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We describe amodification to a previously published pseudorandom number generator improving security while maintaining high
performance. The proposed generator is based on the powers of a word-packed block upper triangular matrix and it is designed to
be fast and easy to implement in software since it mainly involves bitwise operations between machine registers and, in our tests,
it presents excellent security and statistical characteristics. The modifications include a new, key-derived s-box based nonlinear
output filter and improved seeding and extraction mechanisms. This output filter can also be applied to other generators.

1. Introduction

Most cryptographic protocols require unpredictable quanti-
ties; these include keys, prime numbers, and challenge values.
If these values were predictable, the security of such systems
would be compromised.

The most common way to obtain these values is from
pseudorandom sequences. Furthermore, a suitable pseudo-
random number generator (PRNG) can be used as the key-
stream generator in a Vernam stream-cipher scheme (see
[1, 2]).

A PRNG is a completely deterministic algorithm; the
sequence it generates is a function of its inputs and, unlike
a truly random generator, its output can be reproduced. This
means that we only need the seed (the input to the PRNG) in
order to generate the complete output sequence. The output
sequence is much longer than the seed and is, in practice,
undistinguishable from a really random sequence.

In security applications we need to produce sequences
with large periods, high linear complexities, and good sta-
tistical properties and satisfy certain unpredictability criteria.
Several statistical suites (see [3–5]) that can reject a sequence
as nonrandom are available; they involve testing the fre-
quency of bit patterns, autocorrelation, or linear complexity
among other metrics.

Most available cryptographic PRNGs are based on linear
feedback shift registers (LFSRs). They are so popular because
they can be easily implemented in hardware; they produce
sequences of large periodswith good statistical properties and
have a simple structure that can be analysed easily. LFSRs by
themselves are not secure but they are commonly enhanced
with other techniques to improve their cryptographic prop-
erties.

We propose a modification to a previously published
PRNG (see [6]) based onword-packed block upper triangular
matrices (BUTM) over Z

2
(see [7]) that improves security

introducing a key-derived s-box output filter involving a
key-schedule algorithm, as well as enhanced seeding and
extraction functions.

Similar to the LFSR case, the generator is comprised of
two distinct blocks: a generator component that involves
linear operations but is proven to generate sequences of a
guaranteed period, perfect linear complexity (unlike LFSRs)
and excellent statistical properties; and a nonlinear output
filtering component that introduces unpredictability and
resistance to common attacks.

One of themain contributions of this paper, together with
the seeding and extraction algorithms, is the output filter,
which is a new design based on the key scheduling algorithm
of RC4 (see [8]) to construct four 8 × 32 s-boxes; it can be
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Figure 1: Avalanche analysis of𝑋(𝑡) matrix block.
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Figure 2: Avalanche analysis of generated sequence.

adapted to other generators, incorporating the concept of key
scheduling to PRNGs.

The main key differences and improvements of the
proposal regarding the original PRNG (see [6]) are included
in the following.

Seed Size. The original PRNG had no minimum seed size
specified and a maximum of 3072 bits. The improved PRNG
has a minimum of 128 bits of seed specified and up to 2976
(in order to guarantee a valid seed).

Seeding. There was no seeding algorithm specified in the
original PRNG; the improved PRNG specifies a seeding
algorithm that is avalanche optimized and guarantees a valid
(nonzero) seed.

Output Filter. The original PRNG had an output filter based
on simple, nonlinear, Boolean functions; the improvedPRNG
employs an output filter based on the approximation of a 32 ×
32 bit s-box through the combination of four key-dependent
8 × 32 bit s-boxes. These are indexed by one 32 bit word from
the linear component of the PRNG and further combined
with an addition modulo 232 operation with another 32 bit
word from the linear component.

Key Scheduling. The original PRNG had no key-scheduling
algorithm; the improved PRNG specifies a key scheduling
algorithm based on the construction of four 8 × 32 bit key-
dependent s-boxes. The fact that these are key-dependent
further improves the unpredictability of the proposed output
filter.

