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Abstract

Future cities are set to face ever increasing population and climate pressures,
ecosystem services offered by urban forests have been recognised as provid-
ing significant mitigation for these pressures. Therefore, the ability to ac-
curately quantify the extent and structure of urban forests, across large and
highly dynamic cities, is vital for determining the value of services provided
and to assess the effectiveness of policy to promote these important assets.
Current inventory methods used in urban forestry are mostly reliant on plot
networks measuring a range of structural and demographic metrics; how-
ever, limited sampling (spatially and temporally) cannot fully capture the
dynamics and spatial heterogeneity of the urban matrix. The rapid increase
in the availability of open-access remote sensing data and processing tools
offers an opportunity for monitoring and assessment of urban forest struc-
ture that is synoptic and at high spatial and temporal resolutions. Here we
present a framework to estimate urban forest structure that uses open-access
data and software, is robust to differences in data sources, is reproducible
and is transferable between cities. The workflow is demonstrated by estim-
ating three metrics of 3D forest structure (canopy cover, canopy height and
tree density) across the Greater London area (1,577 km2). Random Forest
was trained with open-access airborne LiDAR or iTree Eco inventory data,
with predictor variables derived from Sentinel 2, climatic and topography
data sets. Output were maps of forest structure at 100 m and 20 m res-
olution. Results indicate that forest structure can be accurately estimated
across large urban areas; Greater London has a mean canopy cover of ˜16.5%
(RMSE 11 - 17%), mean canopy height of 8.1 - 15.0 m (RMSE 4.9 - 6.2 m)
m and is home to ˜4.6M large trees (projected crown area >10 m2). Trans-
ferability to other cities is demonstrated using the UK city of Southampton,
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where estimates were generated from local and Greater London training
data sets indicating application beyond geographic domains is feasible. The
methods presented here can augment existing inventory practices and give
city planners, urban forest managers and greenspace advocates across the
globe tools to generate consistent and timely information to help assess and
value urban forests.

Keywords: urban forest structure, open-access, remote sensing, airborne
LiDAR, iTree Eco, Sentinel 2

1. Introduction1

Urban forests are now recognised as a key asset for maintaining live-2

able cities in the face of rapidly expanding populations and climate change3

[1, 2, 3]. To this end, governments are setting ambitious targets to increase4

urban forest cover at all scales [4]; for example, Melbourne is aiming for a5

20% increase in canopy cover by 2040 [5] and Vancouver aims to increase6

canopy cover by ˜0.5% per annum until 2030 [6]. To assess the effective-7

ness of policy, a comprehensive understanding of contemporary urban forest8

structure is required, as well as the ability to monitor change through re-9

peatable measurements and methods.10

Assessment has so far been achieved using inventory techniques borrowed11

from traditional forestry, where a suite of metrics are recorded across a plot12

network and aspatial statistics reported. Recently, inventory protocols have13

been developed specifically for urban areas with the aim of standardising14

monitoring and assessment of forest structure and demographics [7]. De-15

veloped by the US Department of Agriculture (USDA) Forestry Service, the16

iTree Eco protocol [8] is one example that has seen widespread adoption17

in cities globally; for example, London [9], New York [10] and Barcelona18

[11]. An output of iTree Eco analysis is a monetary value for ecosystem19

services, providing valuable information for land managers as well as sum-20

marising intangible benefits to a wider audience [9]. Although inventory21

measurements are locally comprehensive, they can be sparse in a heterogen-22

eous urban landscape, laborious and time-consuming to measure [7, 12] and23

reliant on a volunteer workforce [4] as well as often being restricted by land24

ownership [13].25

Remote sensing techniques offer a new approach for assessing urban26

forests that have already been widely adopted for national inventories [14,27

15]. These techniques encompass a wide range of measurement technologies28

(active and passive) and scales (sub-metre to kilometre); providing spatially29
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and temporally synoptic data across government and cadastral boundaries.30

Remote sensing of urban forest structure poses particular challenges however31

[16], including: a spatially heterogeneous and fragmented patchwork of land32

cover and forest types, from isolated trees to dense forest; high tree species33

diversity including non-natives; heavily and regularly managed trees (e.g.34

pollarding); and occlusion by tall buildings [12, 17]. Despite this, recent ad-35

