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Abstract
A simulation framework that implements adaptive agent–agent interaction is developed, such that agent behaviour typi-
cal of complex adaptive systems is observed. Within this framework, agents monitor the state of the system they inhabit, 
and adapt their actions so as to optimise a local utility. No central control is present. The context for state is intended 
to be very general, but is interpreted as risk state, in which optimisation implies a minimisation of risk. Three adaptive 
interaction modes are proposed. In each, there is a trade-off between simplicity and effectiveness. Additionally a fourth 
‘counter-adaptive’ mode is proposed to model situations of a prolonged high risk state. Corresponding ‘real’ examples 
from recent events are proposed.

Keywords  Beta distribution · Consensus · Adaptive · Risk · Convergence · Simulation · Game theory · Dynamical system · 
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JEL Classification  C15 · C51 · G32

1  Introduction

In the previous work [11], simulations of consensus and 
conflict were derived directly from principles of complex-
ity. The agent interaction model used in that study did 
not incorporate an element of adaptability since at each 
agent–agent interaction; there was no formal decision-
making process and no monitoring of other agents. That 
work is now continued so that agent–agent interactions 
are amended in a way that allows those agents to adapt 
and amend their behaviour. The original context in Mitic 
[11] was one of the differences in sentiment with respect 
to an issue. That context is now widened to refer to the 
state of a system, measured on a continuous scale in the 
range (0,1). In particular, state may be interpreted as risk 
state, especially in the context of financial risk. A risk state 
with value at or near zero is interpreted as risk free, and 
a risk state with value at or near one indicates maximum 

risk. Therefore, within the context of risk, the new elements 
introduced in order to simulate an adaptive system are:

1.	 An assessment by agents of the risk state of the sys-
tem.

2.	 A predictive measure of an optimal way to achieve a 
target risk state.

3.	 An attempt to reduce risk by mutual agreement.

Using those elements, a complex adaptive system (CAS) 
may be thought of as ’many agents working in parallel to 
accomplish a goal’.

The agents in this analysis are capable of only benign 
interaction. In an interaction between two agents, one can 
influence the risk state of the other, who is able to resist 
that influence. Both influence and resistance are purely 
mechanical. There is no concept of reasoning, planning 
or wanting an individual goal as in the BDI model of Brat-
man ([1]).

 *  Peter Mitic, p.mitic@ucl.ac.uk | 1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, 
UK. 2Laboratoire d’Excellence sur la Régulation Financière (LabEx ReFi), Paris, France.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1724-5&domain=pdf
http://orcid.org/0000-0002-9845-4435


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1743 | https://doi.org/10.1007/s42452-019-1724-5

1.1 � Structure of this paper

The previous work on CASs has concentrated on particu-
lar modelling concepts, and consequent behaviour typi-
cal of complex systems (principally emergent behaviour) 
has been noted. Some of those approaches are discussed 
in Sect.  2. The adaptive framework presented here is 
intended to be more general in that the only assumptions 
concern the mechanics of how agents interact. The con-
text is totally abstract and is technically irrelevant to the 
discussion. This generality is the major contribution of this 
paper. However, the context of risk helps to make the dis-
cussion easier to grasp. The bases of agent structure and 
agent–agent interactions are summarised in Sect. 3. The 
section that follows (4) gives details of three modes with 
which to implement an adaptive property for agent–agent 
interactions, and also one ‘counter-adaptive’ mode. Some 
results of applying those modes are presented in Sect. 5. 
Section 6.1 has details of instances where the models in 
this paper may be applied to financial or economic events.

2 � Previous work on complex adaptive 
systems

In this section, we summarise prior research on CASs, 
including closely related work on discrete dynamical sys-
tems, Markov, Chaos and Game Theory models.

Work on CASs has been proceeding in earnest from the 
early 1990s onwards. The elements within a complex sys-
tem are summarised in Rzevski and Skobelev [13]. Brown-
lee [2] gives an account of the beginnings of research into 
the topic, including the contributions of Holland and Gell-
Mann. Holland in

Holland [8] extends those ideas to cover the points 
that are most relevant to an adaptive complex system, 
namely performance assessment and rule-definition. The 
way to approach those points is not unique, but the prin-
cipal features include the ideas of a replacement rule. In 
any agent–agent interaction within a multi-step process, 
a subset of the system is replaced by a successor subset 
that results from an optimising calculation.

2.1 � Discrete dynamical systems

The class of discrete dynamical systems comprises spatial 
models, characterised by neighbourhood dependence. 
Agent interactions take place among agents that are ‘near’ 
to one another, as measured by some metric. Many such 
CAS models use cellular automata in which a neighbour-
hood is often defined within a grid, and the effect of an 

interaction is to replace one or more agents by newly cre-
ated agents. The governing replacement rules are well-
defined and are usually rigid. Wolfram [14] made an early 
link between cellular automata and complexity in a gen-
eral overview of cellular automata. The general principle 
of the use of replacement rules in this context is that a 
function R removes an agent, Xt , that is within the system 
at time t by a different agent Xt+1 at the time step t → t + 1 . 
The replacement involves a set of J agents {Yj}j∈J that have 
an immediate connection with Xt . The replacement may 
be expressed as:

Xt+1 = R(Xt , {Yj}j∈J)

Wolfram shows how simple replacement rules result in 
emergent behaviour. The basic cellular automata model 
has immutable rules, which result in non-adaptive behav-
iour. In addition, there is no predictive element. To make 
it adaptive, the model can be extended to a more general 
case in which the network topology is variable. The system 
configuration at any given time is a function of states of 
the nodes and the topology of the network. In the context 
of discrete dynamical systems, rule-definition is defined 
by the network topology, and performance assessment is 
defined by the calculations for the rewrite events.

