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Abstract

Currently, the design of tissue engineered constructs for peripheral nerve

repair is informed predominantly by experiments. However, translation to

the clinical setting is slow, and engineered tissues have not surpassed the

outcomes achieved by nerve grafts. Therapeutic cell survival and vascu-

larisation are important for the assimilation of engineered tissue, and vas-

cularisation provides vital directional cues for regenerating nerves. In this

thesis, mathematical modelling informed by experimental data is used to

investigate the impact of different therapeutic cell seeding strategies on cell

survival and vascularisation in engineered tissue nerve repair constructs.

A mathematical model of interactions between cells, oxygen and vas-

cular endothelial growth factor (VEGF), consisting of three partial differ-

ential equations, is developed and parameterised against in vitro data. Key

cell type-specific parameter values are derived, and the model is then used

to simulate cell-solute interactions in a nerve repair construct over the first

five days post-implantation in vivo.

Simulations using uniform seeding cell densities of 88 and 13 × 106

cells/ml result in the highest mean viable cell densities across the construct

after 1 and 5 days respectively. However, simulations using seeding densi-

ties in the range of 200 – 300×106 cells/ml result in steeper VEGF gradients

and higher total VEGF concentrations across the construct, which could be

beneficial for vascularisation.

Simulations incorporating a porous construct sheath result in higher

viable cell density predictions, but also lower total VEGF concentrations,
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than those run using an impermeable sheath.

Subsequently, the cell-solute model is combined with a discrete model

of angiogenesis that simulates vascular growth in response to gradients of

VEGF. Simulation results suggest that different cell seeding strategies could

influence the density, rate and morphology of vascularisation.

The predictions generated in this work demonstrate how mathemati-

cal modelling as part of a wider multidisciplinary approach can provide

direction for future experimental work.
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Engineered tissue design for peripheral nerve repair involves consideration

of a multitude of factors, including therapeutic cell types, materials, spatial

configurations and provision of mechanical and chemical cues. Testing all

of the possible designs experimentally is both time consuming and expen-

sive, and the results of different experiments are often not directly compa-

rable due to differences in experimental methods. Mathematical modelling,

combined with targeted experimental work, has the potential to speed up

and direct the design of engineered tissue.

This work is one of the first to use mathematical techniques to explore

the impact of cell seeding strategies on cell survival and vascularisation in

engineered tissue for peripheral nerve repair, as part of a multidisciplinary

approach including experiments that were specifically designed to facilitate

model parameterisation.

The results have demonstrated the potential of specific cell seeding

strategies to improve therapeutic cell survival in engineered tissues and

impact the rate and density of vascularisation. The quantitative predictions

made by the model can be directly validated via in vivo experiments, and

the qualitative hypotheses generated as part of this work have highlighted

new avenues for exploration in the future.

The work contained in this thesis will be carried forward and extended

by other PhD students and postdoctoral researchers as part of the ongo-

ing research carried out by the recently established UCL Centre for Nerve

Engineering, with emphasis on the continuation of the multidisciplinary
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method set out here. In particular, the predictions and suggestions made

in this thesis will contribute directly to plans for the experimental program.

Further in the future, the mathematical model could be used by tissue en-

gineers in the wider research community to help improve the design of

various engineered tissue constructs.

A selection of the work contained in this thesis has been presented at

conferences in the UK, Europe and Japan, including the TERMIS World

Congress, as well as at the Houses of Parliament as part of the STEM for

Britain poster exhibition. A review on the application of mathematical

methods to tissue engineering has been published, and the parameterised

cell-solute model is scheduled for publication in a separate paper. Other

parts of the work are under preparation for publication.
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Chapter 1

Introduction

This thesis presents a multidisciplinary approach to nerve tissue engineer-

ing, comprising of the development of a mathematical model of important

cell-solute interactions and vascular growth within engineered tissue, in-

formed by in vitro data collected from specifically designed experiments.

The aim is to investigate the potential impact of different initial cell dis-

tributions and densities within engineered tissue on the survival of the

seeded cell populations and revascularisation, specifically in the context

of nerve repair. More broadly, this thesis also explores and demonstrates

the potential of a closely integrated multidisciplinary approach to tissue

engineering. Thus the chosen experimental-theoretical method forms an

integral part of the research.

In this chapter, general introductions to the peripheral nervous system

and current approaches to peripheral nerve repair are provided (Sections

1.1 and 1.2), followed by an introduction to therapeutic cell seeding strate-

gies for engineered tissue (Section 1.3), which motivates the study of the

impact of different seeded cell densities and distributions upon outcomes.

Subsequently, an overview of the merits and challenges of a joint theoret-

ical and experimental approach to tissue engineering is provided (Section

1.4). Finally, the motivations and objectives of the project are outlined, and

the structure of the thesis is presented (Sections 1.5 and 1.6).
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1.1 The peripheral nervous system
The peripheral nervous system is a complex network of nerve bundles

which facilitates the transfer of information between the central nervous

system and the tissues and organs of the body, via impulses (action po-

tentials) transmitted by sensory, motor and autonomic neurons. A single

peripheral nerve (Figure 1.1) is composed of many neurons and their cor-

responding axon fibres. Many, but not all, of these axons are covered in a

myelin sheath provided by Schwann cells (SCs), which improves the con-

duction of action potentials. SCs are the principal glial cells of the pe-

ripheral nervous system, and are instrumental in the process of peripheral

nerve repair (Section 2.1.1). Bundles of axons are contained within the en-

doneurium of structures called fascicles, along with their supporting SCs

and additional extracellular matrix (ECM). Each fascicle is surrounded by a

perineurium, an additional supporting layer. Finally, the whole nerve, con-

taining one or more fascicles, is covered by a final layer of dense connective

tissue called the epineurium.

Vasculature is present throughout the body of the nerve and in the

surrounding tissue in the form of an interconnected and tortuous network

[210, 423]. The tortuosity of the blood vessels allows the delivery of vi-

tal nutrients to remain unhindered by twisting or movement of the nerve.

Major vessels lie both on the outer surface of the nerve and within the

epineurium, with microvasculature running throughout the perineurium

and endoneurium. Local blood flow is therefore higher in the epineurium

than the interior of the nerve [423]. The branching macro-structural forms

of the vascular network and peripheral nerves are similar and appear

closely related even at first glance (Figure 1.2). Although there are many

differences between the two networks upon closer inspection, it is well es-

tablished that the development, function and repair (Section 2.1.2) of the

peripheral nervous system are closely tied to that of the vascular system

[296].
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Figure 1.1: Cross section of a peripheral nerve. Axons range in diameter from
0.2 µm up to 20 µm.

1.2 Peripheral nerve injury and current strategies

for repair
Damage to, or complete severance of, a peripheral nerve, categorised gener-

ally as peripheral nerve injury (PNI), has been estimated to occur in around

1.5 to 3% of trauma patients [38, 275] with young people disproportionately

affected [194, 247, 263, 378]. Motor vehicle accidents are the most common

cause of PNI [194]. Other causes include sports injuries, gun-shot and stab-

bing incidents and general military activity [329], falls, and diabetes [105].

Although not life threatening, PNI can have serious repercussions for those

affected.

PNI can lead to permanent loss of function and refractory neuropathic

pain along with a host of comorbidities [274], resulting in a marked reduc-

tion in quality of life for many patients [81]. Patients who do experience

neuropathic pain are more likely to have other pain-related conditions such

as fibromyalgia and oesteoarthritis [39]. Neuropathic pain and loss of func-

tion can have an impact upon every aspect of a patient’s life, from their role

in society to their relationships at home, according to the level of disability

that they may experience. This often leads to distress, anxiety and depres-
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Figure 1.2: Depictions of the nervous system (left) and the arterial and venous sys-
tem (right) from Andreas Vesalius’ De Humani Corporis Fabrica, 1543.
Although these early anatomical drawings are imperfect, they serve to
demonstrate the similarity of the branch-like structure of these two net-
works. ’Final nerve-figure, by Vesalius.’ by Vesalius, Andreas (left) and ’A.
Vesalius, De humani corporis fabrica’ (right). Credit: Wellcome Collection.
CC BY 4.0

sion [102, 146, 274]. Neuropathic pain can greatly affect a patient’s ability

to obtain quality sleep, further exacerbating any mental and physical issues

[274].

Due to the ongoing treatment of pain and other symptoms in PNI pa-

tients, the healthcare cost of incurring such an injury is considerable. In

one study, the cost of treating neuropathic pain, including PNI alongside

other causes, was calculated from a US health insurance claims database

for the year 2000 [39]. It was estimated to cost an average of $17,355 per

patient per year, in comparison to $5,715 for age and gender matched con-

trols without painful neuropathic disorders. A study based in Sweden

calculated that a combined total of lost production costs and health care

fees of approximately e51,238 is incurred for each employed person who

experiences an injury to their one of the major nerves in the forearm, the

https://wellcomecollection.org/works/qz7gnby2
https://wellcomecollection.org/works/u35wfw9y
https://wellcomecollection.org/works/u35wfw9y
https://creativecommons.org/licenses/by/4.0/
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median nerve [334]. The median sick leave for the participants in the study

was 210 days, but some individual patients’s leave lasted over three times

this length. Thus PNI presents a significant economic challenge to both

patients and society in general, motivating the ongoing search for viable

clinical treatments that will reduce the cost of therapy as well as the phys-

ical symptoms.

The current gold standard for repair of nerve gaps of length greater

than 1 to 2 cm is the autologous nerve graft or autograft. This method

of treatment involves the transplantation of nerve sections from elsewhere

in a patient’s body into the injury-induced nerve gap, thereby bypassing

the issue of immunogenicity. Supporting therapeutic cells such as SCs,

which release neurotrophic factors that aid regeneration, are transferred

along with the body of the nerve. Autologous nerve grafts remain the

most successful method of therapeutic intervention for PNI.

However, there are multiple issues with this approach to nerve repair.

The success rate of autologous nerve grafts is far from ideal, with studies

reporting that only around 50% of autograft patients manage to regain a

good level of function [181, 210, 390, 412]. As a consequence of the surgery,

additional nerve and tissue damage at the donor nerve site can lead to more

pain, infection and loss of function. The need to harvest a donor nerve

also lengthens the time spent in surgery, thereby incurring additional costs.

Furthermore, the number of eligible nerve donor sites that can be harvested

is limited, and it is often difficult to locate and harvest a sufficient quantity

of donor nerve.

Allografts, tissues transferred from one member of a species to an-

other genetically non-identical member of the same species, are an alterna-

tive nerve repair solution. This method does not require patients to suffer

from donor nerve site comorbidity, and it would be possible to stockpile

allografts for future use. However, cellular allografts do necessitate the

use of immunosuppression, making them less than ideal candidates for
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widespread use [358].

Bioengineered peripheral nerve repair constructs (NRCs) have the po-

tential to become the most affordable, versatile and successful method of

nerve repair. NRCs are segments of engineered tissue designed to aid

peripheral nervous system regeneration (Figure 1.3). Once surgically im-

planted into a nerve gap, NRCs encourage neurite growth through the pro-

vision of structural and chemotactic guidance. NRCs are predominantly

cylindrical in form to mimic the structure of the regenerating nerve. Due

to the biological complexity of the process of neuronal regeneration NRC

design requires the consideration of many different factors [265, 301]. A

large number of combinations of materials, seeded cells and spatial ar-

rangements have been trialled both in vivo and in vitro, with varying de-

grees of success [98, 270]. Base scaffold materials range from synthetic

polymers to biopolymers such as type I collagen and fibrin. Additional

structural components such as aligned rods or channels and porous sur-

faces have been added in attempts to increase cell guidance [91].

The theoretical investigation carried out in this thesis focuses on NRC

designs constructed using a base material called engineered neural tissue,

or EngNT [132]. Manufactured in the Phillips lab, EngNT is composed of

cell-seeded type I collagen that has been tethered to induce cellular con-

traction of the gel and alignment of the cells along the longitudinal axis,

and then stabilised via the removal of interstitial fluid in a process called

plastic compression [54, 310]. Sheets of EngNT can then be rolled into

cylindrical structures, inserted into a protective sheath, and implanted into

a peripheral nerve gap in vivo to aid regeneration.

EngNT has been created using several different cell types, including

differentiated adipose-derived stem cells (dADSCs) [133], differentiated

human dental pulp stem cells [340] and differentiated CTX0E03 human

neural stem cells [291]. The aligned nature of this cellular material pro-

vides an additional directional cue to regenerating neurons and, in contrast



1.2. Peripheral nerve injury and current strategies for repair 39

Direction of
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Diameter
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Cell-seeded collagen nerve repair construct
implanted into peripheral nerve gap
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Distal stump

Figure 1.3: Simplified illustration of an NRC designed to guide and promote the
regeneration of peripheral nerves. During surgery an NRC is sutured
between the proximal and distal nerve stumps. The body of an NRC
can be constructed using a range of different materials and additional
components, such as rods and seeded cells.

to the use of unstable hydrogels, the process of manufacture of EngNT al-

lows greater control over the arrangement of the therapeutic cells.

The use of EngNT removes several challenges typically encountered

during the design and manufacture of engineered tissue scaffolds for pe-

ripheral nerve repair [132]. The therapeutic cells are initially distributed

into the gel and therefore there is no separate cell seeding step or any

need to engineer matrix surfaces that promote cell adhesion. The mechan-

ical properties of EngNT are similar to that of native tissue, and thus it

also avoids the complications that arise when cells are seeded on stiff ma-

trix surfaces that provide significant and complex mechanical cues [311].

Importantly, EngNT could also feasibly be manufactured on a large scale

according to clinical need because the processes of cellular alignment and

plastic compression are suitable for automation.

Although studies involving EngNT-based NRCs and many other dif-

ferent NRC designs have offered some promising results, the efficacy of

a NRC is yet to surpass that of an autograft and translation to the clini-

cal setting is limited, signalling that further improvement is still required
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[113, 140, 228, 270].

1.3 Cell seeding strategies: current approaches

and potential for improvement
Therapeutic cells are a critical component of current NRC designs. They

are used extensively across the entire field of tissue engineering and re-

generative medicine [22, 44, 90, 119, 286, 348] and cell seeded engineered

tissues have demonstrated improved outcomes when compared to acellu-

lar controls [175, 193, 422]. Seeded stem cells and in particular Schwann

cell-like cells are commonly used in the context of peripheral nerve repair

[91], and are especially important for long gap neuronal repair. These cell

populations secrete important growth factors that aid both neuronal repair

and revascularisation [30, 410], and can also provide mechanical support

via the production of ECM proteins [55, 83] and directional cues [132]. The

use of seeded SCs or SC-like cells has produced promising results both in

vivo and in vitro [110, 141, 234].

In recent years, research into therapeutic cell seeding for NRCs and in

tissue engineering in general has focused predominantly upon the choice

of cell type. Different cell types have different strengths and weaknesses

and can produce very different results in vivo and in vitro. Regardless of the

cell type used, the survival of the seeded cell population is an important

consideration in cellular tissue engineering. Note that in this thesis, the

term “cell survival” will be used to refer to the persistence of a cellular

population over time, as opposed to as a reference to the survival of specific

individual cells.

There is some doubt about the need for longer term cell survival (on

the order of weeks to months), due to examples of improved functional

results using cell therapy with little evidence of enduring cell survival

[298, 321]. However, shorter term cell survival is generally acknowledged

as important for the efficacy of NRCs and other cellular engineered tissues.
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Furthermore, the death of seeded cells post implantation has the poten-

tial to become a significant waste of resources and source of expense once

NRCs finally achieve widespread translation to the clinical setting.

Seeded cell death is caused by hostile aspects of the in vivo repair envi-

ronment, including hypoxia brought about by loss of blood vessels during

injury, oxidative stress, and the host immune response [152, 373]. The

transcription factor Hypoxia-Inducible Factor-1α (HIF-1α) mediates the hy-

poxia response of cells, which is activated when oxygen availability does

not meet cellular metabolic demand. Under hypoxic conditions, the degra-

dation of HIF-1α is inhibited, which permits HIF-1α to undergo nuclear

translocation and thereby activate Hypoxia Response Element (HRE) genes.

HRE genes are involved in metabolic adaptation, including the production

of angiogenic factors, such as VEGF, and pro-survival factors, such as anti-

oxidants [198]. However, HIF-1α can also induce apoptosis [62].

Additionally, the effect of hypoxia on reactive oxygen species (ROS)

and ROS scavenger secretion can impact cell survival. ROS are highly re-

active molecules that are produced during the metabolism of oxygen; the

ROS family work as messengers but can also cause oxidative damage to

cells. Conversely, ROS scavengers are compounds that react with ROS to

counteract their negative effects. Due to anaerobic respiration, ROS pro-

duction and acidosis increases in hypoxic conditions [67]. Excess levels of

ROS can in turn lead to severe damage to cell structures and consequently

cell death [330].

A lack of sufficient supporting extra cellular material could also nega-

tively impact the survival of populations of cells by inducing anoikis, which

is cell death induced by the loss of cell-matrix interactions [52, 60, 123].

Survival rates of seeded cells post implantation in nerve injury scenar-

ios vary according to the cell type and time interval, with measurements

ranging between 0.5 and 1% after 4 months for neural stem cells injected

into a rat nerve gap [148], and from 25 to 38% after 2 months for skin-
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derived stem cells transplanted within both collagen and polymer-based

NRCs [243], as reviewed by Walsh and Midha [400]. Here the % values

are proportions of the number of cells originally injected or implanted.

In general, most existing measurements of cell survival are taken at rela-

tively late time points (beyond 6 weeks post-implantation). However, loss

of therapeutic SCs has been found to occur predominantly during the first

3 weeks post implantation [152, 302], although the exact time scale and

degree of cell death differs according to the scenario.

In a different paper, Walsh et al. demonstrated that the nerve envi-

ronment into which the cells are seeded could have a significant impact

upon their survival rates by recording the survival rates of 300,000 skin-

derived precursor cells delivered after transplantation into intact nerve,

and injured nerve immediately after injury (acutely denervated nerve) and

8 weeks after injury (chronically denervated nerve) [401]. The measured

survival rates varied significantly with the scenario type and time point,

from a high of 10.48% in the acutely denervated scenario after 2 weeks, to

a low of 2.68% in the uninjured scenario after 8 weeks. However, the cells

in this study were injected, and therefore did not benefit from the support

of a scaffold. Interestingly cell survival rates were lowest in the uninjured

scenario.

A few studies provide evidence of the importance of cell survival for

the efficacy of tissue engineered constructs, although the fact that the ma-

jority of researchers do not record survival rates makes comparison diffi-

cult. Itosaka et al. compared different methods of delivering bone marrow

stromal cells into rat spinal cord injury sites, and found that the cells seeded

in a fibrin matrix achieved both better survival rates and better neurological

function than the cells that were injected into the gap without a supporting

scaffold [163]. It is important to note that this result does not necessary im-

ply that larger cell survival rates produce better functional outcomes due

to the potential impact of the supporting matrix. However, the cell seeded
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fibrin matrix also produced better functional outcomes than the fibrin ma-

trix alone, so it seems likely that increased cell survival facilitated by the

matrix at least played a role in the improvement of the functional outcomes.

Similarly, Patel et al. found that blood vessel and axonal density cor-

related strongly with seeded SC numbers in rat spinal cord implants [300],

and Parr et al. also found a significant positive correlation between func-

tional scores and neural stem/progenitor cell survival in rat spinal cord

injury [298].

Overall, studies on tissue engineering for peripheral nerve repair often

do not track the implanted cells or do so using imperfect techniques [400],

and therefore data describing cell survival specifically in the peripheral

nerve repair scenario is scarce. However, awareness of the need for at

least some minimal survival time has lead to the development of various

techniques to increase or enhance cell survival. Specific choices of scaffold

material have been shown to improve cell survival [60, 85]. Delivery of

growth factors to support the cells, as well as encourage repair, has also

been implemented [295] and the short half life of these proteins has lead to

the development of slow-release delivery methods to increase their efficacy

[235, 297]. The immunosuppressive cyclosporine is also routinely used in

allogeneic cell transplantation studies, including in the peripheral nerve

repair setting [340], to enhance cell survival.

Although many of the previously mentioned techniques for increas-

ing cell survival have achieved improved results, so far there has been little

research on the impact of the quantity and distribution of the seeded thera-

peutic cells upon cell survival. Cell density can also affect the proliferation

and death rates of the cells. First of all, cells seeded in engineered tissue in

vivo have access to only limited nutrient and oxygen supplies, especially in

the initial period after implantation; areas of tissue with higher cell densi-

ties will consume nutrients faster, leading to low levels of nutrients in these

regions and increasing the risk of cell death. Oxygen in particular is con-
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sumed quickly by dense populations of cells, but has only a short diffusion

distance, which can lead to necrotic regions in the centre of engineered

tissues.

Additionally, interactions between cells within a population can affect

rates of proliferation and death. Contact inhibition of proliferation, the

slowing of cell proliferation due to contact between the surfaces of adja-

cent cells, is a well-documented in vitro phenomenon [248, 364]. In vivo,

this curbing of cellular proliferation has been speculated to act as a mecha-

nism for ensuring effective organisation of tissue. Juxtacrine signalling and

growth factor production can also help to increase cell survival.

Some existing studies appear to assume that using more therapeutic

cells is better, but this is not necessarily the case: although increasing the

initial number of seeded cells in engineered tissue could result in more cells

surviving, on the other hand very high densities could increase competition

for resources, resulting in the opposite effect.

Thus careful thought is required to identify seeding cell strategies that

allow for necessary levels of cell survival: certainly some cells need to

survive for a period of time, but seeding a construct with an excessive

number of cells in the hope that enough will survive to achieve the desired

effect is an inefficient and wasteful solution. This thesis will investigate the

hypothesis that there is potentially an optimal seeding cell density at which

enough cells survive for the tissue to remain useful, whilst limiting the

number of cells that die, thus reducing the waste of excessive cell seeding.

As reviewed by Walsh and Midha [400], the total number of therapeu-

tic cells used for peripheral nerve repair varies considerably from as low as

4000 [16] to as high as 20× 106 [160, 400]. The initial therapeutic cell density

used tends to vary widely in the approximate range of 1× 106 to 200× 106

cells/ml. It is also worth noting for comparison that the average density of

SCs in normal nerve is around 20× 106 cells/ml [264, 333]. However, due

to variance in the injury types, cell types and therapeutic approaches used
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it is difficult to directly compare the results of these studies.

Published research does not always specify the number or density of

cells used, and only a few studies have specifically investigated the im-

pact of the initial density at which cells are seeded upon outcomes. One

such study by Mosahebi et al. trialled polyhydroxy butyrate NRCs us-

ing four different initial densities of seeded SCs: 20, 40, 80 and 160× 106

cells/ml [264]. The measured axonal regeneration distance after 3 weeks

post-implantation for the 20× 106 cells/ml NRCs was not statistically sig-

nificantly greater than that of the acellular controls, but doubling the den-

sity to 40× 106 cells/ml also approximately doubled the axonal regenera-

tion distance, and this increased again when a density of 80× 106 cells/ml

was used. Interestingly, relative to this 160 × 106 cells/ml resulted in a

small decrease in the regeneration distance, implying that the optimal seed-

ing cell density for this scenario lies somewhere between 80 and 160× 106

cells/ml. This provides evidence that there is a threshold after which in-

creasing cell density delivers poorer results, perhaps due to an increase in

cell death as a result of competition for nutrients.

Guénard et al. found that higher seeding densities of 80 and 120× 106

cells/ml SCs in channel constructs increased the mean number of myeli-

nated axons across a rat peripheral nerve gap of 8 mm, compared to

40× 106 cells/ml and the acellular control [141]. Overall 120× 106 cells/ml

was the density that resulted in the best regeneration. However, in this

study the luminal volume of the nerve constructs was also increased at the

same time as the seeding density, meaning the isolated effect of the seeding

density alone is less clear.

Rutkowski et al. seeded therapeutic Schwann cells at densities of 104,

105, 106 and 107 cells/ml in NRCs and placed a dorsal root ganglion at the

open end of each construct as a source of neurons [337]. They reported that

only constructs with seeding densities greater than 107 cells/ml resulted in

significantly greater axon lengths than those without Schwann cells. Al-



46 Chapter 1. Introduction

though this study tested a wide range of densities, the highest cell density

was still less than the densities reported as delivering the best results in

the works by Guénard et al. and Mosahebi et al., and so it potentially did

not explore the upper limits of seeding cell density efficacy. Furthermore,

none of these studies assessed cell survival rates at the time point of the

outcome measurements, but previously referenced studies have shown that

increased cell survival, and therefore increased density of viable cells, has

a positive impact on outcomes. Therefore it seems probable that the im-

provement in outcome gained from increases in initial cell density stems

from the fact that progressively higher seeding densities lead to denser cell

populations over time, up to the point where competition and overcrowd-

ing becomes an issue.

Overall, the existing studies on the impact of cell density upon efficacy

for peripheral nerve repair are limited but do suggest that there may be

an optimal seeded cell density for improved repair, and research in tissue

engineering in general indicates that this will probably vary according to

the injury type, cell type and the repair approach taken. Certain tissue

engineered scaffold and therapeutic cell type combinations may be more

conducive to cell survival and thus require fewer seeded cells to achieve a

desired level of regeneration.

Although inconclusive due to lack of data, existing studies appear

to suggest that increased cell survival is beneficial for tissue regeneration

post-implantation. Working on this assumption, it would be useful to be

able to pinpoint the cell seeding density, for a particular NRC scaffold and

cell type combination, that will provide the highest number of viable cells

in the short term post-implantation. This is one specific aim of this thesis.

Another potentially important, but thus far generally overlooked, con-

sideration is the spatial distribution of cells across NRCs. Cells are cur-

rently seeded uniformly across most types of engineered tissue. However,

little research has been conducted to investigate whether alternative, non-
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uniform distributions of seeded cells could help to improve cell survival,

potentially by seeding fewer cells in less hospitable regions of tissue.

Non-uniform distributions could also encourage vascularisation via

the production of steeper vascular endothelial growth factor (VEGF) gradi-

ents across the engineered tissue. VEGF is an important angiogenic factor

which promotes vascular permeability and basement membrane degrada-

tion during the initial stages of angiogenesis [33]. Additionally, concentra-

tions and gradients of VEGF influence the rate and direction of endothelial

cell migration [31, 282, 413]. The role of VEGF in angiogenesis is described

in more detail in Sections 2.1.3 and in Chapter 5. Areas of tissue with

higher densities of cells would be expected to generate larger quantities

of VEGF and other important growth factors. The growth of vasculature

is in turn closely linked to the issue of cell survival via the provision of

oxygen to the hypoxic repair environment and, in the context of peripheral

nerve repair, endothelial cell migration in response to VEGF aids neuronal

regrowth. The important relationship between neuronal repair and vas-

cularisation is explored in detail in Section 2.1.2 and the emphasis upon

VEGF motivated in Section 2.1.3.

In summary, exploration of the potential impact of different seeded

cell densities and distributions upon outcomes in tissue engineering is so

far incomplete, although research published so far has suggested the ex-

istence of optimal cell densities. This thesis will explore how the seeded

cell densities and distributions in NRCs could be altered to enhance cell

survival and the production of VEGF gradients, and thereby improve out-

comes including the degree and rate of vascular growth.

1.4 Motivation for a multidisciplinary approach
Mathematical modelling is capable of accelerating and refining design

choices in tissue engineering but so far has not been exploited to its full

potential [86]. This is despite acknowledgement that mathematics and com-
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putational modelling has the potential to be a key tool for tissue engineers

from as early as 1993 [19, 206], around the time when the field was first

beginning to grow rapidly [41]. This thesis aims to improve the cell seed-

ing strategy of tissue engineered NRCs through the use of a mathematical

model, but also to demonstrate and explore how mathematical modelling

can be properly implemented alongside experimental work in tissue engi-

neering as part of an effective and efficient multidisciplinary workflow.

Current research in soft tissue engineering, encompassing nerve and

skin engineering, is still predominantly experimental. Decisions regarding

factors such as the materials used to manufacture NRCs, and the spatial

arrangement of cells and other components used to promote axon growth,

have been made based upon the results of existing experimental publica-

tions. These publications are both numerous and diverse, featuring many

combinations of different nerve construct designs, experimental models

and assessment methodologies [14, 270]. Although this provides a wealth

of information to draw upon, this diversity also means that it is often diffi-

cult to compare outcomes reported in different papers. The sheer number

of possible designs means that choosing which one to test from the wide

range of choices is not an easy task, and so far translation to the clinical

setting has been slow.

Prior to clinical introduction, designs must be tested using in vivo an-

imal models. However, the ‘Three Rs’ of experimental science dictate that

the replacement, reduction or refinement of animal use should be an aim

for scientists. In vitro models go some way towards reducing the number of

animal experiments required to refine NRC designs by helping to identify

substandard designs before they reach the in vivo testing stage [135], but it

is worth noting that the in vitro models used are not always good represen-

tations of the in vivo scenario. The introduction of mathematical modelling

as an additional step prior to or alongside the use of in vitro models would

help to reduce the waste of both animal and general laboratory resources.
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A parameterised, data-validated model would have the ability to identify

poor nerve construct designs before their implementation in the in vivo

setting, thereby aiding scientists in their compliance with the ‘Three Rs’,

as well as saving money that would otherwise be wasted experimentally

testing clinically inviable designs.

Essentially, modelling can help provide focus to experimental work,

narrowing the breadth of potential options that experimental scientists face

in this field. In contrast to experiments, once a mathematical model has

been created, simulations to test different designs are comparatively quick

and very cheap to run. Furthermore, mathematical models can be used

to generate hypotheses, as well as test them. Sweeping over parameter

values has the potential to throw up unexpected and exciting results that

can inspire future experimental research.

Further in the future, mathematical models could even help to bridge

the species-specific gap between animal and human studies. Rat models

feature in a majority of in vivo peripheral nerve repair studies, but fre-

quently the results do not translate smoothly to human clinical application

[14, 183]. It could be possible to create a mathematical model of peripheral

nerve regeneration incorporating features and parameters relating specifi-

cally to human biology, which might help us to understand the differences

between the rat model and the human more thoroughly.

So far, the majority of modelling in the field of tissue engineering has

been implemented to study bone regeneration and tissue cultivation. These

studies, along with examples of modelling from other related areas of bi-

ology, can be used to demonstrate the possible efficacy and potential pit-

falls of a joint theoretical-experimental approach to tissue engineering. An

extensive review of mathematical modelling in biology and tissue engi-

neering relevant to the work in this thesis is presented in Section 2.2.3; a

small selection of papers are referred to in the following paragraphs to il-

lustrate important benefits and issues associated with using mathematical
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modelling in combination with experimental data to study biological or

engineered tissues.

One example of the use of mathematical modelling in tissue engineer-

ing is provided by Sanz-Herrera et al., who developed a multi-scale math-

ematical model to simulate the in vivo regeneration of bone tissue within

a scaffold implant [341]. The study aimed to inform the design of bone

scaffolds via the prediction of their behaviour in vivo and their interactions

with the regenerating bone tissue. Both the micro-scale bone regenera-

tion within the scaffold and the organ-level bone remodelling were cap-

tured through the use of mechanics in combination with a finite element

voxel method. A micro-CT generated geometry of an actual scaffold was

used within the simulations. Parameter values such as scaffold stiffness

were varied to assess their impact upon model outputs including scaffold

resorption and percentage bone regeneration. The results of this investi-

gation suggested that, within the parameter ranges investigated, the rate

of bone regeneration within the scaffold increases with increased scaffold

stiffness and mean pore size. Seeding the scaffold with cells prior to im-

plantation also improved the simulated rate of regeneration. These results

demonstrate the ability of mathematical modelling to pin point which de-

sign variables, represented by corresponding model parameters, are most

likely to affect experimental and clinical results, and to suggest promising

values for such variables.

However, this study also draws attention to the need for proper model

validation, which is a crucially important aspect of mathematical modelling

in the field of tissue engineering and in biology in general. Sanz-Herrera et

al. were unsatisfied with their attempts to validate their model against ex-

perimental data. They pointed out that many of the input parameter values

needed for the model were difficult to find in the literature, making it hard

to compare their final results against experimental data. They found that

data from previous experimental studies in rabbits fell in the general range
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of their model results, but acknowledged that the experimental set ups dif-

fered from their corresponding in silico configuration, preventing accurate

validation. In the study conclusion, they advocated a multidisciplinary ap-

proach to this problem, combining the work of experimental scientists with

modellers to enable proper model validation. This is the approach adopted

in this thesis.

The importance of consistency between experimental and theoretical

work also became apparent when Hossain et al. developed a computational

model of 3D chondrocyte cell growth within a porous scaffold, placed

within a bi-directional flow perfusion bioreactor, which incorporated the

influence of cell growth over time upon local fluid flow [156]. The study

compared the predicted cell growth rate with experimental work, and

found that the two were approximately in agreement. However, the ini-

tial conditions used for the experimental work did not correspond directly

to the model, preventing definitive validation of the theoretical framework.

This further motivates the use of specifically designed experimental work

to validate as well as parameterise mathematical models, if possible, in or-

der to prevent such issues from reducing accuracy and confidence in the

validation process.

Occasionally it is possible to achieve model validation using exist-

ing data collected for a different purpose, but this requires some careful

thought about whether the existing experimental metrics can be matched

to model outputs. De Pillis et al. presented a model that described interac-

tions between immune cells and tumour cells, and succeeded in validating

their analytical framework against both mouse and human experimental

data sets provided by previous research [94]. Interactions between im-

mune cells and tumour cells were described by a set of coupled differential

equations, including functions representing growth and death rates. Some

parameter values were gleaned from previous papers, whilst others were

derived using optimisation methods with the experimental data. Finally,



52 Chapter 1. Introduction

patient data values for percent CD8+ T cell induced tumour lysis was used

to validate the model. The results of the model suggested that increasing

the activity of the CD8+ T cell specifically could be necessary for tumour

regression, providing an interesting hypothesis that could direct and in-

spire further research.

Based upon existing studies, it is clear that a carefully planned

methodology is required to make the most of the capabilities of math-

ematical modelling in combination with experimental data. Data from

specifically designed experiments, in combination with relevant existing

values found in the literature, can be used to increase the accuracy of the

parameterisation process. If possible, further experiments should also be

carried out to validate model predictions. The use of existing data for

validation is less reliable due to almost certain discrepancies between the

previously conducted experimental set-up and the model framework. Vali-

dation experiments need not be carried out for the sole purpose of confirm-

ing the predictive powers of the model. In the proposed joint theoretical-

experimental workflow (Figure 1.4), experiments that would have taken

place regardless of the existence of a theoretical model can be adjusted

according to the model predictions, perhaps involving a reduction in the

number of designs that are to be tested or a greater focus on designs pre-

dicted by mathematical simulations to perform well. The results of these

experiments can act both as model validation and as experimental evidence

in their own right.

In summary, mathematical modelling could act as a useful comple-

mentary tool for tissue engineers that would allow experimental scientists

to extract more value from existing data, reduce animal experimentation

and cost, and streamline their workflow. Data from experiments can be

used to iteratively improve mathematical models, as well as published and

analysed in its own right. This integrated method of working will require

close interaction between experimental and theoretical scientists.
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Figure 1.4: Diagram demonstrating the proposed theoretical-experimental work-
flow followed by this project, reproduced from Coy et al. [86]. The ini-
tial mathematical model, informed by existing publications and knowl-
edge, is iteratively improved using experimental data.

In this thesis, a combined experimental-mathematical approach is ap-

plied to the problem of cell seeding in tissue engineered NRCs. This in-

volves the design of in vitro experiments incorporating cells and materials

that are currently used to make NRCs in the Phillips lab, in order to collect

relevant data for parameterisation of the mathematical framework. Thus

far, such a multidisciplinary approach has not been used to investigate

how different seeded cell densities and distributions could impact both

cell survival and vascularisation within engineered tissue.

1.5 Thesis aims and objectives
Two specific objectives and one broader objective will be investigated in

this thesis:

• The impact of therapeutic cell seeding densities and distributions

upon cell survival in engineered tissue The number or density of

cells seeded in engineered tissues such as NRCs has an impact on cell

survival over time, but research into this has so far been scarce. The
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first aim of this thesis is to investigate whether specific seeded cell

densities and distributions could enhance cell survival, and thus re-

duce the waste of seeded cells whilst potentially improving functional

outcomes, using a parameterised mathematical model of cell-solute

interactions within an NRC.

• The impact of cell seeding densities and distributions upon gradi-

ents of VEGF and vascularisation in engineered tissue Vasculari-

sation is vital for the success of engineered tissues, and the growth of

blood vessels plays a particularly large role in peripheral nerve repair

by guiding neuronal growth across the injury gap, as described in

Section 2.1.2. The second aim of this thesis is to investigate whether

specific seeded cell densities and distributions within an NRC could

induce VEGF gradients, and thereby improve vascular growth into

the engineered tissue, by using the parameterised cell-solute model in

combination with a model of directional vascular growth in response

to VEGF gradients. Although vascular growth models already exist

as reviewed in Section 2.2, the discrete form of model used in this

thesis has not been applied to the peripheral nerve repair scenario

before.

• A multidisciplinary method for tissue engineering Mathemati-

cal modelling in tissue engineering has so far made some use of ex-

perimental data, but to achieve the full potential of modelling in-

creased integration with experimental work is required. This work

investigates this concept by proposing and testing an iterative joint

mathematical-theoretical approach that involves the use of experi-

mental data specifically collected for model parameterisation, and

close collaboration with experimental tissue engineers (Figure 1.4).

The third aim of this thesis is to assess this method and identify how

to improve multidisciplinary efforts in tissue engineering to allow

more successful collaborative work in the future.
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1.6 Thesis structure
The literature review, Chapter 2, first of all provides an overview of periph-

eral nerve repair, focusing particularly on the close relationship between

vascularisation and neuronal regeneration, and then identifies the key bi-

ological processes and factors that require consideration for the mathe-

matical model. A review of existing relevant mathematical models of cell

solute interactions and vascular growth follows, including justification for

the mathematical approaches chosen for this research and outlining the

differences between the work in this thesis and previous mathematical and

computational models.

The flow of the work contained in Chapters 3, 4 and 5 is outlined in

Figure 1.5. First, Chapter 3 describes the development of the model of

cell-solute interactions in engineered tissue. This includes the description

of in vitro experiments and analysis of the collected data. These experi-

ments were carried out by collaborators: G. Kennedy (UCL Department

of Mathematics), C. Kayal (UCL Department of Mechanical Engineering),

C. O’Rourke (Biomaterials and Tissue, UCL Eastman Dental Institute) and

P. Kingham (Department of Integrative Medical Biology, Umeå University,

Sweden). Chapter 3 also includes a description of the process of fitting the

mathematical model to this data.

In Chapter 4, the impact of different cell seeding strategies and NRC

sheath designs upon cell survival and the generation of VEGF gradients is

investigated using a range of model simulations.

Chapter 5 presents the development of a model of vascular growth

in engineered tissue in response to gradients of VEGF. This model is then

integrated with the cell-solute model and used to simulate the initial stages

of vascularisation within an NRC, for a select number of therapeutic cell

seeding strategies and NRC sheath designs.

Finally, Chapter 6 draws together the results of this thesis and offers

some ideas for future work.



56 Chapter 1. Introduction

C
hapter 3: D

evelopm
ent of a M

odel of C
ell-Solute

                    Interactions in Engineered Tissue

Preliminary theoretical model: proof of concept

In vitro experiments, informed by
design of theoretical framework

Initial theoretical model design Cell viability 
data

VEGF data

Statistical analysis of experimental data

Secondary theoretical model design

Parameterisation of cell and
oxygen governing equations

Parameterisation of VEGF governing equation

A parameterised theoretical framework
describing cell-solute interactions within

collagen gel

C
hapter 4: A

pplication of the
                   C

ell-Solute M
odel

Creation of a cylindrical geometry representing a NRC

Application of cell-solute model to NRC geometry

Simulations of various initial cell seeding
distributions and NRC sheath designs

Theoretical predictions of optimal cell
seeding strategies and sheath designs for cell

survival and the generation of VEGF gradients

C
hapter 5: A

 M
odel of Sprouting

                    A
ngiogenesis in 

                    Engineered Tissue 

Development of discrete model of sprouting angiogenesis

Integration of discrete model with cell-solute model

Simulations of angiogenic response to NRC designs
with specific seeding cell strategies

Theoretical predictions of optimal cell
seeding strategies and sheath designs for

sprouting angiogenesis

Experimental workTheoretical work

Figure 1.5: Flow chart demonstrating the structure of the work in this thesis.



Chapter 2

Literature Review

Elements of the review presented in this chapter have been published in

Tissue Engineering and Regenerative Medicine (see [86])

The following literature review is split into two sections due to the

interdisciplinary nature of this project; the first deals with the biological

and tissue engineering aspects of the project and the second explores the

mathematical side.

Knowledge and analysis of the biological mechanisms behind cell-

solute interactions and neuronal and vascular growth, in the context of pe-

ripheral nerve repair, was required to devise a model capable of simulating

seeded cell survival and the impact of cell distributions on vascularisation.

The first section of this chapter initially describes the biological processes

that drive peripheral nerve repair, and then examines the relationship be-

tween nerve regeneration and revascularisation, thereby providing moti-

vation for the development of the mathematical model described in this

thesis.

The second section provides a review of existing model frameworks

developed to describe the processes of interest in the current project: cell-

solute interactions and angiogenesis. This review was used to establish

which types of theoretical framework would best suit the objectives of this

research, and to finalise the choice of mathematical framework and param-

eter values used in this work.
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2.1 Peripheral nerve regeneration and the role of

blood vessels

2.1.1 Peripheral nerve regeneration

The peripheral nervous system has the ability to spontaneously regener-

ate after damage has occurred, although the degree of natural regeneration

possible is determined by the severity of the injury. The process of nerve re-

generation takes place as a series of complex and related events that begin

immediately following injury, involving both neuronal and non-neuronal

supportive cells and signalling molecules. After transection or a severe

crush injury, the axons and myelin in the distal stump of the severed nerve

which have become separated from their respective cell bodies degener-

ate quickly, usually beginning within 24 to 36h [403, 423]. This process

is called Wallerian degeneration, first characterised by Waller after the ob-

servation of this effect in severed frog glossopharyngeal and hypoglossal

nerves [398].

Around 5 to 7 days after an injury has occurred, SC proliferation in-

creases in both the proximal and distal stumps. SCs then migrate into the

nerve gap to clear the axonal and myelin debris created by Wallerian degen-

eration, aided by macrophages. The SCs also break down their myelin and

undergo an important change in phenotype to a repair or Büngner phe-

notype [172]. This is marked by an increase in proliferation rate, and the

secretion of factors that promote neuronal and vascular growth and sup-

port the survival of host neurons [269, 403]. These factors include brain-

derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic

factor, nerve growth factor and VEGF [51, 121, 124, 172]. Repair-type SCs

are also able to remodel the ECM via the production of basement mem-

brane proteins such as laminin and fibronectin. Thus SCs play an impor-

tant role in the process of peripheral nerve regeneration.

If a crush injury has taken place, the endoneurium remains intact.
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However, if transection has occurred a bridge-like structure develops across

the nerve gap, mainly composed of macrophages and neutrophils but also

containing fibroblasts and endothelial cells [65, 179]. The repair-type SCs

align within the endoneurial tubes to form bands of Büngner, and sprout-

ing axons extend into the nerve gap using these bands as guidance [299].

Unaided regeneration in crush-type PNIs is generally more successful than

in transection-type injuries due to the preservation of original nerve struc-

tures [273]. Transection results in the retraction of the distal and proximal

stumps, prompting the need for the “nerve bridge” and forcing axons to

regenerate over a longer distance. Therefore the need for surgical interven-

tion is higher in transection type injuries.

Tissue engineered NRCs aim to support and enhance the natural pro-

cess of nerve repair via the provision of mechanical and chemical cues.

Designs incorporating seeded cells, as described in Section 1.3, combined

with various different materials and other structural components have been

tested widely both in vivo and in vitro in attempts to match the performance

of the gold standard nerve autograft [416]. Research into how to support

both neuronal growth and the assimilation of engineered tissue in general

will need to be combined with awareness of potential commercial limita-

tions, such as speed of manufacture, cost and storage, prior to the eventual

widespread translation of these devices to the clinical setting.

2.1.2 The relationship between vascularisation and neu-

ronal regeneration

Across the field of tissue engineering, vascularisation is recognised to be

crucially important for the assimilation of engineered tissue and successful

regeneration in vivo, and attempts have been made to boost angiogenesis

through the use of specific biomaterials, scaffold properties and seeded

cells and growth factors [127, 173, 208, 342]. The basic provision of nutri-

ents and removal of potentially toxic metabolites via adequate vasculature

is essential for the sustenance of implanted engineered tissue. Without per-
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fusion of blood vessels, tissues must rely on limited oxygen diffusion for

survival. This can be sufficient to support tissues that are relatively thin

such as engineered skin and corneal tissue, or naturally not well vascu-

larised like cartilage, but poses a major barrier to the clinical translation of

“3D” engineered tissues with a greater volume, in which hypoxia can lead

to the widespread death of cells seeded in the core [277]. In the case of

nerve repair in particular, it has been demonstrated that SCs in autologous

nerve grafts cannot survive without a blood supply for more than 7 days,

underlining the importance of inducing vascularisation for the survival of

SC or SC-like cell populations in NRCs [304].

Further evidence for the importance of vascularisation for nerve repair

was provided by a recent study by Farber et al. that concluded that slow

vascularisation of nerve grafts could limit nerve regeneration due to pro-

longed ischemia of the tissue [112]. They tracked changes in vascularisation

over time in long (6 cm) acellular nerve allografts and isografts implanted

in rat sciatic nerve gaps. Isografts are tissues transferred between two ge-

netically identical individuals. The long acellular nerve allografts took up

to 20 days to achieve complete vascular perfusion; this rate of perfusion

was slower than that of the long isografts. In contrast, shorter acellular

nerve allografts were previously shown to have a vascularisation period of

5-7 days [111]. Furthermore, both the shorter acellular nerve allografts and

the long isografts demonstrated better regenerative outcomes than the long

acellular nerve allografts, leading Farber et al. to conclude that prolonged

ischemia due to relatively slow vascularisation could have a negative im-

pact upon regeneration.

Conversely, other studies have reported no significant difference in the

outcome of vascularised nerve grafts and nonvascularised grafts. In par-

ticular, Xu et al. conducted a clinical study that compared the results of

phrenic nerve grafts with varying degrees of vascularisation in patients

with brachial plexus injuries [414]. They observed no significant difference



2.1. Peripheral nerve regeneration and the role of blood vessels 61

in the functional results between the three types of procedures studied.

This concurs with an earlier study comparing vascularised and nonvascu-

larised intercostal nerve transfers that found no difference in the regener-

ation rate of the nerves or the functional outcome [285]. However, a lack

of clear improvement of outcome for vascularised grafts over nonvascu-

larised does not necessarily imply that vascularisation is unimportant, but

could indicate that transplanted vasculature is not effective in promoting a

renewed blood supply to the injury site. Overall, it seems likely that the

provision of nutrients and oxygen by functional blood vessels is necessary

for good peripheral nerve regeneration, motivating the need for fast and

thorough neovascularisation of tissue engineered NRCs post-implantation.

Additionally, recent evidence suggests that the growth of blood vessels

supports peripheral nerve repair not only by promoting the survival of the

implanted tissue but also by directing the migration of SCs across the nerve

gap, thus helping to initiate axonal growth [65]. However, the exact rela-

tionship between neuronal and vascular growth is complex, and has been

a subject of debate over the past 60 years. As early as 1942, Weddell found

that axonal regeneration appeared to progress fastest when the nerves were

in close proximity to blood vessels [407]. Subsequently, observed increases

in vessel permeability after injury were hypothesised to be linked to axonal

growth [254, 361, 408], providing further evidence of a connection between

vascular and neronal repair.

In 1988, Nukada investigated the impact of different types of rat nerve

injury upon the number of endoneurial capillaries and the number and

morphology of myelinated nerve fibers [278]. Ischemic nerve injury was

found to result in delayed neovascularisation and axonal growth and myeli-

nation in comparison to crush type injury. Nukada hypothesised that “dis-

tal neovascularisation after nerve injury is dependent on two factors: (a) the

success of nerve regeneration and (b) the severity of nerve ischemia”, but

later on suggested that delayed axonal growth after ischemic injury could
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conversely be caused by delayed neovascularisation, among other factors.

Thus the results of this research again suggested that the two processes

are related, but the exact mechanisms behind the relationship remained

unclear.

Hobson et al. published a study in 1997 that aimed to clear some of

the confusion surrounding this relationship [153]. Orientated acellular fi-

bronectin mats rolled into a cylindrical form were used to bridge 10 mm

sciatic nerve gaps in rats. At the 10 and 15 day time points immunofluo-

rescence staining revealed that a good degree of vascularisation had been

achieved within the grafts, with areas of longitudinally orientated vessels

appearing to precede migrating SCs and regenerating axons. The orienta-

tion of blood vessels and axons was observed to be closely related. The au-

thors also reported that well vascularised areas with randomly orientated

vessels had poor SC penetration. Hobson et al. concluded that the distance

and degree of SC migration and axonal regeneration after 30 days appeared

to be greatest in the areas containing the most extensive, longitudinally-

orientated vessels.

These results suggest that the orientated growth of blood vessels both

precedes and provides directional guidance for the migration of SCs and

growth of axons, and could potentially be necessary for good axonal re-

generation. However, Hobson et al. did not provide any clear evidence of

direct interaction between the vessels and the SCs or axons, and therefore

did not rule out the influence of a third confounding factor. Additionally,

the degree of functionality of the new vasculature was not assessed and

thus it is unclear whether the new vessels actually delivered significant

additional nutrients to the nerve gap.

Furthermore, it remains uncertain whether material aspects of the

conduit itself directly influenced the results. Firstly, the structure and

metabolic needs of the acellular conduit used by Hobson et al. could differ

significantly from those of an autologous nerve graft or a cellular NRC.
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Hobson et al. raised the question of whether the presence of cells could

lead to a greater risk of ischemia due to metabolic uptake of oxygen, and

thus impact the relationship between vasculature and nerve regeneration.

Secondly, the authors postulated that the fibronectin matrix itself could

have had an impact upon the relationship between the vessels and the

degree of regeneration. Earlier studies demonstrated that fibronectin can

impact both the growth of blood vessels and axons [26, 162]. Finally, the

orientation of the vessels and axons could have been influenced by the di-

rectionality of fibronectin strands. In fact, the paper mentioned briefly that

unpublished experiments using mats of randomly orientated fibronectin

fibres had produced inferior axonal regeneration. Therefore although this

study provided a hint as to the relationship between neovascularisation

and peripheral nerve regeneration, further research was required to pro-

vide clarification.

In 2015 Cattin et al. published a report on a series of in vivo and in

vitro experiments that revealed more details of the relationship between

SCs, peripheral nerve regeneration and blood vessel growth, and helped

to corroborate some of the conclusions previously reached by Hobson et

al. [65]. Immunostaining of transected rat and mice sciatic nerves revealed

that the nerve gap was fully vascularised prior to any SC migration from

either nerve stump, supporting the hypothesis that endothelial cell (EC)

migration and blood vessel growth precedes SC migration and axonal re-

generation. All the blood vessels within the nerve gap bridge were found

to contain ECs labelled positively with a marker of proliferation, indicating

that they were newly formed. Crucially, erythrocyte staining and immuno-

labeled lectin showed that most of these blood vessels were also functional.

Cattin et al. also reported that “~80% of the blood vessels were orientated

in the direction of subsequent SC migration”.

In the same study, confocal microscopy revealed that migrating cords

of SCs appeared to interact with the new vasculature as they progressed
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from the proximal stump into the nerve gap, and correlative light and elec-

tron microscopy was used to “observe multiple points of direct contact

between [ECs and SCs]”. In vitro experiments corroborated this observa-

tion: SCs were co-cultured with capillary-like structures formed by human

umbilical vein endothelial cells (HUVECs) in a fibrin matrix, and the major-

ity were reported to have interacted with and migrated along the tubules.

Those SCs that did not interact with the tubules were not able to migrate,

providing evidence that direct interaction between vasculature and SCs

could be necessary for SC migration. Overall, Cattin et al. concluded that

the growth of vasculature precedes neuronal growth, and that blood ves-

sels provide mechanical and directional support that enables the migration

of cords of SCs.

Cattin et al. also altered the directionality of blood vessels via the

implantation of heparin beads loaded with recombinant human VEGF165.

The beads induced vessel growth into adjacent muscle instead of into the

nerve gap, and this resulted in a higher rate of abnormal regeneration af-

ter 6 days. Immunostaining showed that the misdirected blood vessels

appeared to guide the SC cords and regenerating axons into the adjacent

muscle, demonstrating the importance of directional blood vessels for ef-

fective directional peripheral nerve repair. The study was concluded with

the suggestion that the efficacy of nerve repair constructs could be im-

proved by “encouraging or mimicking a polarized vasculature within the

grafts” to induce directional SC migration.

Although this paper by Cattin et al. provides comprehensive evidence

of the importance of vascular growth for the initiation and directional guid-

ance of neuronal regeneration during peripheral nerve repair, it does only

study the case in which there is no surgical intervention. The size of the

nerve gaps used in the study ranged from around 0.12 cm in the mouse

model to around 0.17 cm in the rat model; these are relatively small dis-

tances that would not normally require surgical intervention to facilitate re-
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Figure 2.1: Research points towards a relationship between vascularisation and
nerve regeneration after PNI. Directional neurite growth occurs from
the proximal into the distal stump, possibly guided by vessels. Seeded
cell density within an NRC could be altered to achieve a balance be-
tween relatively high VEGF concentrations, to encourage vascularisa-
tion, and cell survival.

generation. Interactions with the materials, cells and growth factors found

within an NRC, and an increase in the length of the nerve gap, could impact

the relationship between regenerating blood vessels and axons. However,

on balance it is probably safe to assume that neovasculature will continue

to precede and guide axonal growth in the context of an NRC until con-

trasting evidence is provided, particularly in light of the results provided

by Hobson et al.

In conclusion, taking both historical and current research into account

it appears that obtaining thorough, fast and directional vascularisation

within implanted NRCs is beneficial for regeneration, although the use

of vascularised nerve grafts in vivo do not always yield significantly better

outcomes than nonvascularised controls. This could be due to the difficulty

of delivering functional vascularised nerve grafts. Recent research has shed

light upon the mechanisms behind the impact of blood vessels, beyond the
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delivery of nutrients and oxygen, with the current prevalent hypothesis

suggesting that neovasculature precedes SC migration and provides di-

rectional cues for axonal growth. Therefore, encouraging the orientated

growth of blood vessels early on in the repair process by altering elements

of NRC designs could potentially improve peripheral nerve repair. The use

of directional elements such as rods and aligned cells is already common

in nerve tissue engineering [343]; this thesis investigates the role that spe-

cific seeded cell densities and distributions could play in encouraging the

growth of healthy vasculature, as well as increasing levels of cell survival

post-implantation (Figure 2.1).

2.1.3 Initiation and progression of angiogenesis

Knowledge of how the growth of new blood vessels is initiated and pro-

gresses through tissue is vital for the creation of an effective mathematical

model of vascularisation, and it is important to identify the most influential

or limiting variables in the system as a starting point for the construction

of the theoretical framework. To this end, this subsection motivates the

inclusion of oxygen and VEGF as variables in the mathematical framework

by describing the process of angiogenesis, defined as the sprouting of new

blood vessels from existing vessels, and evaluating the relative importance

of the key angiogenic factors involved.

Capillaries, such as those found in the epineurium of peripheral nerves

(Figure 1.1), are often defined as blood vessels with a diameter of 5 to 10

µm or lower and are made up of an inner layer called the endothelium,

consisting of ECs and typically just a single cell thick, surrounded by a

basement membrane or lamina. The basement membrane is embedded

with microvascular pericytes, which communicate with the ECs via peg-

socket contacts [20]. Pericytes help to stabilise the vessels and regulate

endothelial cell proliferation and vascular remodelling.

Hypoxic environments, such as traumatic injury sites, require blood

vessel perfusion to deliver oxygen and nutrients and thereby meet the
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metabolic demands of cells. Cells are equipped with oxygen sensing mech-

anisms, and respond to low oxygen environments by inducing Hypoxia-

inducible Factor 1 (HIF-1), a transcription factor that in turn upregulates

the production of angiogenic growth factors [196, 327]. For this reason HIF-

1 is generally regarded as the key regulator of angiogenesis. The important

role that oxygen plays in inducing HIF-1 and thus the secretion of angio-

genic factors by cells, as well as its potential influence upon the death and

proliferation rates and therefore survival of cells seeded in engineered tis-

sue, means that the inclusion of the spatio-temporal oxygen concentration

in the proposed mathematical model will be vital.

It is worth noting at this stage that it is widely accepted that there

are two types of angiogenesis: sprouting angiogenesis and intussescep-

tive or splitting angiogenesis. Intussesceptive angiogenesis is still relatively

poorly understood, although it is generally thought of as the formation of

transcapillary pillars that result in capillary splitting, leading to increased

vascular network density and complexity [57, 237, 255]. Intussesceptive

angiogenesis has also been associated with vascular pruning and remod-

elling.

Sprouting angiogenesis, on the other hand, has been the subject of a

great deal of research and is characterised by the proliferation and migra-

tion of endothelial cells from an existing vessel into the surrounding tissue

to form new vascular sprouts. Tissue regeneration such as peripheral nerve

repair thus relies on the invasive nature of this type of angiogenesis to re-

store vasculature to relatively large gaps in the vascular network. There-

fore, although it is possible that intussesceptive angiogenesis could play a

role in vascular regrowth and network remodelling at later time points in

the nerve repair scenario, the work presented in this thesis focuses solely on

sprouting angiogenesis. However, the mathematical framework presented

in Chapter 5 is flexible and could be adapted to incorporate intussesceptive

angiogenesis in the future.
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Sprouting angiogenesis is initiated when an existing vessel senses an

angiogenic factor such as VEGF or fibroblast growth factor (FGF). In re-

sponse, pericytes are freed from the walls and the basement membrane

of the vessel is degraded via proteolysis governed by matrix metallopro-

teinases (MMPs) [61]. The vessel’s EC layer becomes permeable and plasma

proteins are released to form the base of a new ECM. Integrins, adhesion

receptors on the surface of cells, then initiate the migration of leading “tip”

ECs (TECs) onto this matrix. TECs migrate towards growth factors, and are

followed by “stalk” ECs (SECs) which proliferate and then assemble into

tubes to form new vessels [220, 331]. The process of TEC selection and the

different phenotypes and behaviour of TECs and SECs during sprouting

angiogenesis are described in more detail later in Section 5.2.

In the peripheral nerve repair setting, research has so far suggested

that the initiation of vascularisation occurs between 3 and 6 days post in-

jury. Hobson et al. observed vessel growth into the central portion of their

orientated fibronectin constructs after 6 days post-implantation [153]. Cat-

tin et al. found that vascularisation of the nerve gap began within 3 days

[65], and Dun et al. used whole mount staining, which is the staining of

pieces of tissue without sectioning, to demonstrate blood vessel formation

5 days post-injury in a transected rat sciatic nerve gap [103].

The process of angiogenesis involves an array of angiogenic factors

with different roles and varying levels of importance [196]. VEGF-A is

likely the most thoroughly studied, and generally regarded as the most

important, of these angiogenic molecules. VEGF-A is part of the wider

VEGF signalling protein family. However, the majority of the impact of the

VEGF family upon angiogenesis can be attributed to VEGF-A [61, 104], and

therefore VEGF-A will henceforth be referred to simply as VEGF. When it

was first discovered, VEGF was known as Vascular Permeability Factor for

its ability to increase microvessel permeability, as reviewed by Bates and

Harper in 2002 [32]. VEGF not only helps to initiate angiogenesis by stim-
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ulating MMP production, promoting vascular permeability and basement

membrane degradation, but it is also a mitogen for ECs [116]. This allows

it to play a key role in the necessary proliferation of SECs to form new

blood vessels during angiogenesis.

Furthermore, it has been demonstrated by a few different research

groups that TECs migrate in response to gradients of VEGF [31, 282, 335].

Recently, Wu et al. found that ECs moved towards higher concentrations of

VEGF when cultured on surfaces with gradient densities of immobolized

VEGF [413], in contrast to the random movement exhibited by the cells on

uniform VEGF surfaces. VEGF gradients were also found to induce EC

alignment along the axis of the gradient. These results corroborated earlier

work by Gerhardt et al., who showed that gradients of VEGF act as guid-

ance cues for the TECs of sprouting blood vessels in the early postnatal

retina, and also demonstrated that TECs sense the gradients of VEGF via

filopodial extensions [134]. Additionally, Gerhardt et al. concluded that

the proliferation rate of SECs depends upon the concentration of VEGF,

and the authors suggested that the required balance between TEC migra-

tion and stalk EC proliferation could only be achieved “when the correct

relationship between VEGF-A gradient and concentration occurs...”. The

influence that spatial distributions and concentrations of VEGF exert upon

angiogenesis makes this cytokine a prime candidate for mathematical mod-

elling.

Additionally, with particular relevance for the peripheral nerve repair

scenario, evidence suggests that VEGF also plays a role in promoting ax-

onal growth and supporting neuronal cells, as reviewed by Mackenzie and

Ruhrberg [233]. Although the focus of this thesis is improving cell survival

and revascularisation in engineered tissue for peripheral nerve repair, a

natural extension to this work would be to incorporate neuronal regener-

ation into the theoretical framework. Thus including VEGF in the model

here will help to facilitate future theoretical investigation into its impact
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upon neuronal regeneration.

The platelet derived growth factor (PDGF) family activates many of the

same pathways as VEGF [149, 240] and signals via two receptors PDGFR-

α and PDGFR-β [122]. PDGFs play a role in encouraging endothelial cell

proliferation and migration [34, 200] and upregulating VEGF expression

[326, 402]. In turn, an in vitro study showed that VEGF and FGF2 upreg-

ulate the expression of PDGF-B and PDGFR-β respectively [182], demon-

strating the close synergy between these different growth factors. Angio-

genic endothelial cells and neurons are among the predominant producers

of PDGF-B [13, 395].

In particular, research suggests that the spatial distribution of PDGF-

B has an impact upon pericyte recruitment, similar to the importance of

VEGF gradients for the initiation of TEC migration. PDGF-B, like the long-

chain isoforms of VEGF, includes proteins that bind to heparan sulphate

proteoglycans (HSPGs) and this allows retention of PDGF-B on the surface

of the secreting cell. Lindblom et al. deleted the PDGF-B pattern of HSPG-

binding proteins in mice, allowing the PDGF to diffuse freely, and found

50% fewer pericytes in the embryonic forebrain after 15.5 days of devel-

opment [222]. Similarly, in an earlier study Lindahl et al. used a mouse

knock-out model to demonstrate that PDGF-B and PDGFR-β play an im-

portant role in the regulation of microvascular pericyte recruitment [221].

Mouse embryos without PDGF-B exhibited microaneurysms and hemor-

rhaging due to poor structural integrity of microvasculature caused by lack

of pericyte recruitment.

Angiopoietin 1 (Ang1) and angiopoietin 2 (Ang2) are also vascular

growth factors that play different roles in the development of neovascu-

lature, acting via the Tie2 receptor expressed by ECs [108]. Ang1 is pre-

dominantly expressed by perivascular cells, and VEGF has been hypothe-

sised to upregulate Ang1 expression [143]. Suri et al. reported that both

Ang1 and Tie2 deficient mouse embryos exhibit heart defects and gener-
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ally less complex vascular networks [372], suggesting that the binding of

Ang1 to Tie2 is essential for healthy vessel organisation, maturation and re-

modelling during development, although later research concluded that the

vessel disorganisation could be a direct result of the cardiac defect [168].

Knock-out studies of developmental vasculogenesis such as this have pro-

vided insights into the roles and interactions of many of the growth factors

described in this section, but it is worth noting that the mechanisms behind

the process of angiogenesis in wound healing scenarios such as peripheral

nerve repair may differ.

This point was illustrated by Jeansson et al., who created a conditional

Ang1 allele that allowed Ang1 to be deleted at various life-span time points

in an effort to explore how the role of Ang1 changes over the course of

a life-cycle from development to adult [168]. This was necessary because

Ang1-deficient mice die during the second week of development due to the

previously mentioned vascular defects. The study found that Ang1 dele-

tion after E13.5 (day 13.5) did not result in any obvious changes in pheno-

type, providing evidence that after the initial stages of development Ang1

is not vital for good vascular function, and in direct contrast to an earlier

study suggesting that Ang1 was necessary to maintain the structural in-

tegrity of vessels [130]. The authors instead hypothesised that Ang1 could

act as moderator of angiogenesis, helping to balance the levels of other

growth factors by acting as a “brake” to prevent further injury and aid

healthy vessel growth. An ear punch model of wound healing was used

to test this. Ang1 deficient mice demonstrated a quicker and more ex-

tensive healing response at the injury site but with increased angiogenesis

and fibrosis compared to the wild type, indicating that Ang1 acts to down

regulate elevated levels of pro-angiogenic factors.

In contrast to Ang1, Ang2 is not vital for mouse embryonic survival

but Ang2 deficient mice do exhibit vascular defects as adults [97]. Ang2

is produced by ECs and helps to regulate their function [61, 117]. Whilst
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Ang1 appears to have a stabilising effect upon blood vessels, Ang2 acts

to induce vessel permeability, pericyte loss and vessel sprouting [20, 24].

However, this behaviour appears to be dependent upon the presence of

VEGF, as shown in a paper by Lobov et al. in which an ocular microvessel

network was used to show that VEGF acts as a mediator of Ang2 action

[226]. Injection of Ang2 into the network in the presence of VEGF resulted

in the proliferation and migration of ECs and an increase in capillary di-

ameter, whereas simultaneous injection of Ang2 and a VEGF inhibitor lead

to increased levels of EC death and capillary regression.

FGFs are another growth factor family that play a role in the process

of angiogenesis. FGF signalling can cause the release of other angiogenic

growth factors from cells, and FGF2 induces the proliferation of ECs and

helps to reduce apoptosis [36]. It has also been shown that the cellular re-

sponse to VEGF can be enhanced via the addition of FGF2 [305]. However,

mouse studies involving the knock out of FGF1 and FGF2 showed that this

made little difference to the process of angiogenesis, suggesting that the

FGF family could be largely redundant [36].

As reviewed in detail by Ljubimov [225], the various signalling fac-

tors involved in angiogenesis operate in a complex and synergistic manner,

sharing signalling pathways and often combining to produce more pow-

erful angiogenic effects via reciprocal upregulation. In an in vivo study of

endometriotic lesions, the use of a VEGF inhibitor did result in a slight re-

duction in microvessel density whereas the use of a combined VEGF, FGF

and PDGF inhibitor resulted in a much more effective suppression of an-

giogenesis [209]. In this case, it seems that VEGF inhibition alone caused

a compensatory upregulation in the other angiogenic factors, although the

specific pathology of endometriosis could have contributed to this effect.