Blank Rounds.The original PRNG specified no blank rounds;
the improved PRNG specifies 64 blank rounds, skipping a
total of 98304 bits before producing any output. This further
improves the statistical, avalanche, and security properties.

The paper is divided as follows: a description of the
generator is given in Section 2.1, packed matrices and related

operations are detailed in Section 2.2, while Section 2.3
describes the key scheduling, seeding, and filtering algo-
rithms; we analyse the randomness, avalanche, security, and
performance characteristics of the proposal in Section 3; and,
finally, some conclusions are given in Section 4.

2. Description

2.1. Generator. Our generator is based on the powers of a
BUTM defined over Z

𝑝
, with 𝑝 prime [9]. As we take the

different powers of a BUTM, we have as a result a series
of matrices that have interesting randomness properties and
very long period. Subsequently, each element of the series
(each BUTM) can be processed to obtain an output sequence
with good statistical values.

Consider the BUTM𝑀 defined as

𝑀 = [
𝐴 𝑋

O 𝐵
] , (1)

whose entries lie in Z
𝑝
, where 𝐴 is an 𝑟 × 𝑟 matrix, 𝐵 is an

𝑠 × 𝑠matrix,𝑋 is an 𝑟 × 𝑠matrix, and𝑂 denotes the 𝑠 × 𝑟 zero
matrix.

The following result, which forms the basis of the gen-
erator, establishes the expression of the different powers of
matrix𝑀. It also defines matrix𝑋(ℎ) in terms of𝐴, 𝐵, and𝑋.

Theorem 1. Let 𝑀 be the BUTM given in (1). For any
nonnegative integer, ℎ, then,

𝑀
ℎ
= [
𝐴
ℎ
𝑋
(ℎ)

O 𝐵
ℎ
] , (2)

where

𝑋
(ℎ)
=

{
{

{
{

{

O 𝑠𝑖 h = 0,
ℎ

∑

𝑖=1

𝐴
ℎ−𝑖
𝑋𝐵
𝑖−1

𝑠𝑖 h ≥ 1.
(3)

Also, if 0 ≤ 𝑡 ≤ ℎ, then

𝑋
(ℎ)
= 𝐴
𝑡
𝑋
(ℎ−𝑡)

+ 𝑋
(𝑡)
𝐵
ℎ−𝑡
. (4)

In order to generate the pseudorandom bit sequence,
matrices 𝐴 and 𝐵 are predetermined and matrix 𝑋 is
randomly chosen, becoming the seed of the sequence. Then,
taking expression (4) we obtain the following series of
matrices:

𝑋
(2)
, 𝑋
(3)
, 𝑋
(4)
, . . . . (5)

For each matrix 𝑋(ℎ) a bit extraction operation is deter-
mined obtaining a sequence of bits like

𝑏
2
, 𝑏
3
, 𝑏
4
, . . . . (6)

The key for obtaining long periods for the sequence
given by (6) is constructing matrices 𝐴 and 𝐵 as companion
matrices to primitive polynomials so the period can be
guaranteed to be at least

lcm (𝑝𝑟 − 1, 𝑝𝑠 − 1) . (7)
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The value of 𝑝 or the sizes of 𝐴 and 𝐵 need not be very
large in order to achieve long periods. For more information
see [6, 10, 11].

Although any prime can be chosen for the generator, we
choose 𝑝 = 2 for performance reasons, as highlighted in the
following section.

The initial contents of matrices 𝐴 and 𝐵 are shown
in Algorithms 5 and 6, respectively. These are constructed
as companion matrices to primitive polynomials in Z

2
, as

described before, so the period can be guaranteed to be at
least

lcm (264 − 1, 248 − 1) . (8)

2.2. Packed Matrices. The concept of word-packed matrices
is essential for the optimized implementation of the generator
over Z

2
. Word-packed matrices enable adding and multi-

plying binary matrices just by performing binary operations
between processor registers, which is very efficient. For more
information see [7].

We define a matrix, whose elements lie in Z
2
, as a word-

packed matrix if one of its dimensions (rows or columns) is
packed as word sized groups of bits.