2.2 � Markov models

Markov processes rely on probabilities of a change of state. 
A simple example may be found in Holland [7]. Kiefer and 
Larson [9] provide a more algebraic treatment in the con-
text of credit default. The basis of a Markov model is a 
discrete set of states, with a probability of transition from 
one state to another. Again, there is no predictive element. 
With J states, denote the probability that an agent coun-
terparty X is in state j (0 ≤ j ≤ J) at time t by P(Xt = j) . Let 
the conditional probability of a transition at time t from 
state j to state k (0 ≤ k ≤ J) be pjk = P(Xt = k|Xt = j) . 
Then, the probabilities pjk define a transition matrix P. 
When all possible states at time t for the Markov process 
are organised in a vector St , the probabilistic evolution of 
the Markov process can be represented by the equation

St+1 = PSt.

This recurrence relation leads to an explicit expression 
for St in terms of an initial vector S0:

St = P
tS0.

Such an equation, which defines a future state explicitly 
in terms of an initial state, is fundamental to Markov pro-
cesses. The difficulty in usage is to determine the elements 
of the transition matrix P.
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2.3 � Game theory models

Game theory can be thought of as the study of strategic 
decision-making and has many clear parallels with adap-
tive complex systems, albeit using alternative terminology. 
An overview of the history and taxonomy used in game 
theory may be found in Farooqui and Niazi [5]. Games have 
four distinct components:

•	 Players (agents in complex systems)
•	 Actions available at each interaction point (rules gov-

erning interactions)
•	 Pay-offs (utilities that minimise loss or maximise gain)
•	 Information about the system or parts of it at each inter-

action

In each agent–agent interaction, the agents try to ‘second 
guess’ what their opponent will do, and choose a strategy 
accordingly. That is the predictive element. The aim is to 
achieve equilibrium. The result is a dynamic environment 
which often displays nonlinear effects.

Several representations for games are in common use, 
the most common being Normal form. For Normal form, 
the pay-off is specified by any function that associates a 
pay-off for each player with every possible combination of 
actions. Thus, for two agents X and Y, if there are K availa-
ble strategies {c1, c2,… , cK} , and X chooses first and takes 
strategy i, leaving Y to choose second and taking strategy 
j (0 ≤ i, j ≤ K ) , then the corresponding pay-off is entered 
into the ith row and the jth column of a matrix M as a pair 
of functions {mX

i
,mY

j
} . Very often these two functions are 

constants. The Normal form representation can become 
very cumbersome if the set of available pay-offs is large, 
and also if there are more than two agents in an interac-
tion. Usually, only two agents interact in the context of 
complex systems. The essential requirement of a pay-off 
function ensures that the system is adaptive, but emergent 
behaviour is not always clear and is usually not considered 
explicitly.

2.4 � Chaos models

Chaos theory originates from work by Lorenz [10], and 
refers to unpredictable behaviour in a deterministic (rules-
driven) system.

An account of the mathematical basis of chaos theory 
may be found in Ghen and Moiola [6]. Consider a set of 
states at time t, S(t) = {Ŝ1, Ŝ2,… , Ŝn|t} , with a transforma-
tion T that acts on those states:

Ŝ(t + 1) = T(Ŝ(t)).

Although an individual path {Ŝ(1), Ŝ(2),…} may be non-
deterministic, that path is often bounded. The adaptive 
modes in Sect. 3 of this paper also have the same prop-
erty. Chaotic systems thus defined exhibit emergence and 
adaptivity, both depending on rules specified by T. Cha-
otic systems can be considered as a superset of complex 
systems because an important component of the latter is 
self-organisation: individual agents cooperate to achieve 
a goal. However, a characteristic of chaotic systems is that 
small differences in initial conditions can produce widely 
diverging outcomes. This does not necessarily happen 
in complex systems due to moderation by other agents. 
Chaotic systems do not distinguish between a state, and 
an agent that has a property state. Neither do they have a 
predictive element.

3 � Adaptive agent interaction

In this section, we describe four agent interaction modes 
within the mathematical framework for complexity 
described in Mitic [11]. All of them extend the concepts 
introduced in that paper since they incorporate the idea 
that agents can adapt their behaviour so as to achieve 
particular goals. Our approach is consistent with the idea 
of replacement that was mentioned in Sect. 2: Agents are 
replaced by amended versions of those agents. This sec-
tion also contains a discussion of convergence of the state 
of a group of agents, and includes a convergence proof.

