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Abstract: Let (M, g) be a compact Riemannian manifold of dimension n and P1 :=
−h2�g+V (x)−E1 so thatdp1 �= 0on p1 = 0.Weassume that P1 is quantumcompletely
integrable (ACI) in the sense that there exist functionally independent pseuodifferential
operators P2, . . . Pn with [Pi , Pj ] = 0, i, j = 1, . . . n. We study the pointwise bounds
for the joint eigenfunctions, uh of the system {Pi }ni=1 with P1uh = E1uh + o(1). In
Theorem 1, we first give polynomial improvements over the standardHörmander bounds
for typical points inM . In two and three dimensions, these estimates agreewith theHardy

exponent h− 1−n
4 and in higher dimensions we obtain a gain of h

1
2 over the Hörmander

bound. In our second main result (Theorem 3), under a real-analyticity assumption
on the QCI system, we give exponential decay estimates for joint eigenfunctions at
points outside the projection of invariant Lagrangian tori; that is at points x ∈ M in the
“microlocally forbidden” region p−11 (E1)∩ · · · ∩ p−1n (En)∩ T ∗x M = ∅. These bounds
are sharp locally near the projection of the invariant tori.

1. Introduction

Let (Mn, g) be a closed, compact C∞ manifold and P1(h) : C∞(M) → C∞(M) a
self-adjoint semiclassical pseudodifferential operator of order m that is elliptic in the
classical sense, i.e. |p1(x, ξ)| ≥ c|ξ |m − C. Here, h takes values in a discrete sequence
(h j )

∞
j=1 with h j → 0+ as j →∞. We assume in addition that there exist functionally

independent h-pseudodifferential operators P2(h), . . . , Pn(h) with the property that

[Pi (h), Pj (h)] = 0; i, j = 1, . . . , n. (1.1)

In that case we say that P1(h) is quantum completely integrable (QCI). Given the joint
eigenvalues E(h) = (E1(h), . . . , En(h)) ∈ R

n of P1(h), . . . Pn(h) we denote an L2-
normalized joint eigenfunction with joint eigenvalue E(h) by uE,h (here, for notational
simplicity we drop the dependence of E on h in the notation) and consequently,
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Pj (h)uE,h = E j (h)uE,h .

When the joint energy value E is understood, we will sometimes abuse notation and
simply write uh = uE,h .

The associated classical integrable system is governed by the moment map

P := (p1, . . . , pn) : T ∗M → R
n (1.2)

where p j ∈ C∞(T ∗M); j = 1, . . . , n are the semiclassical principal symbols of
Pj (h); j = 1, . . . , n. For convenience, we will denote the corresponding QCI system
by P̂ := (P1, . . . , Pn).

We assume throughout that the classical integrable system p is Liouville integrable;
that is there exists an open dense subset T ∗Mreg ⊂ T ∗M such that

rank(dp1(x, ξ), . . . ., dpn(x, ξ)) = n ∀ (x, ξ) ∈ T ∗Mreg. (1.3)

Following the notation in [TZ09], we letB := P(T ∗M) andBreg = P(T ∗Mreg) denotes
the set of regular values of the moment map.

Since P is proper, the Liouville-Arnold theorem determines the symplectic structure
of the level sets P−1(E) where E ∈ Breg. The level set

P−1(E) = ∪M
k=1�k(E), (1.4)

where the�k(E)’s are Lagrangian toriwhich are invariant under the joint bicharacteristic
flow Gt : T ∗M → T ∗M, t = (t1, . . . , tn) ∈ R

n, Gt (x, ξ) = exp t1Hp1 ◦ · · · ◦
exp tn Hpn (x, ξ). Here, Hpj =

∑
k ∂ξk p j∂xk − ∂xk p j∂ξk is the Hamilton vector field of

p j .

In this paper, we are concerned with two questions regarding the joint eigenfunc-
tions: (i) eigenfunction supremum bounds and (ii) eigenfunction decay estimates in the
microlocally forbidden region, M\π(P−1(E)).

1.1. Supremum estimates. To state our first result on sup bounds, we need a definition.

Definition 1.1. Let (Mn, g) be a Riemannian manifold and Pj (h); j = 1, . . . , n be a
QCI system with Hamiltonian Ĥ = P1(h). Suppose E1 satisfies ∂ξ p1 �= 0 on p−11 (E1)

and set

�x,E1 := {ξ ∈ T ∗x M; p1(x, ξ) = E1}.
We say that the system is of Morse type at x ∈ M if there exists f ∈ C∞(Rn, R) and
an h-pseudodifferential operator Q(h) := f (P1(h), . . . , Pn(h)) with the property that
its principal symbol

q |�x,E1
is Morse for all x ∈ M.

Our first main result is

Theorem 1. Let (Mn, g) be compact Riemannian manifold and P̂ be a QCI system with
quantum Hamiltonian P1(h) = −h2�g + V where V ∈ C∞(M;R) and E1 ∈ R is
a regular value of p1, i.e. so that dp1|p−11 (E1)

�= 0. Suppose � is an open set with

� ⊂ {V < E1} and that the system P̂ is Morse type at x for all x ∈ �. Then, the
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L2-normalized joint eigenfunctions, uh, with P1(h)uh = E1(h)uh, E1(h) = E1 + o(1)
satisfy the supremum bounds

‖uh‖L∞(�) = O(h(2−n)/2), n > 3. (1.5)

In the cases where n = 2 or n = 3, one gets the Hardy-type supremum bounds:

‖uh‖L∞(�) =
{
O(h−1/4) n = 2
O(h−1/2| log h|1/2), n = 3.

(1.6)

Remark. (i) In the special case of Laplace eigenfunctions, P1(h) = −h2�g − 1; that
is, V = 0 and E1 = 1.

(ii) The estimate (1.5) in Theorem 1 gives an explicit polynomial improvement over the
well-known Hörmander bound ‖uh‖L∞ = O(h(1−n)/2). In dimensions n = 2, 3,
modulo the logarithmic factor in the n = 3 case, both the estimates in (1.6) are
consistent with the Hardy type bound ‖uh‖L∞ = O(h(1−n)/4). Moreover, these
estimates are sharp and are also quite robust in that they apply to many QCI exam-
ples either globally (e.g. Liouville Laplacians or Neumann oscillators on tori), or
locally away from isolated points (e.g. Laplacians on convex surfaces of revolu-
tion, Laplacians on asymmetric ellipsoids (n=2,3), quantum Neumann oscillators
(n=2,3), quantum spherical pendulum, and quantum Euler and Kovalevsky tops).
We describe how the above results apply explicity in several classical examples in
Sect. 4.
In the global cases, the bounds in Theorem 1 holds for all � with � ⊂ {V < E}.
Otherwise, one must delete arbitrarily small (but fixed independent of h) balls
centered at a finite number of points (e.g. the umbilic points of an triaxial ellipsoid,
or the poles of an convex surface of revolution.) Finally, we point out in the case of
the Laplacian, V = 0, so that the potential well is the entire manifold, M , and the
corresponding sup bounds hold over all of M; that is, one can set � = M in (1.6).

(iii) We point out that in Theorem 1 we fix only the energy E1. In particular, it is a
statement about all joint eigenfunctions satisfying P1uh = (E1 + o(1))uh and we
crucially do not require that the total energy, E ∈ B is regular; that is we do not
require E ∈ Breg.

One of the quantum integrable examples where the Morse hypothesis of Theorem 1
is not satisfied at every point is that of the triaxial ellipsoid

E :=
{
w ∈ R

3
∣
∣

3∑

j=1

w2
j

a2j
= 1, 0 < a3 < a2 < a1

}
. (1.7)

Here, there are four exceptional points, {p j }4j=1 ∈ E , the umbillic points, where the
integrable system is not of Morse type. Combining the proof of Theorem 1 with results
from [CG18], we prove the following sup bound for the joint eigenfunctions:

Theorem 2. Let E as in (1.7) and P = −h2�g − 1. Then there is C > 0 so that any L2

normalized joint eigenfunction, uh of the QCI system satisfies

‖uh‖L∞(E) ≤ Ch−
1
2 | log h|− 1

2 .
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In [Tot96], the second author showed that there are constants c, h0 > 0 and a sequence
of L2 normalized joint eigenfunctions of the QCI system satisfying

|uh(pi )| ≥ ch−
1
2 | log h|− 1

2 , 0 < h < h0,

and consequently, the estimate in Theorem 2 is sharp.

1.2. Comparisonwith previous L∞ estimates. In general, for normalizedLaplace eigen-
functions on a compact manifold M of dimension n i.e. solving (−h2�g− 1)u = 0, the
celebrated works [Hör68,Ava56,Lev52] show that

‖uh‖L∞ ≤ Ch
1−n
2 . (1.8)

Under certain geometric conditions on the manifold M , this bound can be improved to

‖uh‖L∞ = o(h
1−n
2 ). (1.9)

These conditions include non-existence of recurrent points (see [STZ11,Gal17,CG17]),
which in particular is satisfied for manifolds without conjugate points. Under a certain
uniform version of the non-recurrent hypothesis [CG18] shows that this can be improved
to

‖uh‖L∞ ≤ C
h

1−n
2

√
log h−1

. (1.10)

This non-recurrent hypothesis is in particular satisfied on manifolds without conjugate
points where improved L∞ estimates have been proved using the Hadamard parametrix
in [Bér77,Bon17]. Finally, in forthcoming work [GT18], the authors give improvements
of the form

‖uh‖L∞ ≤ Ch
1−n
2 +δ (1.11)

for some explicit δ > 0 when the manifold has integrable geodesic flow. The only other
polynomial improvements that the authors are aware of occur in the case of Hecke–Maas
forms on certain arithmetic surfaces [IS95].

In this paper, we assume that eigenfunctions are joint eigenfunctions of a quantum
complete system of equations. In [TZ02], it is shown that if QCI Laplace eigenfunctions
have sup-norms that are O(1), then the manifold is, in fact, flat. Therefore, it is natural
to understand the L∞ growth of eigenfunctions in the QCI case. We note that the QCI
assumption is very rigid and allows us to give much stronger estimates than those men-
tioned above. Indeed, Theorem 1 achieves the so-called Hardy estimate in dimension
n = 2, and n = 3 (modulo a

√
log h−1 loss)

‖uh‖L∞ ≤ Ch−
1−n
4

which is expected to hold at a generic point on a generic manifold. Moreover, in any
dimension n, under a generic assumption on the QCI system, we are able to give an
explicit polynomial improvement over (1.8).