Operations involving word-packed matrices are equiv-
alent to those between conventional matrices since packed
matrices are, essentially, just a way of storing the elements
of the matrix so that the computations required can be effi-
ciently implemented as binary operations between processor
registers. Nevertheless, they present certain peculiarities of
their own that must be taken into account.

The addition of word-packed matrices must be done
between matrices of the same type, observing packing ori-
entation: rows or columns. Although they could be unpacked
and operated normally, the optimal way is to perform a XOR
operation word by word.

The product operation between packed matrices is a little
more complex than the addition. The product must be done
betweenmatrices of different types andwith compatible sizes.
The multiplicand has to be a row packed matrix, while the
matrix corresponding to the multiplier must be packed by
columns.

2.2.1. Matrices and Packness. In order to implement the
generator over Z

2
, we can see that taking 𝑡 = 1 in expression

(4) leaves us with

𝑋
(ℎ)
= 𝐴𝑋

(ℎ−1)
+ 𝑋𝐵
ℎ−1
, (9)

and the following operations have to be performed per
iteration:

𝐸 = 𝐴𝑋
(ℎ−1)

+ 𝑋𝐵
ℎ−1
,

𝑋
(ℎ)
= 𝐸,

𝐹 = 𝐵𝐵
ℎ−1
,

𝐵
ℎ
= 𝐹.

(10)

It can be observed that the computations required on
each iteration imply that matrices 𝑋, 𝐵, and their powers

Table 1: Different orders of𝑀 with 𝑝 = 2.

𝑟 𝑠 Digits
15 8 06
31 8 11
47 8 16
23 16 11
31 16 14
47 16 18
47 32 23
63 32 28
64 48 33
80 48 38
95 48 43
96 53 44

𝑋
(ℎ) and 𝐵ℎ, must be kept in memory at the same time.

It is also necessary to employ temporary matrices 𝐸 and 𝐹
since the same matrix cannot simultaneously be source and
destination.

Taking into account the peculiarities of the product
operation between packed matrices, we can identify the
following matrices and types:

(i) 𝐴 row packed matrix,
(ii) 𝐵 row packed matrix,

(iii) 𝐵ℎ column packed matrix,
(iv) 𝑋 row packed matrix,

(v) 𝑋(ℎ) column packed matrix,
(vi) 𝐸, 𝐹 column packed matrices (temporary).

Although the product operation between word-packed
matrices generates sparse bits instead of words, these bits
can be repacked into the desired format (rows or columns)
without a significant performance penalty.

2.2.2. Parameters. Besides determining the format for each
matrix, their sizes must also be decided for the correct
operation of the implementation.

Several sizes and the number of decimal digits of the
corresponding period are shown in Table 1. The option that
appears to be more adequate is the 𝑟 = 64, 𝑠 = 48 since it is
compatible with usual processor register sizes (32 or 64 bits).
Moreover, the order obtained is very high.

2.3. Extraction Mechanism. In this section, we describe the
different algorithms that perform seeding, bit extraction,
and output filtering using a suitable pseudocode notation
involving the following operators:

̂ bitwise XOR,
& bitwise AND,
≫ bitwise right shift,
≪ bitwise left shift,
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for i:= 0 to 255 {

s[i]:= i

S0[i]:= 0

S1[i]:= 0

S2[i]:= 0

S3[i]:= 0

}

Algorithm 1

for c:= 0 to 3 {

j:= 0

for i:= 0 to 255 {

j := (j + s[i] + key[i % 16]) % 256

t:= s[i]

s[i]:= s[j]

s[j]:= t

}

for i:= 0 to 255

S0[i]:= (S0[i]<<8) ∧ s[i]

}

Algorithm 2

% modulus,

:= assignment,

+ addition modulo 232,

∗ product.

The generator takes a 128 bit seed (or key) as input and
uses it to generate the initial state of block 𝑋 (Section 2.3.2)
and the s-boxes (Section 2.3.1) that conform the output filter
(Section 2.3.3). It is trivial to modify the generator to accept
longer (or shorter) seeds.