We call the first mode passive adaptive (PA) interaction: 
The outcome of such an interaction is a pair of agents that 
passively accept the average pre-interaction state. We call 
the second mode weakly active adaptive (WAA​) interaction: 
agents in a group interact actively so as to revert to the 
mean state of the group. In the third mode, strongly active 
adaptive, (SAA), active interaction is more general: agents 
aim towards a particular goal. Both active interaction 
modes incorporate the idea that agents within a system 
monitor the system, and adapt their behaviour by calculat-
ing how best to achieve their goal. Additionally a fourth 
mode is proposed that incorporates an element that acts 
in the opposite direction. We call it Counter Adaptive (CA). 
It is used to model situations where opposing parties can-
not or will not compromise. Before describing each, we 
summarise the base complexity model.

3.1 � Comparison with other models

The three adaptive models proposed in this paper differ 
from the models summarised in Sect. 2 in the following 
ways:
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•	 They do not rely on a topology (such as a network, 
neighbourhood, etc.) of the system.

•	 Their time evolution depends purely on rules govern-
ing agent-pair interactions.

•	 They are not subject to any system control.

These points result in complex behaviour, and with 
the goal-seeking features proposed, that behaviour is 
adaptive.

3.2 � Agents and agent interaction: summary

A shortened version of the underlying complexity frame-
work appears in Mitic [12]. Its key points are summarised 
here. An agent X has a state ŜX in the range (0,1), and the 
agent itself is modelled using a Beta function �(a, b) , 
where the Beta parameters a and b are in the range (1,999). 
Those parameters define the agent’s resistance to change 
and its state.

3.2.1 � Definitions

Formally, an agent X is a triple as in Eq. 1, where I ∈ (0, 1) 
specifies the influence of an agent (on another agent), and 
N is an alphanumeric term that holds a name for X.

When referring to X’s Beta distribution only, we write 
X ∼ �(a, b) . Similarly, when referring to X’s Beta distribu-
tion with its influence parameter, we write X ∼ (�(a, b), I) . 
The state of an agent X is denoted by ŜX , or by ŜX (t) in cases 
where time dependence is required. State is given by the 
expected value of X’s Beta distribution:

3.2.2 � Agent interaction

The result of an interaction between agents X and Y is 
another agent X∗ who replaces X and is termed the result-
ant of the interaction. Agent Y remains unchanged. The 
interaction is denoted by

The details involve multiple calculations using the a-val-
ues, b-values and I-values for X and Y. See the full expla-
nation in Mitic [11]. Note that the brace operator is not 
symmetric: ⟨X , Y⟩ ≠ ⟨Y , X⟩.

That interaction mode is non-adaptive. In the interac-
tion models that follow the base interaction mode will 
be extended to incorporate increasingly complicated 

(1)X = {�(a, b), I,N}

(2)ŜX =
a

a + b
; X ∼ 𝛽(a, b).

(3)X∗ = ⟨X , Y⟩.

adaptive components in order to fulfil different require-
ments. In general, adaptive interactions will be denoted 
by double braces. For example, Z = ⟨⟨X , Y �M⟩⟩ , where M 
is one of the three adaptive modes PA, WAA​ or SAA. The 
notation should be interpreted as ’X and Y interact using 
adaptive mode M to produce resultant Z’. Z may be either 
a single agent, or a pair of agents, depending on the mode 
used. An alternative adaptive mode was hinted at in Wolf-
ram [14], and it most closely resembles the SAA mode in 
that it involves a target state.

3.2.3 � State transition

An important general point arises in the context of state 
transformation. In order to transform the state of an agent 
X with Beta parameters (a, b) to an agent X∗ with target 
state s, a new agent is defined with new Beta parameters 
(ā, b̄) = (a, a(

1

s
− 1)) . The influence parameter I is passed 

to the new agent unchanged. Thus:

The proof in Sect. 3.3 applies for all three modes. It shows 
that, given a target state (which may have to be measured 
empirically), convergence is guaranteed. The proof needs 
the concept of a group agent—a single agent that repre-
sents a set of agents. Therefore, the proof will be deferred 
until after a discussion of group agent in 3.2.4.

3.2.4 � Group agent

In a multi-agent system, we can consider that those agents 
behave collectively as though they were a single agent. 
More specifically, a combination of the states of individual 
agents can be combined into a single state that represents 
them all.

A group agent, (sometimes shortened to Group) Gn , is 
nothing more than a set of n agents:

Gn = {X1, X2,… , Xn}.

The state of group Gn requires a calculation of a′ , b′ , 
and I′ , which are, respectively, the mean of the a-values, 
b-values and I-values for the agents in Gn . Therefore, if an 
agent Xi has parameters ai , bi and Ii,

(4)
ŜX∗ =

a

a
(

1

s
− 1

) =
s

1 − s
; s ∈ (0, 1)

(5)

a� =

∑n

i=1
ai

n

b� =

∑n

i=1
bi

n

I� =

∑n

i=1
Ii

n
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To complete the characterisation of a group agent, the 
name of the group agent can be set independently of the 
names of the members of the group agent. Alternatively, 
it can be derived from the names of those members, 
although naively combining names can become cumber-
some very quickly! Supposing that the name of Gn is NG , 
the terms in Eq. 5 define the group agent as in Eq. 6.

