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In this work we have investigated the dynamics of a recent modification to the general theory of
relativity, the energy-momentum squared gravity model fðR;T2Þ, where R represents the scalar curvature
and T2 the square of the energy-momentum tensor. By using dynamical system analysis for various types of
gravity functions fðR;T2Þ, we have studied the structure of the phase space and the physical implications
of the energy–momentum squared coupling. In the first case of functional where fðR;T2Þ ¼ f0RnðT2Þm,
with f0 constant, we have shown that the phase space structure has a reduced complexity, with a high
sensitivity to the values of them and n parameters. Depending on the values of them and n parameters, the
model exhibits various cosmological epochs, corresponding to matter eras, solutions associated to an
accelerated expansion, or decelerated periods. The second model studied corresponds to the fðR;T2Þ ¼
αRn þ βðT2Þm form with α, β constant parameters. In this case a richer phase space structure is obtained
which can recover different cosmological scenarios, associated to matter eras, de–Sitter solutions, and dark
energy epochs. Hence, this model represent an interesting cosmological model which can explain the
current evolution of the Universe and the emergence of the accelerated expansion as a geometrical
consequence.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1,2] at the turn of the last century has come
as the most unexpected and surprising result for the
scientific society. The reason behind the reaction is quite
obvious as gravity being an attractive force will compel the
Universe and all the matter present inside it to contract. So
the expansion of the Universe would gradually slow down
and finally reach a situation where it stops totally. After this
gravity will pull it back and the Universe would undergo a
contraction. But the observational evidences are saying a
totally different story. This is where our standard knowl-
edge of physics is falling short and we are compelled to

search for some new physics which will help us to explain
the phenomenon that our observations are showing.
Over the last two decades, the scientific society have left

no stones unturned in its quest for a suitable physical theory
that will explain the accelerated expansion [3] of the
Universe. The whole effort can be broadly classified into
two categories. The first one targets the nature of matter that
fills the Universe. This theory tells us that the Universe is
filled with a mysterious negative pressure component
termed as “dark energy” which provides an antigravitating
stress to sustain not only an expanding Universe but also
fuels it to reach a level of accelerated expansion. The most
common way of doing this is by introducing a cosmologi-
cal constant Λ in the Einstein’s equations of general
relativity. The idea seems to be consistent but the concept
is still in its infancy and is plagued by a lot of shortcomings.
The most prominent one being its invisible nature and hence
the term “mysterious.” Moreover there is the cosmological
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constant problem to deal with [4] which is associated to the
lack of consistency between the observed values of vacuum
energy density (given by a very small value of the cosmo-
logical constant) and the theoretically predicted large value
given by the quantum field theory.
The second approach aims at modifying the geometry of

spacetime, i.e., Einstein’s gravity in the general theory of
relativity (GR) at large distances, specifically beyond our
Solar System to produce accelerating cosmological solu-
tions [5–7]. This has given rise to the concept of “modified
gravity,” with numerous theories available in the literature.
Extensive reviews in modified gravity theories can be
found in the Refs. [8–10]. Many of the theories of modified
gravity aims at modifying the linear function of scalar
curvature, R responsible for the Einstein tensor in the
Einstein equations of GR. So it is obvious that the
alterations are brought about in such a way so as to
generalize the gravitational Lagrangian which takes a
special form LGR ¼ R in case of GR. An extensively
studied theory in this context is the fðRÞ gravity where
the gravitational Lagrangian LGR ¼ R is replaced by an
analytic function of R, i.e., LfðRÞ ¼ fðRÞ. Via this gener-
alization, we can explore the nonlinear effects of the scalar
curvature R in the evolution of the universe by choosing a
suitable function for fðRÞ. In this specific case, extensive
reviews on this theory are available in the Refs. [11,12].
From a theoretical point of view, the viability of fðRÞ

dark energy models have been studied in [13]. In this paper
the authors ruled out the fðRÞ theories where a power of R
is dominant at large or small R. The effects of a non-
minimal curvature-matter coupling was studied in [14], and
constraints of the fðRÞ dark energy models were derived in
[15]. In Ref. [16], the author studied the interplay between
scalar–tensor theory and fðRÞ theories of gravity consid-
ering the Palatini formalism. A specific scheme for fðRÞ
reconstruction was developed recently [17], while large
scale structure of fðRÞ gravity was investigated in
Ref. [18]. Moreover, various papers have investigated
different aspects of the latter theory by considering various
techniques [19–21], and a survey of the generic fðRÞ
models in various formulations is carried out in [22].
Further generalizations to the fðRÞ modified theories of
gravity have been proposed by introducing some couplings
between the geometrical quantities and the matter sector.
One interesting model is the one where the Lagrangian is
constructed by considering a generic function of the Ricci
scalar R and of the trace of the stress-energy tensor T. Such
modifications gave rise to fðR; TÞ theories [23–25].
Moreover since scalar fields play a fundamental role in
cosmology, fðR; TϕÞ theories were proposed by Harko
et al. in Ref. [23], where Tϕ is the trace of the stress energy
of the scalar field. A different type of coupling between
geometry and matter was proposed [26], the generic
fðR; T; RμνTμνÞ gravity theory. This is a more generic
gravity theory in which matter is nonminimally coupled to

geometry, the Lagrangian corresponding to the gravitational
field has a general dependence of theRicci scalar, the trace of
the matter energy-momentum tensor, and the contraction
between the Ricci tensor and the matter energy-momentum
tensor. Further, in [27,28], a model with a nonminimally
coupling between the density Lagrangian matter and the
curvature R was introduced. In this model, the Lagrangian
corresponds to f1ðRÞ þ ð1þ λf2ðRÞÞLm where λ is a
constant and Lm is the matter Lagrangian density. Within
these models in which the matter field is nonminimally
coupled to gravity any particle is subject to an extra force
appearing in a direction which is orthogonal to the four-
velocity [27]. The latter model proposed in [27] was
extended to the case of generic couplings to both matter
and gravity in a recent paper [29], considering a specific
Lagrangian given by f1ðRÞ þGðLmÞf2ðRÞ. Furthermore,
for the nonminimal geometry coupling models the Palatini
formulation has been proposed in [30]. In this context, a
further specific extension related to the latter gravity theories
was proposed in [31] by embedding into the Lagrangian an
arbitrary function of the fðR;LmÞ type.
More comprehensive ideas and reviews on modified

