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Temporal dynamics of urban warming have been extensively stud-
ied at the diurnal scale but the impact of background climate on the
observed seasonality of surface urban heat islands (SUHIs) remains
largely unexplored. On seasonal timescales, the intensity of urban-
rural surface temperature differences (∆Ts) exhibits distinctive hys-
teretic cycles whose shape and looping direction varies across cli-
matic zones. These observations highlight possible delays under-
lying the dynamics of the coupled urban-biosphere system. How-
ever, a general argument explaining the observed hysteretic patterns
remains elusive. A coarse-grained model of SUHI coupled with a
stochastic soil water balance is developed to demonstrate that the
time lags between radiation forcing, air temperature, and rainfall gen-
erate a rate-dependent hysteresis, explaining the observed seasonal
variations of ∆Ts. If solar radiation is in-phase with water availabil-
ity, summer conditions cause strong SUHI intensities due to high ru-
ral evaporative cooling. Conversely, cities in seasonally dry regions
where evapotranspiration is out-of-phase with radiation show a sum-
mertime “oasis effect" controlled by background climate and vege-
tation properties. These seasonal patterns of warming and cooling
have significant implications for heat mitigation strategies as urban
green spaces can reduce ∆Ts during summertime, while potentially
negative effects of albedo management during winter are mitigated
by the seasonality of solar radiation.
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Urban areas are generally warmer than the surrounding1

rural land, a phenomenon called Urban Heat Island (UHI)2

effect. This urban-induced warming, recognized as early as3

1818 by Luke Howard (1), is one of the most evident signa-4

tures of humans’ alteration of the Earth surface boundary5

layer. Given their implications for energy demand (2), climate6

adaptation policies (3), public health (4), and heat-related7

mortality (5, 6), UHIs have been widely studied over the8

past decades considering both air and surface temperature9

observations (e.g. 7–18). Air UHIs are most intense during10

nighttime, based on air temperature measurements above or11

below the roof level, whereas surface UHIs (hereafter referred12

to as SUHIs), as derived from remotely sensed skin surface tem-13

peratures, generally reach peak values during daytime (19–22).14

While the drivers of urban warming and its diurnal evolution15

are reasonably known both in terms of air and surface temper-16

ature dynamics (e.g. 8, 22–25), remote sensing observations17

have revealed seasonal hysteretic patterns of SUHIs that re-18

main largely unexplained (26). The hysteresis between the19

intensity of SUHIs (defined as daytime urban-rural surface20

temperature differences, ∆Ts) and background land surface21

temperature (Ts) has been demonstrated by a comprehensive22

statistical analysis of European cities (26) and confirmed by23

numerical simulations for the Greater London area (27). The24

directionality of hysteresis is found to be clockwise (Fig. 1C),25

but different climatic regions exhibit distinctive hysteretic26

patterns with ∆Ts either increasing or decreasing with Ts de- 27

pending on whether cities are located in a temperate and wet 28

climate or a Mediterranean seasonally dry region (see Fig. 1). 29

It is hypothesized here that this phenomenon is the result of 30

time lags between the surface energy budget of cities, which 31

is largely controlled by solar radiation, and the energy/water 32

fluxes of rural areas, regulated by regional climate and vegeta- 33

tion seasonality (26–28). However, previous attempts to verify 34

such hypothesis have been unsuccessful (26). This failure 35

may be partly due to the daunting complexity of the coupled 36

urban-biosphere system (16, 18, 29), with the emergence of 37

hysteresis as one of its signatures (25, 30, 31). 38

Hysteresis has been observed in a variety of environmental 39

processes. These include plant physiological responses to mete- 40

orological conditions (e.g. 32–35), catchment-scale dynamics of 41

soil moisture, evapotranspiration, streamflow and solute trans- 42

port (e.g. 36–39), wetting and drying of porous media (e.g. 43

40), soil and ecosystem carbon fluxes (e.g. 41–43), and the 44

diurnal cycle of surface energy fluxes (e.g. 44, 45). In these 45

contexts, the looping patterns are generally associated with 46

time lags between a forcing and its effects on the system. Such 47

a phenomenon is referred to as “rate-dependent" hysteresis 48

because the system has a limited memory of the past and the 49

hysteresis disappears in finite time if the forcing variability 50

is suppressed. In contrast a “rate-independent" system has a 51

persistent memory and hysteresis need not fade if the forcing 52

term is removed. A prototypical model of rate-dependent 53

hysteresis is given by an input-output system that transforms 54

a sinusoidal input time series X(t) into a delayed output Y (t) 55
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given by56

X(t) = µX +AX · sin [ω · (t+ φX)] ; [1]57

Y (t) = µY +AY · sin [ω · (t+ φX + ∆φ)] ; [2]58

where t is time, ω is the frequency, φX is the input phase shift59

and ∆φ is the input-output time lag. In the context of the60

analysis here, X and Y are conceptual representations of back-61

ground surface temperature and SUHI intensity, respectively.62

By defining normalized variables Xn(t) = (X(t) − µX)/AX63

and Yn(t) = (Y (t)− µY )/AY , and setting ω = 1 and φX = 064

without loss in generality, Eqs. 1-2 can be expressed as a rela-65

tion between input (or forcing) Xn(t) and output (or response)66

Yn(t) that are lagged in time by ∆φ/ω using (e.g. 34)67

Yn = Xn cos (∆φ) + cos [arcsin(Xn)] sin (∆φ) , [3]68

where the mathematical origin of the hysteresis is the term69

arcsin(Xn) that can take on the same value for two distinct70

values of Xn except when ∆φ = 0 (leading to Yn = Xn and71

the loop collapses to a line). As a bridge to systems with72

storage (for heat, water, electric charge, etc...), Eq. 3 can be73

expressed as a first-order linear non-homogeneous ordinary74

differential equation (ODE) (e.g. 34)75

1
csc (∆φ)