vances in remote sensing technologies and processing methods have enabled36

accurate assessments of urban forest structure and composition; Tigges and37

Lakes [18] and Li et al. [19] provide comprehensive reviews of remote sensing38

of urban forest structure.39

Canopy cover metrics (and their synonyms) are a 2D estimate of forest40

extent which is often reported in urban forest studies. A common remote41

sensing approach to assessing canopy cover is random point sampling of42

aerial or satellite imagery [20, 21]. For example, the USDA Forest Service43

iTree Canopy tool [22] uses Google Earth imagery as a base map to enable44

a user to determine whether a point is canopy or not (typically 500 - 100045

sample points). More complex statistical techniques, such as regression,46

supervised classification and machine learning, have also been applied to47

estimate canopy cover [23, 24]. Owing to a greater number of sample points,48

application of remote sensing techniques has reduced uncertainty in urban49

canopy cover estimates [21].50

Although canopy cover is a relatively simple and useful metric to derive,51

it is just one of a suite of potential metrics for assessing the extent, health52

and demographics of urban forests that can be derived from remote sensing.53

Other structural metrics include canopy height, leaf area index (LAI) [25]54

and projected crown area [17] as well as those derived from canopy reflect-55

ance e.g. tree species [26, 27]. A combination of structural and spectral56

metrics have also been used, for example, to segment individual trees [28].57

Estimating urban forest extent using the UN Forest and Agriculture defin-58

ition for “other forested areas” [29] would require an assessment of canopy59

height as well as canopy cover.60

3D information of canopy structure produced by LiDAR (light detec-61

tion and ranging) measurements can surpass the information from passive62

instruments for assessing forest structure. Airborne LiDAR has been suc-63

cessfully used to estimate biophysical parameters such as canopy height and64

cover from either the original point cloud data or rasterised products e.g. a65

canopy height map. When applied in urban areas, the use of point cloud66

data allows for the removal of tall buildings and other infrastructure before67

canopy metrics are derived [30, 17]. Until the late 2000s, large area acquis-68

itions of ALS over urban areas were uncommon or not publicly accessible;69
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in this case, sub-area acquisition have been used to train predictive models70

of canopy cover [24] and above ground biomass (AGB) [31]. Where wall-to-71

wall data are available, airborne LiDAR has been used to estimate leaf area72

index [25] and AGB [17].73

Since the late 2000s, many remote sensing data have moved from propri-74

etary to open-access distribution models, driving an uptick in new applic-75

ations [32]. Availability of open-access data sets is not limited to satellite76

remote sensing products, a number of countries have opened their archives77

of aerial imagery and LiDAR data. For example, the UK Environment78

Agency have made available LiDAR covering 72% of England [33]; similar79

data sets are available for Finland, Belgium, Spain, the United States and80

New Zealand to name but a few. However, not all LiDAR data are equal:81

for example, data may be pre-filtered to remove vegetation if the purpose of82

the data processing is flood mapping [17] or acquisition specifications (alti-83

tude, pulse density, registration accuracy etc.) may differ between surveys.84

New analysis methods and workflows that use open-access data need to be85

robust to these differences.86

A potential barrier to adoption of remote sensing techniques has been the87

(perceived) level of specialist knowledge required. Recently however, new88

methods and workflows e.g. through web-based applications, are allowing89

people without specialist knowledge to access and manipulate these data90

much more easily. For example, Google Earth Engine (GEE) is a cloud-91

based platform, accessed through a web-based programming interface, which92

allows technical and non-technical users to process remote sensing data sets93

[34]. Applications of GEE have so far included mapping of urban [35] and94

woody vegetation [36] extent to name but a few.95

The new emphasis on urban forest and their importance for maintaining96

liveable cities coupled with a new era of open-access data and processing97

workflows makes remote sensing the ideal monitoring tool for these import-98

ant assets. Here we present a framework that utilises open-access LiDAR and99

satellite data to quantify urban forest structure, specifically canopy height,100

cover and tree density. We demonstrate this framework using Greater Lon-101

don (Figure 1), a city with a long history of urban forestry and that has102

been recently designated the first National Park City. We also demonstrate103

the approach is transferable to other areas by performing an assessment of104

Southampton, a smaller city in the south of the UK.105
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Figure 1: Map of study area. (A) Greater London with LiDAR extent overlaid (zones
are numbered) (B) Inner and Outer London and (C) the location of Greater London in
the wider context. Contains data from Rae [37] and OS data c© Crown copyright and
database right (2019)

2. Materials and Methods106

The aim of this research is to present a framework for predicting wall-107

to-wall urban forest structure that is transferable to any urban area. This108

is achieved by first training a predictive model (in this case Random Forest109

[38]) with forest structure metrics and a set of synoptic predictor variables,110

before applying this wall-to-wall across the region of interest (Figure 2).111

To make the framework more widely applicable, data sets (Table 1) and112

tools (see Appendix A) are open-access. The framework is designed to be113

modular; for example, forest structure metrics have been derived from both114

airborne LiDAR (ALS) and iTree Eco inventory data.115

Three metrics of structure have been modelled; Canopy Cover CC, Can-116

opy Height CH and tree density N . CC is widely-used as a proxy for117

assessing urban forest extent, CH is required to more accurately estimate118

forest extent and can also be used to derive secondary metrics (e.g. AGB),119

N can be used to determine the distribution and demographics of tree popu-120

lations. Definitions of these metrics can vary between studies, making inter-121

comparison difficult; for example CC may or may not include the shrub122

layer [13]. Below, metrics are explicitly defined dependent upon measure-123
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Figure 2: Schematic of framework showing the processing of airborne LiDAR to create a
training data set.