3.3 � State change: convergence proof

This proof concerns a group of agents G who interact mul-
tiple times and thereby influence each others states. We 
show that the state of all agents converges to the state of 
the group.

First, we consider a single adaptive interaction for interac-
tion mode M, which can be any of the three modes defined 
in Sect. 3. The agent interaction results in two new agents 
X ′ and Y ′:

The proof is in two parts. The first deals with convergence 
of the state of a single agent to a target (Sect. 3.3.1). Sec-
tion 3.3.2 extends the proof to many agents.

3.3.1 � Convergence of the state of a single agent

Assume that a target state s has been specified or calcu-
lated. Next, extend the notation for state to incorporate a 
time dependency: let ŜX (t) be the state of X at time t. Further, 
assume that the initial state ŜX (0) is a known constant. Then, 
by construction

where �1 is a normally distributed random variable error 
term with mean 0 and variance �2

1
 (so we write �1 ∼ N(0, �2

1
 ).

Therefore, rewriting Eq. 8 as an equality with �1 ∈ (0, 1) , 
we obtain:

After n successive similar interactions which introduce sim-
ilar size numbers �2, �3,… , �n and error terms with means 
0 and variances �2, �3,… , �n to derive:

where �[n] =
∏n

i=1
�i (which implies that �[n] ∈ (0, 1) ), and 

�n is also a normally distributed random error term with 
mean 0 and a variance �2 , which is a linear function of �i , 
i.e. �n ∼ N(0,�2).

(6)Gn = {�(a�, b�), I�,NG}

(7){X �, Y �} = ⟨⟨X , Y �M⟩⟩

(8)|ŜX (t + 1) − s| < |ŜX (t) − s| + 𝜙1,

(9)|ŜX (t + 1) − s| = 𝛼1|ŜX (t) − s| + 𝜙1.

(10)|ŜX (t) − s| = 𝛼[n]|ŜX (0) − s| + 𝜓n,

Taking the expectation of Eq. 10,

Then, given any small positive real number � , we can find n 
such that 𝛿 < 𝛼[n] . Therefore, for sufficiently large n,

Since ŜX (0) , s and � are all constants, the right-hand side 
of Eq. 12 can be wrapped into a constant � for all positive 
values of t. Therefore,

The implication of Eq. 13 is that ŜX (t) → s as t becomes 
large. Thus, the risk state of agent X tends to the target 
risk state. Similarly if Y is substituted for X in the argument 
from Eq. 8 onwards, there is a similar result: ŜY (t) → s as t 
becomes large. Therefore, the risk state of Y also tends to 
the target risk state.

3.3.2 � Convergence of the state of a group of agents

We now extend the argument to a group Gn of n agents: 
Gn = {X1, X2,… , Xn} . The group state at time t, denoted 
by ŜG,n(t) , is determined by the Beta parameters, a′ 
and b′ , of the group agent’s Beta distribution, defined 
in Eqs. 5 and 6. We assert that the state of the group 
agent at time t is a linear combination of the states of 
the members of the Group. So in terms of normalised 
weights wXi

(t) on the state of each agent Xi:

From Eq. 13,

(11)
�(|ŜX (t) − s|) = 𝛼[n]�(|ŜX (0) − s|) + �(𝜓n)

⇒ |ŜX (t) − s| = 𝛼[n]|ŜX (0) − s|

(12)

||||
ŜX (t) − s

ŜX (0) − s

||||
< 𝛿

⇒ |ŜX (t) − s| < 𝛿|ŜX (0) − s|

(13)|ŜX (t) − s| < 𝜖 ∀t > 0

(14)ŜG,n(t) =

n∑

i=1

wXr
(t)ŜXi (t).

(15)

|ŜG,n(t) − s|

=
||||

n∑

i=1

wXr
(t)ŜXi (t) − s

n∑

i=1

wXr
(t)

||||

=
||||

n∑

i=1

wXr
(t)(ŜXi (t) − s)

||||

<

n∑

i=1

||||
wXr

(t)
||||
||||
ŜXi (t) − s

||||
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Result 16 is the Group analogy of Eq. 13, which is for a 
single agent. So as t becomes large, ŜG,n(t) → s . That is, 
the group state tends to the same limit as the state of the 
members of the group.

4 � Interaction modes

The three adaptive interaction modes and also the coun-
ter-adaptive mode, introduced at the start of Sect. 3, are 
presented in this section. The adaptive modes are dis-
cussed in increasing order of complexity: passive adap-
tive, followed by weakly active adaptive, and lastly strongly 
active adaptive. They are followed by a subsection on con-
sensus failure: the counter-adaptive mode.

4.1 � The passive adaptive (PA) mode

The PA mode is simple in that complicated monitoring of 
the state of the system and prediction are absent. Agents 
X and Y negotiate, and always agree to ‘meet mid-way’. The 
steps are summarised in Algorithm ALGO PA.