gravity theories from different points of view has been
considered in [8,11,32]. The advances in the recent
cosmology using a dynamical system approach in dark
energy and modified gravity theories have appeared
recently [33]. In continuation of the above generalization
procedure for the fðR;LmÞ theory we can also choose to
modify the corresponding Lagrangian by including some
analytic function of TμνTμν, where Tμν is the stress energy-
momentum tensor of the matter component. Hence, such a
choice of the corresponding Lagrangian will give rise to
fðR; TμνTμνÞ theories of gravity. It should be kept in mind
that in such a scenario, we are not introducing new forms of
nonlinear fluid stresses [34,35] like the scalar field, bulk
viscosity [36], or Chaplygin gas [37,38]. In 2014, Katirci
and Kavuk [24] proposed such a theory for the first time, a
covariant generalization of GR which allows the existence
of a term proportional to TμνTμν in the action functional.
Further studies on this theory was carried out [39,40],
where specific models of this gravity theory have been
considered. Roshan et al. [40] analyzed the possibility of a
bounce at early times within the energy momentum squared
gravity (EMSG) model, with the specific functional given
by fðR; T2Þ ¼ Rþ ηT2, where η is a constant. Board and
Barrow [39] studied the cosmology of the energy momen-
tum powered gravity (EMPG) model which is a generali-
zation of the EMSG theory, where the model is
characterized by fðR; T2Þ ¼ Rþ ηðT2Þn, with η and n
constant parameters. Nonexotic matter wormholes are
studied in the framework of EMSG in [41], and possible
constraints from neutron stars were discussed in [42].
Furthermore, recent studies [43–45] have considered vari-
ous cosmological applications of the energy momentum
squared gravity theory. It has been shown [46] that the
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quantum fluctuations associated to the metric tensor can
produce additional cross terms between the Ricci and the
energy-momentum tensor. In the framework of energy
momentum squared gravity theories, the late time accel-
eration of the Universe have been investigated in [47],
considering the case of a pressureless fluid. In this specific
case the authors [47] constrained different parameters of the
corresponding model by relying on various values of the
Hubble parameter.
From the above handful of literature it is clear that

fðR; TμνTμνÞ gravity along with its EMSG and EMPG
specializations need more attention and hence motivations
to study such theories are quite high. As both the concepts
of dark energy and modified gravity are till date inadequate
to properly explain the observations, it is obvious that there
is a lot of room for improvement in both the sectors and
there is an open invitation to work and improve both the
territories. This work is one such novel attempt to improve
upon our existing knowledge of modified gravity theories.
The present work will focus on some generalizations of the
EMSG model of modified gravity and will try to explore its
features via a dynamical system analysis.
The paper is organized as follows: Sec. II deals with

cosmology of energy momentum squared gravity theories.
In Sec. III we give a detailed analysis of the dynamical
system for two specific case of gravity functions. Finally
the paper ends with the corresponding concluding remarks
in Sec. IV.

II. ENERGY-MOMENTUM SQUARED
COSMOLOGY

The action of our model can be written as [39]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;T2Þ þ Sm; ð1Þ

where f is a function depending on the square of the
energy-momentum tensor T2 ¼ TμνTμν and the scalar
curvature R. Here, κ2 ¼ 8πG and Sm represents the action
corresponding to the matter component.
If we vary the action with respect to the metric we arrive

at the following field equations

RμνfR þ gμν□fR −∇μ∇νfR −
1

2
gμνf ¼ κ2Tμν − fT2Θμν;

ð2Þ
where □ ¼ ∇μ∇μ, fR ¼ ∂f=∂R, fT2 ¼ ∂f=∂T2 and

Θμν ¼
δðT2Þ
δgμν

¼ δðTαβTαβÞ
δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν þ 2Tα

μTνα

− 4Tαβ ∂2Lm

∂gμν∂gαβ ; ð3Þ

where T is the trace of the energy-momentum tensor. By
taking covariant derivatives with respect to the field
equation (2), one finds the following conservation equation

κ2∇μTμν ¼ −
1

2
gμν∇μf þ∇μðfT2ΘμνÞ: ð4Þ

As one can see from the above equation that in general, the
conservation equation does not hold for this theory. If one
chooses fðR;T2Þ ¼ 2α logðT2Þ, one gets the same result
reported in [48].
In the following, we will concentrate on the flat

Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmol-
ogy for this model whose metric is described by

ds2 ¼ −dt2 þ a2ðtÞδikdxidxk; ð5Þ
withδik being theKronecker symbol andaðtÞ the scale factor.
Let us now consider that the matter content is described
by a standard perfect fluid with Tμν ¼ ðρþ pÞuμuνþ
pgμν with uμ being the 4-velocity and ρ and p are the energy
density and thepressure of the fluid respectively.Using these,
the energy-momentum tensor gives us T2 ¼ ρ2 þ 3p2.
Further, let us assume Lm ¼ p which allows us to rewrite
Θμν defined inEq. (3) as a quantitywhich does not depend on
the function f, namely [39]

Θμν ¼ −ðρ2 þ 4pρþ 3p2Þuμuν: ð6Þ
The modified FLRW equations which corresponds to this
particular action are given by

−3fRð _HþH2Þþf
2
þ3H _fR¼κ2

�
ρþ 1

κ2
fT2Θ2

�
; ð7Þ

−fRð _Hþ3H2Þþ1

2
fþ f̈Rþ2H _fR¼−κ2p; ð8Þ

where dots denote differentiation with respect to the cosmic
time t, H ¼ _a=a is the Hubble parameter, and

Θ2 ≔ ΘμνΘμν ¼ ρ2 þ 4pρþ 3p2 ð9Þ
was defined. The conservation equation (4) reads as follows

κ2ð_ρþ 3Hðρþ pÞÞ

¼ −Θ2 _fT2 − fT2

�
3HΘ2 þ d

dt

�
2ρpþ 1

2
Θ2

��
: ð10Þ

Clearly, the standard conservation equation does not hold in
fðR;T2Þ cosmology for an arbitrary function. If one chooses
fðR;T2Þ ¼ fðRÞ, all the terms on the right-hand side (RHS)
of the above equation are zero and the standard conservation
equation is recovered. In the following, a standard barotropic
equation of state will be assumed:

p ¼ wρ; ð11Þ
wherew is the equation of state parameter. Using this relation
one gets that
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Θ2 ¼ ð1þ 4wþ 3w2Þρ2; ð12Þ

and then the conservation equation (10) becomes

_ρþ 3Hðwþ 1Þρ
¼ −fT2 ½3ð3w2 þ 4wþ 1ÞHρ2 þ ð3w2 þ 8wþ 1Þρ_ρ�
− ð3w2 þ 4wþ 1Þρ2 _fT2 : ð13Þ

In the next section, the dynamical system of the general
model will be found and then some specific forms of the
function will be adopted to analyse its cosmological proper-
ties by using dynamical system techniques. Hereafter, we
will use geometric units such that κ2 ¼ 1.