The aim of this thesis is to investigate the impact of different cell seed-

ing approaches on cell survival and angiogenesis; therefore, there is no

need to capture all of the biological processes involved in the initiation and
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progression of vascularisation in the peripheral nerve repair context. In-

stead, only the degree of detail necessary to achieve the aims of the research

will be incorporated. This will reduce the number of unknown parameters

that are included in the model, limit the complexity of the framework and

ensure that focus is maintained on the most important and influential as-

pects of the scenario. Therefore, despite the evident complexity of the role

of growth factors in angiogenesis, VEGF will be the only growth factor

included as a variable in the framework.

Although from knock-out studies and research into anti-angiogenic

drugs it appears that vascularisation is possible without the presence of

VEGF via compensatory pathways [2, 209], currently it is still generally ac-

cepted that VEGF is the most important of the angiogenic molecules. In

particular, the key role that VEGF plays in the guidance of migrating ECs

suggests that the spatial distributions of VEGF will need to be included into

the framework in order to properly model the directional development of

new vessels, and thus to help identify which NRC designs and seeding cell

strategies may generate VEGF gradient fields that best promote angiogen-

esis.

Although the production of HIF-1 is crucial for angiogenesis, it will

not be explicitly included in the mathematical framework; instead, hypoxic

upregulation of VEGF secretion in the model will implicitly take into ac-

count the influence of HIF-1. Similarly, the action of the angiogenic factors

described here takes place via numerous receptors, but for simplicity the

individual receptors will not be explicitly included in the model. Although

simplifying the model in this way means that it will not be able to capture

the full complexity of the biological processes involved, the development

of this model is motivated by the goal of being able to make useful pre-

dictions to guide NRC design. Further complexity would introduce many

more unknown parameters and variables, and this would in turn increase

the difficulty of parameterisation and require a larger number and variety
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of experiments.

After establishing the inclusion of VEGF in the mathematical frame-

work, it is also important to evaluate the key factors that influence the pro-

duction of VEGF by cells. As previously described, it is well established

that cellular VEGF expression is regulated by ambient oxygen levels via

HIF-1 [196, 315, 384]. Lafosse et al. studied the response of adipose-derived

stem cells from diabetic and non-diabetic patients to varying levels of both

glucose and oxygen [201]. Adipose-derived stem cells, keratinocytes and

dermal fibroblasts all demonstrated significantly increased VEGF secretion

under hypoxia (0.1%), but the magnitude of VEGF secretion varied between

the cell types under both normoxia (5%) and hypoxia. This highlights the

need for cell type-specific parameters to capture these differences.

Glucose is another factor that has been shown to have some effect

upon cellular VEGF secretion. Lafosse et al. also found that dermal fi-

broblasts exhibited a higher level of VEGF secretion under hyperglycemia

(25 mM glucose) than under normoglycemia (5 mM glucose) whilst under

normoxia (5%), but did not find a similar relationship for adipose-derived

stem cells or keratinocytes. Betts-Obregon et al. treated retinal endothelial

cells either without glucose or with one of three different glucose concen-

trations for 24h, and found that VEGF secretion per cell after 24h was three

times higher when the glucose concentration was 30 mM than when 5.5

mM was used [43]. The highest VEGF secretion per cell after 24h was

achieved when no glucose was used, producing a secretion rate that was

13 times higher than that measured when 5.5 mM was used, demonstrating

a biphasic response.

It appears that the cellular VEGF secretion response to glucose de-

pends upon the cell type. In this thesis, the therapeutic cells included in

the model are assumed to be dADSCs, in line with the design of NRCs that

were under development (as explained later in Section 3.3.1), but the effect

of glucose of VEGF for this cell type specifically is unknown. Furthermore,
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VEGF

Angiogenesis in response to VEGF

Generation of VEGF gradients

Low oxygen levels lead to upregulation of
VEGF production by seeded cells

Oxygen concentration influences
cell death and proliferation; cells consume oxygen

Seeded cellsOxygen

Objective 1: How do different seeded cell densities and
distributions impact cell survival?

Objective 2: How do different seeded cell densities and
distributions impact VEGF gradients and the angiogenic response?

Vessels deliver oxygen

Figure 2.2: Overview of the key variables (bold) and interactions identified in Sec-
tion 2.1 for inclusion into the model, with the aim of investigating the
outlined objectives.

during the creation of EngNT NRCs the cell-seeded collagen construct is

cultured in medium that contains relatively high concentrations of glucose

(10 g/L ≈ 56 mM). Therefore, in this thesis it is assumed for simplicity that

a state of hypoglycemia will not be reached over the studied time scale

(0 to 5 days) and thus that glucose will not affect the VEGF secretion rate

nor the death and proliferation rates of the seeded cells. However, glucose

concentration would be a good candidate for inclusion into the framework

in the future (Chapter 6).

2.1.4 Summary

The literature review thus far has established that revascularisation and

neuronal regeneration of the injured peripheral nerve are closely related,

and that the directional growth of new blood vessels helps to guide SC

migration and axonal growth. The mathematical model must include a
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variable representing the seeded cell population in order to model seeded

cell survival.

Vascular growth is initiated and guided by angiogenic growth factors,

of which VEGF has been identified as the most important and is therefore

selected as another variable in the model. In turn the secretion of VEGF by

cells is regulated by oxygen concentration, which also determines the level

of cell survival, and must be incorporated into the model. Although glu-

cose has the potential to impact both VEGF secretion rates and cell survival,

it is not included under the assumption that glucose will not be a limiting

factor during the time frame of 0 to 5 days. Finally, a model of angiogene-

sis in response to the VEGF gradients must be constructed to simulate the

impact of different cell seeding strategies upon vascularisation.

2.2 Relevant mathematical and computational

models
In this section, relevant mathematical models are reviewed to motivate the

form and underline the novel aspects of the mathematical framework de-

scribed in this thesis. The proposed model as described in Section 2.1.4 can

be split into two parts: firstly a cell-solute model incorporating the seeded

cells, VEGF and oxygen and their interactions, and secondly a model of

angiogenesis in response to VEGF gradients and concentrations that can

be layered over the cell-solute model (Figure 2.2).

In the case of the former, the chosen modelling technique needs to

be able to capture the interactions between cells, VEGF and oxygen over

space and time to make useful predictions about the potential impact of

different cell seeding strategies upon these variables in vivo. Ideally, these

predictions would be quantitative in nature, to allow formal validation via

experimentation in the future and provide applicable insights into how

to improve NRC design. However, it is not strictly necessary to model

the behaviour of individual cells explicitly; the tissue level distributions of
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these variables are the main features of interest.

The purpose of the model of angiogenesis is to investigate the possible

effects of different cell seeding strategies, and therefore spatio-temporal

VEGF distributions, on the rate, extent and directionality of revasculari-

sation. As reviewed briefly in Section 2.1.3, sprouting angiogenesis and

vessel network formation is a complex processes that involves multiple

substeps and interactions. Some existing computational models of angio-

genesis attempt to incorporate most of the known subprocesses to capture

as much detail as possible, whereas others focus only on those processes

determined to be absolutely necessary to recreate experimentally observed

behaviour; alternatively, some frameworks are created with the aim of sim-

ulating just one key aspect of angiogenesis, such as endothelial cell migra-

tion, in greater detail.

In the context of peripheral nerve repair and over the time span that

this thesis aims to investigate (0 to 5 days post-implantation in vivo), the

most important features for inclusion are directional endothelial cell mi-

gration and the formation of vessels via anastomosis of sprouts. Therefore,

in contrast to the cell-solute model, it will likely be necessary to model

the migratory movement of individual endothelial cells explicitly as part

of the angiogenesis model. The differences in the requirements for each of

the two parts of the integrated model mean that the use of more than one

modelling technique may be necessary.

A multitude of mathematical models describing cell-cell and cell-

solute interactions, tissue growth and angiogenesis already exist. These

models demonstrate a range of different approaches to problems similar

in nature to the subject of this thesis. In particular, cell-solute models

have been implemented to enhance the design of engineered tissues and

tissue culture bioreactors [217, 238, 281, 319], to explore the process of

wound healing [178], and to investigate the interactions between cancer-

ous cells, nutrients and signalling factors [258]. Many angiogenesis and
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blood flow mathematical models have been published with the long-term

aim of eventually providing diagnostic capabilities, because dysfunctional

angiogenesis is a fundamental part of conditions such as cardiovascular

disease, arthritis and diabetes. In particular, a large number of angiogene-

sis models have been developed to explore the pathological tumour context

[10, 242, 332]. However, the following review will instead predominantly

feature models of angiogenesis in developmental or repair contexts, which

are likely to be more relevant to the peripheral nerve repair scenario, al-

though there is much overlap between these and frameworks designed to

simulate tumour-induced angiogenesis.

Most of the existing mathematical frameworks relevant to this thesis

can be categorised as either continuous, discrete or hybrid mathematical

models, and each of these model types have specific advantages and disad-

vantages. Sections 2.2.1 and 2.2.2 review the application of continuous and

discrete model types respectively to biomedical scenarios, to assess their

suitability for use in this thesis, and Section 2.2.3 compares the approaches

directly and presents conclusions.

2.2.1 Continuous models

Reaction-diffusion-advection and mechanistic continuous mathematical

models are commonly used to describe spatio-temporal changes in concen-

trations of one or more substances, and are remarkably good at replicating

the behaviour of a range of biological systems and processes including vas-

cular development [23], tumour growth [53, 405] and cellular motility and

proliferation [87, 217]. These models consist of systems of partial differ-

ential equations that determine the rates of change of the variables. Each

equation usually contains terms that represent processes such as nutrient

consumption or diffusion. The equations are dependent on parameter val-

ues and the functional forms used for the terms, which are usually deter-

mined by previous research or concurrent experimental work. Hypotheses

can be tested by altering the functional forms, adding or removing terms
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or carrying out parameter sensitivity analyses to determine the importance

of different biological processes.

A few continuum models of nerve regeneration or solute transport in

the peripheral nerve context have already been published. In 1993, Lager-

lund and Low produced a continuous model of oxygen transport in an

intact peripheral nerve, based around simulating the radial diffusion of

oxygen from capillaries [202]. However, the capillaries were assumed to be

straight and parallel, and vascular growth was not modelled.

Two years later, Podhajsky and Myers published a mathematical

model of nerve regeneration that simulated neurite and blood vessel

growth, Schwann cell proliferation, Wallerian degeneration and fibrin ma-

trix growth as reaction-diffusion processes [318]. Two scenarios were simu-

lated using this single generalised model: a nerve transection injury, where

regeneration occurs from the proximal stump to the distal stump through

a fibrin matrix nerve regeneration “chamber” (or NRC); and a nerve crush

injury, where regeneration progresses from an area with no Wallerian de-

generation towards a distal region with Wallerian degeneration. A com-

bination of previously gathered experimental data and additional in vivo

experiments were used to refine the model.

Instead of explicitly modelling the effects of hypoxia and growth fac-

tors, in the Podhajsky and Myers model Schwann cell proliferation is de-

pendent upon the ratio of Schwann cells to vessels, representing access to

nutrients, and the ratio of degenerating tissue to Schwann cells, represent-

ing the relative quantity of growth factors released by the tissue. Angio-

genic factors and nerve growth factors are not modelled explicitly. The

behaviour exhibited by the model was found to mimic qualitative charac-

teristics of the experimentally observed progression of regeneration, and

the authors found that the rate of vascular growth could be the limiting

factor in nerve regeneration as a travelling wave of vasculature was shown

to precede neuronal growth. This provides further evidence for the need to
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properly investigate how to induce faster, directional vascular growth by

adapting NRC design, as proposed in this thesis.

However, in contrast to the aims of this thesis, Podhajsky and My-

ers did not explore the potential impact of seeding additional cells within

the NRC or alternative NRC designs, and the use of partial differential

equations to model the progression of vascular growth meant that the de-

velopment and morphology of individual blood vessels was not captured

by this model.

Another mathematical model of nerve regeneration was published by

Rutkowski and Heath in 2002, and consists of a reaction-diffusion model of

nutrient and nerve growth factor transport within a hollow porous tubular

NRC [336]. In this model, Schwann cells seeded on the internal surface of

the NRC lumen produce nerve growth factor which diffuses both into the

lumen and out of the construct and is consumed by neuronal cells. Both

the Schwann cells and neuronal cells consume oxygen and glucose, and

the diffusion of oxygen and glucose into the NRC into the lumen from the

outside “bulk” material is also included.

Rutkowski and Heath investigated the impact of changing the thick-

ness and porosity of the NRC wall by running simulations with different

values for these parameters. The model predicted that the concentration

of nerve growth factor within the NRC lumen is increased when porosity

is decreased and the wall is relatively thick, but that the same low poros-

ity values also result in a decrease in the oxygen concentration within the

lumen which is undesirable for axon growth. This thesis will also inves-

tigate the impact of NRC wall porosity and thickness on cell survival and

nutrient concentrations, but with a focus on VEGF instead of nerve growth

factor. Rutkowski and Heath concluded that oxygen, not glucose, was the

limiting nutrient in both their experimental and theoretical work. This fur-

ther motivates the exclusion of glucose from the model proposed in this

thesis.
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Experiments were conducted by Rutkowksi and Heath alongside their

theoretical work to enable the derivation of many of the model param-

eters, such as nutrient diffusion coefficients, nutrient consumption rates

by Schwann cells and neurons (dorsal root ganglia) and the nerve growth

factor-dependent axon growth rate. In a second paper published as part

of the same project, the model simulation predictions were compared to

measures of axonal growth recorded from the use of NRCs with vary-

ing porosity and wall thickness configurations in vitro [337]. The model

predictions regarding the impact of wall porosity and thickness seemed to

qualitatively approximate the experimental results. However, the predicted

quantities of oxygen and nerve growth factor were not directly validated

as the experimental data recorded only axonal growth metrics. Therefore

although the specific parameter values used in the model are likely to be

relatively accurate, there is no way of knowing whether inaccuracies could

have been introduced by the forms of the constitutive relationships chosen

for the study.

Rutkowski and Heath assumed that only radial diffusion was signifi-

cant, thus neglecting to include diffusion of nutrients from the open ends

of the NRC. This is in contrast to the work in this thesis which investigates

NRCs with impermeable sheaths that permit inward or outward diffusion

of solutes only from the open ends, as well as porous sheaths (Chapter 4).

On top of this, in the Rutkowski and Heath model Schwann cells were not

modelled explicitly and the cell density was approximated as being con-

stant, thereby excluding the influence of cell proliferation and death upon

the production of nerve growth factor. The influence of vascularisation

upon the process of nerve regeneration, as outlined in Section 2.1.2, was

also not taken into consideration, and the use of a steady-state solution

meant that the model did not simulate the progression of nerve regenera-

tion over time.

However, the work by Rutkowski and Heath, and Podhajsky and My-
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ers, does demonstrate the potential of using continuous mathematical mod-

els in combination with experimental work to make predictions about the

possible implications of different NRC designs upon neuronal regenera-

tion, revascularisation and distributions of solutes.

2.2.1.1 Continuous models of cell-solute interactions

Continuous mathematical modelling techniques have been used exten-

sively to model cell-solute interactions in engineered tissues other than

NRCs, and in particular there exist numerous models of cell and tissue

culture within bioreactors. With particular relevance for this thesis, some

of these existing continuous models have been used to simulate oxygen

gradients and their effect on spatial distributions of growth factors or cell

proliferation.

For example, a reaction-diffusion model of glycosaminoglycan (GAG)

production and oxygen concentration in disc-shaped cartilage constructs,

cultivated in a rotating bioreactor, was developed by Obradovic et al. in

2000 [281]. This model was informed by experiments that measured spa-

tial cell density and GAG concentration in cell-polymer constructs over

time. Simulations showed that spatial variations in oxygen concentration

can cause non-uniform distributions of GAG throughout the constructs,

and model predictions of GAG concentrations over time and space gen-

erally agreed with corresponding experimental measurements. Parameter

sensitivity analysis was used to identify particularly important parameters

and to test hypotheses.

This framework modelled the chondrocyte populations of the con-

structs using functional fits to the corresponding experimental cell density

data, thus essentially feeding the data into the model, instead of incorpo-

rating the cell interactions as an additional governing equation. The experi-

mental data showed that cells at the periphery of the engineered constructs

proliferated at a greater rate than those in the centre. This effect could be

caused by insufficient oxygen in the central portion of the constructs.
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In 2004, Malda et al. built upon this work by also using a continuous

model to predict oxygen gradients formed by cellular consumption and

diffusion within tissue engineered cartilage polymer constructs during in

vitro culture [238]. Similarly to Obradovic et al., the authors collected ex-

perimental data to aid the development of the model: the diffusion rate of

oxygen in the polymer was estimated using a diffusion cell; oxygen ten-

sions were measured at three radial locations of acellular and chondrocyte-

seeded polymer scaffolds and osteochondral explants that were cultured

for up to 41 days in vitro; and spatial distributions of the cells within the

constructs were recorded via histological samples.

The corresponding mathematical model includes a reaction-diffusion

equation that governs the oxygen concentration within the scaffold, but like

Obradovic et al., the authors chose to model the cell phase using experi-

mental values instead of a separate governing equation. The chondrocyte-

specific oxygen consumption rate parameter was varied to fit the model

to the oxygen data for the cartilage explants and cellular scaffolds respec-

tively. Based upon these values, Malda et al. concluded that chondrocytes

cultured in polymer constructs appear to have lower oxygen requirements

than those in native cartilage tissue. However, the predictive power and

flexibility of this model is limited due to its dependence on cell density

data.

In 2005, Lewis et al. published a continuous model in one spatial di-

mension of oxygen diffusion and consumption and cell proliferation within

a scaffold, during a 14-day culture period, using two partial differential

equations [217]. It was assumed that the cells would not migrate through-

out the scaffold. In contrast to the the previous work by Obradovic et

al. and Malda et al., the cell density was modelled explicitly. The model

demonstrated a good fit to experimental data, although this involved as-

suming that the initial number of cells in the scaffold was considerably

lower than expected experimentally. The results showed that scaffolds that
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rely on diffusion for oxygen transport develop areas on their outer edges

where oxygen concentrations are highest and cell proliferation is dominant,

corroborating the results of previous research. Based upon the model pre-

dictions, the authors were able to suggest that to improve oxygen transport

the rate of oxygen supply to the central regions of scaffolds should be im-

proved beyond that of diffusion, and/or that the cellular proliferation in

certain regions should be reduced.

In the same year, Croll et al. published a similar continuous reaction-

diffusion model of cell proliferation and migration and oxygen diffusion in

a dome-shaped poly(lactic-co-glycolic acid) (PLGA) tissue engineered scaf-

fold with an arterio-venous loop enclosed within its base [87]. An implicit

description of vascular growth eminating from the arterio-venous loop and

the impact of the cell density upon the effective oxygen diffusivity were

also incorporated into the model. The simulation results lead the authors

to conclude that for large-scale engineered tissues, heterogeneous cell seed-

ing distributions may be preferable to homogeneous distributions, which

were again found to result in regions of hypoxia within the scaffold. How-

ever, the simulated dome-like scaffold had a diameter of between 15 and

60 mm and thus had a much larger volume than a typical NRC, and this

could have exacerbated the degree of hypoxia in central portions of the ge-

ometry. Nevertheless, this again demonstrates the potential for models to

highlight or provide explanation for issues and suggest practical methods

for remedying them, and ties in with the investigation into non-uniform

cell seeding distributions proposed in this thesis.

In contrast to the aims of this thesis, the possible impact of hypoxia

on growth factor production and thus vascularisation and the delivery of

oxygen were not taken into account by Croll et al., and it was assumed

that the cells would not die even under very low oxygen concentrations.

Furthermore, the range of seeding cell densities tested was limited to a

maximum of 2 × 106 cells/ml which is lower than the typical densities
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used within tissue engineered NRCs. Nonetheless, the system of partial

differential equations was able to effectively model spatio-temporal oxygen

and cell distributions: the models published by Lewis et al. and Croll et

al. both simulate a cell population explicitly using a separate governing

equation, and are therefore closer to the type of framework that will be

required in this thesis than those published by Obradovic et al. and Malda

et al.

Landman and Cai extended the models created by Croll et al. and

Lewis et al. by incorporating the dependence of cell proliferation upon the

oxygen concentration into the framework using a Heaviside step function,

and studied the impact of vascular growth, cell diffusion and homogeneous

and heterogeneous cell seeding on distributions of oxygen and cells over

time [205]. Again the model was simulated across one spatial dimension.

A value for the critical hypoxic oxygen concentration was included, be-

low which the cell proliferation rate was set to zero, and different oxygen

consumption functional forms were compared. Dimensionless parameters

were used to evaluate the significance of ratios of parameters: for example,

the ratio of the rate of oxygen diffusion to that of cell proliferation. As with

the work of Croll et al. and Lewis et al., simulations were used to predict

the length of time that cells in different regions of the construct would be

exposed to hypoxia, but no attempt was made to model the impact of this

exposure beyond its effect on cell proliferation.

A slightly different approach to a continuous mathematical model was

demonstrated by Lemon et al. in 2007, who modelled quantities of differ-

entiated and undifferentiated stem cells and ECM within a porous scaffold

in terms of fractional volumes of the entire scaffold, rather than as mass or

concentrations [213]. Cell proliferation was taken to be proportional to the

volume of ECM to represent the influence of the proliferation-stimulating

protein Dickkopf-1, which is secreted by the ECM. The effective carrying

capacity of the scaffold was incorporated by setting the growth of both
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the cells and the ECM to be proportional to the remaining empty or void

fraction of the scaffold.

A least-squares fit of the analytical model solutions to experimental

values for the cell volume fractions in scaffolds over time was achieved

using MATLAB. Two sets of parameter values were produced for the low

oxygen (2%) and normoxia (20%) data sets, and the mathematical model

appeared to match the experimental cell data. However, there was no quan-

titative data available for comparison against the corresponding theoreti-

cal ECM volume fraction predictions. Experimental values for the volume

fractions of differentiated and undifferentiated cells were also used to fit

the theoretical model via a least-squares approach, and although the gen-

eral difference between the hypoxic and normoxic cases was captured, the

mathematical model was not able to achieve a good fit to the data over time.

Dimensionless sensitivity analysis was used to evaluate the sensitivity of

the model fit to small changes in the experimental data.

In 2013, Shakeel et al. presented a mathematical model which de-

scribes nutrient transport and cell proliferation in a cell-seeded porous

scaffold within a perfusion bioreactor via three coupled partial differen-

tial equations, governing the changes in cell density, nutrient transport and

fluid flow [349]. The authors were able to simulate the impact of differ-

ent initial cell-seeding strategies and scaffold porosity distributions upon

nutrient supply and the cell yield, and also incorporated aligned channels

of high porosity into their model to model enhanced nutrient delivery. A

similar approach can be taken to model the influence of NRC sheaths of

varying porosity, and will be explored in more detail in Section 4.2.

Pohlmeyer et al. used a continuous model to study the impact of gra-

dients of scaffold-bound non-diffusible cell growth factor upon cell hapto-

taxis and proliferation, in the context of a porous 2D scaffold in a perfu-

sion bioreactor [319]. This mathematical framework consists of an explicit

cell phase and a culture medium phase, incorporates nutrient perfusion
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via fluid flow, and models cell proliferation and transport via advection,

diffusion and haptotaxis in response to the growth factor. The presented

simulation results broadly agreed qualitatively with experimental data pro-

duced using scaffolds bioprinted with FGF2, and the effect of different ini-

tial seeded cell and growth factor distributions were also simulated. The

authors concluded that imposing static growth factor gradients upon scaf-

folds could help to increase cell proliferation and induce seeded cells to

form specific desired distributions across engineered tissue, demonstrating

the use of mathematical modelling to verify and add weight to hypotheses

generated by experimental research.

However, due to lack of data the model could only be matched to

the experimental data qualitatively. This could reduce the validity of any

precise, quantitative predictions made by the model. The haptotactic co-

efficient and cell advective velocity factor were chosen arbitrarily due to a

lack of empirical values; the values for these parameters would have to be

identified experimentally for the model to make more specific, meaningful

predictions. Furthermore, a continuous approximation was used to model

the cell density, and the authors noted that this assumption may not be

valid due to the small size of the experimental printed region. Neverthe-

less, this paper demonstrates how haptotaxis can be simulated using this

type of framework.

A more complex continuum approach to modelling cell-solute or sim-

ilar interactions has also been put forward, which involves utilising the

theory of mixtures to create multiphase models that include both solid or

cellular and liquid phases [58, 59, 212]. This method uses concepts such as

mass and momentum balance to unify the different phases of the model.

Byrne et al. showed that a two-phase model of avascular tumour growth

can be reduced to a system of reaction-diffusion equations when the effects

of viscosity are neglected [59]. The multiphase approach has the advan-

tage of facilitating the addition of further phases to a model, such as the
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vascular growth components proposed in the current model. However, it

can be difficult to link tissue-scale mechanisms such as growth to known

biological information via constitutive laws, especially in the absence of the

necessary experimental data.

In 2006, Lemon et al. published a multiphase porous mixture model

of the growth of engineered tissue in vitro [212], which used three phases

to model the material of a porous scaffold, and the cells and water con-

tained within it. In particular, the cell phase was represented as an incom-

pressible viscous fluid, and shear forces were incorporated to represent the

forces exerted by the motile cells. Certain parameter regimes representing

variations in cell-cell and cell-scaffold interactions were shown to result in

the formation of cell aggregates as opposed to a uniform cell distribution

across the scaffold, in concurrence with experimental data, and with po-

tential application for scaffold design. The same methods of evaluation of

different parameter spaces can be used when working with other models.

This thesis will assume that the cells seeded within the engineered

tissue remain stationary over the relevant time period, unlike the work of

Lemon et al. (2006) which focuses on cell motility, and therefore the mo-

mentum balance techniques used in mixture models will not be required.

This assumption is based on the fact that the framework developed in this

thesis will aim to model cell-seeded EngNT NRCs specifically (Section 1.2):

part of the manufacturing process for this NRC design involves stabilisa-

tion, which embeds the cells in the collagen matrix and prevents migration.

2.2.1.2 Continuous models of angiogenesis

Some of the earliest published mathematical models of angiogenesis are

deterministic continuous frameworks consisting of ordinary differential

equations with no spatial dimension. Although these models are capa-

ble of producing estimates of metrics such as average network expansion

rates and vessel densities, they do not capture any of the complex branch-

ing and looping structures that are characteristic of vascular networks, and
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therefore are of limited use in this setting.

An example of this type of framework is a continuum model of angio-

genesis in an porous engineered tissue scaffold implanted in vivo published

by Lemon et al. (2009) [214]. This consists of a set of coupled ordinary dif-

ferential equations governing the behaviour of populations of cells mod-

elled as volume fractions of the scaffold, including cells initially seeded in

the scaffold as well as macrophages, fibroblasts, unbound and bound per-

icytes and immature and mature (surrounded by a pericyte sheath) cap-

illaries. The average concentration of VEGF is described as a function of

release by the cells and exogenous delivery from the surrounding tissue or

experimental set up.

This model does not capture spatial inhomogeneities, and thus does

not explicitly describe processes such as vessel sprouting and adaptation

or individual cell migration, instead seeking to simulate tissue-scale inter-

actions between different cell populations and the influence of VEGF upon

these populations. Although this ignores much of the complexity of the

scenario, it does result in a model that is significantly easier and faster

to solve computationally than other frameworks that incorporate spatial

dimensions, and the authors were able to show that the rate of cell infil-

tration influences the degree and rate of vascularisation. However, despite

the reduction in complexity the model still incorporates a large number of

parameters, and the values of many of these were uncertain.

Lemon et al. attempted to parameterise the theoretical framework

using data from a chick embryo chorioallantoic membrane (CAM) assay.

The experimental procedure involved positioning porous, cell-seeded en-

gineered tissue scaffolds were on embryo membrane either with or without

VEGF, and acquiring µCT data at three time points. Then the total tissue

volume fraction was extracted from the data and used to determine the the-

oretical VEGF application rate and infiltration rate parameters via a least

squares method. However, the experimental data was of limited use be-
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cause the stain did not differentiate between cell types. Overall, although

this model and other ODE models like it offer a simple way of simulating

important metrics like overall rate of vascular growth, the lack of a spatial

dimension makes this type of framework a poor fit for the aims of the work

proposed in this thesis, which are largely centred around the impact of cell

densities and distributions upon the production of spatial distributions of

VEGF and directional vascularisation.

It follows that the natural way of extending time-dependent ordinary

differential equation models of angiogenesis is via the introduction of spa-

tial dimensions. The simplest examples of spatially-dependent continuum

angiogenesis models include partial differential equation models of wound

healing that simulate average quantities over a single spatial dimension.

For example, in the previously mentioned model of nerve regenera-

tion published by Podhajsky and Myers, vascular growth is modelled as a

continuum reaction-diffusion process along the lengthwise spatial coordi-

nate of the nerve repair chamber [318]. The proliferation of vascular en-

dothelium is described by three terms. The first dictates a source of growth

proportional to the amount of matrix present, as the authors suggested that

this could represent the amount of angiogenic factors as secreted by the ma-

trix. However, the development of vasculature in response to this source is

necessarily limited because the model does not incorporate the growth of

new matrix. Secondly, a term proportional to tissue degeneration is incor-

porated to represent the consequential release of angiogenic factors. The

third term represents upregulation of vessel growth in response to higher

metabolic needs by introducing a dependence on the ratio of non-vessel

cells to vessels. The response of vessel growth to specific concentrations

and gradients of angiogenic factors is thus not explicitly included.

Croll et al. also incorporated the impact of vascular growth into their

continuous model of engineered tissue. This was achieved via a spheri-

cal diffusion equation for oxygen, which in turn is dependent upon the
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temporal radial position of a growing vascular “front” [87]. The posi-

tion of the vascular front is assumed to change at a constant capillary

growth rate. This formulation suits the purposes of this specific study,

but effectively eliminates all complexity involved in the process of vascu-

lar growth, including potential radial inhomogeneity and variation in the

capillary growth rate, and the impact of changing growth factor gradients.

Another example of a continuum model of angiogenesis with a single

spatial dimension is that published by Zawicki et al. in 1981, which de-

scribes the one dimensional average radial growth of microvasculature in a

soft tissue rabbit ear chamber scenario [418]. Pettet et al. later constructed

a similar PDE model of angiogenesis in the same context [308]. In both

papers, approximately circular two dimensional experimental rabbit ear

wounds are modelled by assuming radial symmetry and by representing

variables such as capillary tip density, chemoattractant concentration and

blood vessel density as spatial averages, thus reducing the mathematical

equations to one spatial dimension. In particular, Pettet et al. were able

to replicate both normal and dysfunctionally healing responses, and they

conducted sensitivity analysis to explore how cell proliferation and death

and chemotaxis impact the rate of wound healing.

In 1997 Olsen et al. published a similar wound healing model, this time

also incorporating ECM interactions into the PDE framework [287]. Other

one dimensional models of tumour-induced angiogenesis, which simulate

temporal changes in vessel cell density at various distances away from a

tumour, have also been published [28, 70, 289]. However, this type of model

still fails to fully reflect the spatial heterogeneity in vessel density that is

often observed across vascularisation in tissue.

Consequently, continuous mathematical models of angiogenesis with

two spatial dimensions were then developed. These frameworks simulate

the evolution of spatial distributions of macroscale features such as en-

dothelial cell density over time. For example, Orme and Chaplain created
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a model of tumour angiogenesis to investigate the possible impact of differ-

ent anti-angiogenesis strategies, in which the densities of endothelial cells,

angiogenic factors and a generic adhesive ECM protein were simulated via

partial differential equations over a 2D square domain [290]. Each capillary

structure is represented by an area of high EC density with an elongated,

sprout-like shape; the equations simulate the outgrowth of these sprouts

from a parent vessel. The model simulations were able to replicate the spa-

tial inhomogeneity of the migrating and proliferating ECs, with broader

areas of high density representing branching at sprout tips, and the joining

up of two areas of high EC density mimicking the process of anastomo-

sis. Parameter values were altered to investigate the effect of, for example,

inhibiting cell proliferation on the formation of the capillaries.

Levine et al. published a similar model of capillary outgrowth com-

posed of non-linear partial differential equations, which also took into ac-

count the role of anti-angiogenic factors [216]. This model is more complex

that than of Orme and Chaplain, resulting in the use of 30 parameters that

required identification from the literature. Simulations run using the model

approximated qualitative understanding of the formation of capillaries.

However, although both of these two models were able to describe

some of the spatial heterogeneity of vascular growth, this type of continu-

ous framework is incapable of capturing the fine-grain details of tortuous

vascular networks: instead a “smoothed” view of overall cell distributions

is provided. It is clear that representing the migration of endothelial cells

as diffusive term, or as a moving front with a prescribed growth rate as

in the case of the study by Croll et al. [87], is not sufficient to capture the

tubular morphology of EC migration in angiogenesis.

In an effort to remediate this issue, Ambrosi et al. implemented a gen-

eral form of the Burgers’ equation in their continuum model of the organ-

isation of endothelial cells into vessel networks on a Matrigel surface [8].

In this model, the cells are represented as a continuous density field sub-
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ject to chemotactic and tensile forces exerted by the environment, paired

with a corresponding velocity field. These are governed by a multidimen-

sional Burgers’ equation, which is known to accentuate heterogeneities and

thus lead to organized spatial structures such as the characteristic form of

vascular networks. A differential equation also determines the diffusion

of chemical factors, and varying the chemical interaction radius of these

generic factors resulted in networks with a coarser mesh, which qualita-

tively matched experimental data. However, this relatively simple model

does not include processes such as cell proliferation that would be neces-

sary for the simulation of a broader range of angiogenesis-related scenarios.

2.2.2 Discrete models

In opposition to continuous frameworks, discrete models are often used to

explicitly simulate and study cell scale behaviour. Agent based models sim-

ulate the actions and interactions of a population of autonomous agents,

such as animals or cells, via a series of rules that dictate how the agents

behave and interact with each other and their environment [25]. They have

the capacity to incorporate a large number of rules, which makes them very

flexible and capable of modelling complex behaviours; however, the use of

many different rules can make it difficult to understand which aspects of

simulation outcomes can be attributed to which rules. Agent based models

are particularly useful for evaluating whether a relatively small set of rules

can produce the complex emergent behaviour of a group of agents.

Discrete models such as this are typically stochastic; the outcome of in-

teractions depends upon probability distributions, meaning that different

outcomes can result from simulations run using the same initial conditions.

This is in direct contrast to the deterministic nature of many continuum

models. In reality, this more closely mimics the actual behaviour of biolog-

ical systems.

Random walks, which are discrete, stochastic processes that model a

series of steps over a set of states (such as nodes on a lattice) are often
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implemented to model cellular movement as part of a wider agent based

approach, or on their own. When applied to a lattice, the random walk of

the agent from one node to the next depends on a probability distribution;

this can be uniform, meaning that the likelihood of the agent moving to any

of the available nodes at a particular time step is equal, or non-uniform,

leading to a biased or directed random walk in which movement in certain

directions is more likely than others. This probability distribution can also

be set as a function of some other variable.

Cellular automata are agent based models in which the discrete agents

are restricted to a lattice grid and assigned “state” variables, which can be

continuous or discrete and represent the properties of that particular agent.

A cellular automaton evolves via a set of rules that govern the interac-

tions between each agent and other agents in their defined neighbourhood,

based upon their states, over a series of discrete steps.

A particularly well-known type of cellular automata is the Cellular

Potts model. Cellular Potts models are generally characterised by two key

elements: a discrete Euclidean grid with labelled lattice sites, and a Hamil-

tonian energy function. Each individual cell is represented by a combi-

nation of lattice sites that are assigned the same cell ID, thus forming an

explicit spatial domain. Any entities other than cells, such as the ECM

in the case of angiogenesis models, are represented by separate IDs and

thereby inhabit their own spatial domains.

The progressive behaviour of the cells in a Cellular Potts model is

determined by minimisation of the Hamiltonian function, which is a sum

of energies representing both interfacial interactions, such as cell-cell and

cell-matrix adhesion, and other constraints such as cell surface area and

volume. Cell motion takes place stochastically: iterative attempts are made

to copy the cell ID of a randomly selected site onto a randomly selected

adjacent site, and for each attempt the Hamiltonian function determines

the probability of accepting the lattice update. If an attempt is successful,
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that particular cell has effectively expanded its spatial domain. Typically

for each model time step the number of copy attempts is equal to the total

number of lattice points. The use of the Hamiltonian function ensures

that the cells tend to reorganise towards configurations that favour strong

intercellular interactions over weaker ones.

Cellular Potts models are useful for studying biological mechanisms

that involve a complex mix of cell-cell and cell-matrix interactions. Known

or hypothesised cellular responses to environmental cues, such as chemi-

cal agents or mechanical stressors, can be encoded as specific rules to be

obeyed by the individual constituent cells. Simulation outcomes therefore

predict the emergent, collective behaviour of the cells according to these

rules, and can be compared to experimental observations of multicellular

tissue behaviour.

2.2.2.1 Discrete models of cell-solute interactions and tissue

Discrete, agent-based approaches have previously been used to simulate

cell-cell and cell-solute interactions within regenerating or healthy tissue

and in vitro cultures. For example, a research group based at the University

of Sheffield have produced a series of papers exploring cellular behaviour

in epithelial tissue using agent-based modelling. First of all, in 2003 Walker

et al. published a model of epithelial cell interactions within a 2D square

substrate, in which the cells interact with each other and their environment

according to biologically informed rules at each discrete time step [397].

The cells are assigned different internal parameters according to their type,

either stem or transit amplifying cells, and their phase in the typical cell cy-

cle, from the G0 or quiescence phase to the M or mitotic phase. Migration,

spreading, apoptosis and response of the cells to calcium concentrations

are all incorporated into the framework. Simulations run using conditions

representing low and physiological calcium concentrations agreed qualita-

tively with in vitro data.

Following on from this work, in 2007 Coakley et al. from the same
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group described a form of an open-format agent-based model using X-

machines, with the aim of encouraging understanding and the use of a

clearly defined framework for agent-based studies [82]. An X-machine is

a finite state machine, composed of a set of states with inputs, initial con-

ditions and defined transitions from one state to another, with additional

memory so that information about the history of states for a particular

agent can be used to inform future transitions. Coakley et al. proposed the

use of communicating X-machines, which have the capacity to exchange

information between each other in the form of lists.

A software environment dubbed FLAME (FLexible Large-scale Agent

Modelling Environment) was then developed and used in a separate paper

to create an X-machine agent-based model of keratinocytes, an epidermal

cell type, to study how these cells self-organize to form epithelium [370].

In this study, validation of the model was achieved using in vitro data, be-

fore predictions were made regarding the growth of two different types

of keritinocytes and their behaviour in a scratch wound healing scenario.

The wound healing predictions were then used to design a corresponding

in vitro experiment. This effectively demonstrates how computational pre-

dictions can directly inform the design of future experimental work: this

thesis also aims to provide useful predictions that can help to plan in vivo

studies.

This model was subsequently extended by the same research group

to develop a 3D multiscale model of the human epidermis, with the aim

of investigating the role of Transforming Growth Factor (TGF-β1) upon

cellular behaviour in epidermal wound healing [3, 371]. In contrast to pre-

vious work, this involved incorporating subcellular mechanisms into the

model. FLAME was also used for this work, but this time in combination

with COPASI (COmplex PAthway SImulator), another software application

developed to simulate biochemical networks. COPASI was used to solve

ordinary differential equations relating to biochemical networks associated



2.2. Relevant mathematical and computational models 97

with intracellular signalling pathways, such as those involving TGF-β1,

and intercellular interactions. Simulations suggested that cell migration

and proliferation are crucial for effective epidermal wound healing, and

that TGF-β1 helps to coordinate these processes. The authors proposed

that this model could also be used in the future to investigate the influence

of other growth factors and signalling molecules upon cellular interactions

within tissue.

These works were able to produce some interesting insight into ep-

ithelial cell behaviour and generated testable hypotheses about the rela-

tive importance of certain processes and variables. The use of an agent-

based framework facilitated analysis of the mechanisms behind cellular

behaviour; such analysis is very difficult to achieve in vitro or in vivo due

to the number of different cell types and factors involved, whereas compu-

tational modelling allows biological scenarios to be broken down into their

constitutive parts to investigate the importance of each factor in turn.

On the other hand, much of the focus for these models was on the

qualitative collective behaviour of the cells, whereas the current thesis aims

to use mathematical modelling to make quantitative predictions about cell

seeding within NRCs. Furthermore, the inclusion of sub-cellular processes

into a model framework is likely to be unnecessary for the fulfilment of

the aims of this thesis, and could over complicate the model due to the

complexity of the process of peripheral nerve repair.

In another example of the use of agent-based modelling to investigate

a tissue regeneration scenario, Galvão et al. produced a model of the effect

of stem cell transplantation upon damaged heart tissue caused by Chagas

disease (chronic chagasic cardiomyopathy) [126]. The framework consists

of agent types representing fibrotic tissue, cardiomyocytes, inflammatory

factors and cells, the Chagas parasite and bone marrow stem cells. Sim-

ulations were run on a 2D lattice, with state transition rules representing

the processes of cell apoptosis and differentiation, as well as the spread of
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fibrosis and the transformation of bone marrow stem cells into cardiomy-

ocytes. These rules were informed by previously published experimental

evidence.

The model was parameterised against the fractional areas of fibrosis

and inflammatory cells obtained experimentally from cardiac tissue sec-

tions afflicted with Chagas disease at different time points after treatment.

Although a relatively good quantitative fit was achieved, validation for

the simulated total number of cardiomyocytes was not possible due to a

lack of data, and the spatial structure of the simulated fibrotic areas was

markedly less elongated than in the cardiac tissue images. The simulations

suggested that the amount of fibrosis could be decreased using bone mar-

row transplantation, in line with the experimental evidence, and also that

the concentration pattern of the fibrotic tissue and inflammatory cells is the

factor that has the most influence upon stem cell mediated regeneration in

this context.

Finally, a study by Scianna et al. aimed to aid understanding of cell

migration within tissue and through tissue engineered scaffolds via a dis-

crete modelling approach [344]. The researchers devised a Cellular Potts

model capable of simulating cell migration on 2D and through 3D sections

of extracellular matrix. In this model, the agents are cells, ECM fibers and

liquid. The cell type agents are split into two subregions representing the

nucleus and the cystol, which allowed the authors to assess the separate

contributions of each of these components towards cell migration. As with

previous models, the cells follow rules informed by experimental evidence

to model migratory behaviour.

The orientation and density of the ECM fibers within the simulated

matrices were varied to assess the impact of the structural composition of

the geometry upon cell migration. The direction of cellular migration was

found to generally align with the predominant orientation of the fibers, and

it was noted that this effect has also been observed experimentally. Pore
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size was varied by arranging the fibers in specific configurations, and this

revealed a biphasic relationship with cell migration. A maximum in the

chosen measures of cell motility occurred when the pore size was set to be

approximately equal to the cellular diameter. Matrix adhesion and stiffness

was also investigated, and the authors concluded with the proposal that the

model could be used to help design regenerative implants, such as acellular

scaffolds, by running simulations to identify the optimal the porosity and

stiffness values to encourage cell migration.

This Cellular Potts model therefore demonstrates how this type of

model can incorporate the influence of many different variables, in this

case fiber orientation, pore size, and other matrix properties, allowing re-

searchers to investigate the effect of various combinations of these factors.

However, the model proposed in this thesis will not include the influ-

ence of mechanical factors such as matrix composition on the seeded cell

population, and will focus on overall distributions of therapeutic cells as

opposed to cell-level interactions and behaviours; therefore it seems that

the increased computational cost of a Cellular Potts or similar agent-based

model may not be worth the increase in flexibility and insight when cell-

solute interactions can be simulated fairly simply via a continuous mod-

elling approach, as described previously.

2.2.2.2 Discrete models of angiogenesis

Discrete models have already been used extensively to study the devel-

opment of vasculature because they can usually capture vascular network

morphology more easily than continuum approaches, and thus can be di-

rectly compared to qualitative experimental observations.

In 1991, Stokes and Lauffenburger published a two dimensional model

of EC migration in culture medium as a random walk in response to

chemotactic gradients [366]. This was one of the first examples of the use

of a probabilistic discrete framework to describe EC movement. In this

model, the movement of microvessel ECs is described using the Ornstein-
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Uhlenbeck process, a stochastic differential equation model which had pre-

viously been used to model Brownian motion, with an extension to incor-

porate chemotaxis. Time lapse videos of cell movement in media was used

to validate the model and identify key parameters such as cell migration

speed and chemotactic responsiveness.

In a second paper by the same authors, the model was extended and

used to investigate the role of microvessel ECs during angiogenesis [365].

In this model, the migration of TECs is described as per the previous

work, but the proliferation and redistribution of microvessel ECs along

each sprouting vessel is also modelled and a minimum cell density across

a sprout is required for further elongation to occur. The authors concluded

that chemotaxis is necessary to produce directed vascular growth, but that

a degree of randomness in the migration direction of the ECs is also needed

to emulate the often tortuous morphology of microvascular networks in

vivo.

The parameters used in this model were derived from experimental

observations of the migration of cells in culture medium. Although the

behaviour of cells in tissue could differ due to the increased complexity

of their surroundings, the model simulation results exhibited many simi-

larities to in vivo measurements of values such as the average vessel length

between branches and the average network expansion rate, providing some

further validation for the parameters used.

The aspects of microvascular growth captured in this model align with

the requirements for the model of vascular model proposed in this thesis.

However, in this model Stokes and Lauffenburger assumed that the distri-

butions of growth factor over the simulated 2D spaces were static, thus ne-

glecting the impact of growth factor uptake by endothelial cells and growth

factor decay. In reality, the process of angiogenesis responds to gradients of

growth factors, and also impacts growth factor distributions both directly

via growth factor uptake and indirectly via the provision of oxygen that
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can inhibit cellular growth factor secretion.

Another important early 2D discrete mathematical model of (tumor-

induced) angiogenesis was published by Anderson and Chaplain in 1998

[10]. Unlike Stokes and Lauffenburger, the authors derived the probabili-

ties used to calculate the biased random walk movement of individual ECs

by discretising a previously developed continuous model of angiogenesis

using the Euler finite different approximation. This allows the cell density

at any spatial position to be expressed as a linear combination of the den-

sities within a single grid length at the previous time step. The coefficients

of the linear combination correspond to the probabilities of a cell either re-

maining stationary or moving left, right, up or down at each time step, and

depend upon local angiogenic factor concentrations. These coefficients,

which incorporate the processes of diffusion, chemotaxis and haptotaxis as

per the original differential equations, are used as weights to calculate the

stochastic movement of individual cells.

In this framework, the probability of a sprout branching is determined

to be a function of the angiogenic factor concentration, and the angiogenic

factor distribution is modelled by a separate continuous governing equa-

tion that includes terms representing diffusion, uptake by ECs and decay.

Thus in contrast to the Stokes and Lauffenburger model, the angiogenic

factor distribution was able to vary over time.

In 2001, Tong and Yuan published a mathematical model of corneal

sprouting angiogenesis that also incorporates the influence of time-

dependent growth factor distributions [381]. A partial differential equation

is used to model the growth factor concentration, including an inactivation

or decay term, a diffusion term and an uptake term, proportional to the

vessel density.

In this model, the direction of growth of each sprout at each time step

depends upon the direction of growth at the previous time step and the

direction of the growth factor concentration gradient. Additionally, the
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influence of ECM structure upon the direction of endothelial cell migration

is incorporated via a random deviation in the angular direction, governed

by a probability distribution and limited to between π/2 and −π/2. It is

also assumed that anastomosis occurs whenever two vessels meet.

Tong and Yuan chose basic fibroblast growth factor (bFGF) as the

growth factor in their published simulations, and simulated the inward

growth of blood vessels from the edge of a circular cornea geometry to-

wards an implanted bFGF-releasing pellet. They were able to replicate

qualitative experimental results, although the model simulations showed

initial vessel sprouting occurring sooner than in the experiments. Tong

and Yuan speculated that this could be because the model does not take

into account a delay between growth factor sensing and sprouting.

Although Tong and Yuan had developed a flexible model that could

be altered to match experimental observations via parameter adjustments,

they did not incorporate vessel remodelling into their framework. But in

2013, Secomb et al. collated and adapted existing frameworks, including

that of Tong and Yuan, to arrive at a theoretical model of angiogenesis

in response to concentrations of growth factors that also featured vessel

pruning and remodelling [347]. This approach of integrating and adjusting

previously developed separate models of processes such as cell motility,

vascular pruning and blood flow, and solute diffusion into a single hybrid

model has become a popular approach to vascular modelling.

The Secomb et al. model incorporates oxygen transport, via blood

flow in the vessel structures and diffusion through the tissue, and the pro-

duction and diffusion of VEGF. It was developed based upon previous

mathematical models of vessel growth and adaptation, and informed by

experimental measurements of hemodynamics and vessel structure in rat

mesentery tissue.

The model simulates sprouting angiogenesis according to a probability

distribution dependent on the local VEGF concentration: the likelihood of
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a new sprout occurring is higher if the parent vessel is in a section of tissue

with a high VEGF concentration, and there is a minimum VEGF concentra-

tion threshold required for sprouting. However, unlike the other discrete

models of angiogenesis mentioned thus far, this model does not incorpo-

rate the gradient of VEGF as a directional cue for the growing sprouts. The

authors justified this exclusion by observing that biasing vessel growth ac-

cording to VEGF gradients “interferes with formation of new flow path-

ways” and results in high densities of unconnected vessels in regions with

the highest VEGF concentration. Nevertheless, currently the weight of ex-

perimental research suggests that there is a link between VEGF gradients

and the direction of vascular growth led by TECs (as outlined in Section

2.1.3 and reviewed in more detail in Section 5.3.4), and this relationship is

central to the investigation carried out in this thesis.

In 2007, Jabbarzadeh and Abrams published a model of EC migration

through a porous tissue engineered membrane in response to VEGF re-

leased from embedded sources. This work is of particular relevance to this

thesis as it focuses on the impact of VEGF upon the vascularisation of im-

planted biomaterials, although it does not include the secretion of VEGF by

cells or any feedback between the vessels and the surrounding tissue. Here

the authors drew upon previous work by again modelling the trajectories

of developing capillaries as the pathways of migrating tip cells, governed

by a biased random walk. Three different combinations of VEGF source

placement were trialled, and it was found that the duration of VEGF re-

lease from the sources had an effect upon the morphology of the vascular

networks, with longer durations resulting in denser networks near the pri-

mary vessel but less penetration. The authors concluded that there may be

an optimal release duration that enables the vessels to reach further within

the geometry, although they did not suggest a possible range of values for

this optimum. However, this does again demonstrate the power of mathe-

matical modelling to suggest testable hypotheses.
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Some more complex models of angiogenesis have incorporated biolog-

ical processes that occur across multiple temporal and spatial scales. For

example, Owen et al. developed a lattice-based multiscale model of angio-

genesis and vascular modelling that includes simulation of subcellular pro-

cesses, cell population dynamics and VEGF and oxygen diffusion, as well

as vascular growth and remodelling [293]. Correspondingly, the model is

composed of three layers relating to different time and length scales: the

tissue or vascular level, cellular level and subcellular level.

The cellular section of the model describes cell division, movement and

apoptosis, as well as intercellular interactions and competition for space

and resources, governed by rules that relate to the outcomes of subcellular

processes such as VEGF secretion and protein production. These subcellu-

lar processes are in turn modelled by ordinary differential equations.

The vascular portion of the model involves first of all the selection of

TECs from existing sites occupied by a vessel according to a probability

density function dependent upon the local concentration of VEGF. TECs

then migrate according to a biased random walk, dependent upon the sur-

rounding VEGF concentration gradient, and ECs are created at all lattice

sites passed through by the TECs to form vessels. This method of simulat-

ing TEC migration is very similar to that used by Anderson and Chaplain,

with the exception that in this case diagonal movement is permitted.

In this model, the vessels also undergo changes in their radii according

to metabolic and structural stimuli. The interdependent values of the vessel

radii, haematocrit and flow are calculated iteratively at each time step until

a certain tolerance is reached, using a quasi-steady state assumption. Fi-

nally, the vascular and cellular layers are coupled via reaction-diffusion

equations governing oxygen and VEGF transport. The vessels take up

VEGF and act as a source of oxygen, and the oxygen is in turn consumed

by the other cells whilst they produce VEGF. This feedback loop between

the vascular model and the equations governing the solute distributions is
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an aspect that the model in this thesis will seek to emulate.

Owen et al. ran simulations of several different scenarios using their

framework, demonstrating the flexibility of this type of model. First of all,

angiogenesis and vessel pruning in non-cancerous tissue was simulated in

the context of a 2 mm square of tissue using a range of different initial con-

ditions and key parameters, such as the level of oxygen release from the

vessels. The authors found that in this model the degree of vessel pruning

was governed by the pressure drop across the network of vessels, with a

smaller pressure drop resulting in more pruning. They also concluded that

a strong chemotactic bias in sprout migration, determined in this model by

a chemotactic sensitivity coefficient, is necessary for the formation of rapid,

directed and less tortuous vessel growth, in corroboration with observed

experimental results. Vascular tumour growth was also simulated by as-

signing tumour cells different internal parameters from normal cells, and

seeding a group of them in the virtual tissue .

Overall, Owen et al. were able to produce some meaningful results

from their simulations, although the section of tissue simulated was rela-

tively small and the model operates only in 2D. The authors also neglected

to include ECM interactions into their framework, which they suggested

could have resulted in less tortuous vessels.

A similar complex 2D combined discrete-continuum theoretical frame-

work of vascular development in the murine retina was devised by Mc-

Dougall et al. [251]. This includes the migration of astrocytes in response

to PDGF-A, the diffusion, decay and uptake by the astrocytes of PDGF-

A, the diffusion, decay and secretion by the astrocytes of VEGF-A, and

the migration of endothelial cells in response to VEGF-A, all via a set of

coupled partial differential equations. Additional equations govern inter-

actions between extracellular proteins and matrix degrading enzymes. As

in the previously mentioned work by Anderson and Chaplain, the two cell

governing equations (for astrocytes and endothelial cells) are derived via
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discretisation of a continuum model.

Vessel pruning occurs in this model when three criteria are met: the

local oxygen concentration must fall below a threshold, the vessel must be

of at least a certain critical age, and it must not be experiencing flow-related

stimuli. These conditions are based upon experimental observations, and

are a good example of how qualitative experimental results can be effec-

tively translated into rules that govern the behaviour of a discrete math-

ematical framework. Similar conditions for pruning are also used in the

model by Owen et al.

McDougall et al. used this framework to simulate retinal capillary de-

velopment, and found broad agreement with experimental imaging data

taken at various time points. The simulations were able to reproduce the

spatial structure of vessel networks over time, thus demonstrating an ad-

vantage over continuous modelling methods, as well as provide estimates

of the rate of advancement of the cellular fronts. The authors also drew

conclusions about the impact of factors such as astrocyte chemotaxis, VEGF

diffusion rates and haematocrit input levels by varying the corresponding

model parameters. This method of investigation leads to the generation

of testable hypotheses about the relative roles of the various complex and

interconnected processes involved in angiogenesis.

All the discrete models reviewed thus far are simulated over two spa-

tial dimensions. This is likely sufficient for the approximation of vessel

growth in very thin tissues (/ 100 µm). However, in this thesis a model of

vascular growth will be applied over a cylindrical geometry with a radius

of around 0.25 mm, and therefore a three dimensional model would be

more appropriate.

So far, the translation of cell migration models to three dimensions

has been limited [328]. One example, a three dimensional hybrid model

of vasculogenesis, was developed by Perfahl et al. and could be adapted

for application to the wound healing setting [307]. This framework uses an
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agent-based, lattice-free approach to describe the behaviour and interac-

tions of TECs and SECs. The cells are modelled as linearly elastic spheres

under mechanical and chemotactic forces exerted by each other and their

surrounding environment. Thus the TECs are simulated via a biased ran-

dom walk, similarly to the other models, whilst stalk cells follow on behind

according to intercellular forces.

As in the multiscale model devised by Owen et al., each cell is also

assigned a phase variable representing its position over the cell cycle and

governed by a differential equation. In this case, this is also linked to the

degree of mechanical compression or tension experienced by each cell. In

this way, the process of cell division and sprouting is connected to these

forces, integrating into the model the experimentally informed assump-

tions that elongated cells have a higher proliferation rate and compressed

cells have a higher probability of producing new sprouts.

Model simulations suggested that networks with morphology similar

to those observed in vitro and in vivo could be generated when sprout for-

mation is governed by mechanical stimuli alone. However, it appeared that

the formation of directionally oriented, dense vasculature was dependent

of the existence of an imposed chemotactic gradient, matching experimen-

tal observations.

The authors also found that large increases in the chemotactic sen-

sivity of the TECs caused them to “tear off” from their attached sprout,

leading to network degeneration. This behaviour was due to an imbalance

between the strengths of the intercellular and chemotactic forces, and does

not match the behaviour of cells in vitro or in vivo. This highlights the

difficulty of assigning parameter values in a way that allows a model to

produce realistic simulations across a wide range of scenarios. Addition-

ally, the authors note that this model can feasibly only represent the very

early stages of vasculogenesis prior to the introduction of blood flow, as

aspects such wall shear stress, oxygen delivery, growth factor uptake and
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surrounding tissue metabolism are not taken into account, although the

model could be expanded to incorporate these factors.

Another 3D model of vascular growth was provided by Norton and

Popel, who simulated sprouting angiogenesis in a 500 micron cube to as-

sess the effect of SEC proliferation rate and TEC migration rates on the

developing networks [276]. This study is part of a wider body of work on

simulating vascular growth in 3D by Popel and colleagues [223, 325]. In

this model, TECs are agents that migrate on a discrete grid according to

chemotactic and haptotactic cues. SEC proliferation, sprouting, anastomo-

sis and sprout regression are all included in the framework.

The discrete nature of the model allowed the authors to calculate vari-

ous metrics relating to the morphology of the vessels, including tortuosity

and the number of vascular bifurcations per unit volume of vessel, and

these were then compared to corresponding metrics obtained from whole

tumour imaging data. These kind of metrics cannot generally be derived

from the results of a continuous mathematical model of vascular growth,

yet are crucial for quantitative assessment of how simulated vascular net-

works compare to experimental data. Additionally, these metrics provide

a method of quantifying differences in simulation outcomes. In this the-

sis, metrics that capture the directionality and tortuosity of new vessels

could be used to assess the degree of directional guidance that the vascular

growth could offer to regenerating neurons [65].

Cellular Potts models provide a different approach to the frameworks

mentioned so far, which have been predominantly based around the use of

biased random walks. In fact, one of the key applications of the Cellular

Potts model has been in the study of the mechanisms behind angiogen-

esis and the formation of vascular networks. Cellular Potts models have

enabled researchers to evaluate the potential of different mechanisms hy-

pothesised to be responsible for vascular growth. For example, Merks et

al. developed a Cellular Potts model that describes the behaviour of hu-
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man umbilical vein endothelial cells within an in vitro Matrigel environ-

ment, including the secretion of VEGF and migration and elongation of the

cells, in order to mimic vasculogenesis [256]. The results, which indicate

that the inclusion of the elongated shape of endothelial cells can aid the

in silico formation of vascular networks, were validated using quantitative

time-resolved image analysis data from HUVEC cultures. This demon-

strates how a properly validated mathematical model can highlight impor-

tant variables or parameters in a system, and even delineate between those

that are unnecessary, sufficient or necessary for good biological function.

Additionally, in 2008 Merks et al. developed a Cellular Potts model of

the early stages of angiogenesis which simulated the aggregation of ECs

[257]. This model incorporates preferential extension of pseudopods up

chemoattractant gradients. Pseudopods are transient projections extended

by cells, such as the filopodia that are observed to be produced by ECs in

response to gradients of VEGF [134]. The chemoattractant itself was mod-

elled using a continuum approach which included diffusion, degradation

and secretion by the ECs.

In this paper, Merks et al. conducted simulations of ECs to investigate

the impact of vascular-endothelial-cadherin (VE-cadherin), a molecule that

regulates EC response to VEGF and mediates EC adhesion [393], upon the

formation of vascular networks. In vitro experimental data suggested that

binding between ECs via VE-cadherin causes VEGF to decrease the motility

and proliferation rate of the cells, whereas a lack of VE-cadherin conversely

causes VEGF to increase EC proliferation, and enhances ECs’ chemotactic

response to VEGF gradients. This information was used to form the hy-

pothesis that VE-cadherin-mediated contact between ECs results in the in-

hibition of chemotaxis and aids vascular sprouting, and simulations of ECs

using rules to represent this hypothesis did suggest that this mechanism

could induce blood vessel sprouting.

This model was particularly useful for the evaluation of EC behaviour
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with and without the influence of VE-cadherin because the impact of the

adhesion molecule could be included or removed simply using the addition

or subtraction of a section of the model algorithm, thus demonstrating the

power of this type of mathematical modelling as a tool to test hypotheses.

Daub and Merks published another hybrid Cellular Potts-continuum

model in 2013 that incorporated the impact of the ECM into a model of an-

giogenesis [93]. In this case, the ECM was represented by all lattice sites not

occupied by cells, and the authors were able to show via sensitivity anal-

ysis that the formation of branching vascular sprouts is dependent upon

concentrations and gradients of ECM acting as guidance cues for ECs.

However, many of the parameters incorporated into the model, such

as the decay rate of the ECM, were not based on quantitative data and

remained non-dimensional. The authors acknowledged that this was due

to a lack of quantitative data, highlighting the need for experimental in-

tegration with mathematical modelling to identify unknown quantitative

values where possible. The large number of parameters included in this

model, due to the complexity of the biological scenario, does make the task

of identifying parameter values more difficult.

Furthermore, although the model was able to successfully evaluate

different hypotheses by comparison against experimental data, it was not

able to reproduce some aspects of observed sprouting behaviour. Simu-

lation results showed the formation of unrealistic “bulbs” at the tips of

the sprouting vasculature. The authors acknowledged that the published

model is still relatively simplistic, partly because it does not differentiate

between TECs and SECs despite the fact that these cell types behave and

respond to environmental cues in different ways. Other biological nuances

were also neglected. This highlights the difficulty of successfully incorpo-

rating the many different “rules” and interactions involved in highly com-

plex biological processes, such as angiogenesis, into agent-based models.

The omission of even a seemingly minor interaction or behavioural aspect
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could drastically impact the resulting emergent behaviour; conversely, the

inclusion of many different rules makes it progressively more difficult to

unpick which are having the most significant impact upon the results.

2.2.3 Discussion

The preceding two sections reviewed a range of mathematical and com-

putational models of cell-solute interactions, tissue growth and repair, and

angiogenesis, to highlight the advantages and disadvantages of different

techniques and assess their suitability for implementation as part of this

thesis.

Continuous mathematical models naturally lend themselves to the

simulation of distributions of solutes, via the use of partial differential

equations with a series of terms representing processes such as diffusion,

decay and secretion from a cell population. The ability to simulate spa-

tial variations in oxygen, and its effect on VEGF and cell distributions, is

necessary for one part of the model proposed in this thesis: this capability

is clearly demonstrated by some of the previously mentioned continuum

frameworks [217, 281].

In contrast to continuous frameworks, discrete models are best suited

to describing the interactions of agents like cells, and the majority rely on

integration with continuous models to simulate changes in solutes such as

oxygen or growth factors [165, 251, 293, 306]. They have the advantage

of being able to capture cell specific responses and cell-level heterogene-

ity, and have been used effectively to simulate the emergent behaviour of

groups of cells.

The widespread use of discrete models to investigate vascular growth

scenarios is likely due to their ability to recreate the formation of specific

spatial tissue structures, such as cell aggregates and vascular networks: as

reviewed in Section 2.1.3, vascular sprouting in wound healing scenarios

like peripheral nerve repair initially involves the production of discrete,

highly structured nascent vessels composed of a relatively small number
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of cells. The morphology and directionality of these sprouts are important

aspects of angiogenesis that are commonly recorded as part of experimen-

tal imaging data; theoretical models that capture these structures can not

only provide more detailed predictions but also allow these predictions to

be compared against experimental data with greater ease, as in the work

of Perfahl et al. and Galvão et al. [126, 306].

In the case of vascular growth models, simulating individual endothe-

lial cells or vessels allows researchers to calculate representative metrics

such as vascular tortuosity, bifurcation density and vessel length [276].

These metrics can be used to quantify the differences between outcomes,

and to facilitate quantitative, as well as qualitative, validation of the model.

Although continuum approaches to modelling vascular growth as av-

erage endothelial cell or vascular densities are able to capture some of the

macroscale properties of angiogenesis, such as changes in spatial distribu-

tions or vessels or cell densities over time [23, 308, 318], they are generally

incapable of reproducing observed sprout morphology.

One of the major challenges of developing a mathematical model of

a biological or biomedical scenario, regardless of whether the model is

discrete or continuous, is the estimation of parameter values and the choice

of functional forms to represent processes such as cell proliferation or rules

that govern interactions. The complexity of many biological scenarios often

demands that these models include multiple equations or rule and many

different parameters. The collection and use of relevant experimental data

is one of the best ways of remedying this issue. Experiments can be carried

out to identify specific parameter values such as diffusion coefficients, or

data that matches specific model outputs can be collected and the model

parameters can be adjusted to achieve a better fit against the data.

Helpfully, parameters like oxygen diffusion coefficients [71] and cellu-

lar oxygen consumption rates [336, 367] have already been measured exper-

imentally or derived theoretically as part of previous work on continuum
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models of cell-solute interactions, which would ease the development of

the proposed model in this thesis and narrow down the number of un-

knowns. The work of Lewis et al. [217], Croll et al. [87] and Landman

and Cai [205], among others, demonstrates how continuum models can

use similar previously published frameworks as a foundation prior to in-

corporating new aspects or refinements, aided by experimental evidence,

which provide incremental improvements.

Of course, discrete models can also be built upon and improved over

time: in particular, the ability to iteratively incorporate new information

into an agent based model via the addition of new rules as scientific knowl-

edge progresses was put forward by An et al. as an important benefit of

agent-based models, along with their modular structure which eases the

process of model modification [9]. However, the parameter values used in

discrete models are often more uncertain because it is more difficult to ex-

perimentally measure interaction rates on the cellular or subcellular scale.

Due to their composition, discrete, agent-based models such as the

Cellular Potts model developed by Merks et al. [257] are useful for testing

hypotheses. For example the effect of knocking out a particular process

upon overall behaviour can be simulated by removing that particular rule

from the framework. Results can then be used to plan similar experiments

that test the hypothesis in vitro or in vivo.

Additionally, as argued in a review of the use of discrete models of

tissue growth by Azuaje et al., discrete, rule-based models can be useful

for formalising existing knowledge of biological processes in a structured

manner [25]. Agent-based models are able to test whether quantitative

rules applied to collections of cells can give rise to qualitative observed

emergent behaviour. However, it is worth noting that via a similar process

of adding and removing terms in a set of partial differential equations,

continuous models can also be used effectively to test hypotheses about

which interactions are the greatest contributors to certain outcomes.
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Furthermore, one of the advantages of continuous models is that ana-

lytical solutions can sometimes be found, either in a general case or within

certain parameter regimes. This can facilitate comparison between numer-

ical and analytical solutions, and accelerate the time taken to run a large

number of simulations. Nevertheless, this is often only possible for simple

continuum models.