ALGO PA: Passive adaptive interaction mode
(Inputs X, Y; Outputs X ′, Y ′)

1. Calculate resultants
   X∗ = ⟨X , Y⟩ (with Beta parameters (aX∗ , bX∗)
   Y∗ = ⟨Y , X⟩ (with Beta parameters (aY∗ , bY∗)

2. Calculate their states ŜX∗ and ŜY∗

3. Calculate the mean state, m =
ŜX∗ +ŜY∗

2

4. Define new agents X ′ , and Y ′ , both with state equal to the 
mean value (see Eq. 4):

(aX∗ , aX∗ (
1

m
− 1))

(aY∗ , aY∗ (
1

m
− 1))

Shifting the states of X and Y to the mean state m in 
ALGO PA constitutes adaption from one to the other, effec-
tively by compromise. The agents put in their bids, and the 
final result for both is the mean bid. There is an implied 
utility function for assessing the state of the system with 
respect to an agent X. It is the measured distance of the 
original state of X from the mean: |ŜX −m| . As such this 
mode is unsophisticated, but it its simplicity results in very 
fast convergence to consensus (see the results in Sect. 5).

4.2 � The weakly active adaptive (WAA​) mode

In the WAA​ mode, an agent X monitors the Group (G) and a 
decision is made to either retain its existing state, or accept 

(16)|ŜG,n(t) − s| <
n∑

i=1

𝜖 = n𝜖
the state of G, or the state of the resultant ⟨X , Y⟩ . A differ-
ent utility function is used: the distance comparison, d, in 
ALGO WAA​, below.

ALGO WAA​: Weakly adaptive interaction mode
(Inputs X, Y; Output X ′)

1. Calculate the non-adaptive resultant X∗ = ⟨X , Y⟩
2. Calculate the states ŜX , ŜY , ŜX∗ and ŜG
3. Calculate d = min(|ŜX − ŜG|, |ŜY − ŜG|, |ŜX∗ − ŜG|)
4. If d = |ŜX − ŜG| , set X � = X  (so X does not change). Otherwise 

set X ′ to either |ŜY − ŜG| or |ŜX∗ − ŜG| by amending the Beta 
b-parameter of X according to Eq. 4, depending on which cor-
responds to d

This mode may be classified as adaptive because of the 
group is accounted for. Agent X assesses the state of the 
group as well as the state of the other agents that take part 
in of its each agent–agent interactions.

4.3 � The strongly active adaptive (SAA) mode

In the SAA mode, the two agents in an interaction both aim 
to achieve a target state. The target may not be a state of 
consensus. Instead it may be a mutually beneficial state, 
such as a recovery from an adverse shock. Shock and 
recoveries were examined in Wolfram [14] using a crude 
recovery mechanism: at each interaction in the ‘recovery’ 
mode, agents are forced to move towards the target by 
a predetermined amount. The result of a single adaptive 
interaction between two agents X and Y is a tuple {X �, Y �} , 
and we denote the strongly active adaptive interaction by 
{X �, Y �} = ⟨⟨X , Y⟩⟩ . In contrast to the non-interactive inter-
action, both X and Y are affected and both are returned. 
Algorithm ALGO SAA shows the steps in the calculation. 
The algorithm uses a utility function U(X , s, � , T ,m) where 
s is a target state for agent X, � is the duration remaining 
to some pre-defined target time T and m is a constant fac-
tor that determines how the interaction proceeds (and is 
explained below Eq. 17). This utility function can be inter-
preted as a cost saving associated with the interaction, and 
the intention is to maximise it at every interaction.

Equation 17 comprises three parts.
The term |s − ŜX | is a risk measure indicating the devia-

tion of the current state of X from the target state. The 
ratio of exponentials is a time penalty, such that as time 
advances towards T, the cost saving decreases. Therefore, 
it is advantageous to agree quickly. The factor m is a con-
stant that determines the decisions that an agent could 
take within the interaction ⟨⟨X , Y⟩⟩ . It is set to one of the 
values listed in ALGO SAA, depending on the outcome of 

(17)U(X , s, 𝜏 , T ,m) = |s − ŜX |m
(
1 − e−

𝜏

T

1 − e−1

)



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1743 | https://doi.org/10.1007/s42452-019-1724-5	 Research Article

three utility function calculations. The choice is to either 
abandon the interaction, use a predicted state, or ignore 
the prediction in favour of a WAA​ alternative. The details 
of algorithm ALGO SAA are in the tableau that follows. The 
essential stages are a prediction of a future state, followed 
by utility calculations, and lastly a decision about which of 
a set of options to choose.