While this is a dramatic improvement over the bounds above, it is important to
note that the assumption of quantum complete integrability is highly sensitive. First,
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any small perturbation of the original operator (even a lower order perturbation) will
destroy the property of being quantum integrable. Furthermore, even if the Laplacian
is quantum integrable, it is not clear that all eigenfunctions for the Laplacian are joint
eigenfunctions of the corresponding QCI system. On the other hand, the approaches
used to obtain (1.8), (1.9), (1.10) and (1.11) are robust to lower order perturbations and
apply to all sequences of eigenfunctions.

Our bounds are related to those in [Sar] where Sarnak shows that on a locally sym-
metric space of rank r ,

‖uh‖L∞ ≤ Ch
r−n
2 .

and the generalization of this bound to joint quasimodes of r essentially commuting
operators with independent fiber differentials [Tac18]. We point out that while for some
specific energy levels E , there are points satisfying the independent fiber differential
assumption, the only quantum integrable example we are aware of in which there is a
single point x satisfying this assumption for all energy levels is that of the flat torus.
We also note that our results in Theorem 1 apply in the case of many QCI systems that
do not arise from isometric group actions; these include Liouville Laplacians on tori,
Laplacians on asymmertric ellipsoids, quantum Neumann oscillators on spheres and
quantum Kowalevsky tops, among others.

1.3. Exponential decay estimates. Our next result deals with exponential decay esti-
mates for joint eigenfunctions in the microlocal “forbidden" region M\π(�R) with

�R =
n⋂

i=1
p−1i (Ei ).

We make the additional assumption that Pj (h) : j = 1, .., n are real-analytic, h-
differential operators and that the restricted canonical projection

π� : �R(E) → M, E = (E1, . . . , En),

has a fold singularity along the caustic C� = π−1
� ( ∂π�(�R(E)) ). One can complexify

�R to a complex submanifold, �̃, of the complexification, T̃ ∗M , of the real cotangent
bundle. Here, �̃ is Lagrangian with respect to the canonical complex symplectic form
�C = dωC on T̃ ∗M , where ωC is the complex canonical one-form on T̃ ∗M . In the
terminology of [Sjö82], �̃ is C-Lagrangian. There is a further submanifold �̃I ⊂ �̃

given by

�̃I := �̃ ∩ T̃ ∗MM

that is of particular interest to the study of eigenfunction decay. Roughly speaking, �̃I is
subset of �̃ that consists of points with real base coordinates. We also show in Sect. 3.2
(see Proposition 3.2), under the fold assumption, one can characterize the structure of
�̃I quite readily near C�; at least locally, one can write

�̃I = �R ∪ �I .
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Both �R and �I are isotropic with respect to Im�C (ie. they are I -isotropic) and �I
locally projects to themicrolocally forbidden region,M\π(�R).Moreover,�I is locally
a graph over M away from the projection of the caustic ∂π(�R) with

�I = {(x, dxψ(x)); x ∈ π(�I )} (1.12)

where ψ is complex-valued and real-analytic. In addition, as a consequence of the fold
assumption, �I can be further decomposed as a union over two branches �+

I ∪ �−
I ,

where these branches are (locally) characterized as follows: given any local smooth
curve γ±(α0, α) ⊂ �±

I joining α0 ∈ C� to α ∈ �±
I ,

±
∫

γ±(α0,α)

ImωC ≥ 0.

In view of (1.12), there exist locally well-defined functions S± : π(�±
I ) → C that

are real-analytic away from ∂π(�R) with

S+(x) =
∫

γ +
ImωC, α = (x, dxψ(x)).

We then define the complex action function locally to be

S(x) := S+(x) ≥ 0; x ∈ π(�+
I ).

Our main result on the exponential decay of joint eigenfunctions is:

Theorem 3. Suppose that P(h) = (P1(h), . . . , Pn(h)) is a QCI system of real-analytic,
jointly elliptic, h-differential operators and E ∈ P(T ∗M) a regular level of the moment
map. Suppose, in addition, that the causticC� is a fold. Then, there exists an h-indepedent
neighbourhood, V ⊃ π(�R), such that for any open � � ( V \π(�R) ) and any ε > 0,
there exists h0(ε,�) > 0 such that for h ∈ (0, h0(ε,�)], and uh a joint eigenfunction
of P(h) with energy E,

sup
x∈�

|e(1−ε)S(x)/h uh(x)| = Oε(e
β(ε)/h),

where β(ε) = O(ε1/2) as ε → 0+.

As we show in Sect. 4, under the real-analyticity assumption the decay estimate in
Theorem 3 is sharp and improves on results of the second author in [Tot98]. Moreover,
the fold assumption is satisfied for generic joint energy levels when n ≥ 2. In the cases
where there exist appropriate coordinates in terms of which the classical generating
function is separable, one can show that the decay estimates in Theorem 3 are still
satisfied for non-generic energy levels E ∈ Breg . The latter condition is satisfied in all
cases that we know of (see remark 3.5 for more details).
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2. Sup Bounds for QCI Eigenfunctions: Proof of Theorem 1

Proof. We assume first that n = 2 and that P1(h) = −h2�g , E1 = 1 and indicate
the minor changes in the case where P1(h) = −h2�g + V (x), at the end. Since we
assume the QCI condition, instead of working with long-time propagators, it simplifies
the analysis to use small-time joint propagators. We will also assume without loss of
generality that E1 = 0 (replacing P1 by P1 − 1). Suppose P1(h)uh = 0 and with
Q(h) := pw

2 (h)− E(h)we have Q(h)uh = 0.As usual, we let ρ ∈ S(R)with ρ(0) = 1
and with ε > 0 small we choose supp ρ̂ ⊂ [ε, 2ε].

Then, since [P1, Q] = 0, for any x ∈ M, we can write

uh(x) =
∫

R

∫

R

(
eit P1(h)/heisQ(h)/h uh

)
ρ̂(t) ρ̂1(s) dsdt.

Let χ ∈ C∞
0 (R; [0, 1]) with χ ≡ 1 on [−ε, ε] and suppχ ⊂ [−2ε, 2ε] and set χ(h) =

χ(P1(h)). Since

(1− χ(h))uh = 0

and by construction [χ, P1] = 0 and [χ, Q] = 0, we can h-microlocalize the identity
above and write

uh(x) =
∫

R

∫

R

(
eit P1(h)/hχ(h)eisQ(h)/hχ(h) uh

)
ρ̂(t) ρ̂(s) dtds + O(h∞). (2.1)

By a standard stationary phase argument (see e.g. [GT17, Section3.1], [BGT07,Theorem
4], [Sog93, Lemma 5.1.3]), we can write the Schwartz kernelof

∫
R

ρ̂(t)eit P1(h)/hχ(h) dt
in the form

K1(x, y, h) = (2πh)
1−n
2 eir(x,z)/h ρ̂(r(x, y))a(x, y, h) + OC∞(h∞), (2.2)

where a(x, y, h) ∼ ∑∞
j=0 a j (x, y)h j , a j ∈ C∞ and r(·, ·) denotes geodesic distance

in the metric g. Thus, letting rin j = inj(M) and choosing geodesic normal coordinates,
y : Brinj (x) → R

n centered at x ∈ M, we have

r(x, y) = |x − y|.
The microlocalized propagator, U (s; h) := eisQ(h)/hχ(h) has a Schwartz kernel that is
an h-FIO of the form

U (s, y, z; h) = (2πh)−n
∫

Rn
ei[S(s,y,η)−〈z,η〉]/h b(s, y, z, η; h) dη + OC∞(h∞),

(2.3)

where a ∈ S0 with b ∼h→0+
∑∞

j=0 b j h j and where S(s, y, η) solves the eikonal
equation

∂s S = q(y, ∂y S), S(0, z, η) = 〈z, η〉.
Then, in view of (2.2) and (2.3), and with

K (x, z) :=
( ∫

eit P1/hχ(h)eisQ/h(h)ρ̂(t)ρ̂(s)dsdt
)
(x, z),
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we have that

K (x, z) = (2πh)
1−n
2 −n

∫

e
i
h (|x−y|+S(s,y,η)−〈z,η〉)ρ̂(|x − y|)c(x, y, h)ρ̂(s)dsdydη

(2.4)

where, c(x, z, h) ∼ ∑∞
j=0 c j (x, z)h j . and

∂s S(s, y, η) = q(y, ∂y S(s, y, η)), S(0, y, η) = 〈y, η〉.
Performing stationary phase in (y, η) gives that at the critical point (yc(x, z, s),
ηc(x, z, s)),

yc − x

|yc − x | + ∂y S(s, yc, ηc) = 0

∂ηS(s, yc, ηc)− z = 0.

Let

�(x, z, s) = |x − yc(x, z, s)| + S(s, yc(x, z, s), ηc(x, z, s))− 〈z, ηc(x, z, s)〉
so that

K (x, z) = (2πh)
1−n
2

∫

e
i
h �(x,z,s)c̃(x, z, s)ds.

Then, by Cauchy–Schwarz,

|uh(x)|2 = (2πh)1−n
∣
∣
∣

∫

e
i
h �(x,z,s)c̃(x, z, s)uh(z) dsdz

∣
∣
∣
2

≤ (2πh)1−n
( ∫ ∣

∣
∣

∫

e
i
h �(x,z,s)c̃(x, z, s)ds

∣
∣
∣
2
dz

)
· ‖uh‖2L2 .

Now, we observe that

(2πh)1−n
∫ ∣

∣
∣

∫

e
i
h �(x,z,s)c̃(x, z, s)ds

∣
∣
∣
2
dz

= (2πh)1−n
∫

e
i
h (�(x,z,s)−�(x,z,t))c̃(x, z, s)c̃(x, z, t)dsdtdz

and also note that

yc(x, z, 0) = z, ηc(x, z, 0) = x − z

|x − z|
and compute

∂s� = 〈x − yc,−∂s yc〉
|x − yc| + ∂s S + 〈∂y S, ∂s yc〉 + 〈∂ηS, ∂sηc〉 − 〈z, ∂sηc〉

= 〈x − yc,−∂s yc〉
|x − yc| + q(yc, ∂y S) +

〈x − yc, ∂s yc〉
|x − yc| + 〈z, ∂sηc〉 − 〈z, ∂sηc〉

= q
(
yc,

x − yc
|x − yc|

)
.
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Therefore,

�(x, z, s) =
∫ s

0
q
(
yc(x, z, r),

x − yc(x, z, r)

|x − yc(x, z, r)|
)
dr + q(z,

x − z

|x − z| )

and

�(x, z, s)−�(x, z, t) =
∫ s

t
q
(
yc(x, z, r),

x − yc(x, z, r)

|x − yc(x, z, r)|
)
dr.