2.3.1. S-Box Construction. The four 8 × 32 s-boxes are
constructed following a similar scheme to the one employed
on the RC4 key set-up algorithm (see [8]).

We initialise a temporary 8×8 s-box, 𝑠, and clear the final
8 × 32 s-boxes, 𝑆0, 𝑆1, 𝑆2, 𝑆3 (see Algorithm 1).

Then, for each s-box (𝑆0 shown as an example), we
perform 256 substitutions on 𝑠 involving the key (seed) in the
process. This creates an 8 × 8 s-box, so it is repeated four
times and the results are concatenated to form an 8 × 32 s-
box (see Algorithm 2).

The first s-box (𝑆0) starts from the initialized 𝑠, and each
subsequent substitution process builds on the previous ones
using the current state of 𝑠. This is repeated for the remaining
8 × 32 s-boxes, 𝑆1, 𝑆2, 𝑆3, constructing a total of 16 8 × 8 s-
boxes in the process.

Note that all s-boxes constructed in this way are balanced
and have properties similar to purely random, non-key-
dependent, s-boxes (see [12] for more information).

offs:= 0

for r = 0 to 63 {

if r is 0 or r is 63 {

v:= 0x55AA55AA55AA55AA

}

else {

v:= S0[(r + key[offs % 16]) % 256]

offs:= offs + 1

v:= v ∧ S1[(offs + key[offs % 16]) % 256]

offs:= offs + 1

v:= v << 32

v:= v ∧ S2[(r + key[offs % 16]) % 256]

offs:= offs + 1

v:= v ∧ S3[(offs + key[offs % 16]) % 256]

offs:= offs + 1

}

for c:= 0 to 47

X[r∗48+c]:= (v>>c) % 2

}

Algorithm 3

2.3.2. Seeding. The generator is seeded using the 𝑋 block.
It is configured as a conventional binary 64 × 48 matrix
which is then converted to the row and column word packed
representations needed by the algorithm.The contents of this
block are dependent on the 128 bit seed input.

Each row of this matrix is filled up using a 64 bit word, V,
that uses the output of all four s-boxes generated in the previ-
ous step, guaranteeing excellent avalanche characteristics (see
Section 3). Only the least significant 48 bits of V are actually
used.

Rows 0 and 63 are fixed to a specific bit pattern, prevent-
ing a full zero 𝑋 block regardless of the key employed (see
Algorithm 3).

The generator is then iterated 64 timeswithout generating
any output, further improving avalanche characteristics and
overall security.

2.3.3. Filtering and Extraction. Theoutput filtering and extra-
ction mechanism employs two adjacent 32 bit words from
matrix 𝑋(ℎ); separating the first word, 𝑋ℎ[𝑐], into four bytes,
𝑏0 to 𝑏3, which serve as indexes into 𝑆0 to 𝑆3, respectively.
These four 32 bit words are XORed again and the secondword
from 𝑋(ℎ), 𝑋ℎ[𝑐], is added modulo 232 obtaining a single 32
bit word of output.

This process is repeated to process all 96 32 bit words
produced on each iteration of the generator, thus creating
48 32 bit words (1536 bits) of filtered output sequence per
iteration.

The array𝑋ℎ corresponds to the𝑋(ℎ) block associated to
iteration ℎ (see Section 2.2.1) (see Algorithm 4).

3. Results

3.1. Randomness Analysis. The resulting generator has been
tested successfully with three different statistical suites.
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offr:= 0

for c:= 0 to 94 increment 2 {

b0:= Xh[c] % 256

b1:= Xh[c]>>8 % 256

b2:= Xh[c]>>16 % 256

b3:= Xh[c]>>24 % 256

Seq[offr]:= (S0[b0] ∧ S1[b1] ∧ S2[b2] ∧ S3[b3])

Seq[offr]:= Seq[offr] + Xh[c + 1]

offr:= offr + 1

}

Algorithm 4

u32 A [128]
:= {0x40000000, 0x00000000, 0x20000000, 0x00000000, 0x10000000, 0x00000000,