Another technique often used to investigate continuous models is

non-dimensionalisation, which can be used to inspect the relative sizes

of reaction-diffusion model parameters. In some cases this can lead to

justified simplification of the model when small terms are identified and

neglected, although this requires knowledge of parameter scales. Non-

dimensionalisation can also be used to reduce the number of parameters in

the model prior to solving [23, 217], which can make using both numerical

and analytical techniques easier.

Non-dimensionalisation can also be used to simplify some discrete

models. However, the stochasticity of many discrete agent-based or ran-

dom walk models means that it is necessary to run multiple simulations

for each initial condition, prior to analysis using statistical techniques if

possible, to properly evaluate which processes are underpinning the emer-

gent behaviour of the system or to test hypotheses [9]. This approach is

not necessarily an easy undertaking: cellular automota such as the Cellu-

lar Potts model and agent-based models in general can be computationally

intensive. In contrast, deterministic continuous models need only be run

once for each set of initial conditions and are relatively computationally

inexpensive.

In light of the distinct advantages and disadvantages of continuous

and discrete approaches, many researchers have chosen to incorporate as-

pects of both into their work to create “hybrid” frameworks. These include

models of tumour cell migration in tissue [12] and vascular growth (or EC

migration) in response to angiogenic factors [93, 251, 257, 293, 347]. In
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these models, solutes such as oxygen and VEGF are typically simulated

using partial differential equations, whilst cell populations are described

using a discrete modelling method. In this way, the ability of discrete mod-

els to capture fine-grain cellular structures can be used whilst also taking

advantage of the ease with which continuous models can describe varying

spatial distributions of variables over time.

In this thesis, it is necessary to track and assess the changes in seeded

cell, oxygen and VEGF distributions over time: in particular, the effect

of non-uniform cell distributions on cell survival and the generation of

VEGF gradients will both be important aspects of this work. However,

the simulation of individual seeded therapeutic cells is not necessary as

this work is concerned with making experimentally verifiable predictions,

rather than with unpicking the intricacies of how the seeded cells interact

and behave on the cellular level. Thus a continuous approach is a clear fit

for this portion of the model.

In contrast to this, the proposed model of angiogenesis will require

the ability to derive metrics relating to vessel tortuosity, directionality and

length over time, due to the importance of fast and directional growth for

peripheral nerve repair. This requires the ability to simulate individual

vessels, and therefore lends itself to a discrete approach.

The complete framework will therefore take a similar form to previ-

ously reviewed hybrid models of Owen et al. [293] and Secomb et al. [347]

by integrating continuum and discrete methods into a single hybrid frame-

work. Note that this will require modelling one cell population, the thera-

peutic seeded cells, using a continuous approach, and another population,

the endothelial cells that make up the vessels, via a discrete approach. The

use of a hybrid model will require extra thought about how feedback be-

tween the two sections of the model can be achieved, but offers a good

compromise that plays to the strengths of the two methodologies.

Although some previous studies have used mathematical modelling
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to investigate aspects of peripheral nerve repair [155, 202, 318, 336], out of

these only Podhajsky and Myers incorporated a model of vascular growth.

However, they modelled vascularisation using a continuum method and

neither VEGF nor other growth factors were incorporated. Therefore al-

though discrete models of angiogenesis have been implemented to study

other contexts, this will be the first time this technique has been applied to

model the process of vascular growth in response to growth factor gradi-

ents in the peripheral nerve repair setting.

Rutkowski and Heath did simulate the effect of different thicknesses of

Schwann cell layers on the inside lumen of cylindrical NRCs [337]. How-

ever, thus far mathematical models of peripheral nerve repair have not

attempted to assess how different distributions or densities of therapeutic

cells, seeded along the length of 3D biomaterial NRCs, could affect cell sur-

vival, growth factor distributions or vascularisation. This is the proposed

goal of this thesis.

2.3 Conclusion
The importance of vascularisation for NRCs is twofold. Firstly, the provi-

sion of nutrients and removal of waste metabolites is crucial for the good

function of any implanted engineered tissue. This point is widely agreed

upon both within nerve regeneration research and the wider field of tis-

sue engineering. Hypoxia and resulting cell death can be prevented by an

ingrowth of well connected and functional vessels.

Secondly, recent research suggests that the longitudinal inosculation of

these vessels could play an important role in the initiation and directional

guidance of axonal growth [65]. Although the strength of this hypothe-

sis would benefit greatly from further experimental research, the studies

that do advocate this theory appear to have been conducted carefully and

thoroughly.

Although plenty of work on mathematical and computational mod-
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els of vascular and cellular growth in tumours has been carried out, and

similar techniques have been applied to simulate cell-solute interactions in

bioreactors and bone regeneration, application of mathematical modelling

to the peripheral nerve repair scenario has so far been limited.

The design of NRCs offers plenty of potential as a candidate for math-

ematical modelling. Many of the biological mechanisms behind nerve re-

generation have been investigated thoroughly experimentally as outlined

in Section 2.1, providing a good knowledge base for the construction of

models, and there is a clear need to accelerate progress in the field of pe-

ripheral nerve repair because the rate of translation from in vivo experi-

ments to clinical application remains poor.

The effect of different seeded cell densities and distributions on both

cell survival and the the growth of vasculature has not yet been simulated

using a hybrid mathematical model, as proposed in this thesis. The mech-

anisms behind vascular growth are fairly well established, and the review

presented in Section 2.1.3 helped to identify the key variables involved in

this process. The next three chapters will describe the development of the

continuous cell-solute part of the model (Chapter 3), present simulations

of cell-solute interactions in collagen NRCs and predictions for optimal

cell seeding strategies for cell survival (Chapter 4), and finally outline a

discrete model of sprouting angiogenesis, coupled to the cell-solute model,

and make predictions about the influence of cell seeding strategies on vas-

cularisation (Chapter 5).





Chapter 3

Development of a Model of

Cell-Solute Interactions in

Engineered Tissue

3.1 Introduction
Chapter 2 outlined the key processes involved in peripheral nerve repair,

and in particular, Section 2.1.4 identified VEGF and oxygen as key factors

in the progression of vascularisation. However, the interactions between

these factors and seeded therapeutic cells within engineered tissue are not

thoroughly understood, despite the fundamental importance of cell fate

under varying oxygen conditions and VEGF gradients for vascularisation

and nerve repair. Section 1.4 motivated the use of mathematical modelling

to explore these processes and inform repair strategies.

This chapter presents the development of a mathematical model, pa-

rameterised using in vitro data, to describe cell-solute interactions within

collagen hydrogel. This spatio-temporal model can be used to simulate

these interactions within NRCs and other engineered tissue constructs, and

thus predict which initial seeded cell densities and spatial distributions are

the most likely to result in cell-solute gradients that enhance vascularisa-

tion and nerve repair. This is demonstrated later in Chapter 4.
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For the work in this chapter, a cross-disciplinary approach was

adopted that involved feedback and iteration between experimental and

theoretical work, as detailed in Figures 1.4 and 1.5. Initially, a 1D proof of

concept model was developed to confirm the viability of the modelling ap-

proach, as described in Section 3.2. The in vitro experimental protocol was

then designed and carried out specifically to collect data for the parameter-

isation of the mathematical model. Section 3.3 explains the experimental

methods used and reports statistical analysis of the in vitro data. Section

3.4 provides detailed reasoning for the choice of constitutive relationships

used in the model based upon existing experimental and theoretical re-

search, and Section 3.5 describes the methods used to simulate the model

and the process of parameterisation of the framework against the in vitro

data. Finally, in Section 3.6 plots of the final parameterised model sim-

ulations and the fit to the data are provided and sensitivity analysis is

conducted.

In summary, the overall aim of the chapter is the production of a math-

ematical model, parameterised against in vitro data, that can be used to test

the hypothesis that initial seeding cell densities and distributions impact

population cell survival and VEGF distributions in NRCs over time.

3.2 Proof of concept cell-solute model
A preliminary mathematical model of cell-solute interactions was con-

structed and tested as a proof of concept for the project. The functional

forms used in this model were based upon existing models and knowledge

of the biological system as outlined in the literature review (Chapter 2)

and were used for the purposes of demonstrating the general relationships

between the variables. The specifics of the constitutive relationships are

further refined and discussed in detail in Section 3.4. All unscaled param-

eter values used in this section are listed in Table 3.1.
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3.2.1 Mathematical framework

The theoretical framework consists of three coupled differential equations,

developed to model changes in the distributions of VEGF concentration

v, oxygen concentration c and viable cell density n as functions of time t

and space z. For the proof of concept model, a cell-seeded collagen NRC

was modelled in two spatial dimensions as a rectangle with length L and

width w. The dimensions of the nerve construct were approximated as

w ≈ 0.1 cm and L > 1.5 cm, to reflect the typical size of constructs used

in experimental research for long nerve gap repairs. The boundary con-

ditions were assumed to be uniform across the width of the NRC. It was

therefore possible to reduce the model to one spatial dimension 0≤ z ≤ L,

by approximating L� w.

3.2.1.1 Cells

The continuous distribution of viable therapeutic cell density n(z, t) was

modelled under the assumption that the cells do not migrate, as the time

scale for such migration within a collagen nerve construct (days to weeks)

would be longer than that of VEGF and oxygen diffusion (seconds to hours)

and cell proliferation or death (days). The governing equation consists of a

proliferation term and a death term as follows:

∂n
∂t

= βcn
(

1− n
nmax

)
− δd(c,n) , (3.1)

where β is the cell proliferation rate constant, nmax is the maximum viable

cell density and δ is the cell death rate constant. Note that nmax should be

thought of as the carrying capacity for the cell population in the gel, rather

than as a maximum cell density based on how many cells can be packed

into the gel according to their volume.

The cell death function d(c,n) dictates the dependence of the cell death

rate upon the viable cell density and oxygen. The cell death function is
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given by:

d(c,n) =
n
2
[1.05− tanh(kδ(c− cd))] . (3.2)

Here cd is the low oxygen threshold value at which the magnitude of cell

death becomes greater than the baseline value applicable to higher ambient

oxygen environments. The constant kδ dictates the gradient of the transi-

tion from the basal rate of death at high oxygen concentrations to the upper

rate at low oxygen concentrations. Equation (3.2) is a convenient approx-

imation of the relationship between the cell death rate and oxygen. This

term is further refined in Section 3.4.

3.2.1.2 Oxygen

The continuous distribution of oxygen concentration c(z, t) (per unit vol-

ume of fluid) is determined by a combination of diffusion and oxygen

metabolism by the cell population, described by the following governing

equation:
∂c
∂t

= Dcg

∂2c
∂z2 −Mn

c
c + c1/2

. (3.3)

Here Dcg is the diffusivity of oxygen in collagen gel, M is the oxygen

metabolism constant which dictates the maximum consumption rate of

oxygen by the cells, and c1/2 is the concentration at which oxygen con-

sumption is half-maximal.

3.2.1.3 VEGF

The continuous distribution of VEGF concentration v(z, t) (per unit volume

of fluid) is determined by a diffusion term, a secretion term and decay term

as follows:
∂v
∂t

= Dvg

∂2v
∂z2 + α0n (αh(c)− dvv) , (3.4)

where the VEGF secretion function h(c) is given by:

h(c) =
1
2
[1.05− tanh(kα(c− ch))]. (3.5)
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Here Dvg is the diffusivity of VEGF in collagen gel, α0 is the VEGF net

change magnitude constant, α is the basal VEGF secretion rate, ch is a

hypoxia oxygen threshold below which cells produce an increased amount

of VEGF, kα dictates the gradient of the transition from the basal rate of

VEGF secretion to the upper rate at the threshold value, and dv is the VEGF

degradation constant.

3.2.1.4 Boundary and initial conditions and parameter values

Boundary and initial conditions were applied to solve the governing equa-

tions:

Oxygen density boundary conditions:

 c(0, t) = ctissue

c(L, t) = ctissue

VEGF boundary conditions:


∂v
∂z

∣∣∣∣
0, t

= 0

∂v
∂z

∣∣∣∣
L, t

= 0

Initial distributions of n, c and v:


c(z,0) = cinit(z)

n(z,0) = ninit(z)

v(z,0) = 0 .

Dirichlet boundary conditions are assumed for the oxygen concentration,

representing a constant level of oxygen ctissue at the proximal and distal

ends of the construct. VEGF concentration is initially set to zero along the

length of the NRC, under the assumption that VEGF will not have been

generated prior to the presence of cells and hypoxic conditions. The diffu-

sive flux of VEGF is assumed via Neumann boundary conditions to be zero

at either end of the construct at all time points. The initial distributions for

the oxygen concentration and viable cell density, cinit(z) and ninit(z) re-

spectively, can be prescribed any function. Therefore these functions can

be varied to investigate the possible implications of different experimen-
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Figure 3.1: Initial non-dimensionalised oxygen concentration distribution c′(z′,0)
used for all simulations. The maximum and minimum of the rescaled
function c′(z′,0) correspond to dimensional values [6.13,9.32] × 10−9

mol/ml. For explanation of the rescaling, see Section 3.2.2.

tal set ups and cell seeding distributions upon nutrient and cell gradients

over time. After refinement of this proof of concept model, the boundary

conditions and initial conditions for the oxygen and VEGF concentrations

were adapted for application of the model to 3D axisymmetric geometries

in Section 3.5.1 and Chapter 4.

An initial oxygen concentration distribution was chosen and applied

for all subsequent simulations of this preliminary model. The functional

form of the initial oxygen distribution was chosen as a cosine function of

the rescaled spatial variable z′ (Figure 3.1), based upon the idea that initial

oxygen concentration in a construct may be higher at the open ends of its

cylindrical geometry.

The model was simulated using a range of different initial cell density

distributions, to explore whether this variable could have an effect upon

the time dependent distributions of both the cells and the solutes.
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Cell density parameters

Proliferation rate constant β = 24 ml/mol/s†

Maximum cell density nmax = 3.62× 107 cells/ml†

Cell death rate constant δ = 2.27 cells/ml/s†

Cell death gradient
constant kδ

Cell death oxygen
threshold ct mol/ml

Oxygen concentration parameters

Diffusion coefficient for
oxygen in collagen gel Dcg = 4.5× 10−6 cm2/s [71]

Oxygen metabolism
constant M = 1.19× 10−17 mol/cell/s [367]

Concentration at which
oxygen consumption is
half maximal

c1/2 = 6.66× 10−9 mol/ml†

VEGF concentration parameters

VEGF diffusion coefficient Dvg = 1.13× 10−6 cm2/s [232]

VEGF net change
magnitude constant α0 cm3/mol

Basal VEGF release rate α mol/cm3/s

VEGF secretion gradient
constant kα

Hypoxia oxygen threshold ch mol/ml

Degradation rate constant dv s−1

Estimate of a typical
VEGF concentration V0 = 5× 10−11 mol/ml

Table 3.1: Unscaled parameter definitions, units and approximate values (where
known) used for the proof of concept model. (†) denotes parameter
values provided by Prof. Shipley, based upon previous unpublished
research; these values were derived by fitting against published data
[18]. Note that these parameter values are used only for the proof of
concept model; updated parameter values are derived in Section 3.5.4.
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3.2.2 Non-dimensionalisation and simulation method

The equations were non-dimensionalised via rescaling to ease the process

of simulation, using the scaling factors listed in Table 3.2. The notation c′,

v′, n′, t′ and z′ will now refer to the non-dimensional variables.

The non-dimensional equations used for simulation of the model are

as follows:

∂c′

∂t′
= γc

∂2c′

∂z′2
− µc

n′c′

c′ + 1
, (3.6)

∂n′

∂t′
= c′n′(1− n′)− ηdd(n′, c′) , (3.7)

∂v′

∂t′
= γv

∂2v′

∂z′2
+ µvn′h(c′)− ηvn′v′ . (3.8)

The time scale of oxygen diffusion is smaller than that of cell proliferation

(Appendix A.1), represented by a relatively large value of γc. Therefore it

is possible to use a quasi-steady assumption to reduce Equation 3.6 to:

0 =
∂2c′

∂z′2
− µc

γc

n′c′

c′ + 1
. (3.9)

Assumptions about the approximate magnitude of the oxygen con-

centration can also be used to simplify the Michaelis Menten term of this

equation further:

c′� 1⇒ n′c′

c′ + 1
≈ c′ ,

c′� 1⇒ n′c′

c′ + 1
≈ n′c′ .

The approximation c′� 1 was used for the simulation of the proof of con-

cept model to enable the solver to calculate the solutions more easily. The

model was solved computationally in MATLAB using explicit spatial dis-

cretisation and MATLAB based ODE solvers (Appendix A.2).
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Variable
Scaling

factor

t t = 1
βc1/2

t′

z z = Lz′

v v = V0v′

n n = nmaxn′

c c = c1/2c′

Table 3.2: Rescaling factors used during non-dimensionalisation.

Variable Definition Name Possible
value

γc
Dcg

βc1/2 L2

Oxygen
diffusion

parameter
≈ 12.5125

µc
Mnmax

βc2
1/2

Oxygen
uptake

parameter

γv
Dvg

βc1/2 L2

VEGF
diffusion

parameter
≈ 3.1420

µv
αα0nmax
V0βc1/2

VEGF
release

parameter

ηv
α0dvnmax

βc1/2

Tissue
degradation
parameter

ηd
δ

βc1/2nmax

Cell death
parameter ≈ 0.3923

Table 3.3: Non-dimensional parameters and their estimated values (where enough
parameter values are known to give an estimation).
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Figure 3.2: Proof of concept model simulation results: The variables c′, n′ and
v′ are the rescaled solutions, at given values of rescaled time t′ and
space z′. Note that c = 6.66× 10−9c′ mol/ml, n = 3.62× 106n′ cells/ml
and v = 5× 10−11v′ mol/ml, as per Tables 3.2 and 3.1. Figure adapted
from poster for Tissue and Cell Engineering Society Annual Meeting 2015.
Abstract available in eCells & Materials Meeting Abstracts 2015, Collection
3; TCES (page 42).
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3.2.3 Results and discussion

Several different simulations were run with different initial cell density dis-

tribution functions ninit(z′) to investigate the effect that the initial seeding

distribution of cells could have on the distributions of VEGF concentration,

oxygen concentration and cell density over time. The results are illustrated

in Figure 3.2. The non-dimensional parameter values used for these simu-

lations are listed in the Appendix A.3.

From the proof of concept model simulations, it is apparent that the

distributions of VEGF concentration and cell density in particular appear

to vary according to the initial cell density used. It should be noted that

no attempt was made to fit this model to experimental data, and that the

parameters and functional forms used for these simulations were approx-

imations based only upon existing models and experimental knowledge.

However, overall the results of this proof of concept model, coupled with

experimental evidence from the literature as described in Section 2.1, sug-

gest that the interplay between these three variables is both non-trivial and

a good candidate for the application of mathematical modelling.

3.3 The in vitro experiments
As outlined in Section 1.5, one of the aims of this project is to demonstrate

the potential of a joint theoretical-experimental approach to NRC design.

Consequently, in vitro experiments were planned and executed with the

specific aims of the theoretical work and the need for model parameteri-

sation in mind. These experiments and analysis of the collected data were

carried out after the proof of concept model was devised, and have contin-

ued alongside the expanded mathematical modelling work as the project

has progressed. For information on the chronological order of work and

the relationship between the experimental and theoretical sides, the reader

is referred to Figure 1.5.

Experiments were planned by R. Coy, R. Shipley (UCL Department of
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Mechanical Engineering) and J. Phillips (UCL School of Pharmacy). Cell

culture and viability and VEGF monitoring experiments were carried out

by G. Kennedy (UCL Department of Mathematics) and C. Kayal (UCL De-

partment of Mechanical Engineering). Cell proliferation assay was carried

out by C. O’Rourke (Biomaterials and Tissue, UCL Eastman Dental Insti-

tute). The VEGF ELISA was conducted by P. Kingham (Department of

Integrative Medical Biology, Umeå University, Sweden), and oxygen mon-

itoring and data analysis was carried out by R. Coy.

3.3.1 Cell type and material justification

The experiments were designed to provide data for parameterisation of

the model, and to inform the functional forms of the mathematical model.

Seeded collagen gels in in vitro wells were used to mimic the material and

environment of a collagen-based EngNT NRC (for a brief description of

EngNT, see Section 1.2). The cell type, Schwann cell-like differentiated

adipose derived stem cells (dADSCs), and biomaterial (type I collagen)

were chosen to reflect the composition of EngNT NRCs that were under

development.

Adipose-derived stem cells (ADSCs), derived from adipose tissue

gleaned from liposuction or abdominoplasty, are a particularly abundant

[411] and widely studied source of stem cells [44]. ADSCs are capable

of differentiating along multiple cell lineages [368, 424]; with particular

relevance for this work, it has been demonstrated that rat ADSCs can be

differentiated towards a Schwann cell-like phenotype [188] with the ability

to support neuronal regeneration and produce myelin [241, 415], making

them a prime candidate cell type for peripheral nerve repair.

Di Summa et al. presented an in vivo study on the use of fibrin nerve

conduits seeded with dADSCs to bridge 1 cm sciatic nerve gaps in rats

[99]. The results showed improved axonal diameter after 16 weeks for the

dADSC-seeded conduits compared to an acellular control, Schwann cell-

seeded conduits and Schwann cell-like differentiated bone marrow-derived
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mesenchymal stem cell seeded conduits. Importantly, the dADSC-seeded

conduits either matched or came close to matching the outcomes of the

gold-standard autograft, including proximal and distal electrophysiolog-

ical measurements taken 15 weeks post implantation and the number of

motoneurons labelled after 16 weeks. However, these results do not imply

that dADSCs would be the most effective choice when using an alternative

base material for the conduit, particularly considering evidence that certain

ECM molecules can enhance the positive neuro-regenerative effect of dAD-

SCs [100], which demonstrates that the interaction between base material

and seeded cell can have a considerable impact upon efficacy. Nonethe-

less, this long term in vivo study certainly bolsters the case for the use of

dADSCs in the peripheral nerve repair context.

Other groups have also experienced success using this cell type to facil-

itate nerve repair: Georgiou et al. have developed collagen hydrogels with

seeded, self-aligned columns of dADSCs that have been shown to increase

axon regeneration in comparison to empty tube controls in rats [132, 133],

and when Orbay et al. used silicon tubes seeded with dASCs in collagen to

bridge 10 mm rat sciatic nerve gaps, they observed improvements in nerve

conduction velocity, sciatic function index, and myelination after 6 months

[288].

The potential shown by dADSCs in both clinical and pre-clinical stud-

ies, their accessible nature and in particular their continued use in the

Philips lab, make them a good candidate for study as part of the proposed

experimental-theoretical framework. The relative abundance of this source

of stem cells from rat tissue ensures that availability will not be an issue for

the proposed in vitro experimental section of the work, or for future val-

idation experiments, and their well-established potential for nerve repair

makes them worthy of further study in this context.

Type I collagen has a relatively long record of use in the peripheral

nerve repair context, both in research and in the clinic [270], as well as in
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other tissue engineering scenarios such as bone regeneration [420]. Type

I collagen peripheral nerve guides and protective wraps have already re-

ceived FDA approval, and it follows that the clinical translation of cell

seeded NRCs incorporating type I collagen may prove to be easier than

the translation of NRCs consisting of other, less well characterised material

types [185].

Type I collagen is one of a range of natural materials or biopolymers

currently used alongside synthetic alternatives to create NRCs, as previ-

ously reviewed by multiple authors [37, 270, 416]. Biopolymers are often

more biocompatible than synthetic materials such as poly(caprolactone)

(PCL) and poly(lactic-co-glycolic) acid (PLGA). Additionally, collagen is

one of the key components of the ECM that surrounds peripheral nerve

fibers as part of the endoneurium [138], which suggests that the mechani-

cal, as well as biochemical, properties of collagen may be a good match for

peripheral nerve repair.

Furthermore, the breadth of research that has been conducted using

type I collagen also includes the characterisation of collagen hydrogel me-

chanics and structure [15] and the measurement of material-specific diffu-

sion coefficients [71], which will aid the mathematical model parameter-

isation process. Thus for the reasons put forward in this subsection, the

experimental work and the theoretical framework was planned to allow

the creation of a model of dADSC-seeded plastic compressed type I col-

lagen material specifically. This will allow the theoretical modelling work

to mesh neatly with ongoing experimental work involving EngNT in the

Phillips lab.

3.3.2 Methods

3.3.2.1 Culture of cells

Differentiated adipose-derived stem cells (dADSCs) were cultured in a dif-

ferentiation media of modified Eagle’s Minimal Essential Medium (MEM

with GlutaMAX; Gibco) containing 10% (v/v) foetal bovine serum (FBS)
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and 1% (v/v) penicillin/streptomycin solution, supplemented with 14 µm

forskolin (Sigma), 10 ng/mL basic fibroblast growth factor (bFGF; Pepro

Tech Ltd., UK), and 252 ng/ml neuregulin NR G1 (R&D Systems, UK).

The cells were maintained at sub-confluent levels in a 37°C incubator with

5% CO2 and passaged with trypsin/EDTA (Invitrogen, UK) approximately

every 72 h.

3.3.2.2 Fabrication of seeded collagen gels

The dADSCs were prepared in 5 universal tubes each containing a differ-

ent known number of cells in 50 µL of media in order to acquire a gel with

each of the final cell densities post stabilisation. Cells were counted using

a hemocytometer with an approximate error of 10%. To prepare the gels,

8 volumes of type I rat tail collagen (2 mg/ml in 0.6% acetic acid; First

Link, UK) was mixed with 1 volume of 10 × Minimum Essential Medium

(Sigma) and the mixture neutralised using sodium hydroxide. The neu-

tralised collagen solution was then mixed with 1 volume of cell suspension

(to give pre-stabilisation seeding densities of 0.5 to 5× 106 cells/ml) and

240 µl of the resulting mixture was pipetted into individual wells of a 96-

well plate.

The plate was incubated at 37°C for 15 min for the gels to set, before

being stabilised by plastic compression for 15 min (RAFT, TAP Biosys-

tems/Lonza) at room temperature. The cell densities of the gels after

compression were calculated by multiplying the pre-stabilisation initial

cell densities by the ratio of the pre-stabilisation gel volumes to the post-

stabilisation gel volumes, giving post-stabilisation initial density values of

39, 77, 154, 231 and 385 ×106 cells/ml, henceforth referred to simply as the

initial cell densities n0. The range of these initial cell densities were chosen

to cover the range currently used in NRCs for in vivo experimentation, as

reviewed in Section 1.3.

The gels were immersed in 200 µL media (MEM with GlutaMAX,

Gibco), except the highest seeded density gels, which were transferred to a
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Figure 3.3: Cell culture well schematic.

24-well plate with 1 mL media. The samples were incubated at 37°C in a

humidified incubator with 5% CO2 for 24h and 5 days respectively. In both

cases the oxygen level inside the incubator was controlled and maintained

(using Biospherix ProOx 110) at each of the following concentrations: 1%,

3%, 5%, 10%, 16%. The controlled oxygen concentration as determined

by the incubator will be referred to in this report as the ambient oxygen

concentration, ca.

The ambient oxygen concentrations within the incubator were chosen

to cover ranges of oxygen concentration that could feasibly occur in tissue,

found experimentally to vary from 1 to 11% across the various tissues of

the human body, although measurements of many tissues appear to fall

within a narrower range of approximately 3 to 7% [64]. More specifically,

endoneurial oxygen tension has previously been measured at around 6 to

7.5% in non-diabetics [272]. Rat tissue oxygen measurements fall within

a similar range as that of humans; in particular, skeletal muscle oxygen

partial pressure has been measured as approximately 5 to 7% [6]. The

unit % refers to percentage of volume as a gas, with 1% = 1.013 kPa =

7.6 mmHg = 1.317 mol/m3.
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The gels, for each combination of ambient oxygen concentration ca

(1%, 3%, 5%, 10% or 16%), initial cell density (39, 77, 154, 231 or 385× 106

cells/ml) and 24h or 5 day time points, were used to conduct a metabolic

viability assay, a proliferation assay and a VEGF ELISA, as detailed in the

following sections. Separate gels were used to conduct oxygen monitoring

experiments.

3.3.2.3 Metabolic viability assay

The viable cell density of each gel after incubation was determined us-

ing CellTiter-Glo 3D Cell Viability Assay (Promega) to generate a lumi-

nescence signal based on ATP content. The medium from each well was

aspirated and frozen at −80°C for further analysis. The gels were placed

in 100 µL fresh medium (MEM with GlutaMAX) in a white opaque 96-

well plate, alongside two negative controls (100 µL media only), to which

100 µL reagent was added. The mixture was put on a rotary shaker for

3 min at 175 rpm and left at room temperature for a further 25 min be-

fore a stable luminescence signal was measured. Following the protocol

in Section 3.3.2.2 and analysing the resulting gels immediately after plastic

compression generated a standard curve, which was used to calculate cor-

responding viable cell density values. As these experiments were carried

out in two stages, on different occasions using different reagents, there are

two standard curves as shown in Figure 3.4.

3.3.2.4 Proliferation assay

The collagen gels for immunocytochemistry were fixed using 4%

paraformaldehyde (PFA) overnight at 4°C. PFA was removed, gels were

washed with PBS. All storage washes and dilutions were performed using

PBS. Cells were permeabilised in 0.5% TritonX-100 (Sigma) for 30 min. Fol-

lowing 3 × 5 min washes, non-specific binding was blocked with 5% nor-

mal goat serum (Dako, Ely, UK) for 30 min. After another wash step, Ki67

antibody was diluted (rabbit IgG; 1:250 (Abcam)) and incubated overnight

at 4°C. Following 3 × 10 min washes, secondary antibodies (anti-rabbit
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Figure 3.4: Metabolic viability assay standard curves, generated using data anal-
ysis software GraphPad Prism. Hyperbolic curves were fitted to the
control values with R2 = 0.7573 and R2 = 0.8551 for data set 1 and 2
respectively. GraphPad Prism was used to interpolate luminescence
values from the metabolic assay in order to derive viable cell densities.
Black points represent means of the control values; error bars represent
standard deviations. Means are calculated from 3 and 2 control data
points for data sets 1 and 2 respectively.

dylight 488; 1:300 (Vector Laboratories)) were added for 90 min. Hoechst

33258 (1 µg/ml) was also added into the secondary antibody solution for

cell counting. The average number of proliferating cells and cells/field

was determined using fluorescence microscopy (Zeiss Axio Lab.A1) via

quantification of Ki67 and Hoechst staining in 3 pre-determined areas per

gel respectively.

3.3.2.5 VEGF enzyme-linked immunosorbent assay ELISA

Secreted vascular endothelial growth factor-A (VEGF-A) protein concen-

trations of the gels after incubation were determined by an enzyme-linked

immunosorbent assay (ELISA). The cell culture supernatant from the gels

was analysed with a VEGF-A sandwich ELISA kit (RayBiotech, GA, USA)

according to the manufacturer’s protocols. In brief, samples were placed

into wells coated with a VEGF-specific antibody. VEGF present in the sam-
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ples is bound and immobilised by the antibody. Subsequently the wells are

washed and a second antibody with a tinted marker is added. Upon the

addition of an appropriate substrate solution, the marker changes colour

with an intensity proportional to the amount of bound VEGF. The amount

of bound VEGF is in turn converted to a figure for average VEGF concen-

tration over the volume of the sample using a standard curve. Samples

were diluted 10-200 fold to fit the standard curve (0-80 pg/ml). All sam-

ples were analysed in duplicate and the end-absorbance was measured at

450nm (BioTek Synergy microplate reader). n = 3 to 6 for each condition

(variable % oxygen and initial cell seeding density ×106/ml).

3.3.2.6 Oxygen monitoring

A separate sample of 5 cellular collagen gels, 2 with a (post-stabilisation)

cell density of 39× 106 cells/ml and 3 with cell densities of 77, 154 and

231 × 106 cells/ml respectively, were prepared as described in Section

3.3.2.2. The gels were placed within the incubator set at an oxygen level

of 3% (39 and 154× 106 cells/ml) or 5% (39, 77 and 231× 106 cells/ml).

Fibre-optic needle type oxygen probes (code NX-NP/O/E, Oxford Op-

tronix, UK) were inserted into the approximate centre of the gels, and an

OxyLite Pro XL pO2 monitor (Oxford Optronix, UK) was used to con-

duct oxygen monitoring over a period of approximately 17 hours. Oxygen-

sensitive luminescent probes are situated at the probe tips, with a tissue

sampling area/volume of 1 mm2. Molecular oxygen quenches the lumi-

nescence emitted by the probe, so that luminescence emission is extended

in low oxygen environments. The luminescence lifetime thus indicates the

oxygen concentration.

3.3.2.7 Statistical analysis

Means and standard deviations were calculated for all data subsets corre-

sponding to the different initial conditions. Multiple regression analysis

was carried out using SPSS Statistics to test whether the independent ex-

perimental variables, the initial cell density n0 and the ambient oxygen
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concentration ca, effectively predict the variance in the measured viable

cell densities and VEGF concentrations after both 1 and 5 days. Interaction

terms were used to test moderation hypotheses, and variables were centred

prior to the analysis to address any issues induced by collinearity between

the interaction term and the two independent variables.

Where the independent variables were found to statistically signifi-

cantly predict the dependent variable, Pearson and Spearman correlation

coefficients were calculated to investigate the nature of correlations be-

tween pairs of variables. The Pearson correlation assesses the linear rela-

tionship between two variables, whereas the Spearman correlation assesses

the monotonic relationship between two variables. Therefore a combina-

tion of the two tests can indicate whether any correlation is linear or non-

linear.

Statistical significance thresholds were set at *p < 0.05, **p < 0.01 and

***p < 0.001.

3.3.3 Results and discussion

3.3.3.1 Viable cell density

For the cell viability after 1 day, data from 127 wells (Figure 3.5) was used

to conduct multiple regression analysis. An interaction term was incorpo-

rated into the model to test the hypothesis that the relationship between

the ambient oxygen concentration and the viable cell density is moder-

ated by the initial cell density at each time point. The variables statisti-

cally significantly predicted the final viable cell density, F(3, 123) = 47.0,

p < .0005, overall model fit R2 = .534. Both the ambient oxygen concen-

tration (standardised β = .658, p < .0005) and initial cell density (standard-

ised β =−.300, p < .0005) added statistically significantly to the prediction,

whereas the interaction term (standardised β = −.081, p = .190) was not a

significant predictor. Therefore in this case the moderation hypothesis was

rejected.

Additional correlation statistics were calculated to investigate the re-
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Figure 3.5: Viable cell density after 1 day is correlated with ambient oxygen con-
centration within the incubator, ca. Viable cell density was measured
after cell-seeded collagen gels were incubated under a range of ambi-
ent oxygen ca conditions for 5 different initial cell densities n0. Black
points denote mean values along with the N number for each (ca, n0)
initial condition pair, with the total N = 127. Blue points are the origi-
nal data points and error bars are the standard deviations.

lationships between the viable cell density after 1 day and the ambient

oxygen concentration and initial cell density (Table 3.4). As expected from

the multiple regression analysis results, a negative correlation was found

between n0 and the viable cell density after 1 day, and a positive correlation

between ca and the viable cell density after 1 day. The Pearson correlation

coefficient for the latter relationship has a larger absolute value than the

Spearman. This suggests that a linear monotonic relationship between ca

and the viable cell density after 1 day may be more likely than a non-linear

monotonic relationship. The converse is true for the relationship between

n0 and the viable cell density after 1 day.
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Test type
Correlation
coefficient

(3 s.f.)

p value
(3 s.f.)

Ambient oxygen
concentration, ca

Pearson 0.661 2.84 e-17 (**)

Spearman 0.559 8.62 e-12 (**)

Initial cell density,
n0

Pearson -0.308 4.36 e-4 (**)

Spearman -0.402 3.00 e-6 (**)

Table 3.4: Correlation coefficients and p values indicate a positive correlation be-
tween the ambient oxygen concentration and the viable cell density af-
ter 1 day. N = 127 for all tests. (**) Indicates that the correlation is
significant at the 0.01 level (2-tailed).

For the 5 day cell viability, data from 82 wells was used to conduct mul-

tiple regression analysis. The variables statistically significantly predicted

the final viable cell density, F(3, 78) = 11.9, p < .0005, overall model fit

R2 = .314. Both the ambient oxygen concentration (standardised β = .305,

p < .005) and initial cell density (standardised β =−.467, p < .0005) added

statistically significantly to the prediction, but the interaction term (stan-

dardised β = −.183, p = 0.055) was not significant predictor. Therefore the

moderation hypothesis was rejected.

The Spearman correlation coefficients for the relationship between ca

and the viable cell density after 5 days, and the relationship between n0

and the viable cell density after 5 days, were both of a greater magnitude

than the corresponding Pearson correlation coefficients (Table 3.5). This

again suggests that these relationships may be non-linear.

In conclusion, both the 1 day and the 5 day cell viability data demon-

strate a positive correlation with the ambient oxygen concentration. There-

fore it seems likely that the cell governing equation should incorporate a

dependency upon the local oxygen concentration, as this is largely deter-

mined by diffusion of the ambient oxygen concentration into the gel and

media. The relationship between the spatially dependent rate of change

of the distribution of viable cells and the viable cell density at any spe-
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Figure 3.6: Viable cell density after 5 days is correlated positively with ambient
oxygen concentration within the incubator ca, and negatively with the
initial cell density n0, and an interaction term moderates these rela-
tionships. Viable cell density was measured after cell-seeded collagen
gels were incubated under a range of ambient oxygen ca conditions for
5 different initial cell densities n0. Black points denote mean values
along with the N number for each (ca, n0) initial condition pair, with
the total N = 82. Blue points are the original data points and error bars
are the standard deviations.

cific time point is less clear from the preceding analysis, as the correlation

and regression analysis focused only on the relationship between initial cell

density and final viable cell density.

In some cases, the measured increase in viable cell density achieved

within the gels over 24 hours is very high. In particular, some of the gels

that were initially seeded at 39 × 106 cells/ml recorded five fold greater

densities of over 200 × 106 cells/ml after 24 hours (Figure 3.5). In con-

trast to this, typical doubling times for commonly cultured cells includ-
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Test type
Correlation
coefficient

(3 s.f.)

p value
(3 s.f.)

Ambient oxygen
concentration, ca

Pearson 0.260 0.0182 (*)

Spearman 0.323 3.11 e-3 (**)

Initial cell density,
n0

Pearson -0.442 3.2 e-5 (**)

Spearman -0.542 1.44 e-7 (**)

Table 3.5: Correlation coefficients and p values indicate a positive correlation be-
tween the ambient oxygen concentration and the viable cell density after
5 days, and a negative correlation between the initial cell density and
the viable cell density after 5 days. N = 82 for all tests. (*) Indicates that
the correlation is significant at the 0.05 level (2-tailed); (**) indicates that
the correlation is significant at the 0.01 level (2-tailed).

ing fibroblast-like, epithelial and tumour cells range from around 20 to

45h [224]. A slightly quicker doubling time of 17h has been recorded for

mouse Schwann cells [49], and ADSCs have previously been reported to

have a doubling time in culture of between 30 and 44 hours, depending

on the environmental conditions [388]. The proliferation rate of Schwann

cell-like dADSCs such as those used in this study has not previously been

measured. Nevertheless, some of the increases in viable cell density shown

in Figure 3.5 are undoubtedly high in comparison to the previously men-

tioned values from the literature.

The dramatic increase in density recorded in these experiments is

likely to be caused in part by the use of a metabolic assay to estimate

cell density, rather than cell counting. The increase in the recorded level

of luminescence, which has here been converted to viable cell density, may

instead reflect an increase in metabolic activity on a per cell basis rather

than an overall increase in the cell population size. Better understanding

of these results could be achieved by using a direct method to measure

the actual number of viable cells per ml in any similar experiments in the

future.

The cell viability data also exhibits a fairly large degree of variation,
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both within initial seeding densities n0 and across initial seeding densities.

There are numerous possible sources for this variability. One main cause

could be inaccuracies introduced during the estimation of the initial cell

density when the gels were prepared. A haemocytometer was used to

count a small sample of the cell suspension, and then error was likely

introduced when samples of the cell suspension were then pipetted into

the wells. The use of automated counting and dispensing equipment may

have been able to improve this. On top of this, it is likely that variability

will have been introduced by variations in the cell populations between

experiments, for example due to different initial cell sources and different

times in culture prior to experiments.

Finally, additional error is likely to have been caused by the indirect

measure of cell viability used. The use of a metabolic viability assay to mea-

sure cell density was motivated by the fact that the gels were too densely

seeded for the use of microscopy, but as previously mentioned it is likely

that changes in cell density may not account for all changes in metabolic

activity measured. This could have contributed to the variability of the

control data points used to generate the standard curves, represented by

the standard deviation values in Figure 3.4.

The metabolic activity standard curves were generated using control

data encompassing densities of 0 to 385× 106 cells/ml, and therefore ex-

trapolating beyond this is likely to result in unreliable quantifications.

However, this was not necessary to quantify the experimental data pre-

sented here.

3.3.3.2 VEGF concentration

Multiple regression analysis was run on the 1 day data (Figure 3.7), com-

prising of 109 measurements, to predict the VEGF concentration from the

initial cell density n0 and ambient oxygen concentration ca. An interaction

term was included to test the hypothesis that ambient oxygen concentra-

tion moderates the relationship between initial cell density and the VEGF
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Test type
Correlation
coefficient

(3 s.f.)

p value
(3 s.f.)

Initial cell density,
n0

Pearson 0.278 3.34 e-3 (**)

Spearman 0.347 2.20 e-4 (**)

Viable cell density
after 1 day

Pearson 0.091 0.347

Spearman 0.192 0.046 (*)

Table 3.6: Correlation coefficients and p values indicate a positive correlation be-
tween the initial cell density and the VEGF concentration in the media
after 1 day, and a positive correlation between the cell density after 1
day and the VEGF concentration in the media after 1 day. N = 109 for
all tests. (*) Indicates that the correlation is significant at the 0.05 level
(2-tailed); (**) indicates that the correlation is significant at the 0.01 level
(2-tailed).

concentration in the media after 1 day. The variables statistically signifi-

cantly predicted the final VEGF concentration, F(3, 105) = 4.64, p < .001,

overall model fit R2 = .117. The initial cell density (standardised β = .268,

p < .0005) added statistically significantly to the prediction but the ambient

oxygen concentration (standardised β = .059, p = .520) did not. However,

the interaction term was found to add statistically significantly to the pre-

diction (standardised β = .192, p = .039 < 0.05). Therefore the moderation

hypothesis was accepted.

The Spearman correlation coefficient for the correlation between n0

and the VEGF concentration after 1 day was of greater magnitude than

the corresponding Pearson correlation coefficient (Table 3.6). This suggests

that the relationship may be non-linear.

Multiple regression analysis was run on the 5 day data (Figure 3.8),

comprising of 81 measurements, to predict VEGF concentration after 5

days from initial cell density n0 and ambient oxygen concentration ca. An

interaction term was included to test the hypothesis that ambient oxygen

concentration moderates the relationship between initial cell density and

the VEGF concentration over the media after 5 days. The variables statisti-
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Figure 3.7: VEGF concentration in the media after 1 day is correlated with the ini-
tial cell density n0, but not with ambient oxygen concentration within
the incubator ca. VEGF concentration was measured via ELISA after
cell-seeded collagen gels were incubated under a range of ambient oxy-
gen ca conditions for 5 different initial cell densities n0. Black points
denote mean values along with the N number for each (ca, n0) initial
condition pair, with the total N = 109. Blue points are the original data
points and error bars are the standard deviations.

cally significantly predicted the final VEGF concentration, F(3, 77) = 19.8,

p < .001, overall model fit R2 = .435. The initial cell density (standardised

β = .626, p < .0005) added statistically significantly to the prediction but the

ambient oxygen concentration (standardised β =−.172, p = .0510) did not.

The interaction term was not found to add statistically significantly to the

prediction (standardised β = −.138, p = .113). Therefore the moderation

hypothesis was rejected.

Similarly to the day 1 case, comparison of the magnitudes of the corre-

lation coefficients (Table 3.7) again suggests that the relationship between
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Figure 3.8: VEGF concentration in the media after 5 days is correlated with the ini-
tial cell density n0, but not with ambient oxygen concentration within
the incubator ca. VEGF concentration was measured via ELISA after
cell-seeded collagen gels were incubated under a range of ambient oxy-
gen ca conditions for 5 different initial cell densities n0. Black points
denote mean values along with the N number for each (ca, n0) initial
condition pair, with the total N = 81. Blue points are the original data
points and error bars are the standard deviations.

the initial cell density and the VEGF concentration in the media after 5 days

may be non linear.

From the preceding statistical analysis it appears that the initial cell

density positively correlates with the VEGF concentration in the media.

However, this data alone does not give any information as to the mecha-

nism behind this relationship, and thus is not particularly useful for refin-

ing the form of the theoretical model governing equations.

For this reason, further correlation analysis was conducted to inves-

tigate the relationship between the VEGF concentration data and the vi-
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Test type
Correlation
coefficient

(3 s.f.)

p value
(3 s.f.)

Initial cell density,
n0

Pearson 0.617 8.51 e-10 (**)

Spearman 0.744 1.77 e-15 (**)

Viable cell density
after 5 days

Pearson -0.403 1.95 e-4 (**)

Spearman -0.472 9 e-6 (**)

Table 3.7: Correlation coefficients and p values indicate a positive correlation be-
tween the initial cell density and the VEGF concentration after 5 days,
and a negative correlation between the viable cell density after 5 days
and the VEGF concentration after 5 days. (**) Indicates that the correla-
tion is significant at the 0.01 level (2-tailed). N = 81.

able cell density data at the corresponding time points (Tables 3.6 and 3.7).

These revealed a positive correlation between the VEGF concentration and

viable cell density at the 1 day time point, but a negative correlation at the

5 day time point. This could indicate a complex relationship between cell

density and VEGF production that may depend upon other factors. For

example, after 5 days many of the cells appear to have died potentially due

to competition for nutrients; the cellular response to low levels of nutrients

such as oxygen often includes an increase in the production of factors such

as VEGF, which could have resulted in the negative correlation between

viable cell density and VEGF concentration at this time point. However,

there is no way of verifying this particular hypothesis.

The lack of a statistically significant correlation between the ambient

oxygen concentration and the VEGF concentration could be due to the po-

tentially nonlinear relationship between these variables; in particular, Fig-

ure 3.7 appears to show a distinct but nonlinear pattern including a local

maximum in the mean VEGF concentration at ca = 5%, and a gradual in-

crease in mean VEGF concentration from ca = 5 to 16% for n0 ≥ 154× 106

cells/ml.

In summary, the VEGF concentration data demonstrate some interest-

ing patterns but the exact nature of the dependence of VEGF upon the
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other variables is difficult to unpick, probably due to the complexity of the

problem. Thus further information from the literature will be required to

develop the VEGF governing equation for the theoretical model.

3.3.3.3 Cell proliferation

Ki67 expression indicates activity in all phases of the cell cycle aside from

the G0 quiescent phase, during which a cell is not dividing or preparing

to divide, at the time that the sample is taken. Ki67 staining was used to

assess the proliferation of the cells in the various experiments at the 1 and

5 day time points.

The number of nuclei exhibiting Ki67 in three samples of each gel were

counted and averaged to give values for the % cells Ki67+, to measure the

proportion of cells proliferating in each gel. Multiple samples were taken

from each gel to reduce error but the individual gels, which were incubated

in separate wells, are the independent experimental units. Therefore, only

the mean values calculated for each independent gel are used for statistical

analysis and depicted in Figures 3.9 and 3.10.

A multiple regression analysis was run upon both the 1 day and 5 day

Ki67 data sets, using the same procedure as described in Section 3.3.3.1 to

predict the % cells Ki67+ from initial cell density n0 and ambient oxygen

concentration ca. An interaction term was included to test the hypothesis

that initial cell density moderates the relationship between ambient oxygen

concentration and the % Ki67+.

In the case of the 1 day time point Ki67 data (Figure 3.9), the variables

did not statistically significantly predict the % cells Ki67+, F(3, 56) = .972,

p = .412, R2 = .049.

Conversely, for the five day time point (Figure 3.10), the variables

statistically significantly predicted the % cells Ki67+, F(3, 59) = 21.150,

p < .0005, overall model fit R2 = .518. However, only the ambient oxy-

gen concentration added statistically significantly to the prediction (stan-

dardised β = .705, p < .0005), whereas initial cell density (standardised
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Figure 3.9: The proportion of Ki67+ cells after 1 day is not correlated with ca or
n0. Black points denote mean values along with the N number for each
(ca, n0) initial condition pair, with the total N = 60. Blue points are the
original data points, each of which representing an average of three
samples from a single gel, and error bars are the standard deviations.

β = −.013, p = .722) and the interaction term (standardised β = −.170,

p = .065) were not significant predictors. Therefore the moderation hy-

pothesis was rejected.

Pearson and Spearman correlation coefficients were calculated using

the entire 5 day proliferation data (Table 3.8). Analysis was based on the

assumption that the Ki67+ expression was independent of the initial cell

density. The results indicate a positive correlation between the ambient

oxygen concentration and the % Ki67+ expression, confirming the rela-

tionship suggested in Figure 3.10. The Spearman correlation coefficient is

slightly larger than the Pearson, implying that a linear monotonic relation-

ship is perhaps more likely than a non-linear monotonic relationship.
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Figure 3.10: The proportion of Ki67+ cells after 5 days is not correlated with ca or
n0. Black points denote mean values along with the N number for
each (ca, n0) initial condition pair, with the total N = 63. Blue points
are the original data points, each of which representing an average
of three samples from a single gel, and error bars are the standard
deviations.

Test type
Correlation
coefficient

(3 s.f.)

p value
(3 s.f.)

Ambient oxygen
concentration, ca

Pearson 0.699 1.93 e-10 (**)

Spearman 0.613 9.11 e-8 (**)

Table 3.8: Correlation coefficients and p values indicate a positive correlation be-
tween the ambient oxygen concentration and the % cells Ki67+ after 5
days. N = 63.
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Neither the day 1 nor day 5 proliferation data demonstrated any cor-

relation between Ki67+ expression and the initial cell density n0 used in

the experiments. It seemed likely that the % cells exhibiting Ki67+ would

be more dependent upon the cell density at the corresponding time point

of measurement than the initial cell density. For this reason, multiple re-

gression analysis was carried out using the entire Ki67 data set, including

both time points to give a total of 123 observations, to predict the % cells

exhibiting Ki67+ from the viable cell density at that time point and the

oxygen. An interaction term was included to test the hypothesis that the

viable cell density at the time point of measurement moderates the re-

lationship between ambient oxygen concentration and the % cells Ki67+.

The variables statistically significantly predicted the % cells Ki67+, F(3,

119) = 6.540, p < .0005, overall model fit R2 = .142. But again, only the

ambient oxygen concentration added statistically significantly to the pre-

diction (standardised β = .365, p < .0005), whereas the viable cell density

(standardised β = .075, p = .542) and the interaction term (standardised

β = −.146, p = .206) were not significant predictors. Therefore the moder-

ation hypothesis was rejected.

The results again demonstrated no clear relationship between cell den-

sity and proliferation. This motivates the exclusion of a dependency upon

n, the local cell density at that specific time point, for the cell proliferation

term in the mathematical model. However, it is clear from the cell viability

data that the viable cell density at both time points does depend upon the

initial cell density. Therefore it is proposed that the cell death term should

include a dependency upon n to account for this.

As concluded from the preceding multiple regression analysis, the 1

day data does not show any relationship between the ambient oxygen con-

centration and the % of cells exhibiting Ki67+ (Figure 3.9). In contrast, the

5 day data displays a clear relationship between the ambient oxygen level

ca and the % of cells exhibiting Ki67+ (Figure 3.10). In the 1 day experiment
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the ambient oxygen concentration has less time at an approximately steady

state after the initial diffusion phase- it is possible that exposure to rela-

tively low or high oxygen concentrations over 5 days instead could impact

% Ki67+ expression more severely. It is important to note that any depen-

dence upon the ambient oxygen level will be effectively indirect, with the

cellular proliferation affected by the levels of oxygen in the gel which are

predominantly determined by the diffusion of ambient oxygen through the

media and gel in the well. Therefore it is proposed that the oxygen concen-

tration of a cell’s immediate surroundings does influence the proliferation

rate, suggesting that the cell proliferation term in the mathematical model

should incorporate a dependence on c.

It is interesting to note that the 5 day data reveals a distinct increase in

Ki67+ expression at ca = 3% for three out of the five values of n0. This is

especially interesting because a similar phenomenon occurs at the 3% oxy-

gen level for the viability data. It is possible that this oxygen concentration

value represents a niche for this particular cell type that is conducive for

proliferation and survival.

3.3.3.4 Oxygen monitoring

The oxygen monitoring experiment took place over 17h, giving the oxygen

levels in the gels time to stabilise via diffusion. The initial oxygen concen-

tration in the gel in the standard atmosphere was 18%; the ambient oxygen

concentration in the incubator was set at 3% or 5%, although this has an

accuracy of +/- 1%. The final oxygen concentrations in the gels were all

roughly similar. However, the rate of change from the initial oxygen con-

centration onwards appeared to differ according to initial cell density, with

a steeper gradient for high initial cell densities (Figure 3.11). This could

be due to the increased consumption of oxygen within the high initial cell

density gels.
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Figure 3.11: Oxygen concentration % in the collagen gels as monitored via the
oxygen probes, for four different initial cell densities (n0).

3.4 The generalised cell-solute model
In this section, the proof of concept model outlined in Section 3.2 is refined

to provide general versions of the functional forms that make up the terms

of the cell-solute model. This is achieved by reviewing existing published

experimental data regarding the interactions between cells, oxygen and

VEGF, as well as the specific functional forms used in similar continuum

models. The correlations found in the preceding statistical analysis of the

in vitro data (Section 3.3.3) are also taken into account to arrive at initial

versions of the three governing equations. Parameter values are assigned

subsequently in Section 3.5 according to existing values in the literature

and via parameterisation against the in vitro data.

3.4.1 Viable cell density governing equation

In some existing continuous models of cell-solute interactions, the cell pop-

ulation is represented implicitly through changes in construct permeability

or via nutrient consumption [84, 349]; in others, the cell phase is explicitly

represented through the use of a separate governing equation. This thesis

aims to make predictions about the survival of therapeutic cells in vivo, and
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therefore it makes sense to model the cells explicitly. In this way, the num-

ber of dead cells can also be tracked to compare the amount of wastage of

cells generated by different cell seeding approaches to therapy.

Generally, the viable cell density within an engineered tissue over time

and space is determined by the proliferation and death rates of the cells, as

well as cell migration in certain scenarios. In a collagen NRC, the impact of

cell migration upon viable cell density distributions over the examined time

scale is likely to be negligible because the time scale for such migration is of

the order of weeks, as opposed to hours and days for oxygen diffusion and

cell proliferation and death. The assumption that no seeded cell migration

will take place over the simulated time period (0 to 5 days) is supported by

a study that reported no statistical change in the position of seeded cells in

a plastic-compressed collagen construct after 5 days in vitro [18].

This leaves the viable cell density governing equation with two terms

for which functional forms and parameter values must be identified: the

cell proliferation term, here represented by the proliferation function G,

and the cell death term, a sink term represented in this thesis as the func-

tion F. So the general form of the cell density governing equation is given

by:
∂n
∂t

= G− F . (3.10)

The functions G and F can be adapted to depend on different variables and

parameters, as illustrated by previous work on similar cell-solute models

which will be briefly reviewed in this subsection. All of the forms of cell

proliferation and death terms mentioned in this subsection assume that

these processes depend only on the current local concentrations of nutri-

ents and densities of cells, and are independent of historical nutrient con-

centration or cell density values.

The majority of existing continuous models of cell proliferation have

defined the function G to be the product of a function of the cell density

n and a function of nutrient or oxygen concentration c. In the appendix
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of their paper, Lewis et al. experimented with using a proliferation term

with a simple linear dependence upon the cell density n, and a very sim-

ple dependence on oxygen that is constant for positive oxygen values but

results in no proliferation when no oxygen is available [217]. The authors

implemented this in the form of a Heaviside step function H(c) such that

G(n, c) = βnH(c), where (3.11)

H(c) =

 1, c > 0

0, c ≤ 0 .
(3.12)

Here β is the cell proliferation rate constant. This formulation allowed the

governing equations to be solved analytically after non-dimensionalisation.

This particular mathematical framework models chondrocytes within a

porous scaffold, and the use of a proliferation term with no dependence

upon positive oxygen concentrations was motivated by experimental evi-

dence that chondrocyte growth may be unaffected by oxygen concentration

[239, 244].

Conversely, evidence suggests that the proliferation rates of most other

cell types are dependent on local oxygen concentrations. As reviewed

by Hubbi and Semenza, this relationship is likely to be cell type-specific

and mediated by hypoxia-inducible factors [161]. For example, Kakudo et

al. demonstrated that ADSCs cultured under hypoxia (1%) demonstrated

increased proliferation compared to cells cultured under normoxia (20%)

[180], although this was assessed via cell counting and therefore did not

take into account possible changes in death rates due to oxygen concen-

tration. Furthermore, Van Pham et al. concluded that hypoxia (in this

case 5% oxygen) upregulates ADSC proliferation [388]. On the other hand,

alternative cell types including embryonic fibroblasts [128] and embryonic

stem cells [62] have demonstrated inhibition of proliferation under hypoxia

( 0.1-0.5% and 2% oxygen respectively in these studies).

The analysis of the in vitro Ki67 data completed in Section 3.3.3.3
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demonstrated a positive correlation between dADSC proliferation and the

ambient oxygen concentration after 5 days. Although no correlation was

found for the 1 day data, due to this result and the previous research sug-

gesting that the proliferation of most cell types is affected by oxygen, in this

thesis it is assumed that dADSC proliferation does depend upon oxygen.

A simple linear dependence of proliferation upon both oxygen and cell

density was implemented by Lewis et al. in the main section of their paper

[217]:

G(n, c) = βcn . (3.13)

Jones et al. also used this form of cell proliferation in a model of avas-

cular tumour growth [177], although in this case the tumour cell density

was subsequently assumed to be constant and thus the cell term was not

considered explicitly.

This formulation assumes that the rate of cell proliferation increases

indefinitely both with the concentration of nutrient available and the num-

ber of viable cells. This does not take into account the negative effect that

higher cell densities could have upon proliferation via increased competi-

tion for space (contact inhibition) and nutrients. Furthermore, this func-

tional form does not incorporate a saturation point for the nutrient density,

assuming instead that higher concentrations of nutrient will always result

in a higher proliferation rate. This is unlikely to be the case due to receptor

saturation.

The Michaelis-Menten function has also been used to describe the de-

pendence of cell proliferation upon oxygen. This formulation does incor-

porate the concept of nutrient saturation: gradually, increases in oxygen

concentration will result in diminishing increases in proliferation rate as

this hyperbolic function tends towards a limit. When coupled with a linear

dependence upon cell density, this gives the following:

G(n, c) = βn
Mc

c1/2 + c
, (3.14)
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where M is the maximal oxygen consumption rate and c1/2 is the oxygen

concentration at which the oxygen consumption rate is half of its maximal

value. In particular, Croll et al. used the Monod model for cell proliferation

which is essentially of the same form as Equation (3.14) but allows the di-

rect coupling of cell proliferation with oxygen consumption [87]. However,

the use of Equation (3.14) does not incorporate any limitation on the cell

proliferation rate related to cell density.

The logistic growth function, on the other hand, has been used to

describe the dependence of cell proliferation upon cell density and can

be used to model the impact of competition for space and resources

[205, 319, 349]:

G(n, c) = f (c)n
(

1− n
nmax

)
. (3.15)

Here f (c) is a generic function of oxygen concentration. This model de-

termines that cell proliferation is proportional to cell density at low cell

densities, but that at high cell densities it is limited by the existence of a

maximum cell density nmax, which could represent the negative impact of

overcrowding and competition for space and resources upon cell prolifera-

tion. This functional form is often used in population dynamics and here

is applied specifically to a cell population, with nmax assuming the role of

the carrying capacity often seen in ecological population models.

Pohlmeyer et al. used two terms to model cell proliferation: one rep-

resenting the dependence of proliferation upon the concentration of a nu-

trient, here denoted c, and the other capturing enhanced proliferation due

to the presence of a growth factor, denoted v [319]. A logistic growth func-

tion was used for the nutrient dependent proliferation term, coupled with

a function W representing a dependence upon shear stress:

G(n, c) = Wn
(

1− n
nmax(c)

)
. (3.16)

Pohlmeyer et al. also defined nmax as a function of nutrient concentration
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c to represent the dependence of the maximum cell density upon available

nutrient supply, with nutrient toxicity also taken into account by letting

nmax(c)→ 0 as c→∞. The shear stress component in this case is a product

of fluid flow generated by a perfusion bioreactor, which will be neglected

in our case under the assumption that there will be zero flow through an

avascular nerve repair construct in the first few days post-implantation.

In the same paper, the form of the growth factor dependent prolifer-

ation term was chosen to reflect a small effect for low concentrations of

growth factor v, and to incorporate saturation at high concentrations:

G(v) =
v3

vsat + v3 . (3.17)

Here vsat is a VEGF saturation constant. This term was likely informed

by the established existence of growth factors such as fibroblast growth

factor that upregulate the proliferation of cells. It is known that VEGF can

increase the proliferation of vascular endothelial cells by directly inducing

mitosis [116]. Furthermore, Sondell et al. reported that VEGF165 induced

a statistically significant increase in the number of proliferating cells in

ganglia cultured for 48 hours [360]. But the concentrations used were 50

and 100 ng/ml of VEGF; much higher than those concentrations measured

in the in vitro experiments, which reached a maximum of around 20 ng/ml

(Figures 3.7 and 3.8).

Conversely, much lower concentrations of VEGF (0.1-0.5 ng/ml) were

shown to increase the proliferation of ADSCs in vitro in a dose dependent

manner by Chen et al. [74]. Proliferation was assessed via MTT and trypan

blue assays. Similarly, Van Pham et al. hypothesised that the previously

reported upregulation of ADSC proliferation under hypoxia is partly due

to the effect of VEGF [388].

However, Chen et al. also reported that examination of the effect of

VEGF on human bone marrow MSCs and human umbilical cord stem cells

did not reveal a similarly clear impact on proliferation, providing evidence
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that the impact of VEGF upon proliferation is likely to be highly cell type

dependent. In this thesis, any dependence of dADSC proliferation upon

VEGF is neglected because there is currently no clear information on this

specific relationship, and introducing a function reliant on VEGF into the

cell proliferation term would increase the complexity of the model as well

as introduce additional unknown parameter values.

Landman and Cai compared simulation results arising from the use

of three different cell proliferation functional forms composed of a logistic

growth function of cell density multiplied by different forms of dependen-

cies upon oxygen, proportional to the consumption of oxygen [205]: firstly,

a linear model as in Equation (3.15) with f (c) = c; secondly, a Michaelis-

Menten model,

G(n, c) = βn
(

1− n
nmax

)(
Mc

c1/2 + c

)
, (3.18)

and finally a Heaviside step model:

G(n, c) = H(c− cp)

(
1− n

nmax

)
. (3.19)

This final form was found to approximate the results achieved by the

Michaelis Menten function whilst permitting the use of analytical methods

for further investigation of the model and derivation of important relation-

ships.

Finally, Chung et al. used a modified Contois kinetics term to describe

cell proliferation in a mathematical model of interactions between a cell

population and glucose within a porous scaffold under perfusion [80]. This

functional form integrates the effects of nutrient saturation and the amount

of cells into one term:

G(n, c) = n
Ac

Bn + c
, (3.20)

where A and B are the maximum proliferation rate and saturation coef-

ficient respectively. This functional form determines that the cell growth
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rate will be at its maximum when the nutrient, in this case glucose, is in

sufficient supply. Galban and Locke found that this form achieved the best

match against experimental data for chondrocyte growth in polymer scaf-

folds [125]. This functional form could also be applied to a scenario in

which oxygen is the limiting nutrient for cell proliferation, as in mathe-

matical model proposed in this project. However, it seems likely that the

relationship between cell proliferation and oxygen concentration will be

different to that between proliferation and glucose concentration.

The model developed in this thesis uses a cell proliferation term that

increases linearly with oxygen concentration and incorporates a logistic

function of cell density to take into account cellular competition for space

and resources:

G = βc
(

1− n
nmax

)
. (3.21)

Thus far, cell death has not been modelled using as wide a variety of

functional forms as cell proliferation. Some authors of cell culture models

have neglected to model the process of cell death explicitly [87, 205]. Lewis

et al. justified this exclusion with the argument that cell death would be

negligible during the initial phases of cell culture [217]. However, the viable

cell density data presented in Section 3.3.3.1 clearly shows, for the higher

initial cell densities, a reduction in the number of cells from the initial cell

density to the 1 day and then 5 day time points. Therefore some variety of

cell death function must be incorporated into the model presented in this

thesis to replicate this result.

Pohlmeyer et al. used a constant cell death rate, assumed to account

for all causes including natural death, low nutrient concentration, and in

this specific case, very high local shear [319]:

F(n) = δn , (3.22)

where δ is the cell death coefficient. This form was also used by Jones et al.
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[177].

Another potential option for the cell death function F involves incorpo-

rating a non-linear function of nutrient or oxygen, c. This would represent

increased cell death under hypoxia, for example, and could take the form

of a tanh function, like Equation (3.2) used in Section 3.2. Yet this does

introduce more parameters to the model.

Evidence provided by Sondell et al. suggests that VEGF could also

reduce the amount of cell death [360]. TUNEL staining of mouse superior

cervical ganglia and dorsal root ganglia exposed to 50 and 100 ng/ml of

VEGF demonstrated a 20 to 43% reduction in the number of dead Schwann

cells after 48 hours compared to controls. But as previously mentioned,

the VEGF concentrations used in these experiments were higher than those

observed in the in vitro experiments, and furthermore TUNEL staining only

detects apoptotic cell death.

In line with previous work, in this thesis cell death is dictated by a

linear function of n (Equation 3.22), although as detailed in Section 3.5

other cell proliferation and death functions of n and c were trialled during

the course of model parameterisation. No functions of VEGF v were trialled

due to a lack of information on the relationship between dADSCs survival

and VEGF, as well as for simplicity. This is in line with the majority of

previous similar work but could be expanded upon in the future.

3.4.2 Oxygen concentration governing equation

Spatio-temporal oxygen concentrations in tissue depend upon the diffusion

of oxygen from sources such as vessels, and the consumption of oxygen by

cells, which is represented in this thesis as a function Q:

∂c
∂t

= Dc
∂2c
∂x2 −Q . (3.23)

In existing mathematical models, the oxygen consumption term Q is gen-

erally expressed as the product of a function of oxygen concentration c,
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representing the consumption rate for a single cell, and the cell density n.

This assumes that on average each cell consumes oxygen at the same rate,

and also that this rate is dependent on the available oxygen concentration.