In particular,

�(x, z, s)−�(x, z, t) = (s − t)q(z,
x − z

|x − z| ) + (s2 f (x, z, s)− t2 f (x, z, t)).

Therefore, changing variables to S = t − s T = t + s,

|uh(x)|2 ≤ ‖uh‖2 · (2πh)1−n
∫

e
iS
h

[
q(z, x−z

|x−z| )+OC∞ (T )
]

c1(x, z, S, T )dSdTdz.

(2.5)

We split the integral into two pieces

(2πh)1−n
∫

e
iS
h (q(z, x−z

|x−z| )+OC∞ (T ))
χ(Sh−1)c1(x, z, S, T )dSdTdz ≤ Ch2−n

and

(2πh)1−n
∫

e
iS
h (q(z, x−z

|x−z| )+OC∞ (T ))
(1− χ(Sh−1))c1(x, z, S, T )dSdTdz. (2.6)

First, note that since Hpq = 0, q(z, x−z
|x−z| ) = q(x, x−z

|x−z| ). Therefore, theMorse assump-

tion on q|S∗x M allows us to perform stationary phase in z with hS−1 as a small parameter
in the second integral (2.6). The result is that the latter integral is

≤ Ch1−nh(n−1)/2
∫

|S(1−n)/2(1− χ(Sh−1))χ(T )|dSdT≤Ch(1−n)/2
∫ 1

h
S(1−n)/2 dS.

Summarizing, we have proved that

|uh(x)|2 ≤ C h1−n
(
h

n−1
2

∫ 1

h
S(1−n)/2 dS + h

)

≤

⎧
⎪⎪⎨

⎪⎪⎩

h−
1
2 n = 2

h−1 log h−1 n = 3

h2−n n > 3.

(2.7)

Taking square roots completes the proof in the case where P1(h) = −h2�g, and E1 =
1. ��
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2.1. Schrödinger case. To treat the more general Schrödinger case, we simply note that
(see e.g. [CHT15]) in analogy with the homogeneous case in (2.2),

K1(x, y) = (2πh)(1−n)/2eirE (x,y)/h ρ̂(rE (x, y)) a(x, y, h) + OC∞(h∞)

where rE (x, y) is Riemannian distance in the Jacobi metric gE = (E − V )+g which is
non-singular in the allowable region {V < E}; in particular, rE (x, y) locally satisfies
the eikonal equation

|dzrE (x, y)|2gE = 1; x ∈ �, ε < rE (x, y) < 2ε,

with ε > 0 fixed sufficiently small. Consequently, using geodesic normal coordinates in
gE centered at x ∈ �, it follows that the composite kernel K (x, z) has exactly the same
form as in (2.4). The rest of the argument follows in the sameway as in the homogeneous
case. ��

2.2. Geometric implications of the Morse condition. The morse assumption, Defini-
tion 1.1, may at first seem artificial. However, we observe in Sect. 4 that it is satisfied in
many examples and, moreover, it implies a purely geometric condition which is natural.
In particular, for the QCI system P̂ and x0 ∈ M , there are n natural submanifolds for
L∞ norms:

�
Ei
x0,i

:= p−1i (Ei ) ∩ T ∗x0M, i = 1, . . . n.

Because we work with only two propagators, we consider �E
x0 = �

E1
x0,1

∩ �
E2
x0,2

. The
Morse condition does not guarantee that�x0,1∩�x0,2 is a transverse intersection (inside
T ∗x M) indeed, not even that the intersection is clean. However, it does ensure that for
every energy E2, the volume of �E

x0 small. More precisely (in dimension n �= 3) it
ensures that for every E2,

�h := Vol
({ρ ∈ �

E1
x0,1

| d(ρ,�E
x0) < Ch

) ≤ C(h
n−1
2 + h).

Because P1u = E1u and P2u = E2u, we can see that u is localized in an h neighborhood
of {p1 = E1, p2 = E2} and thus �h is the only region on which u can have energy
producing large L∞ norm at x0 This volume localization then gives improved L∞ norms.

The philosophy that volume concentration over �
E1
x0,1

, implies improved L∞ norms
can be made rigorous [CG18]. In future work [GT18], we will use the ideas there to use
directly the volume of the set �h to obtain a Hardy type bound for QCI eigenfunctions
under a Morse type assumption on the system.

3. Exponential Decay Estimate for Joint Eigenfunctions in the Microlocally
Forbidden Region

In this section, to prove our eigenfunction decay estimates, we will assume that (M, g)
is real-analytic and the QCI system P1(x, hDx ), . . . , Pn(x, hDx ) consists of analytic
h-differential operators. To formulate and prove our results, we will now recall some
basic complex geometry and h-analytic microlocal machinery that will be used later on.
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3.1. Complex geometry. In this section,we requireM be a compact, closed, real-analytic
manifold of dimension n and M̃ denote a Grauert tube complex thickening of M with
M a totally real submanifold. By the Bruhat-Whitney theorem, M̃ can be identified with
MC

τ := {(αx , αξ ) ∈ T ∗M;√ρ(αx , αξ ) ≤ τ } where √2ρ = |αξ |g is the exhaustion
function MC

τ , and we identify M̃ with MC
τ using the complexified geodesic exponential

map κ : MC
τ → M̃ with κ(α) = expαx ,C

(iαξ ) Viewed on M̃ , the function
√

ρ(α) =
−i
2
√
2
rC(α, ᾱ), which satisfies homogeneous Monge-Ampere and its level sets exhaust

the complex thickening M̃ (see [GS91] for further details).
We consider a complexification of T ∗M of the form

T̃ ∗M := {α; |Im αx | < τ, |Im αξ | ≤ 1

C
〈αξ 〉} (3.1)

where C � 1 is a sufficiently large constant and T ∗M ⊂ T̃ ∗M is then a totally-real
submanifold invariant under the involution α �→ ᾱ.

One has a natural complex symplectic form on T̃ ∗M given by

�C = dαx ∧ dαξ , (αx , αξ ) ∈ T̃ ∗M .

Given the complex symplectic form, �C, there are some natural Lagrangian sub-
manifolds of T̃ ∗M that are of particular interest to us: First, there is the C-Lagrangian
submanifold

�̃ := P−1
C

(E), E ∈ Breg,

wherePC = (pC1 , . . . , pCn ) and pCj denotes the holomorphic continuation of p j to T̃ ∗M .

When the context is clear, in the following we will sometimes simply write p for the
holomorphic continuation PC. The level set

P−1(E) ⊂ P−1
C

(E), E ∈ Breg

is an R-Lagrangian submanifold and, as we have already pointed out, by the Liouville-
Arnold theoerem, it is a finite union of R-Lagrangian tori.

We recall that a complex n-dimensional submanifold, �I , of T̃ ∗M is said to be
I-Lagrangian if it is Lagrangian with respect to

Im�C = I dαx ∧ dαξ = dRαx ∧ dIαξ + dIαx ∧ dRαξ ,

where �C = dαx ∧ dαξ is the complex symplectic form on T̃ ∗M . We will denote the
correponding complex canonical one form by

ωC = αξdαx ; (αx , αξ ) ∈ T̃ ∗M .

There are several examples of I -Lagrangians that will be of particular interest to us;
these include, graphs over the real cotangent bundle T ∗M of the form

�I = {α + i HG(α), α ∈ T ∗M}
where HG is the Hamilton vector field of a real-valued G ∈ C∞

0 (T ∗M;R).
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3.2. Complex symplectic geometry near caustics of fold type. There is a natural I -
isotropic associated with the integrable system P = (p1, . . . , pn) and the associated
C-Lagrangian �̃. To define it we let T ∗M⊗C := T̃ ∗MM , the complexification of T ∗M
in the fibre αξ -variables only and set

�̃I := �C ∩
(
T ∗M ⊗ C

)
. (3.2)

We will now consider the case where π : �R → M has fold singularities. As we will
show below, in such a case, one can describe the structure of �̃I in detail locally near
the projection of the caustic set.

Definition 3.1. We define the caustic set to be the subset of the real Lagrangian �R

given by

C� := {α ∈ �R; rankR (dαξ p1(α), . . . , dαξ pn(α)) < n}.
In addition, we say that the caustic C� is of fold type if the projection π�R

: �R → M
has fold singularities along C�.

It follows from an implicit function theorem argument that, under the fold assumption
on the caustic set, π(�R) is a real n-dimensional stratified subset of M with boundary,
and moreover,

∂π(�R) ⊂ π(C�).

Tosee this,weneedonly show that ifα ∈ �R and rankR (dαξ p1(α), . . . , dαξ pn(α)) =
n, then π(�R) contains a neighborhood of π(α). For this, observe that Hpi , i = 1, . . . n
are tangent to �R. In particular, the rank condition implies that dπHpi , i = 1, . . . n are
linearly independent and hence π : �R → M is a local diffeomorphism.

Remark. In general, C� is a stratified space. Under the fold assumption in (i), one has a
decomposition of the form C� = ∪N

k=1Hk, where the Hk are closed hypersurfaces (of
real dimension n − 1). We note that the fold assumption above is generically satisfied
in all of the QCI examples that we are aware of.

Under the fold type assumption on C�, one can locally characterize the structure of
�̃I near the caustic set. To motivate the general result, it is useful to consider first the
simple case of the harmonic oscillator.

3.2.1. Harmonic oscillator. Consider the one-dimensional harmonic oscillator with
pC(x, ζ ) = ζ 2 + x2, (x, ζ ) ∈ R × C and E > 0. In this case, letting z → √

z
denote the principal square root function with branch cut along the negative imaginary
axis, we have

�̃I = �I ��R,

where

�R = {(x, ξ) ∈ R× R; |x | ≤ √
E, ξ = ±

√
E − x2},

which is a single ellipse, and

�I = {(x, ζ ) ∈ R× C; |x | > √
E, ζ = ±i

√
x2 − E}.

The latter set clearly has 4 connected components. See Fig. 1 for a picture of these sets.
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Fig. 1. �R and �I in the case of the harmonic oscillator

Proposition 3.2. Assume that (p1, . . . pn) are jointly elliptic and that the aperture con-

stant C in (3.1) is sufficiently large. Then �̃ ∩
(
T ∗M ⊗ C

)
is compact and moreover,

under the assumption that the caustic C� is of fold type, there exists a neighbourhood
U of the caustic in �̃I such that

(i) �̃I ∩U = (�R � �I ) ∩U,

where�R = {α ∈ T ∗M;P(α) = 0}and�I ⊂ �̃I .Here, both�R and�I are I -isotropic
submanifolds of the complex Lagrangian �̃ with respect to the complex symplectic form
�C.