0x08000000, 0x00000000, 0x04000000, 0x00000000, 0x02000000, 0x00000000, 0x01000000,
0x00000000, 0x00800000, 0x00000000, 0x00400000, 0x00000000, 0x00200000, 0x00000000,
0x00100000, 0x00000000, 0x00080000, 0x00000000, 0x00040000, 0x00000000, 0x00020000,
0x00000000, 0x00010000, 0x00000000, 0x00008000, 0x00000000, 0x00004000, 0x00000000,
0x00002000, 0x00000000, 0x00001000, 0x00000000, 0x00000800, 0x00000000, 0x00000400,
0x00000000, 0x00000200, 0x00000000, 0x00000100, 0x00000000, 0x00000080, 0x00000000,
0x00000040, 0x00000000, 0x00000020, 0x00000000, 0x00000010, 0x00000000, 0x00000008,
0x00000000, 0x00000004, 0x00000000, 0x00000002, 0x00000000, 0x00000001, 0x00000000,
0x00000000, 0x80000000, 0x00000000, 0x40000000, 0x00000000, 0x20000000, 0x00000000,
0x10000000, 0x00000000, 0x08000000, 0x00000000, 0x04000000, 0x00000000, 0x02000000,
0x00000000, 0x01000000, 0x00000000, 0x00800000, 0x00000000, 0x00400000, 0x00000000,
0x00200000, 0x00000000, 0x00100000, 0x00000000, 0x00080000, 0x00000000, 0x00040000,
0x00000000, 0x00020000, 0x00000000, 0x00010000, 0x00000000, 0x00008000, 0x00000000,
0x00004000, 0x00000000, 0x00002000, 0x00000000, 0x00001000, 0x00000000, 0x00000800,
0x00000000, 0x00000400, 0x00000000, 0x00000200, 0x00000000, 0x00000100, 0x00000000,
0x00000080, 0x00000000, 0x00000040, 0x00000000, 0x00000020, 0x00000000, 0x00000010,
0x00000000, 0x00000008, 0x00000000, 0x00000004, 0x00000000, 0x00000002, 0x00000000,
0x00000001, 0xD8000000, 0x00000000};

Algorithm 5: Initial contents for matrix 𝐴.

u32 B [96]
:= {0x40000000, 0x00000000, 0x20000000, 0x00000000, 0x10000000, 0x00000000,

0x08000000, 0x00000000, 0x04000000, 0x00000000, 0x02000000, 0x00000000, 0x01000000,
0x00000000, 0x00800000, 0x00000000, 0x00400000, 0x00000000, 0x00200000, 0x00000000,
0x00100000, 0x00000000, 0x00080000, 0x00000000, 0x00040000, 0x00000000, 0x00020000,
0x00000000, 0x00010000, 0x00000000, 0x00008000, 0x00000000, 0x00004000, 0x00000000,
0x00002000, 0x00000000, 0x00001000, 0x00000000, 0x00000800, 0x00000000, 0x00000400,
0x00000000, 0x00000200, 0x00000000, 0x00000100, 0x00000000, 0x00000080, 0x00000000,
0x00000040, 0x00000000, 0x00000020, 0x00000000, 0x00000010, 0x00000000, 0x00000008,
0x00000000, 0x00000004, 0x00000000, 0x00000002, 0x00000000, 0x00000001, 0x00000000,
0x00000000, 0x80000000, 0x00000000, 0x40000000, 0x00000000, 0x20000000, 0x00000000,
0x10000000, 0x00000000, 0x08000000, 0x00000000, 0x04000000, 0x00000000, 0x02000000,
0x00000000, 0x01000000, 0x00000000, 0x00800000, 0x00000000, 0x00400000, 0x00000000,
0x00200000, 0x00000000, 0x00100000, 0x00000000, 0x00080000, 0x00000000, 0x00040000,
0x00000000, 0x00020000, 0x00000000, 0x00010000, 0x89400000, 0x00000000};

Algorithm 6: Initial contents for matrix 𝐵.
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Table 2: RandTest statistical comparison.