Experimental evidence suggests that this is likely to be the case [144].

Several authors have implemented oxygen consumption as a simple

linear function of both cell density and oxygen concentration [177, 205, 217],

Q(n, c) = Mcn . (3.24)

Here M is the oxygen consumption rate parameter. Shakeel et al. also

used this form coupled with a term representing shear stress [349]. How-

ever, Equation (3.24) does not take into account oxygen saturation as a rate

limiting factor.

In contrast, the most commonly used function of oxygen concentra-

tion for the oxygen consumption term is the Michaelis Menten function,

which enforces a limit to the increase in oxygen consumption caused by

increases in oxygen concentration. Haselgrove et al. produced experimen-

tal evidence for this particular relationship between oxygen consumption

and oxygen concentration, although only the oxygen consumption rate of

chondrocytes was studied [144]. The Michaelis Menten function can also

be coupled with a linear dependence upon the cell density:

Q(n, c) = n
Mc

c1/2 + c
. (3.25)

Streeter and Cheema used a functional form similar to this to represent

oxygen consumption in terms of a change in oxygen tension within a model

of 3D cell-seeded collagen [367]. Combining a simple model of oxygen

concentration with experimental data, they were able to derive cell type-

specific oxygen consumption parameters. A number of other authors have

used Michaelis Menten type oxygen consumption terms to model tissue

culture within different types of bioreactor [21, 80, 84, 145, 281, 354, 421],
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and this formulation was also used by Secomb et al. as part of a model of

angiogenesis [347].

Some existing models assume that oxygen consumption is directly pro-

portional to cell proliferation G, and thus have used the same function of

oxygen in both of these terms [205, 217]. However, the relationship be-

tween the oxygen consumption rate and cell proliferation rate has not yet

been studied in detail, and it is not necessarily the case that the two are di-

rectly proportional, especially as the oxygen consumption rate is also likely

to be dependent upon other cellular processes on top of proliferation.

As previously mentioned, Landman and Cai compared the results

given by linear, Michaelis-Menten and step-type functions of oxygen for

both oxygen consumption and cell proliferation [205]. They found that the

linear form resulted in a lower cell density throughout and consequently an

absence of hypoxia in the scaffold, whereas both the Michaelis-Menten and

step-type functions resulted in the appearance of a hypoxic region within

the scaffold centre. Simulations run using the step function model were

found to closely approximate the results of those run using the Michaelis

Menten model, which suggests that the step function form could be used

to simplify the mathematical framework and allow the derivation of ana-

lytical solutions, as demonstrated in the appendix of Landman and Cai’s

paper.

In some previous models [87, 314], the oxygen consumption rate M

is directly coupled to the rate of cell proliferation to give a Monod-type

model:

Q(n, c) = n
(

µmax

Yn
+ ms

)
c

c1/2 + c
, (3.26)

where ms is defined as the minimum concentration of oxygen per unit time

required for cells to survive, µmax is the maximum cell proliferation rate,

and the yield of cells per unit oxygen is denoted Yn. Essentially, this is of

the same form as the Michaelis Menten function but with M = µmax
Yn

+ ms.

However, this method of direct coupling does not limit cell proliferation at
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high cell densities.

Finally, Pohlmeyer et al. did not incorporate oxygen specifically into

their model, but did include a generic “nutrient” variable into their frame-

work [319]. In this case, nutrient consumption by the cells was modelled by

a logistic function to mirror the form of the nutrient-dependent cell prolif-

eration term in the same framework as described by Equation (3.16), under

the assumption that cell proliferation is proportional to nutrient consump-

tion:

Q(n, c) = −Wn
(

1− n
nmax(c)

)
. (3.27)

All of the oxygen consumption terms considered in this subsection as-

sume that the consumption of oxygen is independent of the concentrations

of waste products. Cell type-specific attributes such as cell size, protein

content [396] and metabolic characteristics will also affect the rate of oxy-

gen consumption, but these differences are assumed to be incorporated

into the model via the cell type-specific oxygen consumption parameters.

The Michaelis Menten form of oxygen consumption term, Equation

(3.25), has been used numerous times in previous models with success,

and is backed up by some experimental evidence. For these reasons, this

form will also be used in the model described in this thesis.

3.4.3 VEGF concentration governing equation

Currently, there are several known mechanisms that may help to pro-

duce VEGF gradients in vivo, including diffusion, matrix sequestering and

degradation [392]. Here it is proposed that the key elements of the govern-

ing equation for the VEGF concentration, v, should be diffusion of VEGF,

a VEGF production term S, and a VEGF decay term:

∂v
∂t

= Dv
∂2v
∂x2 + S− dvv . (3.28)

The natural degradation of the VEGF protein is modelled in this way by

most existing theoretical frameworks [23, 46, 166, 236, 391], and will also
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be incorporated in the model described in this thesis.

Some models also incorporate a VEGF consumption term to represent

the uptake of VEGF by tip endothelial cells during angiogenesis [23, 166].

Although this could be incorporated into the framework as part of the

model of angiogenesis in response to VEGF gradients described in Chapter

5, it is assumed that the therapeutic cells seeded in the NRCs do not take

up VEGF, and therefore a VEGF consumption term is not incorporated into

the continuous cell-solute model described in this thesis.

As briefly mentioned in Section 2.1.3, evidence suggests that cellular

VEGF expression is at least partly regulated by environmental oxygen con-

centration. A range of studies have demonstrated up-regulation of VEGF

mRNA under hypoxic conditions [262, 266, 357], which could indicate a

corresponding increase in VEGF protein. Lafosse et al. explicitly measured

an increase in VEGF production under hypoxia (0.1%) for three different

cell types [201]. Thus far evidence suggests that the magnitude of response

to hypoxia varies with cell type. Although dADSC-specific VEGF secretion

data are not currently available, existing research on other cell types can

be used as a guide to inform the functional form and qualitative nature of

dADSC oxygen concentration-dependent VEGF secretion.

A study by Leith and Michelson published in 1995 provides some

quantitative evidence for the dependence of cancer cell line VEGF secretion

upon oxygen [211]. They explored how the in vitro VEGF secretion rates

of clone A and HCT-8 human colon tumour cells, placed in glass bottles

with 50 ml of media, responded to different oxygen concentrations varying

from 0.01% to 21%. The bottles were gassed for 22h in total. The cell lines

were seeded in the bottles with an initial cell density of 2 × 104 cells/cm2,

and proliferation was measured and controlled for. The results suggested

a sigmoidal relationship between log VEGF concentration and log oxygen

concentration for both lines of cells. However, only one initial cell density

was tested in this way. Furthermore, the magnitude of response differed
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between the two cell lines, particularly at high oxygen concentrations. The

clone A cells exhibited a 17 fold increase in VEGF secretion between the

21% and 0.01% oxygen levels, whereas the HCT-8 cells’ VEGF secretion

increased by a factor of 80. Therefore it is reasonable to propose that the

shape of the VEGF secretion-oxygen dependency for the cell line of inter-

est for this project, dADSCs, may be sigmoidal, but the magnitude of the

increase in VEGF cannot be informed by this study.

However, in a later study Chiarotto and Hill [75] questioned the

methodology of Leith and Michelson. They claimed that the depth of

media used in the Leith and Michelson experiments would result in the

appearance of an oxygen gradient, induced by cellular respiration, thus

casting uncertainty on the exact oxygen concentration exposure of the cells.

Chiarotto and Hill also set out to quantify the relationship between VEGF

secretion and hypoxia, and in fact provided further evidence for a sig-

moidal relationship between these two solutes during their investigation.

VEGF mRNA levels were measured at 0, 2 and 4 hours in three cer-

vical cancer cell lines, under different oxygen concentration levels, again

varying from 21% down to below 10 ppm (approximately 0%). In contrast

to the Leith and Michelson experiments, oxygen levels in the medium were

measured directly using an electrode. The data sets were plotted and fit-

ted to logistic functions, and the resulting figures suggested that the VEGF

mRNA level can be approximated as a sigmoidal function of the oxygen

concentration, corroborating the results presented by Leith and Michelson.

The rate of hypoxia-induced increase in mRNA levels, and subsequently

the oxygen concentration at which the VEGF mRNA reached half of the

maximal upregulation, differed between cell lines. However, it was tenta-

tively suggested that VEGF mRNA probe inaccuracies could account for

some of these differences. Additionally, the exact relationship between

VEGF mRNA levels and VEGF protein levels is unclear, which limits the

use of this study.
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Furthermore, due to the use of cancer cell lines and the possible influ-

ence of differences between the behaviour of cancerous and healthy cells

under hypoxia, these results can only be used to loosely form hypotheses

regarding oxygen-dependent VEGF expression of dADSCs. However, to-

gether with existing models of VEGF secretion, they form a starting point

for model development.

Existing mathematical models of VEGF secretion have used a few dif-

ferent functional forms for the secretion term S. Maggelakis and Savakis

used a simple linear function to describe the non-uniform relationship be-

tween VEGF production and oxygen concentration c [236]:

∂v
∂t

=

 1− c0/c, c ≤ ch ,

0, c > ch.
(3.29)

This function determines that when the oxygen level falls below a certain

threshold ch, the VEGF production increases; otherwise, it is 0. Although

this model does capture a general dependency of VEGF secretion on oxy-

gen, it is neither informed nor validated by any experimental data.

In 2011, Aubert et al. also adopted this form of VEGF secretion func-

tion in their mathematical model of angiogenesis in the retina of a mouse,

replacing the direct dependency upon oxygen concentration with a depen-

dency upon oxygen-carrying capillary density [23].

In a 3D computational model of skeletal muscles [232], the VEGF se-

cretion rate S from the myocytes was defined by Mac Gabhann et al. as a

function dependent on the average oxygen tension PO2 in the surrounding

tissue:

S =


α, PO2 ≥ 20 mmHg

α

[
1 + 5

(
20−PO2

19

)k
]

, 1 < PO2 < 20 mmHg

6α, PO2 ≤ 1 mmHg.

(3.30)

Here the basal secretion rate is denoted α, and k determines the shape of

the VEGF secretion curve. The same function was used in two further
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publications [174, 231], and the shape of the function was motivated by

experimental evidence [176, 375].

Equation (3.30) has a similar shape to the functions used in the Magge-

lakis and Savakis and Aubert et al. models, with the exceptions that VEGF

secretion at high oxygen tensions remains at a low, constant non-zero rate

instead of reducing to zero, and that the VEGF secretion rate is capped at

a constant for oxygen tensions below the 1 mmHg threshold. A tanh func-

tion as used in the proof of concept model (Section 3.2) could also be used

to approximate the same general pattern as Equation (3.30) as follows:

S = αn
(

Vm + 1
2
− Vm − 1

2
tanhkα(c− ch)

)
. (3.31)

Here Vm is the VEGF secretion multiplier and α is the baseline VEGF secre-

tion rate at high oxygen concentrations: the maximum VEGF secretion rate

per cell per unit volume is therefore Vmα. Whilst this function maintains

the general experimentally informed shape of the VEGF secretion curve set

out by Mac Gabhann et al., it is proposed that the smooth nature of this

function means that it is likely to be a closer approximation to the true

biological relationship than Equation (3.30). Therefore this tanh function

VEGF secretion curve will be implemented as part of the model described

in this thesis.

3.4.4 The impact of local cell density upon diffusion

As the cell density within an engineered tissue increases, the volume of

cells could begin to obstruct the diffusion of oxygen, VEGF and other

solutes through the water phase, assuming that there is no intra-cellular

transport. This effect can be incorporated into the mathematical model

through the use of an effective diffusion coefficient, which takes into ac-

count the impact of the cellular obstructions on diffusion.

The effective diffusivity of oxygen and VEGF in a cell-seeded scaffold

can be calculated by multiplying the standard scaffold or material diffusiv-
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ities D by a porosity coefficient K:

Deff = K(ρ)D . (3.32)

Here ρ is defined as the fractional volume of scaffold absent of cells, i.e.

the fractional volume of unobstructed gel. The use of porosity coefficients

is explained in more detail in Section 4.2.2.

Croll et al. found that altering the rate of diffusion of oxygen according

to the number of cells in this manner had a negligible impact upon the

results of their computational study, unless the cell density was very high

[87]. The authors suggested that for cells of relatively small diameter (10-

20 µm), the effect of cell density upon the diffusion coefficients could be

neglected whilst the cell density remained low (< 107). Similarly, Landman

and Cai also chose to neglect this effect [205].

In the case of this thesis, the maximum cell density nmax is set at

400× 106 cells/ml or 400 × 1012 cells/m3 (Section 3.5.1.1) corresponding

to the maximum cell densities measured in the in vitro experiments. Here

it is assumed that a typical spindle shaped dADSC can be modelled as

an impermeable cylinder with a length of 40 µm and a diameter of 3 µm,

as estimated from imaging data published by Kingham et al. [188]. The

minimum fractional volume of scaffold absent of cells, minρ, can then be

calculated as follows, where max cvol is defined as the maximum volume

occupied by cells per m3 volume:

minρ = 1−max cvol

= 1− π × (1.5× 10−6)2 × (40× 10−6)× 400× 1012

1

≈ 89
100

.

This corresponds to a scaffold in which only approximately 11% of the

space is occupied by cells and is therefore still predominantly unob-
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structed. A commonly used form of the function K(ρ) is that proposed

by Millington and Quirk [261],

K(ρ) = ρ4/3 .

Other forms of porosity coefficient functions K are explored in more detail

in Section 4.2.2 in the context of modelling a porous NRC sheaths; here

the Millington-Quirk expression for K is used for illustration. Using the

previous calculation for minρ,

minK(ρ) =
(

89
100

)4/3

≈ 0.86 ,

so the effective diffusion coefficients at the maximum cell density will be

around 86% of the molecular diffusion coefficients. In fact, the recorded

cell densities in the in vitro experiments were on the whole far less than

the maximum cell density recorded, and therefore the impact of cellular

obstruction on the effective rate of diffusion would be even less in the

majority of cases.

In line with these calculations and in corroboration with the results

of Croll et al., simulating the final parameterised model with and without

the use of a Millington and Quirk model porosity coefficient K produced

almost identical results. Therefore it was concluded that incorporating the

effect of cellular obstruction to diffusion is unnecessary in this case, but

could easily be incorporated into future versions of the framework.

3.4.5 The general mathematical framework

The functional forms of the proof of concept model were altered accord-

ing to the preceding review of experimental research on the relationships

between the relevant variables and existing theoretical models of similar

systems (Sections 3.4.1, 3.4.2, 3.4.3 and 3.4.4), as well as analysis of the in

vitro data (Section 3.3.3), to create a general framework for the cell-solute
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Figure 3.12: Plots of the main non-linear functions that make up the terms of the
cell-solute model. All parameter values not explicitly stated here
are assigned according to Tables 3.9 and 3.10. a) Cell proliferation
term dependence on cell density n. b) Oxygen metabolism term de-
pendence on oxygen concentration c. c) VEGF secretion term de-
pendence on oxygen concentration c, with VEGF secretion multiplier
Vm = 5.217.

model. This eventually resulted in a final general form of the mathematical

framework as follows:

∂n
∂t

= βcn
(

1− n
nmax

)
− δn , (3.33)

∂c
∂t

= Dc∇2c−Mn
c

c1/2 + c
, (3.34)

∂v
∂t

= Dv∇2v + αn
(

Vm + 1
2
− Vm − 1

2
tanhkα(c− ch)

)
− dvv . (3.35)

Note that the functional forms and parameters of the equations can be

removed or altered respectively according to the material properties of the

geometry that it is applied to, as demonstrated in the case of the in vitro well

scenario in Section 3.5.1, and later in this thesis for a geometry representing

a tissue engineered NRC (Chapter 4). Some of the key functions that make

up the terms of these equations are plotted in Figure 3.12.



172 Chapter 3. Development of a Model of Cell-Solute Interactions

3.5 Model simulation and parameterisation
This section describes the parameterisation of the model framework, com-

posed of Equations (3.33), (3.34) and (3.35), against the in vitro data. This

begins in Section 3.5.1 with the adaptation of the framework for application

to a geometry representing the in vitro well via the removal of unnecessary

governing equation terms in specific regions of the geometry, the applica-

tion of boundary conditions representing the experimental set up, and the

identification of probable parameter values and ranges and key unknown

parameters.

Subsequently, the finite element software COMSOL Multiphysics is in-

troduced in Section 3.5.2, and an explanation of the built in solver used

to run the model simulations is provided. Additionally, the well geom-

etry and mesh generated in COMSOL and used for parameterisation are

described in this subsection.

The general method used for parameterisation of all three governing

equations within COMSOL is then explained in Sections 3.5.3. The follow-

ing final subsections, Section 3.5.4 and Section 3.5.5, describe the process of

parameterisation for the cell density and oxygen concentration governing

equations and then the VEGF concentration governing equation respec-

tively.

3.5.1 Application of the model to an in vitro well geometry

The in vitro well geometry is composed of two subregions: the cell-seeded

collagen gel at the bottom of the well, and the media above it (Figure 3.3).

The form of each governing equation within the general framework out-

lined in Section 3.4.5 is adapted in this subsection to match the differences

between these subregions, and boundary and initial conditions are also

described. Where possible, parameter values and constraints for the pa-

rameterisation of the governing equations are approximated using existing

values from the literature, and key unknown parameters are highlighted in

preparation for parameterisation. The final parameter values obtained via
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this process are summarised in Tables 3.9 and 3.10.

3.5.1.1 Cell governing equation and parameter estimates

The cells are situated in the gel portion of the geometry only, and their

behaviour is described using the following governing equation:

∂n
∂t

= βcn
(

1− n
nmax

)
− δn . (3.36)

A zero flux boundary condition is applied on the boundary between

the gel and the media, as well as at the well walls and base. Uniform initial

cell densities are used according to the experimental values; it is assumed

that the cells are initially uniformly distributed throughout the gel because

during the experimental procedure the cell solution was thoroughly mixed

before being pipetted into the wells (Section 3.3.2.2).

The maximum cell density nmax is set at 400× 106 cells/ml to approxi-

mate the maximal value observed in the experimental data (Figures 3.5 and

3.6).

Cell proliferation β and death δ rates have been estimated for other

cell types in the past. These estimations are scarce but can act as a guide

as to the approximate order of magnitude for these parameters. In the case

of the cell proliferation rate, Lewis et al. used β = 1.27× 10−5 m3/mol/s

in their 1D mathematical model of chondrocyte proliferation within engi-

neered cartilaginous construct [217], which was parameterised informally

against experimental data. Burova et al. derived a range of 3.5 to 9× 10−5

m3/mol/s for β by fitting a theoretical model of osteoblast growth against

in vitro data [56]. These values correspond to maximum cell proliferation

rates of 2.54 × 10−6 and 0.7 to 1.8 × 10−5 s−1 respectively at an oxygen

concentration of 0.2 mol/m3.

Elsewhere a maximum proliferation rate of 1.52× 10−5 s−1 has been

used as part of cell proliferation mathematical models [84, 349], although

the method of derivation for this parameter is unclear. Similarly, Sacco et
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al. used a maximum cell proliferation rate of 8× 10−6 s−1 [338]. Croll et

al. reviewed experimentally derived maximal cell proliferation rates and

reported a range of 3 to 4.5× 10−6 s−1 [87].

Cell death rates reported thus far in the literature include 1.3 to

5030× 103 cells/m2/s [56], and 3.3× 10−7 s−1 [79]. However, the cell types

and contexts used in all of these studies vary widely and none correspond

directly to the scenario of interest in this thesis (dADSCs seeded in type I

collagen gel). Therefore both the cell proliferation rate β and the cell death

rate δ are key unknown parameters.

3.5.1.2 Oxygen governing equation and parameter estimates

The continuous distribution of oxygen is governed by two different equa-

tions, corresponding to the gel and media sub-geometries. Boundary con-

ditions are used to enforce continuity of oxygen concentration at the inter-

face between the gel and the media, and between the media and the ex-

ternal environment with its controlled ambient oxygen level, ca. Zero flux

conditions are applied at the well walls and base. Initial conditions within

the gel and water are set to the initial value measured via the oxygen probe

(18%). Within the media, the equation takes the form:

∂c
∂t

= Dcm∇2c , (3.37)

where Dcm is the diffusion coefficient for oxygen in the media. Alterna-

tively, within the gel the additional Michaelis-Menten term governs the

oxygen consumption rate by the resident cell population as follows:

∂c
∂t

= Dcg∇2c−Mn
c

c1/2 + c
. (3.38)

In this case, Dcg is the diffusion coefficient for oxygen in the gel.

Using the assumption that the diffusion rate of oxygen through cul-

ture media is approximately equal to the diffusion rate through water, Dcm

is assigned a value of 2.624× 10−5 cm2/s. This was calculated using a inter-
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polation formula for aqueous oxygen diffusion coefficients [142], assuming

a constant temperature of 37°C as regulated by the incubator used during

the in vitro experiments.

Oxygen diffusion rates in acellular collagen gels, with defined collagen

densities, have been explicitly characterised in experiments by Cheema et

al., providing a value of Dcg = 4.5× 10−6 cm2/s [71]. As expected, this rate

of diffusion is slower than that through the media. It is assumed that the

obstruction to diffusion caused by cells is negligible, as per Section 3.4.4.

The oxygen concentration at which oxygen consumption is half max-

imal c1/2 is assigned a value of 6.66× 10−9 mol/ml (equivalent to 0.506%)

according to unpublished model fitting conducted by R. Shipley. This is

in accordance with research by Chow et al. that suggests that the value

of c1/2 for human cells should lie between 0.2 and 7× 10−9 mol/ml [78].

Streeter and Cheema used a similar value of c1/2 = 5.6 mmHg, equivalent

to approximately 0.737%, in their model. As noted by Streeter and Cheema,

the parameter c1/2 only affects the rate of oxygen consumption at very low

oxygen concentrations [367].

Finally, values for the maximal rate of oxygen consumption per cell

M for various cell types found in the literature were used to construct

bounds on this parameter in advance of parameterisation. Recorded oxy-

gen consumption rates vary widely across cell types, including estimates

of 7.91× 10−18 mol/cell/s for human bone marrow derived stromal cells

[367]; 2 to 140× 10−19 mol/cell/s for lymphocytes [78]; 1.04 to 6× 10−17

mol/cell/s for human dermal fibroblasts [76, 144, 147, 367]; and a range

of 2.5 to 9.1× 10−16 mol/cell/s for porcine hepatocytes [29], among other

values [78, 87]. No specific value has thus far been recorded for dADSCs.

Therefore the lower and upper bounds for the value of M were assigned at

2× 10−19 mol/cell/s and 9.1× 10−16 mol/cell/s respectively according to

the available data and estimates for other cell types.
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3.5.1.3 VEGF governing equation and parameter estimates

Two governing equations corresponding to the media and gel portions of

the geometry are used to describe the development of the VEGF concen-

tration distribution with time. Boundary conditions enforce continuity of

VEGF concentration at the interface between the gel and the media, allow-

ing diffusion from one into the other. Zero flux conditions are applied at

the well walls and base, as well as at the surface of the media. The initial

VEGF concentration was set at zero in both the gel and the media. In the

media,
∂v
∂t

= Dvm∇2v− dvv. (3.39)

Here Dvm is the diffusion constant of VEGF in the media, and dv the decay

rate of the VEGF protein. In the gel, an additional term is introduced to

model the production of VEGF by the viable cell population:

∂v
∂t

= Dvg∇2v + αn
(

Vm + 1
2
− Vm − 1

2
tanhkα(c− ch)

)
+ dvv , (3.40)

where Dvg is the diffusion constant of VEGF in the gel, α the baseline VEGF

secretion rate per cell, Vm the VEGF secretion multiplier and kα the VEGF

secretion gradient constant.

The diffusivity of VEGF in the media is one of the least uncertain pa-

rameters in the VEGF governing equation due to estimates offered by var-

ious theoretical and experimental papers. Some mathematical modelling

attempts have drawn upon the correlation between molecular weight and

diffusivity to calculate VEGF diffusivity values [40]. In 2005 Mac Gabhann

et al. used this to calculate an aqueous diffusion coefficient of 2 × 10−6

cm2/s for VEGF [230]. In a different paper in 2007, Mac Gabhann et al.

combined the correlation with the Stokes-Einstein equation to adjust val-

ues to match the desired temperature of 37°C [232]. This provided aqueous

diffusivities of 1.42× 10−6 cm2/s for VEGF120 and 1.33× 10−6 cm2/s for

VEGF164, and a value in this range Dvm = 1.37× 10−6 cm2/s was chosen as
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the VEGF diffusivity in media for the current model. Again it is assumed

that diffusion through the media is equivalent to aqueous diffusion.

VEGF protein diffusion in collagen and similar materials has also pre-

viously been calculated by fitting to in vitro experimental data. Kohn-

Luque et al. determined the diffusion coefficient of VEGF in Matrigel ab-

sent of seeded cells to be 5.87± 2.1× 10−7 cm2/s by fitting to fluorescence

data [191]. Experiments conducted by Nunez specifically designed to mea-

sure the diffusion coefficient of VEGF121 in collagen also resulted in a value

close to this range, 5.55× 10−7 cm2/s [280]. Mac Gabhann et al. predicted a

diffusivity of 1.13 ×10−6 cm2/s for VEGF120 in skeletal muscle ECM. Over-

all a range of 5.55× 10−7 to 1.13× 10−6 cm2/s was identified and these

values were used as bounds for Dvg during parameterisation.

The VEGF protein decay rate, or half life, is a result of proteolysis and

does not include VEGF uptake by cells such as endothelial cells. Cited

values range from a half life of 3 minutes in blood [120] to 72 hours in

culture media, as measured by VEGF ELISA [191]. Other values lie in

between. Kleinheinz et al. measured a half life of 90 minutes for VEGF165 in

aqueous solution, and theorized that the half life of VEGF in collagen could

be around 48 hours from indirect experimental evidence [189]. Lanza et al.

quote a half life of 30 minutes for VEGF in tissue [207]. These estimates

indicate that the half life varies according to context, suggesting that dv

should also be derived via parameterisation. The bounds used for this

were 3.85 × 10−4 and 2.67 × 10−6 s−1, corresponding to half lives of 30

minutes and 72 hours respectively.

The remainder of the parameters within the VEGF governing equation

relate to the secretion of VEGF by the cells, in this case dADSCs. VEGF

secretion in response to oxygen is highly cell type dependent, and therefore

all of these parameters need to be refined via parameterisation. However,

existing values corresponding to other cell types can be used to inform this

process of parameterisation.



178 Chapter 3. Development of a Model of Cell-Solute Interactions

Some of the existing secretion rates reported in the literature were not

measured as secretion per cell but as secretion per mass of tissue, rendering

them less useful for the purpose of this model. For example, Zhang et

al. quantified the VEGF secretion rates of cells from the omentum and

pituitary of rats: cells from the omentum were found to have the highest

secretion rate, 362.51 ± 14.63 pg/g tissue/h, but values ranged from this

to 6.45 ± 1.33 pg/g tissue/h for retroperitoneal adipose tissue [419].

Kelm et al. quantified the VEGF production rate of a variety of human

cell lines and primary cells [186]. The values were calculated from both

cell monolayers and microtissues, and ranged from 0.09 ± 0.011 ng/h/cell

for human articular chondrocytes to 1.55 ± 0.231 ng/h/cell for human

fibrosarcoma cell, both in microtissue. Mick et al. measured the VEGF se-

cretion over 12 hours of adipocytes (294± 87 pg/106 cells/12 h, equivalent

to 24.5± 7.25 pg/106 cells/h) and stromal cells (200± 96 pg/106 cells/12

h, equivalent to 16.67± 8 pg/106 cells/h) [259].

Leith and Michelson measured VEGF secretion rates for clone A and

HCT-8 human colon tumour cells in a range of oxygen conditions [211]. In

21% oxygen, a secretion rate of 41.3 to 94.5 pg/106 cells/h was recorded

for the clone A cells, and a rate of 3.7 to 6.9 pg/106 cells/h for the HCT-8

cells.

However, these experimental procedures do not take into account the

rate of VEGF decay which is one of the mechanisms incorporated into the

model, so the figures mentioned above can only act as a guide for the mag-

nitude of the parameter α. Mac Gabhann et al. estimated secretion rates

of 0.25× 10−17 pmol/µm2/s for VEGF164 and 2.95× 10−7 pmol/µm2/s for

VEGF120 by matching a mathematical model to in vivo measurements of

unbound VEGF in human skeletal muscle [232].

Overall, although these various estimates may give an indication as

to the likely range of VEGF secretion, differences in cell type and context

mean that no specific values can be taken forward for use in the model.
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It is well established that VEGF secretion by cells increases in hypoxic

conditions, but the degree to which this occurs is still unknown. The maxi-

mum fold increase in VEGF secretion that occurs as the oxygen concentra-

tion drops, as illustrated in Figure 3.12, is Vm as dictated by Equation (3.31).

Zhang et al measured a 1.7 fold increase in the expression of VEGF protein

by rat omental adipocytes under hypoxic conditions [419]. Mac Gabhann

et al. incorporated a 6 fold increase into their model [232], and Tang et

al. reported a fold increase in VEGF protein of 2.2 ± 0.4 under hypoxia

in vivo [375]. Leith and Michelson reported a 7 fold and 75 fold increase

in VEGF production under hypoxia for clone A cells and HCT-8 human

colon tumour cells respectively [211]. From these values it is assumed that

the value of Vm for the dADSCs modelled in this thesis will lie between

1 and 75, and it seems likely that Vm < 10 in line with values for other

non-cancerous cells.

The VEGF secretion gradient constant kα determines the rate of in-

crease in VEGF secretion as environmental oxygen concentration decreases.

This parameter is not measured quantitatively anywhere in the literature

and therefore will be determined as part of the parameterisation process.

Finally, ch determines the oxygen concentration below which VEGF

secretion increases. This is again unknown, although likely to be below 5%

as per the previously described research conducted using other cell types

[75, 201, 211].

3.5.2 Simulation method

The finite element modelling software COMSOL Multiphysics (version

5.2a) was used to simulate and parameterise the model. This software

allows the user to enter and solve systems of coupled partial differential

equations, such as the model presented in this report. COMSOL has been

used previously to solve other published models similar to that described

in this thesis [80, 349].

The backward differentiation formula (BDF) method, implemented in-
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ternally by the COMSOL software, was used to solve the differential equa-

tions that make up the model. A BDF solver approximates the derivative

of a variable y at a time tj in terms of the values of the function y at tj and

previous time steps: suppose that we have the initial value problem

y′ =
∂y
∂t

= f (t,y) , y(t0) = y0; (3.41)

then y(t) can be approximated using the Lagrange interpolation polyno-

mial of order k, which is a function of k evaluations of y(t) at tj and earlier

time points. Differentiating this polynomial and evaluating it at t = tj gives

the following BDF formula in the case of constant step size h = tj− tj−1 for

all j so that tn = t0 + nh:

hy′j =
k

∑
i=0

akiyj−i (3.42)

Here the coefficients aki are specific to the order of the BDF method used.

BDF methods are generally known for their stability.

COMSOL Multiphysics implements a variable order and step size ver-

sion of the BDF method. The solver uses the highest order up to a maxi-

mum set by the user when possible, but automatically implements a lower

order BDF when an increase in stability is required. For the simulations in

this thesis, the maximum order was set at k = 2. Default “Free” time step-

ping was used, which permits the solver to use variable time steps within

the range specified by the user to satisfy the tolerance. For all simulations

in this thesis, a minimum time step of 0.001h was used; the maximum time

step was varied.

3.5.2.1 The COMSOL in vitro well geometry

An axisymmetric 2D geometry representative of a well from a 96-well plate,

as used during the in vitro experiments and depicted in Figure 3.3, was cre-

ated within COMSOL to enable parameterisation against the experimental

data. A thin slice at the bottom of the geometry represents the seeded cell

gel, with the remaining geometry representing the media-filled portion of
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the well. Measurements of the gel thickness and volume of the media were

used alongside known dimensions of the wells to accurately recreate the

experimental set up in COMSOL.

A fine mesh was generated to cover this geometry, containing a total

of 8032 triangular elements automatically generated with a maximum ele-

ment size of 0.4 mm, with a more refined mesh at the geometry boundaries

and in the section representing the gel (Figure 3.13). Simulations were sub-

sequently run over this 2D axisymmetric geometry, presented as a 3D well

in COMSOL. Mesh refinement at the boundaries and in the section of the

geometry representing the gel was required for the model to reach conver-

gence. Further mesh refinement studies have been performed, but made

no detectable difference to the simulation values.

Figure 3.13: Cross section of the mesh generated over the axisymmetric well ge-
ometry in COMSOL. The maximum element size in the gel portion of
the geometry was set at 0.03 mm; along the top and outside edge of
the well (angled edge in this figure) the maximum element size was
set at 0.05 mm. Elsewhere, in the section of the geometry represent-
ing the culture medium, the maximum element size was set at 0.4
mm. The minimum element size over the whole geometry was set at
4.61× 10−4 mm. In total, the mesh contains 8032 triangular elements.

The size of the mesh was not prohibitive to simulation completion

time. The completion time for each simulation did depend upon the time

step size and the number of metrics, such as averages and standard devia-
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tions of variables over the geometry, that were calculated by COMSOL. A

maximum time step size of 0.1h was required to reach convergence, and

this was used throughout the model fitting process. After these consid-

erations, a typical simulation of a 24h period had a maximum run time of

around 3 minutes, but more commonly the run time was under 30 seconds.

3.5.3 Parameterisation method

The in vitro data set for the 1 day time point was split into a training subset

and a validation subset. The training subset ST consists of the mean viable

cell densities in the gel nexp and the mean VEGF concentrations in the

media vexp for n0 = 39, 154 or 385× 106 cells/ml; the validation subset SV

consists of the corresponding data with n0 = 77 or 231× 106 cells/ml. The

mean values referred to here are shown in black in Figures 3.5 and 3.7.

The 5 day time point data was not used for parameterisation due to time

constraints, but was used for further validation of the model in Section 3.6.

Parameterisation of the model was carried out in two stages. First,

the mutually dependent governing equations for the viable cell density

and oxygen concentration were parameterised, using the 15 mean viable

cell density data points in ST. Secondly, the VEGF governing equation

was parameterised using the 15 mean VEGF concentration data points in

ST in conjunction with the previously attained parameterised cell-oxygen

equations.

The SNOPT or sparse nonlinear optimizer solver [137] was used to

minimise a different least squares objective function at each of the two

stages of parameterisation (LSn for the viable cell density and oxygen con-

centration equations parameterisation step, and LSv for the VEGF concen-

tration equation parameterisation step):

LSn = ∑
nexp∈ST

(nexp − n̄g)
2 , (3.43)

LSv = ∑
vexp∈ST

(vexp − v̄m)2 . (3.44)
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These objective functions are the sum of the squared differences between

the 15 mean experimental data points (either nexp ∈ ST or vexp ∈ ST) and

the corresponding simulated values for the mean viable cell density over

the gel, denoted n̄g, and the mean VEGF concentration over the media,

denoted v̄m, after 1 day, calculated by running the model using the same

initial conditions (initial cell density n0 and ambient oxygen concentration

ca) as the corresponding experimental data points.

The SNOPT algorithm is commonly used to solve non-linear problems

with constraints. The SNOPT solver was selected for the parameterisa-

tion of the model because it can take into account many different con-

straints; conversely, although the Levenberg-Marquadt solver is designed

specifically for least-squares problems such as this, it cannot incorporate

constraints. In this thesis, control parameters are defined as the unknown

parameters that are derived via parameterisation using the SNOPT algo-

rithm. Where upper and lower bounds for control parameters had been

identified in Section 3.5.1, these were implemented as constraints for the

SNOPT algorithm.

3.5.4 Cell density and oxygen governing equations param-

eterisation

The viable cell density and oxygen concentration governing equations were

parameterised together first because they are interdependent, but are not

dependent upon the VEGF concentration governing equation.

In Section 3.5.1, β, δ and M were identified as the key unknown param-

eters in the cell and oxygen governing equations and were therefore used

as control parameters during the first stage of parameterisation. All other

parameters in these governing equations were assigned values according

to the previous review of the literature, as presented in Table 3.9.

Parameter sweeps were carried out over orders of magnitude of the

control parameters to identify parameter spaces that would give feasible

simulation results when compared to the data set. These also gave an in-
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dication of the impact of individual parameters upon the results of the

simulations, although it was difficult to interpret these results due to the

complexity of the mathematical framework and the multiplicative interac-

tions between some of the parameters.

Initial attempts at parameterisation revealed that the model was able

to capture the relationship between the simulated mean viable cell den-

sity over the gel n̄g and the ambient oxygen concentration ca, but did not

demonstrate any relationship between n̄g and the initial cell density n0.

This is not in accordance with the experimental data, which did exhibit

some dependence of the final viable cell density upon n0, and it was clear

that further work was needed to ensure that the model reflected this rela-

tionship.

Different functional forms with various dependencies upon n were

trialled in further attempts to achieve a greater dependency of n̄g upon

n0. This included a cell death function of the form

F(c,n) = δ
n
2
[1− tanh(kδ(c− cd))] , (3.45)

which incorporates greater cell death in low oxygen environments, with cd

representing the hypoxic oxygen threshold for increased cell death, but this

did not provide an improvement to the model fit to the data. Consequently

the cell governing equation eventually remained in the form set out in

Equation (3.33).

It was therefore decided that the training data set should be split into

three sets according to the three different initial cell densities, and optimi-

sation should be run on each of these sets individually. Subsequently, any

differences between the optimised values of β and δ across the data sets

could give some indication of how the functional forms of the equations

could be altered to give a more generalised model.

It became clear that the equations in their current form did not capture

the difference in results across the different initial cell densities. Therefore
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it was necessary to determine δ as a function of n0,

δ(n0) = δ0 + δ1n0 ,

essentially introducing an extra parameter in order to achieve a better fit to

the data.

3.5.5 VEGF governing equation parameterisation

In Section 3.5.1, Dvg , dv, ch, kα, α and Vm were all identified as unknown

parameters in the VEGF governing equation and were therefore used as

control variables for the second stage of parameterisation.

Parameter sweeps revealed that in order to obtain mean VEGF concen-

trations across the media after 1 day close to the experimental means, the

VEGF diffusion rate through the gel would have to be as large as possible

within the constraints laid out in Section 3.5.1.3. This is because the VEGF,

which is produced in the cellular gel portion of the geometry, needs to dif-

fuse into the media before it decays in order to influence the value of v̄m.

Therefore Dvg = 1.13× 10−6 cm2/s, at the upper bound of the limits set

out in Section 3.5.1.3 for this parameter. Decreasing the decay rate would

also facilitate higher VEGF concentrations in the media, but would result

in unrealistically high VEGF concentrations in the gel.

After initial parameterisation attempts, again it was found that in order

to achieve a good fit to the experimental data points vexp it was necessary

to introduce parameters as functions of n0 into the governing equation.

As with the parameterisation of the oxygen and cell governing equa-

tions, the VEGF experimental data set was split into three sets correspond-

ing to the three different initial cell densities. Parameterisation was con-

ducted on each of these separately to assess the similarities and differ-

ences. It was found that the parameters ch, dv and kα differed the least

across these three sets; therefore these parameters were assigned by aver-

aging over the three optimal values. This left only α and Vm as unknown
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Cell density equation parameters

Proliferation rate† β = 2.2× 10−4 m3/mol/s

Cell death rate† δ(n0) = δ0 + δ1n0 1/s

δ0 = 1.1334× 10−5 1/s

δ1 = 9.1256× 10−14 ml/cell/s

Maximal cell density2 nmax = 4× 108 cells/ml

Oxygen concentration equation parameters

Diffusion coefficient for
oxygen in media∗ Dcm = 2.624× 10−5 cm2/s [142]

Diffusion coefficient for
oxygen in collagen gel∗ Dcg = 4.5× 10−6 cm2/s [71]

Maximal rate of oxygen
consumption† M = 2× 10−19 mol/cell/s

Concentration at which
oxygen consumption is
half maximal1

c1/2 = 6.66× 10−9 mol/ml (0.506 %)

Table 3.9: Final parameter values derived from the literature (∗) and via parame-
terisation (†) against the in vitro training data sets. Where parameters
are functions of n0, here n0 has units cells/ml.

control parameters. These two parameters were determined as functions of

n0 to incorporate the differences in experimental results across the various

initial cell densities used in the experiments (Table 3.10).

3.6 Results and discussion

3.6.1 Parameterised model simulation results and compari-

son with experimental data

The final parameter values for the cell and oxygen governing equations

are in Table 3.9, and those for the VEGF governing equation are in Table

3.10. These parameters were obtained either from the literature or during

1Parameter value provided by Dr Shipley, based upon previous unpublished research
2Based upon experimental data values
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VEGF concentration equation parameters

Diffusion coefficient for
VEGF in media∗ Dvm = 1.37× 10−6 cm2/s [232]

Diffusion coefficient for
VEGF in collagen gel† Dvg = 1.13× 10−6 cm2/s

VEGF degradation rate† dv = 29.874× 10−6 1/s

Hypoxia threshold for
VEGF secretion† ch = 6.281× 10−8 mol/ml (4.77 %)

VEGF secretion gradient
constant† kα = 90 ml/mol

Baseline VEGF secretion
rate† α(n0) = α0 + α1n0 + α2n2

0 mol/cell/s

α0 = 0.04596× 10−23

α1 = 6.7225× 10−34

α2 = 5.4325× 10−42

VEGF secretion
multiplier† Vm(n0) = Vm0 + Vm1n0

Vm0 = 5.217

Vm1 = −9.0375× 10−9 ml/cell

Table 3.10: Final parameter values derived from the literature (∗) and via param-
eterisation (†) against the in vitro training data sets. Where parameters
are functions of n0, here n0 has units cells/ml.

the process of parameterisation outlined in Sections 3.5.4 and 3.5.5, and are

used for all subsequent simulations in this chapter and in Chapters 4 and

5, unless otherwise stated.

3.6.1.1 Viable cell density and oxygen concentration govern-

ing equations

Figure 3.14 shows the simulated values of the mean viable cell density over

the gel n̄g after 1 day, produced by the model using the parameters in Table

3.9 and initial conditions corresponding to the experimental conditions,

compared against the in vitro cell viability data nexp. Qualitatively, the
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Figure 3.14: Simulated values of the mean viable cell density over the gel after 1
day, produced by the parameterised cell-solute model, approximate
the general trends demonstrated by both the training experimental
data ST used during the optimisation process (blue), and the valida-
tion experimental data set SV (yellow). Error bars represent standard
deviations.

model reproduces the general trend of the experimental data, showing a

clear increase in viable cell density with ambient oxygen concentration as

the initial cell density increases.

The degree to which the model captures the experimental data does

vary according to the value of n0 and ca. For initial cell densities of 77× 106

cells/ml and above, R2 ≥ 0.71, providing quantitative evidence of a good

model fit to these subsections of data. However, a much lower value of

R2 = 0.30 was produced for n0 = 39× 106 cells/ml. This reflects the fact
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that the model does not capture the slightly higher viable cell densities

produced by this lower initial cell density at ca = 1, 3 and 5%, probably

because this does not match the overall trend exhibited by the rest of the

data set.

Additionally, the model does not replicate the relatively low experi-

mental values at ca = 5% for n0 = 77, 154 and 231 × 106 cells/ml. The

non-linear pattern in viable cell density exhibited from 3 to 10% oxygen

across these initial cell density subsets would not be possible to replicate

using the model unless the proliferation or cell death functions were ex-

plicitly altered to create either an increase in cell proliferation or decrease

in cell death at 3%, or the converse at 5%.

The data points at ca = 3 and 5% have comparatively small stan-

dard deviations, suggesting that they are relatively precise measurements.

Therefore it seems that there are three likely scenarios that explain this

non-linear pattern. Firstly, a systematic error could have occurred with the

experiments that were conducted using either ca = 3 or 5%, resulting in a

consistent increase or decrease in viable cell density. But the data collected

using n0 = 39× 106 cells/ml do not appear to have been affected by such

an error. Alternatively, the data could be an accurate depiction of how

oxygen influences cell viability, in which case either 3% oxygen provides a

particularly good niche for dADSC proliferation, or 5% a particularly poor

one.

However, statistical analysis of the Ki67 data set did not demonstrate a

negative correlation between cell proliferation and ambient oxygen concen-

tration (Section 3.3.3.3), and during the harvest and culturing of the cells

they were not exposed to low oxygen conditions, as outlined in the dADSC

culture protocol provided by Georgiou et al. [133]. Nevertheless, it is possi-

ble that ca = 3% could correspond to the oxygen conditions that the adipose

cells were exposed to in the fat tissue of the rats prior to harvesting.

Figure 3.15 shows that the simulated progression of n̄g with time is
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Figure 3.15: Simulated values of the mean viable cell density over the gel n̄g vary
gradually over time. In the majority of the simulated scenarios, the
viable cell density gradually decreases, with only oxygen concentra-
tions greater than 5% inducing increases in the viable cell density.

smooth with no discontinuities or unrealistically quick increases or de-

creases, although validation of these time dependent solutions would re-

quire additional in vitro experiments.

Although the model was not fit against the 5 day data due to time

constraints, the model simulations were run up to the 5 day time point for

comparison with the corresponding experimental data. Figure 3.16 demon-

strates that the model does replicate the general trend of the viable cell

density data after 5 days, aside from when ca = 16%. Under this condition

the model tends to overestimate the mean viable cell density.

The fit again appears to be worse for n0 = 39× 106 cells/ml than for

the other initial cell densities. But overall the model predictions broadly

match the trend of the data points despite the fact that none of the 5 day
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Figure 3.16: Simulated values of the average viable cell density over the gel after
5 days, produced by the parameterised cell-solute model, approxi-
mate the general trends demonstrated by both the experimental data
(yellow). Error bars represent standard deviations.

data was used to parameterise the model, providing further validation of

the cell-oxygen governing equations.

Although the mathematical model was not parameterised against the

oxygen monitoring data, comparison of the simulated mean oxygen con-

centration over the gel c̄g with the experimental values demonstrates that

the broad shape of c̄g as a function of time matches that of the data, but in

the case of n0 = 39× 106 cells/ml the rate of change for the oxygen con-

centration appears to be much quicker than the experimental values would

suggest is realistic.

The solutions for c̄g are highly dependent on the diffusion rate of oxy-

gen into the gel from the media (and from the air surrounding the well

into the media), but because these diffusion rates are independent of the



192 Chapter 3. Development of a Model of Cell-Solute Interactions

n0 = 231× 106 cells/ml n0 = 385× 106 cells/ml

n0 = 39× 106 cells/ml n0 = 77× 106 cells/ml n0 = 154× 106 cells/ml

0 6 12 17 0 6 12 17

0 6 12 17
0

5

10

15

18

0

5

10

15

18

Time (h)

M
ea

n
ox

yg
en

co
nc

en
tr

at
io

n
ov

er
th

e
ge

l(
%

)

Experiment Simulation

Ambient oxygen concentration, ca (%)
1 3 5 10 16

Figure 3.17: Simulated values of the mean oxygen concentration over the gel c̄g
are predominantly affected by the ambient oxygen concentration via
diffusion through the media and gel. Simulated values c̄g approxi-
mate the experimental data by reaching steady states corresponding
to the imposed values of ca.

cell density they cannot account for the difference in the experimental rate

of change in oxygen between n0 = 39 × 106 cells/ml and n0 = 395 × 106

cells/ml. This would suggest that the oxygen metabolism term requires

further refinement in the future. On the other hand, the oxygen monitor-

ing experiments were not repeated or carried out across the whole range

of the initial conditions used in the other experiments, and therefore could

also benefit from further work in the future.

Aside from the model fit, some of the parameter values derived via

least squares parameterisation against the experimental data should be re-
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garded as results in their own right. The cell proliferation rate parameter

β = 2.2× 10−4 m3/mol/s is higher than most of the values cited in the liter-

ature (Section 3.5.1.1), but cell proliferation rates in general are not widely

characterised and no previous work has been done to find proliferation

rate values for dADSCs specifically. Additionally, some of the existing the-

oretical models neglect cell death entirely, which would result in lower

estimates for the rate of cell proliferation.

As explained in Section 3.5.4, the cell death rate δ was determined as a

function of n0 to produce a better fit to the experimental data. Therefore the

cell death rates used by the model range from δ = 1.13 to 4.65× 10−5 s−1 (3

s.f.) for n0 = 39 and 385× 106 cells/ml respectively. These cell death values

again appear to be larger than those currently reported in the literature

(Section 3.5.1.1), but there is very little data available on cell death rates

in general. Experimentally it is difficult to discern whether changes in the

number of cells are due to increased cell proliferation or decreased cell

death, accounting for the lack of precise data for these parameters.

The need to incorporate δ as a function of n0 to achieve a good fit to

the data may indicate that the functional forms used for the model are in-

sufficient to explain all of the variability in the data. An oxygen-dependent

cell death function was also trialled but did not result in a better fit to the

data.

During the process of fitting, the oxygen metabolism coefficient was

identified as M = 2 × 10−19 mol/cell/s. This is at the lower end of the

range previously identified for this parameter in Section 3.5.1.2 (2× 10−19

to 9.1× 10−16 mol/cell/s). Comparison of the time dependent solutions for

c̄g obtained across different initial cells densities (and thus different time

dependent solutions for n across the gel), as shown in Figure 3.17, leads to

the conclusion that oxygen metabolism has only a small effect on the rate

of change of c̄g in this model.

In this thesis, cell density and oxygen concentration were modelled as
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independent of VEGF concentration for simplicity. But experimental evi-

dence suggests that VEGF increases the proliferation of certain cell types,

including ADSCs (Section 3.4.1), although the exact effect of VEGF upon

dADSCs could differ. Future improvements to the cell-solute model could

incorporate a dependence upon VEGF into the cell proliferation term. Al-

ternatively, glucose is another factor that can influence cell proliferation

and death rates, and could be a good candidate for inclusion in the model

in the future, as outlined in more detail in Chapter 6. However, it was ex-

pected that oxygen rather than glucose would be the limiting factor for cell

survival over the time span simulated in this thesis, and again this effect is

likely to be cell type-specific. Nevertheless, the incorporation of either or

both of these aspects into the model could eliminate the need for the cell

death function to depend upon n0.

3.6.1.2 VEGF concentration governing equation

The simulated mean VEGF concentration over the media v̄m after 1 day

captures the general trend of the corresponding experimental data (Figure

3.20), although the R2 values are much lower than those measuring the

fit against the viable cell density data. The poorest fit was again for the

n0 = 39× 106 cells/ml data subset, with the model failing to capture the

low VEGF concentrations at 10 and 16% in this case.

The R2 values for the other initial cell densities all fall between 0.27

and 0.43. These lower R2 values reflect the fact that the model tends to

mimic the shape of the general non-linear relationship between ca and v̄m

but does not exactly replicate the extremes; for example, at ca = 3% and

n0 = 77× 106 cells/ml the model does not exhibit as great a local maximum

as the experimental data.

Similarly to the viable cell density experimental data at the 1 day time

point, a key aspect of the 1 day VEGF concentration data is the local max-

imum at ca = 3%. Interestingly, again this pattern is most evident in the

data for which n0 is greater than 39× 106 cells/ml. This may suggest a link
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Figure 3.18: Simulated values of the mean VEGF concentration over the media v̄m
after 1 day, produced by the parameterised cell-solute model, approx-
imate the general trends demonstrated by both the experimental data
used during the optimisation process (blue), and the test experimen-
tal data set (yellow). Error bars represent standard deviations.

between these phenomena: the relatively large number of cells at ca = 3%

(in comparison to at 1 and 5%) at these values of n0 could account for

the correspondingly relatively high VEGF concentration. For this reason it

seems likely that a better model fit to the local peak in cell viability at ca

would also improve the fit to the VEGF data.

Additionally, the difference between the recorded VEGF concentra-

tions after 1 day for ca = 3% and ca = 5% could be partially accounted

for by the upregulation of VEGF secretion at oxygen concentrations be-
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Figure 3.19: Simulated values of the mean VEGF concentration over the media v̄m
tend to reach their maximum between 6 and 12 hours.

low 5%; indeed, the model parameterisation process resulted in a hypoxia

threshold of ch = 4.77% for VEGF secretion, meaning that the highest rates

of VEGF secretion are achieved at approximately 2.5% and below (Figure

3.12).

The time-dependent solutions for both the mean VEGF over the media

v̄m and the gel v̄g (Figures 3.19 and 3.20 respectively) are smooth and con-

tinuous as would be expected. The simulated mean VEGF concentration

over the gel has a larger range than that over the media because the model

dictates that all VEGF production takes place in the cell-seeded gel portion

of the geometry, and the rate of diffusion of VEGF is slower in the gel than

in the media, leading to an accumulation of VEGF in the gel. Due to a lack

of corresponding experimental data it is not possible to validate whether

the model predictions for v̄g are accurate.

Regardless of the initial conditions used (n0 and ca pairs), the simu-



3.6. Results and discussion 197

n0 = 231× 106 cells/ml n0 = 385× 106 cells/ml

n0 = 39× 106 cells/ml n0 = 77× 106 cells/ml n0 = 154× 106 cells/ml

0 6 12 18 24 0 6 12 18 24

0 6 12 18 24
0

10

20

30

40

50

0

10

20

30

40

50

Time (h)

M
ea

n
V

EG
F

co
nc

en
tr

at
io

n
v̄ g

(n
g/

m
l)

Ambient oxygen concentration, ca (%)
1 3 5 10 16

Figure 3.20: Simulated values of the mean VEGF concentration over the gel v̄g
tend to reach their maximum between 0 and 6 hours.

lated mean VEGF concentrations in both the gel and the media initially

increase, with v̄g increasing at a faster rate. This is expected because dur-

ing the early stages of the simulations there is still a relatively large cell

population present in the gel across all of the simulated scenarios. At later

time points, changes in both v̄g and v̄m are directly linked to changes in the

viable cell density in the gel: a decreasing cell population eventually leads

to lower VEGF concentrations, with a delay due to the half life of VEGF,

and vice versa in the case of increasing viable cell density in the gel.

The model predictions for v̄m after 5 days do not replicate the cor-

responding experimental VEGF concentration data, as depicted in Figure

3.21. In particular, the simulated values of v̄m for the highest two initial

cell density data subsets are much closer to zero than the data points. This

is because after 5 days the corresponding simulated cell densities are also

nearly zero, and as VEGF secretion is proportional to the number of cells
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this results in a large drop in VEGF concentration. The relatively short

half life of VEGF in the model (6.45 hours) means that once the cell popu-

lation is close to zero and consequently there is effectively no secretion of

VEGF (as is the case around the 5 day time point for n0 = 231 and 385× 106

cells/ml, Figure 3.16), the remaining VEGF decays rapidly.

A possibly influential aspect that has not incorporated into the current

model is the differences in behaviour exhibited by the various isoforms of

VEGF. In the current model, VEGF is modelled as a single species in order

to reduce complexity and limit the number of unknown parameters. How-

ever, different isoforms of VEGF exhibit different properties: each VEGF

isoform is likely to have unique, albeit similar, diffusion, decay and secre-

tion rates.

Additionally, the various isoforms of VEGF exhibit different ECM

binding behaviour: VEGF121 diffuses freely and does not bind to hep-

aran sulfate proteoglycans (HSPGs) in the ECM, whereas the longer iso-

forms such as VEGF165 and VEGF189 have high HSPG binding affinities

[157] and thus produce steeper spatial gradients. Chen et al. reported that

long VEGF isoforms also have an affinity for collagen [73], but currently

the mathematical model does not account for any binding of VEGF to the

collagen matrix; explicitly incorporating VEGF ECM binding along with

isoform-specific degradation and diffusion rates could be another way of

improving the model in the future. VEGF binding to collagen and subse-

quent proteolytic release, which has been suggested by Vempati et al. to

reduce degradation of VEGF and increase its spatial range [392], along with

varying isoform decay rates could partially account for the relatively high

VEGF concentrations measured in the media after 5 days for the highest

values of n0 (Figure 3.21), despite the low number of cells recorded at the

same time point (Figure 3.16).

The diffusion coefficient for VEGF in gel was identified as Dvg = 1.13×

10−6 cm2/s, which as expected induces a slower rate of diffusion through
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Figure 3.21: Simulated values of the average VEGF concentration over the media
after 5 days, produced by the parameterised cell-solute model, gen-
erally do not approximate the experimental data (yellow). Error bars
represent standard deviations.

the gel. However, the ratio Dvm /Dvg ≈ 1.21 whereas Dcm /Dcg ≈ 5.83. These

ratios reflect the degree of impedance to diffusion caused by the collagen

gel; because VEGF is a larger molecule, if anything it would be expected

that Dvm /Dvg ≥ Dcm /Dcg . The fact that this is not the case suggests that

there is room for further refinement of the diffusion parameters in the fu-

ture.

The VEGF degradation rate was determined via parameterisation as

dv = 29.874× 10−6 1/s, which is equivalent to a half life of 6.45 hours.

Within the VEGF secretion term, the hypoxia threshold for VEGF pro-

duction was determined to be approximately 4.77%. This value could be

compared against experimental results for further validation, and could be

used as cell type-specific parameter in other similar models.
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The baseline VEGF secretion rate (the VEGF secretion rate at high oxy-

gen concentration levels, Figure 3.12) was determined as a non-linear func-

tion of n0 and provides a minimum of α = 1.793× 10−3 pmol/106 cells/h

at n0 = 39× 106 cells/ml and a maximum of α = 5.624× 10−3 pmol/106

cells/h at n0 = 385× 106 cells/ml. Assuming a molecular weight of 46 kDa

for a VEGF dimer [139, 154], these values are equivalent to 82.466 pg/106

cells/h and 258.692 pg/106 cells/h. These secretion rates, although on a

similar order of magnitude, are higher than those reported for adipocytes

and stromal cells [259] and clone A and HCT-8 human colon tumour cells

[211]. However, these experimental values likely underestimate the VEGF

secretion rates of these cell types because VEGF decay is not taken into

account. Additionally, some variation in VEGF secretion rates across cells

types is expected. These values suggest that the Schwann cell-like dADSC

phenotype produces VEGF at a relatively high rate.

The VEGF secretion multiplier Vm, which dictates the fold change in

VEGF secretion at low oxygen concentrations, is also determined by a de-

creasing function of n0, with a minimum of Vm = 1.738 for n0 = 385× 106

cells/ml and a maximum of Vm = 4.865 for n0 = 39× 106 cells/ml. These

values are within the expected range based upon previous experimental

and theoretical work (Section 3.5.1.3).

Finally, the VEGF secretion gradient constant was assigned as kα = 90

ml/mol. The model is not sensitive to this value, as explored in the next

section.

3.6.2 Sensitivity analysis

The credibility of a theoretical model depends on the robustness of the

parameter estimates; if model outputs are very sensitive to small changes

to model inputs or parameter values, then the predictions are likely to be

less reliable because experimental variations are a certainty. Sensitivity

analysis can be used to measure the robustness of the model fit to the data,

and help to identify which parameters may need refinement in the future.
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Figure 3.22: The total VEGF concentration R2 is more sensitive to changes in the
viable cell governing equation parameters than the total viable cell
density fit R2. The overall measure of whole model fit against both 1
day data sets (Total R2) is least sensitive to δ0.
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Figure 3.23: The total VEGF concentration fit R2 is more sensitive to changes in the
oxygen concentration governing equation parameters than the viable
cell density fit R2. The overall measure of whole model fit against
both 1 day data sets (Total R2) is least sensitive to c1/2.

3.6.2.1 Model sensitivity to the parameters

Local sensitivity analysis assesses the sensitivity of the model outputs to

variations in model inputs from a single specific value, referred to here as

a baseline point, x̄. In the case of the mathematical model described in this

thesis, a clear candidate for x̄ is the set of parameters derived during the

process of optimisation and listed in Tables 3.9 and 3.10. Local sensitivity
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Figure 3.24: Out of all of the VEGF governing equation parameters, the VEGF con-
centration fit R2 is most sensitive to the VEGF decay rate parameter
dv.

analysis usually uses the “one factor at a time” (OAT) technique, in which

one parameter is varied at a time whilst all others are fixed, and thus the

individual effects of the parameters upon the model output are measured.

Local sensitivity analysis was conducted for the cell-solute model by

varying each parameter in the governing equations by up to 50% of their

final values as recorded in Tables 3.9 and 3.10 and measuring the impact

upon the total viable cell density fit R2, defined as the sum of the R2 values

calculated for each of the initial densities n0 as depicted in Figure 3.14, the

total VEGF concentration fit R2, and the sum of these two values, the total

model fit R2.

Out of the four cell governing equation parameters, the viable cell den-

sity fit R2 is most sensitive to β and slightly less sensitive to δ0 and δ1, sug-

gesting that cell proliferation is the process that predominantly determines

viable cell density in this model (Figure 3.22). The VEGF concentration fit

R2 is more sensitive to changes in any of the cell density governing equa-

tion parameters than the viable cell density fit R2. Both R2 values appear

to be fairly robust within variations of 5% of the baseline value.

Both the viable cell density fit R2 and the VEGF concentration fit R2

are much less sensitive to the oxygen governing equation parameters than
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Figure 3.25: The impact of increasing and decreasing β, δ1 and nmax by 50% of
the values found during optimisation, on the model fit to the viable
cell density data. Black dashed line indicates the final, parameterised
model fit; error bars indicate the standard deviations of the viable cell
density data.

to the cell density governing equation parameters (Figure 3.23). Decreasing

the value of Dcm by 50% induced a decrease of approximately 0.22 in the

total R2, but the value of the coefficient Dcm was derived using experimen-

tal methods [142] and Dcm is therefore one of the more well ascertained

parameters in the model.

In this model, the viable cell density is not dependent upon VEGF and

therefore varying the VEGF governing equation parameters has no effect

upon the total viable cell density fit R2. Figure 3.24 demonstrates the results

of varying these parameters upon the VEGF concentration fit R2. The R2

value was found to be least sensitive to the VEGF diffusion coefficients,

and most sensitive to the VEGF decay rate dv.
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Figure 3.26: The impact of increasing and decreasing β, ch and dv by 50% of the
values found during optimisation, on the model fit to the viable cell
density data. Black dashed line indicates the final, parameterised
model fit; error bars indicate the standard deviations of the VEGF
concentration data.

Figures 3.25 and 3.26 illustrate in more detail the impact that increasing

and decreasing a selection of parameters has on the model fit to the in vitro

data.

Varying the proliferation rate parameter β was found to result in the

largest change in the total viable cell density fit R2, and Figure 3.25 shows

how increasing β by 50% results in the model overestimating the viable cell

density, especially for higher ambient oxygen concentrations.

Similarly, decreasing the value of the VEGF degradation rate dv was

found to result in the greatest changes in the total VEGF concentration fit

R2, and Figure 3.26 demonstrates that reducing dv by 50% does induce a

more drastic change in the model fit to the VEGF concentration data than
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Figure 3.27: Simulated values of the mean viable cell density over the gel after
1 day. Grey ribbon represents the range of values achieved when
using n0 ± 10% of the value indicated. Error bars represent standard
deviations around the means of the experimental data.

changes on a similar scale applied to some other parameters.

3.6.2.2 Model sensitivity to the initial cell density

The experimental methods used to count and seed the cells will have in-

troduced inaccuracies into the value of n0. Here the initial cell densities n0

used in the model were varied by 10% to determine how these experimen-

tal variations could affect the model fit to the data.

In the case of the viable cell density data, a variation of 10% in n0

results in only minor changes to the value of n̄g at the 1 day time point

(Figure 3.27), whereas much more variation occurs in the corresponding

values of v̄g (Figure 3.28). The difference between the two results is likely

explained by the fact that the VEGF secretion term in the mathematical
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Figure 3.28: Simulated values of the mean VEGF concentration over the media
after 1 day. Grey ribbon represents the range of values achieved when
using n0 ± 10% of the value indicated. Error bars represent standard
deviations around the means of the experimental data.

model is highly dependent upon parameters that are explicit functions of

n0.

3.7 Conclusion
In summary, in this chapter a continuum model of cell-solute interactions

was developed, with some parameter values being assigned according to

existing values in the literature and others identified via fitting against in

vitro data collected specifically for this purpose.

The fit to the cell viability data achieved a higher R2 value than that

for the VEGF data, indicating a closer fit to the data, but in both cases the

model captured the overall trend of the data. The VEGF governing equa-

tion contained a greater number of parameters than the oxygen and cell
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governing equations, of which a larger proportion were unknown based

upon a review of the literature. This made parameterisation of the VEGF

governing equation more difficult, and it was necessary to include two pa-

rameters that were explicit functions of the initial cell density n0 in order

to achieve a good fit. The cell death rate δ was also defined as a linear

function of n0.

The incorporation of parameters that depend explicitly on n0 does sug-

gest that the functional forms and variables included in the model do not

account for all of the variability in the data. It is worth noting that this does

not mean that the predictions generated by the model will necessarily be

inaccurate; the incorporation of a dependence on n0 could implicitly repre-

sent the effect of biological interactions that were not explicitly included in

the model equations. Nevertheless, three possible adjustments to the terms

and composition of the mathematical model stand out as having the po-

tential to improve the model fit to the data and better reflect the biological

scenario.

Firstly, the influence of VEGF concentration on cell proliferation was

neglected here due to a lack of cell type-specific data and for simplicity,

but incorporating feedback between the viable cell and VEGF governing

equations could reduce the need for parameters that explicitly depend on

n0.

Secondly, the model did not incorporate distinct behaviours for differ-

ent VEGF isoforms, and in particular did not include VEGF binding be-

haviour. VEGF binding may be important during the generation of VEGF

gradients, and therefore including this mechanism in to the model may

improve its ability to predict VEGF distributions over time.

Finally, glucose could be incorporated as an additional variable. Glu-

cose can influence VEGF secretion [43, 201] as well as cell proliferation,

although the exact relationship between these factors in the case of dAD-

SCs specifically is unknown. However, the introduction of another variable
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would increase the complexity of the model considerably, and validation or

parameterisation against glucose measurements would be highly desirable,

further increasing the number of in vitro experiments required.

The in vitro data did exhibit a relatively high amount of variability,

as demonstrated by the standard deviation values. The variability of the

data that the model was fitted against could impact the accuracy of any

simulations run using the derived parameters. This motivates the need

for further validation studies in the future, as per Figure 1.4. If a similar

study was to be carried out in the future, the use of higher N numbers as

part of the in vitro experimental design could help to reduce some of the

uncertainty in the mean values that were used for parameterisation.

The experimental data also restricts the range of initial conditions that

should be used to run simulations. The experiments used initial seeded cell

densities of between 39 and 385× 106 cells/ml, and therefore simulations

of the parameterised model should also be restricted to the use of this

range. However, this range was chosen specifically to represent the range

of values currently used in the Phillips lab, and therefore this does not

present a significant limitation.

In the next chapter, the parameterised mathematical framework is ap-

plied to a cylindrical geometry representing a collagen, cell-seeded NRC

implanted in vivo and simulations are run using a variety of different

seeded cell densities and distributions to investigate how seeded cell strate-

gies could influence cell survival and the generation of VEGF gradients in

vivo.