dYn(t)
dt

− Yn(t) cos (∆φ) = −Xn(t), [4]76

where storage or capacitive effects allow dYn(t)/dt to exist,77

and as before, a ∆φ = 0 leads to csc (∆φ)→∞, cos (∆φ)→ 178

and Yn(t) = Xn(t). The rate-dependency of the hysteresis79

is evident in this type of representation because when the80

“forcing” term Xn(t) is removed (and the ODE becomes ho-81

mogenous), Yn(t) does not exhibit loops and decays rapidly82

(or exponentially) in time to its zero equilibrium value. Hence,83

the hysteresis in Eqs. 1-2 or its equivalent form in Eq. 4 is said84

to be “rate-dependent”. As shown in Fig. 1D-E, the conceptual85

model in Eqs. 1-2 produces hysteretic curves that resemble the86

observed seasonal patterns of ∆Ts versus Ts, thus supporting87

the hypothesis that a phase shift mechanism can be at the88

basis of SUHI seasonality. However, the factors causing these89

hysteretic phenomena remain to be explored and motivate the90

work here.91

Here, this knowledge gap is bridged by combining concepts92

from statistical physics with urban scaling laws and basic93

energy conservation principles. Specifically, a stochastic soil94

moisture balance is coupled with a coarse-grained SUHI model95

to demonstrate that the manifold of observed hysteretic sea-96

sonal patterns is encoded in the time lags between energy97

availability (radiation/temperature) and water availability98

(rainfall). The urban and rural energy balances are combined99

to arrive at expressions linking ∆Ts to Ts for differing radiative100

load and precipitation. The objective is not to provide a de-101

tailed simulation of urban microclimate, which is a prerogative102

of urban climate models (e.g. 46) and detailed urban energy103

budget schemes (e.g. 47–50). Rather, the aim is to describe104

the temporal variability of urban-biosphere interactions in the105

most general terms so as to disentangle the key drivers of106

city-scale warming and propose general guidelines for heat107

mitigation strategies under different background climates (16).108

Results and discussion 109

Seasonal dynamics. We focus the analysis on five European 110

cities (Paris, London, Milan, Madrid, and Nicosia) that are 111

characterized by a wide range of climatic conditions and ex- 112

hibit the aforementioned hysteretic behaviors observed in Eu- 113

rope (26, 27). Specifically, cities in wet or relatively wet 114

climates (Paris, London, and Milan) show a concave up hys- 115

teresis characterized by peak SUHI in summer and ∆Ts always 116

positive, while cities in seasonally dry regions (Madrid and 117

Nicosia) exhibit a concave down curve with peak SUHI in 118

spring and ∆Ts < 0 during summer/autumn (see Fig. 1 and 119

results in the Supplementary Information, SI). As previously 120

reported, annual and summer averages of ∆Ts increase with 121

increasing mean annual rainfall (15, 17, 18) and, while Nicosia 122

and Madrid show summer ∆Ts values that are lower than the 123

annual mean, the opposite is observed in cities characterized by 124

a wet climate (Fig. 2D). These trends are consistent for both 125

daytime and mean-daily observations of SUHIs (see Fig. 2D 126

and SI). 127

To test the hypothesis that hysteresis is the result of time 128

lags between urban and rural dynamics, we have modeled 129

background meteorological forcings (i.e. incoming shortwave 130

radiation Rsw, air temperature Ta, wind speed Ws, and rain- 131

fall frequency λR) with sine functions Γ = Γ(t) characterized 132

by mean µΓ, amplitude AΓ, and phase φΓ (see Methods). A 133

well-established stochastic soil moisture balance (37, 51, 52) 134

is employed to compute the seasonality of relative soil mois- 135

ture (defined in standardized form by x which represents the 136

degree of saturation in the rooting zone, see Methods), evapo- 137

transpiration (ET ) and surface albedo (α) in the rural area. 138

This probabilistic approach integrates information on rainfall 139

daily stochasticity and seasonality to describe the “average” 140

seasonal cycle of the different water fluxes (37). A coarse- 141

grained SUHI model is then used to represent the changes 142

in surface temperature caused by urbanization (18). Urban- 143

rural surface temperature differences ∆Ts are regulated by 144

urban-induced changes in evapotranspiration (∆ET ), albedo 145

(∆α), convection efficiency (∆ra), surface emissivity (∆εs), 146

and anthropogenic heat (∆Qah), which vary with background 147

climate and city characteristics (see Methods and Fig. S1-S2 148

in the SI for details). 149

Despite its simplicity, the model captures the major features 150

of the observed seasonality of water and energy fluxes at the 151

land surface (see Fig. S3-S7 in the SI) as well as the hysteretic 152

behavior of ∆Ts (Fig. 2B,C and Fig. S8-S9 in the SI). Model 153

inferences suggest that magnitude and seasonality of SUHIs 154

are largely controlled by urban-rural differences in evapotran- 155

spiration, albedo and convection efficiency (8, 15, 18). In the 156

analyzed wet climates, the SUHI intensity is determined by 157

∆ET (Fig. 2E and Fig. S10 in the SI) because rural ET is 158

in-phase with radiation, it approaches potential evapotran- 159

spiration (ETmax) and maximizes ∆Ts during summertime 160

by cooling the natural environment (see results in the SI). 161

Conversely, in the analyzed seasonally dry climates, rainfall is 162

out-of-phase with radiation causing water stress and a sum- 163

mertime decrease in rural ET that reduces ∆ET and, as a 164

consequence, ∆Ts (Fig. 2F and Fig. S10 in the SI). Under 165

dry conditions, soil moisture influences not only ∆ET but 166

also modifies surface albedo by modulating the dynamics of 167

leaf area index, LAI (see panel E in Fig. S3-S7). When LAI 168

declines due to water stress, ∆Ts reaches its minimum due to 169
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Fig. 1. (A) Conceptual representation of a daytime SUHI and (C) hysteretic behavior of ∆Ts observed in Paris (circles) and Madrid (squares). Data are digitized from Zhou
et al. (26) and represent daytime values retrieved at 13:30 local time. (B) An input-output system exhibiting hysteresis: (D) time series of input X (gray line), output Y1 (black
solid line) and Y2 (black dashed line) associated with the phase shift ∆φ1=30 days, and ∆φ2=-150 days, respectively; (E) resulting hysteretic curves. The input-output system
is described by Eqs. 1-2 with parameters ω = 2π

365 , µX=0, AX=10, φX=-100, µY1 =2, AY1 =5, µY2 =-5, AY2 =5.