ment technique, with the aim of making these transferable and comparable124

across sites and studies. Tree attributes were aggregated at two grid sizes;125

100 m and 20 m grids where the former is equivalent to 1 ha blocks and the126

latter is the minimum resolution of the predictor variables.127

2.1. Study Area128

Greater London (Figure 1) covers an area of 1,572km2 and is home to129

8.8M people [39] and 8.4M trees (diameter at breast height dbh ≥0.07 m)[9].130

Land use in the region is a matrix of recreational green space (38.2%),131
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residential (32.6%), transport infrastructure (14.1%) and industrial (4.7%)132

[40]. Greater London can be split into two broad sub-regions: Inner (1.6 M133

trees) and Outer London (6.8 M trees, Figure 1B) [9]. Land use in Inner134

London is primarily urban and industrial (but includes several large parks)135

and Outer London is urban to open countryside including large extents of136

forest and farm land.137

Greater London has a range of forest types, from isolated single trees to138

2,500 ha of ancient (i.e. persisted since at least 1600) woodland [41], with an139

estimated amenity value of £43.3 billion [9]. Canopy cover estimates range140

from 14% [9] to 21.9% [42] dependent on method and definition. There are141

a number of sources of tree and tree metric information for Greater London,142

including the Local Authority Maintained Trees database of 700,000 trees143

[43]. However, none are complete even locally (e.g. often restricted to144

highways only) highlighting the requirement for a synoptic method which is145

not restricted by access to private land.146

2.2. Remote sensing and inventory data147

2.2.1. Airborne LiDAR data148

Airborne LiDAR data (aka Airborne Laser Scanning or ALS) was cap-149

tured over an area of ˜500 km2, split into 6 zones, by the UK Environ-150

ment Agency in February - March of 2015 and 2016 (Figure 1A). 1 km151

tiles were downloaded in .laz format from the UK Government’s data portal152

(Open Government Licence v3.0). Point cloud data was pre-processed using153

LAStools [44] to ground normalise, remove flight line overage and extract154

points that were attributed as having multiple returns. Tree crown extrac-155

tion then followed the method of Wilkes et al. [17]. Identified crown envel-156

opes where crown height was <2 m or >40 m or where projected crown were157

<10 m2 were discarded. A total of 1,590,128 individual trees were identified.158

Two regular grids (100 m and 20 m) were intersected with the vector159

crown layer where the origins of the grids matched that of the predictor160

data (see below). Some crowns intersected more than one grid cell and were161

therefore split into sub-crown areas. Canopy cover CCALS was computed162

as the sum of projected crown area (ignoring within crown gaps) where163

overlapping crown polygons were dissolved, divided by grid square area.164

Canopy height CHALS was calculated from the 95th percentile of crown165

heights per grid square. Tree density NALS was estimated as the sum of166

the proportions of crowns in a grid square. Total number of trees
∑

N was167

estimated by summing NALS .168
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Table 1: Predictor variables derived from open-access data sets available in GEE.

Source 20 m 100 m

Sentinel Level 2A (bands 1 - 9, 11, 12)
Surface reflectance X X
NDVI X X
Mean (3 x 3 window) X X
Mean (5 x 5 window) X
Texture (3 x 3 window incl. NDVI) X X
Texture (5 x 5 window incl. NDVI) X
Intra-pixel texture (incl. NDVI) X
NDVI temporal variance X X
WorldClim BIO Variables V1 X X
SRTM
Elevation X X
Slope X X
Aspect X X

2.2.2. Predictor variables169

A suite of predictor variables were selected for this analysis based upon170

previous research [45, 46]; a list of predictor variables is provided in Table171