In addition, �I is locally a (complex) canonical graph with

(i i) (�I )U = {(αx , dαxψU (αx )); αx ∈ π(U )},
where ψU : π(U ) → C is a complex-valued, real-analytic function.

Remark. Here, �R is, of course, also R-Lagrangian with respect to the real symptlectic
form � on the real cotangent bundle T ∗M.

Proof. The fact that�C∩
(
T ∗M⊗C

)
is compact follows readily from the joint ellipticity

of the p j ’s. Indeed, since

�C ∩ (T ∗M ⊗ C) ⊂ {α ∈ T ∗M ⊗ C;
∑

j

|p j (α)|2 =
∑

j

E2
j },

and by joint ellipticity, for all α ∈ T ∗M,

∑

j

|p j (α)|2 ≥ 1

C ′ |αξ |2m, (3.3)
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it follows by Taylor expansion along T ∗M ⊂ T ∗M ⊗ C and the fact that the p j ’s
are symbols of h-differential operators (i.e. they are polynomials in the αξ ’s) that for
α ∈ T ∗M ⊗ C,

∑

j

|p j (α)|2 =
∑

j

|p j (αx ,Re αξ )|2 +O(|Im αξ ||αξ |2m−1)). (3.4)

Since |Im αξ | ≤ 1
C |Re αξ |, and in view of (3.5), it follows that for aperture constant

C � 1 sufficiently large, the second term on the RHS of (3.4) can be absorbed in the
first; the end result is that

∑

j

|p j (α)|2 ≥ 1

C ′′ |αξ |2m, α ∈ T ∗M ⊗ C (3.5)

for some m ∈ Z
+. Thus, �̃ ∩ (T ∗M ⊗ C) is clearly bounded since M is compact and

since it is also closed, compactness follows.
To prove the remaining results (i) and (ii) in Proposition 3.2, we will use the fold

assumption and argue in several steps.
Fix a point q ∈ Hk ⊂ C�. Then, by assumption π�R

has a fold singularity and by
[Hö7, Theorem C.4.2], there are coordinates y on �R and x on M so that y(q) = 0 and

x(π(y)) = (y1, . . . yn−1, y2n ) (3.6)

and in particular, locally, Hk = {yn = 0}. Now, since π(x, ξ) = x for (x, ξ) canonical
coordinates on T ∗M , we have that xi (y) = yi for i = 1, . . . n − 1.

Clearly, ∂yn xn|y=0 = 0 and, since �R is Lagrangian,

σ(∂xi , ∂yn )(q) = σ(∂xi ,
∑

j

∂yn x j (0)∂x j + ∂ynξ j (0)∂ξ j ) = 0, i = 1, . . . n − 1.

That is, ∂ynξi = 0, i = 1, . . . n − 1. Since ∂y1, . . . ∂yn are linearly independent, this
implies that ∂ynξn|y=0 �= 0.

Then, since the map κ : (y1, . . . , yn) �→ (x ′(y), ξn(y)) satisfies rank dκ = n,, by the
implicit function theorem, yn = yn(ξn, x ′)where x = (x ′, xn). Letting b(x ′) = ξn|yn=0,
we can write using the implicit function theorem once again,

yn = ã(x ′, ξn)(ξn − b(x ′))

with ã(0) �= 0.
Therefore, wemay choose coordinates x onM so that locally in canonical coordinates

(x, ξ),

π�R
(x(x ′, ξn), ξ(x ′, ξn)) = ( x ′, a(x ′, ξn) (ξn − b(x ′))2 ); x = (x ′, xn). (3.7)

Here, a ∈ Cω
loc(R

n), a > 0 and b ∈ Cω
loc(R

n−1).
In this case, the caustic hypersurface is

Hk = {(x ′, ξn) ∈ �R; ξn = b(x ′)}.

We note that under the projection π�R
, the hypersurface Hk can naturally be iden-

tified with the hypersurface {(x ′, xn = 0) ∈ U } ⊂ M . Henceforth, we abuse notation
somewhat, and denote the latter also by Hk .
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Write

a2(x
′, ηn) = a(x ′, ηn + b(x ′)),

then the normal form (3.7) can be rewritten in the form

π�R
(x(x ′, ξn), ξ(x ′, ξn)) = ( x ′, a2(x ′, ξn − b(x ′)) (ξn − b(x ′))2 ); 0 < a2 ∈ Cω

loc.

(3.8)

Next, we make a change of coordinates which will change the smooth structure near
the caustic, but leave it unchanged away from the caustic. In particular, let xn = z2,
z ∈ C so that

z2(x(x ′, ξn), ξ(x ′, ξn)) = a2(x
′, ξn − b(x ′)) (ξn − b(x ′))2.

Note that when we want to return to the xn coordinates, we will write
√
xn = z where√

xn > 0 for xn > 0 and the branch cut is taken on −i[0,∞). Writing ζ for the
complexified fibre variables, we have

z = ±√
a2(x ′, ζn − b(x ′))(ζn − b(x ′)), (x, ζ ) ∈ T̃ ∗M�k ,

and by the analytic implicit function theorem,

ζ±n = ζ±n (x ′, z), z ∈ C near 0. (3.9)

Moreover,

±∂zζ
±
n |z=0 =

1√
a2(x ′, 0)

> 0.

A simple computation using (3.8), or more precisely its analytic continuation using
z as a coordinate, shows that π� : �I → M is locally surjective onto M near the
caustic hypersurface Hk . That is, there exists Wk a neighborhood of Hk in �̃I and Vk a
neighborhood of π�(Hk) so that

π� : Wk → Vk

is surjective and, moreover, with �k := Wk\Hk ,

rankC ( dζ p1(x, ζ ), . . . , dζ pn(x, ζ ) ) = n, (x, ζ ) ∈ �k . (3.10)

To see this, we analytically continue (3.6). In particular, analytically continuing y ∈ �R

to α ∈ �,

αx (π(α)) = (α1, . . . αn−1, α2
n).

Hence,

rankC dπ� = n, αn �= 0.

Thus, dπ� is surjective which implies that {dπHpi }ni=1 = dζ p has rank n.
We also note that π |� : �k → M can be written as a graph over the base manifold

M locally near the caustic hypersurface Hk up to choice of branch; more precisely, we
have for some δ > 0

�k = �+
k ∪�−

k ,

�±
k := {(x ′, z2; ζ ′ = ∂x ′ψU , ζn = ζ±n (x ′, z) ); z ∈ (0, δ)

⋃
i(0, δ)}. (3.11)

��
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Remark. We note that z2 ∈ R for z ∈ (0, δ)
⋃

i(0, δ). Also, the x normal coordinates
have been chosen so that xn < 0 and consequently z ∈ i(0, δ) in the microlocally
forbidden region �k .

To complete the proof of Proposition 3.2, wewill need the following result on solving
a particular initial value problem for the complex eikonal equation associated with local
branches �±

k of the I -isotropic manifold �k .

3.2.2. Complex generating functions. In this section, we construct a generating function
ψ± of �±

k locally near the caustic hypersurface Hk .

Specifically, we seek to solve the complex eikonal boundary value problem

pCj (αx , ∂αxψ) = E j , j = 1, . . . , n; (αx , ∂αxψ) ∈ �±
k ,

S|Hk = 0; S = Imψ. (3.12)

In practice, we will not be able to find a unique solution ψ on all of �k . However, for
all such solutions, we will see that S = Imψ agrees and hence that S is well defined on
�k .

Lemma 3.3. Under the fold assumption on the real Lagrangian �R (which is also I -

isotropic), there exists S± ∈ C1,1/2
loc (�±

k )∩Cω(�±
k ) so that S = Imψ± for any solution

ψ± to the complex eikonal boundary value problem in (3.12). In addition, with S± =
Imψ±,

S±(x) = ± 2

3
√
a2(x ′)

(−xn)
3/2
+ + O(x2n ). (3.13)

Proof. To solve the eikonal problem,we follow the standardmethodof (complex) bichar-
acteristics. Since the caustic hypersurface Hk is characteristic for the joint flow ofHamil-
ton vector fields of pCj ; j = 1, . . . , n, one cannot expect a smooth solution to (3.12).
Nevertheless, it is still possible to solve (3.12), albeit with reduced regularity at Hk . In
normal coordinates (x, ξ + iη), given an initial point (x ′, ξ ′; 0) ∈ Hk and (x, ζ ) ∈ �±

k ,

we consider the “normal” curve joining these points given by

γ (t) = (x ′, t xn; (ζ ′)±(x ′,
√
t xn), ζ

±
n (x ′,

√
t xn)), t ∈ [0, 1].

When (x, ζ ) ∈ �±
k , we write γ± for γ to specify the branch. Let

ψ±
k (x) :=

∫

γ±
ωC =

∫

γ±
ζdx=

∫ 1

0
ζ±n (x ′,

√
t xn)d(t xn)=

∫ xn

0
ζ±n (x ′,√xn)dxn .

(3.14)

Let

S±k (x) =
∫

γ±
ImωC = Im

∫ xn

0
ζ±n (x ′,√xn)dxn .

Now, ±∂zζ
±
n (x ′, s)|s=0 = 1√

a2(x ′)
, so

ζ±n (x ′, z) = b(x ′)± z√
a2(x ′)

+ O(z2).
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In particular,

S±k (x) = ± 2

3
√
a2(x ′)

(−xn)
3/2
+ + O(x2n ).

The fact that ψ±
k solves (3.12) on �±

k respectively is clear from the definition above
since from (3.11) �±

k is locally a graph over Uk with �±
k = {(x, ζ ); ζ = ∂xψ

±
k (x))}.

Here, of course, the function ψ±
U ≡ ψ±

k for x ∈ �k . Finally, from the formula in (3.14)
it is clear that ψ±

k , S±k ∈ C1,1/2(�̄k)∩Cω(�k), since Hk = ∂�±
k = {x ∈ Uk; xn = 0}.

We now show that the definition of S±k above is intrinsically defined in the sense
that: (i) it is independent of choice of initial point on Hk and (ii) it is independent of the
choice of curve of integration in the same smooth homotopy class.

