2 severity quantiles according to

their MRC Scale scores [59]. In detail, the (4) stage includes the subjects with MRC

Scale score between 19 and 15, and (5) comprises the subjects with MRC Scale

score below 14. Only 2 subjects had an MRC Scale score below 10, and those were

included in the stage 5. In this specific experiment the sCJD and IPD subjects

are jointly classified, according to their MRC Scale score. Similarly to experiments

described in Chapter 4 (section 4.2.1), to model the different rates of progression

of the subtypes of CJD and IPD mutations, the Kc is considered in to the model.

It is assumed that sCJD patients show a disease progression rate analogous to the

IPD subjects with the fastest progression rate. Both the SE-SVM model, defined

in Chapter 4 (section 4.2.2), and the proposed approach for subjects staging are

evaluated using the same sample. The models are trained using 75% of the overall

sample, whereas the testing set corresponds to the remaining 25% of each sample,

while keeping the input ratio between the different groups. The hyperparameters

of the model are optimised using the previously mentioned open-source library3.

In order to obtain a robust evaluation, I apply a cross-validation scheme with 500

runs for all experiments. Lastly, I evaluate the performance of the model when used

as a prognostic tool. For that purpose, I consider the available longitudinal data

for the CO subjects, where I tracked the biomarkers evolution over time and the

conversion to IPD by predicting the class label independently for each time-point.

Even though the current formulation does not provide information about the time

to clinical onset of each subject, the probability distribution for each subject with

2The asymptomatic subjects considered as part of clinical onset (CO) had have the diagnosis
confirmed in later MRI images.

3GPstuff: Bayesian Modelling with Gaussian Processes, available from http://jmlr.csail.

mit.edu/papers/v14/vanhatalo13a.html [184]

http://jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html
http://jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html
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respect to the six classes provides information about the severity of the symptoms

and consequently the stage of the disease. All the aforementioned experiments are

assessed based on the metrics defined in Appendix C.

Results

Figure 5.1 shows the normalised confusion matrix for the testing set, when using

the SE-SVM to perform the subjects stratification. The results suggest that the

model is able to effectively differentiate the healthy controls from patients’ showing

signs of CJD. However, this approach is inadequate to characterise the several stages

of the symptoms severity over the course of the disease. In fact, the SE-SVM model

is strongly impacted by the presence of asymptomatic patients during the training

stage, resulting in a high percentage of false positive diagnosis for this group. Lastly,

the SE-SVM approach failed in the identification of any of the subjects at the clinical

onset.

Figure 5.1: Subjects Stratification via SE-SVM. The discrete confusion matrix was com-
puted based on the sum of 500 iterations of the model. The dark red highlights
the higher percentage of subjects classified with a given label across iterations.
HC – healthy controls; Asym. – asymptomatic subjects; CO – clinical onset;
SI – stage I and SI - stage II of the disease.
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Figure 5.2 shows the normalised confusion matrix for the testing set. The qual-

itative analysis of the confusion matrix suggests that the model is able to correctly

identify the extreme stages of the disease, while being less accurate in the differen-

tiation of the intermediate stages of the disease. Note that the results reported in

Figure 5.2 are deterministic and they do not account for the fuzziness of the classes

estimated, particularly for the asymptomatic stage.
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Figure 5.2: Subjects stratification via multi-class GP. The discrete confusion matrix was
computed based on the mean of 500 iterations of the model. The values cor-
respond to the mean percentage of subjects labelled as belonging to a given
class. The intensity of the color increases with percentages. HC – healthy
controls; Asym. – asymptomatic subjects; CO – clinical onset; SI – stage I
and SI - stage II of the disease.
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Figure 5.3 shows the correlation between the categorical (discrete) labels and

the average probability given to each class, computed through bootstrapping. The

probability distribution across classes gives a more intuitive interpretation of sub-

jects’ clinical status, as well as the confidence of the predictions for each group.

Figure 5.3: Prion disease subjects stratification using the proposed framework.. The dis-
crete confusion matrix is normalised by the number of subjects included in the
classification task. The shadow area is the average distribution of probabilities
per class.
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Figure 5.4: Prion disease subjects stratification, latent models. The confusion matrices
show the results of the latent models for the stratification task.

I further investigate what is the best combination of features to achieve a good

stratification of subjects, by computing the predictive classes for the latent models.

Table 5.1 presents these findings, where the average accuracy across stages is higher

for the jointly modelling of the three set of features (Average Acc = 83.2%) combined

with the progression rate of the individual mutation. Nonetheless, both macro-recall

and macro-precision reported are low (RecallM = 40% and PrecisionM = 39%),

suggesting that the model is not sensitive to detect the different stages of the disease.

Figure 5.4 also show the inefficiency of certain latent models in the stratifica-

tion of patients showing signs of CJD. It is highlighted the importance of different

MRI sequence as a source of information to characterise different stages of the dis-

ease progression. As an example, T1w seems to have a predominant role in the

identification of the early stages of the disease (second and third panels), where its

influence reduce the false positives – i.e., asymptomatic subjects being classified as

CO; whilst, the biomarkers extracted from DWI images are more relevant to iden-

tify severe symptoms (fourth panel), characteristic of the latest stages of the disease

progression. The logarithmic loss, computed across classes, is also lower for the full

model (L = 1.74 ± 0.44), supporting the assumption that by using the three MRI

sequences, the CJD symptoms are better explained resulting in a more accurate

subject’s prognosis4.

I apply the trained model to study the evolution of imaging biomarkers over

time, for each subject considered at clinical onset. This experiment aims to demon-

strate the possible use of the model as prognostic tool, based on the class probabil-

ities over time. The reported results, Figure 5.5, are evaluated for each of subject

4The low logarithmic loss translates the higher certainty of the classes correctly label, whilst the
classes wrongly predicted have often higher uncertainty related to them.
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Table 5.1: Performance of the model when used for disease staging. The mean value and
standard deviation of 500 runs is computed for all the metrics used for multi-
class evaluation. The values are presented in percentage, excepting the loga-
rithmic Loss.

Average Acc PrecisionM RecallM L

T1w 69.43 (2.16) 4.80 (1.50) 19.96 (0.80) 3.14 (1.11)
FLAIR 69.17 (1.68) 5.24 (3.71) 20.08 (2.14) 2.60 (0.13)
DWI 69.17 (1.68) 5.24 (3.71) 20.08 (2.14) 2.60 (0.13)
T1w + FLAIR 70.26 (2.03) 6.83 (5.28) 20.67 (4.07) 2.66 (0.23)
T1w + DWI 70.26 (2.03) 6.83 (5.28) 20.67 (4.07) 2.66 (0.23)
FLAIR + DWI 69.09 (1.78) 5.09 (3.36) 19.94 (2.35) 3.84 (1.66)
T1w + FLAIR +RP 78.74 (5.11) 35.18 (13.15) 39.40 (10.45) 2.05 (0.16)
T1w + DWI + RP 78.74 (5.11) 35.18 (13.15) 39.40 (10.45) 2.05 (0.16)
FLAIR + DWI + RP 77.62 (5.60) 35.31 (17.37) 42.85 (13.26) 2.47 (0.68)
T1w + FLAIR + DWI 69.88 (1.96) 6.48 (5.81) 20.97 (4.21) 6.03 (2.01)

T1w + FLAIR + DWI + RP 85.39 (4.21) 57.34 (11.91) 58.83 (11.93) 1.74 (0.44)

RP – Rate of Progression.

at clinical onset independently. Note that in some cases the evaluation before clin-

ical onset is omitted due to missing data (subjects B and C). The results show the

inability of the model to predict the actual stages of the disease for these subjects.

However, the changes of the likelihood of the predicted classes can be interpreted

as a possible change of the confidence of the model to predict a class given the set

of features, which might show signs of disease progression to more severe stages.

As an example, Subject A initially is classify as asymptomatic with a high confi-

dence (p(yA∣fA) ≈ 0.89); whereas for the second time-point this probability decreases

(p(yA∣fA) ≈ 0.80), suggesting that the prediction is less certain for the second time-

point. This pattern is also visible for Subject C. However, the results for Subjects

B and D show a less evident correlation between the decrease of the likelihood of

the predicted class in the two different time-points and the conversion from asymp-

tomatic to CO, or to more severe stages of the disease.

5.3.2 Differential Diagnosis

Experiments

Thanks to the flexibility of the proposed approach, I also implement a multi-

class classification GP to perform a differential diagnosis of CJD. This formulation

aims to demonstrate the possibility of using this approach to either diagnosis the

subtypes of CJD or to identify CJD among other neurodegenerative diseases.

Therefore, I compare the CJD subtypes against a clinically related form of



142 Chapter 5. Multi-class Gaussian Process for CJD characterisation

AOO: -4.28

AOO: -3.21

AOO: 0.46

AOO: 0.99

AOO: 1.49

AOO: 2.03

AOO: 0.003

AOO: 0.99

AOO: 2.03

AOO: -1.84

AOO: -0.004

AOO: 0.19

AOO: 0.24

A B C D

CO Asymp CO S-I S-II CO Asymp CO S-I S-II CO Asymp CO S-I S-II CO Asymp CO S-I S-II

Stage of Disease Stage of Disease Stage of Disease Stage of Disease

AOO: -4.28

AOO: -3.21

AOO: 0.46

AOO: 0.99

AOO: 1.49

AOO: 2.03

AOO: 0.003

AOO: 0.99

AOO: 2.03

AOO: -1.84

AOO: -0.004

AOO: 0.19

AOO: 0.24

A B C D

CO Asymp CO S-I S-II CO Asymp CO S-I S-II CO Asymp CO S-I S-II CO Asymp CO S-I S-II

Stage of Disease Stage of Disease Stage of Disease Stage of Disease

Figure 5.5: Classification of subjects at clinical onset. Longitudinal stratification of sub-
jects with MRI scans acquired before and after the clinical onset. The likeli-
hood of the predicted class are represented by the mean function and variance
for each time-point. The age of onset (AOO) is used as reference of the scan-
ning time-points, before (negative values) and after clinical onset (positive
values). Subject A: MRC scale 21 (blue), 21 (green); Subject B: MRC scale
19 (blue), 12 (green), 17 (gold), 15 (red); Subject C: MRC scale 20 (blue), 20
(green), 18 (gold); Subject D: MRC scale 21 (blue), 20 (green), 19 (gold), 10
(red).

dementia. For this experiment, I consider the HC, IPD, sCJD and YOAD groups.

The asymptomatic subjects have been excluded to avoid the presence of confounding
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effects during the training of the model5. The YOAD dataset comprises 32 subjects

(10 males) with a mean age of 61 years old, as detailed in Chapter 3 (Table 3.1).

The YOAD subjects are part of a larger study of young onset Alzheimer’s disease,

for which ethical approval was obtained from the National Hospital for Neurology

and Neurosurgery Research Ethics Committee. T1w and DWI images were acquired

using the same scanner than the NPMC subjects, which ensures the compatibility

of the images acquired. In detail, the T1w pulse sequence is identical to the one

used for NPMC. The DWI acquisition however differ for this dataset. Multiple shells

were acquired for the YOAD dataset. For better harmonisation, this work only used

the shell that had the most similar b-value (b=700) to the one used for the prion

data acquisition (b=1000). I acknowledge this limitation as a potential bias in the

results of the classification. The FLAIR images were not acquired for this group of

patients. Hence, the features used to characterise YOAD subjects are obtained only

from DWI and T1w MRI scans, which have been processed using the framework

detailed in Chapter 3 (sections 3.2 and 3.3). To keep the agreement across datasets,

only DWI and T1w imaging features are considered to characterise CJD patients.

Note that the feature selection section of this framework is tailored to maximise the

information related to CJD symptoms; thus, the features do not encode the spatial

pattern that characterises YOAD.

By following the model formulation described in section 5.1, I compute indi-

vidualised likelihood factors for the target classes defined by yi = {C1, . . . ,CC},C ∈

{1, . . .4} for the subject i, where (1) corresponds to healthy controls, (2) IPD,

(3) sCJD and (4) YOAD. Lastly, the Equation 5.2 is used to encode the imag-

ing biomarkers. Once again, the effectiveness of the proposed approach is evaluated

based on the metrics described at Appendix C.

Results

By modelling the joint contribution of the three sets of features, it is achieved a

good differentiation between the symptomatic CJD subjects and the YOAD patients,

as reported in Figure 5.6. The confusion matrix shows that only approximately 8%

of CJD subjects are labelled as HC. This result is in agreement with the results

reported in Chapter 4 (section 4.2.2), which suggests that including more signs does

not perturb the sensitivity of the model in identifying CJD. Most of the CJD patients

5Asymptomatic subjects form indeed a heterogeneous group as individuals can be days or decades
from clinical onset.
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misclassified as HC are IPD patients. I presume that the slower rate of progression

of IPD patients and the higher number of subjects with MRC scale of 20 lead to less

evident symptoms and consequently proximity to the HC biomarkers pattern.

Figure 5.6: Differential diagnosis of CJD subtypes. The confusion matrix shows the mean
percentage of predictive labels across the 500 runs of the model. The higher
percentages of subjects classified with a given label across iterations are shown
with an intense colour. HC – healthy controls; IPD – inherited prion disease;
sCJD – sporadic CJD; YOAD – young onset Alzheimer’s disease.
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IPD. 4.66 71.45 0.65 20.44

sCJD 0.01 0.01 87.90 4.97

YOAD 0.01 21.28 11.45 74.59

The results also indicate that 75% of the YOAD subjects have been correctly la-

belled, showing a likelihood of 0.61 of being YOAD (Figure 5.7). The CJD subjects,

both IPD and sCJD, have shown a probability of 0.35 of being wrongly labelled

as YOAD subjects, with the majority of the uncertainty associated with IPD mis-

classification (likelihood of being YOAD, for IPD patients, ≈ 0.40). The overlap

between these two classes is due to the similarities of the phenotype of the diseases,

which differ from sCJD. These results can be improved by a specific kernel matrix

to explain the spatial differences between the two diseases. Nonetheless, this section

is an illustrative example of the flexibility of the proposed model and the possibility

of being used as a differential diagnosis tool, particularly to identify CJD among

other types of dementia.

The analyses of the latent models performance show that the categorical kernel

used to encode the progression of IPD mutations, highly improves the accuracy and

precision of the differential diagnosis tool. Figure 5.8 highlights the DWI features as

the most sensitive to differentiate IPD from YOAD, whereas T1w images combined

with DWI show better results in the identification of sCJD among YOAD patients.

Finally, Table 5.2 summarises the performance of the latent models in the prediction

of the subjects’ status. The approach that includes the features extracted from the
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Figure 5.7: Likelihood of the predictive classes of differential diagnosis. The shadow area
is the average distribution of probabilities per class.