1. These were accessed and pre-processed using GEE to a common format,172

projection (OSGB 1936) and spatial resolution [34]. A Sentinel 2 Level-2A173

cloud-free mosaic was computed from images captured between 1/5/2018174

- 31/8/2018 (i.e. leaf-on). From this a water mask was computed using175

the MNDWI method where a threshold of 0.1 was applied to mask water176

[47]. Normalised Difference Vegetation Index (NDVI) variables and texture177

metrics were derived from the Sentinel mosaic. NDVI temporal variance178

was computed from the cloud free image stack used to create the mosaic.179

Intra-pixel variance was computed for 100 m pixels using the 20 m input180

data sets, where standard deviation of pixel values in the larger grid cell181

were computed.182

Although Random Forest is robust to colinear predictor variables, these183

can lead to anomalies in variable importance metrics. For a more parsimo-184

nious model, co-linear predictor variables (R2 > 0.9) were identified and, by185

computing pair-wise correlation coefficients with CCALS , the least correlated186

variable was discarded. This reduced the initial set of predictor variables187

from 74 and 85 to 47 and 49 for 100 m and 20 m analysis respectively.188
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2.2.3. iTree inventory data189

Inventory data were captured as part of the 2014 London iTree Eco190

project [9] where a total of 721 0.04 ha circular plots were measured. Plot-191

wise analogues of the ALS structure metrics were derived from the iTree192

Eco database where “Percentage Tree Cover” CCiT ree, 95th percentile of193

measured tree height CHiT ree and a count of all trees within a plot NiT ree194

were used for CC, CH and N respectively. Trees with a projected crown195

area <10 m2 (calculated from the major and minor axis measurements and196

corrected for % crown missing) were excluded inline with the ALS crown197

segmentation method [17]. This resulted in an estimated 5,167,000 “large198

trees” (corrected for % of plot area measured) in the Greater London area199

(32.8 trees ha−1); removal of small trees from the database increased median200

dbh from 0.19 m to 0.25 m.201

To directly compare CHALS and NALS with iTree Eco data, plot coordin-202

ates were buffered by 11.3 m (equivalent to iTree plot radii) and intersected203

with the ALS derived crown envelope centroids (assumed as germination204

point). To compare CCiT ree and CCALS values, ALS derived crown envel-205

opes were intersected with iTree Eco plot boundaries and the clipped crown206

area was summed i.e. trees whose germination point was potentially outside207

the plot were included. To compare Random Forest output with iTree Eco208

data as well as train a Random Forest with iTree Eco data, grid squares that209

intersected iTree Eco plots were extracted and mean values for the predictor210

variables or Random Forest output were computed.211

2.3. Random Forest212

Random Forest [38] was chosen for this analysis for a number of reasons;213

(1) robustness to noise within training data [48] (2) scalability (e.g. [49])214

(3) easy to parameterise and (4) widely available e.g. implementations in215

R, Python and GEE. With regard to remote sensing of forest structure,216

Random Forest has been used to predict forest cover [46], canopy height217

[49, 45, 50] and AGB [51]218

Here, Random Forest was run as a regressor, using the Python scikit-219

learn implementation [52], predicting continuous variables of canopy cover220

CCRF , canopy height CHRF and tree density NRF . Preliminary analysis221

(unpublished MSc thesis) suggested error stabilised at 50 trees, tree max-222

imum depth was set to 20 to avoid overfitting in lower branches and N/3223

variables were selected at each node where N is the size of the variable pool.224

It is implicit that spatial autocorrelation will underestimate error in pre-225

dictive modelling; to avoid this, a semivaraince analysis using Sentinel 2226
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Band 3 surface reflectance data was completed. This indicated that at res-227

olutions of 100 m and 20 m variance reached a sill at approximately 600 m228

and 200 m respectively. Regular grids were therefore imposed on the full229

resolution gridded data set to subset a spatially uncorrelated cohort; this230

resulted in a training pool of 7,086 and 110,780 points for 100 m and 20231

m resolutions respectively. Training data sets of 5,000 points were sampled232

(with replacement) from these subsets. Training samples were weighted to233

be representative of Inner and Outer London total area (22:78) as Inner234

London was over represented in the ALS data. To compute model accuracy,235

a test cohort of 2,000 and 5,000 points for 100 m and 20 m respectively was236

then sampled from remaining uncorrelated points. When training a Ran-237

dom Forest with iTree Eco data, a test cohort of 500 points was sampled238

from the 741 plots; the remainder were used for testing. Mean and standard239

deviation values were derived from 25 iterations of Random Forest where240

for each iteration a new training subset was selected.241

Random Forest has been shown to display a systematic error, known as242

“regression to the mean”, when predicting continuous variables [53, 45]. This243

results in over and under estimation of smaller and larger values respectively,244