Indeed, to prove (i), we recall that ζ = ξ + iη and note that η|Hk = 0, so that if
α0, α1 ∈ Hk and γ (α0, α1) ⊂ Hk is a C1-curve joining these points, then using that
Hk ⊂ T ∗M ,

∫

γ (α0,α1)

ImωC =
∫

γ (α0,α1)

η dx = 0.

As for (ii), let γ1(α0, α) ⊂ �k ∩ �l and γ2(α0, α) ∈ �k ∩ �l be two homotopic
smooth curves joining α0 ∈ Hk to α ∈ �k ∩�l . Then, since �k ⊂ �I is I -isotropic and
�k ∩�l ⊂ T̃ ∗MM it follows by Stokes formula that

∫

γ1(α0,α)

η dx =
∫

γ2(α0,α)

η dx .

��
Remark. Note that ψ±

k may depend on the choice of initial point in Hk , but we have
shown that S±k = Imψ±

k does not. ��
The fact that �I is I -isotropic and (i) and (ii) clearly follow from Lemma 3.3 and

that completes the proof of Proposition 3.2. ��
Definition 3.4. From now on, we will refer to Sk := S+k as the action function corre-
sponding to the caustic hypersurface Hk .

We extend Sk to the entire caustic C� be setting

Sk(x) = 0, x ∈ π(C�),

so that, by definition, Sk |Hl = 0 for all l = 1, . . . , N .

3.2.3. Action function corresponding to the entire caustic set C�. We now define the
action function S : ∪kπ(�k) → R on the entire forbidden region ∪kπ(�k). It remains
to check that the Sk’s correponding to the different caustic hypersurfaces Hk agree on
overlaps. More precisely, we claim that

Sk(α) = Sl(α), α ∈ �k ∩�l . (3.15)

The compatibility condition in (3.15) is readily checked: Let αk
0 ∈ Hk and αl

0 ∈ Hl

and γ (αk
0, α

l
0) ⊂ Hk ∪ Hl be a piecewise smooth curve inside the caustic joining αk

0
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and αl
0 (which we recall is a real submanifold of T ∗M). Now let α ∈ �k ∩ �l and

γ1(α
k
0, α) ⊂ �k and γ2(α

l
0, α) ⊂ �l be two normal curves as above, Then, γ (αk

0, α
l
0)∪

γ1(α
k
0, α) ∪ γ2(α

l
0, α) bounds a domain �kl ⊂ �k ∩ �l . Since �I is I -isotropic, it

follows from Stokes formula that
∫

γ (αk
0 ,α

l
0)

η dx +
∫

γ1(α
k
0 ,α)

η dx −
∫

γ2(α
l
0,α)

η dx = 0. (3.16)

However, since C� ⊂ T ∗M so that η|γ (αk
0 ,α

l
0)
= 0, the first integral on the LHS of (3.16)

vanishes and hence,
∫

γ1(α
k
0 ,α)

η dx =
∫

γ2(α
l
0,α)

η dx . (3.17)

We now set

S(αx ) := Sk(αx ); αx ∈ π(�k). (3.18)

In viewof the compatibility condition (3.15), the action function in (3.27) iswell-defined.
Also, from now on we denote the microlocally forbidden region by

� := ∪N
k=1�k .

3.3. Analytic psdos and FBI transforms. Let U ⊂ T ∗M be open. Following [Sjö96],
we say that a ∈ Sm,k

cla (U ) provided a ∼ h−m(a0 + ha1 + . . . ) in the sense that

∂ l1x ∂
l2
ξ ∂(x,ξ)a = Ol1,l2 (1)e

−〈ξ〉/Ch, (x, ξ) ∈ U,
∣
∣
∣∂α

(
a − h−m

∑

0≤ j≤〈ξ〉/C0h

h j a j
)∣∣
∣ = Oα(1)e−〈ξ〉/C1h, |a j | ≤ C0C

j j ! 〈ξ〉k− j , (x, ξ) ∈ U.

(3.19)

We sometimes write Sm,k
cla = Sm,k

cla (T ∗M).
We say that an operator A(h) is a semiclassical analytic pseudodifferential operator

of order m, k if its kernel can bewritten as A(x, y; h) = K1(x, y; h)+R1(x, y; h)where
for all α, β,

|∂α
x ∂β

y R1(x, y, h)| ≤ Cαβe
−cαβ/h, cαβ > 0,

and

K1(x, y; h) = 1

(2πh)n

∫

e
i
h 〈x−y,ξ 〉a(x, ξ, h)χ(|x − y|)dξ

where χ ∈ C∞
c (R) is 1 near 0 and a ∈ Sm,k

cla . We say A is h-elliptic if |a0(x, ξ)| >

ch−m〈ξ 〉k where a0 is from (3.19). Recall also that A is classically elliptic if there is
C > 0 so that if |ξ | > C , |a0(x, ξ)| > C−1h−m |ξ |k . For more details on the calculus of
analytic pseudodifferential operators, we refer the reader to [Sjö82].
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As in [Sjö96], given an h-elliptic, semiclassical analytic symbol a ∈ S3n/4,n/4
cla (M ×

(0, h0]), we consider an intrinsic FBI transform T (h) : C∞(M) → C∞(T ∗M) of the
form

Tu(α; h) =
∫

M
eiϕ(α,y)/ha(α, y, h)χ(αx , y)u(y) dy (3.20)

with α = (αx , αξ ) ∈ T ∗M in the notation of [Sjö96].

Remark. The normalization a ∈ S3n/4,n/4
cla appears so that T is L2 bounded with uniform

bounds as h → 0 [Sjö96].

The phase function is required to satisfy

ϕ(α, αx ) = 0, ∂yϕ(α, αx ) = −αξ , Im (∂2yϕ)(α, αx ) ∼ C |〈αξ 〉| Id . (3.21)

Given T (h) : C∞(M) → C∞(T ∗M) it follows by an analytic stationary phase
argument [Sjö96] that one can construct an operator S(h) : C∞(T ∗M) → C∞(M) of
the form

Sv(x; h) =
∫

T ∗M
e−i ϕ(x,α)/hb(x, α, h)v(α) dα (3.22)

with b ∈ S3n/4,n/4
cla such S(h) is a left-parametrix for T (h) in the sense that

S(h)T (h) = Id +R(h), ∂α
x ∂β

y R(x, y, h) = Oα,β(e−C/h). (3.23)

Henceforth, we use the invariantly-defined FBI transform T (h) : C∞(M) →
C∞(T ∗M) with phase function

ϕ(α, y) = exp−1y (αx ) · αξ + i
μ

2
r2(αx , y)〈αξ/μ〉. (3.24)

Here, μ > 0 is a constant that will be chosen appropriately later, r(·, ·) is geodesic
distance and χ(αx , y) = χ0(r(αx , y)) where χ0 : R → [0, 1] is an even cutoff with
supp χ0 ⊂ [−in j (M, g), in j (M, g)] and χ0(r) = 1 when |r | < 1

2 in j (M, g).

In analogy with the above, when � ⊂ T̃ ∗M is an I -Lagrangian and with

T�u := Tu|�,

one can also construct a left-parametrix S�(h) : C∞(�) → C∞(M) with the property
that

S�(h) · T�(h) = I d + R�(h) (3.25)

where the Schwartz kernel of R�(h) satisfies the same exponential decay estimates as
R(x, y, h) in (3.23).
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3.4. Weighted L2-estimates along an I -Lagrangian. First, given an analytic h-
differential operator P(x, hD) = ∑

|α|≤k aα(x)(hDx )
α, an I -Lagrangian � ⊂ T̃ ∗M

with generating function H ∈ C∞(�;R) satisfying

dH = Im αξdαx |�,

one has the following weighted L2 estimate [Sjö96, Proposition 1.3]

〈eH/haT�(h)Q1(h)uh, e
H/haT�(h)Q2(h)uh〉L2(�)

= 〈q1|� eH/haT�(h)uh, q2|� eH/haT�(h)uh〉L2(�)

+O(h)‖eH/hT�(h)uh‖2L2(�)
, a ∈ S0(1). (3.26)

In (3.26), qi (α) ∈ O(T̃ ∗M) is the holomorphic continuation of the h-principal symbol
of Qi (h) to T̃ ∗M and qi |� is the restriction to the I -Lagrangian � ⊂ T̃ ∗M .

For arbitrarily small but fixed ε > 0 and

ρ(x) := r(x, π(�R)),

we let χε ∈ C∞(M; [0, 1]) be a cutoff with χε(x) = 0 when r(x, π(�R)) ≤ ε/2 and
χε(x) = 1 when r(x, π(�R)) > ε.

Let � be relatively open in M with the property that � ⊂ M\π(�R) and � ⊂
{x; ρ(x) < δ} where δ > 0 will be subsequently chosen sufficiently small independent
of ε > 0.Let χ� ∈ C∞

0 (M; [0, 1]) be a cutoff function with the property that χ�(x) = 1
for x ∈ π(�R) ∪ �̃ and χ�(x) = 0 for x ∈ (π(�R) ∪ �)c where �̃ � � is a small
neighbourhood of projection π(�R) ⊂ M.

We assume here that the real Lagrangian �R has a caustic set of fold type and then
consider the particular weight function Hε ∈ C∞(M;R) given by

Hε(αx ) := (1− ε) S(αx ) · χε(αx ), αx ∈ �, (3.27)

where ψ+ : � → C solves the complex eikonal equation in (3.12) and the branch is
chosen so that Imψ+ = S. The associated I -Lagrangian is

�ε := {(αx , αξ + i∂αx Hε(αx )); α ∈ T ∗M}. (3.28)

Let uh ∈ C∞(M) be a joint eigenfunction (or exponential quasimode) of Pj (h); j =
1, . . . , n with Pj (h)uh = O(e−C/h) (nb: we have normalized the operators Pj (h) here
so that the joint eigenfunctions uh have joint eigenvalues all zero). An application of the
weighted estimate (3.26) applied with a = χ�, Q1 = Q2 = Pj (h) and then summed
over j = 1, .., n gives

〈q χ�e
Hε/hT�ε(h)uh, χ�e

Hε/hT�ε(h)uh〉L2(�ε)

+O(h)‖χ�e
Hε/hT�ε(h)uh‖2L2(�ε)

= O(e−C/h), (3.29)

where

q(α) =
n∑

j=1

∣
∣p j |�ε

∣
∣2(α) =

n∑

j=1
|p j (αx , αξ + i∂αx Hε(αx ))|2. (3.30)
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Splitting the LHS of (3.29) into pieces where ρ > ε and ρ < ε and noting that
Im Hε(αx ) < cε3/2 when ρ(αx ) < ε and Im Hε(αx ) = (1− ε) · S(αx ) when ρ(αx ) > ε

gives with appropriate β(ε) = O(ε3/2),

〈
q 1ρ>ε χ�e

Hε/hT�ε(h)uh, χ�e
Hε/hT�ε(h)uh

〉
L2(�ε)

+ O(h)‖eHε/h1ρ>εχ�T�ε(h)uh‖2L2(�ε)

= O(eβ(ε)/h)‖1ρ≤εχ�T�εuh‖2L2(�ε)
+ O(e−C/h)

= O(eβ(ε)/h)‖χ�T�εuh‖2L2(�ε)
+ O(e−C/h).