Latent	Model:	T1	+	DWI Latent	Model:	T1	+	RP Latent	Model:	DWI	+	RP

Figure 5.8: The confusion matrices show the results of the latent models for the differential
diagnosis task.

two MRI pulse-sequences, as well as the rate of progression, outperforms the latent

models for all the metric analysed.

5.4 Discussion

Subjects Stratification

Notwithstanding the promising results obtained for subjects’ diagnosis, there

is not an effective characterisation of the different stages of the disease, neither

the prediction of clinical onset for IPD. To improve the knowledge regarding the

evolution of symptoms over time, I extended the initial model (Chapter 4) to perform

the subjects staging according to the MRC Scale. The extended model M can be

seen as a stratification tool working as disease progression model, defined by an
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Table 5.2: Performance of the model for the differential diagnosis. The mean value and
standard deviation over 500 runs is computed for all the metrics used for per-
formance evaluation. The average accuracy, macro precision and macro recall
are shown in percentage. RP refers to the rate of progression.

Average Acc PrecisionM RecallM L

T1w 60.99 (4.97) 7.55 (6.40) 25.40 (2.90) 3.40 (1.68)
FLAIR 60.69 (4.89) 5.91 (3.66) 25.09 (1.96) 2.79 (0.26)
DWI 60.69 (4.89) 5.91 (3.66) 25.09 (1.96) 2.79 (0.26)
T1w + DWI 63.75 (6.08) 17.49 (13.63) 34.44 (10.81) 2.94 (0.61)
T1w + DWI + RP 80.95 (8.33) 67.06 (18.90) 63.80 (13.15) 1.51 (0.20)

T1w + DWI + RP 88.90 (6.89) 80.86 (11.23) 77.09 (9.28) 0.97 (0.31)

additive multi-class GP. Contrary to the current disease progression models used to

study neurodegenerative diseases [138, 192], this approach does not assume a known

order of events to stage the subjects in specific clinical status, neither an expected

time-to-onset based on the familial clinical onset. Alternately, it finds the correlation

between subjects at a similar stage of the disease, by means of the covariance kernel

function. The predicted stages of the disease were then computed based on the

highest probability across classes. The overall accuracy (Average Acc = 83.2%),

suggests that the model had been successful in stratifying the subjects according to

the MRC Scale. However, the analysis of the confusion matrix (Figure 5.2) suggests

that the model was not sensitive to classes with closer intervals of the MRC Scale.

The creation of well defined clinical stages of CJD goes beyond the scope of this work,

but a future study should investigate alternatives to MRC Scale to define the labels

used to train the model aiming the subjects staging. For a clinical application, as

the aim of this work, the probability of the prediction associated with the predicted

label gives relevant insights regarding the model performance.

The proposed approach is hampered by the noise introduced by the asymp-

tomatic subjects, which show confounding features given their similarity either with

the group of healthy controls (when far from clinical onset) or the subjects at the

initial stages of the disease (when closer to the onset of the clinical symptoms).

Despite the fuzziness of the results for these three classes, the model seems to differ-

entiate with high accuracy the healthy controls group versus asymptomatic subjects.

This can be explained by the existence of features that the model captures for the

subjects closer to the clinical onset, included in the asymptomatic group. However,

these results could be further investigated as future work, where two experiments

should be performed:
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1. Classification of asymptomatic subjects among a HC population - This exper-

iment would aim to validate the results obtained in this chapter, as well as to

evaluate the predictive probability obtained for each asymptomatic subject.

This probability would verify the precision of the labels recognised as ground

truth for the asymptomatic subjects. Consequently, the subjects with lower

probability to be labelled as asymptomatic would present higher similarity to

the HC group, hence these subjects would not be close to the clinical onset.

Otherwise, a subject showing a higher probability of being label as asymp-

tomatic would more likely to be close to the clinical onset. Note that these

assumptions rely on the fact that the model can differentiate these two groups

with accurately.

2. Stratification of the patients, excluding the HC group - The bias towards the

HC population would be eliminated since only existing stages of the disease

would be considered. Therefore, the model would better fit the several stages,

ignoring the separation of the extreme stages, which has already been ad-

dressed by the diagnosis tool (Chapter 4).

Even though these two experiments address the limitations inherited by the

asymptomatic group, further improvements in the model could potentially reduce

the effect of noisy labels used at the training stage. Recent studies have applied an

interval censoring approach to deal with the disease progression problem for neu-

rodegenerative diseases [193–195]. Interval censoring, in statistics, defines a sampling

scheme or an incomplete data structure. Specifically, a random variable of interest

is known to only lie within an interval instead of being directly observed, hence its

study is performed according to these pre-defined intervals instead of a continuous

model [196]. Typically, in survival analysis and disease progression studies, the ran-

dom variable is defined as the time taken until the occurrence of an event such as

the clinical onset, death, a disease recurrence or a distant metastasis. Similarly,

many clinical trials and longitudinal studies also generate interval-censored data for

more sensitive modelling of the pattern of the considered features [196]. Example of

that are the longitudinal studies that entail periodic follow-up. In this situation, an

individual due for the pre-scheduled observations for a clinically observable change

in disease or health status may miss some observations and return with a changed

status. Accordingly, it is only known that the true event time is greater than the last

observation time at which the change has not occurred, as well as less than or equal
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to the first observation time at the point the change has been observed to occur. As

a result, for this particular sample, the time of occurrence of the change is an interval

which contains the real (but unobserved) change. Therefore, this concept could be

easily translated to the scenario of Prion disease, where for the particular case of the

asymptomatic subjects it could be assumed, for each time-point, the probability of

the true event (becoming symptomatic) is higher than for the previous observation.

The interval censoring approach was already successfully applied to machine learn-

ing models, including both shallow [193, 194] and deep learning approaches [195], to

conveniently model Alzheimer’s disease patients. Therefore, the future work could

benefit of a similar approach in the stratification of IPD patients.

Despite the fact that the formulation of the present approach as a multi-class

task simplifies the problem greatly, it may reduce its clinical validity, given that the

stages of the disease should follow an ordinal structure. The ordinal structure can

be imposed by an ordinal likelihood function, as proposed by Chu et al. [189]. The

proposed likelihood function is a generalisation of the probit function for Gaussian

process [189]. Similarly, Doyle et al. [197], also used the concept of an ordinal likeli-

hood function to estimate the progression of AD in a multivariate ordinal regression

framework. Since the results of this study illustrate the efficiency of this framework

to characterise the evolution of the disease over time, the proposed model could be

adapted in a similar fashion.

Lastly, given that the proposed approach only takes in consideration cross-

sectional data, the number of patients is reduced and the symptoms are highly

heterogeneous, it is impossible to establish a function that describe the progression

of symptoms over time. Thanks to the probabilistic nature of the predictions, the

model gives not only information regarding the predicted class for a given time-

point, but also about an estimation of the closest class for that time-point. This

information can be used as a prognosis tool, since the transition between classes can

infer the severity of symptoms and consequently the stage of the disease. Bearing

this in mind, I used the trained model to predict the several stages of the disease for

the subjects with scans before and after the clinical onset. Only five subjects had

all three modalities available before and after onset, therefore the results are neces-

sarily inconclusive. The results suggested that the proposed framework is currently

inefficient to predict the time to the clinical onset, even if within a one year win-

dow to the first symptoms. Moreover, the different time-points for these subjects

were modelled independently, which consists in to a source of bias in the model,
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since there is no dependency between results for a same subject. Nevertheless, these

are interesting results that prove the need of a spatio-temporal covariance kernel

function, used to link the several time-points for a same subject and to model the

longitudinal information of the biomarkers.

Differential Diagnosis

I also investigated the possibility of using the model as a differential diagnosis

tool. The current framework had proven to be able to recognise the individual

features of prion disease among another form of dementia, in particular YOAD. Note

however that the results reported in section 5.3.2 were achieved without a particular

modelling for the two types of dementia. The current formulation of the model relies

only on the proximity of features pattern for the subjects with the illness. This

approach only correlates the magnitude of symptoms and the correlation between

the features selected to a specific form of dementia.

By analysing the predictive accuracy of the latent models, this approach pro-

vides information regarding the combination of input features that better describes

the signs of dementia for the two illnesses. Specifically, the latent models had shown

that in clinical environment, DWI and T1w are the more relevant to identify sCJD.

Therefore, the micro-structural changes happening in the brain of IPD symptomatic

patients visible in DWI and FLAIR can be used as the main feature to distinguish

this type of CJD from other neurodegenerative syndromes. From the results, I can

conclude that the proposed framework can be used as personalised diagnostic tool,

optimised to learn the best model for a specific aim, aside of learning the best kernel

function used to explain the variance of the features that characterise the subjects’

symptoms.

Following the good results obtained in this illustrative example, a new diagnos-

tic tool based on quantitative measures could be created, which should account for

the uncertainty of the diagnosis, given the similarity of prion diseases to other syn-

dromes. This new diagnostic algorithm, developed to identify prion disease among

other neurodegenerative diseases, would improve the detection accuracy of this ill-

ness, and thus address the current high rate of misdiagnosis patients6. In the future,

I intend to adapt the model to learn what is the best covariance kernel function for

6Note that the initial symptoms of the disease are usually mistaken as depression symptoms, and
even in later stages of the disease, the symptoms may be seen as dementia symptoms, particularly
in the inherited form of CJD in which the progression is slower.
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different neurodegenerative diseases.

5.5 Summary

In this chapter, I extended to work presented in Chapter 4 to: (1) stratify the

CJD patients according to the severity of the symptoms as an indirect prognosis pre-

diction, and (2) to identify CJD among other neurodegenerative diseases precursors

of dementia. The results suggested that the model is effective in the identification

of CJD among other neurodegenerative diseases. However, the proposed approach

is less effective in the subjects stratification, failing in the prognosis of the subjects

at clinical onset.

In the future, thanks to the flexibility given by the GP, this work can be extend

to account for the longitudinal information available. This will allow not only a

more accurate stratification of subjects based on the extracted biomarkers, but also

the subjects prognosis in a given time frame. This can be addressed by integrat-

ing a spatio-temporal covariance model, such as the Kronecker form proposed by

[198], to provide a unified framework to model jointly the time-series of biomarkers

measurements with different natures, for a given subject.

More generally, due to their statistical nature, the performances approaches are

negatively impacted by small sample size in the presence of normal or pathological

variability. To address the limitation raised by the reduced sample size, I developed a

new framework to deal with the missing data. This framework, detailed in Chapter 6,

imputes the missing biomarkers, prior to implement the framework used for subject

stratification, described in this chapter.



Chapter 6

Uncertainty embedding for partial

data in Gaussian Processes

Due to the severity of the symptoms in the latest stages of CJD, it is often im-

possible to collect all the expected data, yielding an incomplete dataset. Because of

the very limited amount of data available, it is key to use all available information,

hence the need for data imputation. Current approaches to address the challenge of

missing data either require a high number of samples or assume a simple relation-

ship between data. However, such approaches are not compatible with the reduced

sample size and heterogeneity present in Prion disease data cohorts. To tackle this

issue, I employ a Bayesian framework to predict the missing values as well as the

uncertainty associated with those predictions. Therefore, instead of excluding the

subjects without data from the three MRI modalities, these subjects increase the

sample in approximately 21% from the original sample of patients: from the 67

patients considered for training and testing, the new sample includes the full set of

CJD patients – 85 patients. I then extend the classical Gaussian Process approach

to take as input the uncertainty associated with each of the estimated features. The

proposed framework is combined with the subject specific multi-modal feature ex-

traction described in Chapters 3 and 4. Finally, the resulting model was finally used

to stratify subjects with inherited forms of Prion disease into 5 ordinal stages from

asymptomatic to extremely affected, in a regression fashion.

In this chapter, I present the robust GP used to impute the missing data from

the available biomarkers (section 6.2.1), followed by another GP model used for sub-

jects staging considering the uncertainty of the missing values (section 6.2.2). The

proposed approach is extensively validated and compared with simplest approaches

to deal with missing data using Prion disease dataset, as detailed in section 6.3.
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Lastly, the effectiveness and usefulness of the proposed approaches is discussed in

section 6.5, as well as the next steps and further improvements of the presented

model.

6.1 Context

In research studies, it is common practice to acquire complementary information

in the form of multi-modal imaging as well as non-imaging data. The acquired

information can then be used to characterise a disease process or to train diagnosis

or prognosis classifier [120, 199]. However, it is challenging to collect all anticipated

data, yielding incomplete datasets. Common causes of missing data include patient

drop-out, imaging artefacts and algorithmic failures, amongst others. A common

strategy to use these incomplete datasets is to discard the partial samples, which

is practical when a dataset contains a small number of missing data, and when the

complete samples do not induce a sampling bias. Discarding incomplete samples

becomes problematic when dealing with small samples, as the missing observations

compromise the performance of classification algorithms [200, 201].

The limitation of missing data in neuroimaging studies has been mainly ad-

dressed by multi-task approaches [120]. By using a multi-task scheme for subjects’

classification, it is possible to include different sources of data and sample sizes in

a common model. Instead of removing samples with missing data, the subjects are

grouped according to the sources of data available and a unique classifier is trained

for the different learning tasks. Once the inference of the models is complete, the

predictions resulting from the different tasks are combined for a more robust and

accurate classification [120]. The performance of these models can be further im-

proved by learning common features of interest used among different tasks [201].

Despite being able to deal with missing data, the multi-task approaches are limited

and often not appropriate for the analysis of small samples. Due to the scheme used

to separate the data in different classification tasks, the models do not use the max-

imum number of samples in each task, excluding observations during the training

of the model. Note that the partitioning of the dataset according to the different

tasks results in small and unbalanced sub-samples of the full dataset. Thus, most

of the multi-task approaches are not appropriate to study rare or acute diseases

given the need for a minimum number of samples to train each task. Furthermore,

multi-source feature learning methods, such as the method proposed by Yuan et
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al. [201], assumes the linearity between the data and label. By jointly learning the

same features from different modalities, this method also ignores the heterogeneity

of features among the data sources, which hampers the information complementary

given by the multi-modality datasets. The restrictive assumption of linear data-to-

label relationship is tackled by Thung et al. [202]. They proposed a multi-input

multi-output deep learning framework to deal with the incomplete multimodal data

via multi-task learning, without involving data synthesis. The model also assumes

a non-linear relationship between the data and the labels, and it allows multi-class

classification. However, the model is limited by the need of a big sample to be

conveniently trained.