Chapter 4

Application of the Cell-Solute

Model to Nerve Repair Construct

Geometries

A selection of the work contained in this chapter is currently under review

for publication.

4.1 Introduction
As explained in Section 1.5, this thesis aims to use computational methods

to test the hypothesis that initial spatial distributions of cells and mate-

rials within NRCs could influence cell survival and the distributions of

cells, growth factors and other solutes over time, and thus impact the pro-

gression of vascular growth and neuronal regeneration. Existing research

suggests that the use of specific initial seeded cell densities could maximise

cell survival and neuronal regeneration (Section 1.3), motivating the use of

theoretical methods to identify possible optimal values for future experi-

mental testing.

Hypoxia can cause therapeutic cell death in central regions of engi-

neered tissue that lie beyond the diffusion limit of oxygen. Seeding too

many cells in an area of tissue unlikely to have the capacity to maintain

their metabolic needs could result in unnecessary waste of cells, whereas
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seeding too few cells may lead to worse regenerative outcomes. The

importance of spatial gradients of growth factors like VEGF for vascu-

lar growth, and in particular for TEC migration, is also well established

[31, 134, 282, 335, 413]. Spatial variations in cell density across engineered

tissue could be used to enhance the generation of VEGF gradients and

thereby improve the rate and directionality of revascularisation. The im-

portance of spatial variations in oxygen and VEGF suggest that a uniform

approach to therapeutic cell seeding may not maximise cell survival, vas-

cularisation or regeneration in general.

Additionally, when implanted in vivo the collagen NRCs manufactured

in the Phillips lab are wrapped in a sheath for protection and mechani-

cal support [132]. This sheath can be made from a variety of materials,

from impermeable synthetics such as silicone to porous materials that al-

low some transfer of nutrients across the sheath interface. The mathemati-

cal framework described in this thesis provides the ability to simulate how

variations in sheath porosity may influence cell-solute distributions, and

thereby suggest how sheath materials can be engineered to improve regen-

eration. Porosity ε is defined as the ratio of volume of void or fluid-filled

space to total material volume, expressed as a decimal. The total material

volume includes both fluid or void and solid parts.

In this chapter, the mathematical framework and accompanying pa-

rameters derived in Chapter 3 are used to simulate the effect of different

NRC designs, including variations in therapeutic cell seeding densities and

distributions and NRC sheath materials, upon cell survival and VEGF and

viable cell distributions over time. The objective is to test the hypothesis

that initial seeding cell densities and distributions can impact measures of

cell population survival, such as the mean viable density over the NRC

geometry, and VEGF distribution, such as the mean and standard devia-

tion of the VEGF concentration, over time. The outcomes presented in this

chapter are specific cell densities and distributions that achieve the high-
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est simulated rates of cell survival and steepest VEGF gradients over the

simulated time period; these results can help to inform and direct future

experimentation.

It is assumed that all of the designs simulated in this chapter are com-

posed of type I collagen seeded with dADSCs, thus permitting the use of

the model equations and parameters that were derived in Chapter 3 using

in vitro data corresponding to this material and cell type.

First of all, Section 4.2 describes the NRC sheath, an external support-

ive wrap for the NRC that can be porous or impermeable, and how to

implement different varieties of sheath into a mathematical model of an

NRC. Secondly, Section 4.3 describes how the mathematical model derived

in Chapter 3 can be applied to the full NRC and sheath geometry and the

simulation methods used.

Subsequently, Sections 4.4 and 4.5 present and discuss the outputs of

a range of simulations that aim to address questions related to cell seeding

strategies and NRC design. In Section 4.6, a final discussion draws together

the results in the context of existing research and suggests ideas for future

experimental work based upon the simulations.

4.2 The nerve repair construct sheath
The use of sheaths or tubular NRCs helps to prevent fibrous tissue from de-

veloping [353, 404], as well as providing mechanical support and prevent-

ing misdirection of growing axons [343]. Additionally, it has been specu-

lated that impermeable sheaths and tubular NRCs improve nerve repair by

averting the loss of vital growth factors and neurotrophins [92]; however,

they also prevent diffusion of waste solutes out of the construct and the

transport of valuable nutrients such as oxygen into the construct. On the

other hand, porous materials facilitate diffusion both in and out of the con-

struct. It has been suggested that macroporous sheaths could permit the

inward diffusion of macromolecular proteins such as growth factors [187],
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but large pores could also allow the invasion of inflammatory cells.

In this section, first of all the structural characteristics of existing NRC

sheath materials used in the literature are collated to inform parameter

ranges for the model, and existing research on the use of porous materi-

als in tissue engineering solutions for peripheral nerve repair is discussed.

Subsequently, a mathematical model of solute transport through a porous

medium is outlined for the purpose of simulating oxygen and VEGF diffu-

sion through a porous NRC sheath. This can be used in combination with

the previously developed cell-solute model (Chapter 3) to assess the impact

of different sheath properties upon cell survival and vascularisation, and

thus inform future experimental designs.

4.2.1 Porous materials and the impact of sheath porosity

upon peripheral nerve regeneration

A range of existing porous biomaterials and synthetic alternatives are suit-

able base materials for hollow tubular NRCs or NRC sheaths. It is possible

to measure the pore size and porosity of these material scaffolds via tech-

niques such as scanning electron microscopy and the measurement of fluid

flow [380]: Table 4.1 provides a basic overview of the measured characteris-

tics of existing viable materials, motivating the range of values investigated

in subsequent sections of this chapter. It is possible to fine tune the char-

acteristics of porous scaffolds by using different material compositions and

synthesis methods, with the implication that predictions about the optimal

scaffold porosity or pore size for regeneration could be tested experimen-

tally.

Porous materials can effectively act as filters, allowing the diffusion

only of molecules and cells with a diameter less than that of the pores.

Molecules are typically not perfectly spherical, and therefore the kinetic

diameter of molecules is often defined as the smallest dimension of a

molecule. When the pores are particularly small, the pore size of a mem-

brane or porous material is sometimes instead described as a molecular
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Material Porosity
(%) Pore size (µm) Thickness

T (mm)

Chitosan-silicate hybrids
[355] 83 – 97 53 – 107 -

Collagen [218] - 0.0125 -

PCL [192] 50 – 80 10 – 150 0.2 – 0.6

Collagen Type I
(NeuroMatrix™) [417] - 0.001 – 0.005 -

Tyrosine-derive
polycarbonate terpolymer

[107]
55.2 ± 1.2 35.7 ± 9 0.1

Gelatin cryogel (5%) [376] 95 150 ± 9 2.5

Poly(DL-lactide-co-
caprolactone)

[252]
- 10 – 20 0.3

Trimethylene
carbonate/poly(ε-

caprolactone)
[394]

- 15 – 265 0.21 – 0.26

PLGA / Pluronic F127
[284] - Asymmetric:

0.05 and 50 0.4

Polysulfone [4] - ≈ 0.0077 –
0.0171 0.9

Braided conduits [45] - 65 ± 19 -

Genipin-cross-linked
gelatin [69] 90.8± 0.9 - -

Table 4.1: Published characteristics of a selection of existing tubular NRCs and
sheaths, where porosity, pore size or thickness measurements are avail-
able.
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weight cut off. This value is defined as the lowest molecular weight at

which greater than 90% of a solute is retained by the material. Thus

molecules with a greater molecular weight than the cut off value are ef-

fectively unable to diffuse through the membrane.

Oxygen and VEGF are the solutes of interest for this thesis. A molecule

of O2 has a molecular weight of 32 Da and a gaseous kinetic diameter

of approximately 0.346 nm [253]. VEGF-A is secreted as a dimer [229]

and most commonly exists as three key isoforms, VEGF121, VEGF165 and

VEGF189, that have differing molecular weights and kinetic radii. However,

the model described in this thesis does not differentiate between these iso-

forms, so it is assumed that the molecular weight of a VEGF dimer in the

model is 46 kDa [139, 154]. Varongchayakul et al. estimated the diameter of

VEGF to be 4.12 nm and 5.20 nm for the monomer and dimer respectively

[389]. These calculations suggest that both VEGF and oxygen molecules

will not be filtered out by pore sizes of more than 0.005 µm or molecu-

lar weight cut offs of greater than approximately 46 kDa. The majority of

existing porous materials currently used to manufacture tubular NRCs or

sheaths have a pore size equal to or greater than this value (Table 4.1).

Type I collagen-based tubular matrices manufactured by Collagen Ma-

trix, Inc. (Frankline Lakes, NJ), such as NeuroMatrix™, Neuroflex™ and

NeuroMend™, have similar pore sizes to this and have already received

FDA approval for clinical use [185]. These matrices are semipermeable

and thus permit nutrient transfer, but due to the pore size are claimed

to be occlusive to cells. NeuraWrap™ (Integra Life Sciences Corporation,

Plainsboro, NJ) is a similar “nerve protector”, designed to prevent neuro-

mas and protect regenerating peripheral nerves and also constructed using

Type I collagen. However, studies featuring the use of these commercial

products are difficult to find.

Aebischer et al. found that porous tubular NRCs with a molecular

weight cut off of 100 kDa resulted in larger numbers of regenerated myeli-
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nated axons after 4 and 8 weeks than similar NRCs with a molecular weight

cut off of 1000 kDa [4]. This suggests that smaller pore sizes could enhance

regeneration: however, other studies also reported positive in vivo results

using materials with much larger pore sizes than both of these materials

tested by Aebischer et al.

For example, in 1985 Jenq and Coggeshall showed that implanting sil-

icone tubes with two large rectangular holes (0.6 mm × 3 mm) in their

walls into a rat sciatic nerve gap resulted in, on average, a greater number

of axons in the gap after 8 weeks than when regular impermeable silicone

tubes were used [169]. A later study by the same authors found that this

type of permeable tube also increased the spanning distance of regenerat-

ing axons [170]. They speculated that these improvements could be due to

the migration of supportive cells and promotion of ECM formation via the

holes.

In another paper by Jenq et al., the holes in the silicone tubes were

covered with filters with two different pore sizes (1.2 and 5.0 µm) before

implantation into the sciatic nerve gap [171]. It was found that the 5 µm

filter resulted in a higher percentage of successful regenerations (classed as

cases in which at least 1000 axons span between the proximal and distal

stumps). However, it seems doubtful that the “holey” silicone tubes used

in these experiments are comparable to other porous sheaths materials,

which are generally uniformly porous or at least porous throughout the

length of the sheath. On the other hand, the authors pointed out that these

results do suggest that infiltration of the conduit by some cells from the

surrounding tissue may actually be beneficial to regeneration: the amount

of solute diffusion would not differ between the two filter sizes but the

larger pore size is likely to allow more cells to pass.

A study comparing the efficacy of a macropore collagen tube with

that of semipermeable and impermeable collagen tubes found that the

macropore tube produced significantly greater functional nerve regener-
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ation across a rabbit sciatic nerve gap, as measured by electrophysiological

analysis after 6 and 12 weeks [187]. However, the exact pore sizes used

were not reported. Additionally, in both this study and the studies pub-

lished by Jenq et al., the overall porosity ε (the ratio of void volume to

material volume) was not recorded. Therefore it is unknown whether the

overall porosity of the tubes could have influenced these results.

In 2009, Kokai et al. developed permeable ploy(caprolactone) (PCL)

conduits with different wall thicknesses, pore sizes and porosities and in-

vestigated the impact of the structure upon glucose and protein diffusion

in vitro [192]. They concluded that nerve guide walls 0.6 mm thick with

porosity ε = 0.8 and pore sizes of between 10 and 38 µm would provide

minimal loss of lysozymes without prohibiting the diffusion of oxygen and

other nutrients. With relevance for the work in this thesis, the results of this

study indicated that out of the three factors tested (wall thickness, pore size

and porosity), percentage porosity in fact had the biggest influence on both

lysozyme and glucose diffusion.

Work by Chamberlain et al. suggests that the efficacy of porous and

impermeable tubular NRCs could also be influenced by whether or not

they are filled by an ECM-like material [66], similar to the EngNT man-

ufactured in the Phillips lab. Specifically, Chamberlain et al. compared

the regeneration produced by a silicone tube and both porous and imper-

meable collagen tubes, either left with an empty lumen or filled with a

collagen-GAG copolymer, implanted in a sciatic nerve gap. The imperme-

able collagen tube filled with the collagen-GAG matrix produced the great-

est number of large axons after 6 weeks. The authors speculated that this

could have been due to the retention of important growth factors within

the construct.

Similarly, in 2016 Ezra et al. studied the interaction between NRC

wall porosity and the bioactivity of the central hydrogel filler in a mouse

femoral nerve gap [107]. They found that impermeable constructs with a
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neurite promoting filler matrix yielded better functional recovery than both

the porous construct with the same filler, and impermeable and porous

constructs with a standard collagen filler. These papers provide a contrast-

ing perspective to the work of Jenq et al. and Kim et al. among others

[69, 218, 394] which conclude that porosity is beneficial for nerve repair.

Asymetrically porous NRCs have also been manufactured and tested

in vivo. For example, Oh et al. created hydrophilic porous tubes with

nanopores (around 50 nm in size) on the inner surface, and micropores

(around 50 µm) on the outer surface, so that approximately half way

through the cross-sectional sheath the pore size changed [283, 284]. The

authors showed that this design significantly improved measurements of

nerve conduction velocity and myelinated axon diameter when compared

to a silicone tube in a rat sciatic nerve repair model. Overall it was con-

cluded that the hydrophilic asymmetric porous tubes achieved better re-

sults than their impermeable counterparts, and that this design could po-

tentially improve in vivo outcomes by allowing vascular ingrowth through

the micropores, whilst retaining growth factors but permitting nutrient dif-

fusion through the nanopores. However, a direct comparison of asymmet-

ric and symmetric porous structures was not undertaken.

Chang et al. found that asymmetrically porous PLGA NRCs resulted

in a statistically significantly greater amount of regenerated axons in me-

dial and distal sites compared to symmetrically porous and silicone NRCs

[68]. Inflow and outflow of solutes were measured over 48h to assess the

permeabilities of the materials. The asymmetric PLGA materials permitted

the diffusion of glucose (with a molecular weight of 181 Da), lysozymes

(14.4 kDa) and bovine serum albumin (62 kDa). Interestingly, the asym-

metric materials exhibited asymmetric flow effects: in the case of glucose,

the outflow rate was greater than the inflow rate until the 48h time point,

and the outflow rate was greater than the inflow rate at all time points for

both of the larger molecules. This effect was not observed for the sym-
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metric porous PLGA. Thus Chang et al. suggested that this asymmetric

flow profile could have benefited the repair process through the efficient

disposal of waste materials in the early stages.

As well as the internal structure of the porous material, governed pre-

dominantly by the overall porosity and the size of the pores, the rate of

flux of molecules from one side of a sheath or porous material to the other

also depends upon the thickness of the sheath, denoted by T in this the-

sis. Early in vivo research concluded that thicker Silastic tubular conduits

were more likely to result in neuroma formation [101]. Furthermore, work

by Rutkowski and Heath found that the use of conduit wall thicknesses

greater than 0.81 mm resulted in a decrease in axonal growth [337]. These

results were also backed up by the previously mentioned finding by Kokai

et al. that the optimal nerve guide design would include walls 0.6 mm

thick [192].

NRCs currently under development [132, 133] are constructed using

an impermeable silicone sheath with wall thickness T = 0.25 mm, or a

NeuraGen™ wrap (made from collagen) with a similar thickness. Other

studies have used tubular thicknesses ranging from 0.1 to 2.5 mm (Table

4.1). Based upon this and the data suggesting that large thicknesses may be

detrimental for nerve repair, simulations in this chapter will explore wall

thicknesses in the range of 0.1 to 1.5 mm.

In conclusion, a number of studies suggest that using porous materials

to manufacture NRCs or NRC sheaths could have benefits for peripheral

nerve regeneration [169, 170, 187, 218, 394]. In particular, the delivery of

oxygen and nutrients is crucial for the survival of seeded cells and the

success of neuronal regeneration, and this can be facilitated through the

use of porous guidance constructs. Careful design of NRC sheaths could

also contribute towards greater control over spatial distributions of growth

factors and cells via the use of asymmetric or spatially varying porosity;

it is possible that the sheath design could be tailored to complement the
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chosen distribution or density of seeded cells.

However, the exact effect of introducing porosity appears to differ ac-

cording to the scenario, with some studies reporting better results with

impermeable sheaths or tubular NRCs [66, 107]. These contrasting results

could be due to the positive effects of restricting the migration of inflam-

matory cells into the construct and the loss of important growth factors by

diffusion out into the surround tissue. It has been suggested that porosity

may be necessary for long nerve gaps, and in particular for those greater

than 1 cm in length [107], whereas for shorter gaps the detrimental effect of

growth factor loss and possible cell invasion could outweigh the benefits of

enhanced access to nutrients. An additional consideration is whether the

degree of porosity can influence the ingrowth of vasculature from the sur-

rounding tissue; but Feng et al. reported that much larger pore sizes than

those reported in the literature for NRC tubes and sheaths are required to

enable significant blood vessel penetration (on the order of 400 to 700 µm)

[115].

With the aim of understanding more about how spatio-temporal so-

lute distributions within an NRC can be influenced by the characteristics

of the surrounding sheath, in Sections 4.4 and 4.5 the impact of combina-

tions of different porosities and thicknesses of NRC sheath upon cell sur-

vival and the generation of VEGF gradients will be investigated via model

simulations, and the results contrasted against simulations of NRCs with

impermeable sheaths.

4.2.2 Modelling solute diffusion in a porous sheath

Solute diffusion in a porous sheath is dependent upon the microstructure

and porosity ε of the porous material. This dependency will need to be

incorporated into the mathematical framework to evaluate the impact of

different porosities and thicknesses of porous sheaths upon cell survival

and VEGF gradients.

The transport properties of solutes in porous media can be described
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in terms of macroscopic equations, derived via homogenization techniques

that rely on the assumption that the pore microstructure is periodic [89],

and which involve splitting the porous domain into a void or fluid phase

Ωκ and a material phase. In this thesis, this homogenised approach was

chosen because it allows the simulation of porous solute transport without

the need for explicitly generating and simulating diffusion through com-

plex porous geometries. The explicit approach would likely require direct

imaging of the geometry and would be far more computationally intensive.

In particular, a volume averaging approach can be used to derive the

transport equations for solutes diffusing through porous material, as pre-

viously outlined by Quintard and Whitaker [323, 324]. Use of this method

relies on the assumption that the porous material is homogeneous in that

it can be modelled as a series of identical averaging volumes (and there-

fore it is also taken that the porosity does not vary spatially). Using this

assumption, the homogenised solute concentration s, which is obtained by

averaging over a representative volume of porous materials that includes

both the fluid or void phase Ωκ and the material phase, can be related to

the solute concentration in the fluid phase sκ via s = εsκ.

Via volume averaging [324] (or other homogenisation techniques) the

following equation for the diffusion and reaction of the generic solute in

the fluid or void phase sκ of the porous domain is obtained:

ε
∂sκ

∂t
= Deff∇2sκ + εR(sκ) , (4.1)

where sκ is the solute concentration in the fluid phase, R(sκ) is the function

determining the reactions of the solute in the fluid phase, and the effective

diffusivity is given by

Deff = K(ε)Dκ , (4.2)

where Dκ is the molecular diffusivity of sκ in the fluid or void phase, and

K(ε) is the porosity coefficient. In this thesis, it is assumed that the void



4.2. The nerve repair construct sheath 221

L0 Leff

Figure 4.1: Visualisation of the straight-line path length L0 and the effective path
length Leff in a porous medium.

fraction of the NRC sheath is completely filled with water-like interstitial

fluid in vivo, and therefore the molecular diffusion coefficients for oxygen

and VEGF will be equal to their respective molecular diffusivities in media

or water.

Attempts have been made to determine the relationship between effec-

tive diffusivity and molecular diffusivity via both empirical and theoretical

methods. Theoretical models typically incorporate two key elements: the

void fraction or porosity of the porous material ε, and the diffusive tor-

tuosity of the material τ. Tortuosity is defined here as the square of the

ratio of the average length of the diffusive path of a molecule through a

porous medium Leff to the straight-line path length L0 (Figure 4.1), which

is determined by the internal geometry of the porous material [88, 106]:

τ =

(
Leff

L0

)2

. (4.3)

Typically tortuosity τ > 1 because the diffusive path length of a molecule

through a porous geometry will be greater than the straight-line path taken

in the absence of the porous material.

The study of solute diffusion in soil, which can be modelled as a granu-

lar porous medium, led to the commonly used definition of effective diffu-

sivity shown in Equation (4.2) and the definition of the porosity coefficient
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K(ε) as follows [106, 382]:

K(ε) =
ε

τ
. (4.4)

Often the value of the porosity ε can be quantified for a specific mate-

rial using imaging, as explained and demonstrated for various prospective

sheath materials in the previous subsection and presented in Table 4.1. Tor-

tuosity must be a function of porosity and molecular size because both of

these variables will impact the diffusive path of a molecule. Boving and

Grathwohl proposed that once the molecular size nears the that of the pore

size, an additional constrictivity factor, κ, must be incorporated to account

for the impact of pore cross sectional area upon diffusion [50]. This gives

the following modified relationship:

Deff =
εκ

τ
Dκ. (4.5)

However, in this thesis it is assumed that the pore size of the simulated

sheath materials will be larger than the size of VEGF and oxygen molecules,

and therefore this adjustment will not be applied. This is in accordance

with the fact that the majority of sheath materials reviewed in Table 4.1

have pore sizes much greater than 0.005 µm, which was identified in Sec-

tion 4.2.1 as the approximate threshold for permitting the diffusion of both

VEGF and oxygen. The model of porous solute diffusion used in this the-

sis does not explicitly take into account pore size, instead modelling solute

transport as a function of porosity and tortuosity alone.

Another consideration is the effect of percolation. The percolation

threshold of a porous material here refers to the porosity value after which

the connectivity of the void space of the structure increases dramatically

with a small increase in porosity. In their study of tubular porous PCL

nerve guides with varying porosities, Kokai et al. found that those with

a porosity of 50% contained closed, isolated pores, whereas 80% porous

guides consisted predominantly of interconnected pores. This suggests
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that the percolation threshold, at least for porous PCL guides of this type,

lies somewhere between these two values.

4.2.2.1 Modelling tortuosity

Tortuosity τ is difficult to determine empirically, and therefore expressions

of diffusive tortuosity as functions of porosity have been derived from sim-

plified models and comparison to data. In this subsection, the most rele-

vant models will be described (Table 4.2) and compared.

The concept of tortuosity is also used to study fluid flow and electrical

conductivity through porous materials. Hydraulic tortuosity τh is defined

as the square of the ratio of the average streamline length of fluid flow

through a porous medium to the straight-line streamline length; similarly,

electrical tortuosity τe is the square of the ratio of the average path length

for electrical flow to the straight-line length. Thus some existing theoretical

models of tortuosity were derived by modelling or measuring the effect of

porous materials on fluid flow or electrical conductivity.

Although theoretical expressions for hydraulic, electrical and diffusive

tortuosity have typically been used interchangeably in the past, more recent

work suggests that these parameters are not necessarily the same: Ghan-

barian et al. used a Wheatstone bridge model and theoretical methods to

conclude that τ ≈ τe < τh in the case of materials with variable pore size

[136]. The work in this thesis aims to model diffusive tortuosity; addition-

ally, the majority of the materials currently used to construct NRC sheaths

or tubular constructs exhibit variable pore size (Table 4.1). Therefore, fol-

lowing on from this result and in order to narrow the breadth of model

choice, models of hydraulic tortuosity were not considered.

Evidence does suggest that electrical and diffusive tortuosity are iden-

tical or at least broadly similar [114, 129, 136]; therefore a small number of

key electrical tortuosity models are also included in the following review as

potential candidates for the theoretical framework described in this thesis.

Additionally, models of tortuosity are generally derived based upon
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the assumption that either the porous material is saturated, so the void

fraction of the material is entirely filled by fluid, or unsaturated, in which

the void fraction contains both fluid and pockets of air. In this thesis it is

assumed that the void fraction of the sheath is entirely filled with fluid and

therefore only models relating to saturated materials will be included in

this brief review.

Theoretical models of tortuosity rely on assumptions about the com-

position of the porous media. The assumption that the porous material

can be modelled as a bed of randomly overlapping spheres, for example, is

often used when modelling granular material such as soil. Weissberg et al.

derived an analytical description of the upper bound of τ as a function of

ε by assuming that the porous medium consists of a bed of randomly over-

lapping spherical particles [409]. The resulting expression can be written

in a general form with parameter q,

τ = 1 + q ln (ε), (4.6)

where q = 0.5 in the Weissberg model, which applies to both uniform and

non-uniform sphere diameters. This model was found to approximate ex-

perimental results, albeit imperfectly. The authors concluded that the calcu-

lated bound would serve as a useful estimate for use in predictive studies.

Tsai and Strieder derived the same expression as Equation (4.6) but

with q = 2/3 by assuming that the porous media is composed of ran-

domly overlapping solid 3D fibers that can be represented as cylinders

[383]. Other authors also used models of oriented cylinders to investigate

the transport properties of fibrous porous materials [190, 379].

Pisani et al. derived a model for tortuosity that incorporates a shape

factor αP that depends upon the cross section and volume of the solid

objects that are assumed to make up the porous medium, as well as the

“average distance necessary to by-pass” them [316]. In the case where the

solid objects are assumed to be spherical, αP = 0.75. For αP > 1, the function
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K(ε,S) is positive only for values of ε above a percolation threshold ε0

where ε0 = (αP − 1)/S.

However, as noted by the authors, the shape factor αP is not always

easy to evaluate as it depends upon a qualitative evaluation of the aver-

age distance that a molecule is required to travel to avoid one of the solid

particles assumed to make up the porous material.

In 1837, Maxwell proposed the first model of electrical tortuosity τe

[245] (Table 4.2), which assumed that the material is composed of a dilute

suspension of non-conducting spheres. This model is still commonly cited

today.

One of the key drawbacks of many of the theoretical models of dif-

fusivity is that they are generally not validated against experimental data;

certainly most of them have not been compared to a large range of exper-

imental results from different material types. In 2012, Chou et al. mea-

sured the diffusivity of three soil types at different levels of water satura-

tion and compared the values to theoretical models [77]. They found that

the commonly used Millington and Quirk model of hydraulic tortuosity

(τh = ε−1/3) actually resulted in the largest root mean square error val-

ues across all three solid types, providing further evidence that hydraulic

tortuosity values do not apply directly to the diffusive scenario as well.

However, solute diffusion in biomaterials and porous sheath materials may

differ significantly from that in soils, so this conclusion can only act as a

hint to the accuracy of the tested models.

Delgado recorded measurements of diffusivity in packed beds of silica

sand and compared them to the corresponding diffusivities in free fluid

[96]. Sand granules with average diameters ranging from 0.110 mm to

0.496 mm were used. The experimental values of τ were compared against

four different theoretical models: the models proposed by Archie (Table

4.2) with m = 0.4 and Weissberg (Equation (4.6) with q = 0.5) both closely

agreed with the empirical measurements.
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Reference Expression,
τ(ε)

Derivation
method Assumption

Weissberg
(1963) [409] 1− 1

2 ln (ε)
Theoretical
(Diffusive)

Overlapping
spheres

Tsai & Strieder
(1986) [383] 1− 2

3 ln (ε)
Theoretical
(Diffusive) Cylinders

Beeckman
(1990) [35]

ε
1−(1−ε)1/3)

Theoretical
(Diffusive)

Heterogeneous
catalyst

Pisani (2011)
[316]

1
1−S(1−ε)

Theoretical
(Diffusive)

Flexible (relates
to shape factor

αP)

Iversen &
Jorgensen

(1993) [164]
ε(1 + k(1− ε))

Empirical
(Diffusive)

Different
sediment types

(see text)

Rutkowski &
Heath (2002)

[336]
ε−4.1 Empirical

(Diffusive)

Porous Poly-
D,L-lactide (see

text)

Klemens (1990)
[190]

3ε
4ε−1

Theoretical
(Diffusive) Cylindrical

Maxwell (1837)
[245] 1 + 1

2(1− ε)
Theoretical
(Electrical)

Non-
conducting

spheres

Archie (1942)
[17] ε1−m Empirical

(Electrical)
Sand formation

cores

Table 4.2: Existing relevant analytical models of tortuosity as a function of poros-
ity ε. The derivation method refers to to whether the model was de-
rived using a theoretical model or via experimental/empirical means,
and whether the model refers to diffusive or electrical tortuosity (which
are treated as interchangeable for the purpose of this thesis). The As-
sumption column refers to the assumptions made about the structure
of the porous material in each case.
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Beeckman created a model of a heterogeneous porous material con-

sisting of a travel process with a branching probability dependent upon

the properties of the material [35]. The results of this model were used

to derive an expression for τ (Table 4.2). This expression reaches a max-

imum value of τ→ 3 when ε→ 0, which may be insufficient to describe

particularly tortuous materials.

Other authors have used empirical data to derive expressions for τ

(Table 4.2). Rutkowski and Heath conducted diffusion experiments to de-

rive the effective diffusivities of oxygen and glucose through membranes of

different porosities [336]. The membranes were made of Poly-D,L-lactide,

and salt crystals of size less than 106 µm were used to create pores within

the material. A logarithmic plot of the experimental data against the ratio

of the effective to bulk or molecular diffusivities was then plotted to derive

the power law relationship between the two: Deff/Dκ = ε5.1. However, in

this case the authors appear only to have used materials with approximate

porosity ε > 0.86 to derive their model of effective diffusivity. This casts

doubt on the validity of using this approximation for modelling materials

with a lower porosity than this, and extrapolating this model into the low

ε regime demonstrates a stark departure from the other analytical models

mentioned here (Figure 4.2).

Iversen and Jorgensen measured tracer diffusion coefficients in seawa-

ter and in different sediments to arrive at a general expression for τ (Table

4.2) [164]. The free parameter k was determined to take different values

according to the sediment type: k = 3 for clay-silt sediments and k = 2 for

sandy sediments.

All of the theoretical analytical models of tortuosity rely on assump-

tions about the structure of the porous media, and the expressions that

were derived via experimental techniques are also inherently dependent

upon the geometry of the material that was used. Therefore when making

predictions using these models it is necessary to select the most relevant
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Figure 4.2: Comparison of estimates for the porosity coefficient K(ε) using a range
of analytical models for tortuosity τ(ε). Here the Pisani model uses
αP = 0.75 corresponding to spherical obstructions. The Rutkowski and
Heath (R & H) approximation differs considerably from the others,
particular for ε < 0.8. T & S denotes the Tsai and Strieder model.

expression for the given porous material of interest.

The structure of the porous materials used to construct NRCs and NRC

sheaths varies widely according to the material used and method of cre-

ating porosity, as demonstrated by SEM imaging. Some appear to have a

globular structure that could be approximated theoretically by a body of

overlapping spheres; others are distinctly fibrous in nature.

In this thesis, the results of simulations run using a selection of the

models of nutrient transport outlined in Table 4.2 to represent porous ma-

terials with different structure types are presented. In fact, it was found

that the model of tortuosity used made only slight differences to the re-

sults in the specific context of the NRC sheath (Figures 4.15 and 4.16). A

range of values of sheath thickness T and porosity ε are used to predict

which parameter combinations may produce desirable cell and growth fac-

tor distributions in vivo for different porous structure types.
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Figure 4.3: Schematic of the cylindrical NRC geometry with surrounding sheath.

4.3 A mathematical model of a complete nerve

repair construct
A NRC can be represented simplistically as a cell-seeded collagen cylinder;

therefore the functional forms and parameters of the previously described

model (Chapter 3) that correspond to behaviour of cell and solutes in col-

lagen gel can be applied to a cylindrical geometry to model cell-solute

interactions within a NRC.

The geometry used in this thesis is composed of an inner cylinder of

radius R1 representing the collagen NRC and an outer acellular layer of

thickness T representing the sheath (Figure 4.3), such that the total radius

of the geometry is given by R2 = R1 + T. Radial symmetry is assumed.

Details of the geometry and mesh generated in COMSOL are provided in

Section 4.3.2.

4.3.1 The model equations and initial and boundary condi-

tions

The parameterised governing equations for viable cell density n, oxygen

concentration c and VEGF concentration v in the collagen gel, which were

developed in Chapter 3, are directly translated to model cell-solute inter-

actions within the cell-seeded collagen nerve repair construct (r ≤ R1) as
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follows:

∂n
∂t

= βcn
(

1− n
nmax

)
− δn , (4.7)

∂c
∂t

= Dcg∇2c−Mn
c

c1/2 + c
, (4.8)

∂v
∂t

= Dvg∇2v + αn
(

Vm + 1
2
− Vm − 1

2
tanhkα(c− ch)

)
− dvv . (4.9)

The parameter values used are the parameters obtained via the previ-

ously described process of parameterisation and a review of the existing

literature, as per Tables 3.9 and 3.10. As in Chapter 3, this model incorpo-

rates the processes of solute transport and cell proliferation and death, but

neglects cell motility. It is assumed that therapeutic cell migration through

the gel over the simulated time scale of 0 to 5 days will be negligible.

As described in Section 4.2, the sheath surrounding the main NRC can

be made of porous or impermeable materials. A impermeable sheath can

be represented simply within the mathematical framework as a set of zero-

flux boundary conditions along the curved edge of the construct, to reflect

the impermeability of the material:

∂n
∂r

= 0,
∂c
∂r

= 0 and
∂v
∂r

= 0 at r = R1. (4.10)

On the other hand, incorporation of a porous sheath into the model

involves consideration of both the thickness T of the sheath and the trans-

port properties of the sheath material (Section 4.2.2). In this thesis, porous

sheaths are modelled explicitly by including another cylindrical outer layer

of thickness T into the NRC geometry (Figure 4.3). Here cs and vs are de-

fined as the oxygen and VEGF concentrations within the fluid portion of

the sheath material. It is assumed that no cells are initially seeded within

the sheath and that the seeded cells will not migrate into the sheath ma-

terial over the studied time period; therefore the cell governing equation

is not applied to the sheath portion of the geometry. Assuming that the
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void fraction of the porous material is filled with interstitial fluid that has

the same diffusive properties as water, the porosity ε is defined as the ratio

of the fluid volume to the total bulk volume of the material, and the two

governing equations for the sheath region (R1 < r ≤ R2) are as follows:

ε
∂cs

∂t
= Dcs(ε, Dcm)∇2cs , (4.11)

ε
∂vs

∂t
= Dvs(ε, Dvm)∇2vs − εdvvs . (4.12)

The model used to define the effective diffusivities of oxygen and VEGF

within the sheath, Dcs(ε, Dcm) and Dvs(ε, Dvm), can be varied to represent

different types of porous material structure according to Table 4.2.

Boundary conditions are assigned to reflect the case in which the NRC

is implanted in vivo. It is assumed that the proximal and distal ends of the

NRC at z = 0, L are left open; previously, the use of non-permeable, capped

ends on autografts resulted in delayed revascularisation [42], and NRCs

manufactured in the Phillips lab are not usually capped. Concentration or

Dirichlet boundary conditions are applied at either end of the cylinder for

both oxygen concentration and VEGF concentration:

c = ctissue at z = 0, L, (4.13)

v = vtissue at z = 0, L. (4.14)

Here ctissue and vtissue are the oxygen and VEGF concentrations in the sur-

rounding tissue respectively. Human tissue oxygen concentrations for var-

ious tissue types (muscle, liver, intestine and lung among others) measure

in the range of 4 to 7% [64] and due to a lack of corresponding data it

is assumed that rat tissue oxygen concentrations will be similar; therefore

ctissue = 5% is used for the majority of the simulations in this chapter. How-

ever, sensitivity analysis was also carried out to investigate the possible

impact of differences in ctissue (Figure 4.13).

Existing measurements of tissue VEGF concentrations are generally
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limited to specific tissues: for example, 9.9 to 47.1 ng/g lung tissue [1], ap-

proximately 8 to 300 ng/g in human corneal tissue depending on whether

the tissue was healthy or inflamed [309], and approximately 40 ng/g to

9000 ng/g in cancerous tissue [374]. The wide variations in these values

suggest that VEGF concentration is largely context specific: it would be

desirable to obtain measurements of VEGF concentration in the periph-

eral nerve repair context in the future (see Chapter 6 for additional com-

ments on this). VEGF concentrations in the serum (17 to 298 pg/ml) and

plasma (27 to 30 pg/ml) of healthy controls have also been measured [199].

Changes in vtissue of up to 1 ng/ml did not result in detectable differences

in simulation outputs (Figure 4.14). Based upon this sensitivity analysis,

vtissue = 0 ng/ml was used in the majority of the subsequent simulations.

At the internal sheath-NRC boundary, boundary conditions enforcing

continuity of concentration and flux are applied:

cs = c at r = R1, (4.15)

vs = v at r = R1, (4.16)

Dcs

∂cs

∂t
= Dcg

∂c
∂t

at r = R1, (4.17)

Dvs

∂vs

∂t
= Dvg

∂v
∂t

at r = R1. (4.18)

On the external boundaries of the sheath, concentration boundary condi-

tions are applied for both oxygen and VEGF concentrations as follows:

cs = ctissue at r = R2, (4.19)

vs = vtissue at r = R2, (4.20)

cs = ctissue at z = 0, L, R1 ≤ r ≤ R2, (4.21)

vs = vtissue at z = 0, L, R1 ≤ r ≤ R2. (4.22)

The initial oxygen concentration c0 = c(t = 0) within the NRC and the

sheath was set at 21% uniformly across the geometry to reflect storage
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oxygen conditions, although sensitivity analysis was conducted to assess

the impact of changing this parameter (Figure 4.11). The initial VEGF con-

centration v0 = v(t = 0) within the NRC and the sheath was set at 0 ng/ml.

Sensitivity analysis showed that altering the value of v0 up to 1000 pg/ml

made little difference to the simulation results (Figure 4.12).

The initial distribution of the seeded therapeutic cells n0 = n(t = 0,z)

was varied to assess the impact of a range of cell seeding strategies on

cell survival and distributions of VEGF. Both uniform and non-uniform

distributions were used in combination with different densities of cells.

Non-uniform distributions were defined as functions of the lengthwise co-

ordinate z, and therefore maintained radial symmetry.

4.3.2 The nerve repair construct geometry in COMSOL

An axisymmetric 2D geometry was created in COMSOL Multiphysics with

length L = 15 mm and internal radius of R1 = 0.25 mm to match the dimen-

sions of NRCs under development (Figure 4.4). An assumption of radial

symmetry allows the model to represent a cylindrical NRC. An additional

outer layer of varying thickness T was incorporated to represent a porous

sheath when appropriate; otherwise zero-flux boundary conditions were

used to represent a impermeable sheath.

A fine mesh was generated to cover these geometries. The maximum

mesh size was set according to convergence studies; further mesh refine-

ment was performed but this made no detectable difference to the simu-

lation results. Furthermore, the size of the mesh did not prohibit the sim-

ulation time. Each simulation of a period of 1 day took approximately 20

seconds, although the run time varied according to the number of metrics

calculated simultaneously.

The equations were solved using COMSOL Multiphysics via the BDF

method as outlined previously in Section 3.5.2.
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Non-porous sheath geometry Porous sheath geometry

Sheath,
T = 0.25 mm

Figure 4.4: Cross section of the mesh generated over the axisymmetric NRC geom-
etry in COMSOL. The longitudinal centreline of the cylindrical NRC
was used as the axis of symmetry. The maximum element size across
the geometry was set at 0.1 mm. In total, the mesh consists of 908 tri-
angular elements, 306 edge elements and 4 vertex elements, with 608
mesh vertices.

4.4 Simulations of uniformly seeded nerve repair

constructs
In this section, the impact of different uniform seeded cell densities upon

cell survival and the generation of VEGF gradients is investigated in the

context of NRCs with both impermeable (Section 4.4.1) and porous (Sec-

tion 4.4.2) sheaths. The density at which the cells are uniformly seeded

is here denoted n0. Although some experimental work has been done to

identify which densities may increase axonal regeneration during periph-

eral nerve repair (Section 1.3), there is currently no consensus on how the

density of uniformly seeded therapeutic cells may affect cell survival and
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overall repair efficacy, both for peripheral nerve repair and across tissue

engineering in general.

One of the aims of this thesis is to identify cell seeding strategies that

could increase cell survival and optimise VEGF gradients within NRCs.

The prediction of possible optimal ranges for the initial seeding cell density

n0 in the case of uniform seeding strategies would be useful for future

experimental designs and model validation.

Hence here argmaxn0
n̄, the value of n0 that maximises the mean cell

density across the central NRC geometry n̄, is defined as follows:

argmaxn0
n̄ = {n0 | n̄(n0) = max

n′0
{n̄(n′0)}} . (4.23)

The standard deviation of the cell density across the NRC geometry is

denoted nSD.

Similarly, the values of n0 that maximise the mean VEGF concentration

v̄ and the standard deviation of the VEGF concentration vSD across the

central geometry (excluding the NRC sheath) are defined by:

argmaxn0
v̄ = {n0 | v̄(n0) = max

n′0
v̄(n′0)} , (4.24)

argmaxn0
vSD = {n0 | vSD(n0) = max

n′0
vSD(n′0)} . (4.25)

Both gradients and concentrations of VEGF are important for sprout-

ing angiogenesis [134]. In this thesis, the standard deviation of the VEGF

concentration values is used as a measure of the steepness of the gradients

of VEGF over the construct. As demonstrated in Figure 4.10, simulated

gradients of VEGF in NRCs uniformly seeded with a impermeable sheath

occur predominantly in the lengthwise z direction, with a clear peak in

the centre of the construct. This means that greater values of vSD tend to

correspond to steeper gradients of VEGF.

Figure 4.5 provides an example of the progression of typical simu-
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Figure 4.5: Example simulations of cell-solute interactions over time within uni-
formly seeded NRCs with an impermeable sheath (a) and a porous
sheath (b). An initial uniform distribution of 178× 106 cells/ml was
used in both cases. a) In the NRC wrapped in an impermeable sheath,
VEGF and oxygen can only diffuse in or out at the proximal and distal
ends of the geometry, resulting in more distinct lengthwise gradients
than in the porous sheath case. b) In the NRC wrapped in a porous
sheath, the cells occupy only the central collagen NRC portion of the
geometry, whereas VEGF and oxygen are free to diffuse into the outer
sheath region. The porous sheath allows much quicker diffusion of
oxygen into the NRC, but also permits faster diffusion of VEGF out of
the NRC, resulting in much lower VEGF concentrations in the central
geometry (note the difference in the scale of the VEGF legend in com-
parison to that of (a)). The porous sheath was simulated with porosity
ε = 0.8 and sheath thickness T = 0.25 mm.

lations over time for both the porous and impermeable sheath scenarios.

These demonstrate how the spatial distributions of n, c and v change over

time.



4.4. Simulations of uniformly seeded nerve repair constructs 237

Viable cell density after 1 day (106 cells/ml)
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Figure 4.6: The simulated distribution of cells across the NRC geometry after 1
day is predominantly uniform regardless of the value of n0 used for
the uniformly distributed seeded cells. Higher viable cell densities at
the ends of the geometry reflect greater access to oxygen via diffu-
sion through the open ends of the NRC, as captured by the boundary
conditions.

4.4.1 Impermeable sheath

First of all, a range of different uniform initial cell densities were used in

combination with the model described in Section 4.3 to simulate cell-solute

interactions across the NRC geometry with boundary conditions represent-

ing a impermeable sheath (Equation (4.10)). The simulated range of initial

cell densities (10 to 400× 106 cells/ml) was chosen to represent the range

currently used in standard experimental models in the Phillips lab (100

to 400× 106 cells/ml) and to cover the densities reported in the literature

[141, 264, 337].

The results showed that the distribution of the cells along the length of

the NRC remains relatively uniform at each time step (Figure 4.5) and for

each initial cell density (Figure 4.6), apart from an increase in the density

of viable cells at either end of the construct, corresponding to the higher

concentration of oxygen and thus greater rate of proliferation in these re-

gions, as determined by Equation (4.7). Therefore the mean viable cell

density across the entire geometry n̄ was used as a measure of cell sur-

vival. The observation of higher cell densities at the ends of the simulated

NRCs aligns with an in vivo experimental study which reported a similar

phenomenon around the peripheral edges of cell-seeded conduits [264],

and corresponds to the regions with the greatest access to oxygen.
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Figure 4.7: Simulated viable cell density across the NRC geometry for different
uniform initial cell densities; black points indicate the positions of the
maximum values of n̄, the mean viable cell density across the geom-
etry. After 12 hours, argmaxn0

n̄ = 200 × 106 cells/ml. After 1 day,
argmaxn0

n̄ = 88× 106 cells/ml. After 5 days, argmaxn0
n̄ = 13× 106

cells/ml.

Examination of how n̄ varies over time reveals that over the initial 12

hours NRCs seeded using the highest cell densities maintain the highest

values of n̄ (Figure 4.19, red line); however, this pattern is somewhat re-

versed by the 1 day time point (Figure 4.7).

The simulated mean viable cell density n̄ across the NRC after 1 day

(Figure 4.7) increases monotonically as the seeding cell density n0 increases

from 10× 106 cells/ml until a maximum is reached at 88× 106 cells/ml.

From there, n̄ decreases to a minimum at n0 = 400× 106 cells/ml.

The survival rate of the cells after 1 day (Figure 4.8) varies from around

100% for very low seeded cell densities (10× 106 cells/ml) to less than 10%

for seeded cell densities greater than 200× 106 cells/ml. Thus it appears

that seeded cell densities of 100× 106 cells/ml or less offer the best effi-

ciency in terms of reducing the number of wasted cells. Although very

low seeded cell densities are predicted to be most efficient in terms of the

survival rate, the total number of cells after 1 day is relatively low and may
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Figure 4.8: Cell survival, expressed as a % of the total number of cells initially
seeded in the NRC. Low seeding cell densities result in higher % sur-
vival.

not provide the desired degree of support to the scaffold. Additionally, the

model was trained and validated on cell densities with a minimum value

of n0 = 39× 106 cells/ml; therefore extrapolating to very low seeding cell

densities may provide inaccurate results.

All the initial cell densities simulated produce 30% survival or less af-

ter 5 days. In particular, in cases where the initial cell density was greater

than 100× 106 cells/ml, the vast majority of cells have died after 5 days

with only 1% or less of the original number of viable cells remaining. Ex-

perimentally measured seeded cell survival times for transplanted stem

cells in peripheral nerve repair vary from around 10 days to on the order

of months [400], however the simulations run in this section do not take

into account the additional delivery of oxygen via new blood vessels, and

therefore likely underestimate the survival of cells. This aspect is consid-

ered as part of the model of sprouting angiogenesis presented in Chapter

5.

The simulations were run up to the 5 day time point. After 5 days,
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Figure 4.9: The simulated gradient of VEGF after 1 day from the ends of the NRC
to the centre increases in steepness as the initial density of the uni-
formly seeded cells increases up to n0 = 267 × 106 cells/ml. VEGF
concentrations of 0 ng/ml at either end of the geometry reflect the
application of the boundary condition vtissue = 0.

the cell populations have died off significantly, regardless of the density of

the cells seeded (Figure 4.7). However, the model was not parameterised

against data for time points beyond 1 day, casting doubt on the validity of

extrapolating the model in this manner.

The VEGF concentration over the construct develops into a clearly de-

fined gradient over time, with the largest concentration of VEGF consis-

tently located in the centre of the construct (Figure 4.9). The simulated val-

ues of VEGF are within the range of those cited in the literature [1, 309, 374]

after the cited values are converted to ng/ml using the approximate den-

sity of the compressed collagen NRC (between 0.5 and 3 g/ml). However,

as previously mentioned, measurements of VEGF concentration in the pe-

ripheral nerve repair scenario have not yet been carried out and it is likely

that VEGF concentrations in tissue are highly context specific.

The simulated mean VEGF concentration v̄ across the NRC geometry

after 1 day achieves a maximum at argmaxn0
v̄ = 236× 106 cells/ml (Figure

4.10). The standard deviation of the VEGF concentration vSD achieves a

maximum at argmaxn0
vSD = 267× 106 cells/ml (Figure 4.10). The values

of argmaxn0
v̄ and argmaxn0

vSD are consistently similar in value across

time, corresponding to the generation of high levels of VEGF in the centre

of the construct which increase both v̄ and vSD.

Notably, at the 5 day time point almost no VEGF remains in the con-
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Figure 4.10: Simulated VEGF concentration across the NRC geometry for different
uniform initial cell densities; black points indicate the positions of
the maximum values of v̄ and vSD. After 12 hours, argmaxn0

v̄ =

339 × 106 cells/ml and argmaxn0
vSD = 351 × 106 cells/ml. After 1

day, argmaxn0
v̄ = 236 × 106 cells/ml and argmaxn0

vSD = 267 × 106

cells/ml. After 5 days, VEGF concentrations have decreased further,
and argmaxn0

v̄ = argmaxn0
vSD = 10× 106 cells/ml (the lowest value

simulated).

structs. This corresponds to the fact that the number of viable cells has

also dropped dramatically by this time point, resulting in a reduction in

the total production rate of VEGF, whilst VEGF generated at earlier time

points has decayed.

Overall, it appears that when a uniform initial cell seeding seeding

strategy is used in combination with an impermeable sheath, the value of

n0 required to maximise the amount of VEGF and the steepness of the

VEGF gradient after 1 day (236 to 267× 106 cells/ml) is higher than that

required to maximise the viable cell density after 1 day (88× 106 cells/ml),

suggesting that a compromise between the two is required if both high

levels of cell survival and steep VEGF gradients are desired. For example,

using n0 = 170× 106 cells/ml generates a relatively steep VEGF gradient

(Figures 4.9 and 4.10) whilst sustaining a higher density of viable cells after

1 day than initial densities of greater than 200× 106 cells/ml (Figure 4.7).
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Figure 4.11: Impact of c0 upon 1 day simulation results; empty circles denote the
values of c0 used to run the simulations. a) Varying c0 from 1% to 21%
progressively reduces the values of n0 that produce the maximums of
n̄, v̄ and vSD after 1 day. b) The maximum value of n̄ after 1 day over
all n0 values varies from 21× 106 cells/ml when c0 = 1% to 25.6× 106

cells/ml when c0 = 21%. c) The maximum values of v̄ and vSD after 1
day over all n0 values increase only slightly as c0 increases from 1 to
10%.

However, it is not certain that maximising the average concentration

of VEGF and the steepness of the VEGF gradient is necessarily the correct

strategy to adopt to encourage vascularisation and thereby aid neuronal

repair. In Chapter 5, the interplay between VEGF gradients and concen-

trations and their influence on revascularisation is explored in more detail:

a 3D model of angiogenesis in response to VEGF in engineered tissue is

described, and simulations are run in combination with the current cell-

solute model to better assess the impact of different VEGF distributions

upon vascular sprouting and growth.

4.4.1.1 Sensitivity of results to initial and boundary condi-

tions: assessing the impact of oxygen storage condi-

tions and tissue solute concentrations

The value of the initial oxygen concentration across the NRC geometry c0

was varied from 1% to 21% to investigate its impact upon the simulation
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Figure 4.12: Impact of v0 upon 1 day simulation results; empty circles denote the
values of v0 used to run the simulations. a) Varying v0 up to 1000
pg/ml results in changes in the value of argmaxn0

v̄ and argmaxn0
vSD

after 1 day of less than 1% of their values when v0 = 0. b) The maxi-
mum values of v̄ and vSD also change by less than 1% as v0 is varied
from 0 to 1000 pg/ml.

results (Figure 4.11). Increasing c0 across this range decreased the value of

argmaxn0
n̄ after 1 day from 120× 106 cells/ml at 1% to 87.9× 106 cells/ml

at 21%. Both argmaxn0
v̄ and argmaxn0

vSD also decreased at a similar rate

across this range of c0. However, the corresponding maximal values of n̄, v̄

and vSD changed by only a relatively small amount.

These results imply that cells can be uniformly seeded at a lower den-

sity within constructs with higher initial oxygen concentrations to achieve

similar values of n̄, v̄ and vSD after 1 day as constructs with a lower initial

oxygen concentration seeded with a greater density of cells. This suggests

that one way of minimising the number of cells required could be to incu-

bate tissue engineered constructs within high oxygen environments prior

to implantation. This hypothesis could be investigated experimentally in

the future.

On the other hand, varying the initial VEGF concentration v0 within

the NRC over a range of 0 to 1000 pg/ml had no effect on any of the

previously mentioned metrics at the 1 day time point. This is because any
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VEGF existing in the construct due to culturing at the initial time point

decays almost entirely over 24 hours: the VEGF degradation rate is set at

dv = 29.874× 10−6 s−1, equivalent to a half life of approximately 6.5 hours.

Increasing v0 across the designated range did not impact the simulated

VEGF concentration values after 24 hours, motivating the use of v0 = 0

across the simulations.

However, the initial VEGF concentration v0 does have the potential to

alter the concentration of VEGF in the construct over the first few hours af-

ter implantation. But in this case, the magnitude of v0 is likely to be smaller

than the concentrations generated by the implanted cells, and therefore

may not have a great effect on signalling. Future computational studies

could investigate the use of time-released VEGF delivered via capsules us-

ing a similar approach, in which case the concentration of delivered VEGF

would likely be much higher than the 0 to 1000 pg/ml range simulated

here, and therefore have a greater impact upon the results.

The boundary condition values for tissue oxygen and VEGF concen-

trations were also varied to assess their impact upon the simulation results.

Values of ctissue ranging from 1% to 10% were used. Changes in ctissue re-

sult in minimal differences in the maximum values for v̄ and vSD after 1 day

(Figure 4.13c) as well as the values of n0 that achieve these maximums, es-

pecially within the expected physiological range identified in the literature

(4 to 6%) (Figure 4.13a).

Slightly larger variations occur in the maximum value of n̄ after 1 day,

taken across the full range of the simulated initial cell densities, when ctissue

is varied within the physiological range of 4 to 6%: the maximum value of

n̄ varies by up to 5.1% of its value at ctissue = 5%. When ctissue = 10%,

the maximum value of n̄ is 33% greater than its value when ctissue = 5%,

reflecting the positive effect that increased oxygen availability has on cell

survival (Figure 4.13b).

However, within the approximated physiological range for ctissue, the
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Figure 4.13: Impact of ctissue upon 1 day simulation results; empty circles denote
the values of ctissue used to run the simulations. a) Varying ctissue from
the approximated physiological value of 5% results in only minor
variations in the values of argmaxn0

v̄ and argmaxn0
vSD after 1 day.

When ctissue = 10%, the value of argmaxn0
n̄ is 13% less than its value

when ctissue = 5%. b) The maximum value of n̄ after 1 day over all
n0 values varies from 22× 106 cells/ml when ctissue = 1% to 34× 106

cells/ml when ctissue = 10%. c) The maximum values of v̄ and vSD
after 1 day over all n0 values vary by less than 3% of their values
when ctissue = 5%.

initial cell density value at which this maximum is achieved argmaxn0
n̄

alters by up to only 2.2% of its value at 5%, and by up to 13.4% across the

entire range of simulated values of ctissue. This suggests that the model’s

predictions for the optimal n0 values to achieve the highest possible average

cell density after 1 day are robust to potential changes in tissue oxygen

concentration or error in the set value of ctissue.

The concentration of VEGF in the surrounding tissue vtissue was also

varied in a similar manner from 0 to 1000 pg/ml. However, this had no

discernible effect on the values argmaxn0
v̄ and argmaxn0

vSD or the corre-

sponding maximum values of v̄ and vSD (Figure 4.14). This is likely due to

the difference in the order of magnitude between the physiological bound-

ary condition values and the VEGF concentrations generated by the cells

within the construct. As expected, varying the value of vtissue did not result
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Figure 4.14: Impact of vtissue upon 1 day simulation results; empty circles denote
the values of vtissue used to run the simulations. a) Varying vtissue
up to 1000 pg/ml results in changes in the value of argmaxn0

v̄ and
argmaxn0

vSD after 1 day of less than 1% of their values when vtissue =
0. b) The maximum values of v̄ and vSD also change by less than 1%
as vtissue is varied from 0 to 1000 pg/ml.

in any changes in the simulation values of n as the viable cell governing

equation is independent of VEGF concentration. This motivates the use of

vtissue = 0 ng/ml as the boundary condition in the majority of the simula-

tions of an NRC geometry in this thesis.

4.4.2 Porous sheath

The simulations and analysis run in the previous subsection were repeated,

this time modelling NRCs with porous sheaths of varying porosities ε and

thicknesses T. An example of a simulation of cell-solute interactions over

time within both the NRC and surrounding porous sheath is provided in

Figure 4.5. It is evident that in this case, use of the porous sheath greatly

improves access to oxygen for the cells seeded within the central collagen

NRC, but also results in loss of VEGF via diffusion.

Figure 4.15 demonstrates that the maximum mean viable cell density

max n̄ over the central construct after 24 hours, as well as the initial seeding

density that achieves the maximum, changes very little across porosities ε
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Figure 4.15: Impact of sheath porosity ε, thickness T and tortuosity model used
upon the values of max n̄ and argmaxn0

n̄ after 24 hours.

in the range of 0.6 to 1 regardless of the model of tortuosity used. The

thickness of the sheath, which was varied up to 1.5 mm, also had no effect

on these values when ε remained in this range. A similar pattern occurs

in the case of the standard deviation of the VEGF concentration (Figure

4.16). This suggests that the rate of diffusion of solutes through sheaths

with characteristics corresponding to these parameter ranges does not vary

enough to affect these metrics.

This result can be explained by considering the approximate time

scales of diffusion for various values of T and ε. Note that the coeffi-



248 Chapter 4. Application of the Cell-Solute Model to NRC Geometries

Weissberg

R & H

Klemens

Beeckman

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.2

5
0.2

6 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

1

1.5

0.25

1

1.5

0.25

1

1.5

0.25

1

1.5

Porosity ε

Sh
ea

th
th

ic
kn

es
s

T

0 21 42

maxvSD (ng/ml)

Weissberg

R & H

Klemens

Beeckman

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.2

5
0.2

6 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.0

1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

1

1.5

0.25

1

1.5

0.25

1

1.5

0.25

1

1.5

Porosity ε

124 150 200 250 270

argmaxn0
vSD (106 cells/ml)

Figure 4.16: Impact of sheath porosity ε, thickness T and tortuosity model used
upon the values of maxvSD and argmaxn0

vSD after 24 hours. Tortu-
osity models are listed in Table 4.2.

cient Deff as defined in Equation (4.1) is not the “true” effective diffusion

coefficient of the homogenised solute concentration s: this can be seen by

considering the case where R(sκ) is linear in sκ. Under this assumption,

Equation (4.1) can be reduced to give an effective transport equation for

the homogenised quantity s via the relationship s = εsκ:

∂s
∂t

=
Deff

ε
∇2s + R(s) . (4.26)

This form of the equation is convenient because it allows the experimen-
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tal measurement of the “true” effective diffusion coefficient of the ho-

mogenised solute concentration, D̃eff = Deff/ε, and subsequent simulation

of diffusion processes, without explicit knowledge of the porosity of the

material ε.

This scaled version of the effective diffusion coefficient can be used to

investigate the time scales of diffusion of the solute through the porous

sheath. In this model, the maximum value of T considered was 1.5 mm,

and the minimum value considered was 0.25 mm. The approximate time

scale of diffusion of oxygen tc(ε, T) and VEGF tv(ε, T) through a sheath of

thickness T can be estimated as follows:

tc(ε, T) =
T2

D̃eff(ε)
=

T2

(1/τ)Dcm

, (4.27)

tv(ε, T) =
T2

D̃eff(ε)
=

T2

(1/τ)Dvm

. (4.28)

Using the Weissberg model of tortuosity (Table 4.2) with T ∈ [0.25,1.5] mm

and ε ∈ [0.01,0.9], this gives ranges of between 25 seconds and 47 minutes

for tc and between 8 minutes and 5 hours for tv. The difference between

these diffusion times is relatively small, and all are much less than 24 hours

(the time point featured in figures 4.15 and 4.16). This goes some way to

explain why varying porosity and sheath thickness appears to have little

impact on the model results displayed in these Figures. It seems likely that

the difference in porosity will only have a clear influence on the model

results at very early time points (up to 6 hours).

At very low porosity values, some variation occurs in the values

of argmaxn0
n̄, max n̄, argmaxn0

vSD and maxn0 vSD, especially when the

Rutkowski and Heath (R & H) model of tortuosity is used. But at very

low levels of porosity, percolation effects could influence the rate of the

diffusion. It is unclear whether the chosen theoretical models take these

effects into account. Additionally, most relevant manufactured porous ma-

terials have a porosity ε ≥ 0.5 (Table 4.1). For these reasons, the rest of
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Figure 4.17: Simulated mean viable cell densities and oxygen and VEGF concen-
trations across the central nerve repair construct geometry at a range
of time points. The Weissberg model of tortuosity and T = 0.25 mm
were used for these simulations. The mean viable cell density over
the construct is higher after 12 and 24 hours when a porous sheath
(ε > 0) is used than when an impermeable sheath (ε = 0) is used. This
is likely to be due to the increased supply of oxygen, as represented
by the panels in the bottom row, and applies across all of the values of
n0 that were simulated. However, the use of an impermeable sheath
results in better VEGF retention.

the analysis here will focus predominantly on simulations using a poros-

ity values within this range, and the Weissberg model of tortuosity will be

implemented.

Despite the lack of porosity and thickness dependent variation, there

are clear differences in both cell survival and solute concentrations between

the impermeable and porous sheath model simulation results. Figure 4.17
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demonstrates that the density of viable cells at the 12 hour and 1 day time

points is higher for porous sheath models than in the impermeable sheath

model (ε = 0).

As porosity is increased from 0.1 to 0.8, the mean oxygen concentration

c̄ alters only slightly. These changes in oxygen concentration are not large

enough to impact cell survival, and therefore the degree of porosity has

almost no effect upon cell survival as assessed by n̄.

In contrast to the impermeable sheath model, by the 12 hour time

point there is only a relatively small quantity of VEGF remaining in the

NRCs with porous sheaths. Figure 4.17 demonstrates that at very early

time points (0-1 hours) more VEGF is present within these constructs, espe-

cially when they are seeded with high uniform densities of cells. This may

be because at this point the cell density is relatively high, and therefore the

combined production rate of VEGF of the cell population is likely greater

than the rate of diffusion of VEGF out of the construct into the sheath.

At initial time steps (0.5 to 5 hours), low porosity sheaths (ε = 0.1) enable

greater VEGF retention within the central construct than higher porosity

sheaths (ε = 0.5, 0.8), but the effect of this upon the value of v̄ becomes less

apparent at later time steps when the overall rate of VEGF production has

dropped due to the decrease in cell population.

This behaviour is demonstrated in Figure 4.17 in the case of a construct

with a porous sheath modelled according to the Weissberg model of tortu-

osity with sheath thickness T = 0.25 mm, but similar results are produced

with using the other models of tortuosity and values of T up to 1.5 mm.

Although previous simulations of a porous scaffold by Croll et al.

demonstrate changes according to the porosity of the scaffold, in that case

the thickness of the simulated porous scaffold was much greater- between

7.5 mm and 30 mm [87], which would significantly increase the time taken

for oxygen and other solutes to diffuse in and out of the construct.

In terms of optimising NRC cell seeding strategies, as demonstrated
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in Figure 4.15 the value of n0 that maximises n̄ after 24 hours when a

porous sheath (ε = 0.8) is used is approximately 110× 106 cells/ml, which

is greater than in the case of the impermeable sheath (argmaxn0
n̄ = 88× 106

cells/ml), but also results in almost double the density of viable cells at this

time point.

Therefore these results suggest that a higher seeding cell density

should be used when implanting NRCs with a porous sheath than with

an impermeable sheath in order to take advantage of the increased access

to oxygen and thereby maximise cell survival.

The fact that porous sheaths are clearly able to increase cell survival

but also result in the loss of VEGF that is crucial for vascularisation sug-

gests that a sheath with spatially variable porosity could be a potential

future avenue for exploration: the creation of a sheath with both porous

and impermeable sections could allow targeted VEGF retention in certain

regions whilst still permitting increased diffusion of oxygen into the con-

struct in contrast to the purely impermeable sheaths. This idea will be

explored computationally in the next section.

Additionally, the use of a porous sheath material with a molecular

weight cut off between 46 kDa and 32 Da could be optimal in terms of im-

proving VEGF retention whilst improving the supply of oxygen to seeded

cells. This material composition would allow the inward diffusion of oxy-

gen whilst prohibiting VEGF diffusion out of the NRC (Section 4.2.1).

4.4.2.1 Partially porous sheath

A partially porous sheath was implemented to investigate whether some

of the benefits of increased oxygen diffusion into the construct could be

retained whilst preserving a gradient of VEGF within the construct.

Based upon the previous simulations of NRCs with porous sheaths, it

was hypothesised that to preserve a concentration of VEGF in the centre of

the sheath it would be necessary to have an impermeable sheath covering

that region. However, to enhance cell survival a small section of porous
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Figure 4.18: Schematic of the cylindrical NRC geometry with a partially porous
sheath.

material could be incorporated at either end of the construct sheath, to

enhance the inward diffusion of oxygen (Figure 4.18). This length of porous

material is here denoted Lp.

All simulations were run using L = 15 mm, T = 0.25 mm and ε = 0.8,

along with the Weissberg model of tortuosity because these configurations

have been shown to be representative of the majority of other porous sheath

designs within the parameter ranges of ε ' 0.6 and 0.25≤ T ≤ 1.5 (Figures

4.15 and 4.16).

As demonstrated in Figure 4.19, simulating an NRC geometry with a

partially porous sheath with Lp = 2 mm results in greater cell survival (n̄) as

well as a greater value of vSD after 24 hours than the entirely impermeable

sheath geometry (Lp = 0). However, as demonstrated in Figure 4.20, the

increase in both concentration and gradient steepness of VEGF is isolated

to the region covered by an impermeable sheath. This means that the VEGF

concentrations at the ends of the construct are much lower, with potential

implications for the initiation of sprouting angiogenesis at the interface

between the construct and the surrounding tissue at these locations.

Previously, Jenq et al. used holes in tubular conduits covered with

different filters to create a similar partially porous scaffold, although in

those studies the holes were located more centrally along the length of

the tube [171]. Sheaths with non-uniform porosity in the radial direction

have also been developed, but in general the lengthwise variation of the
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Figure 4.20: The spatial distribution of cells within NRCs with partially porous
sheaths is highly influenced by availability of oxygen, with areas of
much greater viable cell density occurring adjacent to the porous ends
of the sheath. Conversely, these regions contain relatively low concen-
trations of VEGF after 1 day due to outward diffusion.



4.5. Simulations of non-uniformly seeded nerve repair constructs 255

porosity has not been investigated experimentally thus far. These results

suggest that this could be a worthwhile avenue to explore, although the

feasibility of manufacturing these designs is uncertain.