a delicate balance between ∆ET , Rsw, and ∆α (Fig. 2F). In170

such water limited ecosystems, rural vegetation is generally171

of low stature and changes in convection efficiency also con-172

tribute to cooling because cities can be more efficient than the173

surrounding “smoother" surfaces in dissipating heat by con-174

vection (15, 53). This effect, however, could be city specific as175

it depends on the three-dimensional structure of urban areas,176

the density of buildings and their mean height (e.g. 11, 54).177

These results demonstrate that the shape of the hysteretic178

cycle is fingerprinted in the time lags between incoming short-179

wave radiation, temperature and rainfall. In wet climates, ET180

is not water limited and the hysteretic loop is mainly due181

to the lag between radiation and temperature (∆φTa), which182

produces a concave up curve (see Fig. S11). In seasonally dry183

regions, the shape of hysteresis is modified by the lag ∆φλR184

between radiation and rainfall, and the induced vegetation185

water stress in the natural surrounding (Fig. 2-3) that gen-186

erates a concave down loop. This confirms the conjecture of187

a phase shift mechanism (26, 55) regulated by energy and188

water availability. Both rainfall frequency λR and the lag189

∆φλR contribute to shaping the Ts −∆Ts relation with the190

former controlling the magnitude of warming and the latter191

modifying the concavity of the hysteresis curve (Fig. 3 and192

Fig. S12 in the SI). Unlike previous modeling results attribut-193

ing hysteresis to incoming shortwave radiation only (27), soil194

moisture is shown to play a key role in the seasonality of195

SUHIs in seasonally dry climates by linking rainfall variability196

to urban-rural differences in evapotranspiration and albedo.197

In wet regions, the impact of soil water availability is negligible198

due to its limited variability, and hysteresis is mainly driven199

by the time lag between radiation and temperature (all can200

be independently inferred). As a consequence, model-based201

results suggest that the observed hysteretic cycles are more202

“stable" in wet rather than dry climates as perturbations in 203

the magnitude and seasonality of rainfall cause changes in 204

the timing of peak maximum and minimum ∆Ts that are 205

larger in cities like Madrid and Nicosia compared to Paris and 206

London (see Fig. S13 in the SI). The important role of rural 207

soil moisture in regulating urban-rural temperature differences 208

was also detected on nocturnal UHIs, as their seasonality can 209

be explained by changes in the thermal effusivity (or admit- 210

tance (22)) of rural surfaces associated with seasonal variations 211

in soil moisture status (56, 57). 212

SUHI mitigation. Given the implications of urban warming on 213

energy consumption, climate adaptation policies, and public 214

health, understanding and controlling UHI intensities is a 215

leitmotif in the debate on sustainable development (59) and 216

mitigation strategies aimed at increasing urban albedo (e.g. 217

15, 23, 60) or increasing urban vegetation (e.g. 61, 62) and 218

irrigated green surfaces (63) are promoted worldwide. In this 219

context, the coarse-grained model developed here provides a 220

novel framework to assess the efficiency of city-scale SUHI 221

mitigation strategies across cities, seasons, and climates. The 222

model results suggest that increasing urban green cover (gc,u) 223

reduces peak warming both in wet and seasonally dry climates. 224

When urban vegetation is irrigated, its contribution to cooling 225

becomes dominant in seasonally dry regions where rural ar- 226

eas are water limited resulting in a drier regional atmosphere 227

and lower wet-bulb temperatures in the city (Fig. 2F and 228

Fig. 4B), while its benefits are minor in wet climates. In water 229

scarce regions, cities are cooler not warmer than the surround- 230

ing (15, 18) and an increase in irrigated green spaces might 231

jeopardize scarce water resources when further improvements 232

in local micro-climate are desired. In these regions, albedo 233

management could be a valuable alternative to counteract 234

extreme temperatures (Fig. 4B). Future projections suggest 235

Manoli et al. PNAS | February 13, 2020 | vol. XXX | no. XX | 3



DRAFTFig. 2. (A) Location of selected European cities and observed/simulated seasonality of ∆Ts in (B) Paris (wet climate) and (C) Madrid (seasonally dry climate). Data are
digitized from (26). Given that simulated quantities represent monthly averages while data are observations at 13:30 local time (26), both observations and model results in
panels B-C are rescaled using their respective annual averages of surface temperature µTs and SUHI intensity µ∆Ts (see SI for details). Mean annual, summer, and winter
intensities of SUHIs are illustrated in panel D. Colored symbols in panel D show daytime observations of SUHI intensity (26) while gray symbols illustrate mean daily values
retrieved from (58). The relation between mean annual rainfall µR and SUHI intensity proposed by Manoli et al. (18) (summer-mean daily values for world cities) is shown
for reference in panel D. Panels E and F illustrates the simulated partition of ∆Ts in its main components for Paris and Madrid, respectively. The impact of urban irrigation
(Ir,u=1) on urban-rural changes in evapotranspiration is also shown (green dashed lines in panels E-F). When Ir,u=1, ET from urban vegetation is equal to potential
evapotranspiration. Marker colors in panels A and D indicate the assumed time lag ∆φλR while error bars in B and C indicate± 1 std.

Fig. 3. Impact of different rainfall-radiation phase shifts ∆φλR [d] and mean rainfall frequencies µλR [d−1] on the magnitude and seasonality of urban-rural surface
temperature differences ∆Ts: (A) simulated scenarios for radiation (Rsw) and rainfall (R), (B) simulated ∆Ts as a function of background temperature Ts, and (C)
∆Ts hysteretic cycles as a function of mean relative soil moisture 〈x〉. Simulations are performed using model parameters for the city of Madrid and the respective
temperature-radiation time lag ∆φTa (see SI).
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that world cities will grow in size and shift towards warmer236