III. DYNAMICAL SYSTEM

In this section we will derive the general form of the
dynamical system for the modified FLRW equations
described by Eqs. (7)–(8). Let us first introduce the
following dimensionless variables

x1 ¼
_fR

fRH
; x2 ¼

f
6H2fR

; x3 ¼
R

6H2
;

x4 ¼
ρ

3H2fR
; x5 ¼ ð3w2 þ 4wþ 1ÞρfT2 : ð14Þ

Using these quantities one finds that the first Friedmann
equation given by (7) becomes

x3 þ x4 þ x4x5 − x1 − x2 ¼ 1: ð15Þ

The dynamical system for these five dimensionless vari-
ables become

dx1
dN

¼ Γ − x1ðx1 þ ΨÞ; ð16Þ

dx2
dN

¼ Ξ − 2x2Ψ − x1x2; ð17Þ

dx3
dN

¼ ℧ − 2x3Ψ; ð18Þ

dx4
dN

¼ Π − 2x4Ψ − x1x4; ð19Þ

dx5
dN

¼ 3ð3w2 þ 4wþ 1ÞΔx4 þ
Πx5
x4

; ð20Þ

where N ¼ logðaÞ and we have further defined the follow-
ing parameters

℧ ¼
_R

6H3
; Ξ ¼

_f
6fRH3

; Ψ ¼
_H
H2

;

Δ ¼ fRH _fT2 ; Π ¼ _ρ

3fRH3
: ð21Þ

On the other hand, the conservation equation (13) can be
written as follows (w ≠ −1 and w ≠ −1=3)

Δ ¼ −
Πððwð3wþ 8Þ þ 1Þx5 þ ðwþ 1Þð3wþ 1ÞÞ þ 3ðwþ 1Þð3wþ 1Þx4ðx5 þ wþ 1Þ

3ðwþ 1Þ2ð3wþ 1Þ2x42
: ð22Þ

Then, one can further notice the following extra relationships

Ψ ¼ x3 − 2; Ξ ¼ ð3w2 þ 1ÞΠx5
3w2 þ 4wþ 1

þ℧; ð23Þ

and then rewrite the dynamical system (16)–(20) as follows

dx2
dN

¼ ð3w2 þ 1ÞΠx5
3w2 þ 4wþ 1

þ x22 − ð3x3 þ x4ðx5 þ 1Þ − 5Þx2 þ℧; ð24Þ

dx3
dN

¼ ℧ − 2ðx3 − 2Þx3; ð25Þ

dx4
dN

¼ Π − x4ð−x2 þ 3x3 þ x4 þ x4x5 − 5Þ; ð26Þ

dx5
dN

¼ −
Πð4wx5 þ 3w2 þ 4wþ 1Þ þ 3ð3w2 þ 4wþ 1Þx4ðx5 þ wþ 1Þ

ðwþ 1Þð3wþ 1Þx4
; ð27Þ
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where we have also used the Friedmann constraint (15) and
the conservation equation (22). Furthermore, in terms of
dimensionless and auxiliary intermediate variables, the
Friedmann acceleration equation (8) reduces to

x3 ¼ Γþ 3wx4 þ 2x1 þ 3x2 − 1: ð28Þ

To close the dynamical system, one needs to impose a
specific form of the function f. By doing this, one needs to
derive how the parameters Π and ℧ are either constants or
depend on the dimensionless variables x2, x3, x4 and x5.
Lastly, it can be seen that this particular choice of
dimensionless variables does not necessarily imply that
the effective matter density parameter needs to satisfy the
usual standard existence conditions, i.e., 0 ≤ Ωeff

m ¼ x4 ≤ 1
due to the appearance of the variation of the gravity
functional with respect to the scalar curvature. However,
in our analysis we shall consider the necessity of the
standard existence conditions as a basic requirement for
the validity of the corresponding critical points due to the
complexity of the phase space.
Let us finish this section by noting that the effective state

parameter is only related to the dimensionless parameter x3
as follows

weff ¼ −1 −
2

3
ðx3 − 2Þ: ð29Þ

This expression will be used to understand the nature of the
critical points.

A. Case 1: f ðR;T2Þ= f 0RnðT2Þm
If we specify the following functional fðR;T2Þ ¼

f0RnðT2Þm, where m, n and f0 are constant parameters,
then we can close the dynamical system. By using the
definition of Δ for this specific functional, we can deduce
the following intermediate equation:

Δ ¼ 2mnx22
3ð3w2 þ 1Þx23x34

ð2ðm − 1ÞΠx3 þ nx4℧Þ; ð30Þ

which represents an interrelation between the definition of
Δ in the conservation equation and the intermediate
variables ℧ and Π. Moreover, in this specific case, one
can note that we have an interrelation between the second
and third dimensionless variables, namely,

x3 ¼ nx2: ð31Þ

Furthermore, for this specific model, one can write the
following:

x2ðn − 1Þ þ x4 þ x4x5 − 1 ¼ ðn − 1Þ℧
nx2

þ 2mΠ
x4

; ð32Þ

where we have used the constraint (15). Thus, we have
three equations (22), (30) and (32) for the variables ℧, Δ
and Π that can be solved in terms of the dimensionless
variables x2, x4 and x5, yielding