Alternatively, imputation techniques are commonly used to estimate the miss-

ing values and preserve the original sample size, leading to a better characterisation

of the dataset. Imputation methods are commonly developed based on statistical al-

gorithms, such as quasi-randomisation inference (data-driven models) [200]. Among

the different approaches used to deal with missing data, the expectation maximisa-

tion algorithm [203] and the k-nearest neighbour principles [204] have shown good

results in estimating the missing values based on the observed samples. However,

similarly to the aforementioned methods, the performance of imputation methods

also rely either in high number of samples or they assume simple relationships be-

tween data.

In case of very rare diseases, such as Prion disease [7], is even more important

to increase the sample size, in order to study in detail the biomarkers patterns that

characterise the disease. But, because of the very limited amount of data available,

it is key to use all available information and to avoid the partitioning of the sample,

hence the need for data imputation in place of the multi-task approaches. However,

some of the missing observations can be poorly imputed, when they do show a weak

correlation with the remaining data considered. The symptoms associated with

prion disease are highly heterogeneous, even among subjects at the same stage of the

disease’s course [181]. As a result, the imputed values can be considered as outliers,

showing a high error in their estimation. Due to the error inherent to the missing

observations estimation, the performance of the classification model is significantly

hampered with biased and noisy observations. To tackle this problem, I propose a

novel framework to subject stratification via additive Gaussian Process conditioned

by the uncertainty of the imputed values. The algorithm is composed of two steps (1)

imputation of missing data and their uncertainty using a GP, followed by (2) subjects
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stratification considering the complete dataset. The formulation of the imputation

step accounts for the data heterogeneity by considering a robust observation model,

such as the Student-t distribution, as detailed in section 6.2.1. Given the new sample

composed by both the observed and imputed data, I implement an additive Gaussian

Process to stratify the Prion patients according to the severity of the disease. To

reduce the impact of poorly imputed values in the model estimation, I consider

the uncertainty of the predictions in the hyperparameters estimation. Therefore,

the proposed framework is able to handle missing data, without compromising the

signal-to-noise ratio of the dataset. This method is an added-value in the study

of rare or acute diseases, in which the imputation of the missing values is highly

challenging and can compromise the performance of current classification models.

6.2 Model definition

Figure 6.1 shows the graphical representation of the full model that includes

the (A) the imputation of the missing values, followed by (B) the predictive model

definition, in which I include the impact of the uncertainty of the imputed values

during the estimation of the hyperparameters.

The subjects’ stratification is obtained by a non-parametric kernel-based model

to predict the status of Prion disease patients, according to multi-modality data

available, as defined in Chapter 5. The model M is defined as follow:

M ∶ y = f(S) + ε,

f ∼ GP(µf ;K + Iσf), ε ∼ N(µε;σ)
(6.1)

where for the subject i, i = {1, . . . ,N}, the outcome y ∈ Y is inferred regarding a

set of biomarkers S ∈ S feature space. The function f describes the variance of

the feature, which explains the response variable y using a GP model with µf and

covariance kernel matrix K, obtained by a stationary kernel function k, such as SE

covariance function as detailed in Appendix B [112].

As described in the previous chapter, the relationship between features is mod-

elled by an Additive Gaussian process [166, 181]. Considering the formulation of the

model in Equation 6.1, I can write f as f = ∑
M
m=1 fm, with fm ∼ GP(µfm ;Km+Iσfm),

where M refers to the number of modalities taken into consideration in the model.

Given the kernel properties, the addition of GP with µf = 0 is equivalent to
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Figure 6.1: Scheme of the full framework to deal with missing samples. Section A repre-
sents the imputation model I. The samples from three different data sources
M1,M2 and M3 correspond to features extracted from T1w, FLAIR and DWI,
normalised as z-scored values. In the yellow outline section is depicted the es-
timation of the robust GP for imputation of missing values (section 6.2.1).
Orange arrows represent the models used to estimate M3, whereas the blue
arrows correspond to the estimation of M2. The blue shadow area represents
the estimation of the uncertainty, UV, based on the cumulative distribution
function of the likelihood of the predictions (details in section 6.2.1). Sec-
tion B represents the subjects stratification considering the complete dataset
(section 6.2.2). The data for a subject i, Di, is composed by both the ob-
served biomarkers and the imputed values with associated variance, Si, and
the subject’s labels, yi. The hyperparameters of the model, θ, are considered
as input of the model. The function fi generates samples of latent variables zi
by evaluating random non-linear mappings of latent inputs and then drawing
mean-field samples parameterised by the mapping. These latent variables aim
to follow the posterior distribution for a discriminative modelM, conditioned
on data Di. For a new sample Xj , the model M estimates the new label
yj . The observed variables are represented by shadow circles, whereas the
estimated variables are represented by unfilled circles.
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f ∼ GP(0;∑Mm=1 Km + Iσfm). Therefore, the matrix K, which encodes the imaging

biomarkers, is obtained by the addition of the kernel matrices computed individually

using the information extracted from different sources of information. For simpli-

fication purposes, here I ignore the contribution of the rate of progression, defined

as KRP in Chapter 4. The missing observations in each kernel Km are imputed by

means of a robust Gaussian process regression, detailed in section 6.2.1.

Lastly, the estimation of y requires to find the best hyperparameters associated

to each kernel covariance function. The hyperparameters Θ = {θ, σfm} related to the

kernel functions are estimated via the maximisation of the marginal likelihood of the

model, p(Θ∣M). Note that θ is the vector of parameters estimated for each kernel

as: θ = [θ1, . . . , θM ]. The marginalisation over the hyperparameters is performed

by variational inference (Equation 6.8), for which the input features are not point

samples, but distributions obtained from the imputation step around the expected

value for an observation S, as detailed in section 6.2.2.

6.2.1 Robust Gaussian Process for missing data estimation

I impute the missing values by means of a GP regression. Specifically, given

set of modalities available M ∶ {1, ...,M} and a corresponding task t, the missing

values for the missing modality m ∈ M are obtained by the estimation of their

correlation with the observed imaging modalities Mt = M ∖ {m}. The imputation

model is defined as I ∶ um = gMt(xMt)+ε, where xMt is the matrix of observed features

extracted from the available modalities and um is the imputed value for the modality

m, conditioned by the observed values of the other MRI pulse sequences, such as

gMt ∼ GP(0,KMt + Iσu) with ε ∼ (µε, σε). For the sake of simplicity, the notation

gMt is equivalent to gm, as well as KMt reads Km. The Km is computed using a

squared exponential kernel function as described by Equation 4.9 in Appendix B,

with hyperparameters Ω = {lum , σ
2
um}. Note that despite the equivalent notation

used to define the kernel matrix, Km, here the features are different from the ones

considered in the full modelM. As a results, the noise of the population, σu, differs

from the noise σfm .

To reduce the effect of the heterogeneity of symptoms across subjects, I use a

robust observation model, using the Student-t likelihood function [205, 206]. This

observational model is specially adequate to predict the features related to hetero-

geneous diseases, since it reduces the influence of the outlying observations and
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improves the predictions. Formally, the observational model is defined as an outlier-

prone of order n, if p(u∣g1,m, ...,gi+1,m) Ð→ p(u∣g1,m, ...,gi,m) as gi+1,m → ∞. Note

that this formulation contrasts with the Gaussian observational model for which

each observation influences the posterior independently of its distance to the other

observations. The Student-t distribution, equation 6.2, where v is the degree of

freedom that take the value 2, and σp is the scale parameter, will reject up to ω

outliers if there are at least 2ω observations, to be optimised during the training of

the model.

p(um∣gm, σ
2
p, v) =

Γ((v + 1)/2)

Γ(v/2)
√
vπσp

(1 +
(um − gm)2

vσ2
p

)

− v+1
2

. (6.2)

The marginalisation over the kernel parameters is achieved via EP, as described

in Chapters 4 and 5. The EP algorithm was previously used by Jylänki et al., as

approximation method when using the Student-t likelihood in a GP framework [205,

206]. Adapting the Equations 4.13 and 4.14, for the individual tasks defined as

M1, M2 and M3 (Figure 6.1), I estimate the expected value, Equation 6.3, and the

variance of the missing biomarker, Equation 6.4. The ∗ notation refers to the testing

sample that can comprise only an unseen subject j, or several samples.

Eum∣gm [u*,m∣X, gm,x*] = K*,um∇logp(gm∣um) (6.3)

Vum∣gm [u∗,m∣X, gm,x∗] = k∗,∗ −K∗,um (Kum,um + Iσu)
−1 Kum,∗ (6.4)

The imputation is made per brain region, before the feature selection step, described

in Chapter 4. This ensures the spatial coherence between the features extracted

from different MRI pulse-sequences, whilst maximising the predictive power of the

imputation model.

The variance distribution of the imputed values over the population is used

in order to estimate the associated imputation uncertainty. Using bootstrapping, I

compute the cumulative density function (CDF) of the variances across the subjects

for each run. Even without an explicit correlation between the variance of the

predicted labels and the uncertainty of the estimations, I use this measure as a

proxy of the uncertainty of the imputed values, as proposed by Quiñonera-Candela et

al. [207]. Thus, given a new subject j with variance Vj , I can estimate its uncertainty

Uj,m for modality m given the predictions for the population. The obtained values of

uncertainty are in the range [0,1] that denotes low and high uncertainty respectively.
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In the following section, I introduce a scheme to include these information in a

GP regression, in order to condition the relevance given to the subjects with poorly

imputed modalities in the estimation of the final model.

6.2.2 Embedding the uncertainty of imputed data

The existence of uncertain data in samples used to infer data-driven models

is common. Most of the current techniques address the impact of noisy labels in

the training of the model, reducing random classification noise and improving the

classification accuracy [208, 209]. However, the impact of uncertain samples can be

also investigated from the inputs perspective. To reduce the impact of noisy inputs,

Henao et al., suggest to combine inline active set selection with hyperparameter

optimisation [210]. The method uses an active set selection method to select the

most relevant inputs, in which the selection criterion is based on the weight of the

sample during the training phase. In GP classification this is equivalent to using

the predictive distribution to select the best set of inputs in each iteration, until the

performance of the model converges. However this approach requires a large dataset,

hence is not appropriate to study rare diseases. Differently, Dallaire et al., included

both certain and noisy inputs to infer the model, by means of a modified covariance

function to account for the uncertainty effects [211]. Therefore, they suggested that

by assuming a Gaussian distribution with known variances over the inputs and a

Gaussian covariance function, it is feasible to marginalise out the inputs uncertainty,

whilst keeping an analytical posterior distribution over the function. The new model

outperformed a classical GP regression proving the advantage of considering the

uncertainty effect on the hyperparameters estimation. Despite showing good results,

this approach does not model explicitly the effect of the uncertainty in the estimation

of the hyperparameters, but only models the distribution of the input values.

To overcome the aforementioned issues, I propose a strategy to include the

effect of uncertainty directly in the estimation of the GP. Conversely to the other

techniques, the method does not depends on a large sample, neither requires the

exclusion of observations. In fact, the modelM, defined in equation 6.1, is optimised

in order to account for the inputs uncertainty by modelling the input data through

a Gaussian process latent variable model (GP-LVM), as proposed by Lawrence et

al. and Michalis et al. [212, 213]. Therefore, the marginal likelihood of the data is

expressed as:
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p(y) = ∫ p(y∣S)p(S)dS

p(S) =
M

∏
m′=1

N

∏
i=1

N(si,c∣0, Iσm′)

(6.5)

where S is the latent variable and m’ indexes the M modalities (not to be confused

with missing modality m defined in the previous section). Note that for each subject

i, the feature si,m′ is defined as:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

si,m′ ∼ N(Eum∣gm ,Vum∣gm), if m′ /∈Mt
i,

si,m′ otherwise,
(6.6)

where Mt
i is the set of existing imaging modalities for subject i. This way, the

prior p(S) encodes the variance of the estimations of the imputed values, since

each prediction becomes a set of possible points distributed in the space according

to results of the model I. Note that poorly imputed values will show a wider

distribution around the mean expected value obtained by I. The marginal likelihood

of the data is intractable. Following Michalis et al. [213], I apply an approximate

variational distribution q(S) to approximate the true posterior distribution p(S∣y)

over the latent variables, described by:

q(S) =
M

∏
m′=1

N

∏
i=1

N(si,m′ ∣µi,m′ , σi,m′) (6.7)

where µi,m′ and sigmai,m′ take the form of the distributions of si,m′ defined in

Equation 6.6. Using this variational distribution, I can express the Jensen’s lower

bound on the log p(y) that takes the form:

F (q) = ∫ q(S) log
p(y∣S)p(S)

q(S)
dS

= F̃ (q) −KL(q∣∣p)

(6.8)

The computation of the F̃ (q) is performed using the lower bound estimation via

variational sparse GP detailed in Michalis et al. [213], where auxiliary inducing

variables Z are used in sparse GP models. As a result, the hyperparameters Θ =

{θ, σ} are optimised in order to maximise the logarithmic density of the predictions.
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For simplification purposes, I define the likelihood of the predictions as Gaussian

likelihood, rather than a probit function used to define a multi-class classification,

as described in Chapter 5.

6.3 Experiments and Results

6.3.1 Robust GP for data imputation

Experiments

The proposed approach to deal with missing data is tested using the data from

the NPMC, including both IPD and sCJD patients. These subjects are grouped

based on the severity of symptoms yi for subject i, as detailed in Chapter 5. These

labels correspond to the five predefined stages of the disease: (1) healthy control

(HC), (2) asymptomatic subjects (Asym.), (3) subjects within a year of clinical

onset (CO), (4) early symptomatic subjects and (5) late symptomatic subjects as

defined by their clinical assessment scores [21].

The section A of the proposed framework, Figure 6.1, is trained using the in-

complete dataset, which includes the subjects with all three MRI pulse-sequences

available. The training set includes all the groups aforementioned to avoid over-

fitting on the second task of this approach; i.e., to avoid the inclusion of any infor-

mation regarding the subjects status in the estimation of the features, the training

set includes subjects from all the possible stages of the progression of the disease,

relying on the capacity of the model to identify which subjects should be considered

in the estimation of the missing modality m, for a new subject j through the kernel

matrix estimation.

For comparison purposes, I use also used a GPR with Gaussian likelihood to

impute the missing biomarkers.

Figure 6.2 illustrates the CDF of the variance of the imputed biomarkers. The

variance is estimated for both the datasets with 50% and 20% of missing data. The

robust GP regression shows higher variance when used in a dataset with only 20%

of missing data (dark red line), for DWI features, when compared with normal GP

regression (blue line). Differently, the estimations through robust GP regression

shows lower variance (green line) when used in a dataset with 50% of missing data.