and drier conditions (64, 65). Hence, the efficiency of heat237

mitigation strategies should be evaluated with particular care238

to both present and future climate scenarios as well as future239

trajectories of urban development and adaptation.240

These results confirm that background climate-vegetation241

conditions influence the magnitude of SUHIs (15) and the242

efficiency and suitability of urban cooling strategies (18, 66).243

Given the seasonality of vegetation, the cooling benefits of244

urban green spaces are the highest during summer, i.e. when245

mostly needed (61), but for dry climates this optimal timing of246

benefits requires irrigation. Albedo modifications (i.e. highly247

reflective surfaces) could promote winter cooling, thus reducing248

the positive effects of SUHIs during cold periods when urban249

warming decreases energy consumption and prevents health250

risks associated with extreme cold (67). Nevertheless, the work251

here shows that negative albedo effects are dampened by the252

seasonality of incoming solar radiation (see Fig. 4 and Fig. S14253

in the SI). This result is in line with observational and modeling254

evidence showing that the wintertime penalty of white roofs is255

negligible compared to the summer savings (68, 69) because256

days are shorter and the radiation load is lower.257

Limitations and perspectives. While the proposed approach258

provides a new perspective on the seasonality of urban-induced259

changes in the surface energy balance, it focuses on remotely-260

sensed surface temperatures only and considers city-scale261

values, averaged in space and time over monthly timescale.262

Clearly, this is not sufficient to quantify thermal comfort and263

guide site-specific urban planning solutions. Such consider-264

ations require local air temperature, air humidity, and wind265

speed at the block/building scale from sub-hourly to interan-266

nual timescales (18, 50). In addition, temperature-related risks267

for public health largely depend on exposure and vulnerability,268

which vary with socio-economic conditions, travel patterns, as269

well as human adaptation and acclimatisation (e.g. 70, 71).270

Hence, the intensity of SUHI is a necessary but not sufficient271

metric to characterize heat stress. Mitigation efforts should272

also consider the overall climatic conditions experienced by273

citizens rather than excess urban-induced heat alone (72).274

Nevertheless, it is important to point out that the SUHI re-275

mains an important indicator for urban climate research as276

cities cannot control their background climate, but rather they277

can only influence the urban-induced perturbation from that278

background to improve their climatic conditions. The study279

of bulk urban properties and their interwoven relations with280

climate in terms of city-scale and monthly averages, as illus-281

trated here, can provide useful insights to define guidelines and282

orientate interventions for cities and conditions were specific283

studies are not available. As the science of cities begins to284

mature, general results in a “mean" sense are beginning to be285

uncovered, which is one of the main contributions here.286

Broader impact287

This study demonstrates that background climate-vegetation288

characteristics impact not only the mean intensity of urban289

warming (15, 55) but also its seasonality. Many studies in290

the literature overlook the seasonal variability of SUHIs as291

the adverse impacts of urban warming are often considered to292

peak during summertime (13, 14). As a consequence, SUHI293

intensities across climatic gradients are generally reported as294

annual (e.g. 15) or summer/winter (e.g. 18) averages. Recently, 295

however, it has been shown that the largest ∆Ts values occur in 296

spring rather than summer for many cities in China (55). Sim- 297

ilarly, many urban areas in India experience negative SUHIs 298

during the pre-monsoon summer because of reduced rural 299

evapotranspiration (ET ) (73). Conversely, rural cooling is en- 300

hanced when the surrounding landscapes are highly irrigated 301

(16) and during the wet season (74) when urban-rural ET dif- 302

ferences are the highest. These results are consistent with the 303

hysteretic patterns analyzed and explained here using a coarse- 304

grained model. In general, the intensity of UHIs (both in terms 305

of air and surface temperatures) is directly linked to local pre- 306

cipitation (15, 17, 18, 28) and “urban cool islands" generally 307

occur in seasonally dry climates (15, 16, 73, 75) where sparse 308

natural vegetation generates barren surfaces that have lower 309

ET , sometimes lower albedo, and are less efficient in dissipat- 310

ing heat than three-dimensional urban fabrics (15, 73, 76) . 311

Urban irrigation can significantly contribute to cooling during 312

summertime (73), but model results here suggest that urban 313

“oasis" effects exist because of a combination of urban-rural 314

characteristics rather than urban ET alone (75). 315

In conclusion, seasonal SUHIs are characterized by distinc- 316

tive temporal dynamics associated with climate-vegetation 317

conditions varying across seasons and water availability gra- 318

dients. At the city scale, these mechanisms can be described 319

by water and energy conservation principles, thus confirming 320

that concepts and methods from ecohydrology and complex 321

systems science can be bridged to quantify urban-induced 322

changes in local climate (18, 77). Our results provide evidence 323

for the hypothesis of an urban-rural phase shift mechanism (26) 324

generated by radiation, temperature, and rainfall seasonality 325

and causing the observed hysteretic behavior of ∆Ts. In wet 326

regions, the phase shift between radiation and temperature 327

largely explains the seasonality of SUHIs, while in dry climates, 328

hysteresis is further controlled by the intra-annual variability 329

of rainfall and its impact on soil moisture, background evapo- 330

transpiration, and albedo. For this reason, in dry climates the 331

shape of the hysteretic curve is more susceptible to changes in 332

the rainfall regime than in wet regions. Future modifications 333

of background temperature and rainfall intensity/seasonality 334

associated with global climate change may alter the current 335

seasonality of SUHIs (78, 79) and further research is needed 336

in this direction. Regarding SUHI mitigation, we have shown 337

that the efficiency of different strategies vary across seasons 338

and climate regions. Urban planning can exploit the shape of 339

the hysteretic curve (4) as it encodes much of the processes 340

that impact seasonal SUHI intensities. This analysis is in- 341

tended to complement and not replace city-specific studies 342

that are needed to design local-scale heat mitigation strate- 343

gies and avoid negative impacts on potentially scarce water 344

resources (63). 345

Materials and Methods 346

347

SUHIs and background climate. Observations of SUHIs for the 348

cities of Paris, London, Milan, Madrid, and Nicosia are digi- 349

tized from Zhou et al. (26, 55). Data represent mean monthly 350

values of daytime SUHI intensity retrieved at 13:30 local time 351

from 2006 to 2011. Monthly mean daily values of SUHIs calcu- 352

lated from daytime and nighttime observations (58) (available at 353

https://yceo.users.earthengine.app/view/uhimap for year 2001) are also 354

presented for comparison (Fig. 2D and results in the SI). SUHI data 355

Manoli et al. PNAS | February 13, 2020 | vol. XXX | no. XX | 5
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Fig. 4. Simulated seasonality of ∆Ts in (A) Paris (wet climate), and (B) Madrid (seasonally dry climate) considering different heat mitigation strategies: urban irrigation (dashed
line), 50% increase in urban green cover gc,u (green line), and 50% increase in urban albedo αu,0 (orange line). Markers indicate the baseline scenario. In the case of
irrigation (Ir,u=1), urban ET is equal to potential evapotranspiration.