4.5 Simulations of non-uniformly seeded nerve

repair constructs
In this section, the effect of different non-uniform initial cell distributions

upon cell survival and VEGF secretion within NRCs is investigated, with

the aim of understanding whether moving away from the current uni-

formly distributed approach could reduce waste of cells and improve the

generation of VEGF gradients. In particular, it is hypothesised that non-

uniform distributions of cells could increase the steepness of VEGF gradi-

ents by encouraging denser populations of cells in certain regions of the

engineered tissue, thereby increasing the overall rate of VEGF production

in those regions relative to others.

First of all, a step-like function of initial cell density was created (Fig-

ure 4.21). This divides the length of the geometry into thirds, assigning the

cell density over the middle third to be a specified multiple ζ of the cell

densities of the end thirds, which are equal:

n0(z) =



3ntot0
(2+ζ)πR2

1L
, 0≤ z < L

3 ,

ζ
3ntot0

(2+ζ)πR2
1L

, L
3 ≤ z ≤ 2L

3 ,

3ntot0
(2+ζ)πR2

1L
, 2L

3 < z ≤ L .

(4.29)

Here ntot0 denotes the total number of cells seeded within the NRC. This

form of non-uniform distribution was used because it is simple and there-

fore feasible to manufacture. A range of designs with different (ζ, ntot0) pa-

rameter pairs were then simulated using both the impermeable and porous

sheath models. Note that each value of ntot0 can be related to a uniform

cell seeding density n0 that would deliver the same number of cells via the
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1220
Initial seeded cell density (106 cells/ml)

ζ = 0 ζ = 1 ζ = 2 ζ = 3

Figure 4.21: Examples of non-uniform distributions; here the total number of cells
seeded remains constant whilst their distribution alters according to
ζ. The case ζ = 1 corresponds to a uniform distribution. Here the
total number of cells ntot0 = 200,000.

following equation, based on the volume of the NRC:

n0 =
1

πR2
1L

ntot0 . (4.30)

Thus using R1 = 0.25 mm and L = 15 mm, uniform cell densities of n0 ≈

170, 102 and 34× 106 cells/ml provide a total number of ntot0 = 5, 3 and

1× 105 cells respectively.

In the case of the impermeable sheath, the simulation results suggest

that varying the distribution of a fixed number of seeded cells does impact

the number of viable cells within the construct after 12 hours and 1 day

(Figure 4.22). However, the amplitude of this effect varies according to

the total number of cells seeded and the value of the distribution scaling

constant (Figure 4.23).

As the initial number of seeded cells increases from 50,000 to 500,000,

the value of ζ that produces the greatest number of viable cells after 1 day

also increases from 0.6 to 1.1, indicating that when fewer cells are seeded it

may be beneficial to seed a greater proportion at the ends of the construct,

potentially to maximise exposure to oxygen and therefore cell survival. A

similar pattern emerges at the 12 hour time point.

However, values of ntot0 in the range of 200,000 to 300,000 cells appear

to result in the greatest number of viable cells after 1 day regardless of the

distribution of the cells, with the exception of distributions corresponding

to ζ ≈< 0.5. This aligns with the previously identified optimal uniform
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values of argmaxζ ntot respectively. The optimal distribution for max-
imising ntot after 1 day changes according to the total number of cells
initially seeded.

seeding density for maximising the viable cell density after 1 day, n0 =

88 × 106 cells/ml, which delivers a total of approximately 260,000 cells.

Futhermore, for these values of ntot0 approximately uniform distributions

achieve the highest number of viable cells over time.

The same general patterns emerge in the results of simulating non-

uniformly seeded NRCs with porous sheaths. For ntot0 ≥ 100,000, it is clear

that the use of the porous sheath again increases cell survival at the 1 day

time point (Figure 4.22), consistent with the results presented in Section

4.4.2.

The simulation results also indicate that in the case of an NRC with

a impermeable sheath, the initial distribution of the cells could have the

potential to alter the values of both the mean VEGF concentration across
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Figure 4.23: Simulations suggest that the impact of the initial seeded cell distribu-
tion upon the VEGF and viable cell density distributions after 1 day
varies according to the total number of cells seeded. Seeding 500,000
cells uniformly (ζ = 1) generates a steeper VEGF concentration gra-
dient than if more cells are seeded in the centre (ζ = 3); whereas the
converse is true when seeding 100,000 cells.

the construct v̄ and the standard deviation of VEGF across the construct

vSD (Figure 4.24). In particular, seeding more cells in the centre of the

construct (ζ > 1) results in consistently higher values of v̄ and vSD across

all values of ntot0 and for both the 12 hour and 1 day time points, although

the magnitude of variation in v̄ is small.

However, use of the porous sheath again results in the diffusion of

VEGF outwards into the surround tissue, resulting in negligible concentra-

tions (v̄ < 1 ng/ml) within the NRC.

4.6 Conclusion
The results presented in Sections 4.4.1, 4.4.2 and 4.5 suggest that cell sur-

vival can be optimised through the selection of specific seeding cell den-
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sities and distributions, and that seeding more cells in engineered tissue

constructs such as NRCs does not necessarily lead to higher densities of

viable cells within the engineered tissue at later time points in vivo. This

runs contrary to the reasoning previously used in many experimental stud-

ies, which either neglects to consider the effect of seeding cell densities and

distributions entirely, or assumes that seeding more cells will necessarily

result in a greater number of viable cells over time. These results suggest

that in fact using fewer cells in engineered tissue could result in better cell

survival, whilst reducing waste of cells.

The accuracy of the model predictions will be influenced by the qual-

ity of the fit of the model to the experimental data. Although the param-

eterised model does match the overall trends of the in vitro data as shown

in Figures 3.14 and 3.18, it does not capture all of the variation in the
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data. The model fit to the data in the low oxygen ambient oxygen con-

centration regime (ca ≤ 10%) is particularly relevant because, as shown in

Figure 4.20, the mean oxygen concentrations across the simulated NRCs

are largely within this range, mimicking the in vivo repair environment.

Figure 3.14 shows that the model is actually likely to underestimate viable

cell density after 24 hours when n0 = 39× 106 cells/ml within this regime.

Therefore, although discrepancies between the model simulations of the

in vitro scenario and the corresponding data indicate that there are likely

to be inaccuracies in the model predictions presented in this chapter, the

hypothesis that seeded cell densities of less than 100× 106 cells/ml is also

consistent with the in vitro experimental data presented in Chapter 3.

Although the model predicts that cell survival at the 5 day time

point will be poor, especially when uniform cell densities of greater than

100× 106 cells/ml are used, this may not necessarily correlate with poor

outcomes in vivo. One of the key purposes of the cell population is to

provide growth factors that will aid and accelerate the regeneration pro-

cess; therefore, optimising cell survival as far as possible over early time

points can still be beneficial, regardless of the long-term survival rate of

the cellular population.

As shown in Figure 4.7, the model predicts that the optimal density for

uniformly seeded cells in terms of achieving the highest possible viable cell

density after 24 hours is around 88× 106 cells/ml when using an imperme-

able sheath. Interestingly, this falls close to the figure of 80× 106 cells/ml

found by Mosahebi et al. to produce on average the greatest length of ax-

onal regeneration after 3 weeks in vivo [264]. Increasing the cell density

beyond this showed a decrease in regeneration in the experimental study.

Guénard et al. also produced similar experimental results, concluding that

120× 106 cells/ml produced the greatest number of myelinated axons after

3 weeks, although in this case the luminal diameter was altered along with

the seeding cell density [141].
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Thus the results of the simulations presented in this thesis support the

hypothesis that the degree of axonal regeneration is linked to the density of

viable cells in the construct over time. It is worth noting, however, that both

of these experimental studies used a different cell type to that modelled in

this this study (Schwann cells instead of dADSCs), and neither of them

measured viable cell density over time and therefore they cannot be used

to directly validate the model predictions.

Furthermore, the mathematical model is currently only parameterised

against data from a single time point (1 day). Improving the model to al-

low simulation up to the 3 week time point, in line with the previously

mentioned experimental studies, would require the incorporation of other

biological processes likely to impact viable cell density on this time scale,

such as cell migration, the influence of various other cytokines aside from

VEGF, and vascular and neuronal growth. Additionally, model parame-

terisation up to this time point would require further in vitro or in vivo

experimentation. In fact, many of the additional biological processes that

occur over longer time scales in peripheral nerve repair are not easily mod-

elled in vitro, so in vivo models would be necessary to inform and validate

the inclusion of features such as host cell infiltration (vascular and neuronal

growth).

In Section 4.4.1.1, additional simulations of a uniformly seeded NRC

with an impermeable sheath with varying initial oxygen concentrations

suggested that culturing engineered tissue at relatively high oxygen con-

centrations prior to implantation could enhance cell survival. The simula-

tions predicted that using an initial oxygen concentration of 21% resulted

in higher cell survival rates after 24 hours. This raises the question as to

whether short term culture of engineered tissue at high oxygen concentra-

tions prior to implantation could improve cellular survival.

Incorporating a porous sheath into the model resulted in increased

numbers of viable cells when compared to the model with the imperme-
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able sheath, especially at later time points when cell survival becomes

highly dependent upon the diffusion of oxygen into the construct from

the surrounding tissue. The length of the simulated construct is 15 mm,

which means that cells seeded in the centre of the construct in particular

can be as far as 7.5 mm from the ends of the construct, much further than

the diffusion limit of oxygen in tissue; thus introducing porosity along the

lengthwise edges of the cylindrical construct increases the cells’ access to

oxygen considerably.

However, the use of a porous sheath in the simulations also results in a

rapid loss of VEGF to the surrounding tissue regardless of the initial seed-

ing cell density or distribution used, (Figures 4.17 and 4.24). This is due

to the difference in the order of magnitude between the VEGF generated

by the cells within the construct (ng/ml) and the concentration in the sur-

rounding tissue (pg/ml). The concentration of VEGF in a peripheral nerve

injury gap during regeneration has not been measured experimentally: ob-

taining experimental values for tissue VEGF concentrations in peripheral

nerve injuries would help to validate the boundary condition for tissue

VEGF vtissue used in this model.

As reviewed in Section 4.2.1, the reported efficacy of porous sheaths

varies across the experimental literature: some studies record increased

neuronal regeneration using porous sheaths [169, 170, 187], and thus offer

the hypothesis that this could be a result of increased oxygen diffusion and

infiltration of supportive cells; whereas others have observed poorer results

when using porous materials [66, 107], and have suggested that this could

be caused by loss of growth factors and infiltration of host immune cells.

The model results presented in this thesis actually partially corrobo-

rate both of these hypotheses: the simulations show that porous sheaths

increase oxygen diffusion into the NRCs, enhancing cell surival, but also

result in loss of growth factors. However, the model presented in this chap-

ter does not include neuronal growth or cell infiltration in general. Further
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research would be needed to unpick the impact of the use of porous ma-

terials upon nerve regeneration: on a case by case basis other variables

such as NRC material properties, seeded cell type and the animal model

used could all influence the outcome, meaning that it is difficult to directly

compare the results of existing experimental studies.

The simulation of constructs with non-uniform seeding cell distribu-

tions showed that approximately uniform distributions of cells result in the

greatest number of viable cells after 1 day (Figure 4.22). However, seeding

more cells in the centre of the construct (ζ > 1) resulted in greater values

of vSD, reflecting steeper VEGF gradients, particularly in cases where the

total number of cells seeded was 300,000 or less (Figure 4.24). This suggests

that when relatively few cells are seeded in the construct, a non-uniform

distribution could be used to enhance the generation of VEGF gradients

and potentially increase the rate and directionality of vascularisation.

In this chapter, simulations using various cell seeding strategies and

sheath designs have predicted corresponding changes in VEGF distribu-

tions. Here the focus has been on increasing the total mean VEGF con-

centration over the collagen construct and increasing the steepness of the

gradient, under the assumption that this will enhance vascularisation as

informed by previous experimental work (Section 2.1.3). In Chapter 5, a

3D model of sprouting angiogenesis is developed and used in combina-

tion with the work presented here to investigate the degree to which these

changes in VEGF distribution may impact the rate and extent of vasculari-

sation.

In conclusion, the simulation results presented here corroborate the

hypothesis that seeding cell densities and distributions can be tailored to

enhance cell survival within the first 24 hours post-implantation and to

increase the steepness of VEGF gradients across engineered tissue. The

model presented in this thesis does now require further validation via ex-

perimentation: the predictions made in this chapter can help to achieve this
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goal in the future through the suggestion of specific seeded cell densities

and distributions for testing in vivo.



Chapter 5

A 3D Discrete Model of Sprouting

Angiogenesis

5.1 Introduction
In this chapter, a stochastic model of sprouting angiogenesis is presented,

designed for integration with the previously described continuum model

of cell-solute interactions within engineered tissue (Chapters 3 and 4). The

model is combined with the previously presented continuum model of cell-

solute interactions to simulate the effect of different cell seeding strategies

on vascularisation in engineered tissue NRCs, and in turn the impact of

that vascularisation on cell survival.

In particular, the combined mathematical framework is used to test

the hypothesis that cell seeding strategies that induce steeper VEGF gradi-

ents will result in more extensive vascularisation. The response of vascular

growth to VEGF is measured through the quantification of factors such

as vessel and sprout density, vessel branching density and vascular pen-

etration distance. The outcomes of the chapter are specific cell seeding

densities or distributions that achieve maximal simulated vascular density

and penetration distances after 5 days, and the identification of whether

vascular growth in the initial period post-implantation could increase cell
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survival. Additionally, the model described in this chapter, which is de-

rived based on existing models and published experimental data, has the

potential to be improved via parameterisation against specific data in the

future and then used to run more extensive investigations.

Angiogenesis is an important part of tissue regeneration, and vascu-

larisation of engineered tissues can aid assimilation and improve seeded

cell survival. Importantly, in the specific context of peripheral nerve repair,

evidence suggests that the growth of new blood vessels not only improves

the supply of oxygen and nutrients to cells, but also precedes and provides

directional guidance for neuronal regeneration. Section 2.1.2 provides a

more detailed review of the role of angiogenesis in peripheral nerve repair.

In the previous chapter, a parameterised continuum model of cell-

solute interactions was used to make predictions about the effect of dif-

ferent cell seeding strategies upon VEGF concentrations and distributions

within NRCs. Specific cell seeding strategies resulted in steeper gradients

and/or higher concentrations of VEGF. However, it is not immediately ap-

parent whether the predicted differences in VEGF profiles over time would

translate to significant differences in the rate, directionality and extent of

vascularisation. This motivates the construction of a 3D model of angiogen-

esis to simulate vascular growth in response to the spatio-temporal VEGF

distributions produced by the cell-solute model.

The first section of this chapter provides a brief description of the

process of sprouting angiogenesis, focusing on the roles of the different

endothelial cell (EC) phenotypes involved. Subsequently, Section 5.3 intro-

duces the various components of the discrete 3D model of angiogenesis and

motivates the use of particular functional forms, mathematical techniques

and parameter values by referring to published experimental and computa-

tional work. Section 5.4 describes how the model is solved in combination

with the existing continuum model to provide an integrated mathematical

description of vascularisation within a cell-seeded tissue engineered NRC,
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and presents the results of a variety of simulations. Finally, conclusions

and ideas for future work are summarised in Section 5.5.

5.2 Endothelial cell behaviour during sprouting

angiogenesis
A brief description of how sprouting angiogenesis is initiated and pro-

gresses was provided in Section 2.1.3, with the aim of motivating the choice

of solute-type variables for the continuum model based on their role dur-

ing vascular growth: VEGF was identified as the key angiogenic factor and

therefore selected for inclusion in the model, whilst a multitude of other

variables were excluded from the model for simplicity. The current section

will focus instead on the behaviour of ECs during sprouting angiogenesis.

As briefly described in Section 2.1.3, sprouting angiogenesis is initiated

when angiogenic factors like VEGF are sensed by an existing vessel. The

vessel dilates and vascular permeability increases, permitting the release

of plasma proteins that form a scaffold for the subsequent migration of

ECs [63]. The pericytes that surround the vessel ECs detach and the inter-

endothelial cell contacts weaken, eventually allowing ECs to detach and

migrate into the surrounding tissue, guided by growth factor gradients.

The migrating ECs proliferate and form a solid cord that subsequently

develops a lumen. Eventually, anastomisation of separate sprouts creates

closed, functional capillary loops.

During angiogenesis, the ECs undergo transient phenotypic changes

that broadly divide them into three categories: tip endothelial cells (TECs),

stalk endothelial cells (SECs) and phalanx ECs. TECs lead the process of

migration; it is commonly accepted that each sprout contains one TEC at

its apex [134], although recent research suggests that in some scenarios

sprout tips are instead led by two overlapping TECs [303]. TECs are highly

polarised, and extend long thin projections called filopodia to sense angio-

genic stimuli and other aspects of their environment, such as the presence
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of other sprouts [95]. This process is aided by the presence of receptors

on the filopodia, including VEGFR2; TECs have high expression of both

VEGFR2 and VEGFR3. TECs also express matrix metalloproteinases, which

help to clear a channel for the sprout to grow into [387].

In contrast to TECs, SECs do not have filopodia and have far fewer

VEGFR2 and VEGFR3 receptors. Thus instead of moving according to

angiogenic cues, they follow behind the leading TECs in a chain. SECs

are more proliferative than TECs, particularly when stimulated by VEGF.

They are also capable of forming a lumen, and create capillary basement

membrane as the sprout grows [312].

The third EC phenotype involved in angiogenesis are phalanx ECs:

these largely quiescent ECs line newly formed vessels, aid in the formation

of the basement membrane and help to create a tightly structured lumen

[95, 246].

Upon initiation of angiogenesis, the selection of the EC that will be-

come the leading TEC for the new sprout is mediated by the expression

of delta-like ligand 4 (Dll4): TEC exposure to VEGF results in higher ex-

pression of Dll4, which binds to Notch pathway receptors on neighbouring

ECs, which in turn induces VEGFR1 and suppresses the the expression of

VEGFR2 and VEGFR3, thus preventing adjacent ECs from also becoming

TECs [151]. Downregulation of VEGFR2 in these cells in turn decreases

their expression of Dll4. Notch signalling also prevents the formation of

adjacent TECs on an existing vessel, instead inducing sprouts to occur at

intervals along the vessel length [47].

However, although the VEGF-Dll4/Notch regulatory feedback loop

helps to preserve the position of the TEC leading the directional growth

of a sprout, the position of this TEC is still only transient: in fact, during

the process of vascular growth, SECs can move to the tip of the sprout, alter

phenotype, and exchange position with the original TEC [167].

One of the the key features of capillary networks is their intercon-
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nected, mesh-like structure. Exactly how this structure emerges is yet to

be fully understood, but it is apparent that it is a result of both the ini-

tial development process and later remodelling according to metabolic and

mechanical cues. This thesis, which focuses on modelling the first 5 days

of vascular growth, is predominantly concerned with the former: sprout

bifurcation and anastomosis during the initial stages of sprouting angio-

genesis.

Note that the terms “sprouting” and “branching” have often been used

interchangeably in previous work to refer to the formation of new vascular

sprouts from existing, perfused vessels. However, in this thesis this process

shall be referred to exclusively as “sprouting”, whereas “branching” shall

be used to describe the formation of a new sprout at the location of TECs,

i.e. via birfurcation of an unperfused sprout at the tip. In the remainder

of this section, details of the biological processes behind branching and

anastomosis, and the role of filopodia, are summarised with reference to

the literature, prior to the development of the mathematical model in the

following section.

Previously, an in vitro model of sprouting angiogenesis showed newly

formed sprouts beginning to branch around 4 days after their first appear-

ance [267]. Another study suggested that the division of TECs, and thus

creation of daughter branches from the original sprout, is initiated by the

inhibition of notch signalling [339]; this aligns with the converse negative

regulation of TEC formation caused by Dll4/Notch activation [150]. In a

further in vitro study, Anderson et al. placed VEGF-bound nanoparticles

within HUVEC-seeded fibrin gel and found that high density clusters of

the nanoparticles produced a greater number of endothelial tube branch

points than homogeneous distributions of soluble VEGF [11]. However,

these in vitro models are not able to capture the full spectrum of signalling

factors and environmental cues that new vessels are exposed to in vivo.

Studies of branching morphogenesis, embryonic sprouting and
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branching, can also provide clues as to the mechanisms behind sprout

branching. For example, Kearney et al. studied the impact of VEGF re-

ceptor VEGFR1 (Flt-1) on embryonic blood vessels via a gene knock out

study and found that the loss of VEGFR1 induced a decrease in vascular

branching [184], again suggesting a role for VEGF in branching. It seems

feasible that VEGF, which plays such an integral role in other areas of

angiogenesis, would also influence the degree of TEC branching; but the

effect of other factors and mechanical cues cannot be discounted.

Anastomosis, the joining of two vessels or sprouts, is a crucial part

of the development of connected and fully functioning vasculature. Yet

current understanding of the mechanisms behind anastomosis is less de-

veloped than understanding of the initiation of sprouting angiogenesis.

Two types of anastomosis can occur: tip-to-sprout, where a TEC collides

with a neighbouring sprout or vessel, or tip-to-tip, where a TEC joins with

another TEC.

Experimental evidence has suggested that filopodia play a role in anas-

tomosis, with ECs interacting via their filopodia prior to forming stable

contact. In embryonic zebrafish studies, Phng et al. reported that an ab-

sence of filopodia resulted in the loss of contact formation between ECs

[313], and Lenart et al. observed that filopodia contact occurred prior to

both tip-to-tip and tip-to-sprout anastomosis [215]. Other recent research

also suggests that ECs make transient contact with other sprouts prior to

stable anastomosis, and that the process is regulated by VEGFR1 [271]. This

again underlines the importance of VEGF across many aspects of sprouting

angiogenesis.

In the following section, this knowledge of the basic behaviours of

and relationships between the EC phenotypes involved in sprouting angio-

genesis is used to inform the structure of the discrete model angiogenesis

model.
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5.3 Development of a discrete model of sprouting

angiogenesis
As reviewed in Section 2.2, existing computational and mathematical mod-

els of angiogenesis range from simple continuum models with no spatial

component, to complex multiscale hybrid frameworks that encompass pro-

cesses ranging from the subcellular up to tissue scale interactions. The aim

of the model of angiogenesis described in this thesis is not to provide fur-

ther understanding of the underlying mechanisms behind sprouting an-

giogenesis, but rather to integrate current experimental knowledge of an-

giogenesis into a descriptive framework that will help to investigate the

effect of different cell seeding strategies, and thus different time dependent

VEGF distributions, on the rate, directionality and penetration distance of

vascular growth in the context of peripheral nerve repair.

For this reason, the influence of subcellular processes such as the se-

cretion of certain proteins and individual cell life cycles will not be incor-

porated into the framework, in contrast to previously published models by

Owen et al. [293, 294] and Perfahl et al. [307] which use differential equa-

tions to govern the internal processes of individual cells and track their

evolution through the cell cycle.

It is necessary only for this model to mimic the observed behaviour

of growing vasculature; consequently, the number of parameters and pro-

cesses incorporated was kept to a minimum to ease the implementation

and usability of the model. Previously published descriptive mathematical

frameworks, along with experimental evidence, are drawn upon to inform

the functional forms and parameters of the model: this is described in de-

tail in Sections 5.3.3, 5.3.4 and 5.3.5.

The key features of angiogenesis that this framework aims to capture

are as follows:

1. Initiation of sprouting angiogenesis via the selection of TECs from
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existing vessels. In the specific case of vascular growth into an NRC

as modelled here, this is represented simplistically by the creation

of TECs on the circular faces of the NRC geometry to reflect the in-

ward “invasion” of sprouts across the boundary of the NRC (Section

5.3.3.1).

2. The migration of TECs in response to VEGF gradients, sensed by

filopodia extending from the TECs, and the formation of nascent vas-

cular structures (vascular sprouts) composed of SECs (Sections 5.3.2

and 5.3.4).

3. Branching of sprouts to create the characteristic “tree-like” structure

of vasculature (Section 5.3.3.2).

4. Anastomosis of sprouts to form closed loop vessels. This can oc-

cur via “tip-to-sprout” anastomisis, where a TEC anastomises with a

nearby sprout, or “tip-to-tip” anastomosis, where two TECs collide

(Section 5.3.5.1).

5. Provision of oxygen to the engineered tissue by blood-perfused ves-

sels. Note that this element of the model involves direct feedback

between the discrete angiogenesis framework and the continuum cell-

solute model (Sections 5.3.5.2 and 5.4).

Thus there are some well-established elements of sprouting angiogenesis

that this framework omits. The time scale of sprouting angiogenesis in

peripheral nerve repair was an important consideration when identifying

which processes to incorporate into the model. As mentioned in Section

2.1.3, experimental work suggests that in the peripheral nerve repair setting

angiogenesis is initiated within 3 to 7 days [65, 103, 153, 304]. In line with

the simulations run in Chapter 4, the maximum length of time simulated

in this chapter is 5 days. Beyond this point it is expected that additional

factors such as vascular network pruning and remodelling, where vessels
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regress in response to shear stress and metabolic signals, would need to

be taken into account: the framework described here does not attempt to

capture these processes.

Another key aspect of sprouting angiogenesis that is not incorporated

into the framework described here is the impact of Dll4/Notch signalling

on the selection of TECs as reviewed in Section 5.2. Changes in EC phe-

notype or the exchange of positions between TECs and SECs within the

same sprout that have been observed experimentally are also neglected

[151, 167]. Inclusion of these processes would add detail and complexity to

the model that is unnecessary for the aims of this thesis.

Additionally, some previously published models have incorporated a

VEGF consumption term to represent VEGF binding to TECs [23, 166].

However, accurate values for VEGF binding rates are unknown. Further-

more, it is assumed that the rate of VEGF uptake by the relatively small

number of cells present in the sprouts will be negligible in comparison

to the rates of production by the seeded cells, and also the VEGF decay

rate. For these reasons, VEGF binding to ECs is neglected in this model,

although the framework could be adapted to include this aspect in the

future.

The impact of oxygen concentration on the ECs that make up the

sprouts, and their metabolism of oxygen, will also be neglected in this

model. Implicitly this assumes that oxygen has no impact on the viabil-

ity of the ECs; this assumption is based on studies that suggest that ECs

only show decreased viability when exposed to prolonged (>24h) severe

hypoxia (<5%) [27, 118, 362], and in fact increase in viability under expo-

sure to mild hypoxia. In general, evidence suggests that ECs are less prone

to cell death under hypoxic conditions than other cell types. The consump-

tion of oxygen by ECs is neglected using the reasoning that the density of

ECs modelled in this thesis is much less than the density of the therapeutic

cells; therefore, it is assumed that their impact on the oxygen local oxygen
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concentration will be negligible in comparison.

Finally, it is assumed that only TECs are sensitive to VEGF. In fact, ex-

perimental evidence shows that SECs also have a proliferative response to

VEGF dependent upon the concentration of the growth factor [134]. This

effect has been incorporated into previous models of angiogenesis by im-

posing sprout growth rates and branching probabilities that are dependent

on EC density [10, 23, 365]. However, here the EC density of the sprouts

is not tracked and sprout elongation is modelled by TEC migration alone,

without an explicit dependence upon the proliferation of the cells in the

body of the sprout. Instead, a dependence on VEGF concentration is in-

cluded into the branching probability distribution and the rate of TEC mi-

gration, with larger concentrations of VEGF inducing a higher probability

of branching as well as a greater speed of migration and therefore higher

rate of sprout elongation. This implicitly incorporates the effect of VEGF

on SEC proliferation and thus sprout elongation.

In the the following subsections, first of all the basic structure of the

mathematical model is outlined in Section 5.3.1, then details are provided

for the different components of the model in Sections 5.3.2, 5.3.3, 5.3.4 and

5.3.5, including explanations for the choice of parameters and functional

forms. The parameters used in the model are listed in Table 5.1. In Section

5.4, model simulation results are presented to explore the impact of differ-

ent cell seeding strategies, and corresponding VEGF distributions, on the

rate and directionality of vascularisation over time.



5.3. Development of a discrete model of sprouting angiogenesis 275

Sprouting angiogenesis model parameters

Spatial grid spacing ∆x = 10 µm

Time step length ∆t = 1 h

Filopodia sensing radius r f = 100 µm [134]

VEGF averaging radius ra = 20 µm

Maximum sprout formation
probability

smax = 8× 10−5 µm−1h−1

[347, 381]

TEC sprouting exclusion radius rex = 20 µm

Maximum branching
probability bmax = 0.001 h−1

Threshold age for branching Tbranch = 0.75 days [10]

Directional persistence angular
deviation parameter σ = π/6 [276, 381]

Maximum TEC migration rate
in absence of VEGF gradient Rmax = 20 µm/h [386]

Minimum TEC migration rate
in absence of VEGF gradient Rmin = 10 µm/h [386]

Anastomosis distance rana = 20 µm

Representative VEC sphere
radius rs = 3 µm

Concentration of oxygen in
blood cb = 10% [64]

Vessel wall thickness tv = 1 µm

Vessel radius rv = 5 µm

Vessel wall permeability
kw = 1.115× 10−12 µmol/(µm s
mmHg) [109]

Bunsen solubility coefficient
Bs = 1.27× 10−15 µmol/(µm3

mmHg) [109]

Table 5.1: Parameter values used for the model of sprouting angiogenesis.
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5.3.1 Overview of the structure of the discrete model

It was decided in Section 2.2 that a discrete framework should be used for

the angiogenesis model, motivated by the need to model the behaviour of

individual migrating TECs and to evaluate the morphology of vessels and

sprouts: a continuum approach would not provide the ability to assess ves-

sel directionality or tortuosity. The discrete framework uses the continuous

output of the cell-solute model as an input variable.

In this model, at every discrete time new TECs are formed at randomly

selected nodes on the circular faces of the cylindrical geometry, according

to a probability distribution of the local VEGF concentration, to simulate

the process of vascular sprouting. The subsequent growth of the vascular

sprouts is described using a discrete lattice-based approach in which vas-

cular sprouts are defined as the trace or “snail-trail” of the migrating TECs.

The TECs move via a random walk process biased according to directional

persistence and VEGF gradients (Section 5.3.4). The lattice is composed of

nodes on a regularly spaced grid with spacing ∆x = 10 µm (Figure 5.11c),

and the model operates in discrete time steps of length ∆t. The spatial lat-

tice spacing reflects both the diameter of endothelial cells, which is in the

range of 5 to 10 µm at their widest point [131], and the diameter of new

sprouts which has also been found to be between 5 and 10 µm in the early

stages of development [279], prior to exposure to flow and consequent vas-

cular adaptation.

The model features three cell types which exhibit different behaviour

according to the rules of the framework: TECs, SECs and vessel endothelial

cells (VECs). Note that VECs are not analogous to phalanx ECs, but instead

are used as a “placeholder” to denote the position of blood-perfused ves-

sels; SECs are re-labelled as VECs when they become part of a closed, blood

perfused vascular loop. Each EC occupies a single node and is assumed to

fill the corresponding cubic voxel surrounding it. Any variation or asym-

metry in the shapes and sizes of ECs or sprouts is neglected. Although all
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TEC migration is modelled by a random walk
biased towards increasing VEGF gradients.

TEC senses a sprout close by and anastomosis
occurs, leading to the formation of a vessel.

Tip endothelial cell (TEC)
Stalk endothelial cell (SEC)

Vessel endothelial cell (VEC)
VEGF gradient

Direction of migration

Two (or more) TECs collide; a vessel is formed,
and only one TEC continues to migrate.

A sprout can branch; a SEC
converts to a TEC phenotype
and begins to migrate along
with the original TEC.

a)

b)

c)

d)

Figure 5.1: Illustration of the key behaviours and cell type characteristics incorpo-
rated into the discrete model. TEC cells migrate across a 3D lattice;
here the diagrams are drawn in 2D for simplicity, but the same prin-
ciples apply in 3D. Note that the VEGF distribution is determined by
the cell-solute model and therefore varies over time.

three of these cell types would metabolise both oxygen and VEGF, these

effects are neglected as the total amount of VEGF and oxygen consump-

tion generated by the ECs would be negligible in comparison to the solute

changes brought about by the seeded cells.

Figure 5.1 conveys the main behaviours and roles of the cell types

within this mathematical framework. Nodes that have previously been oc-

cupied by TECs are subsequently assumed to be occupied by stalk endothe-

lial cells (SECs). Sprouts, defined here as unperfused chains of SECs led

by TECs, are formed and branch according to probability distributions that

are functions of local VEGF concentration (Section 5.3.3). Blood-perfused

vessels capable of delivering oxygen are created when TECs anastomise

with other TECs or SECs to form a closed vascular loop composed of VECs

(Section 5.3.5).
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Check for anastomosis.
Anastomosis occurs when any TEC collides

with another TEC or moves within a specified distance
of another sprout or vessel.

If a closed vascular loop has formed,
convert the nodes that make up the loop

to VECs to signal the creation of a
perfused vessel.

Perform branching of existing TECS
according to VEGF concentration.

(Create new TECs at locations
of existing TECs that have branched).

Perform sprouting at NRC face
according to VEGF concentration.

(Create new TECs at the NRC face).

For each TEC, find direction of migration
(dependent on VEGF gradients

and directional persistence).

Update TEC positions by performing migration
in the selected directions, at the calculated

speeds. Timestep �t = 1 hour.

For each TEC, calculate migration rate 
(dependent on VEGF gradients

and concentrations).

Calculate cell-solute
distributions using
continuum model

(Section 5.4.1)

Figure 5.2: Overview of the 3D sprouting angiogenesis model. Specific details of
the algorithms and functions used to carry out the three main pro-
cesses that make up the model- branching and sprouting, TEC migra-
tion and vessel formation- are provided in Sections 5.3.3, 5.3.4 and 5.3.5
respectively.
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At every time step, the model calculates whether new sprouts have oc-

curred at the circular faces of the NRC and whether TECs have branched,

updates the positions of the migrating TECs according to the directional

cue of the VEGF distribution, and determines whether anastomosis and

vessel formation have taken place (Figure 5.2). The angiogenesis model

is integrated with the cell-solute model: at each iteration the VEGF dis-

tribution over the geometry is calculated using the continuum cell-solute

model, and in turn the distributions produced by the cell-solute model are

influenced by changes in oxygen concentration caused by diffusion from

blood-perfused vessels, modelled in the discrete framework. The compu-

tational methods used to solve the model of angiogenesis and combine it

with the cell-solute model are described later in Section 5.4.1.

5.3.2 Tip endothelial cell sensing of VEGF

The formation of the vascular network in this framework is governed by

gradients and concentrations of VEGF. Work by Gerhardt et al. suggests

that TECs sense gradients of VEGF via the extension of filopodia [134];

therefore the model must include a mechanism to mimic this process. This

suggests the use of a filopodia sensing radius r f , which represents the

range of the filopodia and thus determines the distance from which each

TEC can sense VEGF.

In a previous model, Qutub and Popel restricted sensing of VEGF to

voxels adjacent to that occupied by a TEC [325], where each voxel has a

volume of 1 µm3; however, simulations run with this relatively small “sens-

ing radius” and without the incorporation of strong directional persistence

resulted in highly tortuous networks. The authors hypothesised that this

either underlines the importance of directional persistence mediated by the

structure of the extracellular matrix, or suggests that VEGF sensing should

occur over longer distances.

The latter explanation is corroborated by experimental data suggesting

that the filopodia of retinal endothelial cells have variable lengths predomi-
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Filopodia sensing radius
rf = 100 μm 

Si(t) = { x | | x − yi | ≤ rf }

x : coordinates of
       nodes within the 
       sensing radius{

a) b) 

VEGF gradient

v (x) : VEGF 
distribution 
evaluated at x

v (yi) : VEGF 
distribution 
evaluated at yi

The ith TEC, at
coordinate yi �v (x, yi) =

v (x) − v (yi)
| x − yi |

Figure 5.3: Model mechanism for VEGF sensing by tip endothelial cells. a) A
sphere in 3D space with radius r f is used to represent the set of nodes
that a TEC is able to sense via its filopodia. b) Representation in 2D of
the sensing radius of the ith TEC and TEC evaluation of VEGF gradi-
ents within the model. The same concept is extrapolated to 3D.

nantly within the range of 0 to 100 µm [134]. Other models of angiogenesis

have implicitly incorporated the effect of the filopodia by assuming that

TECs can sense VEGF concentrations and gradients within 10 µm [399] or

100 µm [347] of the cell body. In line with the results produced by Gerhardt

et al., in the current model the filopodia sensing radius parameter r f is set

at 100 µm.

Thus at each time point t, the ith TEC occupies a node with position

yi(t) in the 3D lattice, and can sense the VEGF concentrations at nodes in

the neighbourhood set Si defined by the sensing radius r f (Figure 5.3):

Si(t) = {x | |x− yi| ≤ r f }. (5.1)

The local concentration of VEGF v(yi, t) is the VEGF concentration

field evaluated at the position of the ith TEC at that time point. The gra-

dients of VEGF ∆v(x,yi) within each neighbourhood Si can be sensed by

TECs and are calculated as follows:

∆v(x,yi) =
v(x)− v(yi)

|x− yi|
∀ x ∈ Si. (5.2)

These variables are used to calculate the direction and rate of migration

of TECs, as explained in 5.3.4.
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No sprouting occurs
at this node

A new sprout is formed;
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the position of a new TEC
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the exclusion radius rex? 

2) Generate random number X between 0 and 1

1) Calculate probability of sprouting Psprout(v):
a function of the local VEGF concentration.

Yes 

No 
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the location of this TEC

No 

Yes 

Branching occurs: a second
TEC is formed at the same

location as the originalIs Pbranch(v) > X ?  

2) Generate random number X between 0 and 1

1) Calculate probability of branching Pbranch(v):
a function of the local VEGF concentration.

Is the “age” of the sprout led
by this TEC > Tbranch ,

the threshold age for branching?

Figure 5.4: Flow diagram of the vessel sprouting and branching algorithms.

5.3.3 Sprout formation and branching

5.3.3.1 Sprout formation

There has been some debate about whether the direction of revascularisation-

and therefore the origin of new vascular sprouts- during peripheral nerve

repair is predominantly lateral (originating from the tissue bed and grow-

ing inwards from the sides of an approximately cylindrical graft or NRC)

or longitudinal (originating from the stumps at either end of a graft or

NRC, as shown in Figure 2.1), or some more equal combination of the two.

Early studies found that some vascularisation did originate laterally

from the tissue bed when nerve grafts were used to repair rabbit sciatic and

tibial nerve injuries [7, 304] and dog sciatic nerve injuries [377]. However,

in some of these studies it was found that vascularisation also occurred

longitudinally, with Algren et al. noting that vessel ingrowth from the

ends of grafts appeared to precede that from the surrounding tissue in
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some cases. In 2002, Hobson et al. also observed vascularisation from both

the surrounding muscle bed and the proximal and distal nerve stumps in

rat sciatic nerve injuries repaired using tubular fibronectin conduits [153].

However, for the model presented in this thesis it is assumed that due

to the use of a protective sheath vascularisation will occur only longitudi-

nally, via sprouting from the distal and proximal ends. This assumption is

based upon studies that have used capped [42] and entubulated [322] grafts

which demonstrate that impermeable materials such as silastic tubing can

effectively block vascularisation.

The time scale of the simulations conducted in this thesis is 0 to 5

days, and previous work has assumed that a degree of vascular maturity

is required prior to the formation of additional sprouts from the newly

developed perfuse vessels: for example, in their model McDougall et al.

introduced a minimum vessel age threshold of 4 days for vascular sprout-

ing [250]. Therefore in this thesis it is assumed that any new vessels

formed during each simulation will remain too immature to produce fur-

ther sprouts; therefore sprouting in the current model occurs only from the

circular faces of the NRC, representing the inward invasion of new sprouts

that have formed from existing vessels residing outside of the NRC con-

struct. The incorporation of sprouting from newly formed vessels could be

incorporated into future iterations of the model via some relatively simple

adaptations.

In the model presented here, a probability distribution is implemented

that at each time step determines the probability of sprouting occuring,

represented by the formation of a new TEC, at each of the nodes located

on the circular faces (Figure 5.11c). The use of a sprouting probability

distribution is widespread among existing theoretical models [250, 293, 307,

347, 381], although there is considerable variation in the forms of these

probability distributions and the variables that they take into account.

For example, McDougall et al. determined that vessel sprouting could
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not take place unless the stimuli of wall shear stress induced by blood

flow was present, and then the probability of sprouting was set to increase

linearly with the degree of wall shear stress [250]. However, vascular adap-

tation and explicit modelling of blood flow is not included in the current

framework.

The other important variable often included in models of vascular

sprouting is growth factor concentration. As reviewed in Sections 2.1.3 and

5.2, VEGF plays a critical role in initiating sprouting angiogenesis. This

motivates the use of a sprouting probability distribution that is a function

of VEGF. Due to the boundary conditions applied to the cylindrical NRC

geometry described in Section 4.3.1, the VEGF concentration on the circu-

lar faces of the geometry is always 0 ng/ml. However, this is where the

initial sprouting occurs. Therefore for each node on these circular faces,

the average of the non-zero VEGF concentrations at local nodes (within a

specified averaging radius ra = 20 µm) is taken as the value of v(yi) and

used to determine the probability of sprouting and to calculate the gradi-

ents in the surrounding directions as per Equation (5.2), as opposed to the

concentration at the node itself.

A key parameter that features in many sprouting models is a thresh-

old VEGF concentration required for sprouting. Secomb et al. [347] used a

value of 0.8 nM for this, approximately equivalent to 37 ng/ml. However,

results published by Chen et al. and Nakatsu et al. suggest that sprout-

ing can occur upon exposure to much lower VEGF concentrations of 1 to

35 ng/ml [72, 268]; therefore the current model does not impose a VEGF

threshold for sprouting, instead using a probability distribution to ensure

that very low VEGF concentrations result in a lower chance of sprouting.

The exact form of this probability distribution was informed by some

experimental studies which have sought to quantify the relationship be-

tween VEGF and EC sprouting. A 3D in vitro model was used by Chen et

al. to measure VEGF-induced MEC sprouting from beads in a fibrin gel
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Figure 5.5: Probability of sprout occurrence Psprout at any node on the NRC circu-
lar face as a function of the local VEGF concentration v over one time
step. Here parameter values of mesh size ∆x = 10 µm and time step
∆t = 1 hour were used to calculate the values of the function Psprout.

[72]. The authors found that although some sprouting occurred when the

beads were exposed to low VEGF concentration (5 to 10 ng/ml), a peak

in the number of sprouts was observed at around 100 ng/ml. Beyond this

concentration, the number of sprouts declined until reaching similar levels

at 250 to 300 ng/ml as recorded for 0 to 50 ng/ml.

Conversely, work by Shamloo et al. suggests that the dependence of

sprouting upon VEGF concentration is sigmoidal [350]. In this study, beads

coated with adult human dermal microvascular ECs were seeded in colla-

gen matrices of varying densities and exposed to gradients and concentra-

tions of VEGF via a microfludic device. Some sprouting was observed at

VEGF concentrations of 25 ng/ml and a saturation threshold of around 125

ng/ml of VEGF. However, concentrations of less than 25 ng/ml or greater

than 175 ng/ml were not tested. In approximate agreement with Chen et

al., the optimal concentration for sprouting was 125 ng/ml.

The functional form of the sprouting probability distribution (Figure

5.5) used in the model presented in this thesis is based upon the in vitro
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data presented by Chen et al.:

Psprout(v) =


(1.161e−7v3 − 1.047e−4v2 + 0.0192v)smax∆t∆x

v ≤ 240 ng/ml,

Psprout(240), v > 240 ng/ml.

(5.3)

The value at which the probability of sprouting achieves its maximum is

v ≈ 113 ng/ml, which is within the range of the values found in the two

previously mentioned experimental studies.

The maximum sprout formation probability smax = 8× 10−5 µm−1h−1

is assigned in line with previous computational studies [347, 381]. This

value of smax approximates the probability of sprout formation per unit

length of existing vessel per hour based upon experimental data measured

in the rat cornea [356]. Thus these values assume that sprouting occurs

from existing vasculature; however, in the peripheral nerve repair scenario

modelled in the current thesis, the positioning of existing vasculature is

unknown. Instead, it is assumed that sprouting could occur from any node

at located at the stump interface (nodes on the circular face of the cylin-

drical geometry), and the parameter for vessel length is replaced with the

grid spacing parameter ∆x. Values for the approximate rate of sprouting

that are specific to peripheral nerve repair could be obtained via future

experimentation.

Finally, a TEC sprouting exclusion radius rex = 20 µm is used to reflect

the fact that new TECs (and thus sprouts) do not form in close proximity to

each other. Thus at each time step, new sprouts are unable to form within

this distance of the base of an existing sprout on the circular face of the

NRC. Figure 5.4 shows the complete algorithm used to determine at which

nodes new TECs form on each iteration.
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5.3.3.2 Sprout branching

Similarly to vascular sprouting, in existing models probability distribution

functions that depend on a range of different variables have been imple-

mented to describe TEC branching: the same approach is taken in this

thesis.

Milde et al. implemented a method of sprout branching that imposes

TEC branching events when the local anisotropy in the joint directional

cue provided by VEGF and fibronectin gradients and collagen fibers ex-

ceeds a certain threshold [260], thus combining chemotactic, haptotactic

and mechanical cues. Similarly, Sun et al. included a thresholding condi-

tion upon the perpendicular component of the velocity vector of the TECs,

which is dependent upon the directionality of the ECM as well as chemo-

tactic growth factors [369]. Other models have also applied a minimum EC

density condition on TEC branching [10, 365].

For the purposes of this thesis, the effects of mechanical forces and

cues generated by the structure of the NRC are not considered, with the

expectation that these effects could be integrated into the framework at

a later date. Similarly to the sprouting probability distribution, here the

branching probability distribution is therefore set as a function of the local

VEGF concentration only: due to a lack of quantitative experimental evi-

dence on the exact nature of the relationship between VEGF and branching,

the shape of this function is informed by previous computational work.

Previously, models of cancerous vascular growth in response to generic

tumour angiogenic factors (TAFs), which include VEGF, have defined the

TEC branching probability to be an increasing function of the local TAF

concentration [249, 363]. This is motivated by the observation of increased

branching frequency at the edge of vascular networks in close proximity to

tumours, dubbed the “brush border effect”.

Some models of developmental and wound healing angiogenesis have

also included TEC branching probability distributions that are increasing
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Figure 5.6: TEC branching probability Pbranch as a function of VEGF concentration
v, over a time step of length ∆t = 1 hour.

functions of VEGF concentration [251, 406], although it appears that the

precise functional forms of these relationships have not been based on any

experimental evidence.

The branching probability distribution function (Figure 5.6) used in

the current framework is defined as follows:

Pbranch(v) = bmax∆t tanh (v/100), (5.4)

where bmax is the maximum probability of branching per hour and v = v(y)

is the local VEGF concentration in ng/ml for a TEC at a node with coordi-

nates y. As in the previously mentioned models, the functional form of this

relationship is not based on experimental data and is a good candidate for

further refinement in the future. The value of bmax = 0.001 was estimated

in order to produce qualitatively realistic sprout morphology, but further

quantitative parameterisation against experimental data would be useful

for future work.

Additionally, in the model presented in this thesis the parent sprout

of a TEC must exceed a threshold age before branching becomes possible

to prevent unphysiological premature branching. Estimates for this thresh-

old age used by previous mathematical models lie in a range of 0.71 to 2.1

days [10, 251, 260, 369, 406]. As per the model developed by Anderson

and Chaplain, a value of Tbranch = 0.75 days was chosen for use in the cur-
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rent model [10]. Previously this value was shown to produce qualitatively

similar morphologies to in vivo networks.

During a TEC branching event, a secondary TEC forms at the node

location of the TEC that has branched (Figure 5.1). In the subsequent TEC

migration step, the primary TEC continues to migrates as before (governed

by the functions set out in Section 5.3.4.2), whereas the direction of move-

ment of the secondary TEC is restricted to directions that form an angle

of 90deg with the previous direction of growth of the parent TEC. The

age of secondary TEC sprouts is set to zero when they are first formed,

thus permitting them to branch again only once the age threshold has been

exceeded for a second time.

5.3.4 Tip endothelial cell migration

5.3.4.1 Biological background

The direction and rate of TEC migration is influenced by haptotactic,

mechanotactic and chemotactic cues [204]. Haptotaxis is the directional

movement of cells in response to gradients of ECM proteins. In the context

of EC migration, in vitro evidence suggests that gradients of fibronectin

can induce directional cellular motion [359], and that collagen density may

affect EC spreading and migration speed [159]. Other material aspects of

engineered tissues such as collagen fibril alignment have also been shown

to affect the directionality of EC migration [203], and previous models of

angiogenesis have included terms that allow the ECM to influence the di-

rection of TEC migration [93, 369].

Experimental results also indicate that fluid shear stress has an influ-

ence on the migration of TECs [385, 386]; Albuquerque et al. found that

exposure to shear stress increased the degree of endothelial cell wound clo-

sure in vitro and induced faster cell migration velocities than in the static

case [5]. Additionally, fluid shear stress may act as a directional guidance

cue for migrating ECs [292].

However, the influence of chemotactic, not haptotactic or mechanotac-
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tic, cues are the focus of this thesis. In line with the continuum cell-solute

model presented in Chapter 3, the influence of shear forces caused by fluid

flow is neglected in this model and the effect of cues provided by the col-

lagen EngNT is restricted in this framework to the incorporation of direc-

tional persistence (as described later in Equation (5.9)). It is assumed that

the structural properties of the engineered tissue are homogeneous and

have no effect on TEC migration speeds or directions. The incorporation of

these aspects would be a natural next step for this integrated mathematical

framework for modelling peripheral nerve repair.

As reviewed in Section 2.1.3, it is well established that EC migration

during angiogenesis is regulated by angiogenic factors, with VEGF being

the most studied and likely the most important chemoattractant [31, 282,

335, 413]. The effect of VEGF on the migration of ECs can be separated

into chemotaxis, the directional response that prompts the cells to move

towards higher concentrations of the growth factor, and chemokinesis, a

more general non-directional change in migratory behaviour that includes

changes in the speed of migration.

Microfluidic chemotaxis chambers have been used to study chemotaxis

in vitro. For example, Barkefors et al. used such a chamber to study the

migratory response of HUVECs and human umbilical cord vein endothe-

lial cells (HUVECs) to “hill-shaped” gradients of VEGF and FGF2 [31].

These stable symmetrical gradients were created via the use of different

flow rates, and closely resemble the gradients that arise during simula-

tion of NRCs in this thesis (for example in Figure 4.9), with a pronounced

maxima in the middle of the channel.

The movement of individual cells was tracked via time lapse mi-

croscopy over 200 minutes, and the authors found that decreasing the

steepness of gradients of VEGF165 resulted in a reduced chemotactic re-

sponse of the HUVECs. The highest chemotactic response was induced by

a gradient ranging from 0 to 50 ng/ml over the same distance (an average
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of 0.125 ng/ml/µm), although steeper gradients than this were not studied.

A similarly steep gradient of VEGF121 also induced positive chemotaxis, al-

though at a slower rate. Conversely, upon the use of a gradient of VEGF165

that increased from 6 ng/ml to 27 ng/ml over 400 µm (an average of 0.0525

ng/ml/µm), the movement of the cells appeared to become close to ran-

dom migration.

In a set of similar experiments, Shamloo et al. found that a gradient of

0.002 ng/ml/µm resulted in no chemotaxis of HUVECs in 2D regardless

of whether the absolute VEGF concentration used was low (20 ng/ml) or

high (30 ng/ml), whereas a steeper gradient of 0.014 ng/ml/µm did induce

chemotaxis [351].

Additionally, in their study of MEC sprouting in 3D [72], Chen et al.

found that sprout alignment increased with increasing VEGF concentra-

tion gradients. Gradients of over 0.025 ng/ml/µm induced the greatest

percentage of aligned sprouts.

Overall, these papers suggest that steeper gradients of VEGF induce a

more pronounced directional chemotactic response in migrating ECs. They

also provide evidence that there could exist a threshold gradient steepness

(in the approximate range of 0.014 ng/ml/µm to 0.0525 ng/ml/µm) below

which EC movement is close to random migration. The work of Chen et

al. also shows a sigmoidal relationship between the gradient steepness and

the % of aligned sprouts. These pieces of evidence can be used to inform

the choice of functional forms used to model chemotaxis in the theoretical

model. However, some of these studies track the migration of ECs in 2D

only, and further work to clarify the relationship between VEGF and EC

migration in 3D would be desirable [48].

Recently, gradients of oxygen have also been found to induce direc-

tional EC migration, with cells moving preferentially towards areas of low

oxygen concentration [352]. This study was also carried out using a mi-

crofluidic cell migration assay using gradients of approximately 18%/mm.
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However, to reduce model complexity the chemotactic effect of oxygen will

not be included in the current model. It is assumed that this will not impact

the overall outcomes of the model because areas of low oxygen generally

coincide with areas of high VEGF, as demonstrated later in Figure 5.15.

Furthermore, there has been no experimental work to examine how com-

binations of VEGF and oxygen gradients could affect EC migration.

It has also been demonstrated that EC migration is directionally per-

sistent over time. In their study on the effect of fibronectin gradients on

EC migration, Smith et al. also measured the persistence time of the cells,

defined as the amount of time ECs would migrate in one direction before

turning [359]. This metric was found to be unaffected by the fibronectin

gradients, remaining at around 1.1 hours. Although this value was derived

via in vitro experimentation and therefore may not represent the persis-

tence time in vivo, it does give a useful approximation as to how long it is

expected that the ECs should travel in a single direction, and motivates the

use of a time step ∆t of around 1 hour.

Aside from directionality, the other important aspect of cell migration

in this descriptive model is the speed at which the cells move. The effect of

VEGF concentrations and gradients on the rate of cell migration has also

been recorded in in vitro studies.

The impact of VEGF165 on the chemokinesis of HUVECs was assessed

by Barkefors et al. by measuring the total 2D distance migrated by the

cells [31]. In the absence of flow, a constant concentration of 50 ng/ml

of VEGF165 caused a reduction in the total migration distance achieved

over the time of 200 minutes, resulting in an approximate mean migration

speed of 27 µm/h, as compared to a control with no VEGF stimulation,

which achieved a mean speed of 42 µm/h.

Conversely, a gradient of 0-50 ng/ml of VEGF165 created via the use

of fluid flow induced a migration speed similar to that of the control (ap-

proximately 42 µm/h). Additionally, the authors found that the rate of
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chemotaxis was highest in the region where the gradient was approxi-

mately exponential (at the lower end of the gradient) as opposed to the

linear region (close to the peak of the gradient).

In contrast to the findings of Barkefors et al., van der Meer et al. found

that the migration rate of HUVECs in a microfluidic wound healing as-

say was significantly higher (approximately 18 µm/h) upon exposure to

VEGF165 at a concentration of 100 ng/ml than in a control wound as-

say with no VEGF application (approximately 13 µm/h) [386]. They also

demonstrated that a gradient of 100 ng/ml of VEGF165 across a distance of

150 µm (an average gradient of 0.667 ng/ml/µm) resulted in a 30% increase

in the migration rate of the cells when compared to the uniform application

of 100 ng/ml of VEGF [386]. Lastly, Li et al. measured migration speeds of

around 12 to 30 µm/h for EC on micropatterned collagen matrices [219].

These values are used in the next section to estimate functional forms for

the TEC migration mathematical framework.

5.3.4.2 Model formulation

TEC migration direction

In this model, chemotactic effects and directional persistence con-

tribute to the directionality of TEC migration: the direction of migration

taken by each cell at each time step is determined by a probability distri-

bution function dependent on the VEGF gradients sensed by the filopodia

(Section 5.3.2) and the direction taken by each cell at the previous time step.

Both experimental evidence and the approaches taken by previous models

have been used to inform the exact functional form of this probability dis-

tribution.

The effects of VEGF-induced directional chemotaxis and persistence

are combined multiplicatively as follows to calculate the probability of the

ith TEC moving in the direction of the node within the local neighbourhood
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Figure 5.7: Flow diagram of TEC migration algorithm.

Si (as defined by Equation (5.1)) with coordinates x:

Pi
dir(x) =

Pi
v(x)Pi

p(x)
NSi
∑

j=1
Pi

v(xj)Pi
p(xj)

∀ x ∈ Si , (5.5)

where Pi
v is the chemotactic component dependent on the VEGF gradient,

and Pi
p is the directional persistence component, which is dependent on the

unit vector in the direction taken by the TEC at the time step at which it last

moved. Here NSi denotes the number of nodes within the neighbourhood

Si; thus the probabilities Pi
dir are normalised such that their sum is equal to

1.

The probabilities Pi
dir are converted into a cumulative distribution

function which is used to select the direction of movement for each TEC

via the generation of a uniformly distributed random variable X. The unit
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vector for the direction of migration of the ith TEC at time t, denoted di
t,

can be expressed as

di
t =

xk − yi(t)
|xk − yi(t)|

, (5.6)

where xk is the node within the neighbourhood Si selected at time t via the

cumulative distribution as follows:

k−1

∑
j=1

Pi
dir(xj) < X ≤

k

∑
j=1

Pi
dir(xj). (5.7)

The chemotactic component Pi
v is based on the experimental studies of EC

chemotaxis in response to VEGF gradients:

Pi
v(x) = exp (50∆v(x,yi)). (5.8)

Here ∆v(x,yi) is the gradient of VEGF between the current position of the

ith TEC yi and the position of the node at x, as defined in Equation (5.2).

The exponential functional form ensures that TEC movement is weighted

towards the steepest gradients of VEGF, and also dictates that as the value

of the maximum local VEGF gradient increases the relative weighting in

that direction in comparison to the alternative directions also increases.

This effect is induced by the increasing gradient of the exponential func-

tion. Note that if the VEGF gradient is similar in all directions, the weight-

ing will be almost uniform across opposing directions.

Directional persistence is included via the following term (Figure 5.8):

Pi
p(x) =

exp (cos (θi(x))/σ2)

exp (1/σ2)
∀ x ∈ Si , (5.9)

where θi(x) = arccos
di

t−1 · (x− yi)

|di
t−1| · |x− yi|

. (5.10)

Here θi(x) is the angle between the previous migration vector for the ith

TEC, di
t−1 = yi(t)− yi(t− 1), and the prospective migration vector in the

direction of the node at position x. Here a value of σ = π/6 is assigned, lim-
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Figure 5.8: a) Chemotaxis function dictates that TEC migration will be biased to-
wards the highest gradients of VEGF. b) The persistence function en-
sures that the probability of a TEC changing its direction of migration
by a very large angle remains low or, in the case of complete reversals
of direction, zero. This limits the degree of sprout tortuosity.

iting the angular deviation of sprout direction to between approximately

π/2 and −π/2, as per previous theoretical models [276, 381]. This term

prevents unphysiological vascular tortuosity.

If the TEC has been formed via branching at the current time step, then

the direction of migration is limited to directions that form a 90° angle with

dt−1, the migration direction of the parent TEC at the previous time step.

This is to avoid collision of the two TECs that are within close proximity to

each other after a branching event.

Other models of EC chemotaxis in response to VEGF have also incor-

porated the effect of VEGF receptor saturation [166, 260], in which the cells’

ability to sense VEGF gradients decreases when their receptors become oc-

cupied. This aspect could be considered in future extensions of the model

but will not be included here.

TEC migration speed

Previous models have implemented various types of functional forms

and mechanisms to represent the migration speed of ECs or vascular sprout

growth rates. Anderson and Chaplain, and later other authors, used a

diffusion coefficient approximately equivalent to a migration speed of 8.5
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is reached at v(y) = 100 ng/ml. b) TEC migration rate multiplier func-
tion Rg increases the rate of migration according to the VEGF gradient
in the direction of migration.

µm/h to model the random motility of capillary tips [10, 23, 251].

Tong and Yuan defined the sprout elongation rate to be dependent

on the local angiogenic factor concentration, with a threshold concentra-

tion required for elongation for take place [381]. In this case, as the local

concentration increases beyond the threshold, the rate of sprout elongation

also increases, until reaching a maximum rate set at 20 µm/h.

Qutub and Popel set a maximum velocity of 6.2 µm/h in the absence

of VEGF [325]. In the presence of VEGF, the migration rate was set to

be proportional to the VEGF concentration, Rs = 6.2 + 0.4v µm/h. Other

parameter values used for the migration rate of ECs or speed of capillary

sprout growth in existing models range from around 2 µm/h to 40 µm/h

[28, 276, 347, 366, 399]

In this model, the rate of migration Rs(v(y),∆v) is defined as a function

of both the VEGF concentration evaluated at the TEC’s position prior to mi-

gration v(y), and the VEGF gradient in the direction of movement, which is

chosen prior to the migration step according to the probability distribution

defined in Equation (5.5). In the absence of a gradient of VEGF in the direc-

tion of movement, the rate of TEC migration R0(v(y)) = Rs(v(y),∆v = 0)
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depends only on the local concentration of VEGF with a minimum rate

Rmin = 10 µm/h at v = 0 ng/ml and a maximum rate Rmax = 20 µm/h:

R0(v(y)) =

 Rmin +
Rmax−Rmin

100 v(y), v(y) < 100 ng/ml,

Rmax , v(y) ≥ 100 ng/ml.
(5.11)

This formulation is based upon the work of van der Meer et al. [386] and

the functional form used by Qutub and Popel [325]; however, conflicting

evidence provided by Barkefors et al. suggests that constant concentrations

of VEGF result in slower migration speeds than no VEGF at all.

In the presence of a VEGF gradient in the direction that has been cho-

sen for migration, this function is multiplied by an amount dependent on

the steepness of the gradient to mimic the experimentally observed increase

in migration speed induced by gradients of VEGF:

Rg(∆v) =
tanh (5∆v) + (1/0.3)

1/0.3
, (5.12)

⇒ Rs(v(y),∆v) = R0(v(y))Rg(∆v) . (5.13)

The function Rg(∆v) creates a maximum increase in the speed of migration

of up to 30% of the baseline values determined by R0(v(y)) as the VEGF

gradient increases, as demonstrated in Figure 5.9. This is in line with the

work conducted by van der Meer et al. [386]. It is assumed that TEC

velocity is unaffected by its attachment to the rest of the sprout, or other

mechanical forces generated by the surrounding matrix.

Calculation of new TEC positions

At each time step, the new position of each TEC is calculated firstly by

multiplying the rate of migration by the time step size to find the distance

travelled, and then multiplying that by the direction unit vector dt to find

the next location of the TEC:

y′i(t + ∆t) = yi(t) + di
t · Rs(v(yi(t)),∆v(xk,yi(t)) · ∆t. (5.14)
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Figure 5.10: Flow diagram of anastomosis and vessel formation algorithm.

The precise coordinates y′i(t + ∆t) are then mapped to the closest node in

the discrete lattice, to provide the location of the TEC at the next time step,

yi(t + ∆t).

TEC migration is limited to the bounds of the geometry representing

the collagen NRC; TECs cannot migrate out of the NRC. This represents the

use of a sheath with a pore size that does not permit cellular infiltration.

Thus when a TEC is located near the outer edge of the NRC geometry, its

directional migration is biased towards the inside of the cylinder because

it cannot sense nodes beyond the bounds of the NRC.

5.3.5 Anastomosis and oxygen provision

5.3.5.1 Anastomosis and perfuse vessel formation

The descriptive model of angiogenesis described here does not attempt to

capture the complex interactions that occur between cells during anastomo-

sis. Instead it is simply assumed that anastomisation takes place if a TEC

comes within rana = 20 µm of another SEC or TEC. This mechanism was
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introduced because the current model is simulated in three dimensions,

which significantly decreases the likelihood of TECs colliding directly. In

contrast to this, Secomb et al. countered this problem by incorporating

an additional bias into their theoretical model of TEC migration that al-

lows TECs to sense the presence of other ECs and migrate towards them

[347]; this mechanism is not included into the current model but could be

incorporated in the future.

In the current framework, when tip-to-sprout anastomosis occurs the

colliding TEC stops migrating and changes type to SEC or VEC. In tip-to-

tip anastomosis, one of the colliding TECs is chosen at random to continue

migration; the other is considered to have anastomised and changes phe-

notype (Figure 5.1).

If an anastomisation event has occured between two cells from differ-

ent “branches” of the network, a closed vascular loop is created (Figure 5.1)

and all SECs that make up the loop are converted to VECs to form a vessel.

A closed loop is defined as a pathway of ECs that has two root nodes on

the circular face of the NRC, thus theoretically permitting flow in and out

of the system.

In this model, it is assumed that upon creation of a closed loop all of

the connected vessels are immediately perfused with blood and are then

able to deliver oxygen to the surrounding tissue. Many existing models of

angiogenesis incorporate the transport of oxygen via blood flow, but for

simplicity this aspect is neglected in the current framework. Instead, it is

assumed that once a vessel is formed, the oxygen concentration in blood

remains at a constant value, cb = 10% [64]. This means that the model does

not take into account other factors that influence oxygen delivery via blood

flow, including the vessel radius. However, this does allow the framework

to illustrate the qualitative spatial effects that functional blood vessels can

have on cell survival and distributions of oxygen within engineered tissue

NRCs over time.
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5.3.5.2 Oxygen delivery to surrounding tissue

One of the first attempts at using mathematics to describe the delivery of

oxygen to tissue via microvasculature was the “cylinder model” developed

by Krogh in 1919 [197]. In this model the capillaries are assumed to be

evenly spaced and running parallel to each other as part of an array, with

each capillary supplying oxygen to a cylinder of tissue surrounding it. A

zero flux condition is imposed on the outer edge of the cylinder and thus

each volume of tissue is supplied with oxygen by one capillary only.

The assumption that the capillaries are structured in this way was

based on the observation that the arrangement of capillaries within mus-

cular tissue is largely regular, with vessels running mostly in parallel to

each other with some cross linking. In fact, similar patterns of vasculature

are also observed in the peripheral nerve, with vessels mainly running in

the lengthwise direction of the nervous tissue [227]. However, although the

patterning of vasculature in the peripheral nerve appears regular in com-

parison to other tissues it would still be unusual to observe uniform spac-

ing of capillaries. Furthermore, the Krogh model assumes no longitudinal

diffusion of oxygen (only radial), is time-independent, and does not take

into account variations in oxygen consumption across tissue, meaning that

it provides a poor fit to the previously described continuum model of cell-

solute interactions. Nevertheless, this model has been adapted, extended

and used to simulate oxygen delivery in a range of scenarios [195, 320].

When working with a complex vascular geometry that does not neces-

sarily conform to the regular assumption, the provision of oxygen can be

modelled through a flux boundary condition applied on the vessel surface.

The difficulty then is solving this in combination with the oxygen govern-

ing equation, which describes diffusion and consumption in the surround-

ing tissue.

Secomb and Hsu developed a Green’s function method to aid the sim-

ulation of oxygen delivery to tissue from 3D vascular networks [158, 345,
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346]. In these papers, the vascular geometries mapped from imaging data

are divided into many short segments and Green’s functions are used to

described the oxygen concentration fields caused by a series of oxygen

sources on the surface of each vessel segment, whereas oxygen consump-

tion in the tissue is modelled by a series of sinks. A method of iteration

is used to ensure that the supersition of the fields created by these sources

and sinks satisfy boundary conditions and conservation laws.