where model residuals are highly correlated with with the independent vari-245

able X. Correcting this error is particularly important when estimating246

cumulative variables, such as
∑

N, where larger values are disproportion-247

ately more important, or to accurately represent the tails of X. To correct248

for systematic error, linear regression of model residual (XRF −X) and X249

as dependent and independent variables respectively was used to compute250

a correction function. This was then applied to the modelled output and251

is denoted as RF + C. Applying the correction can in some cases produce252

unrealistic values e.g. CCRF < 0; unrealistic values were replaced with253

minimum or maximum values accordingly.254

2.4. Model transferability255

Applying a model outside the domain of the training data is likely to256

decrease model suitability. However, as urban areas tend to be ’artificial’257

in terms of forest structure (e.g. managed trees, regular spaced planting,258

similar species composition), commonality between unconnected urban areas259

may exist (although see [54]). As suitable training data may not always be260

available, we test the potential transferability of a Random Forest model261

between geographic areas. Firstly, this is tested within Greater London262

where a single “zone” (Figure 1) is used to train the model, this is then263

applied to the remaining five areas. A second experiment tests transferability264

to areas further afield, to do this the UK city of Southampton was chosen265
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Table 2: Results for estimating forest structure at 100 m resolution where ALS values
are derived from training data, RFALS are results from ALS trained Random Forest,
RF+CALS as before including linear correction and RF+CGL as before but applied across
the Greater London area. std is mean within-sample variation unless B then standard
deviation of the mean where N=25.

ALS RFALS RF+CALS RF+CGL

mean std mean std rmse mean std rmse mean stdB

CC (%) 17.3 16.77 17.8 12.56 10.90 17.0 17.45 11.52 16.2 0.22
CH (m) 16.6 4.67 16.5 2.33 3.91 16.6 3.96 4.09 15.0 0.10
N (trees ha−1) 28.6 21.96 30.2 13.63 18.90 28.0 21.75 20.50 28.4 0.42∑

N 4,493,236 100,140B 4,740,741 58,029B 4,397,041 89,793B 4,531,016 67,225

(Figure 1C). Southampton is situated on the south coast ˜130 km south266

west of London and has a population of 250,000 residents. A 2017 iTree Eco267

report for the city (N = 414 plots) suggests that Southampton has a CC of268

18.5% and a total of 267,500 trees [55]. ALS was captured over Southampton269

in March 2016 and training data was derived from trees segmented using270

the method described is Section 2.2.1. Random Forest modelled canopy271

structure metrics were generated and compared from the locally derived272

training data as well as from models trained on the Greater London. Again,273

25 iterations of Random Forest were run to generate mean and standard274

deviation values.275

3. Results276

For the Greater London area, CCRF is 16.2% ±0.22% and 16.5% ±0.37%277

for analysis at 100 m and 20 m respectively, mean CHRF is 15.0 m ±0.1 m278

and 8.1 m ±0.2 m for 100 m and 20 m resolutions respectively and NRF is279

˜29 trees ha−1 for both resolutions with a total of between 4.5M - 4.6M large280

trees (Tables 2 and 3). CCRF is slightly higher than the 14% “Tree Cover”281

value reported in the London iTree Eco survey [9] and the value derived282

from subsampling the iTree Eco data (Table 4). The London Tree Officers283

Association [42] estimated cover of 21.9 % for 2010 and the Greater London284

Authority [43] estimated cover of 19.5% for 2011; however, both estimates285

were derived from a supervised classification that included small trees and286

shrubs. For UK urban areas nationally, a mean CC of 15.8% is reported287

[4]. CHRF estimates vary between analysis resolutions, this indicates a288

non-random tree distribution where a greater number of treeless pixels are289

identified at 20 m that decreases mean CHRF . Tree density estimates are290

broadly similar between techniques (28-29 trees ha−1), Random Forest total291

number of trees is ˜10% less than estimated from the iTree Eco database.292
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Table 3: Results for estimating forest structure at 20 m resolution. See Table 2 for notes.
Values in brackets are normalised to 1 ha for comparison with Table 2

ALS RFALS RF+CALS RF+CGLA

mean std mean std rmse mean std rmse mean stdB

CC (%) 15.8 24.42 17.3 18.17 16.31 16.3 25.72 17.81 16.5 0.37
CH (m) 8.4 8.16 8.8 5.12 5.74 8.6 8.00 6.20 8.1 0.15
N (trees px−1) 1.0 (25.6) 1.56 1.2 (29.2) 0.89 1.44 1.1 (27.0) 1.51 1.56 1.2 (29.2) 0.03∑

N 4,027,284 92,466B 4,588,941 101,080B 4,243,535 132,325B 4,601,864 131,381

Table 4: Results for estimating forest structure at 20 m resolution where iTree values
are derived from training data, RFiTree are results from iTree Eco trained Random Forest
and RFGL are as before but applied across the Greater London area. std is mean within-
sample variation unless B then standard deviation of the mean where N=25. Values in
brackets are normalised to 1 ha for comparison with Table 2.