(3.31)

In the last line of (3.31), we have used some elementary bounds on S; indeed, from
(3.13) that as ρ → 0+,

S(x) = O(ρ(x)3/2),

as ρ → 0+, where ρ(αx ) = dg(π(�R), αx ). We will also need

∂x S(x) = O(ρ(x)1/2). (3.32)

From (3.32) and the formula for �ε and T�ε (3.28) and (3.21) respectively, together
with the fact that TT∗M : L2 → L2 is uniformly bounded in h, it follows that

‖1ρ≤εχ�T�εuh‖2L2(�ε)
≤ C sup

ρ≤ε
e2|∂S(ρ)|/h .

Thus, in view of (3.32), the RHS of (3.31) is O(eβ ′(ε)/h) where β ′(ε) = O(ε1/2) as
ε → 0+ and so, it follows from (3.31) that

〈
q 1ρ>ε χ�e

Hε/hT�ε(h)uh, χ�e
Hε/hT�ε(h)uh

〉
L2(�ε)

+O(h)‖eHε/h1ρ>εχ�T�(h)uh‖2L2(�)

= O(eβ ′(ε)/h), (3.33)

where β ′(ε) = O(ε1/2) as ε → 0+.
We will need the following

Lemma 3.5. Let � ⊂ M\π(�) with � ⊂ {x : ε < ρ(x) < δ}. Then, under the fold
assumption on C�, there exists a fixed δ0 > 0 so that for 0 < ε < δ < δ0 there exists
c > 0 so that

|q(α)| ≥ c〈αξ 〉2m > 0, when αx ∈ �.

Proof. We assume throughout that ε < ρ(αx ) < δ, so that, in particular the weight
function H(αx ) = (1 − ε) S(αx ). Since we may work locally, we let ψ+ be a solution
to (3.12) near αx so that in particular, ψ+ = Reψ+ + i S.

Case (i) |αξ − Re ∂αxψ
+| � 1: First, observe that in a neighborhood of the caustic

C�, the only solutions to p j (x, ζ ) = 0, j = 1, . . . n occur at ζ = ζ±(x ′,√xn) where

ζ± = (ζ ′(x ′, ζ±n (x ′,√xn)), ζ
±
n (x ′,√xn))

and ζ±n is as in (3.9). Therefore, there is δ0 > 0 and c = c(δ0) > 0 so that with

�ε(c(δ0)) := {(αx , αξ + i∂αx Hε(αx )); |αξ − Re ∂αxψ
+| ≤ c(δ0), αξ ∈ T ∗αx

M},
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and α ∈ �ε(c(δ0)) with ε < ρ(α) < δ < δ0,

|q(α)| > cε,δ > 0.

Case (ii) |αξ − Re ∂αxψ
+| � 1: Since p j , j = 1, . . . n are symbols of order m,

∂ξ |p j |2(x, ξ)| ≤ C〈ξ 〉2m−1. Moreover, q = ∑
j p

2
j is classically elliptic. Therefore,

|q(x, ξ)| ≥ c〈ξ 〉2m − C . Now,

q(α) =
∑

|p j (αx , αξ − Re ∂αxψ
+ + εRe ∂αxψ

+ + (1− ε)∂αxψ
+)|2

=
∑

|p j (αx , αξ − Re ∂αxψ
+ + εRe ∂αxψ

+ + (1− ε)(Reψ+ + i∂αx S)|2

=
∑

|p j (αx , αξ − Re ∂αxψ
+)|2

+ O(|αξ |2m−1(‖∂αx S‖L∞(ε<ρ<δ) + ‖∂αxReψ+‖L∞(ε<ρ<δ))

≥ c|αξ − Re ∂αxψ
+|2m − Cδ

since ‖∂αx S‖L∞(ε<ρ<δ) + ‖∂αxReψ+‖L∞(ε<ρ<δ) < Cδ In particular, there exists C =
C(δ0) > 0 so that if |αξ − Re ∂αxψ

+| > C(δ0) and ε < ρ(α) < δ < δ0, then
|q| > cδ0 |αξ |2m .

Case(iii): Assume c(δ0) ≤ |αξ − Re ∂αxψ
+| ≤ C(δ0). In this case, we let

�ε(c(δ0),C(δ0)) := {(αx , αξ + i∂αx Hε(αx )); c(δ0)

≤ |αξ − Re ∂αxψ
+| ≤ C(δ0), αξ ∈ T ∗αx

M}.

To control |q(α)| on this set, let

�̃(c(δ0),C(δ0)) = {(αx αξ ) | c(δ0) ≤ |αξ − Re ∂αxψ
+| ≤ C(δ0)}.

Note that since � ∩ π(�R) = ∅, and �̃(c(δ0),C(δ0)) ∩� is compact,

inf
α0∈�̃(c(δ0),C(δ0))∩�

∑
|p j (α

0
x , α

0
ξ )|2 > 0.

Then, for α ∈ � ∩�ε(c(δ0),C(δ0)), there is α0 ∈ � ∩ �̃(c(δ0),C(δ0)) so that

q(α) =
∑

|p j (α
0
x , α

0
ξ )|2 + O(δ1/2).

In particular, there is δ1 > 0 so that for all 0 < δ < δ1, and α ∈ �∩�ε(c(δ0),C(δ0)),

|q(α)| > c > 0.

��
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3.5. Proof of Theorem 3.

Proof. Without loss of generality, we assume here that supp χ� ⊂ {ρ < δ}. Then,
In view of Lemma 3.5, it follows from (3.33) together with that fact that on suppχ�,
|(1− ε)S − Hε| = O(ε3/2), that for ε > 0 sufficiently small and h ∈ (0, h0(ε)],

‖e(1−ε)S/h1ε<ρ<δ χ�T�uh‖L2(�) = O(eβ ′(ε)/h) + O(e−C/h), (3.34)

where β ′(ε) = O(ε1/2) as ε → 0+.
Thus, it follows that

‖e(1−ε)S/hχ�T�uh‖L2(�) = Oε(e
β(ε)/h), β(ε) = O(ε1/2). (3.35)

��
Remark. The argument as above works in semiclassical Sobolev norm in the same way,
with

‖e(1−ε)S/h χ�T�uh‖Hm
h (�) = Om,ε(e

β(ε)/h). (3.36)

In both (3.34) and (3.36) β(ε) = O(ε1/2) as ε → 0+.
Let ψ ∈ C∞

c (Rn) so that |q| ≥ c〈αξ 〉m on supp (1 − ψ)(αξ ). Such a ψ exists by
Lemma 3.5. Standard elliptic estimates for analytic pseudos (see e.g. [GT16, Proposition
2.2, Corollary 1.3], [Mar02, Theorem 4.22]) together with the fact that Piu = 0 shows
that there exists h0(μ) such that for h ∈ (0, h0(μ)) such that

‖χ�(1− ψ(αξ ))T�u‖L2(T ∗M) = O(e−C/h). (3.37)

Moreover, as we show in the appendix, the exponential rate constant C > 0 can be
chosen uniformly for all μ ≥ μ0 > 0, h < h0(μ) where μ is the constant appears in the
phase function in (3.24) (see Proposition A.1).

In particular, since (|S| + |Hε| + |∂αx Hε|) ≤ Cδ1/2, this implies that there is δ > 0
and μ0 > 0 so that for all μ > μ0,

‖e(1−ε)S/hχ�(1− ψ(αξ ))T�u‖ ≤ e−C/h, C > 0. (3.38)

We also note that

‖S�χ�‖L2(�)→L2(M) ≤ Cesup� |Im ∂αS| ≤ Ceδ1/2/h .

Let χ1,� supported on χ� ≡ 1 and χ2,� ≡ 1 on suppχ� with χi,� ∈ C∞
c (�). Then,

as we show in the Appendix, there is δ > 0 so that for μ > μ0, one can construct a
left-parametrix S� : C∞

0 (T ∗M) → C∞(M) with the property that for some uniform
constant C > 0,

e(1−ε)S/hχ1,�uh = e(1−ε)S/hχ1,�S�T�uh + O(e−1/Ch)

= e(1−ε)S/hχ1,�S�χ�T�uh + O(e−1/Ch)

= e(1−ε)S/hχ1,�S�ψ(αξ )χ�T�uh

+ e(1−ε)S/hχ1,�S�(1− ψ(αξ ))χ�T�uh + O(e−1/Ch)

= (
e(1−ε)S/hχ1,� S� e−(1−ε)S/hψ(αξ )χ2,�(αx )

)·
(
e(1−ε)S/hχ�T�

)
uh + O(e−1/Ch).

(3.39)
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Here, we recall the exponential constant C > 0 in the remainder terms in (3.39) does
not depend on the constant μ > 0 in the phase function (3.24) of the FBI transform
which we now fix large enough, with

μ

2
> ‖∂2S‖L∞(�) := max

x∈�
|∂xi ∂x j S(x)|. (3.40)

Consequently from (3.34), the Cauchy Schwarz inequality and the last line of (3.39)
one gets that for x ∈ �, and any ε > 0,

|e(1−ε)S/hχ1,�uh(x)| ≤ Cεe
β(ε)/h sup ‖A�(x, ·; h)‖L2(�) + O(e−C1/h),

β(ε) = O(ε1/2). (3.41)

Here, A�(x, α; h) is theSchwartz kernel of the operator A�(h) : C∞(�) → C∞(M)

where

A�(h) := e(1−ε)S/hχ1,� · S�(h) · e−(1−ε)S/hψ(αξ )χ2,�(αx ). (3.42)

Consequently, it remains to bound‖A�(h)‖L2(�)→L∞(M).Wenote that byLemma3.3
under the fold assumption, we can find local coordinates x = (x ′, xn) : � → R

n in a
neighbourhood, � of the caustic in terms of which

S(x) = b(x ′, xn)x3/2n ; 0 < b ∈ Cω(�).