Result Correction
Frequency 0.7200 2.7060
Serial 2.2407 4.6050
Poker 8 250.4640 284.30
Poker 16 65554 65999
Runs 21.0368 23.5418
Autocorr. 0.8074 1.2820
Linear comp. 10000 ≥10000

Table 3: PractRand results for a 64GB sequence.

Test Raw Processed Evaluation
BCFN(2, 13):! 𝑅 = +0.0 “pass” Normal
BCFN(2 + 0, 13 − 0) 𝑅 = +0.1 𝑝 = 0.480 Normal
BCFN(2 + 1, 13 − 0) 𝑅 = −3.9 𝑝 = 0.948 Normal
BCFN(2 + 2, 13 − 0) 𝑅 = −3.4 𝑝 = 0.918 Normal
BCFN(2 + 3, 13 − 0) 𝑅 = −1.2 𝑝 = 0.692 Normal
BCFN(2 + 4, 13 − 0) 𝑅 = −0.9 𝑝 = 0.644 Normal
BCFN(2 + 5, 13 − 0) 𝑅 = −0.5 𝑝 = 0.579 Normal
BCFN(2 + 6, 13 − 0) 𝑅 = −2.3 𝑝 = 0.828 Normal
BCFN(2 + 7, 13 − 0) 𝑅 = −2.4 𝑝 = 0.833 Normal
BCFN(2 + 8, 13 − 1) 𝑅 = −0.6 𝑝 = 0.595 Normal
BCFN(2 + 9, 13 − 1) 𝑅 = −1.4 𝑝 = 0.717 Normal
BCFN(2 + 10, 13 − 2) 𝑅 = −2.7 𝑝 = 0.868 Normal
BCFN(2 + 11, 13 − 3) 𝑅 = −0.1 𝑝 = 0.509 Normal
BCFN(2 + 12, 13 − 3) 𝑅 = +4.7 𝑝 = 0.033 Normal
BCFN(2 + 13, 13 − 4) 𝑅 = +1.0 𝑝 = 0.329 Normal
BCFN(2 + 14, 13 − 5) 𝑅 = +3.4 𝑝 = 0.088 Normal
BCFN(2 + 15, 13 − 5) 𝑅 = +0.8 𝑝 = 0.348 Normal
BCFN(2 + 16, 13 − 6) 𝑅 = −2.1 𝑝 = 0.810 Normal
BCFN(2 + 17, 13 − 6) 𝑅 = +0.9 𝑝 = 0.320 Normal
BCFN(2 + 18, 13 − 7) 𝑅 = −0.4 𝑝 = 0.517 Normal
BCFN(2 + 19, 13 − 8) 𝑅 = +6.0 𝑝 = 0.019 Normal
DC6-9x1Bytes-1 𝑅 = +1.9 𝑝 = 0.195 Normal
Gap-16:! 𝑅 = +0.0 “pass” Normal
Gap-16:A 𝑅 = −0.2 𝑝 = 0.598 Normal
Gap-16:B 𝑅 = −1.0 𝑝 = 0.754 Normal

The first one, shown in Table 2, is a custom suite that
checks for bit frequency (frequency), bit pair frequency
(Serial), 8 bit and 16 bit pattern frequency (poker 8 and poker
16, resp.), runs (contiguous set bits) and gaps (contiguous
unset bits) in the sequence (runs), autocorrelation, and linear
complexity. We have made available this suite on GitHub (see
[3]). The proposed generator passes all the tests successfully.

The second suite is PractRand (see [4]). We have tested
our proposed generator for sequences up to 64GB (236 bits)
in length, passing all tests successfully as shown in Table 3.
This also highlights the potential for generating very long,
high quality, binary sequences.

The third suite is comprised of the 160 statistics included
in TestU01 1.2.3 BigCrush battery (see [5]). The proposed

generator passes all tests from this stringent suite; the exten-
sive report is included as supplementry material.

3.2. Avalanche Analysis. Avalanche is a very important char-
acteristic in cryptographic primitives in order to prevent
successful cryptanalysis.