iTree RFiT ree RFGLA

mean std mean std rmse mean stdB

CC (%) 13.1 22.06 14.4 12.47 18.79 15.9 0.90
CH (m) 4.9 6.78 5.3 3.12 6.31 5.8 0.29
N (trees px−1) 1.3 (33.4) 2.47 1.5 (36.6) 1.18 2.24 1.6 0.10∑

N 5,251,702 942,628B 5,758,010 664,951B 6,331,778 389,787

Random Forest tends to overestimate values of CC, CH and N com-293

pared to ALS estimated values (Figure 3). A suggested reason for this is294

that, with the exception of CH100, training data values are left-skewed (Fig-295

ure 3). However, Random Forest’s “regression to the mean” tendency re-296

duces skewness, leading to over and underestimated lower and higher values297

respectively [53, 45]. This tendency also decreases the standard deviation298

of the output compared to training values i.e. decreased kurtosis (Table 3299

and Figure 3). Applying a correction function to Random Forest computed300

values (RF + C) increases kurtosis and standard deviation to closely recre-301

ate distributions of training data (Figure 3) as well reducing the correlation302

between the dependent variable and model residuals (Appendix B). How-303

ever, correction functions are indiscriminate and correctly computed values304

can be wrongly scaled, which results in an increase in overall error (Tables305

2 and 3 and Appendix B).306

A comparison of iTree and ALS derived variables (N plots = 196) sug-307

gests a generally good agreement (Figure 4 top); RMSE is 13.8%, 4.9 m,308

and 2.9 trees for CC, CH and N respectively. Of the 196 plots 60%309

and 53% of plots were treeless for iTree Eco and ALS plots respectively.310

CCALS > CCiT ree and CHALS > CHiT ree, although particularly for CC,311

measurement techniques were different i.e. iTree Eco uses a visual assess-312

ment to determine CC. Discrepancies in CH were caused by the ambiguity313
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Figure 3: Frequency distributions of CC (left), CH (middle) and N (right) for variables
derived at 100 m resolution (A-C), 20 m resolution (D-F) and using iTree Eco data (G-I).
Each subplot plots training data and distributions produced from Random Forest (RF)
and Random Forest including correction of systematic error. Kernel Density Estimation
was applied to smooth trends, hence values < 0.

of germination point i.e. ALS derived crown envelope polygon centroids314

incorrectly inside or outside plot boundaries. ALS tends to underestimate315

tree density where there are ˜25% less trees in the comparable ALS crown316
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Figure 4: A comparison of iTree Eco with ALS (a-c, N=196) and 20 m resolution Random
Forest (d-f, N=741) computed variables. Trees with a projected crown area ≤ 10 m2 were
filtered from the iTree Eco database.

vector layer. This is particularly prevalent in plots with greater number of317

trees and indicates the inability of low resolution ALS to distinguish smaller318

or sub-dominant trees. However, as 90% of plots have ≤4 trees (equivalent319

to 100 trees ha−1), the inability of ALS to determine more dense plots will320

have a minimal impact on overall estimates.321

Comparing Random Forest output to iTree Eco plot data highlights Ran-322

dom Forest’s tendency to overestimate smaller values. This is particularly323

obvious when estimating canopy height where treeless plots are attributed324

with CH > 0 m (Figure 4e). Further, tall trees with large crowns may over-325

lap adjacent plots resulting in errors where CHiT ree = 0 m and CHRF ≥ 10326

m. NRF also underestimates densely forested plots, this is likely due to the327

underlying ALS derived training data.328

iTree Eco data was also used to train a Random Forest (Table 4). A329

similar trend was seen where Random Forest slightly overestimates training330

data values (Figure 3); no systematic error correction was applied to iTree331

computed values owing to the small sample size. Mean CHiT ree and iTree332
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Eco CHRF values are significantly lower than ALS trained estimates, this333

is again likely due to the inability of ALS to detect sub-dominant trees.334

Within sample standard deviation values are similar between iTree Eco and335

ALS trained model output. However, standard deviation of mean values336

(calculated from 25 iterations of Random Forest) is 3 times greater for pre-337

dicted variables and an order of magnitude greater for
∑

N; this is likely338

due to the smaller number of training plots.
∑

NiT ree values are higher339

than ALS estimated values, by ˜2M trees when estimated over the Greater340

London area. This would indicate a significant influence of positive outliers,341

where the top 1% most densely treed plots contribute ˜500K trees to the342

overall estimate.343

Maps of CCRF , CHRF and NRF for Greater London are presented in Fig-344

ure 5. Spatial patterns of variable distributions are similar where higher val-345