By Taylor expansion,

S(x)− S(αx )− 〈∂S(αx ), x − αx 〉 ≤ ‖∂2S‖∞|x − αx |2.

It follows that for x ∈ �, and with appropriate m > 0,
∫

�

|A�(x(y), α; h)|2 dα

≤ Ch−m
∫

T ∗M

∣
∣
∣e−2iϕ

∗(α,y)/h e[2(1−ε)S(x)−2(1−ε)S(αx )−2(1−ε)〈∂αx S(αx ), x−αx 〉 ]/h
∣
∣
∣

× χ(r(αx , x))χ1,�(x)χ2,�(αx ) ψ(αξ ) 1ρ≥ε(αx )dα

≤ Ch−m
∫

T ∗M
e
(
2Iϕ∗(α,y)+‖∂2S‖∞|x−αx |2

)
/h

χ(r(αx , x)) χ1,�(x) χ2,�(αx ) ψ(αξ )1ρ≥ε(αx )dα

≤ Ch−m
∫

T ∗M
e
(
− μ

2 +‖∂2S‖∞
)
|x−αx |2/h χ(r(αx , x))χ1,�(x) χ2,�(αx ) ψ(αξ ) dα = O(h−m+ n

2 )

(3.43)

uniformly for x ∈ suppχ1,�. The last line follows by an application of steepest descent
under the assumption (3.40) on the constant μ > 0 in the phase function ϕ(α, x).

Thus, in particular, it follows that for any � ⊂ M\π(�R) sufficiently close to the
caustic ∂π(�R),

‖A�(h)‖L2(�)→L∞(M) = O(h−m′
) (3.44)

with some m′ > 0. Thus, in view of (3.44) and (3.41), we have proved Theorem 3. ��
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Remark. Many classical integrable systems (eg. geodesic flow on ellipsoids, Neumann
oscillators on spheres, geodesic flow on Liouville tori), have the feature that in terms of
appropriate coordinates x = (x1, . . . , xn) ∈ ∏n

j=1(α j , α j+1) with α1 < α2 < · · ·αn

defined in a neighbourhood, V, of π(�R) one can separate variables in the generating
function SV : V → R with

p j (x, dx SV (x)) = E j , SV (x) =
n∑

j=1
SV (x j ), x ∈ V .

Moreover, one can write each SV (x j ) as a hyperelliptic integral

SV (x j ) =
∫ x j

α j

√
RE (s)

A(s)
ds,

where RE is a polynomial of degree n−1 with with coefficients that depend on the joint
energy levels E = (E1, . . . , En) ∈ Breg When n = 2 the roots of RE (s) are necessarily
simple (since it is linear) and this is generically still the case in higher dimensions aswell.

The proof of Theorem 3 holds in the (non-generic) case where RE (s) has multiple
roots. Indeed, in the case where RE (s) has a root rk ∈ (αk, αk+1) of mulitiplicity 2k + 1
corresponds to a caustic hypersurface Hk = {xk = rk} with �k = {xk > rk}. The com-
plex generating function near Hk in the analogue of Lemma3.3 is then locally of the form

S(x) ∼ a(x ′, xk)(xk − rk)
k+3/2; a(x) > 0, x ∈ �k .

Consequently, both S|xk=rk = 0 and dS|xk=rk = 0 and also dS(xk) �= 0 when xk > rk,
the reader can readily check that the analogue of Lemma 3.5 holds in this case also and
the proof of Theorem 3 then follows in the same way as in the fold case where k = 0.

4. Examples

We begin with some relatively simple examples of QCI systems in two dimensions:
Laplace eigenfunctions on convex surfaces of revolution and Liouville tori/spheres. In
these special examples, one can justify separation of variables for the joint eigenfunction
that allow us to verify the sharpness of both Theorems 1 and 3.

4.1. Convex surfaces of revolution. Consider a convex surface of revolution generated
by rotating a curve γ = {(r, f (r)), r ∈ [−1, 1]} about r -axis with f ∈ C∞([−1, 1], R),
f (1) = f (−1) = 0, f (2k)(1) = f (2k)(−1) = 0, where k is a nonnegative integer and
f ′′(r) < 0 for all r ∈ (−1, 1). Moreover, we will assume that f (r) has a single isolated
critical point at r = 0; in particular, f ′(0) = 0 and f ′′(0) < 0.

Let M be the corresponding convex surface of revolution parametrized by

β : [−1, 1] × [0, 2π) → R
3,

β(r, θ) = (r, f (r) cos θ, f (r) sin θ).

Consider M endowed with the rotational Riemannian metric g given by

g = dr2 + f 2(r)dθ2,

where w(r) = √
1 + ( f ′(r))2.
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The corresponding h- Laplacian P1(h) := −h2�g with eigenvalue E1(h) = 1 is
QCI with commuting quantum integral P2(h) = hDθ and since the eigenfunctions can
be expanded in Fourier series in θ, the joint eigenfunctions are necessarily of the form
ϕh(r, θ) = vh(r)ψh(θ), where vh(r) and ψh(θ) must satisfy the ODE

hDθψh(θ) = E2(h)ψh(θ); E2(h) = mh, (4.1)

and
(
h2D2

r + f −2(r)E2
2(h)− 1

)
vh(r) = 0. (4.2)

At the classical level, p1(r, θ; ξr , ξθ ) = ξ2r − f −2(r)ξ2θ and p2(r, θ; ξr , ξθ ) = ξθ

with

�R(E) = {(r, θ; ξr , ξθ ); ξ2r = 1− f −2(r)ξ2θ , ξθ = E2}.

4.1.1. Sup bounds. Set �r,θ := {(ξr , ξθ ); ∈ T ∗r,θ M; p1(r, θ; ξr , ξθ ) = 1}. It is then
clear that p2|�r,θ = ξθ |�s,θ is Morse function away from the poles r = ±1 where
f (r) vanishes. Consequently, it follows from Theorem 1 that given any two balls B±
containing the poles r = ±1 respectively,

sup
M\B±

|uh | = O(h−1/4). (4.3)

Inside B±, it is well-known that there are zonal-type joint eigenfunctions that saturate
the Hörmander O(h−1/2) in an O(h)-neighbourhood of the poles. Consequently, one
can do no better than the ‖uh‖L∞(M) = O(h−1/2) bound globally in this case.

4.1.2. Eigenfunction decay. To verify the fold condition, we assume that E = (1, E2) ∈
Breg. From the above, we can write

�R(E) = {(r, θ; ξr , ξθ = E2); ξ2r = 1− f −2(r)E2
2}. (4.4)

Since for E ∈ Breg , we have E2
2 < maxr∈[−1,1] f 2(r), it is clear from (4.4) that the

restricted projection π�R(E) : �R(E) → M is of fold type and so the decay estimates
in Theorem 3 are satsified. The fact that these estimates are sharp in this case, is an
immediate consequence of above separation of variables and WKB estimates applied to
(4.2).

4.2. Laplacians and Neumann oscillators on Liouville tori.

4.2.1. Liouville Laplacian. Consider the two-torus M = R
2/Z

2 with two, smooth,
positive periodic functions a, b : R/Z → R

+ where, for convenience, we assume that
min0≤x1≤1 a(x1) > max0≤x2≤1 b(x2). The corresponding Liouville metric is given by
g = (a(x1) + b(x2))(dx21 + dx22 ) and the associated Laplacian

P1(h) = −[a(x1) + b(x2)]−1 ( (h∂x1)
2 + (h∂x2)

2 )

is QCI with commutant
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P2(h) = −[a(x1) + b(x2)]−1 ( b(x2)(h∂x1)
2 − a(x1)(h∂x2)

2 ).

Given (1, E2) ∈ B, it is easily checked that

�1,E2 = {(x1, x2, ξ, η) ∈ T ∗(R2/Z
2); ξ2 = E2 + a(x1), η2 = b(x2)− E2}. (4.5)

When E2 ∈ (max b,min a), the projection π�E has no singularities and consequently,
�E is a Lagrangian graph. On the other hand, when either E2 ∈ (min a,max a) ∪
(min b,max b), it is easily seen from (4.5) that π�E : �E → R

2/Z
2 is of fold type.

Consequently, when a, b ∈ Cω(R2/Z
2), the decay estimates in Theorem 3 hold for the

joint eigenfunctions.
As for Theorem 1, we simply note that given any point z0 = (x0, y0) ∈ R

2/Z
2,

setting α = a(x0) > b(y0) = β we have that

p2|T ∗z0 = β(α + β)−1ξ2 − α(α + β)−1η2,

and since S∗z0 = {(ξ, η); ξ2 + η2 = α + β > 0}. the Morse property of p2|S∗z0
follows since α > β. Indeed, in terms of the parametrization [0, 2π ]  θ �→
(
√

α + β cos θ,
√

α + β sin θ), the function p2|S∗z0 (θ) = β cos2 θ − α sin2 θ which is
clearly Morse as a function of θ ∈ [0, 2π ] when α > β > 0. Consequently, the global
Hardy bound

‖uh‖L∞(M) = O(h−1/4)

for joint eigenfunctions in Theorem 1 is satisfied in this case. Moreover, it is well-known
[Tot96,TZ03] that this bound is saturated in this case.

4.2.2. Liouville oscillators. In this example, the underlying Riemannian manifold is
(R2/Z

2, g) where g is the above Liouville metric. Consider the Schrodinger operator

P1(h) = −(a(x1) + b(x2))
−1 (

h2∂2x1 + h2∂2x2

)
+ b(x2)− a(x1).

One verifies that the Schrodinger operator

P2(h) = −(a(x1) + b(x2))
−1 (

b(x2)h
2∂2x − a(x1)h

2∂2x2

)
− a(x1) b(x2)

commutes with P1(h). Given a regular value E1 of p1, it is easy to check that

�E =
{
(x1, x2, ξ, η) ∈ T ∗R2/Z

2; ξ2 = (
a(x1) + E1/2

)2 + E2 − E2
1/4,

η2 = −(
b(x2)− E1/2

)2 + E2
1/4− E2

}
. (4.6)

It is clear from (4.6) that π�E is either regular, or has fold-type singularities.
As for the Morse condition: the same reasoning as in the case of the Liouville Lapla-

cian shows that with �E1,z = {(z, ξ); p1(z, ξ) = E1} the function p2|�E1,z is Morse
and consequently the joint eigenfunctions satisfy the Hardy-type bounds in Theorem 1.