ALGO SAA: Strongly adaptive interaction mode
(Inputs X, Y; Outputs X ′, Y ′)

1. Define agents XP and YP corresponding to predicted states for X 
and Y, given a pre-defined target.

2. Calculate the agents that result from non-adaptive interactions:
   X � = ⟨X , Y⟩
   Y � = ⟨Y , X⟩

3.Calculate the utilities U(♯) for ♯ = X, Y, X ′ , Y ′ , XP and YP using 
Eq. 17

4. Choose the option ‘no change’, ‘use prediction’ or ‘cooperate’ for 
X ′ based on the following criteria:
   If U(X) > max(U(X �),U(XP)) , set m = 1
and output X (abandon the interaction result)
   If U(XP) > max(U(X),U(X �)) , set m = 1.5
and output U(XP)
   If U(X �) > max(U(X),U(XP)) , set m = 2
and output U(X �)

5. If a time limit has been set, force a move towards the target

4.4 � Time to convergence

The time to convergence of state after the start of inter-
actions, tX  , for an agent X is measured by searching for 
a sequence of r successive states differences, measured 
at times {t − r + 1,… , t − 1, t} , all of which are less than 
a small maximum l. Equation 18 is the required r-term 
conjunction.

Section 4.4.1 gives an indication of the rate of convergence.

4.4.1 � Rate of convergence calculation

Denote the distance between successive states of the 
Group G at time t as Dt with D0 set to the value of the initial 
state ŜG,n(0) . Then using the same notation as in Sect. 3.3.2:

(18)

tX = t ∶ {|ŜX (t) − ŜX (t−1)| < l &

|ŜX (t−1) − ŜX (t−2)| < l &

… &

|ŜX (t−r+2) − ŜX (t−r+1)| < l}

(19)
Dt = |ŜG,n(t + 1) − ŜG,n(t)|
D0 = ŜG,n(0)

Suppose that the mean ratio of successive differences in 
states is r ∈ (0, 1) . Then

Therefore, the time, tX  , required for a sum of successive 
differences (Eq. 20) to reduce to a proportion p of the dis-
tance from the initial state to the target state s is given by 
a solution to Eq. 21, below. The value of p could be in the 
region of 0.01, for example.

4.5 � Consensus failure: the counter‑adaptive mode

In the CA mode, an attempt is made to reach consensus, 
but that attempt is thwarted multiple times. The result 
implies increased risk. The details are in ALGO CA. In that 
algorithm, the first step indicates an attempt at consensus, 
since the state of the group agent will be intermediate 
to the states of the two inputs X and Y. The subsequent 
steps define agents that have marked biases towards the 
original inputs, thereby undoing much of the consensus.

This does not imply that an agent cannot influence 
another agent sufficiently to reverse its view. That can 
happen, but simulations indicate that such cases are rare.

The Beta parameters for any agent Z are denoted by 
(aZ , bZ ).

ALGO CA: Counter Adaptive Interaction mode
(Inputs X, Y; Outputs X ′, Y ′)

1. Derive the group agent G = {X , Y}

2. Calculate Beta parameters for new agents X̄  and Ȳ :
   aX̄ = raX + (1 − r)aG

   bX̄ = rbX + (1 − r)bG

   aȲ = raY + (1 − r)aG

   bȲ = rbY + (1 − r)bG

3. Replace: aZ̄ → 1.02 aZ̄ if ŜX > ŜG and aZ̄ → 0.98 aZ̄ if ŜX ≤ ŜG , 
first when Z = X and then when Z = Y

4. Output agents X ′ and Y ′ with Beta parameters (aX̄ , bX̄ ) and 
(aȲ , bȲ ) respectively

The penultimate step is a mechanism for avoiding quick 
agreement and for breaking an agreement if it has been 
made. The 2% change in the Beta a-parameters pulls the 
output agents away from any consensus point.

(20)

||||
Dt

Dt−1

||||
= r

⇒ |Dt| = rt|D0|

(21)
Dt + Dt−1 +…+ Dt−tX

> p|D0 − s|
⇒ |D0|(rt + rt−1 +…+ rt−tX ) > p|D0 − s|
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5 � Simulation results

We summarise simulation results for the three adaptive 
interaction modes and the counter-adaptive mode CA 
of Sect. 4 by showing representative traces of either the 
group state or the states of individual agents over time. In 
all cases, there are 10 agents in the group, and an assess-
ment is made of the time taken to converge (using Eq. 21).

In the illustrations that follow the horizontal axes are 
labelled time. In this context, time should be interpreted 
as number of interactions. At each agent–agent interac-
tion, the state of some part of the system changes, but 
the elapsed time between those interactions is variable. 
Therefore, although the axes are graduated linearly, those 
graduations represent nonlinear absolute time intervals.

5.1 � Passive adaptive convergence results

Figure 1 shows traces of each of the 10 agents in the group, 
with the group state (in black). The convergence times for 
each agent are shown in the list immediately above the 
trace. Convergence is to the mean (risk) state of the group, 
approximately 0.5 since they initially cover the full risk sate 
range (0,1). The mean convergence time is approximately 
50, which is notably small due to an effective forcing to the 
mean with no discretion.

5.2 � Weakly active adaptive convergence results

The traces in Fig. 2 extend to time 500, indicating that 
convergence is very slow. In some cases, indicated by the 
entries with value 500 in list of convergence times, conver-
gence has not yet been observed. The first 20% of group 
states have been treated as a burn-in and have been dis-
carded to account for initial volatility. The interactions in 
this case incorporate a decision to possibly not change 
state, which is responsible for the slow convergence. It 

represents intransigent negotiation and/or a reluctance 
to cooperate (hence the term weak).