are based on clear-sky conditions only so that the analysis is not356

representative of the full range of urban conditions experienced by357

cities, especially where cloudy days are frequent. Note also that358

seasonal variations in day length can introduce additional uncer-359

tainties in the estimated values of mean daily SUHIs as they are360

calculated by averaging daytime and nighttime observations (80).361

To illustrate phase-shifts, we purposely represented the seasonal362

variability of background climate as a sine function (e.g. 81, 82),363

i.e. Γ(t) = µΓ +AΓsin [ω · (t+ φΓ)], where Γ is a stand-in variable364

for Rsw(t), Ta(t), Ws(t), and λR(t), µΓ is the variable mean, AΓ365

is the amplitude, φΓ is the phase shift and ω = 2π
τ

with period366

τ=365 days. The time lag between shortwave radiation and rain-367

fall is defined as ∆φλR = φRsw − φλR . Similarly, the time lag368

between radiation and temperature is ∆φTa = φRsw − φTa . Sine369

functions for each city are fitted to monthly meteorological data370

retrieved from the Modern Era Retrospective-Analysis for Research371

and Applications (MERRA) (83). Consistent with prior studies (26),372

data for years 2006-2011 are used. Rainfall seasonality does not373

always follow clear sinusoidal trends and the selected sine functions374

should be considered as prototypical examples of intra-annual vari-375

ability rather than matching exactly site-specific conditions. Also,376

the focus here is on two contrasting climatic conditions defined as377

“wet" and “seasonally dry" to highlight the occurrence of distinctive378

hysteretic patterns. The former indicates continental/temperate379

regions with summer rainfall and vegetation in well-watered condi-380

tions throughout the year or for a large part of it, while the latter381

indicates Mediterranean climates characterized by dry summers and382

prolonged water-limitation to evapotranspiration. However, more383

complex seasonal dynamics occur on continental scales (26) where384

bimodal rainfall patterns (84) and agriculture/irrigation in rural385

areas (16) may alter the hysteretic cycles illustrated here. Also,386

hysteresis is likely to disappear in aseasonal tropical regions where387

rainfall and temperature are relatively constant throughout the388

year. Land surface diagnostics by MERRA are then employed to389

assess the accuracy of simulated background albedo, leaf area index,390

and evapotranspiration (see SI). Mean monthly surface temperature391

is estimated from air temperature assuming a linear relation, i.e.392

Ts(Ta) = aT · Ta + bT (18).393

Mathematical model. The mathematical model is structured as fol-394

lows. First a stochastic soil moisture balance is solved on daily395

time scales to describe the seasonal dynamics of soil water, evap-396

otranspiration, leaf area index, and surface albedo in rural areas.397

Then, urban-induced changes in surface temperature ∆Ts are esti-398

mated by means of a coarse-grained SUHI model that accounts for399

urban-rural changes in surface albedo, emissivity, evapotranspira-400

tion, convection efficiency, and anthropogenic heat. This framework401

provides a fully coupled description of the urban-rural system link-402

ing rainfall statistics and soil moisture dynamics to seasonal SUHI403

variations via changes in ET and albedo. Further details on the404

model development are now presented. 405

Stochastic soil water balance. At daily timescales, the degree of 406

saturation (s) dynamics can be described by a dominant balance 407

between intermittent rainfall pulses (R), evapotranspiration (ET ), 408

leakage and runoff (LQ) (51, 52), i.e. 409

nZr
ds(t)
dt

= R(t)− ET (s(t), t)− LQ(s(t), t); [5] 410

where n is soil porosity and Zr the rooting depth. On daily time 411

scales, rainfall R [mm d−1] can be modeled as a marked Poisson 412

process with frequency λR [d−1] and events characterized by a 413

random rainfall depth with exponential distribution of mean a 414

[mm]. Given the stochastic nature of rainfall, Eq. 5 requires a 415

solution in probabilistic terms (37, 51, 52). Defining a standardized 416

relative soil moisture x(t) = (s(t)− sw)/(s1 − sw), where sw is the 417

wilting point and s1 is a threshold around field capacity, considering 418

temporal averages 〈x(t)〉 taken from an ensemble of stochastic 419

rainfall realizations, and neglecting daily fluctuations around the 420

mean, Eq. 5 can be rewritten as: 421

d〈x(t)〉
dt

=
λR(t)
γ(t)

− k(t)〈x(t)〉 −
λR(t)
γ(t)

e−γ(t)(1−〈x(t)〉); [6] 422

where γ(t) = w0
a(t) is the soil storage index, k(t) = ETmax(t)

w0
is the 423

normalized potential evapotranpiration, and w0 = nZr(s1 − sw) is 424

the maximum plant-available soil water storage. Potential evap- 425

otranspiration ETmax is computed from monthly mean short- 426

wave radiation Rsw [MJ m−2 d−1] and air temperature Ta 427

[◦C] with the Turc model (85, 86), i.e. ETmax(t) = 0.013 · 428

Ta(t)
Ta(t)+15 (23.89 ·Rsw(t) + 50) [mm d−1]. 429

Eq. 6 is a nonlinear ODE that can be solved numerically starting 430

from an initial condition 〈x(t0)〉 once the model parameters are 431

known. To ensure a consistent value of the initial condition, a 432

spin-up simulation of 5 years is run, thus eliminating any influence 433

of 〈x(t0)〉 on the simulated seasonal patterns. To keep the model 434

simple, a constant rainfall depth per event a(t)=15 mm is employed 435

and only the number of events is assumed to vary among cities (i.e., 436

λR). The value of a is consistent with the assumption of γ=5.5 437

employed in the literature (37, 51). 438

Coarse-grained SUHI model. The intensity of SUHIs can be derived 439

from the surface energy balance considering urbanization as a a first- 440

order perturbation to the rural base state. Specifically, following the 441

derivation by Manoli et al. (18), urban-rural surface temperature 442

differences ∆Ts can be expressed as: 443

∆Ts(t) =
1

fs(t)− γ
aT
fa(t)

∆S(t); [7] 444
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where fs and fa [W m−2 K−1] are energy redistribution factors445

associated with surface and air temperature, respectively (87), ∆S446

[W m−2] is the differential energy forcing due to urban-induced447

changes in the surface energy balance and γ and aT are parameters448

accounting for the coupling between Ts and Ta. The ∆Ts in Eq. 7449

represent mean daily values of SUHI intensity as daytime/nighttime450

conditions are smoothed over on monthly timescales and heat storage451

effects are neglected (18).452

To directly link evapotranspiration to incoming solar radiation,453

the model presented by Manoli et al. (18) is modified by neglecting454

changes in ET due to ∆Ts (87), i.e. ET (Ts + ∆Ts) = ET (Ts) +455
dET
dTs

∆Ts+ ... ' ET (Ts). Under this assumption, the terms in Eq. 7456

become:457

∆S(t) = −Rsw(t)∆α(t) + σ(εaTa(t)4 − Ts(t)4)∆εs − λ∆ET (t)+

+ρcp
Ts(t)− Ta(t)

ra(t)2 ∆ra(t) + ∆Qah(t)