ues coincide with greenspace areas (compare with Figure 1). Areas towards346

the edge of Greater London are home to the tallest and most dense trees,347

particularly in the south-east and north-west of Greater London. Large348

parks are also clearly visible e.g. Richmond Park in the south-west and349

Hampstead Heath to the north. Differences in CH are evident between the350

two resolutions owing to the method estimating the tallest tree a grid square;351

however, the tallest trees are identified at both resolutions.352

Model transferability was tested using two approaches; (1) estimation353

of CC within Greater London and (2) applying local and Greater London354

trained models to the UK city of Southampton. Within Greater London355

CCALS varied between 13.2% - 26.7% between “zones” (Table 5); this dis-356

parity between training and test data sets can cause significant estimation357

error. For example, using Zone 1 to train the model (a heavily forested358

area on the outskirts of London, see Figure 1), Random Forest would over-359

estimate CCALS by 2.5%. However, generally if the range in forest types is360

adequately represented in the training data then error in mean CCRF <1%.361

RMSE of CCRF increases by between 2% - 5%.362

Applying Greater London trained models to Southampton produced363

comparable results to that of locally trained models. Values for CCRF for364

locally and Greater London trained models were 16.4% (std 26.3%, RMSE365

16.6%) and 15.8% (std 21.7%, RMSE 16.3%) respectively, Southampton’s366

iTree Eco report estimated CC of 18.5% (reported as “tree cover”). CH367

values for locally and Greater London trained models were 7.5 m (std 8.0368

m, RMSE 5.6 m) and 8.0 m (std 6.3 m, RMSE 5.7 m) respectively.
∑

N was369

overestimated by ˜12% using the Greater London model which estimated370

255,398 ± 8,600 trees compared to 226,110 ± 13,300 trees using the locally371

trained models; iTree Eco report estimated 267,500 trees (including trees372
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Figure 5: Maps of CCRF (top), CHRF (middle) and NRF (bottom) at 100 m (left) and
20 m (right) resolutions. ∗ values are scaled to be equivalent of trees ha−1 so subplots c
and f are comparable.

with a projected crown area ≤ 10 m2). These results would suggest that373

urban forest structure can be inferred beyond the geographic domain of the374

training data, albeit with the understanding that error is likely to increase.375
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Table 5: Random Forest estimated CC (%), computed at 20 m resolution, where the model
has been applied to areas outside the geographic domain of the training data. Refer to
Figure 1 for zones.

Training zone ALStrain ALStest RFALS RF+CALS

mean mean mean rmse bias mean rmse bias

1 26.7 18.1 23.1 19.6 5.0 20.6 21.5 2.5
2 13.9 18.6 18.6 20.0 0.0 18.8 22.3 0.2
3 13.2 18.8 18.6 19.1 -0.2 18.5 20.9 -0.3
4 21.6 17.4 20.9 18.2 3.5 19.6 20.4 2.2
5 18.6 19.0 23.5 18.7 4.5 20.9 19.8 1.9
6 15.5 19.1 20.8 19.2 1.7 19.7 20.0 0.6

4. Discussion376

Urban areas across the globe, currently home to ˜10 billion trees [56],377

will play an increasingly important role in maintaining liveable cities in the378

face of population and climate pressures. Assessment tools are essential379

for maintaining and enhancing the ecosystem services provided by urban380

forests, as well as assessing the effectiveness of policy designed to improve381

this key asset. Presented here is a framework to use remote sensing methods382

to estimate wall-to-wall 3D forest structure in large and complex urban383

areas. New methods are required to deal with the particular difficulties of384

measuring urban compared to natural forest.385

The framework uses freely available open-access data sets and techniques386

with the aim of creating a method that can be adopted for urban areas any-387

where. Further, the framework is designed to be modular, as is demonstrated388

here by substituting ALS-derived estimates of forest structure with those389

from an iTree Eco survey. It is emphasised that this approach is meant to390

augment rather than replace existing protocols, such as iTree Eco; important391

properties captured by inventory methods (e.g. species composition, shrub392

metrics etc.) are currently beyond the capabilities of most remote sensing393

techniques.394

The availability and suitability of training data are likely to be the most395

significant barriers to applying this method more generally. Here, ALS data396

produced a dense training data set of derived metrics (i.e. not directly397

measured) with a limited spatial extent, whereas the iTree data provide398

direct but very sparse measurements of canopy structure across the entire399

study area. Other sources of training data may include existing govern-400

ment tree databases or those produced from citizen science projects [57]401
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Figure 6: Canopy structure metrics derived for Southampton (See Figure 1). Forest
structure estimated from; (top) a Random Forest model trained from local ALS (see ALS
extent in top left); (middle) a Random Forest trained on data captured over London; and
(bottom) RFLondon - RFlocal.