However, this method is relatively mathematically complex and diffi-

cult to integrate into the the existing continuum model of cell-solute inter-

actions. Alternatively, the finite element methods that were used in Chap-

ters 3 and 4 to solve the cell-solute model within COMSOL can also be

used to simulate the delivery of oxygen via the application of flux bound-

ary conditions as sources of oxygen into the tissue domain on the vessel

walls. However, Secomb et al. did caution that a finite element approach

can result in slower computation times than the Green’s function method

due to the need to use a relatively fine mesh to allow accurate calculation

of the steep gradients that can occur in the region of vessels [346]. Never-

theless, it was decided that this was the best method considering that the

vascular networks were not expected to be particularly dense and that the

dimensions of the NRC geometry are relatively small.

In the current mathematical framework, vessels that have formed via

the anastomisation of sprouts are recorded in the discrete angiogenesis

framework as a network of nodes across the three dimensional space of

the NRC. Within the cell-solute model, the supply of oxygen provided by

each segment of vessel of length lv is then represented by spherical oxygen

sources located at these node locations (Figure 5.11). Spheres were used

instead of cylindrical segments to simplify the process of geometry creation

and meshing in COMSOL.

To ensure that the total flux of oxygen into the tissue provided by each

sphere is approximately equal to that provided by the vessel segment it
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represents, the ratio of the spherical surface to the surface are of a cylin-

drical vessel segment is incorporated into the expression for the diffusive

oxygen flux across the vessel wall governed by Fick’s law:

J =
2πrvlv
4πr2

s
kw

c− cb
Bstv

. (5.15)

Here rv is the vessel radius, rs is the radius of each representative sphere,

kw is the vessel wall permeability, tv is the thickness of the vessel walls, and

Bs is the Bunsen solubility coefficient [109]. The parameter values used are

listed in Table 5.1. The concentration of oxygen in the blood is represented

by cb, and as previously mentioned for simplicity this value is assumed to

be uniform and constant across all the vessels over time. This does not take

into account any chemical reactions taking place within the blood.

5.4 Angiogenesis model simulations

5.4.1 Computational methods

The model of angiogenesis was programmed in MATLAB and run in it-

eration with the previously described continuum cell-solute model (Figure

5.11a) using the LiveLink for MATLAB product by COMSOL Multiphysics,

which allows MATLAB scripting to be integrated with COMSOL simu-

lations. Iteration between the continuous cell-solute model and the dis-

crete angiogenesis was facilitated by the separation of timescales between

these two processes: the migration of endothelial cells occurs on a longer

timescale than solute diffusion. This can be seen by comparing the mini-

mum EC migration rate used in this model, 10 µm/h or 2.78× 10−7 cm/s,

with the rate of diffusion of oxygen through collagen gel, 4.5× 10−6 cm2/s.

Initial and boundary conditions for the continuum model were applied

as described previously in Section 4.3.1. As shown in Figure 5.11a, the

hybrid model begins with the continuum model simulation. This is because

Equation (5.3) dictates that no angiogenic sprouting can take place when
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Figure 5.11: a) Hybrid model flow diagram demonstrating the feedback loop be-
tween the cell-solute model and the angiogenesis model. The hy-
brid model iterates between the two frameworks at each time step
according to this diagram. b) Geometry and mesh generated within
COMSOL for simulation of the continuum cell-solute model. Mesh
refinement is carried out in the region of the vessel structures. c) Lat-
tice used to simulate the angiogenesis model. The lattice covers one
end of the NRC geometry and extends a total length of 5 mm: a trun-
cated version of the lattice with length 200 µm is shown here, along
with the cross section to demonstrate the density of the lattice.

v = 0, and v = 0 is used as a uniform initial condition for VEGF across

the construct geometry. A time step of ∆t = 1h was chosen because this

permits the discrete model to simulate TEC migration on a relatively fine

scale, but doesn’t prohibit the time taken to run each simulation.

Different meshes were used for the continuous model, run using COM-

SOL, and the discrete model, run using MATLAB, to decrease the time
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required for the simulations to complete and to match the required spa-

tial scales. For simulation of the discrete angiogenesis model in MATLAB,

the mesh consisted of a regularly spaced lattice with spacing ∆x = 10 µm.

As previously mentioned in Section 5.3.1, this reflects the diameter of en-

dothelial cells and new sprouts. Additionally, this mesh size facilitates the

minimum migration rate of 10 µm/h outlined in Section 5.3.4.2 when used

in combination with a discrete time step size of ∆t = 1h. Further refinement

of the vascular model mesh would be computationally prohibitive.

The COMSOL mesh was initialised with a maximum element size of

0.006 m. In this mathematical framework, feedback occurs from the dis-

crete model to the continuous model only once vessels have formed, at

which point the vessel nodes are defined as spherical sources of oxygen

within the continuous COMSOL model. The formation of vessels requires

further localised mesh refinement in COMSOL due to the small scale of the

spherical vessel structures (6 µm diameter). Therefore after the first occur-

rence of vessel formation, the COMSOL geometry is partitioned such that

the mesh size in the region of the oxygen sources can be refined, leaving

the rest of geometry with the original, relatively course mesh to mitigate

the required increase in computational time (Figure 5.11b). The mesh in

the refined region was assigned a maximum element size of 0.01 m and a

minimum of 5 µm. The total number of mesh elements varied at each time

step according to the number and position of the spheres used to repre-

sent the vessels within COMSOL. Further COMSOL mesh refinement was

computationally prohibitive and did not significantly alter the simulation

output.

For the simulations presented in this thesis, the sprouting angiogene-

sis model was applied only to one end of the representative geometry, to

reduce the computational time required for each simulation; thus sprout-

ing can occur at only one of the circular faces (Figure 5.11c). This assumes

that the simulated vascular growth in one half of the construct does not



5.4. Angiogenesis model simulations 305

affect the distributions and concentrations of solutes in the other. Compar-

ison between the simulated solute distributions of nerve repair constructs

with and without the inclusion of the vascular growth model validated

this assumption. A symmetry plane boundary condition could also have

been used at the longitudinal midpoint of the geometry, but tests using

this configuration showed no apparent difference in the time taken for the

simulations to complete nor in the results achieved.

Seven different sets of initial conditions representing contrasting cell

seeding strategies were used for the simulations, as presented in Table 5.2.

These initial conditions were chosen based upon the results presented in

Chapter 4: a uniform cell density of 88× 106 cells/ml produced the high-

est viable cell density after 24h, and a uniform cell density of 267 × 106

cells/ml produced the highest standard deviation in VEGF after 24h, re-

flecting the generation of relatively steep VEGF gradients. A mid-point

value between these two densities (178× 106 cells/ml) was also chosen to

determine whether this could induce a greater degree of vascularisation

without compromising cell survival.

For comparison, simulations using a higher initial cell density of

385 × 106 cells/ml were also run to represent the higher seeding densi-

ties currently used in some in vivo work. Non-uniform distributions of the

same number of cells as the NRCs uniformly seeded at n0 = 88 and 267

million cells/ml were also selected (simulations 5 and 6 in Table 5.2). Fi-

nally, a simulation was run using a uniform n0 = 178 million cells/ml with

a porous sheath, for comparison with the non-porous sheath simulations.

Due to the stochastic nature of the theoretical model of angiogenesis,

it was necessary to run multiple simulations for each set of parameters to

allow the extraction of representative statistics. Thus each initial condition

was simulated a total of 40 times.

In each case, the model was run to simulate up to the 5 day point,

giving a total of 120 iterations between the continuous and discrete frame-
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Label n0 (106

cells/ml)
ntot0 (105

cells)
ζ Sheath

1 88 2.59 1 (Uniform) Non-porous

2 178 5.24 1 (Uniform) Non-porous

3 267 7.86 1 (Uniform) Non-porous

4 385 11.34 1 (Uniform) Non-porous

5 - 2.59 3
(Non-uniform) Non-porous

6 - 7.86 3
(Non-uniform) Non-porous

7 178 5.24 1 (Uniform) Porous

Table 5.2: Initial conditions simulated using the hybrid discrete-continuum model
of vascular growth and cell-solute interactions.

works for each run; the simulations were terminated when t > 120h (Figure

5.11). The total run times for the simulations varied between 9 and 83 min-

utes, with a median time of 12.7 minutes. Simulations that resulted in a

larger number of vessels and sprout nodes took longer to complete due to

the requirement for a more complex COMSOL geometry and the need to

simulate the migration of a greater number of TECs respectively.

5.4.2 Vascular network metrics

As outlined in the literature review (Section 2.1.2), the directionality of new

vessels and the rate of vascular growth are important for aiding peripheral

nerve repair. Fast and dense revascularisation also enhances the supply of

oxygen to the NRC, with potential benefits for seeded cell survival. In this

thesis, quantitative metrics are calculated to track properties such as the

rate of vascular growth, vessel penetration distance and EC density, and

thereby compare the theoretical outcomes of the different simulated NRC

designs.

In this model, ECs are labelled and tracked as either TECs, SECs or

VECs, with each EC occupying a node in the discrete 3D mesh. At each

time point, the sprout and vessel densities are tracked by summing the
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Figure 5.12: Illustration of the TEC angle, θTEC.

number of nodes occupied by SECs and VECs respectively at each z posi-

tion along the length of the discretised NRC geometry. This method allows

longitudinal spatial variations in sprout and vessel density to be investi-

gated. The total number of each type of EC across the whole geometry at

each time point is also recorded. Sprout and vessel penetration distances,

defined as the greatest z coordinate positions obtained by SECs and VECs

respectively at each time point in a simulation, are also calculated.

Sprout directionality is quantified by calculating two metrics: sprout

tortuosity τs and TEC angle θTEC. The first of these is again defined as the

ratio of the straight line distance from the TEC “root” (the node at which

it first sprouted) to its current position, and the actual length of the path

taken by the TEC (the length of the sprout). The TEC angle is defined as

the angle between the vector position of a TEC relative to its “root” node,

and the longitudinal z axis (Figure 5.12). Thus TECs that have not deviated

as far in the x and y directions will have smaller TEC angles.

Vascular network branching density is calculated at each time point as

the number of branching points (nodes at which a TEC branching event

has taken place) divided by the total length of the vascular network. This

gives an indication as to the overall structure of the developing network.

Finally, the impact of vascular growth on cell survival is assessed by

calculating the mean viable cell density over the NRC at each time point

and comparing it to the results of the continuum model run without the

angiogenesis model (Section 5.4.3.6). Note that these means are taken over

only half of the NRC construct- that which contains the vascular network-

instead of the whole construct as in Chapter 4. This is because as previously
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mentioned the simulations presented in this chapter incorporate vascular

growth from only one end of the cylindrical construct.

Means, and in some cases confidence intervals, of the metrics de-

scribed in this section are calculated over the outputs of the N = 40 simu-

lations run for each case in Table 5.2 to assess the average outputs of each

set of initial conditions.

5.4.3 Simulation results

As presented in Table 5.2, a set of 40 simulations were run using a uni-

form cell density of n0 = 178× 106 cells/ml in combination with a porous

sheath with porosity ε = 0.8, sheath thickness T = 0.25 mm and using the

Weissberg model of tortuosity. However, in 90% of these simulations no

TECs sprouted at the circular face of the NRC by the 5 day time point,

and in the remaining 10% only one TEC-led sprout was produced over

this time span. This is likely due to the loss of VEGF out of the NRC,

as demonstrated in Figure 4.17. Therefore no further analysis was carried

out using these simulation results; the remainder of this section is devoted

to analysis of simulations run using boundary conditions representing an

impermeable sheath.

5.4.3.1 Example simulation results

Examples of the progression of the integrated angiogenesis and cell-solute

model are presented here to provide a sense of the qualitative results of the

simulations. Note that these are randomly chosen individual simulations,

and therefore cannot be used in isolation to draw conclusions about the

effect of the different cell seeding strategies due to the stochastic nature of

the model.

Figure 5.13 illustrates how the migration of TECs occurs in response

to the VEGF distributions provided by the continuum cell-solute model.

Initially, the gradient of VEGF at the end of the construct is relatively high,

resulting in fast and directional vascular growth; decay of VEGF over time
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within an NRC, using four different initial cell densities. The dis-
tribution of VEGF over time affects both the rate and directionality
of sprout growth: at relatively early time points (up to 24 hours), the
gradient of VEGF within the NRCs is steeper than at later time points,
resulting in the development of less tortuous sprouts. At later time
points, TEC migration is almost purely random due to a decrease in
the strength of the directional chemical cue provided by VEGF.

and a decrease in the VEGF-producing viable cell population results in

reduced concentrations and gradients of the growth factor at later time

points, which in turn leads to slower and more tortuous sprout growth.

Figure 5.14 demonstrates the impact of the formation of vessels on

the spatial distribution of oxygen over time: in particular, the presented

example of a simulation run with an initial uniform seeding density of n0 =

267 × 106 cells/ml demonstrates how when only a few perfused vessels

exist, the effect on the oxygen distribution is predominantly local (48 hour

time point), with the highest oxygen concentration closest to the vessels
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vessels have formed via anastomosis and begin to provide oxygen to
the tissue, oxygen concentrations begin rise within the NRCs.

and diffusion resulting in a gradient spreading radially outwards. The

formation of a greater number of vessels results in a more widespread

increase in oxygen concentration throughout the engineered tissue (72 and

120 hours).

The impact of the provision of oxygen to the engineered tissue on the

spatial cell density is demonstrated in Figure 5.15. Local regions of high

cell density develop in close proximity to vessels.

5.4.3.2 Sprout and vessel density

Figure 5.16 demonstrates how sprout growth progresses from the stump

along the NRC over time by plotting the mean number of nodes occupied
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Figure 5.15: Example cross sections of oxygen (a), viable cell (b) and VEGF (c)
distributions at three different values of z (distance from the stump),
plotted from approximately the first time a vessel is formed. The dis-
played simulation used n0 = 178× 106 cells/ml and corresponds to
the example simulation for this value of n0 in Figures 5.14 and 5.13.
Increases in local oxygen concentration caused by vessel formation
result in corresponding increases in the local cell density. The VEGF
distribution is less affected by the oxygen concentration; there ap-
pears to be a delayed, small increase in local VEGF at 100 µm after 60
hours in response to the increase in cell population and decrease in
oxygen.
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Figure 5.16: Uniform seeding cell strategies promote faster migration of TECs and
induce sprouts to reach a greater distance into the NRC than non-
uniform strategies. A total of N = 40 simulations were used to cal-
culate the means for each initial cell seeding strategy; note that there
was a large degree of variability in these results. Means are displayed
here without confidence intervals for clarity.

by SECs at each cross section along the NRC in each of the simulated cases.

It appears that using a uniform seeding density of n0 = 178, 267 or 385× 106

cells/ml results in very similar sprout distribution and density patterns

over the initial 48 hours, but the uniform seeded density of n0 = 88× 106

cells/ml appears to produce a lower density of sprouts across the length of

the vessel than the other uniform seeding strategies over this time span.

From 72 to 120 hours, the rate of growth in the longitudinal direction

appears to slow across all of the cases, and large peaks appear in the mean

sprout density distributions in the uniformly seeded cases. This could re-

flect the loss of directional VEGF cues: as shown in Figure 5.13, regardless
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Figure 5.17: The simulated total number of nodes occupied by sprouts increases
with the initial cell density at early time points (12 and 24 hours),
but is broadly similar at 120 hours. Here each point represents an
individual simulation, and error bars depict a 95% confidence interval
for the mean in each case. All simulations use uniform initial seeding
distributions.

of the uniform seeding density used, by the 48 hour time point the steep-

ness of the VEGF gradient has reduced dramatically, causing a build up of

dense vasculature as sprouts begin to migrate more randomly.

Over the whole time period, the mean sprout densities for the non-

uniformly seeded construct simulations are consistently lower across the

whole construct than the uniformly seeded.

However, Figure 5.16 refers only to mean values without indication

of confidence intervals for this mean. For the uniformly seeded cases, the

mean total number of nodes occupied by sprouts over the entire geometry

was plotted along with 95% confidence intervals in Figure 5.17 along with

the values for individual simulations, to provide a better sense of the vari-

ance in the simulations and how this could skew the results. It is apparent

that the density of sprout nodes for n0 = 88× 106 cells/ml is significantly

different from the other three densities at the 12, 24 and 48 hour marks,
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in line with the results from Figure 5.16. At the 120 hour mark all of the

seeding densities produce very similar results.

The same analysis was conducted in the case of vessel density. Across

all of the simulations, very few vessel structures were formed within the

first 24 hours (Figures 5.18 and 5.19). From 48 hours onwards, the number

of nodes occupied by vessels recorded along the length of the NRC in-

creases with time, following a similar pattern of progression as the sprout

densities. These simulation results suggest that the first formation of per-

fuse vessels occurs at around the 48 hour mark, with the density of vessels

increasing steady from then onwards. This is on a similar time scale to the

vascularisation observed by Cattin et al. [65].

The spatial distribution of sprout and vessel densities over time pre-

sented in Figures 5.16 and 5.18 suggests that the simulated vascular growth

could be modelled by a travelling wave. This aligns with experimental

work published by Podhajsky and Myers that shows vascular growth pro-

gressing as a travelling wave through a silicone NRC [317].

5.4.3.3 Sprout and vessel longitudinal penetration

In corroboration with Figure 5.16, Figure 5.20a demonstrates that the rate

of sprout penetration was very similar for the three highest uniform cell

densities over the first approximately 36 hours, with a uniform seeding

density of n0 = 88× 106 cells/ml producing a slightly slower penetration

rate on average.

The speed of longitudinal sprout penetration slows significantly at

around the 36 hour time point, as reflected by the change in the plot gra-

dients. From Figure 5.20b, this is also the approximate time point at which

some sprouts begin to anastomise and form vessels, suggesting that some

of the decrease in the migration rate could be explained by SECs changing

into VECs and therefore no longer having the ability to migrate further into

the tissue or branch to produce other migrating TECs.

It is interesting to note that although n0 = 88× 106 cells/ml initially
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Figure 5.18: Mean spatial distribution of vessels over time, calculated as an aver-
age of N = 40 simulations in each case.

produced the slowest rate of sprout and vessel penetration, by the later

time points the rate of directional sprout growth is higher than that of the

other cases, as demonstrated by the gradient of the line. The vessel pene-

tration rate for n0 = 88× 106 is again slower than for the other uniformly

distributed seeding cell densities, particularly over the first 96 hours.

The simulated non-uniformly seeded constructs result in much smaller

penetration distances over time than their corresponding uniform counter-

parts.

5.4.3.4 Sprout directionality

Figure 5.21 provides an overview of the morphology of the simulated grow-

ing vascular networks over time. Means for both the sprout tortuosity τs

and TEC angle θTEC were calculated over all 40 simulations for each of the
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Figure 5.19: The simulated total number of nodes occupied by vessels is predom-
inantly close to 0 at early time points (12 and 24 hours). At 48 hours,
a select number of simulations exhibit the formation of vessels, espe-
cially for the highest three initial cell densities, but at 120 hours there
appears to be less difference between the results for each of the four
simulated scenarios. Here each point represents an individual simu-
lation, and error bars depict a 95% confidence interval for the mean in
each case. All simulations use uniform initial seeding distributions.
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Figure 5.20: Mean sprout and vessel penetration distance over time, calculated as
an average of N = 40 simulations in each case.
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Figure 5.21: Mean sprout tortuosity and directionality over time, calculated as an
average of N = 40 simulations in each case.

cell seeding strategies that were investigated.

The mean sprout tortuosity remains relatively constant for the first ap-

proximately 48 hours across both uniform and non-uniform seeding strate-

gies and all four seeding densities, with only a slight increase occurring

over the time period after the sprouts first begin to develop. This indi-

cates that sprout growth during this phase is more directed, guided by

the steeper VEGF gradients that occur over this time period (Figure 5.13).

However, from 48 to 120 hours the rate of increase in the mean tortuosity is

higher, indicating that sprout growth over this latter period of time is more

tortuous.

The plot of mean sprout directionality shows a gradual increase in the

TEC angle beyond the 48 hour time point across the various simulated sce-

narios; again, the more random migration that occurs after this time point

would lead to TECs becoming more spread out across the cross section of

the construct. Although the results across the different cell seeding strate-

gies are very similar, the highest uniform seeding density n0 = 385× 106

appears to result in the most tortuous networks with the largest mean val-

ues for θTEC over time.
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Together, these results indicate that the initial period of sprout growth

led by TEC migration is more directional (remains closer to the z axis of

the constructs) and less tortuous than the later growth from approximately

48 hours onwards. This correlates with the existence of strong VEGF cues;

as previously mentioned, by the 48 hour time point the directional cue

provided by VEGF is far less pronounced.

Figure 5.13 illustrates this behaviour in four individual simulations:

initial sprout growth predominantly follows along the z axis of the con-

struct, in response to steep VEGF gradients and relatively high overall

VEGF concentrations, whereas at later time points branching occurs and

the cue from VEGF is much less strong, resulting in a localised dense and

tortuous mass of vessels.

5.4.3.5 Vessel branching

As shown in Figure 5.21a, the mean number of branching points per µm of

the total vascular network length increases rapidly between the 18 and

24 hour time points. This corresponds to the threshold branching age

Tbranch = 0.75 days, equal to 18 hours; during this time period, TECs that

sprouted during the first few hours of the simulation begin to branch.

The simulations predict that a uniform seeding density of 385× 106

cells/ml results in the lowest branching density consistently over time.

In contrast, although uniform seeding densities of 88, 178 and 267× 106

cells/ml produce similar branching densities over the first 48 hours, by the

120 hour time point the simulations run with n0 = 88× 106 cells/ml result

in higher branching densities than the other simulations.

5.4.3.6 Impact of vascularisation on cell survival

As expected, for each simulation the solutions for the viable cell density n,

oxygen concentration c and VEGF concentration v were unaffected by the

incorporation of the vascular growth model until the formation of vessels.

As shown in Figure 5.18, vessels do not begin to form until at least 24 hours

post-implantation.
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Figure 5.22: a) Mean network branching density over time, calculated as an aver-
age of N = 40 simulations in each case. b) Branching densities for in-
dividual simulations at 48 and 120 hours. Here each point represents
an individual simulation, and error bars depict a 95% confidence in-
terval for the mean in each case. All simulations in b) use uniform
initial seeding distributions.

After the first vessels are created, they begin to supply oxygen to the

adjacent area of engineered tissue. This causes an increase in the local

oxygen concentration, and also impacts the mean oxygen concentration

over that half of the NRC (Figure 5.23). From this figure, it is clear that in all

four uniformly seeded scenarios a number of simulations achieved a dense

enough vascular network to increase the average oxygen concentration over

the vascularised half of the NRC geometry by as much as 4% in comparison

to simulation results provided by the cell-solute model alone.

Despite this, Figure 5.24 suggests that across the four cases the pre-
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Figure 5.23: Formation of vessels increases the mean oxygen concentration over
the construct. Here the model predicts “jump” increases in the mean
oxygen concentration as new perfuse vessels are created. “C-S” de-
notes the results of the cell-solute (continuum) model only, “C-S +
Ang” the individual simulation results of the combined cell-solute
and angiogenesis model, and “C-S + Ang (mean)” the mean of these
simulations for each initial cell density.

dicted effect of vascularisation upon the cell density is minimal over the

simulated time period, with the exception of when n0 = 88× 106 cells/ml.

For the other three initial cell densities simulated (and in particular for

n0 = 267 and 385× 106 cells ml), by the time enough vessels have formed

to create an impact on the local oxygen concentration the cells in the con-

struct have nearly all died, meaning that it is far more difficult for the cell

population to recover.

Conversely, when n0 = 88× 106 cells/ml the viable cell density at later

time points is relatively high, enabling the cell population to recover more

easily once the oxygen supply has increased. In addition to this, the form

of the cell death parameter δ derived in Chapter 3 is an increasing function

of initial cell density n0; therefore, when n0 = 88× 106 cells/ml, the cells

die less quickly than when higher initial seeding densities are used. This
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Figure 5.24: Formation of vessels and consequent increase in oxygen supply does
increase the mean viable cell density over the construct in a limited
number of simulations when n0 = 88× 106 cells/ml. A similar but less
obvious effect is predicted by the model for n0 = 178× 106 cells/ml.
C-S denotes the results of the cell-solute (continuum) model only, C-S
+ Ang the individual simulation results of the combined cell-solute
and angiogenesis model, and C-S + Ang the mean of these simula-
tions for each initial cell density.

means that increases in cell proliferation induced by higher local oxygen

concentrations are more likely to tip the balance between cell proliferation

and death in favour of proliferation, thus allowing the viable cell density to

begin to increase once perfuse vasculature has begun to form and deliver

oxygen.

Although, as previously mentioned in Section 3.7, the dependence of

the cell death parameter on n0 does not explicitly model a biological pro-

cess, it can be regarded as being implicitly representative of cell-solute in-

teractions that have not been included in the mechanistic model equations.

Therefore, although it would be preferable to remove parameter depen-

dencies on initial conditions, the inclusion of δ as a function of n0 does

not completely invalidate the results of the model. Overall, these simula-
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tions suggest that if long term survival of cells is required, then cells must

survive until the point where oxygen and nutrients can be provided by vas-

culature; the model suggests that lower seeding cell densities could help to

achieve this. These are both valid and testable hypotheses that have been

generated by this work.

Interestingly, these conclusions suggest that although the use of n0 =

88× 106 cells/ml produced less dense vascularisation with smaller pene-

tration distances over most of the simulated time period, the vessels that

did grow had a more positive effect on cell survival. The higher branching

density exhibited by simulations run using this initial cell density (Figure

5.22) may also have resulted in more interconnected vascular networks,

which could have enhanced the delivery of oxygen to the cells.

5.5 Conclusion
The simulations conducted in this chapter have underlined the complexity

of the linked problems of cell survival and vascularisation: although seed-

ing cells at a higher density into an NRC can help to generate steeper VEGF

gradients, if the cell population is very small by the time a perfuse vascu-

lar network has formed this may not necessarily aid cell survival. Instead

of optimising for VEGF concentration, it appears that the aim should be

a balance between providing the directional cues necessary for sprouting

angiogenesis and ensuring that a sufficient cell population survives until

the point of vessel formation.

In particular, the model simulations predict that a uniform seeding

density of n0 = 88 × 106 cells/ml will result in vascular growth that is

slower to penetrate the length of the NRC construct (Figure 5.20), but less

tortuous (Figure 5.21) and with a denser branched structure (Figure 5.22)

than vascular growth in constructs seeded with a higher density of cells

(n0 = 385× 106 cells/ml). The predictions for the mean vessel penetration

and density could be validated experimentally using imaging, although
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tortuosity would be more difficult to measure.

The use of step-like non-uniform seeded cell distributions as simulated

in this thesis were predicted to result in slower and less dense vascular

growth. This is likely to be because although non-uniform distributions of

this type were predicted to increase the VEGF gradient over the whole of

the construct in some cases (Section 4.5), during the early stages of vas-

cularisation only the VEGF gradients at the ends of the NRC affect the

progression of angiogenesis. In the future non-uniform seeding distribu-

tions that induce higher VEGF gradients and concentration in these specific

regions could be investigated using the model.

Additionally, individual simulation results show a fairly high degree

of variability across simulations that use the same initial conditions. This is

a result of the stochastic nature of the model formulation, but mimics the

variation that is often observed in experimental data.

However, the results provided by the model described in this chap-

ter must be treated with caution. Many of the parameter values used in

the framework are derived from previous experimental work or similar to

those used in existing computational studies, and the functional forms and

components of the model are based on current knowledge of the process of

sprouting angiogenesis, but additional experimental clarification of some

of the model relationships and model validation is required.

For this reason, statistical tests have not been carried out on the angio-

genesis model simulation data. The angiogenesis model developed here

is intended to explore the mechanisms that underpin angiogenesis during

nerve injury repair, and the model results presented in this chapter can be

interpreted as broad indicators of how vascularisation may be affected by

cell-solute distributions in vivo. However, the results of statistical tests of

hypotheses regarding the outcomes of specific scenarios are likely to be in-

accurate, because the model of angiogenesis is yet to be parameterised or

validated against experimental data.
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In order to validate and improve this model, imaging of vascular net-

works during peripheral nerve repair over time would be hugely beneficial.

This would enable both quantitative and qualitative validation, as well as

potentially allow the derivation of more accurate parameter values and the

refinement of the functional forms used throughout the model. Although

some imaging data of vascular nerve repair exists [65], imaging of repair

of peripheral nerves with cell-seeded EngNT NRCs would be necessary for

rigorous validation purposes due to the varying impact of different repair

materials.

Furthermore, as outlined in Section 5.3, the model currently neglects to

include potentially important aspects of angiogenesis such as the impact of

material mechanical cues upon the growth of sprouts, and the influence of

vessel radius and haematocrit on the oxygen concentration in the blood and

the rate of blood delivery to the tissue. In the case of the former, the exact

nature of the relationship between parameters such as the rate of branching

and various material factors such as fibronectin, collagen density and VEGF

gradients is currently unknown. On the other hand, a more detailed model

of blood flow would be relatively easy to implement because many models

of this form already exist.

Additionally, processes neglected here based on the simulated time

scale such as intussesceptive angiogenesis and vascular remodelling, would

need to be considered for incorporation if the model was to be used to

simulate longer periods of time. Experimental work could again outline

whether these aspects are truly necessary. Furthermore, sensitivity analysis

has not yet been carried out due to the computational time required, but

would be a necessary part of further refinement of the model to identify

which parameters have the greatest effect on the simulation outcomes.



Chapter 6

Conclusions and future work

6.1 Key results
The overall objectives of this work, as laid out in Section 1.5, were to in-

vestigate the impact of therapeutic cell seeding densities and distributions

upon cell survival, VEGF distributions and vascularisation in engineered

tissue (specifically, NRCs), via the use of a parameterised mathematical

model. The key results of this thesis are summarised below.

1. A continuous mathematical model of cell-solute interactions in

dADSC-seeded type I collagen gel was developed and parameterised

against in vitro data, collected specifically for this purpose (Chapter

3).

2. The cell-solute model was applied to a geometry representing a NRC

and used to simulate the effect of a variety of initial seeded cell densi-

ties, distributions and NRC sheath compositions on cell survival and

VEGF generation over time (Chapter 4). This work culminated in the

following theoretical predictions:

a) Simulation results indicated that a uniform initial cell density

of 88× 106 cells/ml would obtain the highest mean viable cell

density across the NRC after 1 day. Additionally, a uniform ini-

tial cell density of 267× 106 cells/ml was found to maximise the
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standard deviation of the VEGF concentrations across the NRC

after 1 day.

b) Simulations that implemented a porous sheath resulted in higher

viable cell density predictions than those run using an imper-

meable sheath, but also resulted in loss of VEGF. Altering the

porosity of the sheath within experimentally viable bounds was

predicted to have only a very slight effect on the overall results.

c) Simulations run using non-uniform sheath porosity along the

length of the NRC geometry indicated that non-uniform sheath

porosity could be used to attenuate the degree of VEGF loss,

whilst maintaining the benefits of increased oxygen diffusion for

cell survival.

d) Non-uniform seeded cell distributions, with more cells seeded

at the ends than in the centre, were predicted to improve overall

cell survival after 1 day when the total number of cells seeded

in the NRC was approximately < 200,000. On the other hand,

seeding more cells in the centre than at the ends was predicted to

increase the standard deviation of VEGF across the NRCs after

1 day when the total number of cells seeded was approximately

< 500,000. Thus the total number of seeded cells appeared to

modulate the effect of different cell seeding distributions on both

cell survival and VEGF distributions.

e) Incubation of constructs in high oxygen environments could

potentially improve cell survival over early time points post-

implantation in vivo.

3. A discrete mathematical model of 3D sprouting angiogenesis was de-

veloped based upon previously published frameworks and experi-

mental evidence, and combined with the continuous model to create

a hybrid model of vascular growth in response to VEGF gradients
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(Chapter 5).

4. Simulations of in vivo vascularisation of NRCs over 5 days post-

implantation were run using the full hybrid framework. The effect

of a specific set of cell seeding strategies, chosen based on the results

of Chapter 4, upon vascular growth rates and vessel density, tortu-

osity and directionality were simulated. These simulations provided

the following key outcomes:

a) Variations in the VEGF concentration profiles along the length of

the NRC over time produced by different (uniform) cell seeding

densities result in slightly different rates and densities of vascu-

lar growth during the initial 48 hours, but no significant effect is

predicted by the end of the simulated time period of 5 days.

b) A uniform cell density of n0 = 385× 106 cells/ml produced lower

branching density values over time than the other three tested

uniform initial cell densities.

c) Out of the four uniform cell seeding densities simulated, n0 =

88 × 106 cells/ml produced on average the lowest densities of

sprouts and vessels over the first 48 hours. However, this initial

cell density also resulted in the greatest average increase in vi-

able cell density at later time points (48-120 hours), whilst the

majority of the simulations run using the other three values of

n0 showed no increase in viable cell density.

d) The use of step-like non-uniform seeding distributions was pre-

dicted to produce slower and less extensive vascular growth than

uniform distributions using the same number of cells, although

only two such distributions were tested.

Although a small number of mathematical models of peripheral nerve re-

pair have been published previously [318, 336], in contrast in the work de-

scribed in this thesis, none so far have been used to investigate the impact
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of different densities and distributions of seeded cells on viable cell and

VEGF distributions, over time, and across multiple spatial dimensions.

Furthermore, the use of cell and material type-specific parameters, de-

rived by parameterisation against in vitro data, means that the predictions

made by the model presented in this thesis could be directly validated in

the lab in the future. Part of the novelty of this research lies in its position

as part of a wider programme of multidisciplinary work centred around

peripheral nerve repair that involves overlapping experimental and mathe-

matical/computational research groups. Sometimes multidisciplinary col-

laboration is instead confined to an exchange of data, rather than encom-

passing day-to-day collaboration.

Additionally, the application of a cell-solute model in combination

with a 3D model of angiogenesis to the peripheral nerve repair setting

is novel. Previously, Lagerlund and Low produced a continuous model of

oxygen transport in healthy peripheral nerve [202], yet this did not incor-

porate vascular growth. The model of nerve repair published by Podha-

jsky and Myers did include vascular growth [318], but vascularisation was

modelled in one dimension only using a continuous approach, and thus

the framework does not capture any morphological details- in contrast to

the 3D angiogenesis model presented in this thesis. The inclusion of vascu-

lar morphology in the model is important because, as reviewed in Section

2.1.2, directional vascular growth during peripheral nerve repair is impor-

tant for the stimulation of axonal growth. Therefore, encouraging more

direct vascular growth could enhance peripheral nerve repair outcomes.

6.2 Discussion and future work
As outlined above, the work in this thesis has generated several quantita-

tive and qualitative hypotheses. In particular, the prediction that the use of

lower seeding cell densities (e.g. 88× 106 cells/ml) may actually result in

a higher density of cells within the first few days post-implantation than
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the use of much higher densities (around 385 × 106 cells/ml), especially

when vascularisation is taken into account, underlines the potential im-

portance of cell seeding densities for cell survival. This result aligns with

previous experimental work reporting that the optimal cell transplantation

density for axonal regeneration is 80× 106 cells/ml [264], and challenges

the idea that the use of high seeding densities in engineered tissue results

in better outcomes such as increased cell survival and vascularisation, and

consequently tissue assimilation.

Furthermore, the results of the complete hybrid cell-solute and vascu-

lar model broadly suggest that maximising the gradient or concentration of

VEGF alone is not necessarily the correct strategy if the goal is to increase

therapeutic cell survival via vascularisation. The simulations suggest that

although higher seeding densities could induce faster and more dense vas-

cularisation, in order for this to have a pronounced effect on cell survival

enough cells have to survive over the first 48 hours prior to the formation

of perfuse vessels capable of oxygen delivery. This highlights the complex-

ity of the problem and motivates further research into the link between cell

survival and vascularisation.

The use of in vitro experimental data collected specifically for the pur-

pose of parameterisation of the model means that the parameters that in-

form the simulation results relate directly to the cell and material types

used in the Phillips lab. Although the experimental data was highly vari-

able and would have benefited from further repeats for each experimental

condition to reduce error, the overall trends in the experimental data were

clear and matched by the model fit to the data. Therefore, the simula-

tions and predictions made by the model can still be used to direct further

research.

The simulations of NRCs presented in this thesis have provided a

range of explicit hypotheses that can now be used to inform the design

of future experimental work. Data from future experiments will provide
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essential validation of the model framework applied to the NRC geometry,

as well as advance understanding of the how cell seeding strategies can

influence vascularisation. A plan for future experimental work is outlined

in Section 6.2.2.

6.2.1 Potential model adaptations, extensions and applica-

tions

The aim of the model described in this thesis was to allow researchers to

predict the effect of different cell seeding distributions on cellular survival

and vascularisation, rather than to capture and investigate the all of the

intricacies of cellular signalling in this context. Therefore, the processes

incorporated explicitly into the model equations, such as VEGF secretion,

cellular metabolism of oxygen and cell proliferation, were selected accord-

ing to the need to capture sufficient biological detail to model cell survival

and angiogenesis, without including a superfluous amount of detail that

would act only to complicate the model and introduce more unknown pa-

rameters.

The biological processes that were included in the model were chosen

according to careful evaluation of their relative importance to the aims of

the research, based on existing experimental and theoretical work. This

meant that many of the signalling molecules and their interactions identi-

fied in Section 2.1.3 were neglected to maintain focus on simulating only

the essential components of the highly complex peripheral nerve repair

scenario. The addition of many more variables would also have required

further experimental work.

Nevertheless, there is potential for extension and improvement of this

model, although many of the obvious avenues for extension would increase

the complexity of the model and/or require the collection of more compre-

hensive data to enable parameterisation.

One of the most pressing areas for improvement is the need to incor-

porate more time dependent data into the model. In this thesis, parame-
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terisation was carried out against data at only one time point (24 hours),

although data was collected for the 5 day time point as well. Time de-

pendent relationships between the variables were deduced from existing

models and experimental hypotheses. Although the simulated cell density

values approximated the in vitro values at the 5 day point, the VEGF con-

centration values did not (Section 3.6), suggesting that the model does not

capture all of the necessary processes or variables that influence VEGF dis-

tributions at later time points. As the time post-implantation increases, a

greater number of complex biological processes will affect both cell-solute

interactions and the progression of NRC vascularisation. The assumptions

made to enable simplification of the scenario via reductions in the number

of variables are likely to hold only for early time points post-implantation.

As explained in Chapter 3, it was necessary to introduce parameters

that were explicit functions of the initial cell density n0 to enable the con-

tinuous cell-solute model to provide a relatively good fit to the in vitro data

at the 1 day time point. Again, this suggests that the governing equations

and parameters may not currently include all of the processes and variables

required to account for the variability in the data. In Chapter 3, three key

“ingredients” were identified as potentially important processes for future

inclusion into the cell-solute model; these will be briefly recapped in the

following paragraphs.

Firstly, in this thesis the governing equations used to model the viable

cell density and oxygen concentration distributions were mutually depen-

dent but did not depend on the VEGF concentration. However, VEGF has

been shown to influence the proliferation rate of cell types including en-

dothelial cells and ADSCs, as mentioned in Section 3.4.1. A dependence of

dADSC proliferation on VEGF was not included in this work due to a lack

of cell type-specific evidence and for simplicity, but this relationship could

help to explain some of the variation in the data that the model cannot cur-

rently capture. Further in vitro experiments could be used to explore the
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specific relationship between dADSC proliferation and VEGF.

Additionally, in this study VEGF is simulated using a single govern-

ing equation with a defined diffusion coefficient and decay rate. This essen-

tially homogenizes the behaviour of the various isoforms of VEGF by mod-

elling them as a single population, but in fact it is known that the different

isoforms of VEGF exhibit different behaviour. Certain isoforms bind to

heparin residues in the extracellular matrix, which can influence the gener-

ation of VEGF gradients, and each isoform has distinct decay and diffusion

rates. The exclusion of binding behaviour and isoform-specific diffusivi-

ties and degradation rates could partially account for the need to introduce

functions of n0 into the VEGF governing equation. However, incorporation

of separate equations to model the various isoforms would increase the

complexity of the model considerably and result in a far larger number of

relatively unknown parameters. In turn, this would again require more ex-

tensive experimental work to achieve parameterisation and/or validation.

Finally, the framework presented in this thesis does not include glu-

cose as a variable. This decision was taken based on the assumption that

over the simulated time frame oxygen, rather than glucose, would be the

limiting factor for cell survival but this assumption has not been strictly

verified. Based on the fact that glucose concentration has been shown to

have an influence on the proliferation of various cell types, the exclusion

of glucose from the cell-solute model could account for some of the dis-

crepancies between the simulation results and the experimental data. Fur-

thermore, other previously published models have included glucose into

similar continuum cell-solute frameworks. Thus glucose is a good candi-

date variable for future inclusion in the model.

Regarding the discrete model of angiogenesis, the framework pre-

sented in this thesis has not been parameterised or validated using experi-

mental data, and is therefore still in a relatively early stage of development.

This means that the results of simulations of the combined, hybrid model
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can be used only as qualitative indications of general trends, rather than

as quantitative predictions. Although there are many aspects of angiogen-

esis that are not incorporated into the model currently, including the role

of macrophages and other cells, the impact of growth factors other than

VEGF and the influence of the material cues on the migration of TECs, at

this point further experimental work is required to aid parameterisation of

the existing framework and inform the direction of further extensions to

the model.

The model described in this thesis has so far only been applied to

a geometry representing a specific type of NRC with particular dimen-

sions. It is not necessarily the case that the predictions made in this work

about the optimal seeding densities and distributions for maximising cell

survival and VEGF production will extrapolate to other engineered tissue

types or even dimensions of NRC, due to the impact of various boundary

conditions and length scales. However, it would be easy to vary the shape,

dimensions and boundary conditions of the geometry in COMSOL in or-

der to simulate other engineered tissues, composed of the same cell and

material types, using the model and parameters derived in this thesis. Fur-

thermore, it would be relatively easy to investigate the impact of the use

of time-released VEGF using the framework set out in this thesis; capsules

containing the VEGF could be modelled as 3D sources of VEGF.

The main limitation of the application of the model provided in this

thesis to other systems is the cell and material type-specific parameters;

simulations of alternative cell and material combinations would require the

model to be parameterised against corresponding representative in vitro

data. Additionally, the model is not currently valid for conducting sim-

ulations over long time periods- as previously mentioned, this could be

improved by incorporating experimental data from different time points

into a second iteration of the parameterisation process.

It is anticipated that in the future the model described in this thesis
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will be combined with a model of neuronal growth. Neuronal growth pro-

gresses in a similar manner to angiogenesis, with leading “growth cones”

sensing and migrating in response to chemotactic, haptotactic and mechan-

ical cues, and therefore can be modelled via a similar biased random walk

process. The integration of these two models would also enable a theo-

retical investigation into the theory that Schwann cell migration, and thus

axonal regeneration, is guided by directional cues provided by preceding

vascular growth.

6.2.2 Directions for future experimental work

In this thesis, the mathematical model was parameterised using cell and

material type-specific in vitro data measured at the 1 day time point; the

framework was applied to a geometry representing a cell culture well to

achieve this. A degree of validation of the model was carried out against

additional data measured at the 5 day time point in Section 3.6.1. The pa-

rameterised model was then translated to a geometry representing a NRC

implanted in vivo, under the assumption that the same parameters and

constitutive relationships could be used because the NRCs modelled in

this work are composed of the same material and cell type as used in the

in vitro experiments. As previously mentioned, a crucial next step in this

work would be to conduct in vivo experiments to verify the ability of the

model to make useful predictions when applied to this scenario.

In particular, the simulations presented in Chapter 4 predicted that a

uniform seeding cell density of 88× 106 cells/ml is optimal for cell sur-

vival after 1 day. Furthermore, the combined hybrid model results also

suggested that this seeding cell density would, on average, achieve the

highest mean viable cell density after 5 days once the growth of vessel was

taken into account. Therefore it is proposed that dADSC-seeded EngNT

NRCs, created using three different uniform seeding densities n0 = 20, 88

and 400× 106 cells/ml, could be used in an in vivo study to validate these

results. The focus on lower cell densities is based on the quantitative re-
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sults of the model, with the highest seeding cell density used as a control

representing the current, more densely seeded approach.

Ideally, these NRCs would need to be harvested at a minimum of two

different time points within 5 days post-implantation to enable assessment

of cell survival via histological staining and imaging. Cell survival mea-

surements could then be used to validate the model. Aside from the quan-

tification of cell survival, this experiment could simultaneously be used to

gather other vital information that could greatly improve other aspects of

the model:

1. VEGF measurements: validation of the VEGF gradients predicted by

the model over time would be facilitated by measurements of VEGF

from sections of engineered tissue at varying longitudinal positions

along the NRCs, at different time points.

2. Measurement of in vivo oxygen levels: currently the boundary condi-

tions for oxygen used in the model are based on oxygen concentra-

tion measurements of other tissues. Peripheral nerve-specific oxygen

concentration values could be collected via oxygen probes similar to

those used in Section 3.3. Additionally, oxygen concentration mea-

surements taken at different time points and spatial locations along

the length of an implanted NRC could be used to validate model

predictions for oxygen concentration distributions over time.

3. Assessment of endothelial cell migration: EC staining can be carried

out in sections, permitting the number of ECs at different positions

along the length of the NRC to be counted.

4. Imaging data for assessing the progression of vascular growth into the

NRC: metrics such as growth rates, penetration distances and vessel

densities could be extracted from such images and used to parame-

terise the model of angiogenesis presented in Chapter 5. Addition-

ally, imaging data could provide further evidence to test the hypoth-
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esis that higher uniform seeding densities induce lower branching

densities over the vascular networks. Photoacoustic imaging could

potentially be used to obtain imaging data for the same sample over

several points in time.

It is important to note that validation of the mathematical model does

not violate the explicit aim of the joint experimental-theoretical method

to reduce the number of animal experiments. If the mathematical work

contained in this thesis had not been completed, experimental techniques

would have been required to investigate the same problems regarding cell

seeding strategies. Effectively, the model predictions act to refine the scope

and aid the design of the experimental research by suggesting which NRC

designs are likely to produce the most informative results. The experiments

not only act as vital validation of the mathematical model, but the results

can also be used and analysed in their own right to inform future NRC

design.

Further in the future, it would also be worthwhile to repeat the in vitro

experiments to allow extrapolation of the model to other cell and mate-

rial combinations. A database of cell and material-type specific parameters

could be collated by repeating the in vitro experiments using different de-

sign combinations; combined with the mathematical model, this would

allow researchers to simulate a wide variety of different engineered tissue

configurations. The in vitro experimental data showed quite a large amount

of variation; therefore in future experiments it would be advisable to use

greater N numbers if possible.

6.3 Thoughts on the multidisciplinary method
A broader aim of this work was to attempt to use and assess a multidisci-

plinary method for the development of engineered tissues. Although this

thesis goes some way towards demonstrating the potential of a multidisci-

plinary approach in this field via the generation of a range of testable hy-
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potheses, the mathematical model presented here still requires validation,

which is a crucial step in the multidisciplinary method set out in Figure

1.4.

Nevertheless, the process of working in close collaboration with exper-

imental researchers has highlighted considerations that are important for

the effective implementation of multidisciplinary work. It is hoped that

the following brief assessment of these may aid future research in this area

that seeks to adopt a similar approach. Although some of the recommen-

dations and observations made here are not individually novel, often calls

are made for closer collaboration between disciplines without outlining the

specifics of how that can be achieved effectively. Therefore, it is still worth

documenting in explicit terms the issues encountered during the course of

this project relating to the multidisciplinary nature of the work.

Good communication between researchers working together on a mul-

tidisciplinary project is absolutely paramount. Although this statement is

true for all research conducted as part of a team, multidisciplinary research

offers some unique challenges. In particular, experimental scientists must

be thorough in their explanations of experimental techniques, making sure

to provide the following:

1. The specifics of the experimental procedures involved. For example,

sometimes the exact compositions of materials or experimental set

ups are taken for granted by experimental scientists, who may be

unaware of the implications for modelling the same scenario in silico.

2. Details of possible sources of inaccuracy.

3. Descriptions of precisely what is being measured or can be measured.

In turn, those conducting the mathematical and computational aspects of

the may benefit from these pointers:

1. Prior to the planning of experimental work, a comprehensive list

should be prepared consisting of the exact measurements required
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to facilitate model parameterisation or validation, and the variables

that it is anticipated that the model will include. This enable exper-

imental researchers to check the feasibility of data-driven validation

or parameterisation.

2. If possible, theoretical researchers should observe the experimen-

tal procedure first hand at least once. This can highlight variables

that could impact the mathematical modelling set up that otherwise

would not necessarily come up in conversions with experimental col-

leagues.

3. Any assumptions that are made as part of the mathematical model

should be double checked with experimental colleagues.

Much of the modelling work done in tissue engineering so far has pro-

duced interesting results that match experimental data qualitatively, and in

this way model simulations are able to generate general hypotheses. How-

ever, in this thesis one of the aims was to make more precise predictions

to aid the specific design of experiments. This requires that the results are

presented in dimensional, experimental units, or that the necessary param-

eters for conversion from non-dimensional units to dimensional units are

provided clearly. It is important that experiments are planned carefully;

often experimental work relies on measuring “fold” increases or decreases

in a measurement, and although this can certainly indicate a biological ef-

fect, parameterisation of dimensional models against this type of data can

be difficult.

Finally, a commitment must be made on both sides to carry the work

forward. The real benefits of multidisciplinary research emerge through

feedback and iteration between experimental and theoretical work over

time. When conducted in this manner, a joint theoretical-experimental

approach to tissue engineering has the potential to direct and speed up

research, and thus aid the move towards clinical translation.
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Proof of concept model

A.1 Analysis of time scales
An analysis of the time scales involved in the processes included within the

governing equations was necessary to justify the quasi-steady assumption

used for the oxygen concentration governing equation. Here it is assumed

that the characteristic length scale is 0.75 cm, i.e. half the length of a 1.5 cm

long NRC.

Oxygen diffusion time scale:

0.752

Dcg

=
0.752

4.5× 10−6 ≈ 1.25× 105 s

VEGF diffusion time scale:

0.752

Dvg

=
0.752

1.13× 10−6 ≈ 5× 105 s

Cell proliferation time scale: (used to rescale the variable t)

1
βc 1

2

≈ 1
24× 6.66× 10−9 ≈ 6× 106 s

Note that cell proliferation occurs on a time scale that is a magnitude

greater than that of VEGF diffusion and oxygen diffusion, justifying the

quasi-steady assumption.
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A.2 Mathematical/computational methods
Equations (3.7), (3.8) and (3.9) were solved using a combination of explicit

discretisation and MATLAB based ODE solvers. The spatial elements of the

cell density and VEGF concentration equations were discretised, through

the use of second order central approximations, with truncation errors

O((∆z′)2):

∂2c′

∂z′2

∣∣∣∣
z′=z′i

=
c′i+1 − 2c′i + c′i−1

(∆z′)2

∂2v′

∂z′2

∣∣∣∣
z′=z′i

=
v′i+1 − 2v′i + v′i−1

(∆z′)2

Here v′i = v′(z′i) and v′i+k = v′(z′i + k∆z′); the same notation applies to c′.

Boundary conditions were applied in a similar manner, using ghost points

where necessary. Initially the algorithm calculates the solutions for c′ and

n′, which involves solving a matrix of linear equations in the case of c′; the

solution for v′ is calculated afterwards.

A.3 Parameter values
Table A.1 lists the parameter values used for the proof of concept model

simulations (results of these simulations are displayed in Figure 3.2).

Parameter Simulation
a)

Simulation
b)

Simulation
c)

Simulation
d)

µc 450 200 450 450
γc 12.5125 12.5125 12.5125 12.5125
ηd 0.3923 0.3923 0.3923 0.3923
γv 8× 10−4 8× 10−4 8× 10−4 8× 10−4

µv 3 3 3 3
ηv 2 2 2 2

Table A.1: Non-dimensional parameters used for simulations. Simulation labels
refer to Figure 3.2.
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[109] Q. Fang, S. Sakadžić, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A.



BIBLIOGRAPHY 355

Boas. Oxygen Advection and Diffusion in a Three Dimensional Vascular

Anatomical Network. Optics Express, 16(22):17530–17541, October 2008.

[110] H. Fansa and G. Keilhoff. Comparison of different biogenic matri-

ces seeded with cultured Schwann cells for bridging peripheral nerve

defects. Neurological Research, 26(2):167–173, March 2004.

[111] H. Fansa, W. Schneider, and G. Keilhoff. Revascularization of Tissue-

Engineered Nerve Grafts and Invasion of Macrophages. Tissue Engineer-

ing, 7(5):519–524, October 2001.

[112] S. J. Farber, G. M. Hoben, D. A. Hunter, Y. Yan, P. J. Johnson, S. E.

Mackinnon, and M. D. Wood. Vascularization is delayed in long nerve

constructs compared with nerve grafts. Muscle & Nerve, 54(2):319–321,

August 2016.

[113] A. Faroni, S. A. Mobasseri, P. J. Kingham, and A. J. Reid. Peripheral

nerve regeneration: Experimental strategies and future perspectives. Ad-

vanced Drug Delivery Reviews, 82-83:160–167, March 2015.

[114] I. Fatt. Pore Structure of Sintered Glass from Diffusion and Resis-

tance Measurements. The Journal of Physical Chemistry, 63(5):751–752,

May 1959.

[115] B. Feng, Z. Jinkang, W. Zhen, L. Jianxi, C. Jiang, L. Jian, M. Guolin,

and D. Xin. The effect of pore size on tissue ingrowth and neovascular-

ization in porous bioceramics of controlled architecturein vivo. Biomedi-

cal Materials, 6(1):015007, jan 2011.

[116] N. Ferrara and T. Davis-Smyth. The Biology of Vascular Endothelial

Growth Factor. Endocrine Reviews, 18(1):4–25, February 1997.

[117] U. Fiedler, Y. Reiss, M. Scharpfenecker, V. Grunow, S. Koidl,

G. Thurston, N. W. Gale, M. Witzenrath, S. Rosseau, N. Suttorp,



356 BIBLIOGRAPHY

A. Sobke, M. Herrmann, K. T. Preissner, P. Vajkoczy, and H. G. Au-

gustin. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a

crucial role in the induction of inflammation. Nature Medicine, 12(2):235–

239, February 2006.

[118] I. Filippi, I. Saltarella, C. Aldinucci, F. Carraro, R. Ria, A. Vacca, and

A. Naldini. Different Adaptive Responses to Hypoxia in Normal and

Multiple Myeloma Endothelial Cells. Cellular Physiology and Biochemistry,

46(1):203–212, 2018.

[119] J. M. Fishman, A. Tyraskis, P. Maghsoudlou, L. Urbani, G. Totonelli,

M. A. Birchall, and P. De Coppi. Skeletal muscle tissue engineering:

Which cell to use? Tissue Engineering Part B: Reviews, 19(6):503–515,

December 2013.

[120] J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other

disease. Nature Medicine, 1(1):27–30, January 1995.

[121] X. Fontana, M. Hristova, C. D. Costa, S. Patodia, L. Thei, M. Mak-

wana, B. Spencer-Dene, M. Latouche, R. Mirsky, K. R. Jessen, R. Klein,

G. Raivich, and A. Behrens. c-Jun in Schwann cells promotes axonal re-

generation and motoneuron survival via paracrine signaling. The Journal

of Cell Biology, 198(1):127–141, July 2012.

[122] L. Fredriksson, H. Li, and U. Eriksson. The PDGF family: four gene

products form five dimeric isoforms. Cytokine & Growth Factor Reviews,

15(4):197–204, August 2004.

[123] S. M. Frisch and R. A. Screaton. Anoikis mechanisms. Current Opinion

in Cell Biology, 13(5):555–562, 2001.

[124] S. P. Frostick, Q. Yin, and G. J. Kemp. Schwann cells, neurotrophic

factors, and peripheral nerve regeneration. Microsurgery, 18(7):397–405,

January 1998.



BIBLIOGRAPHY 357

[125] C. J. Galban and B. R. Locke. Analysis of cell growth kinetics and

substrate diffusion in a polymer scaffold. Biotechnology and Bioengineer-

ing, 65(2):121–132, October 1999.

[126] V. Galvão, J. G. V. Miranda, and R. Ribeiro-dos-Santos. Development

of a two-dimensional agent-based model for chronic chagasic cardiomy-

opathy after stem cell transplantation. Bioinformatics, 24(18):2051–2056,

September 2008.

[127] J. R. García and A. J. García. Biomaterial mediated strategies tar-

geting vascularization for bone repair. Drug Delivery and Translational

Research, 6(2):77–95, April 2016.

[128] L. B. Gardner, Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza, and

C. V. Dang. Hypoxia Inhibits G1/S Transition through Regulation of

p27 Expression. Journal of Biological Chemistry, 276(11):7919–7926, March

2001.

[129] A. A. Garrouch, L. Ali, and F. Qasem. Using Diffusion and Electri-

cal Measurements to Assess Tortuosity of Porous Media. Industrial &

Engineering Chemistry Research, 40(20):4363–4369, October 2001.

[130] J. Gavard, V. Patel, and J. S. Gutkind. Angiopoietin-1 Prevents VEGF-

Induced Endothelial Permeability by Sequestering Src through mDia.

Developmental Cell, 14(1):25–36, January 2008.

[131] S. Gebb and T. Stevens. On lung endothelial cell heterogeneity. Mi-

crovascular Research, 68(1):1–12, July 2004.

[132] M. Georgiou, S. C. J. Bunting, H. A. Davies, A. J. Loughlin, J. P.

Golding, and J. B. Phillips. Engineered neural tissue for peripheral nerve

repair. Biomaterials, 34(30):7335–7343, October 2013.

[133] M. Georgiou, J. P. Golding, A. J. Loughlin, P. J. Kingham, and J. B.

Phillips. Engineered neural tissue with aligned, differentiated adipose-



358 BIBLIOGRAPHY

derived stem cells promotes peripheral nerve regeneration across a crit-

ical sized defect in rat sciatic nerve. Biomaterials, 37:242–251, January

2015.

[134] H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist,

A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Bet-

sholtz. VEGF guides angiogenic sprouting utilizing endothelial tip cell

filopodia. The Journal of Cell Biology, 161(6):1163–1177, June 2003.

[135] S. Geuna, S. Raimondo, F. Fregnan, K. Haastert-Talini, and C. Grothe.

In vitro models for peripheral nerve regeneration. European Journal of

Neuroscience, 43(3):287–296, February 2016.

[136] B. Ghanbarian, A. G. Hunt, R. P. Ewing, and M. Sahimi. Tortuosity in

Porous Media: A Critical Review. Soil Science Society of America Journal,

77(5):1461, September 2013.

[137] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algo-

rithm for Large-Scale Constrained Optimization. SIAM Review, 47(1):99–

131, January 2005.

[138] F. Gonzalez-Perez, E. Udina, and X. Navarro. Chapter Ten - Extracel-

lular Matrix Components in Peripheral Nerve Regeneration. In S. Geuna,

I. Perroteau, P. Tos, and B. Battiston, editors, Tissue Engineering of the Pe-

ripheral Nerve: Stem Cells and Regeneration Promoting Factors, volume 108

of International Review of Neurobiology, pages 257 – 275. Academic Press,

2013.

[139] A. Grützkau, S. Krüger-Krasagakes, H. Baumeister, C. Schwarz,

H. Kögel, P. Welker, U. Lippert, B. M. Henz, and A. Möller. Synthesis,

Storage, and Release of Vascular Endothelial Growth Factor/Vascular

Permeability Factor (VEGF/VPF) by Human Mast Cells: Implications

for the Biological Significance of VEGF206. Molecular Biology of the Cell,

9(4):875–884, April 1998.



BIBLIOGRAPHY 359

[140] X. Gu, F. Ding, and D. F. Williams. Neural tissue engineering options

for peripheral nerve regeneration. Biomaterials, 35(24):6143–6156, August

2014.

[141] V. Guénard, N. Kleitman, T. K. Morrissey, R. P. Bunge, and P. Aebis-

cher. Syngeneic Schwann Cells Derived from Adult Nerves Seeded in

Semipermeable Guidance Channels Enhance Peripheral Nerve Regener-

ation. Journal of Neuroscience, 12(9):3310–3320, September 1992.

[142] P. Han and D. M. Bartels. Temperature Dependence of Oxygen Dif-

fusion in H2O and D2O. The Journal of Physical Chemistry, 100(13):5597–

5602, January 1996.

[143] M. Hangai, T. Murata, N. Miyawaki, C. Spee, J. I. Lim, S. He, D. R.

Hinton, and S. J. Ryan. Angiopoietin-1 Upregulation by Vascular En-

dothelial Growth Factor in Human Retinal Pigment Epithelial Cells. In-

vestigative Ophthalmology & Visual Science, 42(7):1617–1625, June 2001.

[144] J. C. Haselgrove, I. M. Shapiro, and S. F. Silverton. Computer model-

ing of the oxygen supply and demand of cells of the avian growth car-

tilage. American Journal of Physiology - Cell Physiology, 265(2):C497–C506,

August 1993.

[145] P. Hay, A. Veitch, M. Smith, R. Cousins, and J. Gaylor. Oxygen Trans-

fer in a Diffusion-Limited Hollow Fiber Bioartificial Liver. Artificial Or-

gans, 24(4):278–288, April 2000.

[146] J. A. Haythornthwaite and L. M. Benrud-Larson. Psychological as-

pects of neuropathic pain. The Clinical Journal of Pain, 16(2 Suppl):S101–

105, June 2000.

[147] D. v. Heimburg, K. Hemmrich, S. Zachariah, H. Staiger, and N. Pal-

lua. Oxygen consumption in undifferentiated versus differentiated adi-

pogenic mesenchymal precursor cells. Respiratory Physiology & Neurobi-

ology, 146(2-3):107–116, April 2005.



360 BIBLIOGRAPHY

[148] W. Heine, K. Conant, J. W. Griffin, and A. Höke. Transplanted neural

stem cells promote axonal regeneration through chronically denervated

peripheral nerves. Experimental Neurology, 189(2):231–240, October 2004.

[149] C.-H. Heldin. Targeting the PDGF signaling pathway in tumor treat-

ment. Cell Communication and Signaling, 11(1):97, December 2013.

[150] M. Hellström, L.-K. Phng, and H. Gerhardt. VEGF and Notch Sig-

naling: The Yin and Yang of Angiogenic Sprouting. Cell Adhesion &

Migration, 1(3):133–136, 2007.

[151] M. Hellström, L.-K. Phng, J. J. Hofmann, E. Wallgard, L. Coultas,

P. Lindblom, J. Alva, A.-K. Nilsson, L. Karlsson, N. Gaiano, K. Yoon,

J. Rossant, M. L. Iruela-Arispe, M. Kalén, H. Gerhardt, and C. Betsholtz.

Dll4 signalling through Notch1 regulates formation of tip cells during

angiogenesis. Nature, 445(7129):776–780, February 2007.

[152] C. E. Hill, A. Hurtado, B. Blits, B. A. Bahr, P. M. Wood, M. B. Bunge,

and M. Oudega. Early necrosis and apoptosis of Schwann cells trans-

planted into the injured rat spinal cord. European Journal of Neuroscience,

26(6):1433–1445, September 2007.

[153] M. I. Hobson, R. Brown, C. J. Green, and G. Terenghi. Inter-

relationships between angiogenesis and nerve regeneration: a histo-

chemical study. British Journal of Plastic Surgery, 50(2):125–131, February

1997.

[154] D. I. Holmes and I. Zachary. The vascular endothelial growth factor

(VEGF) family: angiogenic factors in health and disease. Genome Biology,

6(2):209, 2005.

[155] B. Holmquist, M. Kanje, J. M. Kerns, and N. Danielsen. A mathe-

matical model for regeneration rate and initial delay following surgical

repair of peripheral nerves. Journal of Neuroscience Methods, 48(1-2):27–33,

June 1993.



BIBLIOGRAPHY 361

[156] M. S. Hossain, D. J. Bergstrom, and X. B. Chen. A mathematical

model and computational framework for three-dimensional chondrocyte

cell growth in a porous tissue scaffold placed inside a bi-directional flow

perfusion bioreactor. Biotechnology and Bioengineering, 112(12):2601–2610,

December 2015.

[157] K. A. Houck, D. W. Leung, A. M. Rowland, J. Winer, and N. Fer-

rara. Dual regulation of vascular endothelial growth factor bioavailabil-

ity by genetic and proteolytic mechanisms. Journal of Biological Chemistry,

267(36):26031–26037, December 1992.

[158] R. Hsu and T. W. Secomb. A Green’s function method for analysis

of oxygen delivery to tissue by microvascular networks. Mathematical

Biosciences, 96(1):61–78, September 1989.

[159] S. Hsu, R. Thakar, D. Liepmann, and S. Li. Effects of shear stress on

endothelial cell haptotaxis on micropatterned surfaces. Biochemical and

Biophysical Research Communications, 337(1):401–409, November 2005.

[160] J. Hu, Q.-T. Zhu, X.-L. Liu, Y.-b. Xu, and J.-K. Zhu. Repair of ex-

tended peripheral nerve lesions in rhesus monkeys using acellular allo-

genic nerve grafts implanted with autologous mesenchymal stem cells.

Experimental Neurology, 204(2):658–666, April 2007.

[161] M. E. Hubbi and G. L. Semenza. Regulation of cell proliferation by

hypoxia-inducible factors. American Journal of Physiology - Cell Physiology,

309(12):C775–C782, December 2015.

[162] D. E. Ingber. Fibronectin controls capillary endothelial cell growth by

modulating cell shape. Proceedings of the National Academy of Sciences of

the United States of America, 87(9):3579–3583, May 1990.

[163] H. Itosaka, S. Kuroda, H. Shichinohe, H. Yasuda, S. Yano, S. Kamei,

R. Kawamura, K. Hida, and Y. Iwasaki. Fibrin matrix provides a suit-

able scaffold for bone marrow stromal cells transplanted into injured



362 BIBLIOGRAPHY

spinal cord: A novel material for CNS tissue engineering. Neuropathol-

ogy, 29(3):248–257, June 2009.

[164] N. Iversen and B. B. Jørgensen. Diffusion coefficients of sulfate and

methane in marine sediments: Influence of porosity. Geochimica et Cos-

mochimica Acta, 57(3):571–578, February 1993.

[165] E. Jabbarzadeh and C. F. Abrams. Strategies to Enhance Capillary

Formation Inside Biomaterials: A Computational Study. Tissue Engineer-

ing, 13(8):2073–2086, August 2007.

[166] H. V. Jain and T. L. Jackson. A Hybrid Model of the Role of VEGF

Binding in Endothelial Cell Migration and Capillary Formation. Frontiers

in Oncology, 3, May 2013.

[167] L. Jakobsson, C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M.

Aspalter, I. Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-

Merker, and H. Gerhardt. Endothelial cells dynamically compete for

the tip cell position during angiogenic sprouting. Nature Cell Biology,

12(10):943–953, October 2010.