It is defined as the number of output bits that changewhen
a single input bit is flipped, and the expected outcome is that
roughly half of the output bits change when this happens.

In this case, we have taken 128 different seeds that
differ in a single bit and have measured avalanche in two
different points: the 𝑋(𝑡) block (Figure 1, pre-output-filter)
and generated sequence (Figure 2, post-output-filter). The
graphs depict the mean difference value, together with one
standard deviation above and below the mean value, as well
asminimum andmaximum values for each 64 bit word in the
test sample.

In both cases, the results are excellent with no abnormal
values andwithmost of the population very close to 32, which
is the expected value.

3.3. Security

3.3.1. Security Parameters. The proposed generator could be
employed as the source for random values, nonces, keys, and
so forth, as well as the key stream generator in a Vernam
stream cipher.

In this case, it accepts keys of 128 bits in size, but the
seeding algorithm (see Section 2.3.2) can be modified to
accept longer keys with ease, while maintaining the excellent
avalanche characteristics (see Section 3.2).

The maximum capacity of the 𝑋 block is 62 × 48 = 2976
bits, since the first and last rows are fixed to a specific pattern
to guarantee a nonzero𝑋 block.

3.3.2. Linear Generator. The generator component is based
on the powers of a 2 × 2 BUTM and has excellent statis-
tical characteristics, passing all tests of stringent suites (see
Section 3.1).

It also guarantees a period of at least

lcm (264 − 1, 248 − 1) , (11)

that is the period of matrix 𝑀 since blocks 𝐴 and 𝐵 are
constructed as companion matrices of primitive polynomials
in Z
2
. The actual expected period is that of matrix𝑀 times

the number of bits produced per iteration:

lcm (264 − 1, 248 − 1) × 1536. (12)

Regarding linear complexity, the generated sequences
present the expected linear complexity of a random sequence
(half the sequence length, see Table 2). This implies that the
generator cannot be reduced to a simple LFSR.

The generator is a linear algorithm, involving exclusively
addition and multiplication operations over Z

2
. This means

that the generator by itself is susceptible to linear cryptanal-
ysis where a linear equation system can be set up in order
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to obtain the seed state (block 𝑋) after a certain number of
iterations. This type of attack is prevented by the nonlinear
filter component.

3.3.3. Nonlinear Filter. Substitution boxes (or s-boxes) are
simple substitution tables where an input value is trans-
formed into a different output value; the most common are
8 × 8 bits (byte as input and output) and 8 × 32 bits (byte
as input and four byte word as output). They are essential
in many cryptosystem designs since they can introduce the
required nonlinearity characteristics, making cryptanalysis a
more difficult endeavour (see [12–15]).

The proposed nonlinear filter (see Sections 2.3.1 and 2.3.3)
employs four 8 × 32 key-dependent s-boxes and takes a 32
bit word from the generator as input and combines a second
word from the generator with the output.

There have been some known attacks on RC4 (see [16–
18]); these are mostly based on biases of the first bytes of
the output sequence. Although it performs value swapping in
similar ways as the key scheduling algorithm of RC4, there
are several reasons in which the proposed nonlinear filter
differs from it and why we believe these known attacks are
not applicable in this case.

(i) Static s-boxes. Unlike in RC4, which uses the key
scheduling algorithm to determine the initial state of
an evolving 8 × 8 s-box, our proposal uses the four 8
× 32 s-boxes to filter the output of the linear generator
and the s-boxes do not evolve with sequence genera-
tion.

(ii) Sequence is not sourced on s-boxes. In our proposal, the
source of the output sequence is the linear generator
component and not the s-box evolution; therefore,
the biases associated with the RC4 key scheduling
algorithmdonot affect the sequences produced by the
proposed PRNG.

(iii) Multiple s-boxes. The proposed nonlinear filter emp-
loys four different 8 × 32 s-boxes that are combined
together to generate the output, unlike in RC4 where
a single 8 × 8 s-box is employed.

(iv) S-boxes are not output directly. Furthermore, the out-
put of the four 8 × 32 s-boxes is combined with a
second 32 bit word from the linear generator using
addition modulo 232. This means that, unlike in RC4,
the output sequence is never the direct output of the
s-boxes.