[8]458

and459

fs(t) =
ρcp

ra(t)
+ 4σεsTs(t)3; [9]460

fa(t) =
ρcp

ra(t)
+ 4σεsεaTa(t)3; [10]461

where ∆ is a perturbation reflecting urban-rural differences, σ is462

the Stefan-Boltzmann constant, εs and εa are the land surface and463

atmosphere emissivities, respectively, ρ is the mean air density, ra is464

the aerodynamic resistance, cp is the specific heat of air at constant465

pressure, and ∆Qah ∼ Qah,u, with Qah,u the anthropogenic heat466

flux from the urban surface.467

A description of the different terms in Eq. 8 is provided below468

while model parameters are listed in the SI (Table S1). Results469

presented in the SI demonstrate that the assumption of a negligible470

ET −∆Ts feedback is reasonable at the city and monthly scale and471

the modified model version is capable of reproducing the global472

∆Ts patterns reported elsewhere (18).473

Changes in albedo are computed as ∆α(t) = αu(t)−α(t), where474

αu is the mean urban albedo. To account for the impact of vege-475

tation on (snow-free) rural albedo, Rechid et al. (88) proposed the476

following relation:477

α(t) = αsoile
−0.5·LAI(t) + αcanopy ·

(
1− e−0.5·LAI(t)

)
; [11]478

where LAI is the leaf area index assumed to vary linearly with479

ET , i.e. LAI(t) = a1 + a2 · ET (t), where a1 and a2 are model480

parameters. Although simplistic, this approach provides reasonable481

estimates of albedo seasonal dynamics (see Fig. S3-S7 in the SI)482

and is considered adequate for the purpose of this study. The urban483

albedo is computed as:484

αu(t) = (1− gc,u) · αu,0 + gc,u · αgc(t); [12]485

where gc,u is the urban green cover and αu,0 is the average albedo486

of the urban surface. The albedo of the urban green cover, αgc, is487

computed using Eq. 11 but considering the LAI and ET of urban488

vegetation.489

Rural evapotranspiration is calculated as ET (t) =490

〈x(t)〉ETmax(t) and urban-rural changes in ET are com-491

puted as ∆ET (t) = gc,uETu(t) − gcET (t) where gc ∼ 1 is the492

rural green cover and evapotranspiration by urban vegetation is493

defined as:494

ETu(t) = ET (t) + Ir,u · (ETmax(t)− ET (t)) ; [13]495

with Ir,u an irrigation index varying between 0 (natural conditions)496

and 1 (no water supply limitations so that ETu = ETmax).497

Urban emissivity (εs,u) and aerodynamic resistance (ra,u) are498

calculated according to Manoli et al. (18). The mean building499

height (hc,u) of each city is computed considering the scaling of500

hc,u with population N (89) and then employed to estimate the501

aerodynamic resistance, ra,u, the sky view factor vsky , and εs,u. To502

account for the effect of building density on surface roughness, the503

parameterization proposed by Macdonald et al. (90) is used in the504

calculation of ra,u. The rural aerodynamic resistance is computed505

considering an average vegetation height hc that varies depending506

on climate and well established height-based parameterizations for507

roughness (18).508

The anthropogenic heat flux generated by urban areas is known 509

to increase with population density ρN = N/Au (e.g. 91–94), i.e. 510

Qah,u ∼ qah,u(Ta,u) · ρN , where Au is the urban area, Ta,u the 511

urban air temperature, and qah,u accounts for metabolic, vehicle, 512

and building heat emission rates. Assuming that Ta,u ∼ Ta, seasonal 513

variations in heat emissions (e.g. associated with variations in the 514

energy demand of buildings) are modeled as qah,u(Ta) = aq0 + 515

aq1CDD(Ta) + aq2HDD(Ta) (94, 95) where CDD = H[Ta − T ∗] · 516

(Ta − T ∗) and HDD = H[T ∗ − Ta] · (T ∗ − Ta) are the cooling 517

and heating degree days, respectively, T ∗ is the base temperature, 518

H[·] is the Heaviside step function, and aq0, aq1, and aq2 are 519

model parameters (94). Note that the calculation of qah,u on 520

daily timescales might underestimate the actual anthropogenic flux. 521

However, the focus here is on city-scale averages that includes 522

low density residential zones and model results are consistent with 523

literature values for suburban areas (see SI). 524

Code availability. The MATLAB code (https://www.mathworks.com/ 525

products/matlab.html) of the coarse-grained SUHI model is available 526

on Code Ocean (https://doi.org/10.24433/CO.9808462.v1). 527

ACKNOWLEDGMENTS. GM was supported by the “The Branco 528

Weiss Fellowship - Society in Science" administered by ETH Zurich. 529

E.B.Z. acknowledges support by the Army Research Office under 530

contract W911NF-15-1-0003 (program manager J. Barzyk), and 531

the US National Science Foundation (NSF) under grant No. ICER- 532

1664021 and SRN cooperative agreement No. 1444758. G.K. ac- 533

knowledges support from NSF under grants No. NSF-AGS-1644382 534

and NSF-IOS-1754893. 535

1. Luke Howard. The Climate of London: deduced from Meteorological observations, made at 536

different places in the neighbourhood of the metropolis, volume 1. W. Phillips, sold also by J. 537

and A. Arch, 1818. 538

2. M Santamouris, C Cartalis, A Synnefa, and D Kolokotsa. On the impact of urban heat island 539

and global warming on the power demand and electricity consumption of buildings—a review. 540

Energy and Buildings, 98:119–124, 2015. 541

3. Francisco Estrada, WJ Wouter Botzen, and Richard SJ Tol. A global economic assessment 542

of city policies to reduce climate change impacts. Nature Climate Change, 7(6):403, 2017. 543

4. Yvonne Rydin, Ana Bleahu, Michael Davies, Julio D Dávila, Sharon Friel, Giovanni De Gran- 544

dis, Nora Groce, Pedro C Hallal, Ian Hamilton, Philippa Howden-Chapman, et al. Shap- 545

ing cities for health: complexity and the planning of urban environments in the 21st century. 546

Lancet, 379(9831):2079, 2012. 547

5. Jonathan A Patz, Diarmid Campbell-Lendrum, Tracey Holloway, and Jonathan A Foley. Im- 548

pact of regional climate change on human health. Nature, 438(7066):310, 2005. 549