These results suggest that the robust GP is only advantageous when the percentage

of missing data is higher and the estimation of the missing biomarkers is more
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DWI Features FLAIR Features

CD
F

Variance Variance

Imputed – Gaussian (50%)
Imputed – Student-T (50%)

Imputed – Student-T (20%)
Imputed – Gaussian (20%)

Imputed – Gaussian (50%)
Imputed – Student-T (50%)

Imputed – Student-T (20%)
Imputed – Gaussian (20%)

Figure 6.2: Example of the CDF of the variances across the subjects for the biomarkers
imputed. The variance is estimated for both the datasets with 50% and 20%
of missing data.

difficult due to the lack of information. On the other hand, there is no strong

evidence of the advantage of using the robust GP for the estimation of biomarkers

extracted from FLAIR (Figure 6.2, right panel.) Note that these results are just

an example of the variance across one of the runs of the bootstrapping, requiring

further validation.

6.3.2 Embedding the uncertainty of the imputed data

In order to assess the performance of the proposed model, I considered three

experiments:

1. Incomplete data: Subject staging using the original dataset that has missing

data and is therefore defined as the incomplete dataset;

2. Completed data: Subject staging using the original dataset and imputed

data obtained with the model presented in section 6.2.1;

3. Embedding uncertainty: Subject staging using the original dataset and

imputed data with uncertainty embedding as described in section 6.2.2. This

experiment includes:

(a) The model trained using inducing points exclusively picked from the real

dataset;
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(b) The model trained using a randomly selected sample from the full training

set, which includes the augmented and observed data.

To evaluate the effect of size of the sample containing the missing data in the

performance of our model, the incomplete dataset, which presents around 20% of

missing data, was further perturbed to have 50% and 80% of missing data. I split

the samples containing all three sequences into training and validation data, using

the following two split proportions – 50%, and 80%. The samples missing one or

more sequences were only used as training data. The remaining complete dataset is

hold-out for evaluation purposes. A 5-fold stratified cross-validation was computed

to assess the robustness of the results. For all analyses both the mean squared

error (MSE) and the explained variance (η) are evaluated in order to quantitatively

compare the models. In all experiments the GPy framework in Python was used to

code the algorithms [214].

Results

The results from the three experiments are summarised in Table 1. When in

presence of a higher percentage of missing data (50% of the sample missing), the

model achieves a lower error in the regression of the stage of the disease (1.36 ±

0.22) for a training set containing 50% of the sample) and a higher percentage of

explained variance (0.51 ± 0.08). However, when the training set is increased to

80% of the sample, the error of the regression task is lower when the information

regarding the uncertainty is neglected. This indicates that the imputation using the

robust Gaussian Process is actually being efficient in the prediction of the missing

values when an adequate training set is used. Furthermore, in the case of small

datasets the imputation using a classical GP is outperformed by the robust GP,

showing a MSE superior in both training schemes. Conversely, the model seems

to be less efficient when the percentage of missing data is lower (Table 1, 20% of

missing data). In this case, by using the incomplete dataset, the regression task

achieves better performance.

6.4 Discussion

The presented results suggest that the imputation model I is increasing the

noise in the sample and therefore lowering the performance. The results can be
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Table 6.1: Incomplete data O refers to the initial dataset, with missing data; I Gaussian
refers to the refers to the dataset with the imputed missing samples through
a GP regression with Gaussian likelihood; I (Student-T) is the augmented
dataset via Robust GP; Ours (Z = O) is the model with augmented data,
which embeds the uncertainty of the estimations using as inducing points Z the
original dataset O; lastly, Ours (Z = Ω) represents the model with augmented
data and its uncertainty, for which the inducing points are picked randomly from
the sample. The mean squared error (MSE) and explained variance score(η)
are evaluated for different training set sizes: 50%, 80% of the data. The grey
shadow represents the best result in each test. Mean (standard deviation).

50% missing data
MSE η

50% 80% 50% 80%

Incomplete O 1.428 (0.366) 0.970 (0.354) 0.44 (0.154) 0.458 (0.195)
I (Gaussian) 1.490 (0.129) 0.924 (0.304) 0.462 (0.039) 0.458 (0.199)
I (Student -T) 1.480 (0.189) 0.800 (0.355) 0.456 (0.059) 0.466 (0.160)
Ours ( Z = O) 1.408 (0.146) 0.880 (0.286) 0.491 (0.047) 0.491 (0.172)
Ours (Z = Ω) 1.356 (0.215) 0.882 (0.261) 0.508 (0.077) 0.475 (0.168)

20% missing data
MSE η

50% 80% 50% 80%

Incomplete O 1.297 (0.185) 0.963 (0.119) 0.657 (0.091) 0.720 (0.055)
I (Gaussian) 1.459 (0.127) 0.820 (0.184) 0.461 (0.026) 0.786 (0.032)
I (Student -T) 1.458 (0.078) 0.928 (0.194) 0.549 (0.015) 0.736 (0.061)
Ours ( Z = O) 1.454 (0.178) 0.846 (0.224) 0.547 (0.051) 0.762 (0.064)
Ours (Z = Ω) 1.377 (0.114) 0.853 (0.249) 0.591 (0.016) 0.757 (0.073)

explained by the distribution of missing data across all the stages of the disease.

Specifically, the percentages of missing data are not uniform for all stages but mainly

predominant in the most advanced ones. This may lead to a poor characterisation of

such stages and consequently an inaccurate imputation. However, further analysis

with different datasets is required to assess the generability of the results. The

results also support the assumption that including the uncertainty of the imputed

values in the subsequent machine learning tasks improves performance, mainly when

the percentage of missing data is high.

One of the challenges in validating this method is that there are no methods

that can provide a direct comparison with this approach, since current deep learn-

ing techniques are not directly translatable to the study of prion disease. However,

further validation is required, namely using different datasets to evaluate the gener-

ability and robustness of the method. Once this validation is performed, I can assess

which approach is more robust in small datasets, such as those including medical

data and used for the diagnosis and prognosis of rare and acute diseases.
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6.5 Summary

I have proposed a novel framework for regression and stratification tasks in

the presence of both reduced sample size and missing data, which is common in the

diagnosis and prognosis of rare or acute diseases. Given preliminary results, I believe

that this framework could improve the clinical assessment of rare and acute diseases

by including valuable incomplete data that is usually discarded. In the future, I aim

to extend the model to perform both regression and multi-class classification model.



Chapter 7

Conclusions and Future Perspectives

7.1 Conclusions

The human form of prion disease is a rare and fatal neurodegenerative disorder.

Currently, there is no disease progression model that is able to describe the evolution

of symptoms and the changes occurring in the brain over time. In fact, due to

the high heterogeneity of the clinical manifestations of this illness, it has been very

challenging to select useful biomarkers that may be used to characterise the different

subtypes of CJD.

This thesis presents a first attempt to identify quantitative imaging biomarkers

to diagnose CJD and characterise the evolution of the clinical manifestations during

the course of the disease. I used a subject-specific feature selection framework, fol-

lowed by a tailored Gaussian Process approach to correlated symptoms with disease

types and stages. I applied the model to three different tasks: diagnosis, differential

diagnosis and stratification. I obtained promising results on all three tasks. This

work addresses an unmet need as it would enable to automatically identify patient

with or at risk developing Prion disease.

In detail, Chapter 3 introduced the framework used to extract relevant biomark-

ers to detect CJD and to develop a disease progression model. The obtained quan-

titative features have shown promising results when used to identify symptomatic

subjects among healthy controls. The key aspect of this framework is the subject-

specific feature selection. This step enables the recognition of the relevant features,

despite the heterogeneity of the clinical manifestations across subjects and the lack

of spatial pattern of the brain changes. The biomarkers selected using this frame-

work are broadly in agreement with previous study, where identical brain regions

identified as abnormal due to CJD [33, 34, 55]. The proposed framework could

benefit from the inclusion of more biomarkers, namely CSF biomarkers and blood
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samples. Besides, a bigger sample size would increase the power of the statistical

analysis conducted on the selected features, demonstrating their validity in the clin-

ical environment. Nevertheless, the objective of this chapter was reached, since I

was able to handcraft meaningful features to be used in the diagnosis algorithm.

Chapter 4 presented the new diagnostic model, developed to identify CJD.

This model aimed to improve the accuracy of detection of CJD while addressing

the current high rate of clinical miss-diagnosis. Given that the initial symptoms

of the disease are usually mistaken by depression symptoms, the new model could

potentially alert the clinicians to the presence of prion disease. Even in later stages of

the disease, the symptoms may be seen as dementia symptoms, particularly for the

inherited form of CJD in which the progression is slower, compromising the diagnosis

of CJD. The results showed the potential to use this framework to diagnose both

forms of CJD, validating also the relevance of the features selected in Chapter 3.

In Chapter 5, I extended the model developed in Chapter 4 to perform the

differential diagnosis of CJD. As a result, the new model identified CJD among

healthy controls and other forms of dementia. This experiment consisted of a proof-

of-concept, and it was validated on YOAD data, given the early onset of this illness.

The promising results suggest that the proposed framework can recognise the in-

dividual features of prion disease among another form of dementia. In the future,

the model will need to be improved to recognise the individual features of the other

forms of dementia to reduce the ambiguity of the predictions. From that improve-

ment, it would be possible the development of diagnostic criteria based on accurate

and quantitative measures, and accounting for the uncertainty caused by the sim-

ilarities of the clinical manifestations to other syndromes. Once more, this would

consist of an advance to the clinical practice when treating prion disease patients.

In Chapter 5, I also presented the framework used for subjects stratification.

The framework was developed intending to work as prognosis tool. Alternately, to

the current disease progression model, my model found the correlation between sub-

jects at the similar stage of the disease, by means of the covariance kernel function.

The predicted stages of the disease were then computed based on the highest prob-

ability across classes. The inspection of the results suggested that the model was

not sensitive to classes with close intervals of the MRC Scale values. The creation

of well defined clinical stages of CJD goes beyond the scope of this thesis, but a fu-

ture study should investigate alternatives to MRC Scale to define the labels used to

train the model for subject’s staging. Besides, another factor that compromised the
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effectiveness of the applied models, as referred in Chapter 5, is the non-correlation

between the age of clinical onset of the asymptomatic subjects and their relatives,

who already had shown symptoms. This issue constrained the translation of the

models used to study Alzheimer’s disease as prognosis models.

Lastly, Chapter 6 introduced a way to deal with missing data. This is partic-

ularly relevant in case of rare and heterogeneous diseases, where the current state-

of-the-art approaches are faulty, as they lead to noisy and uncertain predictions of

the missing values. To tackle the limitations of the current approaches, I proposed a

novel two-step framework for classification, regression or stratification, where Gaus-

sian Processes were conditioned by the uncertainty of the imputed values. Firstly,

an imputation scheme is used to account for data heterogeneity through a robust

observation model. Second, when training using the real and imputed values, I

considered the uncertainty of each individual imputation in the optimisation of the

overall model. I applied the proposed technique for patient stratification, as a re-

gression task, to the NPMC dataset. The results were insufficient to attest the

advantageous of the proposed model. Nevertheless, these are preliminary exper-

iments to assess the feasibility of this framework to be used to deal with missing

samples in neurodegenerative studies, and it requires further validation with a bigger

dataset.

Overall, my findings are broadly consistent with the theoretical assumptions

drawn at the beginning of this project. I was able to accomplish the main objectives

of this work.

7.2 Future Perspectives

Considering the work developed to date and its limitations, the future work

related to the topic of prion disease could follow two main directions:

1. The development of a diagnostic criterion for the sporadic form of CJD;

2. The development of an accurate progression model for prion disease, which

will enable to predict the age of clinical onset of asymptomatic subjects.

The two research paths are beyond the scope of this thesis. Consequently,

I have not developed any work attempting to address them. Nevertheless, some

preliminary analyses developed in this thesis can be used as starting points to ap-

proach these research paths. The first path requires a bigger sample size, composed
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by sCJD patients, to perform an adequate statistical analysis to select and vali-

date specific features to characterise sCJD. Furthermore, this would also require an

intimate collaboration between engineers and clinicians to conveniently model the

sCJD features and test their clinical validity. Lastly, other approaches to extracted

meaningful features, such as deep learning models, should be considered.

The second research path is intimately linked to the work developed in Chapter

5. The development of an accurate disease progression model would enable to:

(1) achieve a more sensitive subjects’ stratification based on the clinical symptoms

and (2) to predict the age of clinical onset of asymptomatic subjects. This path

of research requires to model the longitudinal data of IPD subjects to properly

identify the biomarkers evolution over time (section 7.2). However, this work is still

hampered by the difficulty of normalising the time of the clinical assessment across

subjects.

The work developed till the date can be also further improved by addressing its

main limitations. Therefore, in the following sections, I detail possible improvements

to the work presented in this thesis.

Longitudinal analysis of prion patients

Thanks to the flexibility given by GP, the model proposed in this thesis for

subjects’ stratification can be modified to account for the available longitudinal

information. This will allow not only a more accurate stratification of subjects based

on the extracted biomarkers, but also the subjects prognosis in a given time frame.

That modification would consist in the integration of a spatio-temporal covariance

model, such as the Kronecker form proposed by Lorenzi et al. [198], to provide a

unified framework to model jointly the time-series of biomarkers measurements with

different natures, for a given subject.

Lorenzi et al., also proposed a disease progression model within a probabilistic

setting to quantify the diagnostic uncertainty of individual disease severity in an hy-

pothetical clinical scenario, with respect to missing measurements, biomarkers, and

follow-up information [138]. This model is especially designed to account for lon-

gitudinal information, particularly by assuming that each individual measurement

is made with respect to an absolute time-frame through a time-warping function.

Theoretically, this model is directly translated to any time-frame function, which

can include a non-linear function to conveniently represent the reality of CJD pro-
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gression. Both of these approaches can be extended to integrate the longitudinal

information in the models proposed in this thesis.

Currently, I am working on a hierarchical GP, as proposed by Hensman et al.,

[215] to model the longitudinal information. This model also includes a coregion-

alised kernel to link multiple outputs, in order to improve the subjects stratification

considering the mutual influence of multiple labels1 available [216]. This model will

in one hand improve the characterisation of the CJD symptoms during the course

of the disease by reducing the effect of noisy labels, and in the other hand take

advantage of the longitudinal information available to increase the sample size.

Differential diagnosis tool

The differential diagnosis tool would benefit from a more extended sample for

training and validation purposes. The sample should comprise IPD, sCJD and other

forms of dementia that simulate both the clinical manifestations of prion disease

and the MRI signs, particularly YOAD, multiple sclerosis and AD. Therefore, future

work should start by the collection and organisation of a complete dataset to perform

the aforementioned analysis.