Δ ¼ 1

3x4G̃
½2mnx22ð6mn2ðwþ 1Þð3wþ 1Þx2ðwþ x5 þ 1Þ þ x3ðnx1ð3w2 þ ðwð3wþ 8Þ þ 1Þx5 þ 4wþ 1Þ

−6ðm − 1Þðn − 1Þðwþ 1Þð3wþ 1Þðwþ x5 þ 1ÞÞÞ�; ð33Þ

Π ¼ −
1

G̃
½ðwþ 1Þð3wþ 1Þx3x4ð2mn2ðwþ 1Þð3wþ 1Þx1x22 þ 3ðn − 1Þð3w2 þ 1Þx3x4ðwþ x5 þ 1ÞÞ�; ð34Þ

Ξ ¼ 1

G̃
½x3ð3ð3w2 þ 1Þx3x4ðwþ x5 þ 1Þð2mnðwþ 1Þð3wþ 1Þx2 − ðn − 1Þð3w2 þ 1Þx4x5Þ

þ x1ð2mnðwþ 1Þð3wþ 1Þx22ð2ðm − 1Þðwþ 1Þð3wþ 1Þx3 − nð3w2 þ 1Þx4x5Þ
þð3w2 þ 1Þx23x4ð3w2 þ ðwð3wþ 8Þ þ 1Þx5 þ 4wþ 1ÞÞÞ�; ð35Þ

℧ ¼ 1

G̃
½x23ð6mnðwþ 1Þð3wþ 1Þð3w2 þ 1Þx2x4ðwþ x5 þ 1Þ þ x1ð4ðm − 1Þmnðwþ 1Þ2ð3wþ 1Þ2x22

þ ð3w2 þ 1Þx3x4ð3w2 þ ðwð3wþ 8Þ þ 1Þx5 þ 4wþ 1ÞÞ�; ð36Þ

where for simplicity, we have defined the quantity

G̃≡ ðn − 1Þx3ð4ðm − 1Þmnðwþ 1Þ2ð3wþ 1Þ2x22 þ ð3w2 þ 1Þx3x4ððwð3wþ 8Þ þ 1Þx5 þ 3w2 þ 4wþ 1ÞÞ
− 4m2n3ðwþ 1Þ2ð3wþ 1Þ2x32: ð37Þ

Therefore, the dynamical system (24)–(27) is reduced to a 3 dimensional one, given by
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dx2
dN

¼ x2ðð1 − 3nÞx2 − x4ðx5 þ 1Þ þ 5Þ − 1

G
½3ð3w2 þ 1Þx4ðx5 þ wþ 1Þððn − 1Þð3w2 þ 1Þx4x5

− 2mnðwþ 1Þð3wþ 1Þx2Þ − x2ððn − 1Þx2 þ x4ðx5 þ 1Þ − 1Þð2mðwþ 1Þð3wþ 1Þf−nð3w2 þ 1Þx4x5
þ 2ðm − 1Þnðwþ 1Þð3wþ 1Þx2g þ nð3w2 þ 1Þx4fðwð3wþ 8Þ þ 1Þx5 þ 3w2 þ 4wþ 1gÞ�; ð38Þ

dx4
dN

¼ x4

�
−3nx2 þ x2 − x4 − x4x5 þ 5 −

ðwþ 1Þð3wþ 1Þ
G

f2mnðwþ 1Þð3wþ 1Þx2ððn − 1Þx2 þ x4ðx5 þ 1Þ − 1Þ

þ 3ðn − 1Þð3w2 þ 1Þx4ðx5 þ wþ 1Þg
�
; ð39Þ

dx5
dN

¼ 1þ 4wþ 3w2

G
½2mð3w2 þ 4wþ 1Þx2ð6mwþ 6mþ ðn − 1Þnx2 þ nx4 þ 6nwþ 5n − 6w − 6Þ

þ x4x25ð8mnwx2 − 3ðn − 1Þð3w2 þ 1ÞÞ þ 8mðn − 1Þnwx22 − 3x4ðn − 1Þð3w3 þ 3w2 þ wþ 1Þ
þ 2x2x4mnð3w2 þ 8wþ 1Þ þ 4mx2ð3mð3w2 þ 4wþ 1Þ þ nð9w2 þ 10wþ 3Þ − 3ð3w2 þ 4wþ 1ÞÞ�; ð40Þ

where again, for simplicity, we have defined the function

G≡ ðn − 1Þ½4ðm − 1Þmðwþ 1Þ2ð3wþ 1Þ2x2 þ ð3w2 þ 1Þx4ððwð3wþ 8Þ þ 1Þx5 þ 3w2 þ 4wþ 1Þ�
− 4m2nðwþ 1Þ2ð3wþ 1Þ2x2: ð41Þ

In the following, we will only focus on the dust case
(w ¼ 0). In this case, the structure of the phase space
consists of three critical points which are valid from a
physical point of view described in Table I. Our analysis
considered the requirement of the standard existence
conditions which implies that the critical points are located
in the real space, while the effective matter density para-
meter is non-negative and satisfies 0 ≤ Ωeff

m ≤ 1. The latter
requirement represents an extra condition [49] added to the
existence conditions due to the complexity of the phase
space, by generalizing the usual conditions considered in
the minimal coupling case. As can be observed from the
Table I, the structure of the phase space is sensitive to the
values of them and n parameters. Furthermore, the stability
criteria for each critical point is analyzed in detail by
determining the corresponding eigenvalues for each type of
solution, constraining the possible values of the m and n
parameters from a dynamical point of view. Due to the
high complexity of the corresponding eigenvalues for the

P2 and P3 critical points, the analysis relies on numerical
evaluations which are described in figures. Each critical
point has the following features:

(i) Point P1: The first critical point P1 represents a
solution dominated by the geometrical dark energy
component, with physical effects from the shape of
the energy momentum squared gravity functional
fðR;T2Þ and its variation with respect to the matter
energy momentum tensor T2. In this case the matter
density parameter Ωeff

m is equal to zero, correspond-
ing to an cosmological era dominated completely by
the geometrical dark energy component. This critical
point always exist, the only constraint come from the
requirement that the solution has a nonzero denom-
inator, e.g., resulting in: ðmþ 2Þn2 þ ð2m − 3Þn −
mþ 1 ≠ 0 and also 3mðnðnþ 2Þ − 1Þ þ 6n2−
9nþ 3 ≠ 0. Using the definition of the effective
equation of state in Eq. (29) one can find that at
this critical point, the dynamical features depends

TABLE I. The structure of the phase space for the fðR;T2Þ ¼ f0RnðT2Þm model. We have defined the following quantity:
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2ðnð49n − 78Þ þ 9Þ þ 4mðnð7nð8n − 19Þ þ 78Þ − 9Þ þ ðnð8n − 13Þ þ 3Þ2

p
.