6. Camilo Mora, Bénédicte Dousset, Iain R Caldwell, Farrah E Powell, Rollan C Geronimo, 550

Coral R Bielecki, Chelsie WW Counsell, Bonnie S Dietrich, Emily T Johnston, Leo V Louis, 551

et al. Global risk of deadly heat. Nature Climate Change, 7(7):501, 2017. 552

7. Tim R Oke. City size and the urban heat island. Atmospheric Environment (1967), 7(8): 553

769–779, 1973. 554

8. Timothy R Oke. The energetic basis of the urban heat island. Quarterly Journal of the Royal 555

Meteorological Society, 108(455):1–24, 1982. 556

9. Tim R Oke. The urban energy balance. Progress in Physical geography, 12(4):471–508, 557

1988. 558

10. Haider Taha. Urban climates and heat islands: albedo, evapotranspiration, and anthro- 559

pogenic heat. Energy and buildings, 25(2):99–103, 1997. 560

11. CSB Grimmond and Timothy R Oke. Aerodynamic properties of urban areas derived from 561

analysis of surface form. Journal of Applied Meteorology, 38(9):1262–1292, 1999. 562

12. Menglin Jin, Robert E Dickinson, and DA Zhang. The footprint of urban areas on global 563

climate as characterized by MODIS. Journal of climate, 18(10):1551–1565, 2005. 564

13. Marc L Imhoff, Ping Zhang, Robert E Wolfe, and Lahouari Bounoua. Remote sensing of the 565

urban heat island effect across biomes in the continental usa. Remote sensing of environ- 566

ment, 114(3):504–513, 2010. 567

14. Nicholas Clinton and Peng Gong. MODIS detected surface urban heat islands and sinks: 568

Global locations and controls. Remote Sensing of Environment, 134:294–304, 2013. 569

15. Lei Zhao, Xuhui Lee, Ronald B Smith, and Keith Oleson. Strong contributions of local back- 570

ground climate to urban heat islands. Nature, 511(7508):216, 2014. 571

16. Rahul Kumar, Vimal Mishra, Jonathan Buzan, Rohini Kumar, Drew Shindell, and Matthew 572

Huber. Dominant control of agriculture and irrigation on urban heat island in India. Scientific 573

Reports, 7(1):14054, 2017. 574

17. Yaofeng Gu and Dan Li. A modeling study of the sensitivity of urban heat islands to precipita- 575

tion at climate scales. Urban Climate, 24:982–993, 2018. 576

18. Gabriele Manoli, Simone Fatichi, Markus Schläpfer, Kailiang Yu, Thomas W Crowther, Naika 577

Meili, Paolo Burlando, Gabriel G Katul, and Elie Bou-Zeid. Magnitude of urban heat islands 578

largely explained by climate and population. Nature, 573(7772):55–60, 2019. 579

19. TR Oke. The heat island of the urban boundary layer: characteristics, causes and effects. In 580

Wind climate in cities, pages 81–107. Springer, 1995. 581

20. A John Arnfield. Two decades of urban climate research: a review of turbulence, exchanges 582

of energy and water, and the urban heat island. International Journal of Climatology: a 583

Journal of the Royal Meteorological Society, 23(1):1–26, 2003. 584

21. Donald M Yow. Urban heat islands: observations, impacts, and adaptation. Geography 585

Compass, 1(6):1227–1251, 2007. 586

Manoli et al. PNAS | February 13, 2020 | vol. XXX | no. XX | 7

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.24433/CO.9808462.v1


DRAFT

22. Timothy R Oke, Gerald Mills, Andreas Christen, and James A Voogt. Urban Climates. Cam-587

bridge University Press, 2017.588

23. Dan Li, Elie Bou-Zeid, and Michael Oppenheimer. The effectiveness of cool and green roofs589

as urban heat island mitigation strategies. Environmental Research Letters, 9(5):055002,590

2014.591

24. NE Theeuwes, GJ Steeneveld, RJ Ronda, BG Heusinkveld, LWA Van Hove, and AAM Holt-592

slag. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Quar-593

terly Journal of the Royal Meteorological Society, 140(684):2197–2210, 2014.594

25. Kai Wang, Yuguo Li, Yi Wang, and Xinyan Yang. On the asymmetry of the urban daily air595

temperature cycle. Journal of Geophysical Research: Atmospheres, 122(11):5625–5635,596

2017.597

26. B Zhou, D Rybski, and Jürgen P Kropp. On the statistics of urban heat island intensity.598

Geophysical Research Letters, 40(20):5486–5491, 2013.599

27. Bin Zhou, Dirk Lauwaet, Hans Hooyberghs, Koen De Ridder, Jürgen P Kropp, and Diego600

Rybski. Assessing seasonality in the surface urban heat island of London. Journal of Applied601

Meteorology and Climatology, 55(3):493–505, 2016.602

28. IR Imamura. Role of soil moisture in the determination of urban heat island intensity in603

different climate regimes. WIT Transactions on Ecology and the Environment, 1, 1970.604

29. Jianguo Liu, Thomas Dietz, Stephen R Carpenter, Marina Alberti, Carl Folke, Emilio Moran,605

Alice N Pell, Peter Deadman, Timothy Kratz, Jane Lubchenco, et al. Complexity of coupled606

human and natural systems. science, 317(5844):1513–1516, 2007.607

30. Yosef Ashkenazy, Yizhak Feliks, Hezi Gildor, and Eli Tziperman. Asymmetry of daily temper-608

ature records. Journal of the Atmospheric Sciences, 65(10):3327–3336, 2008.609

31. KA Morris. What is hysteresis? Applied Mechanics Reviews, 64(5):050801, 2011.610

32. PG Jarvis. The interpretation of the variations in leaf water potential and stomatal conduc-611

tance found in canopies in the field. Phil. Trans. R. Soc. Lond. B, 273(927):593–610, 1976.612

33. A Tuzet, A Perrier, and R Leuning. A coupled model of stomatal conductance, photosynthesis613

and transpiration. Plant, Cell & Environment, 26(7):1097–1116, 2003.614

34. Quan Zhang, Stefano Manzoni, Gabriel Katul, Amilcare Porporato, and Dawen Yang. The hys-615

teretic evapotranspiration—vapor pressure deficit relation. Journal of Geophysical Research:616

Biogeosciences, 119(2):125–140, 2014.617

35. Ashley M Matheny, Gil Bohrer, Paul C Stoy, Ian T Baker, Andy T Black, Ankur R Desai,618

Michael C Dietze, Chris M Gough, Valeriy Y Ivanov, Rachhpal S Jassal, et al. Characterizing619

the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface620

models: An NACP analysis. Journal of Geophysical Research: Biogeosciences, 119(7):621