On the other hand, considering the main limitation of the differential diagnosis

tool proposed in Chapter 5, the model could be improved by including a feature set

that includes handcrafted features that are not only prion specific, but also spatial

information required to accurately identify other forms of dementia. By training

the model in a more extensive feature set, I would decrease the bias created by the

subject-specific features, mainly used to characterise CJD.

Also, the identification of meaningful features used in the differential diagnosis

tool would benefit of recently emerged deep learning techniques, which have proven

to be accurate in the characterisation of CJD patients, when in the presence of other

forms of rapidly progression dimension [217].

Lastly, since CJD symptoms can be interpreted as depression symptoms at the

earlier stages of the disease, the differential diagnosis tool would also benefit from

a training sample including subjects with depression. Many studies have reported

relevant neuroimaging features that can be used to diagnose depression [63, 117,

218], namely features extracted from T1w MRI and fMRI. These features can be

easily included in the current formulation of the model, if guaranteed the spatial

1The labels available include: MRC Scale score, subjects’ status and time of conversion of
symptomatic subjects.
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correlation of the features across the different diseases. However, given how rare

CJD is compared to depression the model training would need to be adapted in order

to deal with an imbalanced dataset. This imbalanced dataset problem consists of

learning a concept from the class that has a small number of samples, as defined by

Fernandez et al., [219]. In this particular case, the CJD sample size is significantly

smaller when compared with the depression sample, as well as its prevalence in real

clinical environment. Techniques to overcome this problem include algorithms such

as the synthetic minority over-sampling technique (SMOTE) [220] and adaptive

synthetic sampling (ADASYN) [221]. SMOTE is an oversampling approach that

creates synthetic minority class samples using the information available in the data.

For each sample from the minority class a set of k nearest neighbours is defined.

To create a new synthetic data point, it is considered the vector between one of

those k neighbours, and the actual sample. By multiplying this vector by a random

number x which lies between 0, and 1 and adding this to the current data point, the

new synthetic data point is created [222]. It potentially performs better than simple

oversampling and it is widely used [222]. On the other hand, ADASYN builds

on top of SMOTE, by shifting the importance of the classification boundary to

those minority classes which are difficult to estimate. I.e., ADASYN is based on the

idea of adaptively generating minority data samples according to their distributions:

more synthetic data is generated for minority class samples that are harder to learn

compared to those minority samples that are easier to learn. Consequently, the

ADASYN method can not only reduce the learning bias introduced by the original

imbalance data distribution, but can also adaptively shift the decision boundary to

focus on those difficult to learn samples [221]. These algorithms provide effective

solutions to over-sample the minority sample, without loss of information by under-

sampling the majority sample, avoiding the under-fitting of the model and poor

generalisation to the test set. Note that all these techniques could potentially be

used not only for the training of the model using depression data, but also for any

disease that has a sample size significantly bigger than CJD, improving the predictive

accuracy of the differential diagnosis tool.

Dealing with missing data

Given that CJD is a very rare disease and highly heterogeneous, thus very

challenging to model, further improvements to the proposed imputation method,
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detailed in Chapter 6, could lead to a more accurate characterisation of CJD. In

particular, the model presented in Chapter 6 should be modified to perform both

imputation and the optimisation of the parameters of the classifier (or regression

model) at the same time. The new model would exclude the 2-step approach, as

well as the errors associated to the imputed values. To achieve that, the new model

would include a variational inference approach as proposed by Dalca et al. [223],

where the biomarkers estimated would directly constrain the global cost function

used to estimated both the model parameters and the missing values.

In more general notes, the dataset used in this study is one of the largest

worldwide, comprising the data from all United Kingdom [11]. Given the rarity of

the of prion disease, the research of this illness would benefit from the creation of an

international dataset, covering both IPD and sCJD patients. The new dataset would

increase the sample size, as well as including a broader spectrum of phenotypes that

could validate the assumptions presented in this thesis.
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A.1 Context

The approaches used to study other types of neurodegenerative diseases, such

as Alzheimer’s disease, are not appropriate to capture the progression of the human

form of Prion disease. This is largely due to the heterogeneity of the phenotypes

associated with Prion disease. The biomarkers heterogeneity, combined with the

rarity of the disease and thus the limited amount of available data, hampers the

ability of state-of-the-art models to stratify patients in disease stages accurately.

The proposed model for subjects’ stratification, based on GP models, allows to

stratify the patients even if in presence of small sample size. The proposed design

also tackles the insufficient number of training data and the presence of heterogeneity

among subjects’ biomarkers. This is achieved by using a subject-specific multi-modal

feature extraction scheme in order to normalise the data across subjects. The model

is compared with other schemes to feature selection in GP modelling, such as the

ARD scheme [112]. Through a simulated dataset, it is highlight the rationale and

added value of the proposed technique before applying it to real data. The model
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considered here is the model defined in Chapter 5, for subjects’ stratification. The

target classes, defined by yi ∈ {1, ...,7} for the subject i, comprise seven stages of the

disease: HC – healthy control, Asymp. – asymptomatic subjects, CO – subjects at

clinical onset , SI to SVI – symptomatic subjects divided in 4 groups according to

their clinical scores (MRC Scale) [59].

A.2 Experiments and Results

The experiments and corresponding results detailed in the sections below are

part of the Multikernel Gaussian Processes for patient stratification from imaging

biomarkers with heterogeneous patterns study, presented at Learning with Limited

data Workshop, NIPS 2017. Those include both experiments using synthetic data,

section A.2.1, and real clinical data, section A.2.2.

A.2.1 Synthetic Dataset

Experiments

To demonstrate the efficacy of the proposed approach as well as its rationale, a

synthetic dataset is created. The dataset is derived from three functions designed to

simulate the three MRI modalities used in this study. For each one of them, referred

to as modality A, B and C in Figure A.1, it is generated 10 different biomarkers.

Biomarkers from the same modality are set to follow a common evolution over

time but all deviate differently from the main function. The three main functions

are altered to simulate the three different rate of disease progression previously men-

tioned, defined as clusters 1, 2 and 3 and represented by ∗, △ and ○, respectively

(Figure A.1, bottom row). The biomarkers τ ∈ [1,10] corresponding to class yi as

a function fi(τ) = (f iMA
(τ) + εi, f

i
MB

(τ) + εi, f
i
MC

(τ) + εi), εi ∼ N(0; 0.25). fMA
, fMB

and fMC
are respectively to a monotonically increasing sigmoid function, a second

order polynomial function and a monotonically decreasing sigmoid function, for a

subject i. Note that the number of subjects per class is uniformly distributed. In

order to simulate the spatial heterogeneity of features among subjects, one to three

biomarkers τ are selected randomly to deviate from the controls samples. The esti-

mation of ŷi,j requires to find the best hyperparameters for the regression task and

for each kernel. The hyperparameters Θ are estimated following the marginalisation

of the likelihood detailed in Chapter 5 (section 5.2.1).

The model is used to estimate the probability of a subject to belong to class
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Cluster	1
Cluster	2
Cluster	3

Cluster	1
Cluster	2
Cluster	3

Cluster	1
Cluster	2
Cluster	3

Cluster	1
Cluster	2
Cluster	3

Cluster	1
Cluster	2
Cluster	3

Cluster	1
Cluster	2
Cluster	3

Figure A.1: Upper row: Synthetic data generated to simulate the three different modal-
ities. The three different colour define the virtual clustering of subjects ac-
cording to the rate of progression of IPD: fast, medium and slow, represented
by ∗, △ and ○. Lower row: Example of the data extracted from modality B
after being normalised and ranked by the most significant features for each
subject.

C. Given that, for this experiment, the synthetic data aims to replicate the pattern

of the features of the actual clinical dataset, the response variable includes seven

stages, labelled according to the clinical stages of the disease. Thus, the synthetic

dataset shows the following labels, ordered from lower to higher z-scores: healthy

controls (HC), asymptomatic (Asymp.), clinical onset (Onset), SI to SIV for the

symptomatic stages of the disease.

For comparison purposes, it is also considered an additive GP with a squared

exponential kernel (GP SE) in which all available features are considered, an additive

GP with ARD scheme (GP - ARD) used for feature selection. All the models are

trained with several sample sizes (N ∈ {100,500,1000,2500}) to assess the validity of

the assumptions of the proposed framework. For validation purposes, the samples

are split into two sub-samples: a training set with 75% of subjects, and a testing set

with the remaining 25%. The robustness of the estimations and the stability of the
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Controls Asymp. Onset S-1 S-2 S-3 S-4
0

0.2

0.4
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Prediction: GP- ARD
Prediction: GP
Prediction: OursProposed
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Figure A.2: Probability of the subjects at the clinical onset being correctly classified. Av-
erage of the predicted class over bootstrapping runs for an unseen subject j
at CO. The predicted class is obtained from the argmaxp(yj ∣Xj).

results are assessed through bootstrapping (500 runs).

Results

Table A.1 reports the results of the proposed approach on synthetic data, as

well as the the models used for comparison: GP simple and GP-ARD. The mean

percentages of misclassified subjects per class indicate that the proposed method

is able to better capture the granularity of the disease stages than the standard

approaches. The design is only outperformed by the GP-ARD when the sample

size is very large, as GP-ARD is able to find correlations between subjects even

using heterogeneous biomarkers. Note that in this case, the number of samples is

considerably higher than the number of features: N = 2500 >> F = 30. Figure A.2

highlights the likelihood of an unseen subject being classified correctly as CO.

A.2.2 IPD dataset

Experiments

Using real patient data, I perform the stratification of IPD subjects based on

their clinical diagnosis, using both imaging and genetic data. The dataset includes

the baseline scans of control, symptomatic and asymptomatic subjects, as well as

scans of subjects who have shown clinical symptoms within a year after their scan,

as detailed in Chapter 3 (Table 3.1). The whole sample consists of 25 controls,
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Table A.2: Percentage of misclassified subjects per class using clinical data. N defines the
sample size (number of subjects).

N Model HC Asymp. CO
SI.

(20-16)
SII.

(15-11)
SIII.
(10-6)

Overall

GP SE 14.58 21.53 4.66 11.41 2.18 0.20 7.79
GP-ARD 14.48 16.17 5.36 11.31 2.68 0.20 7.1789
Proposed 12.30 14.88 4.96 9.23 2.28 0.20 6.26

29 asymptomatic, 5 close to clinical onset and 30 symptomatic subjects, yielding

unbalanced classes. The features considered in this experiment are obtained as

described in Chapter 3, section 3.3.2.

The trained of the model is performed on a sample composed of 75% of the

groups mentioned above. The testing set includes the remaining 25% of each group.

Consequently, even with unbalanced classes, the model is consistently trained and

tested on the same proportion of subjects per class. This training scheme does not

overcome the bias towards the classes with higher sample size. Nevertheless, due to

the small sample size of the dataset, it is not possible to overcome this issue without

data augmentation. The robustness of the estimations and the generability of the

results are assessed through bootstrapping (500 runs). Similarly to the experiment

performed using synthetic data, three models are considered: an additive GP with

a SE function in which all available features are considered, an additive GP with

ARD scheme and the proposed model. The number of subjects is kept fixed for this

experiment, comprising a total of 89 subjects.

Results

Table A.2 reports the results of the proposed approach to deal with small sam-

ples, when used to stratify IPD patients. The classification rate for SIV class is not

evaluated due to the absence of individual in IPD dataset with MRC Scale score

lower than 5. The proposed method reduces the misclassification rate per class,

when compared with the other methods tested. Note that the results reported in

Table A.2 are deterministic and they do not account for the fuzziness of the classes

estimation. The results support the hypothesis that for rare diseases, like IPD, due

to the reduced number of subjects the problem is ill-posed. In this specific case,

the results achieved by the GP-ARD are not as accurate as the results obtained by

an approach in which the number of features are pre-selected to avoid confounding

effects raised by the inconsistency of features across subjects.
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A.3 Summary

The results obtained with the proposed framework suggested that the feature

selection, using z-scores normalisation, is more sensitive in the prediction of clinical

onset than the ARD scheme. This approach was specifically design for the study

of prion disease, accounting for its rarity and the lack of biomarker geometrical

consistency across subjects. In fact, the model showed better results when compared

with the current frameworks used in context of neurodegenerative diseases, both on

synthetic and clinical data.
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Optimal kernel construction for

neuro-degenerative clinical onset

prediction

Liane S. Canas and, Benjamin C. Yvernault, David M. Cash, Erika

Molteni, Tom Veale, Tammie L. Benzinger, Sebastien Ourselin, Simon

Mead, and Marc Modat. Gaussian Processes with optimal kernel con-

struction for neuro-degenerative clinical onset prediction. In Medical

Imaging 2018: Computer-Aided Diagnosis of SPIE, volume 10575, Hous-

ton, 2018

B.1 Context

The performance of the GP is highly dependent of the kernel function used in a

specific context [112, 225]. In order to improve the performance of kernel-based pre-

diction models, Duvenaud et al [113] have proposed a structure discovery algorithm

through a compositional kernel search. Their study has successfully shown that,

in supervised prediction tasks, the automatically learning of kernels outperforms

both variety of kernel classes commonly used and kernel combination methods. As

a brute force scheme, Duvenaud’s approach is impractical due to the highly dimen-

sional problem, their algorithm searches over a space of based kernels and operations

using a greedy search approach: at each stage it chooses the highest scoring ker-

nel and expands it by applying operations, such as addition or multiplication, with

other basis kernel functions. However, this method does not account for the replace-

ment of the kernel selected in a previous level. Furthermore, the method is design

to preferentially select the best model based on the bayesian information criterion
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(BIC) [226], which it only takes into account the balance between the marginal like-

lihood of the predictions estimated based on the training set, and the complexity of

the model.

An extension of this approach is here proposed to overcome the potential pitfalls

of the approach proposed by Duvenaud et al., [113]. The optimal kernel search is

then based on depth-first search in a pre-pruned tree, applying a greedy search to

select the highest scored kernel in each layer of the tree. The approach also considers

possible that a given branch of the search tree could be better than the one selected

in the previous layer. It is further introduced a new energy function to evaluate

the kernels function performance and a cost-function to select the optimal kernel.

The energy function introduced takes into account the model predictions for the

validation set, but it also considers the balance between the model performance

and its complexity by including a term in the energy function in which the BIC is

introduced.