Cr.P. x2 x4 x5

P1
mðnþ5Þþ4n−5

ðmþ2Þn2þð2m−3Þn−mþ1
0 −3mnðnþ2Þþ3mþnð11−7nÞ−3

3mðnðnþ2Þ−1Þþ6n2−9nþ3

P2
52m2n−12m2þ56mn2−52mnþ12mþ16n3−28n2þ13n−3þð1−2mÞτ

4n2ð2mþn−1Þð2mþ2n−1Þ
−3þmð6−26nÞþð13−8nÞnþτ

4n2 − 3þ6mð4m−3Þ−13nþ26mnþ8n2þτ
6ð2mþn−1Þð2mþ2n−1Þ

P3
52m2n−12m2þ56mn2−52mnþ12mþ16n3−28n2þ13n−3−ð1−2mÞτ

4n2ð2mþn−1Þð2mþ2n−1Þ
−3þmð6−26nÞþð13−8nÞn−τ

4n2
−26mnþ6mð3−4mÞ−8n2þ13n−3þτ

6ð2mþn−1Þð2mþ2n−1Þ
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heavily on the values the m, n parameters, consid-
ering also the Eq. (31):

weff ¼
−mn2 − 8mn −m − 6n2 þ 7nþ 1

3ðmn2 þ 2mn −mþ 2n2 − 3nþ 1Þ : ð42Þ

The stability of this solution is also affected by them
and n parameters, as can be seen from its corre-
sponding eigenvalues:

�
−3;−

mnþ 5mþ 4n − 5

mþ n − 1
;

2mn2 − 4mn − n2 þ 2n
mn2 þ 2mn −mþ 2n2 − 3nþ 1

�
: ð43Þ

The characterization of this critical point is dis-
played in the Fig. 1 where we have shown the
physical effects of them and n parameters, obtaining
some possible constraints which corresponds to the
stable case. The effective equation of state is
sensitive to the variation of the m and n constants
and the solution can manifest a large spectrum of
dynamical eras, starting from a superaccelerated
expansion to matter, stiff and superstiff cosmological
epochs. Due to the large spectrum of physical
epochs present, we have displayed in the right panel
of Fig. 1 the variation of the effective equation of
state only in regions which corresponds to intervals
of interest for modern cosmology. However, for
some values of the m and n parameters, this point
can represent either a superaccelerating late-time
attractor or a saddle matter dominated point.

(ii) Point P2: The second critical point P2 represents a
solution characterized by the physical effects com-
ing from the stress energy momentum coupling, the
shape of the functional f, and matter energy density.
In this case, the effective matter density is equal to

Ωeff
m ¼ −3þmð6 − 26nÞ þ ð13 − 8nÞnþ τ

4n2
; ð44Þ

showing a sensitivity to the values of the m and n
constants. Analyzing the stability criteria in this case,
the expression of the corresponding eigenvalues are
too cumbersome to be written in the manuscript.
Hence, we shall analyze the physical implications of
the P2 solution by relying only on numerical evalu-
ations. The numerical description of the second
critical point is shown in Fig. 2 where it can be seen
that this critical point represents an epoch character-
ized by an accelerated or superaccelerated expansion.
Note that in this case we have taken into account the
standard existence condition for the effective matter
density parameter which implies 0 ≤ Ωeff

m ≤ 1.
Hence, depending on the values of the m and n
parameters, we can obtain a stable solution charac-
terized by an accelerated expansion, in agreement
with the current evolution of the known Universe.

(iii) Point P3: If we take into account the standard
existence conditions, then the last critical point P3

represents a solution which is characterized by a
decelerated expansion of the Universe. As in the
previous case, the expressions of the corresponding
eigenvalues are too complex tobewrittenhere.Hence,
in our analysis we rely only on numerical evaluations,
determining the dynamical behavior in some limited
regions. From the stability analysis, we have observed
that this particular solution cannot be stable or pure
unstable, and corresponds to a saddle dynamical
behavior. Taking into account the existence condi-
tions, we have displayed in Fig. 3 the variation of the
effective equation of state in this case for a limited
region in the m − n space. This solution corresponds
to an epoch with a decelerated expansion, the evolu-
tion of the universe is highly sensitive to the values of
the m and n parameters. Hence, this solution can
explain the dust and radiation cosmological epochs in

–15 –10 –5 0 5 10 15
–10

–5

0

5

10

n
(a) (b)

–15 –10 –5 0 5 10 15
n

m

–10

–5

0

5

10

m

weff

–2

–1

0

1

2

FIG. 1. (a) The regions where the critical point P1 is stable; (the white regions corresponds to saddle dynamical behavior) (b) The
variation of the effective equation of state for the P1 solution; (the white regions corresponds to an interval larger than ½−2;þ2�).
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the evolution of the Universe. We have observed that
for some regions the effective matter density param-
eter can be very close to zero and the effective
equation of state can mimic a radiation behavior
closely in spite of the absence of the radiation fluid.
The phase space analysis at infinity is performed in

the AppendixA 1, wherewe show that at infinity only
some of the critical points are physically viable due to
the divergences of the effective equation of state.

Finally for this model we can note that the fðR;T2Þ ¼
f0RnðT2Þm gravity type represents an interesting cosmo-
logical model whose viability is very sensitive to the values
of them and n parameters. From a dynamical analysis it can
recover the accelerated expansion era and can solve the
dark energy problem without introducing a cosmological
constant Λ. Moreover, depending on the values of m and n
parameters this model can recover the matter dominated
epoch and act towards a stiff fluid solution. As an example,
Fig. 4 shows a model for the specific case where m ¼ 2

and n ¼ 1.0001, which gives fðR;T2Þ ¼ f0R1.0001ðT2Þ2.