5.3 � Strongly active adaptive convergence results

In the case of the SAA mode, traces of the group state 
replace traces for individual agents because it is more 
instructive to see convergence to different limits. Figure 3 
shows three sets of paths. Each shows three independ-
ent simulations. The blue and red sets show convergence 
of extreme states to a consensus state 0.5 (representing 
medium risk). The green sets show much faster conver-
gence to the same value for agents that are already near 
the consensus point. Compared to the WAA​ mode, con-
vergence times in the range 70-100 for the extreme initial 
states are not excessive. Agents in these groups have an 
incentive to agree, as measured by their utility functions. 

Fig. 1   State evolution for individual agents, PA mode, showing con-
vergence times, in number of interactions above

Fig. 2   State evolution for individual agents, WAA​ mode, showing 
convergence times, in number of interactions above

Fig. 3   State evolution for 9 distinct groups, SAA mode, showing 
one group that has not converged in the region before 100 interac-
tions 
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Only one agent in Fig. 3, indicated by the arrow, has not 
converged by time 100.

Figure 4 shows three independent traces of paths in 
which a time limit has been set such that if convergence 
has not occurred by time 50 (the halfway point to a dead-
line 100), agents are forced to progress from an initial 
high risk state, about 0.85, to a target low risk state, 0.2. 
This represents a case of perceived urgency, where there 
will be a considerable utility penalty for failure to agree 
by the deadline. The green trace shows a case where the 
forced progression has been activated. There is a marked 
gradient change starting just after time 50. Limited forc-
ing is needed for the red and blue traces since they are 
much nearer the target at time 50. The times to converge 
for each are shown below the figure: all are in the range 
(50, 100). Convergence in this way is not guaranteed, but 
is very likely. Ultimately, it depends on the severity of the 
impending penalty for not reaching the target.

5.4 � Counter‑adaptive results

The CA mode was discussed in Sect. 4.5. The aim was to 
make only a limited effort to achieve consensus. The three 
traces in Fig. 5 present a different view to preceding illus-
trations. Each one represents a pair of protagonists and 
shows the difference in their states after each interaction. 
Exact consensus is therefore indicated by a zero difference, 
but the difference is not absolute, and can be negative. Ini-
tially, their states are far apart, and approach zero despite 
the counter agreement mechanism. The interpretation is 
that some progress is made in trying to reach a compro-
mise, but not enough. The red trace, for example, never 
reaches the zero line within the 250 interactions shown. 
The other two just about get there but then diverge away 
from the zero line. The blue trace does this several times.

The CA mode models cases of prolonged high risk or 
conflict.

During the course of the simulation there is some move 
to consensus. The difference between the states of the 
two agents narrows, as shown by a downward drift of the 
traces. That type of trace is typical: it occurs in approxi-
mately 98% of runs of this simulation. In those cases, an 
agent does not succeed in reversing the view if its ‘oppo-
nent’ and the simulation trace remains positive. However, 
with sufficient persuasion (and perhaps some coercion in 
practice!) an agent can influence another agent sufficiently 
well so that their states are reversed. The influenced agent 
has become more than totally convinced of the opposite 
viewpoint. That results in a negative difference, and the 
trace would dip below the ‘State = 0’ axis.

6 � Discussion

A general comment applies for all results in Sect. 5. Adap-
tative implies convergence, so one impact of any emer-
gent behaviour is predictable: it is convergence. Of issue 
is the speed of convergence, and that depends on the 
detailed nature of the agent interaction in the model. In 
PA mode, convergence is too rapid: agents simply agree 
halfway without other considerations. In WAA​ mode, con-
vergence is arguably too slow. Agents have the option to 
ignore their environment, and then act in a selfish manner. 
Compromise becomes a secondary issue. The SAA mode 
seeks to find a compromise in which agents can choose 
whether to cooperate or not using an objective utility 
function. If they act rationally, they choose a path that 
minimises risk. The implementation of the SAA mode is 
subject to the weights placed on the available choices by 
the utility function. A change in the difference between 
an agent’s current risk state and a target risk state in Eq. 17 
that depends on the mode would potentially affect the 

Fig. 4   State evolution with a time limit, SAA mode

Fig. 5   Differences of states for pairs of agents who cannot reach, or 
fail to maintain consensus, CA mode



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1743 | https://doi.org/10.1007/s42452-019-1724-5

result of the utility function significantly. A further issue is 
that in real life, agents do not always act rationally. Irration-
ality in the form of a stochastic term is built into the model, 
but it is hard to assess whether or not that is a sufficient 
model of irrationality.

6.1 � Applications

We now consider some applications of the theoretical 
models proposed. They concentrate on financial and eco-
nomic cases, where the concept of risk is very pertinent.