[168] M. Jeansson, A. Gawlik, G. Anderson, C. Li, D. Kerjaschki,

M. Henkelman, and S. E. Quaggin. Angiopoietin-1 is essential in mouse

vasculature during development and in response to injury. The Journal of

Clinical Investigation, 121(6):2278–2289, June 2011.

[169] C.-B. Jenq and R. E. Coggeshall. Nerve regeneration through holey

silicone tubes. Brain Research, 361(1-2):233–241, December 1985.

[170] C.-B. Jenq and R. E. Coggeshall. Permeable tubes increase the length

of the gap that regenerating axons can span. Brain Research, 408(1-2):239–

242, April 1987.

[171] C.-B. Jenq, L. L. Jenq, and R. E. Coggeshall. Nerve regenera-



BIBLIOGRAPHY 363

tion changes with filters of different pore size. Experimental Neurology,

97(3):662–671, September 1987.

[172] K. R. Jessen and R. Mirsky. The repair Schwann cell and its function

in regenerating nerves. The Journal of Physiology, 594(13):3521–3531, July

2016.

[173] R. Jeyaraj, N. G, G. Kirby, J. Rajadas, A. Mosahebi, A. M. Seifalian,

and A. Tan. Vascularisation in regenerative therapeutics and surgery.

Materials Science and Engineering: C, 54:225–238, September 2015.

[174] J. W. Ji, F. Mac Gabhann, and A. S. Popel. Skeletal muscle VEGF

gradients in peripheral arterial disease: simulations of rest and exer-

cise. American Journal of Physiology - Heart and Circulatory Physiology,

293(6):H3740–H3749, December 2007.

[175] H. Jia, Y. Wang, X.-J. Tong, G.-B. Liu, Q. Li, L.-X. Zhang, and X.-H.

Sun. Sciatic nerve repair by acellular nerve xenografts implanted with

BMSCs in rats xenograft combined with BMSCs. Synapse, 66(3):256–269,

March 2011.

[176] B. H. Jiang, G. L. Semenza, C. Bauer, and H. H. Marti. Hypoxia-

inducible factor 1 levels vary exponentially over a physiologically rele-

vant range of O2 tension. American Journal of Physiology - Cell Physiology,

271(4):C1172–C1180, October 1996.

[177] A. Jones, H. Byrne, J. Gibson, and J. Dold. A mathematical model of

the stress induced during avascular tumour growth. Journal of Mathemat-

ical Biology, 40(6):473–499, June 2000.

[178] S. N. Jorgensen and J. R. Sanders. Mathematical models of wound

healing and closure: a comprehensive review. Medical & Biological Engi-

neering & Computing, 54(9):1297–1316, September 2016.



364 BIBLIOGRAPHY

[179] W. Jurecka, H. P. Ammerer, and H. Lassmann. Regeneration of a tran-

sected peripheral nerve. An autoradiographic and electron microscopic

study. Acta Neuropathologica, 32(4):299–312, October 1975.

[180] N. Kakudo, N. Morimoto, T. Ogawa, S. Taketani, and K. Kusumoto.

Hypoxia Enhances Proliferation of Human Adipose-Derived Stem Cells

via HIF-1α Activation. PLoS ONE, 10(10):e0139890, October 2015.

[181] P. K. Kallio and M. Vastamäki. An analysis of the results of late

reconstruction of 132 median nerves. The Journal of Hand Surgery: British

& European Volume, 18(1):97–105, February 1993.

[182] M. R. Kano, Y. Morishita, C. Iwata, S. Iwasaka, T. Watabe, Y. Ouchi,

K. Miyazono, and K. Miyazawa. VEGF-A and FGF-2 synergistically

promote neoangiogenesis through enhancement of endogenous PDGF-

B-PDGFRβ signaling. Journal of Cell Science, 118(16):3759–3768, August

2005.

[183] H. M. Kaplan, P. Mishra, and J. Kohn. The overwhelming use of rat

models in nerve regeneration research may compromise designs of nerve

guidance conduits for humans. Journal of Materials Science: Materials in

Medicine, 26(8), August 2015.

[184] J. B. Kearney. The VEGF receptor flt-1 (VEGFR-1) is a positive modu-

lator of vascular sprout formation and branching morphogenesis. Blood,

103(12):4527–4535, February 2004.

[185] S. Kehoe, X. Zhang, and D. Boyd. FDA approved guidance conduits

and wraps for peripheral nerve injury: A review of materials and effi-

cacy. Injury, 43(5):553–572, May 2012.

[186] J. M. Kelm, C. Diaz Sanchez-Bustamante, E. Ehler, S. P. Hoerstrup,

V. Djonov, L. Ittner, and M. Fussenegger. VEGF profiling and angio-

genesis in human microtissues. Journal of Biotechnology, 118(2):213–229,

August 2005.



BIBLIOGRAPHY 365

[187] D. Kim, S. Connolly, S. Zhao, R. Beuerman, R. Voorhies, and D. Kline.

Comparison of Macropore, Semipermeable, and Nonpermeable Colla-

gen Conduits in Nerve Repair. Journal of Reconstructive Microsurgery,

9(6):415–420, November 1993.

[188] P. J. Kingham, D. F. Kalbermatten, D. Mahay, S. J. Armstrong,

M. Wiberg, and G. Terenghi. Adipose-derived stem cells differentiate

into a Schwann cell phenotype and promote neurite outgrowth in vitro.

Experimental Neurology, 207(2):267–274, October 2007.

[189] J. Kleinheinz, S. Jung, K. Wermker, C. Fischer, and U. Joos. Release

kinetics of VEGF165 from a collagen matrix and structural matrix changes

in a circulation model. Head & Face Medicine, 6:17, July 2010.

[190] P. G. Klemens. Thermal conductivity of composites. International

Journal of Thermophysics, 11(5):6, September 1990.

[191] A. Köhn-Luque, W. de Back, Y. Yamaguchi, K. Yoshimura, M. A.

Herrero, and T. Miura. Dynamics of VEGF matrix-retention in vascular

network patterning. Physical Biology, 10(6):066007, December 2013.

[192] L. E. Kokai, Y.-C. Lin, N. M. Oyster, and K. G. Marra. Diffusion of

soluble factors through degradable polymer nerve guides: Controlling

manufacturing parameters. Acta Biomaterialia, 5(7):2540–2550, September

2009.

[193] E. Kon, A. Roffi, G. Filardo, G. Tesei, and M. Marcacci. Scaffold-Based

Cartilage Treatments: With or Without Cells? A Systematic Review of

Preclinical and Clinical Evidence. Arthroscopy: The Journal of Arthroscopic

& Related Surgery, 31(4):767–775, April 2015.

[194] J. A. Kouyoumdjian. Peripheral nerve injuries: A retrospective survey

of 456 cases. Muscle & Nerve, 34(6):785–788, December 2006.



366 BIBLIOGRAPHY

[195] F. Kreuzer. Oxygen supply to tissues: The Krogh model and its as-

sumptions. Experientia, 38(12):1415–1426, December 1982.

[196] B. L. Krock, N. Skuli, and M. C. Simon. Hypoxia-Induced Angiogen-

esis: Good and Evil. Genes & Cancer, 2(12):1117–1133, December 2011.

[197] A. Krogh. The number and distribution of capillaries in muscles

with calculations of the oxygen pressure head necessary for supplying

the tissue. The Journal of Physiology, 52(6):409–415, May 1919.

[198] H. Kumar and D.-K. Choi. Hypoxia Inducible Factor Pathway and

Physiological Adaptation: A Cell Survival Pathway?, 2015.

[199] C. Kut, F. Mac Gabhann, and A. S. Popel. Where is VEGF in the

body? A meta-analysis of VEGF distribution in cancer. British Journal of

Cancer, 97(7):978–985, October 2007.

[200] K. Kuwabara, S. Ogawa, M. Matsumoto, S. Koga, M. Clauss, D. J.

Pinsky, P. Lyn, J. Leavy, L. Witte, and J. Joseph-Silverstein. Hypoxia-

mediated induction of acidic/basic fibroblast growth factor and platelet-

derived growth factor in mononuclear phagocytes stimulates growth of

hypoxic endothelial cells. Proceedings of the National Academy of Sciences

of the United States of America, 92(10):4606–4610, May 1995.

[201] A. Lafosse, C. Dufeys, C. Beauloye, S. Horman, and D. Dufrane. Im-

pact of Hyperglycemia and Low Oxygen Tension on Adipose-Derived

Stem Cells Compared with Dermal Fibroblasts and Keratinocytes:

Importance for Wound Healing in Type 2 Diabetes. PLoS ONE,

11(12):e0168058, December 2016.

[202] T. D. Lagerlund and P. A. Low. Mathematical modeling of time-

dependent oxygen transport in rat peripheral nerve. Computers in Biology

and Medicine, 23(1):29–47, January 1993.



BIBLIOGRAPHY 367

[203] E. S. Lai, N. F. Huang, J. P. Cooke, and G. G. Fuller. Aligned Nanofib-

rillar Collagen Regulates Endothelial Organization and Migration. Re-

generative Medicine, 7(5):649–661, September 2012.

[204] L. Lamalice, F. Le Boeuf, and J. Huot. Endothelial Cell Migration

During Angiogenesis. Circulation Research, 100(6):782–794, March 2007.

[205] K. A. Landman and A. Q. Cai. Cell Proliferation and Oxygen

Diffusion in a Vascularising Scaffold. Bulletin of Mathematical Biology,

69(7):2405–2428, October 2007.

[206] R. Langer and J. P. Vacanti. Tissue engineering. Science,

260(5110):920–926, May 1993.

[207] R. Lanza, R. Langer, and J. P. Vacanti. Principles of Tissue Engineering.

Academic Press, 2013.

[208] M. W. Laschke, Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring,

N. Torio-Padron, R. Schramm, M. Rücker, D. Junker, J. M. Häufel, C. Car-

valho, M. Heberer, G. Germann, B. Vollmar, and M. D. Menger. Angio-

genesis in Tissue Engineering: Breathing Life into Constructed Tissue

Substitutes. Tissue Engineering, 12(8):2093–2104, August 2006.

[209] M. Laschke, A. Elitzsch, B. Vollmar, P. Vajkoczy, and M. Menger.

Combined inhibition of vascular endothelial growth factor (VEGF), fi-

broblast growth factor and platelet-derived growth factor, but not in-

hibition of VEGF alone, effectively suppresses angiogenesis and vessel

maturation in endometriotic lesions. Human Reproduction, 21(1):262–268,

January 2006.

[210] S. K. Lee and S. W. Wolfe. Peripheral nerve injury and repair. The

Journal of the American Academy of Orthopaedic Surgeons, 8(4):243–252, Au-

gust 2000.



368 BIBLIOGRAPHY

[211] J. T. Leith and S. Michelson. Secretion rates and levels of vascular

endothelial growth factor in clone A or HCT-8 human colon tumour

cells as a function of oxygen concentration. Cell Proliferation, 28(8):415–

430, August 1995.

[212] G. Lemon, J. R. King, H. M. Byrne, O. E. Jensen, and K. M. Shakesheff.

Mathematical modelling of engineered tissue growth using a multiphase

porous flow mixture theory. Journal of Mathematical Biology, 52(5):571–

594, May 2006.

[213] G. Lemon, S. L. Waters, F. R. Rose, and J. R. King. Mathematical mod-

elling of human mesenchymal stem cell proliferation and differentiation

inside artificial porous scaffolds. Journal of Theoretical Biology, 249(3):543–

553, December 2007.

[214] G. Lemon, D. Howard, M. J. Tomlinson, L. D. Buttery, F. R. A. J.

Rose, S. L. Waters, and J. R. King. Mathematical modelling of tissue-

engineered angiogenesis. Mathematical Biosciences, 221(2):101–120, Octo-

ber 2009.

[215] A. Lenard, E. Ellertsdottir, L. Herwig, A. Krudewig, L. Sauteur, H.-G.

Belting, and M. Affolter. In Vivo Analysis Reveals a Highly Stereotypic

Morphogenetic Pathway of Vascular Anastomosis. Developmental Cell,

25(5):492–506, June 2013.

[216] H. A. Levine, S. Pamuk, B. D. Sleeman, and M. Nilsen-Hamilton.

Mathematical Modeling of Capillary Formation and Development in Tu-

mor Angiogenesis: Penetration into the Stroma. Bulletin of Mathematical

Biology, 63(5):801–863, September 2001.

[217] M. C. Lewis, B. D. MacArthur, J. Malda, G. Pettet, and C. P. Please.

Heterogeneous proliferation within engineered cartilaginous tissue: the

role of oxygen tension. Biotechnology and Bioengineering, 91(5):607–615,

September 2005.



BIBLIOGRAPHY 369

[218] S.-T. Li, S. J. Archibald, C. Krarup, and R. D. Madison. Peripheral

nerve repair with collagen conduits. Clinical Materials, 9(3):195–200, 1992.

[219] S. Li, S. Bhatia, Y.-L. Hu, Y.-T. Shiu, Y.-S. Li, S. Usami, and S. Chien.

Effects of morphological patterning on endothelial cell migration. Biorhe-

ology, 38(2):101–108, 2001.

[220] S. Liekens, E. De Clercq, and J. Neyts. Angiogenesis: regulators and

clinical applications. Biochemical Pharmacology, 61(3):253–270, February

2001.

[221] P. Lindahl, B. R. Johansson, P. Levéen, and C. Betsholtz. Pericyte

Loss and Microaneurysm Formation in PDGF-B-Deficient Mice. Science,

277(5323):242–245, July 1997.

[222] P. Lindblom, H. Gerhardt, S. Liebner, A. Abramsson, M. Enge,

M. Hellström, G. Bäckström, S. Fredriksson, U. Landegren, H. C. Nys-

tröm, G. Bergström, E. Dejana, A. Östman, P. Lindahl, and C. Betsholtz.

Endothelial PDGF-B retention is required for proper investment of per-

icytes in the microvessel wall. Genes & Development, 17(15):1835–1840,

August 2003.

[223] G. Liu, A. A. Qutub, P. Vempati, F. Mac Gabhann, and A. S. Popel.

Module-based multiscale simulation of angiogenesis in skeletal muscle.

Theoretical Biology & Medical Modelling, 8:6, April 2011.

[224] L. Liu, J. Wang, S. Duan, L. Chen, H. Xiang, Y. Dong, and W. Wang.

Systematic evaluation of sericin protein as a substitute for fetal bovine

serum in cell culture. Scientific Reports, 6(1):1–10, August 2016.

[225] A. V. Ljubimov. Growth Factor Synergy in Angiogenesis. In J. Penn,

editor, Retinal and Choroidal Angiogenesis, pages 289–310. Springer

Netherlands, Dordrecht, 2008.



370 BIBLIOGRAPHY

[226] I. B. Lobov, P. C. Brooks, and R. A. Lang. Angiopoietin-2 displays

VEGF-dependent modulation of capillary structure and endothelial cell

survival in vivo. Proceedings of the National Academy of Sciences of the United

States of America, 99(17):11205–11210, August 2002.

[227] G. Lundborg and H. A. Hansson. Nerve regeneration through pre-

formed pseudosynovial tubes: a preliminary report of a new experimen-

tal model for studying the regeneration and reorganization capacity of

peripheral nerve tissue. The Journal of Hand Surgery, 5(1):35–38, 1980.

[228] G. Lundborg. Nerve injury and repair–a challenge to the plastic

brain. Journal of the Peripheral Nervous System, 8(4):209–226, December

2003.

[229] F. Mac Gabhann and A. S. Popel. Dimerization of VEGF receptors

and implications for signal transduction: a computational study. Bio-

physical Chemistry, 128(2-3):125–139, July 2007.

[230] F. Mac Gabhann, M. T. Yang, and A. S. Popel. Monte Carlo simu-

lations of VEGF binding to cell surface receptors in vitro. Biochimica et

Biophysica Acta (BBA) - Molecular Cell Research, 1746(2):95–107, December

2005.

[231] F. Mac Gabhann, J. W. Ji, and A. S. Popel. Multi-scale Computational

Models of Pro-angiogenic Treatments in Peripheral Arterial Disease. An-

nals of Biomedical Engineering; New York, 35(6):982–994, June 2007.

[232] F. Mac Gabhann, J. W. Ji, and A. S. Popel. VEGF gradients, receptor

activation, and sprout guidance in resting and exercising skeletal muscle.

Journal of Applied Physiology, 102(2):722–734, February 2007.

[233] F. Mackenzie and C. Ruhrberg. Diverse roles for VEGF-A in the ner-

vous system. Development, 139(8):1371–1380, April 2012.



BIBLIOGRAPHY 371

[234] S. Madduri and B. Gander. Schwann cell delivery of neurotrophic

factors for peripheral nerve regeneration. Journal of the Peripheral Nervous

System, 15(2):93–103, June 2010.

[235] S. Madduri and B. Gander. Growth factor delivery systems and repair

strategies for damaged peripheral nerves. Journal of Controlled Release,

161(2):274–282, July 2012.

[236] S. A. Maggelakis and A. E. Savakis. A mathematical model of growth

factor induced capillary growth in the retina. Mathematical and Computer

Modelling, 24(7):33–41, October 1996.

[237] A. N. Makanya, R. Hlushchuk, and V. G. Djonov. Intussusceptive

angiogenesis and its role in vascular morphogenesis, patterning, and

remodeling. Angiogenesis, 12(2):113–123, June 2009.

[238] J. Malda, J. Rouwkema, D. E. Martens, E. P. le Comte, F. K. Kooy,

J. Tramper, C. A. van Blitterswijk, and J. Riesle. Oxygen Gradients in

Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement

and Modeling. Biotechnology and Bioengineering, 86(1):9–18, April 2004.

[239] J. Malda, P. van den Brink, P. Meeuwse, M. Grojec, D. Martens,

J. Tramper, J. Riesle, and C. van Blitterswijk. Effect of Oxygen Tension on

Adult Articular Chondrocytes in Microcarrier Bioreactor Culture. Tissue

Engineering, 10(7-8):987–994, July 2004.

[240] S. B. Mamer, S. Chen, J. C. Weddell, A. Palasz, A. Wittenkeller, M. Ku-

mar, and P. I. Imoukhuede. Discovery of High-Affinity PDGF-VEGFR

Interactions: Redefining RTK Dynamics. Scientific Reports, 1(7):16439,

November 2017.

[241] C. Mantovani, D. Mahay, M. Kingham, G. Terenghi, S. G. Shawcross,

and M. Wiberg. Bone marrow- and adipose-derived stem cells show ex-

pression of myelin mRNAs and proteins. Regenerative Medicine, 5(3):403–

410, May 2010.



372 BIBLIOGRAPHY

[242] N. V. Mantzaris, S. Webb, and H. G. Othmer. Mathematical mod-

eling of tumor-induced angiogenesis. Journal of Mathematical Biology,

49(2):111–187, February 2004.

[243] C. Marchesi, M. Pluderi, F. Colleoni, M. Belicchi, M. Meregalli,

A. Farini, D. Parolini, L. Draghi, M. E. Fruguglietti, M. Gavina, L. Por-

retti, A. Cattaneo, M. Battistelli, A. Prelle, M. Moggio, S. Borsa, L. Bello,

D. Spagnoli, S. M. Gaini, M. C. Tanzi, N. Bresolin, N. Grimoldi, and

Y. Torrente. Skin-Derived Stem Cells Transplanted into Resorbable

Guides Provide Functional Nerve Regeneration After Sciatic Nerve Re-

section. Glia, 55(4):425–438, March 2007.

[244] R. E. Marcus. The effect of low oxygen concentration on growth,

glycolysis, and sulfate incorporation by articular chondrocytes in mono-

layer culture. Arthritis & Rheumatism, 16(5):646–656, September 1973.

[245] J. C. Maxwell. A treatise on electricity and magnetism. Clarendon Press,

London, 1837.

[246] M. Mazzone, D. Dettori, R. L. de Oliveira, S. Loges, T. Schmidt,

B. Jonckx, Y.-M. Tian, A. A. Lanahan, P. Pollard, C. R. de Almodovar,

F. De Smet, S. Vinckier, J. Aragonés, K. Debackere, A. Luttun, S. Wyns,

B. Jordan, A. Pisacane, B. Gallez, M. G. Lampugnani, E. Dejana, M. Si-

mons, P. Ratcliffe, P. Maxwell, and P. Carmeliet. Heterozygous Defi-

ciency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis

via Endothelial Normalization. Cell, 136(5):839–851, March 2009.

[247] R. M. R. McAllister, S. E. A. Gilbert, J. S. Calder, and P. J. Smith. The

epidemiology and management of upper limb peripheral nerve injuries

in modern practice. Journal of Hand Surgery, 21(1):4–13, February 1996.

[248] A. I. McClatchey and A. S. Yap. Contact inhibition (of proliferation)

redux. Current Opinion in Cell Biology, 24(5):685–694, October 2012.



BIBLIOGRAPHY 373

[249] S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain, and J. A. Sher-

ratt. Mathematical Modelling of Flow Through Vascular Networks: Im-

plications for Tumour-induced Angiogenesis and Chemotherapy Strate-

gies. Bulletin of Mathematical Biology, 64(4):673–702, July 2002.

[250] S. R. McDougall, A. R. Anderson, and M. A. Chaplain. Mathematical

modelling of dynamic adaptive tumour-induced angiogenesis: Clinical

implications and therapeutic targeting strategies. Journal of Theoretical

Biology, 241(3):564–589, August 2006.

[251] S. R. McDougall, M. G. Watson, A. H. Devlin, C. A. Mitchell, and

M. A. J. Chaplain. A hybrid discrete-continuum mathematical model

of pattern prediction in the developing retinal vasculature. Bulletin of

Mathematical Biology, 74(10):2272–2314, October 2012.

[252] M. F. Meek and W. F. A. Den Dunnen. Porosity of the wall of a Neuro-

lac® nerve conduit hampers nerve regeneration. Microsurgery, 29(6):473–

478, January 2009.

[253] N. Mehio, S. Dai, and D.-e. Jiang. Quantum Mechanical Basis for

Kinetic Diameters of Small Gaseous Molecules. The Journal of Physical

Chemistry A, 118(6):1150–1154, February 2014.

[254] R. S. Mellick and J. B. Cavanagh. Changes in Blood Vessel Permeabil-

ity During Degeneration and Regeneration in Peripheral Nerves. Brain,

91(1):141–160, March 1968.

[255] S. J. Mentzer and M. A. Konerding. Intussusceptive Angiogenesis:

Expansion and Remodeling of Microvascular Networks. Angiogenesis,

17(3):499–509, July 2014.

[256] R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman,

and J. A. Glazier. Cell elongation is key to in silico replication of in

vitro vasculogenesis and subsequent remodeling. Developmental Biology,

289(1):44–54, January 2006.



374 BIBLIOGRAPHY

[257] R. M. H. Merks, E. D. Perryn, A. Shirinifard, and J. A. Glazier.

Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel

Growth. PLoS Computational Biology, 4(9):e1000163, September 2008.

[258] J. Metzcar, Y. Wang, R. Heiland, and P. Macklin. A Review of Cell-

Based Computational Modeling in Cancer Biology. JCO Clinical Cancer

Informatics, (3):1–13, February 2019.

[259] G. J. Mick, X. Wang, and K. McCormick. White Adipocyte Vascu-

lar Endothelial Growth Factor: Regulation by Insulin. Endocrinology,

143(3):948–953, March 2002.

[260] F. Milde, M. Bergdorf, and P. Koumoutsakos. A Hybrid Model for

Three-Dimensional Simulations of Sprouting Angiogenesis. Biophysical

Journal, 95(7):3146–3160, October 2008.

[261] R. J. Millington and J. P. Quirk. Permeability of porous solids. Trans-

actions of the Faraday Society, 57:1200–1207, 1961.

[262] A. Minchenko, T. Bauer, S. Salceda, and J. Caro. Hypoxic stimulation

of vascular endothelial growth factor expression in vitro and in vivo.

Laboratory Investigation, 71(3):374–379, September 1994.

[263] S. Missios, K. Bekelis, and R. J. Spinner. Traumatic peripheral nerve

injuries in children: epidemiology and socioeconomics. Journal of Neuro-

surgery: Pediatrics, 14(6):688–694, October 2014.

[264] A. Mosahebi, B. Woodward, M. Wiberg, R. Martin, and G. Terenghi.

Retroviral labeling of Schwann cells: In vitro characterization and in vivo

transplantation to improve peripheral nerve regeneration. Glia, 34(1):8–

17, March 2001.

[265] A. Muheremu and Q. Ao. Past, present, and future of nerve conduits

in the treatment of peripheral nerve injury. BioMed Research International,

2015, 2015.



BIBLIOGRAPHY 375

[266] D. Mukhopadhyay, L. Tsiokas, X. M. Zhou, D. Foster, J. S. Brugge,

and V. P. Sukhatme. Hypoxic induction of human vascular endothelial

growth factor expression through c-Src activation. Nature, 375(6532):577–

581, June 1995.

[267] M. N. Nakatsu and C. C. Hughes. Chapter 4 An Optimized Three-

Dimensional In Vitro Model for the Analysis of Angiogenesis. In Methods

in Enzymology, volume 443, pages 65–82. Elsevier, 2008.

[268] M. N. Nakatsu, R. C. A. Sainson, S. Pérez-del-Pulgar, J. N. Aoto,

M. Aitkenhead, K. L. Taylor, P. M. Carpenter, and C. C. W. Hughes.

VEGF121 and VEGF165 Regulate Blood Vessel Diameter Through Vascu-

lar Endothelial Growth Factor Receptor 2 in an in vitro Angiogenesis

Model. Laboratory Investigation, 83(12):1873–1885, December 2003.

[269] I. Napoli, L. Noon, S. Ribeiro, A. Kerai, S. Parrinello, L. Rosenberg,

M. Collins, M. Harrisingh, I. White, A. Woodhoo, and A. Lloyd. A Cen-

tral Role for the ERK-Signaling Pathway in Controlling Schwann Cell

Plasticity and Peripheral Nerve Regeneration In Vivo. Neuron, 73(4):729–

742, February 2012.

[270] A. R. Nectow, K. G. Marra, and D. L. Kaplan. Biomaterials for the

Development of Peripheral Nerve Guidance Conduits. Tissue Engineering

Part B: Reviews, 18(1):40–50, February 2012.

[271] J. E. Nesmith, J. C. Chappell, J. G. Cluceru, and V. L. Bautch. Blood

vessel anastomosis is spatially regulated by Flt1 during angiogenesis.

Development, 144(5):889–896, March 2017.

[272] P. G. Newrick, A. J. Wilson, J. Jakubowski, A. J. Boulton, and J. D.

Ward. Sural nerve oxygen tension in diabetes. British Medical Journal

(Clinical Research Edition), 293(6554):1053–1054, October 1986.

[273] Q. T. Nguyen, J. R. Sanes, and J. W. Lichtman. Pre-existing pathways



376 BIBLIOGRAPHY

promote precise projection patterns. Nature Neuroscience, 5(9):861–867,

September 2002.

[274] B. Nicholson and S. Verma. Comorbidities in Chronic Neuropathic

Pain. Pain Medicine, 5(Suppl 1):S9–S27, March 2004.

[275] J. Noble, C. A. Munro, V. S. Prasad, and R. Midha. Analysis of upper

and lower extremity peripheral nerve injuries in a population of patients

with multiple injuries. The Journal of Trauma, 45(1):116–122, July 1998.

[276] K.-A. Norton and A. S. Popel. Effects of endothelial cell proliferation

and migration rates in a computational model of sprouting angiogenesis.

Scientific Reports, 6:36992, November 2016.

[277] E. C. Novosel, C. Kleinhans, and P. J. Kluger. Vascularization is the

key challenge in tissue engineering. Advanced Drug Delivery Reviews,

63(4–5):300–311, April 2011.

[278] H. Nukada. Post-traumatic endoneurial neovascularization and

nerve regeneration: a morphometric study. Brain Research, 449(1–2):89–

96, May 1988.

[279] S. S. Nunes, K. A. Greer, C. M. Stiening, H. Y. Chen, K. R. Kidd,

M. A. Schwartz, C. J. Sullivan, H. Rekapally, and J. B. Hoying. Implanted

Microvessels Progress through Distinct Neovascularization Phenotypes.

Microvascular research, 79(1):10–20, January 2010.

[280] D. A. Núñez. Experimental estimate of the diffusivity of Vascular Endothe-

lial Growth Factor. Thesis, Massachusetts Institute of Technology, 2006.

[281] B. Obradovic, J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic.

Glycosaminoglycan deposition in engineered cartilage: Experiments and

mathematical model. AIChE Journal, 46(9):1860–1871, September 2000.

[282] D. Odedra, L. L. Chiu, M. Shoichet, and M. Radisic. Endothelial cells

guided by immobilized gradients of vascular endothelial growth factor



BIBLIOGRAPHY 377

on porous collagen scaffolds. Acta Biomaterialia, 7(8):3027–3035, August

2011.

[283] S. H. Oh and J. H. Lee. Fabrication and characterization of hy-

drophilized porous PLGA nerve guide conduits by a modified immer-

sion precipitation method. Journal of Biomedical Materials Research Part A,

80(3):530–538, March 2007.

[284] S. H. Oh, J. H. Kim, K. S. Song, B. H. Jeon, J. H. Yoon, T. B. Seo,

U. Namgung, I. W. Lee, and J. H. Lee. Peripheral nerve regeneration

within an asymmetrically porous PLGA/Pluronic F127 nerve guide con-

duit. Biomaterials, 29(11):1601–1609, April 2008.

[285] S. Okinaga and A. Nagano. Can vascularization improve the surgical

outcome of the intercostal nerve transfer for traumatic brachial plexus

palsy? A clinical comparison of vascularized and non-vascularized

methods. Microsurgery, 19(4):176–180, 1999.

[286] C. O’Leary, J. L. Gilbert, S. O’Dea, F. J. O’Brien, and S.-A. Cryan. Res-

piratory Tissue Engineering: Current Status and Opportunities for the

Future. Tissue Engineering Part B: Reviews, 21(4):323–344, August 2015.

[287] L. Olsen, J. A. Sherratt, P. K. Maini, and F. Arnold. A mathematical

model for the capillary endothelial cell-extracellular matrix interactions

in wound-healing angiogenesis. IMA Journal of Mathematics Applied in

Medicine and Biology, 14:261–281, December 1997.

[288] H. Orbay, A. C. Uysal, H. Hyakusoku, and H. Mizuno. Differentiated

and undifferentiated adipose-derived stem cells improve function in rats

with peripheral nerve gaps. Journal of Plastic, Reconstructive & Aesthetic

Surgery, 65(5):657–664, May 2012.

[289] M. E. Orme and M. A. J. Chaplain. A mathematical model of the first

steps of tumour-related angiogenesis: Capillary sprout formation and



378 BIBLIOGRAPHY

secondary branching. IMA Journal of Mathematics Applied in Medicine &

Biology, 13(2):73–98, June 1996.

[290] M. E. Orme and M. A. J. Chaplain. Two-dimensional models of

tumour angjogenesis and anti-angiogenesis strategies. IMA Journal of

Mathematics Applied in Medicine & Biology, 14(3):189–205, September 1997.

[291] C. O’Rourke, A. G. E. Day, C. Murray-Dunning, L. Thanabalasun-

daram, J. Cowan, L. Stevanato, N. Grace, G. Cameron, R. A. L. Drake,

J. Sinden, and J. B. Phillips. An allogeneic ‘off the shelf’ therapeutic strat-

egy for peripheral nerve tissue engineering using clinical grade human

neural stem cells. Scientific Reports, 8(1):2951, February 2018.

[292] M. A. Ostrowski, N. F. Huang, T. W. Walker, T. Verwijlen,

C. Poplawski, A. S. Khoo, J. P. Cooke, G. G. Fuller, and A. R. Dunn.

Microvascular Endothelial Cells Migrate Upstream and Align Against

the Shear Stress Field Created by Impinging Flow. Biophysical Journal,

106(2):366–374, January 2014.

[293] M. R. Owen, T. Alarcón, P. K. Maini, and H. M. Byrne. Angiogenesis

and vascular remodelling in normal and cancerous tissues. Journal of

Mathematical Biology, 58(4-5):689–721, April 2009.

[294] M. R. Owen, I. J. Stamper, M. Muthana, G. W. Richardson, J. Dobson,

C. E. Lewis, and H. M. Byrne. Mathematical Modeling Predicts Syn-

ergistic Antitumor Effects of Combining a Macrophage-Based, Hypoxia-

Targeted Gene Therapy with Chemotherapy. Cancer Research, 71(8):2826–

2837, April 2011.

[295] H.-C. Pan, C.-J. Chen, F.-C. Cheng, S.-P. Ho, M.-J. Liu, S.-M. Hwang,

M.-H. Chang, and Y.-C. Wang. Combination of G-CSF Administration

and Human Amniotic Fluid Mesenchymal Stem Cell Transplantation

Promotes Peripheral Nerve Regeneration. Neurochemical Research; New

York, 34(3):518–527, March 2009.



BIBLIOGRAPHY 379

[296] J.-A. Park, K.-S. Choi, S.-Y. Kim, and K.-W. Kim. Coordinated in-

teraction of the vascular and nervous systems: from molecule- to cell-

based approaches. Biochemical and Biophysical Research Communications,

311(2):247–253, November 2003.

[297] J. Parker, N. Mitrousis, and M. S. Shoichet. Hydrogel for simultane-

ous tunable growth factor delivery and enhanced viability of encapsu-

lated cells in vitro. Biomacromolecules, 17(2):476–484, January 2016.

[298] A. Parr, I. Kulbatski, T. Zahir, X. Wang, C. Yue, A. Keating, and

C. Tator. Transplanted adult spinal cord-derived neural stem/progenitor

cells promote early functional recovery after rat spinal cord injury. Neu-

roscience, 155(3):760–770, August 2008.

[299] S. Parrinello, I. Napoli, S. Ribeiro, P. W. Digby, M. Fedorova, D. B.

Parkinson, R. D. S. Doddrell, M. Nakayama, R. H. Adams, and A. C.

Lloyd. EphB Signaling Directs Peripheral Nerve Regeneration through

Sox2-Dependent Schwann Cell Sorting. Cell, 143(1):145–155, October

2010.

[300] V. Patel, G. Joseph, A. Patel, S. Patel, D. Bustin, D. Mawson, L. M.

Tuesta, R. Puentes, M. Ghosh, and D. D. Pearse. Suspension Matrices for

Improved Schwann-Cell Survival after Implantation into the Injured Rat

Spinal Cord. Journal of Neurotrauma, 27(5):789–801, May 2010.

[301] N. P. Patel, K. A. Lyon, and J. H. Huang. An update- tissue engi-

neered nerve grafts for the repair of peripheral nerve injuries. Neural

Regeneration Research, 13(5):764–774, May 2018.

[302] D. D. Pearse, A. R. Sanchez, F. C. Pereira, C. M. Andrade, R. Puzis,

Y. Pressman, K. Golden, B. M. Kitay, B. Blits, P. M. Wood, and M. B.

Bunge. Transplantation of Schwann cells and/or olfactory ensheathing

glia into the contused spinal cord: Survival, migration, axon association,

and functional recovery. Glia, 55(9):976–1000, July 2007.



380 BIBLIOGRAPHY

[303] J. C. Pelton, C. E. Wright, M. Leitges, and V. L. Bautch. Multiple en-

dothelial cells constitute the tip of developing blood vessels and polarize

to promote lumen formation. Development, 141(21):4121–4126, November

2014.

[304] G. Penkert, W. Bini, and M. Samii. Revascularization of nerve grafts:

an experimental study. Journal of Reconstructive Microsurgery, 4(4):319–

325, July 1988.

[305] M. S. Pepper, N. Ferrara, L. Orci, and R. Montesano. Potent syn-

ergism between vascular endothelial growth factor and basic fibroblast

growth factor in the induction of angiogenesis in vitro. Biochemical and

Biophysical Research Communications, 189(2):824–831, December 1992.

[306] H. Perfahl, H. M. Byrne, T. Chen, V. Estrella, T. Alarcón, A. Lapin,

R. A. Gatenby, R. J. Gillies, M. C. Lloyd, P. K. Maini, M. Reuss, and M. R.

Owen. Multiscale Modelling of Vascular Tumour Growth in 3D: The

Roles of Domain Size and Boundary Conditions. PLoS ONE, 6(4), April

2011.

[307] H. Perfahl, B. D. Hughes, T. Alarcón, P. K. Maini, M. C. Lloyd,

M. Reuss, and H. M. Byrne. 3D hybrid modelling of vascular network

formation. Journal of Theoretical Biology, 414:254–268, February 2017.

[308] G. Pettet, H. Byrne, D. McElwain, and J. Norbury. A model of wound-

healing angiogenesis in soft tissue. Mathematical Biosciences, 136(1):35–63,

August 1996.

[309] W. Philipp, L. Speicher, and C. Humpel. Expression of Vascular En-

dothelial Growth Factor and Its Receptors in Inflamed and Vascularized

Human Corneas. Investigative Ophthalmology & Visual Science, 41(9):2514–

2522, August 2000.

[310] J. B. Phillips and R. Brown. Micro-structured Materials and Mechan-



BIBLIOGRAPHY 381

ical Cues in 3D Collagen Gels. In J. W. Haycock, editor, 3D Cell Culture,

volume 695, pages 183–196. Humana Press, Totowa, NJ, 2011.

[311] J. B. Phillips and B. R. Micro-structured materials and mechanical

cues in 3d collagen gels. Methods in Molecular Biology, 695:183–96, 2011.

[312] L.-K. Phng and H. Gerhardt. Angiogenesis: A Team Effort Coordi-

nated by Notch. Developmental Cell, 16(2):196–208, February 2009.

[313] L.-K. Phng, F. Stanchi, and H. Gerhardt. Filopodia are dispensable for

endothelial tip cell guidance. Development, 140(19):4031–4040, October

2013.

[314] C. Picioreanu, M. C. M. van Loosdrecht, and J. J. Heijnen. A

New Combined Differential-Discrete Cellular Automaton Approach for

Biofilm Modeling: Application for Growth in Gel Beads. Biotechnology

and Bioengineering, 57(6):718–731, March 1998.

[315] E. A. Pierce, E. D. Foley, and L. E. Smith. Regulation of vascular

endothelial growth factor by oxygen in a model of retinopathy of pre-

maturity. Archives of Ophthalmology, 114(10):1219–1228, October 1996.

[316] L. Pisani. Simple Expression for the Tortuosity of Porous Media.

Transport in Porous Media, 88(2):193–203, February 2011.

[317] R. J. Podhajsky and R. R. Myers. The vascular response to nerve tran-

section: neovascularization in the silicone nerve regeneration chamber.

Brain Research, 662(1-2):88–94, October 1994.

[318] R. J. Podhajsky and R. R. Myers. A diffusion-reaction model of nerve

regeneration. Journal of Neuroscience Methods, 60(1-2):79–88, August 1995.

[319] J. V. Pohlmeyer, S. L. Waters, and L. J. Cummings. Mathematical

Model of Growth Factor Driven Haptotaxis and Proliferation in a Tis-

sue Engineering Scaffold. Bulletin of Mathematical Biology, 75(3):393–427,

March 2013.



382 BIBLIOGRAPHY

[320] A. S. Popel. Theory of oxygen transport to tissue. Critical Reviews in

Biomedical Engineering, 17(3):257–321, 1989.

[321] Prockop D J. “Stemness” Does Not Explain the Repair of Many Tis-

sues by Mesenchymal Stem/Multipotent Stromal Cells (MSCs). Clinical

Pharmacology & Therapeutics, 82(3):241–243, September 2007.

[322] B. Prpa, P. M. Huddleston, K. An, and M. B. Wood. Revascularization

of nerve grafts: a qualitative and quantitative study of the soft-tissue bed

contributions to blood flow in canine nerve grafts. The Journal of Hand

Surgery, 27(6):1041–1047, November 2002.

[323] M. Quintard and S. Whitaker. Convection, dispersion, and interfacial

transport of contaminants: Homogeneous porous media. Advances in

Water Resources, 17(4):221–239, January 1994.

[324] M. Quintard and S. Whitaker. Coupled, nonlinear mass transfer and

heterogeneous reaction in porous media. In K. Vafai, editor, Handbook of

Porous Media, chapter 1, pages 3–37. Taylor & Francis Group, LLC, Boca

Raton, FL, USA, 2005.

[325] A. A. Qutub and A. S. Popel. Elongation, proliferation & migration

differentiate endothelial cell phenotypes and determine capillary sprout-

ing. BMC Systems Biology, 3(1):13, January 2009.

[326] M. Raica and A. M. Cimpean. Platelet-Derived Growth Factor

(PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and

Antiangiogenic Therapy. Pharmaceuticals, 3(3):572–599, March 2010.

[327] S. Ramakrishnan, V. Anand, and S. Roy. Vascular Endothelial growth

factor signaling in hypoxia and Inflammation. Journal of Neuroimmune

Pharmacology, 9(2):142–160, March 2014.

[328] R. Rangarajan and M. H. Zaman. Modeling cell migration in 3D. Cell

Adhesion & Migration, 2(2):106–109, April 2008.



BIBLIOGRAPHY 383

[329] S. Razaq, R. Yasmeen, A. W. Butt, N. Akhtar, and S. N. Mansoor. The

pattern of peripheral nerve injuries among Pakistani soldiers in the war

against terror. Journal of the College of Physicians and Surgeons–Pakistan:

JCPSP, 25(5):363–366, May 2015.

[330] M. Redza-Dutordoir and D. A. Averill-Bates. Activation of apoptosis

signalling pathways by reactive oxygen species. Biochimica et Biophysica

Acta (BBA) - Molecular Cell Research, 1863(12):2977–2992, December 2016.

[331] D. Ribatti and E. Crivellato. “Sprouting angiogenesis”, a reappraisal.

Developmental Biology, 372(2):157–165, December 2012.

[332] H. Rieger and M. Welter. Integrative models of vascular remodeling

during tumor growth. Wiley Interdisciplinary Reviews: Systems Biology and

Medicine, 7(3):113–129, May 2015.

[333] A. M. Robertson, C. Huxley, R. H. M. King, and P. K. Thomas. Devel-

opment of early postnatal peripheral nerve abnormalities in Trembler-J

and PMP22 transgenic mice. Journal of Anatomy, 195(3):331–339, October

1999.

[334] H. E. Rosberg, K. S. Carlsson, S. Högård, B. Lindgren, G. Lundborg,

and L. B. Dahlin. Injury to the human median and ulnar nerves in the

forearm–analysis of costs for treatment and rehabilitation of 69 patients

in southern Sweden. Journal of Hand Surgery: British & European Volume,

30(1):35–39, February 2005.

[335] C. Ruhrberg, H. Gerhardt, M. Golding, R. Watson, S. Ioannidou,

H. Fujisawa, C. Betsholtz, and D. T. Shima. Spatially restricted pat-

terning cues provided by heparin-binding VEGF-A control blood ves-

sel branching morphogenesis. Genes & Development, 16(20):2684–2698,

October 2002.

[336] G. E. Rutkowski and C. A. Heath. Development of a Bioartificial



384 BIBLIOGRAPHY

Nerve Graft. I. Design Based on a Reaction-Diffusion Model. Biotechnol-

ogy Progress, 18(2):362–372, March 2002.

[337] G. E. Rutkowski and C. A. Heath. Development of a Bioartificial

Nerve Graft. II. Nerve Regeneration in Vitro. Biotechnology Progress,

18(2):373–379, March 2002.

[338] R. Sacco, P. Causin, P. Zunino, and M. T. Raimondi. A multi-

physics/multiscale 2D numerical simulation of scaffold-based cartilage

regeneration under interstitial perfusion in a bioreactor. Biomechanics and

Modeling in Mechanobiology, 10(4):577–589, July 2011.

[339] R. C. A. Sainson, J. Aoto, M. N. Nakatsu, M. T. Holderfield, E. M.

Conn, E. S. H. Koller, and C. C. W. Hughes. Cell-autonomous notch

signaling regulates endothelial cell branching and proliferation during

vascular tubulogenesis. The FASEB Journal, 19(8):1027–1029, June 2005.

[340] K. Sanen, W. Martens, M. Georgiou, M. Ameloot, I. Lambrichts, and

J. Phillips. Engineered neural tissue with Schwann cell differentiated

human dental pulp stem cells: potential for peripheral nerve repair?

Journal of Tissue Engineering and Regenerative Medicine, 11(12):3362–3372,

December 2017.

[341] J. A. Sanz-Herrera, J. M. Garcia-Aznar, and M. Doblaré. A mathe-

matical approach to bone tissue engineering. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences,

367(1895):2055–2078, May 2009.

[342] M. D. Sarker, X. B. Chen, and D. J. Schreyer. Experimental approaches

to vascularisation within tissue engineering constructs. Journal of Bioma-

terials Science: Polymer Edition, 26(12):683–734, August 2015.

[343] M. Sarker, S. Naghieh, A. D. McInnes, D. J. Schreyer, and X. Chen.

Strategic Design and Fabrication of Nerve Guidance Conduits for Pe-



BIBLIOGRAPHY 385

ripheral Nerve Regeneration. Biotechnology Journal, 13(7):1700635, July

2018.

[344] M. Scianna, L. Preziosi, and K. Wolf. A Cellular Potts model simu-

lating cell migration on and in matrix environments. Mathematical Bio-

sciences and Engineering, 10(1):235–261, February 2013.

[345] T. Secomb, R. Hsu, N. Beamer, and B. Coull. Theoretical Simula-

tion of Oxygen Transport to Brain by Networks of Microvessels: Effects

of Oxygen Supply and Demand on Tissue Hypoxia. Microcirculation,

7(4):237–247, August 2000.

[346] T. W. Secomb, R. Hsu, E. Y. H. Park, and M. W. Dewhirst. Green’s

Function Methods for Analysis of Oxygen Delivery to Tissue by Mi-

crovascular Networks. Annals of Biomedical Engineering, 32(11):1519–1529,

November 2004.

[347] T. W. Secomb, J. P. Alberding, R. Hsu, M. W. Dewhirst, and A. R.

Pries. Angiogenesis: An Adaptive Dynamic Biological Patterning Prob-

lem. PLoS Computational Biology, 9(3):e1002983, March 2013.

[348] D. G. Seifu, A. Purnama, K. Mequanint, and D. Mantovani.

Small-diameter vascular tissue engineering. Nature Reviews Cardiology,

10(7):410–421, May 2013.

[349] M. Shakeel, P. C. Matthews, R. S. Graham, and S. L. Waters. A con-

tinuum model of cell proliferation and nutrient transport in a perfu-

sion bioreactor. Mathematical Medicine and Biology: A Journal of the IMA,

30(1):21–44, March 2013.

[350] A. Shamloo and S. C. Heilshorn. Matrix density mediates polariza-

tion and lumen formation of endothelial sprouts in VEGF gradients. Lab

on a Chip, 10(22):3061–3068, October 2010.



386 BIBLIOGRAPHY

[351] A. Shamloo, N. Ma, M.-m. Poo, L. L. Sohn, and S. C. Heilshorn.

Endothelial cell polarization and chemotaxis in a microfluidic device.

Lab on a Chip, 8(8):1292–1299, July 2008.

[352] H.-C. Shih, T.-A. Lee, H.-M. Wu, P.-L. Ko, W.-H. Liao, and Y.-C. Tung.

Microfluidic Collective Cell Migration Assay for Study of Endothelial

Cell Proliferation and Migration under Combinations of Oxygen Gradi-

ents, Tensions, and Drug Treatments. Scientific Reports, 9(1):1–10, June

2019.

[353] K. Shintani, T. Uemura, K. Takamatsu, T. Yokoi, E. Onode, M. Okada,

and H. Nakamura. Protective effect of biodegradable nerve conduit

against peripheral nerve adhesion after neurolysis. Journal of Neuro-

surgery, 129(3):815–824, September 2018.

[354] R. J. Shipley and S. L. Waters. Fluid and mass transport modelling

to drive the design of cell-packed hollow fibre bioreactors for tissue en-

gineering applications. Mathematical Medicine and Biology, 29(4):329–359,

December 2012.

[355] Y. Shirosaki, T. Okayama, K. Tsuru, S. Hayakawa, and A. Osaka.

Synthesis and cytocompatibility of porous chitosan-silicate hybrids for

tissue engineering scaffold application. Chemical Engineering Journal,

137(1):122–128, March 2008.

[356] M. M. Sholley, G. P. Ferguson, H. R. Seibel, J. L. Montour, and J. D.

Wilson. Mechanisms of neovascularization. Vascular sprouting can oc-

cur without proliferation of endothelial cells. Laboratory Investigation,

51(6):624–634, December 1984.

[357] D. Shweiki, A. Itin, D. Soffer, and E. Keshet. Vascular endothelial

growth factor induced by hypoxia may mediate hypoxia-initiated angio-

genesis. Nature, 359(6398):843–845, October 1992.



BIBLIOGRAPHY 387

[358] M. Siemionow and E. Sonmez. Nerve allograft transplantation: A

review. Journal of Reconstructive Microsurgery, 23(8):511–520, November

2007.

[359] J. T. Smith, J. T. Elkin, and W. M. Reichert. Directed cell migration on

fibronectin gradients: Effect of gradient slope. Experimental Cell Research,

312(13):2424–2432, August 2006.

[360] M. Sondell, G. Lundborg, and M. Kanje. Vascular endothelial growth

factor stimulates Schwann cell invasion and neovascularization of acel-

lular nerve grafts. Brain Research, 846(2):219–228, November 1999.

[361] J. R. Sparrow and J. A. Kiernan. Endoneurial vascular permeability in

degenerating and regenerating peripheral nerves. Acta Neuropathologica,

53(3):181–188, September 1981.

[362] A. Stempien-Otero, A. Karsan, C. J. Cornejo, H. Xiang, T. Eunson,

R. S. Morrison, M. Kay, R. Winn, and J. Harlan. Mechanisms of Hypoxia-

induced Endothelial Cell Death: ROLE OF p53 IN APOPTOSIS. Journal

of Biological Chemistry, 274(12):8039–8045, March 1999.

[363] A. Stéphanou, S. McDougall, A. Anderson, and M. Chaplain. Mathe-

matical modelling of flow in 2D and 3D vascular networks: Applications

to anti-angiogenic and chemotherapeutic drug strategies. Mathematical

and Computer Modelling, 41(10):1137–1156, May 2005.

[364] M. G. P. Stoker and H. Rubin. Density Dependent Inhibition of Cell

Growth in Culture. Nature, 215(5097):171–172, July 1967.

[365] C. L. Stokes and D. A. Lauffenburger. Analysis of the roles of mi-

crovessel endothelial cell random motility and chemotaxis in angiogen-

esis. Journal of Theoretical Biology, 152(3):377–403, October 1991.

[366] C. L. Stokes, D. A. Lauffenburger, and S. K. Williams. Migration of



388 BIBLIOGRAPHY

individual microvessel endothelial cells: stochastic model and parameter

measurement. Journal of Cell Science, 99(2):419–430, June 1991.

[367] I. Streeter and U. Cheema. Oxygen consumption rate of cells in 3D

culture: The use of experiment and simulation to measure kinetic pa-

rameters and optimise culture conditions. Analyst, 136(19):4013–4019,

September 2011.

[368] B. M. Strem, K. C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R. E.

Schreiber, J. K. Fraser, and M. H. Hedrick. Multipotential differentia-

tion of adipose tissue-derived stem cells. The Keio Journal of Medicine,

54(3):132–141, September 2005.

[369] S. Sun, M. Wheeler, M. Obeyesekere, and C. W. J. Patrick. A deter-

ministic model of growth factor-induced angiogenesis. Bulletin of Math-

ematical Biology, 67(2):313–337, March 2005.

[370] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood, and

S. MacNeil. An integrated systems biology approach to understanding

the rules of keratinocyte colony formation. Journal of the Royal Society

Interface, 4(17):1077–1092, December 2007.

[371] T. Sun, S. Adra, R. Smallwood, M. Holcombe, and S. MacNeil. Explor-

ing Hypotheses of the Actions of TGF-β1 in Epidermal Wound Healing

Using a 3D Computational Multiscale Model of the Human Epidermis.

PLoS ONE, 4(12):e8515, December 2009.

[372] C. Suri, P. F. Jones, S. Patan, S. Bartunkova, P. C. Maisonpierre,

S. Davis, T. N. Sato, and G. D. Yancopoulos. Requisite Role of

Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic An-

giogenesis. Cell, 87(7):1171–1180, December 1996.

[373] R.-J. Swijnenburg, S. Schrepfer, F. Cao, J. I. Pearl, X. Xie, A. J. Con-

nolly, R. C. Robbins, and J. C. Wu. In vivo imaging of embryonic stem



BIBLIOGRAPHY 389

cells reveals patterns of survival and immune rejection following trans-

plantation. Stem Cells and Development, 17(6):1023–1029, December 2008.

[374] S. Takano, Y. Yoshii, S. Kondo, H. Suzuki, T. Maruno, S. Shirai, and

T. Nose. Concentration of Vascular Endothelial Growth Factor in the

Serum and Tumor Tissue of Brain Tumor Patients. Cancer Research,

59(9):2185–2190, May 1996.

[375] K. Tang, E. C. Breen, H. Wagner, T. D. Brutsaert, M. Gassmann, and

P. D. Wagner. HIF and VEGF relationships in response to hypoxia and

sciatic nerve stimulation in rat gastrocnemius. Respiratory Physiology &

Neurobiology, 144(1):71–80, November 2004.

[376] J. Tao, Y. Hu, S. Wang, J. Zhang, X. Liu, Z. Gou, H. Cheng, Q. Liu,

Q. Zhang, S. You, and M. Gou. A 3D-engineered porous conduit for

peripheral nerve repair. Scientific Reports, 7(1):46038, December 2017.

[377] I. M. Tarlov and J. A. Epstein. Nerve Grafts: the Importance of an Ad-

equate Blood Supply. Journal of Neurosurgery, 2(1):49–71, January 1945.

[378] C. A. Taylor, D. Braza, J. B. Rice, and T. Dillingham. The incidence of

peripheral nerve injury in extremity trauma. American Journal of Physical

Medicine & Rehabilitation, 87(5):381–385, May 2008.

[379] M. M. Tomadakis and S. V. Sotirchos. Transport properties of random

arrays of freely overlapping cylinders with various orientation distribu-

tions. The Journal of Chemical Physics, 98(1):616–626, January 1993.

[380] P. Tomlins, P. Grant, S. Mikhalovsky, S. James, and L. Mikhalovska.

Measurement of Pore Size and Porosity of Tissue Scaffolds. Journal of

ASTM International, 1(1):1–8, 2004.

[381] S. Tong and F. Yuan. Numerical Simulations of Angiogenesis in the

Cornea. Microvascular Research, 61(1):14–27, January 2001.



390 BIBLIOGRAPHY

[382] F. R. Troeh, J. D. Jabro, and D. Kirkham. Gaseous diffusion equations

for porous materials. Geoderma, 27(3):239–253, April 1982.

[383] D. S. Tsai and W. Strieder. Effective Conductivities of Random Fiber

Beds. Chemical Engineering Communications, 40(1–6):207–218, 1986.

[384] A. Tufro-McReddie, V. F. Norwood, K. W. Aylor, S. J. Botkin, R. M.

Carey, and R. A. Gomez. Oxygen regulates vascular endothelial growth

factor-mediated vasculogenesis and tubulogenesis. Developmental Biol-

ogy, 183(2):139–149, March 1997.

[385] C. Urbich, E. Dernbach, A. Reissner, M. Vasa, A. M. Zeiher, and

S. Dimmeler. Shear Stress-Induced Endothelial Cell Migration Involves

Integrin Signaling Via the Fibronectin Receptor Subunits α5 and β1. Ar-

teriosclerosis, Thrombosis, and Vascular Biology, 22(1):69–75, January 2002.

[386] A. D. van der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes.

A microfluidic wound-healing assay for quantifying endothelial cell mi-

gration. American Journal of Physiology-Heart and Circulatory Physiology,

298(2):H719–H725, November 2009.

[387] V. W. van Hinsbergh and P. Koolwijk. Endothelial sprouting and

angiogenesis: matrix metalloproteinases in the lead. Cardiovascular Re-

search, 78(2):203–212, February 2008.

[388] P. Van Pham, N. B. Vu, and N. K. Phan. Hypoxia promotes adipose-

derived stem cell proliferation via VEGF. Biomedical Research and Therapy,

3(1):476–482, February 2016.

[389] N. Varongchayakul, D. Huttner, M. W. Grinstaff, and A. Meller. Sens-

ing Native Protein Solution Structures Using a Solid-state Nanopore:

Unraveling the States of VEGF. Scientific Reports, 8(1):1017, January 2018.

[390] M. Vastamäki, P. K. Kallio, and K. A. Solonen. The results of



BIBLIOGRAPHY 391

secondary microsurgical repair of ulnar nerve injury. Journal of Hand

Surgery: British & European Volume, 18(3):323–326, June 1993.

[391] P. Vempati, A. S. Popel, and F. Mac Gabhann. Formation of VEGF

isoform-specific spatial distributions governing angiogenesis: computa-

tional analysis. BMC Systems Biology, 5:59, May 2011.

[392] P. Vempati, A. S. Popel, and F. Mac Gabhann. Extracellular regula-

tion of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine &

Growth Factor Reviews, 25(1):1–19, February 2014.

[393] D. Vestweber. VE-Cadherin: The Major Endothelial Adhesion

Molecule Controlling Cellular Junctions and Blood Vessel Formation.

Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2):223–232, February

2008.

[394] C. L. A. M. Vleggeert-Lankamp, J. Wolfs, A. P. Pêgo, R. van den

Berg, H. Feirabend, and E. Lakke. Effect of nerve graft porosity on the

refractory period of regenerating nerve fibers: Laboratory investigation.

Journal of Neurosurgery, 109(2):294–305, August 2008.

[395] D. von Tell, A. Armulik, and C. Betsholtz. Pericytes and vascular

stability. Experimental Cell Research, 312(5):623–629, March 2006.

[396] B. A. Wagner, S. Venkataraman, and G. R. Buettner. The Rate of

Oxygen Utilization by Cells. Free Radical Biology & Medicine, 51(3):700–

712, August 2011.

[397] D. Walker, J. Southgate, G. Hill, M. Holcombe, D. Hose, S. Wood,

S. Mac Neil, and R. Smallwood. The epitheliome: agent-based modelling

of the social behaviour of cells. Biosystems, 76(1-3):89–100, August 2004.

[398] A. Waller. Experiments on the Section of the Glossopharyngeal and

Hypoglossal Nerves of the Frog, and Observations of the Alterations



392 BIBLIOGRAPHY

Produced Thereby in the Structure of Their Primitive Fibres. Philosophical

Transactions of the Royal Society of London, 5:423–429, 1850.

[399] J. Walpole, J. C. Chappell, J. G. Cluceru, F. Mac Gabhann, V. L. Bautch,

and S. M. Peirce. Agent-based model of angiogenesis simulates capillary

sprout initiation in multicellular networks. Integrative Biology, 7(9):987–

997, September 2015.

[400] S. Walsh and R. Midha. Practical considerations concerning the use

of stem cells for peripheral nerve repair. Neurosurgical Focus, 26(2):E2,

February 2009.

[401] S. K. Walsh, R. Kumar, J. K. Grochmal, S. W. P. Kemp, J. Forden, and

R. Midha. Fate of stem cell transplants in peripheral nerves. Stem Cell

Research, 8(2):226–238, March 2012.

[402] D. Wang, H.-J. S. Huang, A. Kazlauskas, and W. K. Cavenee. Induc-

tion of Vascular Endothelial Growth Factor Expression in Endothelial

Cells by Platelet-derived Growth Factor through the Activation of Phos-

phatidylinositol 3-Kinase. Cancer Research, 59(7):1464–1472, April 1999.

[403] L. Wang, M. T. Sanford, Z. Xin, G. Lin, and T. F. Lue. Role of Schwann

cells in the regeneration of penile and peripheral nerves. Asian Journal of

Andrology, 17(5):776–782, September 2015.

[404] M. L. Wang, M. Rivlin, J. G. Graham, and P. K. Beredjiklian. Pe-

ripheral nerve injury, scarring, and recovery. Connective Tissue Research,

60(1):3–9, January 2019.

[405] J. P. Ward and J. R. King. Mathematical modelling of avascular-

tumour growth. Mathematical Medicine and Biology: A Journal of the IMA,

14(1):39–69, March 1997.

[406] M. G. Watson, S. R. McDougall, M. A. J. Chaplain, A. H. Devlin,

and C. A. Mitchell. Dynamics of angiogenesis during murine retinal



BIBLIOGRAPHY 393

development: a coupled in vivo and in silico study. Journal of The Royal

Society Interface, 9(74):2351–2364, September 2012.

[407] G. Weddell. Axonal regeneration in cutaneous nerve plexuses. Journal

of Anatomy, 77(Pt 1):49–62.3, October 1942.

[408] A. Weerasuriya. Patterns of change in endoneurial capillary perme-

ability and vascular space during nerve regeneration. Brain Research,

510(1):135–139, February 1990.

[409] H. L. Weissberg. Effective Diffusion Coefficient in Porous Media.

Journal of Applied Physics, 34(9):2636–2639, 1963.

[410] A. D. Widgerow, A. A. Salibian, S. Lalezari, and G. R. D. Evans.

Neuromodulatory nerve regeneration: Adipose tissue-derived stem cells

and neurotrophic mediation in peripheral nerve regeneration. Journal of

Neuroscience Research, 91(12):1517–1524, December 2013.

[411] M. Witkowska-Zimny and K. Walenko. Stem cells from adipose tis-

sue. Cellular and Molecular Biology Letters, 16(2):236–257, June 2011.

[412] M. B. Wood. Peroneal nerve repair: Surgical results. Clinical Or-

thopaedics and Related Research, 267:206–210, June 1991.

[413] P. Wu, Y. Fu, and K. Cai. Regulation of the migration of endothelial

cells by a gradient density of vascular endothelial growth factor. Colloids

and Surfaces B: Biointerfaces, 123:181–190, November 2014.

[414] W.-D. Xu, J.-G. Xu, and Y.-D. Gu. Comparative clinic study on vas-

cularized and nonvascularized full-length phrenic nerve transfer. Micro-

surgery, 25(1):16–20, 2005.

[415] Y. Xu, L. Liu, Y. Li, C. Zhou, F. Xiong, Z. Liu, R. Gu, X. Hou, and

C. Zhang. Myelin-forming ability of Schwann cell-like cells induced

from rat adipose-derived stem cells in vitro. Brain Research, 1239:49–55,

November 2008.



394 BIBLIOGRAPHY

[416] S. Yi, L. Xu, and X. Gu. Scaffolds for peripheral nerve repair and

reconstruction. Experimental Neurology, 319, September 2018.

[417] D. Yuen, J. Jenssen, and G. Rodriguez. A semipermeable, kink resis-

tant type I collagen-based nerve guide for PNS repair. Transactions of the

Society for Biomaterials, (228), 2003.

[418] D. F. Zawicki, R. K. Jain, G. W. Schmid-Schoenbein, and S. Chien.

Dynamics of neovascularization in normal tissue. Microvascular Research,

21(1):27–47, January 1981.

[419] Q.-X. Zhang, C. J. Magovern, C. A. Mack, K. T. Budenbender, W. Ko,

and T. K. Rosengart. Vascular endothelial growth factor is the major

angiogenic factor in omentum: Mechanism of the omentum-mediated

angiogenesis. Journal of Surgical Research, 67(2):147–154, 1997.

[420] D. Zhang, X. Wu, J. Chen, and K. Lin. The development of colla-

gen based composite scaffolds for bone regeneration. Bioactive Materials,

3(1):129–138, March 2018.

[421] S. Zhou, Z. Cui, and J. P. G. Urban. Nutrient gradients in engineered

cartilage: Metabolic kinetics measurement and mass transfer modeling.

Biotechnology and Bioengineering, 101(2):408–421, October 2008.

[422] L.-N. Zhou, J.-W. Zhang, X.-L. Liu, and L.-H. Zhou. Co-Graft of Bone

Marrow Stromal Cells and Schwann Cells into Acellular Nerve Scaffold

for Sciatic Nerve Regeneration in Rats. Journal of Oral and Maxillofacial

Surgery, 73(8):1651–1660, August 2015.

[423] D. W. Zochodne. Neurobiology of Peripheral Nerve Regeneration. Cam-

bridge University Press, Cambridge, October 2008.

[424] P. A. Zuk. The adipose-derived stem cell: Looking back and looking

ahead. Molecular Biology of the Cell, 21(11):1783–1787, June 2010.


	Publications
	Glossary
	Nomenclature
	Introduction
	The peripheral nervous system
	Peripheral nerve injury and current strategies for repair
	Cell seeding strategies: current approaches and potential for improvement
	Motivation for a multidisciplinary approach
	Thesis aims and objectives
	Thesis structure

	Literature Review
	Peripheral nerve regeneration and the role of blood vessels
	Peripheral nerve regeneration
	The relationship between vascularisation and neuronal regeneration
	Initiation and progression of angiogenesis
	Summary

	Relevant mathematical and computational models
	Continuous models
	Discrete models
	Discussion

	Conclusion

	Development of a Model of Cell-Solute Interactions in Engineered Tissue
	Introduction
	Proof of concept cell-solute model
	Mathematical framework
	Non-dimensionalisation and simulation method
	Results and discussion

	The in vitro experiments
	Cell type and material justification
	Methods
	Results and discussion

	The generalised cell-solute model
	Viable cell density governing equation
	Oxygen concentration governing equation
	VEGF concentration governing equation
	The impact of local cell density upon diffusion
	The general mathematical framework

	Model simulation and parameterisation
	Application of the model to an in vitro well geometry
	Simulation method
	Parameterisation method
	Cell density and oxygen governing equations parameterisation
	VEGF governing equation parameterisation

	Results and discussion
	Parameterised model simulation results and comparison with experimental data
	Sensitivity analysis

	Conclusion

	Application of the Cell-Solute Model to Nerve Repair Construct Geometries
	Introduction
	The nerve repair construct sheath
	Porous materials and the impact of sheath porosity upon peripheral nerve regeneration
	Modelling solute diffusion in a porous sheath

	A mathematical model of a complete nerve repair construct
	The model equations and initial and boundary conditions
	The nerve repair construct geometry in COMSOL

	Simulations of uniformly seeded nerve repair constructs
	Impermeable sheath
	Porous sheath

	Simulations of non-uniformly seeded nerve repair constructs
	Conclusion

	A 3D Discrete Model of Sprouting Angiogenesis
	Introduction
	Endothelial cell behaviour during sprouting angiogenesis
	Development of a discrete model of sprouting angiogenesis
	Overview of the structure of the discrete model
	Tip endothelial cell sensing of VEGF
	Sprout formation and branching
	Tip endothelial cell migration
	Anastomosis and oxygen provision

	Angiogenesis model simulations
	Computational methods
	Vascular network metrics
	Simulation results

	Conclusion

	Conclusions and future work
	Key results
	Discussion and future work
	Potential model adaptations, extensions and applications
	Directions for future experimental work

	Thoughts on the multidisciplinary method

	Appendices
	Proof of concept model
	Analysis of time scales
	Mathematical/computational methods
	Parameter values

	Bibliography