This figure depicts the evolution of the effective equation of
state for this model. One can notice that this case roughly
describes the main epochs of our Universe, starting from a
radiation dominated era with weff ¼ 1=3, the passing to a
matter dominated era with weff ¼ 0 for a small interval,
then facing an accelerating behavior to finalizing in a
superaccelerating era, the attractor of the corresponding
model. As can be noted, the first model curiously exhibits
the crossing of the phantom divide line boundary.

B. Case 2: f ðR;T2Þ=αRn + βðT2Þm
In this section we will analyze another power-law model

considering two power-law terms, the first one coming
from the curvature scalar and the second one from the
squared of the energy momentum tensor, implicitly given
by fðR;T2Þ ¼ αRn þ βðT2Þm where α, β, m and n are
constants. We will further assume that m ≠ 0, n ≠ 0 and
n ≠ 1. For this model, it is possible to find that the
dimensionless variable x2 is related to the others ones,
namely
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m

n
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FIG. 3. The variation of the effective equation of state in a
limited region in the case of P3 critical point.
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FIG. 4. The evolution of the effective equation of state for the
model fðR;T2Þ ¼ f0R1.0001ðT2Þ2.
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FIG. 2. (a) The figure shows the regions where the standard existence condition associated to the P2 critical point is satisfied (red); the
stable intervals which includes the existence regions (magenta) (b) The limited regions corresponding to the acceleration intervals where
weff < −1=3.
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x2 ¼
ð3w2 þ 1Þx4x5

2mð3w2 þ 4wþ 1Þ þ
x3
n
: ð45Þ

Using this equation, one can straightforwardly find from (21) and (22) that the auxiliary variables become

Π ¼ −
3ð3w2 þ 4wþ 1Þx4ðx5 þ wþ 1Þ

ðmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx5 þ 3w2 þ 4wþ 1
; ð46Þ

Δ ¼ −
2ðm − 1Þx5ðx5 þ wþ 1Þ

x4ððmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx5 þ 3w2 þ 4wþ 1Þ ; ð47Þ

Γ ¼ −
x4ðð4mð3w2 þ 4wþ 1Þ þ 3w2 þ 1Þx5 þ 2mð9w3 þ 18w2 þ 11wþ 2ÞÞ

2mð3w2 þ 4wþ 1Þ −
ðnþ 1Þx3

n
þ 3; ð48Þ

℧ ¼ 1

2
x3

�ðmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx4x5
mðn − 1Þð3w2 þ 4wþ 1Þ þ 2x3

n
þ 2x4
n − 1

−
2

n − 1

�
: ð49Þ

Hence, the dynamical system is closed and becomes a 3-dimensional one. From (25)–(27), one gets that the final form of the
dynamical system for this model becomes

dx3
dN

¼ x3

�
x4

n − 1

�ðmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx5
2mð3w2 þ 4wþ 1Þ þ 1

�
þ x3

n
þ 1

1 − n
− 2x3 þ 4

�
; ð50Þ

dx4
dN

¼ x4

� ð3w2 þ 1Þx4x5
2mð3w2 þ 4wþ 1Þ −

3ð3w2 þ 4wþ 1Þðx5 þ wþ 1Þ
ðmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx5 þ 3w2 þ 4wþ 1

þ x3
n
− 3x3 − x4ð1þ x5Þ

�
þ 5x4;

ð51Þ

dx5
dN

¼ −
3ð2m − 1Þðwþ 1Þð3wþ 1Þx5ðx5 þ wþ 1Þ

ðmð6w2 þ 8wþ 2Þ − 3w2 − 1Þx5 þ 3w2 þ 4wþ 1
: ð52Þ

This dynamical system contains eight critical points, but
only seven satisfy the condition 1 ≤ x4 ¼ Ωeff

m ≤ 0. We will
now concentrate in the dust case (w ¼ 0). These critical
points contain different types of cosmological scenarios
depending on the parameters m and n. The values of these
critical points among with their effective state parameter
and their acceleration conditions are displayed in Table II.
In Table III is displayed the stability criteria for each point.

Let us first describe the main properties of the critical points
to then analyse them one by one. The first four critical
points P1;…; P4 are points which are governed by the
geometrical dark energy components coming from
fðR;T2Þ gravity. The origin of the phase space, the critical
point P1, represents a radiation era and depending on the
parameters can describe a saddle point. Moreover, the
critical points P2 and P7 also represent a radiation

TABLE II. Critical points, existence condition, effective state parameter and acceleration for the fðR;T2Þ ¼ αRn þ βðT2Þm model
considering a dust matter w ¼ 0.

Cr.P. x3 x4 x5 Existence weff Acceleration

P1 0 0 0 Always 1=3 Never
P2 0 0 −1 Always 1=3 Never
P3

nð4n−5Þ
2n2−3nþ1

0 0 Always −6n2þ7nþ1
6n2−9nþ3

2nþ ffiffiffi
3

p
< 1 ∨ 1

2
< n < 1 ∨ 2n >

ffiffiffi
3

p þ 1

P4
nð4n−5Þ
2n2−3nþ1

0 −1 Always −6n2þ7nþ1
6n2−9nþ3

2nþ ffiffiffi
3

p
< 1 ∨ 1

2
< n < 1 ∨ 2n >

ffiffiffi
3

p þ 1

P5
4n−3
2n

−8n2þ13n−3
2n2

0 13−
ffiffiffiffi
73

p
16

≤ n ≤ 3
10
∨ 1 ≤ n ≤ 13þ ffiffiffiffi

73
p
16

1
n − 1 Never

P6 2 − 2mðn−2Þ
n

−1 0 ≤ − 2mðn−2Þ
n ≤ 1 −1 Always

P7 0 10m −1 0 ≤ m ≤ 1
10

1=3 Never
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dominated era since their effective state parameter is equal
to 1=3. Depending on the parameters, these points can have
different stability properties, but there is a family of
parameters for m and n which ensures that all these three
critical points which represent a radiation dominated era are
either saddle points or unstable points. The critical points
P3 and P4 are purely geometric terms and exhibit similar
cosmological behaviors, which can represent acceleration
or not depending on the parameters. These points can
represent a matter dominated era. The critical point P6

always represent an accelerating scenario with a de Sitter
expansion, behaving as a cosmological constant. Each
point can be summarized as follows

(i) Point P1: The origin of the phase space exists for any
values of the parameters m and n and always
represents a radiation era. Since weff ¼ 1=3, there
is no acceleration for this critical point. This point
can be either a saddle point or unstable.