B.2 Algorithm

The algorithm, Figure B.2, takes as input a set of basis covariance kernel func-

tions b ∈ B, defined in this paper as basis kernel functions, the design matrix of the

features X, a c-by-N matrix of c brain regions, extracted from N subjects, and the

response variable vector y, a 1-by-N vector with the time to onset corresponding to

each of the observations in the matrix X. The basis covariance functions, illustrated

in Figure B.1, are used to capture complex relationships in data which do not have

a simple parametric form, through their product and/or addition. The basis covari-

ance functions k are parameterised by the hyperparameters θ, as follow: the linear

kernel kLin,θLin = {σb, σv,w} (Equation B.1), periodic kernel kPer,θPer = {σ, p,w}

(Equation B.2), squared exponential kSE ,θSE = {σ,w} (Equation B.3), matérn func-

tions kMA,θMA = {σ, r,w} (Equation B.4) and linear logistic kLogit,θLogit = {W,a, b}

(Equation B.5). Note that the kernel functions present the distance between two

scalar samples (x−x′), which is replaced by ∣∣x−x′∣∣2 when the samples x are in fact

vectors.

kLin(x,x
′
) = σ2

b + σ
2
v(x −w)(x′ −w) (B.1)

kPer(x,x
′
) = σ2 exp

⎛
⎜
⎝
−

2 sin2(
π(x−x′)

p )

w2

⎞
⎟
⎠

(B.2)
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Matérn 12 Matérn 32 Matérn 52 Squared Exponential

Constant Linear Linear Logistic Periodic

Figure B.1: Basis covariance functions included in the optimal kernel search. Example of
the basis kernel functions described by Equations B.1 to B.5, when evaluated
in 1D feature vectors. The x-axis has the same range on all plots.

kSE(x,x
′
) = σ2 exp(−

(x − x′)2

2w2
) (B.3)

kMA(x,x
′
) = σ2

(1 +

√
r(x − x′)
w

) exp(−

√
r(x − x′)
w

) , r ∈ {1,3,5} (B.4)

kLogit(x,x
′
) =W logit−1

(ax + b) − 0.5 (B.5)

The model initialisation in the first layer S is ∅ followed by the evaluation of

the algorithm performance when each one of the basis kernel functions is used. S ′ is

the result of the expansion of S by operations with B. This procedure (Figure B.2

– component 1, dark blue outline) is performed until all basis kernel functions are

tested. The best kernel in each layer is selected by maximisation of the objective

function, Equation B.6, where α and β are constants, ŷi,b is the model estimations

and yi,b is the vector of observed values correspondent to the response variable. Note

that this objective function is one of the contributions of this approach, aiming the

selection of the optimal kernel based on the accuracy of model, while balancing the

complexity of it. Therefore, the first term of the equation B.6 evaluates the accuracy



184Appendix B. Optimal kernel construction for neuro-degenerative clinical onset prediction

𝑓𝑖 𝑦𝑖

𝑖	 ∈ 1 …𝑁

	𝜙*		𝒢𝒫

𝑘𝑆′(𝑥, 𝑥’)𝜇(𝑥)

0 𝑘78 	𝜃

z	∈ 1… 𝑖𝑡𝑒𝑟

	𝑆′

𝑏	 ∈ 1… 𝑛𝑏

	𝜙? 	ℳ 	𝑋B

	𝑦B

𝑗	 ∈ 1…𝑀

	𝐵 	𝑆

1

2

3

Figure B.2: B is the set of basis kernels. S is the kernel function initialised at each layer,
whilst S ′ represents the kernel function after the expansion. f denotes the
latent function, whereas y is the vector of values predicted using the estimated
latent function. The subscripts i denote sampled latent values for each point
to a maximum of N data points. M is the model selected and used to estimate
yj predictions of j observation given a set of features Xj . The process 1 is
repeated until the cost function φM converges - red line. The white circles
represent functions or set of functions and the dark circles represent values of
variables.

of the prediction of the model in the testing set by computing the explained variance

of the model. The second term constrains the complexity of the model based on the

marginal likelihood of the predictions of the training set, by computing the BIC

associated with each kernel function tested, where N is the number of samples, z

the number of parameters and L̂ refers to the maximised value of the likelihood

function. Regarding the parameters of φL, it is required to compute the predictions

of the model based on the kernel in analysis. Further, the estimation of ŷi,b requires

to find the best hyperparameters of each kernel. The hyperparameters θ of the

kernel functions are estimated via the maximisation of the marginal likelihood of

the model, p(y∣X,θ), as described in equation 4.8; i.e., the marginalisation over the

kernel parameters is performed by maximum a posteriori algorithm (MAP), and

that the hyperparameters θ are estimated by bootstrapping.

argmaxb∈B(φL(b)) = α [1 −
N

∑
i=1

(
(ŷi,b − yi,b)

(yi,b)
)] + β [1 − exp(

BICb

max(BIC)
)] ,

where BIC = log(N)z − 2 log(L̂)

(B.6)
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For simplification purposes, for each predictor p, an individual length scale is com-

puted w ∈ {w1, . . . ,wp} using the ARD method. This method allows to establish

different weights (relevance) for the features, as well as it allows to include in the

same model biomarkers with different scales. By including the ARD approach, the

relevant features are automatically selected among redundant predictors, avoiding

the transformation of the feature space before the training of the model. The fol-

lowing layers of the tree correspond to the composition of a kernel function based

on a set of operations between the basis kernel functions b ∈ B and the covariance

function S obtained in the previous layer. Addition, product, replacement of ba-

sis kernel and replacement of the branch previously chosen are the valid operations

in this algorithm. Attending to the pre-pruning behaviour of this algorithm, the

maximum search depth is not defined. Instead, a cost-function is used as stopping

criterion, Equation B.7, where l is the number of layers.

φM ∶ (∣φL(l − 1) − φL(l)∣ ≤ 0.01 ∪ φL(l) ≥ 0.9) (B.7)

B.3 Experiments and Results

Experiments

The effectiveness of the approach is evaluated on Dominantly Inherited

Alzheimer Network (DIAN) dataset [191]. The model is optimised to estimate the

years to clinical onset of Inherited Alzheimer’s disease patients, using clinical and

imaging data. The sample is composed of 320 controls, 240 symptomatic subjects

and 70 subjects that converted to symptomatic. The subjects’ T1-weighted images

are processed using the Geodesical Information Flows (GIF) algorithm [165] algo-

rithm, and the volumes of brain region are then used as features. The impact of

confounding effects in the features, such as age and the total intracranial volume,

is regressed. The relevant features are selected using an elastic net regression. The

sample is split into three sub-samples: training set that corresponds to 70% of the

asymptomatic and converted subjects, the validation set comprises 20% of the sub-

jects belonging to the aforementioned groups and testing set, which correspond to

the remaining 10% of the sample. The optimal kernel is optimised using the training

and testing sets. The validation of this approach aims to justify that the optimal

kernel selection is an effective way to detect the pattern of the features considered,

without a selection of the function that better explains their evolution over time.
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Results

When compared with kernel functions defined a priori to explain time-series,

the proposed approach selected a kernel function with equivalent coefficient of de-

termination R2, but lower BIC (table B.1). This fact suggests that this approach is

able to find a function that explains conveniently the variance of the features, with

lower level of complexity considering the likelihood of the prediction attending to the

BIC achieved. The algorithm selected a linear combination of linear logistic func-

tions, which supports the biological assumptions regarding the features used. The

results also support the assumption that this approach may be extended to other

diseases, without modelling explicitly the pattern of features used to characterised

them. The performance of the model for the prediction of the time to clinical onset

of the subjects is also evaluated. Note, however, that the prediction of the time

to onset is highly dependent of the data used to train the model. In this study, a

large number of subjects considered have not converted to symptomatic to the date;

whereby, the time to onset used as response variable is not the real age of clinical

onset, but an estimation based on the age of clinical onset of the their family. In

the future, I aim to validate the proposed framework in a dataset that accounts for

the uncertainty of the labels used as response variable.

Table B.1: Evaluation of the kernels used to predict the time to clinical onset, given a set
of structural features. The results obtained with different functions commonly
used to explain time-series datasets, a variation of the Compositional Kernel
Learning (CKL) [113], and the proposed approach.

Approach R2 RMSE BIC

GP - LIN 0.401 5.61 -12.5
GP - (LIN+SE) 0.392 5.64 53.2
GP - SE (ARD) 0.423 5.48 48.1
GP - CKL 0.407 5.60 -2.67
Proposed approach 0.432 5.52 12.3

B.4 Summary

The results have shown that the learned structure of the covariance kernel func-

tion is capable of an accurate extrapolation in a complex time-series, such as the

evolution of brain volumes over time, and it is competitive with the other methods

tested given this prediction task. Even though some kernel functions such as the pe-

riodic kernel function are not expected to be relevant to encode the features pattern,

I included them in order to make a fair comparison with the approach of Duvenaud
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et al. [113]. Regardless, the optimal kernel function obtained by the algorithm does

not include those kernel functions, confirming the theoretical assumptions about the

features pattern and the effectiveness of the approach.

The main limitation of the proposed method is the complexity of the kernel

structure obtained when in the presence of a high level of noise in the data. Fur-

thermore, the evaluation of the structures found requires the estimation of the full

model; thus, the metrics taken into account in table B.1 to evaluate the performance

of the model include the errors associated to the hyperparameters estimation and

inference. In the future, this approach should be further validated to find addi-

tional support to the assumption that the model is as general as possible and it can

characterise any type of features despite their nature.





Appendix C

Evaluation Metrics

I evaluated the performance of the models present in this thesis with respect to

the robustness and accuracy of their predictions. The robustness of the estimations

and the stability of the results are accessed by bootstrapping, as described in Chap-

ters 4 to 6. The metrics used to evaluate both binary and multi-class classification

are comparable, with small adaptations to account for the multiple classes scheme.

The following sections describe the metrics used to evaluate the model performance

in this study.

C.1 Notation

Consider any type of labels when data entries of subject i, Xi ∈ X have to be

assigned into predefined classes C = {C1, . . . ,CC}.

Given a classification task, it is generally defined as true negative (tn) cases

the samples correctly identified as not belonging to a class C; conversely, the cases

correctly identified as class C are defined as true positive (tp). The false positive and

false negative are to the cases incorrectly identified as being C or ¬C, respectively.

Figure C.1, illustrates a confusion matrix for binary classification.

C.2 Binary Classification

The probabilistic predictions are threshold at a particular value (th=0.5) to get

binary labels used to computed the evaluation measures. The subjects diagnosis is

accessed by quantitative measures, such as sensitivity (Sens), specificity (Spec), ac-

curacy (Acc) and false rate of discovery (FDR) as proposed by Sokolova et al., [187]:

• Accuracy is the overall effectiveness of a classifier (Equation C.1);
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Figure C.1: Confusion matrix from binary classification.

• Specificity measures how effectively a classifier identifies a negative labels

(Equation C.2);

• Sensitivity evaluates the effectiveness of a classifier to identify positive labels

(Equation C.3);

• False discovery rate is the proportion of false positives, as shown in Equation

C.4.

Acc =
∑ tp +∑ tn

∑(tp + fn + fp + tn)
(C.1)

Spec =
∑ tn

∑(fp + tn)
(C.2)

Sens =
∑ tp

∑(tp + fn)
(C.3)

FDR =
∑ fp

∑(tn + fp)
(C.4)

The receiver operating curves (ROC) and the area under the curve (AUC)

are computed according the formulation for ROC graphs proposed by Fawcett et

al., [188]. To evaluate the model performance regarding the probabilistic predictions,

I also compute the logarithmic loss (equation C.5), which takes into account the

uncertainty of the predictions based on how much it varies from the actual label:

log(L) = −(y log(pŷ) + (1 − y) log(1 − pŷ)) (C.5)

where y is the observed label and pŷ is the probability of the C = +1.
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C.3 Multi-class Classification

Due to the multi-class paradigm and the unbalanced nature of the data, I

consider both macro-averaging measures, generalised from the measures used to

assess the performance of binary classification evaluation to evaluate the accuracy

of the predictive labels obtained from the multi-class model [187]. The averaging

accuracy (Equation C.6), macro-recall (Equation C.7), macro-precision (Equation

C.8) are computed for model evaluation. The predicted label for each subject is

obtained based on the class with the highest probability among all the possible

classes.

Acc =
∑
C
c=1 (

tpc+tnc

tpc+tnc+fpc+fnc
)

C
(C.6)

RM =
∑
C
c=1 (

tpc
tpc+fnc

)

C
(C.7)

PM =
∑
C
c=1 (

tpc
tpc+fpc )

C
(C.8)

I also compute the multiclass logarithmic Loss (equation C.9):

log(L) = −
C
∑
c=1

log(pŷ,c) (C.9)

where pŷ,c is the probability of observation of class C.





Appendix D

List of brain regions

Brain Regions Tissue type

Cerebellar Vermal Lobules I-V GM

Cerebellar Vermal Lobules VI-VII GM

Cerebellar Vermal Lobules VIII-X GM

Left ACgG anterior cingulate gyrus GM

Left AIns anterior insula GM

Left AOrG anterior orbital gyrus GM

Left Accumbens Area WM Deep GM

Left Amygdala GM Deep GM

Left AnG angular gyrus GM

Left Basal Forebrain Deep GM

Left Caudate WM Deep GM

Left Cerebellum Exterior GM

Left Claustrum Deep GM

Left Cun cuneus GM

Left Ent entorhinal area GM

Left FO frontal operculum GM

Left FRP frontal pole GM

Left FuG fusiform gyrus GM

Left GRe gyrus rectus GM

Left Hippocampus GM Deep GM

Left IOG inferior occipital gyrus GM

Left ITG inferior temporal gyrus GM

Left LOrG lateral orbital gyrus GM

Left Lesion Deep GM

Left LiG lingual gyrus GM

Left MCgG middle cingulate gyrus GM

Left MFC medial frontal cortex GM

Left MFG middle frontal gyrus GM

Left MOG middle occipital gyrus GM
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Table D.1 continued from previous page

Left MOrG medial orbital gyrus GM

Left MPoG postcentral gyrus medial segment GM

Left MPrG precentral gyrus medial segment GM

Left MSFG superior frontal gyrus medial segment GM

Left MTG middle temporal gyrus GM

Left OCP occipital pole GM

Left OFuG occipital fusiform gyrus GM

Left OpIFG opercular part of the inferior frontal gyrus GM

Left OrIFG orbital part of the inferior frontal gyrus GM

Left PCgG posterior cingulate gyrus GM

Left PCu precuneus GM

Left PHG parahippocampal gyrus GM

Left PIns posterior insula GM

Left PO parietal operculum GM

Left POrG posterior orbital gyrus GM

Left PP planum polare GM

Left PT planum temporale GM

Left Pallidum WM Deep GM

Left PoG postcentral gyrus GM

Left PrG precentral gyrus GM

Left Putamen WM Deep GM

Left SCA subcallosal area GM

Left SFG superior frontal gyrus GM

Left SMC supplementary motor cortex GM

Left SMG supramarginal gyrus GM

Left SOG superior occipital gyrus GM

Left SPL superior parietal lobule GM

Left STG superior temporal gyrus GM

Left TMP temporal pole GM

Left TTG transverse temporal gyrus GM

Left Thalamus Proper WM Deep GM

Left TrIFG triangular part of the inferior frontal gyrus GM

Left Ventral DC WM Deep GM

Left Ventricular Lining Deep GM

Left vessel Deep GM

Optic Chiasm Deep GM

Right ACgG anterior cingulate gyrus GM

Right AIns anterior insula GM

Right AOrG anterior orbital gyrus GM

Right Accumbens Area WM Deep GM

Right Amygdala GM Deep GM
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Table D.1 continued from previous page