(e.g. https://www.treezilla.org) as well as other new technologies [58] (e.g.402

Google Street View [59] or terrestrial laser scanning [17]). Substituting data403

sets should be done with the knowledge of the expected changes in model404

uncertainty and variance.405

There are a number of factors to consider when deciding upon predictor406

variables (e.g. availability, cost, pre-processing, spectral and spatial resolu-407

tion etc.). For example, airborne imagery may provide high resolution data408

but with limited spectral information (e.g. RGB bands) and high acquisi-409

tion costs, whereas satellite data are often multispectral and can be accessed410

free of charge but may be affected by cloud. Here, for both 100 m and 20 m411

analysis, the most important data sets were those derived from short wave412

infrared (SWIR) and “red edge” bands (Figure 7). This would indicate413

18

https://www.treezilla.org


Figure 7: Variable importance for (left) 100 m analysis and (right) 20 m analysis. Italics
are the names of Sentinel 2A bands and numbers in parentheses are wavelength in nm.

model predictions are driven by contrast in moisture content i.e. forest can-414

opies withholding more moisture, and scattering of near-infrared radiation415

by leaves [26]. Further, this would suggest that this type of modelling is416

sensitive to change in forest structure (manifested in spectral reflectance) as417

opposed to being driven by abiotic factors (e.g. climate, topography etc.),418

and therefore temporal analysis would be possible. In contrast to natural419

forest systems [45], texture-based variables (e.g. image variance) are less420

important, highlighting the heterogeneity of the urban matrix. It should421

be remembered that the specific variables chosen here may be less suitable422

for other urban areas; therefore, a full suite of predictor variables should be423

considered before a more parsimonious set are chosen.424

Incorporating synoptic data into tools such as iTree Eco may allow for a425

more robust estimate of the monetary benefits of urban forest i.e. capturing426

spatial heterogeneity. There are potential wider applications in other science427

domains beyond the inventory of urban forest, for example mapping hab-428

itat connectivity into and across urban areas (e.g. the ”forest continuum”429

[60]), quantifying the impact of urban forest structure on public health or430

incorporating spatial explicit models of urban forest structure in air qual-431

ity modelling. A “4D” analysis (where time is the fourth dimension) could432

potentially identify urban forest dynamics e.g. urban forest growth and re-433

moval. Suitable satellite imagery (e.g. Landsat) extends back to at least the434

mid-1980s and can be accessed through GEE. Contemporary training data435

could also be used, with the assumption that forest structure has remained436
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largely unchanged or by focusing on areas where this is true. As well as un-437

derstanding past forest conditions the impact of new policy could be more438

effectively monitored.439

5. Conclusions440

Monitoring and assessment of our urban forests is crucial to maintain-441

ing viable, healthy and diverse forests as well as the ecosystem services city442

dwellers are reliant upon. This analysis demonstrates an open-access, flex-443

ible and modular framework that uses remote sensing data to assess urban444

forest structure (canopy height, canopy cover and tree density) across a large445

and heterogeneous urban forest. Results indicate that urban forest struc-446

ture can be modelled accurately from remote sensing data sets and moreover447

produce wall-to-wall maps that have uses beyond the scope of just urban448

forest inventories. Further, these models are transferable to areas where449

appropriate training data does not exist. We suggest that methods such as450

these can be relatively easily and cheaply adopted by city planners, urban451

forest managers and greenspace advocates to ensure the future prosperity of452

urban forests globally.453
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Appendix A. A list of open-source software used.462

Table A.6: An alphabetical list of software used in the above methods. Dependencies are
not included. ∗ indicates that package was accessed and installed using Conda, otherwise
package was accessed through website. # some features may require a licence.

Package Citation Homepage Version

GDAL∗ [61] https://gdal.org/ 2.4.1
GeoPandas∗ [62] http://geopandas.org/ 0.0.5
LAStools# [44] https://rapidlasso.com/lastools/

QGIS [63] http://qgis.osgeo.org 3.4.7-Madeira
Pandas∗ [64] https://pandas.pydata.org/ 0.24.2
Scikit Learn∗ [52] https://scikit-learn.org/ 0.20.3
Shapely∗ [65] https://pypi.org/project/Shapely/ 1.6.4.post2
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Appendix B. Random Forest model residuals463

Figure B.8: Analysis of model residuals produced for analysis at 100 m for canopy cover
CC (top row), canopy height CH (middle) and tree density N (bottom). (left) model
residuals for untransformed output (middle) model residuals transformed using methods
described in Section 2.3 and (right) histograms of residuals for untransformed and trans-
formed data.
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Figure B.9: Analysis of model residuals produced for analysis at 20 m. See Figure B.8 for
notes.
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