(ii) Point P2: This point corresponds to a universe
governed only by the T2 term and represents a
radiation era with no acceleration. Its behavior is
similar to the point P1 and it also cannot be stable
and always exists.

(iii) Point P3: This critical point represents a universe
fully governed by the curvature term and depending
on the parameter n, can describe different eras and
also different stability properties. For example, it can
describe an attractor accelerating cosmological sol-
ution for m>1=2∧ ð1

2
<n<1∨2n≥

ffiffiffi
3

p þ1∨2nþffiffiffi
3

p
≤1Þ or can describe a saddle matter (dust)

dominated era if ð12nþ ffiffiffiffiffi
73

p ¼7∧m< 1
2
Þ∨ ð12n¼ffiffiffiffiffi

73
p þ7∧m≠ 1

2
Þ. In addition, for 1

2
< n < 1 ∨

n > 2 can describe a superaccelerating universe
since _H ¼ H2ðx3 − 2Þ > 0. These solutions are
also sometimes dubbed as “crossing the phantom
divide line.” Moreover, when one adds the extra
condition that m > 1

2
, this superaccelerating solu-

tion is stable. However, this point cannot represent
inflation since it is not possible to find a combi-
nation of m, n such that one gets an early accel-
erating repeller.

(iv) Point P4: This critical point has similar properties as
P3, i.e., it can describe accelerating solutions being
stable or can describe a matter dominated era being a
saddle point, or even can describe superaccelerating
solutions depending on the parameters m and n. The
difference of this critical point with respect to P3 is
that P4 does not represent a universe only governed
by a curvature term since a contribution from the T2

is present.
(v) Point P5: This critical point can be either stable or a

saddle point and can represent a nondust matter
dominated era with weff > 0 for 0 < m < 1

2
∧

4m
2mþ1

≤ n < 1. Then, it follows that can alsoTA
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represent a (saddle/stable) stiff matter era when
0 < m ≤ 1

6
∧ n ¼ 1

2
. It cannot represent a standard

dust matter dominated era since we already assumed
that n ≠ 1. Due to the condition 0 ≤ Ωeff

m ≤ 1, this
point cannot represent accelerating solutions either.

(vi) Point P6: This critical point represents a de Sitter
accelerating solution since weff ¼ −1. For different
set of family of values of ðm; nÞ, it can represent a
late-time accelerating attractor.

(vii) Point P7: This critical point corresponds to a
radiation era that can be either stable or saddle
depending on the parameters.

The left panel of Fig. 5 shows the regions where the critical
points P3;…; P7 are stable (or spiral stable) where one can
see that there is some overlapping regions where different
points are stable, but there it is not possible that all of them
can be stable. The right panel of Fig. 5 shows the regions
where the critical points P3, P4 and P6 are stable are
representing accelerating solutions. Thus, this model can
reproduce different cosmological eras. For example, it can
describe dark energy without a cosmological constant, or a
superaccelerating era, or even a stiff dominated era.

Since the phase space is noncompact for this model, one
also needs to check if the critical points at infinity are
physical or not. See Appendix A 2 for more details about
the method used for this. One can see that there are six
critical points at infinity, but four of them have a divergent
weff , hence, they are not physical. The other two critical
points represent a radiation era that cannot be stable. As a
numerical example, the Fig. 6 shows the evolution of the
effective state parameter for the model fðR;T2Þ ¼ αR2 þ
βðT2Þ2 which corresponds to m ¼ n ¼ 2. This model
exhibits the three main eras of the Universe, starting form
a saddle point with weff ¼ 1=3, then a matter era with
weff ¼ 0, finalizing with a late-time de Sitter behavior.

IV. CONCLUSIONS

In this paper we have studied the dynamical features of a
recent model of modified gravity theory which is known as
the energy-momentum squared gravity model fðR;T2Þ.
In this model R represents the scalar curvature and T2 the
square of the energy-momentum tensor defined as T2 ¼
TμνTμν. After obtaining the field equations we then con-
centrated in the study of its cosmology for the standard flat
FLRW spacetime. Then, we have analyzed the physical
implications of such a modified gravity theory by employ-
ing the linear stability method for two specific fðR;T2Þ
functions. The first scenario studied is represented by a
model which takes into account a direct product between
the scalar curvature R and the energy momentum squared
T2 at different real powers n andm, with the corresponding
gravity function defined as fðR;T2Þ ¼ f0RnðT2Þm. In this
representation we have assumed that f0, m and n are
constant parameters. By introducing the dimensionless
variables we have been able to represent the dynamics
of such a modified gravity theory in flat FLRW as an
autonomous system, determining the associated critical
points and the corresponding stability properties. In this
specific case we have observed that the phase space has a
reduced complexity, with a high sensitivity to the values of
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the m and n parameters. As seen in the analysis, this
specific case can recover different cosmological epochs,
depending on the physical properties of the critical points
obtained.
The first critical point is a general critical point which can

recover any cosmological era, staring from an accelerated
expansion tomatter and radiation behavior, stiff or superstiff
behavior, depending on the values of them, n constants. The
second critical point is associated to an accelerated expan-
sion, the effective matter density and total equation of state
showing a high dependence on the values of the m, n
constants. In this case, we have determined in the figures
provided specific constraints to the values of the m, n
constants due to the physical existence conditions and
dynamical features. Finally, the third critical point represents
a cosmological epoch characterized by a decelerated expan-
sion, an era of a limited interest in the present cosmology.
The second cosmological scenario analyzed corresponds

to a different mathematical model of the energy-momentum
squared gravity model fðR;T2Þ which takes into account
the following decomposition fðR;T2Þ ¼ αRn þ βðT2Þm.
In this case the parameters α, β, m and n are assumed
to be constants. This scenario shows a higher complexity of
the phase space features, with various epochs correspond-
ing to radiation, matter-dominated, de Sitter, and solutions
having accelerating or superaccelerating expansions. As
noted in the manuscript, in the second cosmological
scenario the values of the m, n parameters dictate the
phase space features and the corresponding dynamical
properties associated. Furthermore, in our analysis we have
obtained different numerical or relational constraints to the
values of the m and n due to the existence conditions and
physical features of the critical points corresponding to the
second cosmological scenario.
The energy-momentum squared gravity theory fðR;T2Þ