Right AnG angular gyrus GM

Right Basal Forebrain Deep GM

Right CO central operculum GM

Right Calc calcarine cortex GM

Right Caudate WM Deep GM

Right Cerebellum Exterior GM

Right Claustrum Deep GM

Right Cun cuneus GM

Right Ent entorhinal area GM

Right FO frontal operculum GM

Right FRP frontal pole GM

Right FuG fusiform gyrus GM

Right GRe gyrus rectus GM

Right Hippocampus GM Deep GM

Right IOG inferior occipital gyrus GM

Right ITG inferior temporal gyrus GM

Right LOrG lateral orbital gyrus GM

Right Lesion Deep GM

Right LiG lingual gyrus GM

Right MCgG middle cingulate gyrus GM

Right MFC medial frontal cortex GM

Right MFG middle frontal gyrus GM

Right MOG middle occipital gyrus GM

Right MOrG medial orbital gyrus GM

Right MPoG postcentral gyrus medial segment GM

Right MPrG precentral gyrus medial segment GM

Right MSFG superior frontal gyrus medial segment GM

Right MTG middle temporal gyrus GM

Right OCP occipital pole GM

Right OFuG occipital fusiform gyrus GM

Right OpIFG opercular part of the inferior frontal gyrus GM

Right OrIFG orbital part of the inferior frontal gyrus GM

Right PCgG posterior cingulate gyrus GM

Right PCu precuneus GM

Right PHG parahippocampal gyrus GM

Right PIns posterior insula GM

Right PO parietal operculum GM

Right POrG posterior orbital gyrus GM

Right PP planum polare GM

Right PT planum temporale GM

Right Pallidum WM Deep GM
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Table D.1 continued from previous page

Right PoG postcentral gyrus GM

Right PrG precentral gyrus GM

Right Putamen WM Deep GM

Right SCA subcallosal area GM

Right SFG superior frontal gyrus GM

Right SMC supplementary motor cortex GM

Right SMG supramarginal gyrus GM

Right SOG superior occipital gyrus GM

Right SPL superior parietal lobule GM

Right STG superior temporal gyrus GM

Right TMP temporal pole GM

Right TTG transverse temporal gyrus GM

Right Thalamus Proper WM Deep GM

Right TrIFG triangular part of the inferior frontal gyrus GM

Right Ventral DC WM Deep GM

Right Ventricular Lining Deep GM

Right vessel Deep GM
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res Pacheco, Bernardo Rodi Barros, Ingrid Aguiar Littig, Renato Hoffmann

Nunes, Antnio Carlos Martins Maia Júnior, and Antonio J da Rocha. Imaging

of Creutzfeldt-Jakob Disease: Imaging Patterns and Their Differential Diag-

nosis. RadioGraphics, 37(1):234–257, 2017.

[20] S Mead, M Ranopa, G S Gopalakrishnan, A G B Thompson, P Rudge, S Wroe,

A Kennedy, F Hudson, A MacKay, J H Darbyshire, J Collinge, and A S Walker.

PRION-1 scales analysis supports use of functional outcome measures in prion

disease. Neurology, 77(18):1674–1683, 2011.

[21] Andrew G B Thompson, Jessica Lowe, Zoe Fox, Ana Lukic, Marie-claire

Porter, Liz Ford, Michele Gorham, Gosala S Gopalakrishnan, Peter Rudge,

A Sarah Walker, John Collinge, and Simon Mead. The Medical Research

Council Prion Disease Rating Scale: a new outcome measure for prion dis-

ease therapeutic trials developed and validated using systematic observational

studies. Brain : a journal of neurology, 136:1116–1127, 2013.

[22] Marc Manix, Piyush Kalakoti, Miriam Henry, Jai Thakur, Richard Menger,

Bharat Guthikonda, and Anil Nanda. Creutzfeldt-Jakob disease: updated

diagnostic criteria, treatment algorithm, and the utility of brain biopsy. Neu-

rosurgical Focus, 39(November):1–11, 2015.

[23] M K Sandberg, H Al-Doujaily, B Sharps, A R Clarke, and J Collinge. Prion



200 BIBLIOGRAPHY

propagation and toxicity in vivo occur in two distinct mechanistic phases.

Nature, 470(7335):540–542, 2011.

[24] Andreas Schroter, Inga Zerr, Karten Henkel, Henriette J Tschampa, Michael

Finkenstaedt, and Sigrid Poser. Magnetic Resonance Imaging in the Clinical

Diagnosis of Creutzfeldt-Jakob Disease. Journal of American Medical Associ-

ation, 57:1751–1757, 2000.

[25] Inga Zerr and Sigrid Poser. Clinical diagnosis and differential diagnosis of

CJD and vCJD With special emphasis on laboratory tests. Acta Pathologica,

Microbiologica et Immunologica Scandinavica, 110:88–98, 2002.

[26] Federico Caobelli, Milena Cobelli, Claudio Pizzocaro, Marco Pavia, Silvia

Magnaldi, and Ugo Paolo Guerra. The Role of Neuroimaging in Evaluat-

ing Patients Affected by Creutzfeldt-Jakob Disease: A Systematic Review of

the Literature. Journal of neuroimaging : official journal of the American

Society of Neuroimaging, 6:1–12, 2014.

[27] D A Collie, R. J. Sellar, M. Zeidler, A. C. F. Colchester, R. Knight, and R. G.

Will. MRI of Creutzfeldt-Jakob Disease : Imaging Features and Recommended

MRI Protocol. Clinical Radiology, 56:726–739, 2001.

[28] D P Barboriak and J M Provenzale. MR diagnosis of Creutzfeldt-Jakob disease

: signifiance of high signal intensity of the basal ganglia. America Journal of

Radiology, 162:137–140, 1994.

[29] A Uemura, T O’uchi, T Sakamoto, and N Yashiro. High signal of the striatum

in sporadic Creutzfeldt-Jakob disease: Sequential change on T2-weighted MRI.

Neuroradiology, 44(4):314–318, 2002.

[30] Eiji Matsusue, Toshibumi Kinoshita, Shuji Sugihara, Shinya Fujii, Toshihide

Ogawa, and Eisaku Ohama. White matter lesions in panencephalopathic type

of Creutzfeldt-Jakob disease: MR imaging and pathologic correlations. Amer-

ican Journal of Neuroradiology, 25(6):910–918, 2004.

[31] E De Vita, B H Ridha, N C Fox, J S Thornton, and H R Jager. Voxel-based

analysis of high- and standard b-value diffusion weighted imaging , and voxel

based morphometry , in Alzheimer disease. In ISMRM: Clinical Application

of Diffusion Tensor Imaging III, Quebec, 2011.



BIBLIOGRAPHY 201

[32] Enrico De Vita, Harpreet Hyare, Gerard Ridgway, Marie-claire Porter, An-

drew Thompson, Chris Carswell, Ana Lukic, Rolf Jager, Diana Caine, Tarek

Yousry, John Collinge, Simon Mead, and John Thornton. Longitudinal VBM

of regional progression in human prion disease. In ISMRM, page 3961, 2013.

[33] Enrico De Vita, Gerard R Ridgway, Mark J White, Marie-Claire Porter, Diana

Caine, Peter Rudge, John Collinge, Tarek A Yousry, Hans Rolf Jager, Simon

Mead, John S Thornton, and Harpreet Hyare. Neuroanatomical correlates of

prion disease progression - a 3T longitudinal voxel-based morphometry study.

NeuroImage: Clinical, 13:89–96, 2017.

[34] Enrico De Vita, Marie-claire Porter, Ivor Simpson, Zoe Fox, Gerard Ridg-

way, Sebastien Ourselin, Peter Rudge, Diana Caine, Rolf Jager, Tarek Yousry,

John Collinge, Simon Mead, Harpreet Hyare, and John S Thornton. Cross

Sectional and Longitudinal Magnetisation transfer Ratio in Prion disease at 3

Tesla Introduction . Human prion diseases are progressive and uniformly fa-

tal neurodegenerative disorders caused by abnormally folded. In International

Society for Magnetic Resonance in Medicine, volume 133, page 4272, 2015.

[35] Enrico De Vita, Harpreet Hyare, Gerard R Ridgway, Nicolas Toussaint, Ivor

Simpson, Peter Rudge, Diana Caine, Rolf H Jager, Tarek Yousry, and John

Collinge. Effectiveness of DWI acquisition at different spatial resolution to

reveal prion disease pathology. In ISMR, volume 34, page 7902, 2013.

[36] Takaki Murata, Yusei Shiga, Shuichi Higano, Shoki Takahashi, and Shunji

Mugikura. Conspicuity and evolution of lesions in Creutzfeldt-Jakob disease at

diffusion-weighted imaging. American Journal of Neuroradiology, 23(7):1164–

1172, 2002.

[37] K Kallenberg, W J Schulz-Schaeffer, U Jastrow, S Poser, B Meissner, H J

Tschampa, I Zerr, and M Knauth. Creutzfeldt-Jakob disease: comparative

analysis of MR imaging sequences. AJNR. American journal of neuroradiology,

27(7):1459–62, 8 2006.

[38] Geoffrey S Young, Michael D Geschwind, Nancy J Fischbein, Jennifer L

Martindale, Roland G Henry, Songling Liu, Ying Lu, Stephen Wong, Hong

Liu, Bruce L Miller, and William P Dillon. Diffusion-Weighted and Fluid-

Attenuated Inversion Recovery Imaging in Creutzfeldt-Jakob Disease : High



202 BIBLIOGRAPHY

Sensitivity and Specificity for Diagnosis. American Journal of Neuroradiology

American Society of Neuroradiology, 26(July):1551–1562, 2005.

[39] Y Shiga, K Miyazawa, S Sato, R Fukushima, S Shibuya, Y Sato, H Konno,

K Doh-ura, S Mugikura, H Tamura, S Higano, S Takahashi, and Y Itoyama.

Diffusion-weighted MRI abnormalities as an early diagnostic marker for

Creutzfeldt-Jakob disease. Neurology, 63(3):443–449, 2004.

[40] Philippe Demaerel, Raf Sciot, Wim Robberecht, Ren Dom, Dirk Vander-

meulen, Frederik Maes, and Guido Wilms. Accuracy of diffusion-weighted

MR imaging in the diagnosis of sporadic Creutzfeldt-Jakob disease. Journal

of Neurology, 250(2):222–225, 2003.
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[127] Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. Nested Expectation Prop-

agation for Gaussian Process Classification with a Multinomial Probit Likeli-

hood. Journal of Machine Learning Research, 14:75–109, 2013.



212 BIBLIOGRAPHY

[128] Jonathan Young, Marc Modat, Manuel J. Cardoso, Alex Mendelson, Dave

Cash, and Sebastien Ourselin. Accurate multimodal probabilistic prediction of

conversion to Alzheimer’s disease in patients with mild cognitive impairment.

NeuroImage: Clinical, 2013.

[129] Alzheimers Disease Neuroimaging Initiative. Alzheimers Disease Neuroimag-

ing Initiative, 2017.

[130] Edward Challis, Peter Hurley, Laura Serra, Marco Bozzali, Seb Oliver, and

Mara Cercignani. Gaussian process classification of Alzheimer’s disease and

mild cognitive impairment from resting-state fMRI. NeuroImage, 112:232–243,

5 2015.

[131] Wolfgang Fruehwirt, Pengfei Zhang, Matthias Gerstgrasser, Dieter Grosseg-

ger, Reinhold Schmidt, Thomas Benke, Peter Dal-Bianco, Gerhard Ransmayr,

Leonard Weydemann, Heinrich Garn, Markus Waser, Michael Osborne, and

Georg Dorffner. Bayesian Gaussian process classification from event-related

brain potentials in Alzheimers disease. In Artificial Intelligence in Medicine,

volume 10259 LNAI, pages 65–75. Springer Verlag, 2017.

[132] Tong Tong, Katherine Gray, Qinquan Gao, Liang Chen, and Daniel Rueckert.

Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion.

Pattern Recognition, 2017.

[133] Katherine R. Gray, Paul Aljabar, Rolf A. Heckemann, Alexander Hammers,

and Daniel Rueckert. Random forest-based similarity measures for multi-

modal classification of Alzheimer’s disease. NeuroImage, 2013.

[134] Alessia Sarica, Antonio Cerasa, and Aldo Quattrone. Random Forest Algo-

rithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A

Systematic Review. Frontiers in aging neuroscience, 9:329, 2017.

[135] Murat Bilgel, Jerry L Prince, Dean F Wong, Susan M Resnick, and Bruno M

Jedynak. A multivariate nonlinear mixed effects model for longitudinal image

analysis: Application to amyloid imaging. NeuroImage, 134:658–670, 2016.

[136] Bruno M Jedynak, Bo Liu, Andrew Lang, Yulia Gel, and Jerry L Prince. A

computational method for computing an Alzheimer’s disease progression score;

experiments and validation with the ADNI data set. Neurobiology of Aging,

36(S1):178–184, 2015.



BIBLIOGRAPHY 213

[137] Mahesh N. Samtani, Nandini Raghavan, Gerald Novak, Partha Nandy, and

Vaibhav A. Narayan. Disease progression model for Clinical Dementia Rating-

Sum of Boxes in mild cognitive impairment and Alzheimer’s subjects from the

Alzheimer’s Disease Neuroimaging Initiative. Neuropsychiatric Disease and

Treatment, 2014.

[138] Marco Lorenzi, Maurizio Filippone, Giovanni B. Frisoni, Daniel C. Alexan-

der, and Sebastien Ourselin. Probabilistic disease progression modeling to

characterize diagnostic uncertainty: Application to staging and prediction in

Alzheimer’s disease. NeuroImage, 10 2017.