Brexit Immediately following the result of Brexit refer-
endum on 16 June 2016, the pound sterling fell sharply 
against the euro and other currencies. Subsequently, 
the GBPEUR exchange rate has reacted to Brexit-related 
events, and we use it as a measure of financial market sen-
timent towards the progress of Brexit negotiations. Fig-
ure 6 shows a plot of the GBPEUR exchange rate against 
‘Day number’, which counts working days only. Day 1 is 1 
June 2016, and the referendum day (23 June 2016) is num-
bered 17. It is indicated on the figure by the left-hand ver-
tical line. The GBPEUR plot is volatile, but the overall trend 
is linearly downwards (shown by the fitted best fit line). 
It corresponds to the SAA model (as in Fig. 3), and rep-
resents a positive, albeit slow, attempt to progress. Prior 
to the proposed ‘leaving’ date (29 March 2019—indicated 
by the middle vertical line), the increase in the GBPEUR 
rate is a response to an anticipated settlement. The period 
leading to the impending deadline corresponds to the 
time-limited SAA model. In March 2019, the deadline was 
extended to 31 October 2019 (the right-hand vertical line), 
and the GBPEUR rate slumped for months afterwards. As 
the revised deadline approached, the up-trending GBPEUR 
rate indicated a second time-limited SAA phase. Shortly 
before the second deadline, a further extension was 
agreed.

Global warming Global warming has been much dis-
cussed in recent years, and, with increasing interest from 
financial regulators, is soon likely to affect financial prod-
ucts [3]. The report by Cook et al. [4] shows illustrations of 

how consensus on the existence or otherwise of global 
warming has developed between the years 1985 and 2011. 
The measurement metric used was the annual number of 
publications of various types that either endorsed the 
existence of global warming, or rejected it, or expressed 
no view either way. Figure 7 shows a view of the Cook data 
in a way that resembles the plots in Fig. 1. The plots should 
be interpreted as: ’With a long period to achieve a nomi-
nal 25 year target, few papers were published. Nearer the 
target the number of publications increases’. Both plots 
show a gradual drift to consensus (that global warming is 
a significant problem) that fits the PA mode.

Consumer and business confidence Confidence in the 
economy can be measured by two OECD indices: the 
consumer confidence index (CCI) and the business confi-
dence index (BCI). The CCI is based on the monthly OECD 
Consumer Confidence Survey of 5000 households. The BCI 
is also survey-based and provides information on future 
developments, orders and stocks of finished goods. The 
month-by-month difference between them indicates 
whether or not businesses and consumers agree. The 

Fig. 6   GBPEUR: June 2016 to October 2019. Data source: https​://
www.macro​trend​s.net

Fig. 7   Global warming publications. https​://www.stack​s.iop.org/
ERL/8/02402​4/mmedi​a

Fig. 8   G7 business and consumer confidence. Data source: https​://
www.data.oecd.org

https://www.macrotrends.net
https://www.macrotrends.net
https://www.stacks.iop.org/ERL/8/024024/mmedia
https://www.stacks.iop.org/ERL/8/024024/mmedia
https://www.data.oecd.org
https://www.data.oecd.org


Vol.:(0123456789)

SN Applied Sciences (2019) 1:1743 | https://doi.org/10.1007/s42452-019-1724-5	 Research Article

combined G7 surveys is a case where they do not. The dif-
ference ‘BCI-CCI’ is shown in Fig. 8 and corresponds to the 
CA mode. Volatility about the zero line indicates a high 
incidence of opposed opinions, in which businesses and 
consumers ‘swap’ opinions frequently. The illustration 
in Sect. 4.5 shows more consistent patterns of disagree-
ment with minimal ‘opinion swaps’. The differences shown 
in Fig. 8 can be tested statistically by calculating the best 
linear fit (also shown). A t-test for the correlation coeffi-
cient r shows that the disagreement is highly significant 
( r = 0.163, t = 4.05, p < 0.01 ). One has to be careful when 
making conclusions from plots alone in this context. The 
equivalent plot for the US indices looks very similar, but 
the equivalent calculation shows that disagreement is not 
significant ( r = 0.044, t = 1.17, p = 0.122).

7 � Conclusion

The ‘adaptive’ property, along with other complex system 
properties (no central control, self-organisation, nonlinear-
ity and emergence) has enabled modelling of applicable 
‘real’ situations by defining what happens when a pair 
of agents interact. No other assumptions are made. The 
results of simulations are broadly in line with what was 
expected. The more agents cooperate, the faster they can 
reach consensus. The three adaptive modes considered, in 
the order passive, then weakly adaptive and lastly strongly 
adaptive, indicate an increasingly urgent need to achieve 
consensus. In most cases, participants realise eventually 
that they cannot continue to disagree indefinitely. The sim-
ulations also show that once consensus has been reached, 
it is reasonably solid in most cases. There is always some 
subsequent deviation from the consensus point but it is 
unlikely to be significant.

Although particular real situations can be associated 
with one or more of the models considered, a strict cali-
bration would be difficult because individual interactions 
would be hard to identify in practice. A possible way for-
ward is to formally link ‘number of interactions’ to ‘elapsed 
time’, which could be measured.
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