Both the Liouville Laplacian and oscillator extend to QCI systems on tori of arbitrary
dimension [HW95] The fold assumption is satisfied for generic joint energy levels (see
also Remark 3.5 below) and so is the Morse assumption in Theorem 1.
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4.3. Laplacians on ellipsoids. Consider the ellipsoid E = {w ∈ R
3,

∑3
j=1

w2
j

a2j
= 1}

where 0 < a3 < a2 < a1 are fixed constants. Then, given the rectangles R+ := (0, T1)×
(0, T2) and R− = (T1, 2T1)×(0, T2)we let�± : R± → E∩{±w2 > 0}be the conformal
mapping sending vertices of R± to the four umbilic points p j ; j = 1, . . . 4 of E . We
choose orientations so that �± have the property that �+(x, T2) = �−(2T1 − x, T2)
and �+(x, 0) = �−(2T1 − x, 0). We henceforth let � := �± : R → E denote the
induced conformal mapping with �|R± = �± and R := R+ ∪ R−.

One can show (see [CdVVuN03] ) that the intrinsic Riemannian metric on E pulled-
back to R is locally of Liouville form

ds2 = (
a(x1) + b(x2)

)
(dx21 + dx22 ), (4.7)

where a and b are certain hyperelliptic functions that extend to real-analytic function
on R. Moreover, a(kT1) = a′(kT1) = 0, b(kT2) = b′(kT2) = 0 and a′′(kT1) �=
0, b′′(kT2) �= 0 for all k ∈ Z. Consequently, ds2 extends to a Cω-metric on the torus
R
2/� where � = T1Z ⊕ T2Z. Of course, the induced metric (which we continue to

denote by ds2) on the torus R
2/� degenerates at the lattice points in �.

Let T = R
2/2�, the torus generated by the doubled lattice 2� and σ : T → T

the natural involution given by σ(z) = −z. Then, the automorphism σ has precisely
four fixed points given by the vertices (0, 0), (T1, 0), (0, T2) and (T1, T2) of R+. The
corresponding fundamental domain is D ⊂ R

2/2� where

D = [0, 2T1] × [0, T2] / ∼
where (x, 0) ≡ (2T1 − x, 0) and (x, T2) ≡ (2T1 − x, T2). In view of the conformal
mapping�, this gives an identificationE ∼= T/σ . Consequently, under this identification,
the torus T is a two-sheeted covering of the ellipsoid, E with covering map

� : T → E; �(z) = z2.

This covering map is ramified over the umbilic points and the Riemannian metric g on
E has the property that

ds2 = �∗g.

4.3.1. Proof of Theorem 2.

Proof. Let Bj ; j = 1, 2, 3, 4 be open neighbourhoods of the umbilic points p j ; j =
1, 2, 3, 4. Then, in the complement E\ ∪ j B j , one has local coordinates (x1, x2) in
terms of which the metric has the form (4.7). Then, the same argument as in the case
of the Liouville torus using Theorem 1 shows that for the joint eigenfunctions of the
corresponding QCI system on the ellipsoid, one gets that

sup
x∈E\∪ j B j

|uh(x)| = O(h−1/4).

On the other hand, in the neighbourhoods Bj ; j = 1, .., 4 of the umbilic points, we
claim that

sup
x∈∪ j B j

|uh(x)| = O(h−1/2| log h|−1/2). (4.8)
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To prove (4.8), we split the analysis into two cases: Case (i): Suppose first that for any
fixed δ = 1/4 − ε we have x ∈ Bj\Bj (hδ). Using the conformal (x1, x2) coordinates
above near the umbilic point p j we have x1(p j ) = x2(p j ) = 0 and

a(x1) = Cx21 + O(x31), b(x2) = C ′x22 + O(x32), x = (x1, x2) ∈ B\B(hδ).

Then, since p = (a + b)−1(ξ2 + η2) and q = (a + b)−1(bξ2− aη2) in this case, with
min{a(x1), b(x2)} � h2δ when x ∈ Bj\Bj (hδ). Then,

|dq|S∗x M
∣
∣ +

∣
∣ d2q|S∗x M

∣
∣ ≥ Ch2δ, when x ∈ B\B(hδ).

From the stationary phase estimate in (2.6) and (2.7) it then follows that

|uh(x)|2 ≤ Ch−1
(
h1/2−2δ + h

)

so that

sup
x∈Bj\Bj (hδ)

|uh(x)| ≤ C1h
−1/4h−δ + C2 ≤ C3h

−1/2+(1/4−δ). (4.9)

The bound in (4.9) is quite crude, but since 0 < δ < 1/4, it is a polynomial improve-
ment over the universal Hörmander bound and more than suffices for the argument here.

Finally, we deal with Case (ii); where x ∈ B(hδ). To do this, consider S∗p j
E . We

have that p j is self-conjugate with constant return time T0 > 0. There is a hyperbolic
source/sink pair ξ± ∈ S∗p j

E . In particular, let U± ⊂ S∗p j
E be neighborhoods of ξ±.

Then there is CU± so that for ξ ∈ S∗p j
E\U±,

d(GnT0(p j , ξ), ξ∓) ≤ CU±e
−|n|/CU± , ∓n ≥ 0.

Moreover, we have

|dGt |T S∗p j \U±| ≤ CU±e
−|t |/CU± , ∓t ≥ 0.

Therefore, applying [CG19, Lemmas 3.1, 3.2] to both A± := S∗p j
\U±, we have, using

[CG18, Theorem 2],

sup
x∈Bj (hδ)

|uh(x)| ≤ Ch−
1
2 | log h|−1/2. (4.10)

In summary, from (4.9) and (4.10) it follows that for joint eigenfunctions on the
ellipsoid, one gets the global sup bound

‖uh‖L∞(E) = O(h−1/2| log h|−1/2)
which proves Theorem 2. ��
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Appendix A: Uniformity of Parametrix Construction

Since the purpose of this section is to understand uniformity in μ, we will write T� =
T�,μ.

Proposition A.1. Suppose that P ∈ S0,kcla a classically analytic pseuodifferential opera-
tor with |p(α)| ≥ c〈ξ 〉k on |αξ | ≥ K, α ∈ �. There is μ0 > 0 and C > 0 so that for
μ > μ0 there is h0 = h0(μ) so that for all 0 < h < h0 and u ∈ L2 with Pu = 0,

‖T�,μu‖L2(|αξ |≥K ) ≤ Ce−1/Ch‖u‖L2 .

Proof. Let ψ ∈ C∞
c (� ∩ {|αξ | < k}) so that |p| ≥ c

2 〈ξ 〉k on supp (1 − ψ). First note
that,

T�,μu(αx , μαξ ) =
∫

M
e

i
h̃
[exp−1y (αx )·βξ+ i

2 r
2(αx ,y)〈βξ 〉]a(αx , μαξ , y)χ(r(αx , y))u(y)dy

with h̃ = h/μ. By a standard application of analytic stationary phase

(1− ψ(αx , μαξ ))(T�,μPu)(αx , μαξ )

= (1− ψ(αx , μαξ ))(Tq,�,μu)(αx , μαξ ) + R�,μu

where

Tq,�,μu(αx , μαξ )

=
∫

M
e
i
h̃
[exp−1y (αx )·αξ+ i

2 r
2(αx ,y)〈αξ 〉]a(αx , μαξ , y)q(αx , αξ , y;μ, h)χ(r(αx , y))u(y)dy

with

q(α, y) =
C−1〈αξ 〉h̃−1∑

j=0
p̃ j (y,−μdyϕ(α, y))μ j h̃ j , p̃ j ∈ S0,k− j

cla , p̃0 = p0,

ϕ = exp−1y (αx ) · αξ + i
2r

2(αx , y)〈αξ 〉, and R�,μu = O(e−〈μαξ 〉/Ch‖u‖L2). Here, the
remainder bound comes from the fact that we have

| p̃ j (y,−μdyϕ(α, y)| ≤ C j j !〈μαξ 〉m− j .

Observe also that since dyϕ = −αξ + O(r(αx , y)), and r(αx , y) � 1, we have that
p0(y,−μdyϕ) is elliptic on supp (1− ψ(αx , μαξ )).

http://creativecommons.org/licenses/by/4.0/
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Next, since Pu = 0, we have that

(1− ψ(α))Tq,�,μu(α) = O(e−〈αξ 〉/Ch‖u‖L2).

Therefore, we need only show that one can replace Tq,�,μ by T�,μ. For this, we follow
the construction in [Sjö96, Propoosition 6.2] (see also [GT16, Proposition 2.2]). As
above, when it comes to the application of stationary phase, we rescale αξ �→ μαξ and
the small parameter is h̃ = h/μ, but derivatives of the symbol acquire powers of μ. The
same arguments then complete the proof. ��
Proposition A.2. With T�,μ as above, there exists μ0 > 0, so that for all N > 0 there
is CN > 0 so that for all μ > μ0 there is h0(μ) so that for 0 < h < h0,

S�,μT�,μ = Id +Rμ

where

‖Rμ‖L2→CN ≤ CNe
−1/(hCN ).

Proof. After rescaling the fiber coordinates αξ �→ μαξ and setting h̃ := h
μ
, we have

T�u(αx , μαξ ) =
∫

M
e

i
h̃
[exp−1y (αx )·αξ+ i

2 r
2(αx ,y)〈αξ 〉]a(αx , μαξ , y)u(y)dy

it follows by the standard left parametrix construction for T�(h) the one can find a
formal analytic symbol b ∼ ∑

j b j h j and associated left parametrix as in (3.22) with
the property that

S�(h̃)T�(h̃) = I d + Rμ(h̃)

where

‖Rμ(h̃)‖C∞ = O(e−C(μ)/h̃).

An explicit realization of b is of the form

bμ(α; h) =
∑

j;| j |≤h̃/C1

b j (α;μ)

and it is not difficult to show that by standard Cauchy estimates

|b j (α;μ)| ≤ C0C
j j !μ j h̃ j 〈αξ 〉− j = C0C

j j ! h j 〈αξ 〉− j . (A.1)

The extra μ j factor in (A.1) comes from the rescaling αξ �→ μαξ and the parametrix
construction above (note that each αξ -derivative of the rescaled symbols pulls out a
factor of μ). Using (A.1) and Stirling’s formula it then follows that for μ ≥ μ0 there is
a uniform constant C > 0 such that
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‖Rμ(h̃)‖C∞ = O(e−C/h).

That proves the Proposition and establishes the uniform bound we need in (3.39). ��
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