(v) Blank rounds. The seeding algorithm (see
Section 2.3.2) specifies that the generator is iterated
64 times (and therefore 1536 × 64 = 98304 bits of
output are skipped) avoiding the pitfalls of the early
biases in RC4.

The proposed nonlinear filter presents defences against
common attacks.

(i) Linear cryptanalysis. Key-derived s-boxes behave
essentially as random s-boxes and have highly non-
linear characteristics (see [12, 13]), together with the

Table 4: Performance benchmark.

MB/s
Proposed PRNG 133.1
AES-256 (OFB) 71.3
RC4 218.1
Salsa20 209.7
HC128 176.7

fact that the second word from the generator is added
modulo 232 (involving operations over Z

2
and Z

2
32)

complicate approximating the whole PRNG with a
linear equation system.

(ii) Differential cryptanalysis. Although it is not a com-
mon attack against stream ciphers, the nonlinearity
values of the 16 component 8 × 8 s-boxes are within
secure bounds (see [12, 13]). Furthermore, the fact that
the s-boxes are not fixed but key-dependent makes
differential cryptanalysis more difficult.

(iii) Correlation and statistical attacks. There are several
design features to prevent these type of attacks: the 64
blank rounds in the seeding algorithm, only 48 32 bit
words are output per iteration from96words possible,
one word from the generator is used as the input to
the s-boxes while the adjacent one is combined with
the output of the s-boxes using a different operation.
Moreover, the excellent statistical characteristics of
the linear generator component help prevent biases
and other problems.

3.4. Performance. We have included a performance bench-
mark in Table 4. This table includes speed measurements for
common algorithms, such as AES with a 256 bit key in output
feedback mode (OFB) (see [19]), the RC4 stream cipher (see
[8]), and the Salsa20 (see [20]) stream cipher and the HC128
stream cipher (see [21]), together with our proposal.

All algorithm implementations are single thread, pure
native compiler-optimized code, without hardware acceler-
ation or processor-specific high-performance instruction set
extensions.

Although not as fast as other lighter-weight stream
ciphers, the proposed generator achieves acceptable perfor-
mance and presents valuable characteristics.

One of them is that, being a matrix based generator, it is
essentially an embarrisingly parallel problem and, therefore,
capable of taking advantage of the multiple core architecture
of modern CPUs or vector processing in GPUs.

Another advantage comes from the fact that the whole
matrix computations involve binary operations between
registers, and matrix sizes can be adjusted to profit from
architectures that have bigger register sizes. The proposed
design employs a 64 × 48 bit matrix size, taking advantage
of current 64 bit architectures, but it is trivial to adjust this
size for maximum performance on future architectures if
necessary.
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4. Conclusions

We have presented a modification on a block matrix PRNG
introducing a key-dependent s-box output filter as well as
different seeding and initialization algorithms to improve
security and nonlinearity. It employs a word packing tech-
nique in order to optimise computations over Z

2
reducing

them to fast, native, register bitwise operations. Additionally,
the word packing system can directly take advantage of more
powerful processors with bigger registers.

The resulting generator produces sequences of great
quality in terms of randomness, passing battery tests like
PractRand [4] or TestU01 [5], and with a very long period.
It is also capable of accepting very large keys if necessary.

The key-dependent s-box output filter is the result of
adapting the concept of block cipher key-scheduling to
a key-stream generator. It offloads some computations to
each seed change cycle while maintaining high performance
during sequence generation. An additional benefit is that
it multiplies the cost of brute force key search. Although
somewhat based on the key scheduling algorithm of RC4 [8],
it is a new design generating four 8 × 32 key-dependent s-
boxes that do not evolve during sequence generation.

Possible future work includes parallel implementations of
the proposed generator on suitable CPU and GPU platforms,
assembler optimization, and other performance analyses, as
well as the adaptation of the nonlinear filter component to
other PRNG and further analysis.

Appendix

For more details see supplementry material.
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