[139] Jonathan D Rohrer, Jennifer M Nicholas, David M Cash, John van Swieten,

Elise Dopper, Lize Jiskoot, Rick van Minkelen, Serge A Rombouts, M Jorge

Cardoso, Shona Clegg, Miklos Espak, Simon Mead, David L Thomas, En-

rico De Vita, Mario Masellis, Sandra E Black, Morris Freedman, Ron Keren,

Bradley J MacIntosh, Ekaterina Rogaeva, David Tang-Wai, Maria Carmela

Tartaglia, Robert Laforce, Fabrizio Tagliavini, Pietro Tiraboschi, Veronica

Redaelli, Sara Prioni, Marina Grisoli, Barbara Borroni, Alessandro Padovani,

Daniela Galimberti, Elio Scarpini, Andrea Arighi, Giorgio Fumagalli, James B

Rowe, Ian Coyle-Gilchrist, Caroline Graff, Marie Fallström, Vesna Jelic,

Anne Kinhult St̊ahlbom, Christin Andersson, Hkan Thonberg, Lena Lil-

ius, Giovanni B Frisoni, Michela Pievani, Martina Bocchetta, Luisa Be-

nussi, Roberta Ghidoni, Elizabeth Finger, Sandro Sorbi, Benedetta Nacmias,

Gemma Lombardi, Cristina Polito, Jason D Warren, Sebastien Ourselin,

Nick C Fox, and Martin N Rossor. Presymptomatic cognitive and neu-

roanatomical changes in genetic frontotemporal dementia in the Genetic Fron-

totemporal dementia Initiative (GENFI) study: a cross-sectional analysis. The

Lancet Neurology, 14(3):253–262, 2015.

[140] Steven Lemm, Benjamin Blankertz, Thorsten Dickhaus, and Klaus Robert

Müller. Introduction to machine learning for brain imaging. NeuroImage,

56(2):387–399, 2011.

[141] Jorge L. Bernal-Rusiel, Douglas N. Greve, Martin Reuter, Bruce Fischl, and

Mert R. Sabuncu. Statistical analysis of longitudinal neuroimage data with

Linear Mixed Effects models. NeuroImage, 2013.



214 BIBLIOGRAPHY

[142] Geert Verbeke; and Geert Molenberghs. Linear Mixed Models for Longitudinal

Data. Springer, New York, 2009.

[143] David A Harville. Maximum Likelihood Approaches to Variance Component

Estimation and to Related. Journal of the American Statistical Association,

72(358):320–338, 1977.

[144] José Pinheiro, José C Bates, and Douglas M. Model Building for Nonlinear

Mixed-Effects Models. Technical report.

[145] Jorge L. Bernal-Rusiel, Martin Reuter, Douglas N. Greve, Bruce Fischl, and

Mert R. Sabuncu. Spatiotemporal linear mixed effects modeling for the mass-

univariate analysis of longitudinal neuroimage data. NeuroImage, 2013.

[146] Sheng Luo and Jue Wang. Bayesian hierarchical model for multiple repeated

measures and survival data: An application to Parkinson’s disease. Statistics

in Medicine, 33(24):4279–4291, 2014.

[147] Mert R Sabuncu, Jorge L Bernal-rusiel, Martin Reuter, Douglas N Greve,

and Bruce Fischl. NeuroImage Event time analysis of longitudinal neuroimage

data. NeuroImage, 97:9–18, 2014.

[148] Jonathan D Rohrer, Jennifer M Nicholas, David M Cash, John van Swieten,

Elise Dopper, Lize Jiskoot, Rick van Minkelen, Serge A Rombouts, M Jorge

Cardoso, Shona Clegg, Miklos Espak, Simon Mead, David L Thomas, En-

rico De Vita, Mario Masellis, Sandra E Black, Morris Freedman, Ron Keren,

Bradley J MacIntosh, Ekaterina Rogaeva, David Tang-Wai, Maria Carmela

Tartaglia, Robert Laforce, Fabrizio Tagliavini, Pietro Tiraboschi, Veronica

Redaelli, Sara Prioni, Marina Grisoli, Barbara Borroni, Alessandro Padovani,

Daniela Galimberti, Elio Scarpini, Andrea Arighi, Giorgio Fumagalli, James B

Rowe, Ian Coyle-Gilchrist, Caroline Graff, Marie Fallström, Vesna Jelic,

Anne Kinhult St̊ahlbom, Christin Andersson, Hkan Thonberg, Lena Lil-

ius, Giovanni B Frisoni, Michela Pievani, Martina Bocchetta, Luisa Be-

nussi, Roberta Ghidoni, Elizabeth Finger, Sandro Sorbi, Benedetta Nacmias,

Gemma Lombardi, Cristina Polito, Jason D Warren, Sebastien Ourselin,

Nick C Fox, and Martin N Rossor. Presymptomatic cognitive and neu-

roanatomical changes in genetic frontotemporal dementia in the Genetic Fron-



BIBLIOGRAPHY 215

totemporal dementia Initiative (GENFI) study: a cross-sectional analysis. The

Lancet Neurology, 14(3):253–262, 2015.

[149] J. B. Schiratti, S. Allassonnière, A. Routier, O. Colliot, and S. Durrleman.

A mixed-effects model with time reparametrization for longitudinal univari-

ate manifold-valued data. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), 2015.

[150] R. Guerrero, A. Schmidt-Richberg, C. Ledig, T. Tong, R. Wolz, and D. Rueck-

ert. Instantiated mixed effects modeling of Alzheimer’s disease markers. Neu-

roImage, 142:113–125, 11 2016.

[151] Peter Karcher and Yuedong Wang. Generalized nonparametric mixed effects

models. Journal of Computational and Graphical Statistics, 10(4):641–655,

2001.

[152] Michael C. Donohue, Hlne Jacqmin-Gadda, Mlanie Le Goff, Ronald G.

Thomas, Rema Raman, Anthony C. Gamst, Laurel A. Beckett, Clifford R.

Jack, Michael W. Weiner, Jean Franois Dartigues, and Paul S. Aisen. Esti-

mating long-term multivariate progression from short-term data. Alzheimer’s

and Dementia, 2014.

[153] Adrian Dalca, Ramesh Sridharan, Mert R Sabuncu, and Polina Golland. Pre-

dictive Modeling of Anatomy with Genetic and Clinical Data. In Medical Im-

age Computing and Computer-Assisted Intervention - MICCAI, volume 9351,

pages 519–526, 2015.

[154] Tian Ge, Thomas E Nichols, Debashis Ghosh, Elizabeth C Mormino, Jor-

dan W Smoller, and Mert R Sabuncu. A kernel machine method for detecting

effects of interaction between multidimensional variable sets: An imaging ge-

netics application. NeuroImage, 109:505–514, 2015.

[155] Alexander Schmidt-Richberg, Ricardo Guerrero, Christian Ledig, Helena

Molina-Abril, Alejandro F. Frangi, and Daniel Rueckert. Multi-stage

Biomarker Models for Progression Estimation in Alzheimers Disease. In Se-

bastien Ourselin, Daniel C. Alexander, Carl-Fredrik Westin, and M. Jorge

Cardoso, editors, Information Processing in Medical Imaging, volume 9123



216 BIBLIOGRAPHY

of Lecture Notes in Computer Science, Cham, 2015. Springer International

Publishing.

[156] Alexander Schmidt-Richberg, Christian Ledig, Ricardo Guerrero, Helena

Molina-Abril, Alejandro F Frangi, and Daniel Rueckert. Learning Biomarker

Models for Progression Estimation of Alzheimer ’ s Disease. PloS one, 11(4):1–

27, 2016.

[157] Zitao Liu and Milos Hauskrecht. Clinical time series prediction: Toward a

hierarchical dynamical system framework. Artificial Intelligence in Medicine,

65(1):5–18, 2015.

[158] Jung Won Hyun, Yimei Li, Chao Huang, Martin Styner, Weili Lin, and Hongtu

Zhu. STGP: Spatio-temporal Gaussian process models for longitudinal neu-

roimaging data. NeuroImage, 134:550–562, 2016.

[159] Marco Lorenzi, Maurizio Filippone, Giovanni B. Frisoni, Daniel C. Alexan-

der, and Sebastien Ourselin. Probabilistic disease progression modeling to

characterize diagnostic uncertainty: Application to staging and prediction in

Alzheimer’s disease, 2019.

[160] Jonathan D F Wadsworth, Andrew F Hill, Jonathan A Beck, and John

Collinge. Molecular and clinical classification of human prion disease. British

Medical Bulletin, 66:241–254, 2003.

[161] Marc Modat, David M Cash, Pankaj Daga, Gavin P Winston, John S Duncan,

and Sbastien Ourselin. Global image registration using a symmetric block-

matching approach. Journal of Medical Imaging, 1(2):24003, 2014.

[162] M Jorge Cardoso, Matthew J Clarkson, Gerard R Ridgway, Marc Modat,

Nick C Fox, and Sebastien Ourselin. LoAd: a locally adaptive cortical seg-

mentation algorithm. NeuroImage, 56(3):1386–1397, 2011.

[163] Carole Sudre, M Jorge Cardoso, Willem Bouvy, Geert Biessels, Josephine

Barnes, and Sebastien Ourselin. Bayesian model selection for pathological neu-

roimaging data applied to white matter lesion segmentation. Medical Imaging,

IEEE Trans. On (TMI), 34(c):1, 2015.

[164] Andrew Melbourne, Nicolas Toussaint, David Owen, Ivor Simpson, Thanasis

Anthopoulos, Enrico De Vita, David Atkinson, and Sebastien Ourselin. Nifty-



BIBLIOGRAPHY 217

Fit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic

Resonance Imaging Data. Neuroinformatics, 2016.

[165] M Jorge Cardoso, Marc Modat, Robin Wolz, Andrew Melbourne, David

Cash, Daniel Rueckert, and Sebastien Ourselin. Geodesic Information Flows:

Spatially-Variant Graphs and Their Application to Segmentation and Fusion.

IEEE Transactions on Medical Imaging, 34(9):1976–1988, 2015.

[166] Y L Chung, A Williams, D Ritchie, S C Williams, K K Changani, J Hope,

and J D Bell. Conflicting MRI signals from gliosis and neuronal vacuolation

in prion diseases. Neuroreport, 10(17):3471–3477, 1999.

[167] Martin Zeidler, Robin J. Sellar, Donald A. Collier, Richard Knight, Gillian

Stewart, Margaret Ann Macleod, James W. Ironside, Simon Cousens,

Alan F.C. Colchester, Donald M. Hadley, and Robert G. Will. The pulv-

inar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease.

Lancet, 2000.

[168] Geoffrey McLachlan. Discriminant Analysis and Statistical Pattern Recogni-

tion. John Wiley & Sons, 2004.

[169] Claudio Soto and Nikunj Satani. The intricate mechanisms of neurodegener-

ation in prion diseases, 2011.

[170] Denis Le Bihan, Jean-Franois Mangin, Cyril Poupon, Chris A Clark, Sabina

Pappata, Nicolas Molko, and Hughes Chabriat. Diffusion Tensor Imaging:

Concepts and Applications. Journal of Magnetic Resonance Imaging, 13, 2001.

[171] V S Fonov, A C Evans, R C McKinstry, C R Almli, and D L Collins. Unbiased

nonlinear average age-appropriate brain templates from birth to adulthood.

NeuroImage, 47:S102, 2009.

[172] Ellen B Roecker. Prediction Error and Its Estimation for Subset-Selected

Models. Technometrics, 33(4):459–468, 11 1991.

[173] Benson Mwangi, Tian Siva Tian, and Jair C. Soares. A review of feature

reduction techniques in Neuroimaging, 2014.

[174] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning Data Mining, Inference,and Prediction, volume 27. Springer,

2 edition, 2009.



218 BIBLIOGRAPHY

[175] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization Paths

for Generalized Linear Models via Cordinate Descent. Journal of Statistical

Software, 58(9):1–22, 2014.

[176] Florentina Bunea, Yiyuan She, Hernando Ombao, Assawin Gongvatana, Kate

Devlin, and Ronald Cohen. Penalized least squares regression methods and

applications to neuroimaging. NeuroImage, 2011.

[177] Gavin C Cawley and Nicola L C Talbot. On Over-fitting in Model Selection

and Subsequent Selection Bias in Performance Evaluation. Journal of Machine

Learning Research, 11:2079–2107, 2010.

[178] Joshua B Tenenbaum. Mapping a manifold of perceptual observations. In

Advances in Neural Information Processing Systems 10, pages 682–688, 1998.

[179] Laurens Van Der Maaten, Eric Postma, and Jaap Van Den Herik. Dimension-

ality Reduction: A Comparative Review. Technical report, Tilburg University,

2009.

[180] Ik Soo Lim, P. de Heras Ciechomski, S. Sarni, and D. Thalmann. Planar ar-

rangement of high-dimensional biomedical data sets by isomap coordinates. In

16th IEEE Symposium Computer-Based Medical Systems, 2003. Proceedings.,

2003.

[181] L.S. Canas, B. Yvernault, C. Sudre, E. De Vita, M.J. Cardoso, J. Thornton,

F. Barkhof, S. Ourselin, S. Mead, and M. Modat. Imaging biomarkers for the

diagnosis of Prion disease. In Progress in Biomedical Optics and Imaging -

Proceedings of SPIE, volume 10574, 2018.

[182] S Roberts, M Osborne, M Ebden, S Reece, N Gibson, and S Aigrain. Gaussian

Processes for Timeseries Modelling. Philosophical transactions of the Royal

Society of London. Series B, Biological sciences, pages 1–27, 2012.

[183] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive Gaus-

sian Processes. In J Shawe-Taylor, R S Zemel, P L Bartlett, F Pereira, and

K Q Weinberger, editors, Advances in Neural Information Processing Systems

24, pages 226–234. Curran Associates, Inc., 2011.

[184] Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville



BIBLIOGRAPHY 219

Tolvanen, and Aki Vehtari. GPstuff: Bayesian Modeling with Gaussian Pro-

cesses. Journal of Machine Learning Research, 14:1175–1179, 2013.

[185] Alain Rakotomamonjy;, Francis R. Bach;, Stéphane Canu;, and Yves Grand-
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[217] Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone, Mario Ver-

saci, Silvana Franceschetti, Fabrizio Tagliavini, Vito Sofia, Daniela Fatuzzo,

Antonio Gambardella, Angelo Labate, Laura Mumoli, Giovanbattista Gaspare

Tripodi, Sara Gasparini, Vittoria Cianci, Chiara Sueri, Edoardo Ferlazzo, and

Umberto Aguglia. Deep Learning Representation from Electroencephalogra-

phy of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation

from Rapidly Progressive Dementia. International Journal of Neural Systems,

27(2), 2016.

[218] Meenal J. Patel, Alexander Khalaf, and Howard J. Aizenstein. Studying de-

pression using imaging and machine learning methods, 2016.

[219] Alberto Fernández, Salvador Garćıa, Mikel Galar, Ronaldo C. Prati, Bar-
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