represents a recent proposal which takes into account the
embeddedness of the energy-momentum squared scalar
T2 ¼ TμνTμν and have been studied using different
approaches [39,41,42,44,45]. Our study is based on the
linear stability method and represents a complementary
analysis of the energy-momentum squared gravity theory by
investigating the phase space features and the stability
properties of the critical points, associated to various
cosmological epochs. The analysis presented here showed
that the energy-momentum squared gravity theory repre-
sents an interesting modified gravity model which can
explain the current evolution of the Universe and the
emergence of the accelerated expansion as a geometrical
physical effect, a viable solution to the dark energy problem.
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APPENDIX: CRITICAL POINTS AT INFINITY

When a phase space is not compact, one needs to study if
there are critical points at infinity. To do this, one can use
the method available in [33,50,51] by introducing com-
pactified Poincaré variables. We follow this approach for
the two models studied in this paper. For a 3-dimensional
dynamical system with dimensionless variables x, y and z,
one can use the following Poincaré variables to compactify
the phase space:

X ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; Y ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; Z ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ;

ðA1Þ

where r2 ¼ x2 þ y2 þ z2 and then define ρ ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
,

so that ρ2 ¼ X2 þ Y2 þ Z2. In these coordinates, the
dynamics at infinity is recovered when ρ → 1. It is then
simpler to further introduce spherical coordinates

X ¼ ρ cosψ sin θ; Y ¼ ρ sin θ sinψ ; Z ¼ ρ cos θ;

ðA2Þ
where 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ 1 and 0 ≤ ψ ≤ π.

1. Case 1: f ðR;T2Þ= f 0RnðT2Þm
Following (A1) and (A2), for this model one has to

replace x ¼ x2, y ¼ x4 and z ¼ x5. In this case after the
transformation of the dynamical equations (24)–(27) using
the compactified Poincaré variables, we shall consider
further the spherical coordinate system at infinity. Due
to the high complexity of the dynamical equations before
attempting to perform the limits at infinity one needs to
choose specific values for the m and n parameters. In the
case where m ¼ 3 and n ¼ 2 we obtain the following
relations at infinity in the leading terms:

ð1 − ρ2Þρ0 → 0; ðA3Þ

ð1 − ρ2Þθ0 → − sin2ðθÞ cos2ðθÞ sinðψÞð5 cosð2ψÞ þ 6Þ;
ðA4Þ

ð1 − ρ2Þψ 0 → 5 sinð2θÞ sin2ðψÞ cosðψÞ; ðA5Þ

showing that for this specific model the angular part is
decoupled. At infinity the critical points are obtained by
determining the angularity of the dynamical system in the
case where the right-hand side of the evolution relations in
the limit ρ → 1 reduces to zero. In this case we have
obtained the following critical points in the Poincaré
variables ðX2; X4; X5Þ for the general case:
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P�1;2;3
∞ ¼ fð0; 0;�1Þ; ð� cosψ ;� sinψ ; 0Þ;

ð� sin θ; 0; cos θÞg: ðA6Þ

The first two critical points at infinity, P�1
∞ represent a

radiation dominated epoch with a zero effective matter
density parameter. The second solution at infinity, P�2

∞ does
not present viable cosmological features at infinity for
different values of ψ due to the divergence of either the total
equation of state or the effective matter density parameter.
However, the last critical points P�3

∞ in the case where
θ ¼ 0 reduces to the first critical points, P�1

∞ where the
geometrical dark energy component dominates and mimics
a radiation era.

2. Case 2: f ðR;T2Þ=αRn + βðT2Þm
Following (A1) and (A2), for this model one has that

x ¼ x3, y ¼ x4 and z ¼ x5. By transforming the dynamical
system (50)–(52) into Poincaré variables, one gets that at
the limit ρ → 1 (infinity), the dynamical system for the
leading terms becomes

ρ0→
ð2m−1Þsin3θcosθsinψðncosð2ψÞ−nþ2Þ

4mðn−1Þ ;

ðA7Þ

ð1−ρ2Þθ0→ ð2m−1Þsin2θcos2θsinψðncosð2ψÞ−nþ2Þ
4mðn−1Þ ;

ðA8Þ

ð1 − ρ2Þψ 0 →
ð1 − 2mÞn sinð2θÞ sin2 ψ cosψ

4mðn − 1Þ ; ðA9Þ

where primes denote differentiation with respect to
N ¼ loga. One can notice that the angular part decouples.
If one sets the right-hand side of these equations equal to
zero, one finds three sets of critical points in Poincaré
variables ðX3; X4; X5Þ, namely,

P∞;�1 ¼ f0; 0;�1g;
P∞;�2 ¼ f� sin θ; 0; cos θg;
P∞;�3 ¼ f� cosψ ;� sinψ ; 0g: ðA10Þ

Since 0≤x4≤1, one has that 0≤ð1−ρ2Þ−1=2ρsinθsinψ≤1,
and then all these critical points are in the phase space.
From (29) one can see that the effective state parameter in
the Poincaré variables is

weff ¼ −1 −
2

3

 
X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − X2
3 − X2

4 − X2
5

q − 2

!
: ðA11Þ

This quantity is divergent for P∞;�2 and P∞;�3, hence,
these critical points at infinity are nonphysical unless θ ¼ 0
and ψ ¼ π=2 for P∞;�2 and P∞;�3, respectively. However,
for this special choice, the Jacobian of the transformation
also diverges. Then, one can conclude that only the critical
points P∞;�1 are physical. For these critical points, the
effective state parameter is equal to 1=3 which represents a
radiation era. By going back to the dynamical system for
the Poincaré variables, one gets that the eigenvalues
evaluated at P∞;�1 are�

6;
16m − 11

2m − 1
;
7n − 8

n − 1

�
: ðA12Þ

Then, P∞;�1 cannot be stable, it is unstable if
ðn < 1 ∨ n > 8

7
Þ ∧ ðm< 1

2
∨m> 11

16
Þ and saddle otherwise.
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