1458–1473, 2014.622

36. Valeriy Y Ivanov, Simone Fatichi, G Darrel Jenerette, Javier F Espeleta, Peter A Troch, and623

Travis E Huxman. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing”624

effect of vegetation. Water Resources Research, 46(9), 2010.625

37. Xue Feng, Amilcare Porporato, and Ignacio Rodriguez-Iturbe. Stochastic soil water balance626

under seasonal climates. Proc. R. Soc. A, 471(2174):20140623, 2015.627

38. Simone Fatichi, Gabriel G Katul, Valeriy Y Ivanov, Christoforos Pappas, Athanasios Paschalis,628

Ada Consolo, Jongho Kim, and Paolo Burlando. Abiotic and biotic controls of soil moisture629

spatiotemporal variability and the occurrence of hysteresis. Water Resources Research, 51630

(5):3505–3524, 2015.631

39. G Zuecco, D Penna, M Borga, and HJ van Meerveld. A versatile index to characterize hys-632

teresis between hydrological variables at the runoff event timescale. Hydrological Processes,633

30(9):1449–1466, 2016.634

40. Yechezkel Mualem. A conceptual model of hysteresis. Water Resources Research, 10(3):635

514–520, 1974.636

41. Shuli Niu, Yiqi Luo, Shenfeng Fei, Leonardo Montagnani, GIL Bohrer, Ivan A Janssens,637

Bert Gielen, Serge Rambal, Eddy Moors, and Giorgio Matteucci. Seasonal hysteresis of638

net ecosystem exchange in response to temperature change: patterns and causes. Global639

Change Biology, 17(10):3102–3114, 2011.640

42. Quan Zhang, Gabriel G Katul, Ram Oren, Edoardo Daly, Stefano Manzoni, and Dawen Yang.641

The hysteresis response of soil CO2 concentration and soil respiration to soil temperature.642

Journal of Geophysical Research: Biogeosciences, 120(8):1605–1618, 2015.643

43. Quan Zhang, Richard P Phillips, Stefano Manzoni, Russell L Scott, A Christopher Oishi,644

Adrien Finzi, Edoardo Daly, Rodrigo Vargas, and Kimberly A Novick. Changes in photosynthe-645

sis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship.646

Agricultural and Forest Meteorology, 259:184–195, 2018.647

44. CSB Grimmond, HA Cleugh, and TR Oke. An objective urban heat storage model and its648

comparison with other schemes. Atmospheric Environment. Part B. Urban Atmosphere, 25649

(3):311–326, 1991.650

45. Ting Sun, Zhi-Hua Wang, and Guang-Heng Ni. Revisiting the hysteresis effect in surface651

energy budgets. Geophysical Research Letters, 40(9):1741–1747, 2013.652

46. CSB Grimmond, M Blackett, MJ Best, J Barlow, JJ Baik, SE Belcher, SI Bohnenstengel, I Cal-653

met, Fei Chen, A Dandou, et al. The international urban energy balance models comparison654

project: first results from phase 1. Journal of applied meteorology and climatology, 49(6):655

1268–1292, 2010.656

47. Valéry Masson. A physically-based scheme for the urban energy budget in atmospheric657

models. Boundary-layer meteorology, 94(3):357–397, 2000.658

48. Zhi-Hua Wang, Elie Bou-Zeid, and James A Smith. A coupled energy transport and hydrolog-659

ical model for urban canopies evaluated using a wireless sensor network. Quarterly Journal660

of the Royal Meteorological Society, 139(675):1643–1657, 2013.661

49. Kerry A Nice, Andrew M Coutts, and Nigel J Tapper. Development of the vtuf-3d v1. 0 urban662

micro-climate model to support assessment of urban vegetation influences on human thermal663

comfort. Urban climate, 24:1052–1076, 2018.664

50. Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston TL Chow, Andrew M665

Coutts, Edoardo Daly, Kerry A Nice, Matthias Roth, Nigel J Tapper, et al. An urban ecohydro-666

logical model to quantify the effect of vegetation on urban climate and hydrology (ut&c v1. 0).667

Geoscientific Model Development Discussions, (13):335–362, 2020.668

51. Amilcare Porporato, Edoardo Daly, and Ignacio Rodriguez-Iturbe. Soil water balance and669

ecosystem response to climate change. The American Naturalist, 164(5):625–632, 2004.670

52. Ignacio Rodríguez-Iturbe and Amilcare Porporato. Ecohydrology of water-controlled ecosys- 671

tems: soil moisture and plant dynamics. Cambridge University Press, 2007. 672

53. Lei Zhao, Michael Oppenheimer, Qing Zhu, Jane W Baldwin, Kristie L Ebi, Elie Bou-Zeid, 673

Kaiyu Guan, and Xu Liu. Interactions between urban heat islands and heat waves. Environ- 674

mental Research Letters, 13(3):034003, 2018. 675

54. Maider Llaguno-Munitxa and Elie Bou-Zeid. Shaping buildings to promote street ventilation: 676

A large-eddy simulation study. Urban climate, 26:76–94, 2018. 677

55. Decheng Zhou, Liangxia Zhang, Dan Li, Dian Huang, and Chao Zhu. Climate–vegetation 678

control on the diurnal and seasonal variations of surface urban heat islands in China. Envi- 679

ronmental Research Letters, 11(7):074009, 2016. 680

56. TR Oke, GT Johnson, DG Steyn, and ID Watson. Simulation of surface urban heat islands 681

under ‘ideal’conditions at night part 2: Diagnosis of causation. Boundary-layer meteorology, 682

56(4):339–358, 1991. 683

57. KE Runnalls and TR Oke. Dynamics and controls of the near-surface heat island of vancou- 684

ver, british columbia. Physical Geography, 21(4):283–304, 2000. 685

58. T Chakraborty and X Lee. A simplified urban-extent algorithm to characterize surface urban 686

heat islands on a global scale and examine vegetation control on their spatiotemporal vari- 687

ability. International Journal of Applied Earth Observation and Geoinformation, 74:269–280, 688

2019. 689

59. United Nations. New urban agenda. Conference on Housing and Sustainable Urban Devel- 690

opment (Habitat III), Quito, Ecuador, 2017. 691

60. Hashem Akbari, Surabi Menon, and Arthur Rosenfeld. Global cooling: increasing world-wide 692

urban albedos to offset CO2 . Climatic change, 94(3-4):275–286, 2009. 693

61. KR Gunawardena, MJ Wells, and Tristan Kershaw. Utilising green and bluespace to mitigate 694

urban heat island intensity. Science of the Total Environment, 584:1040–1055, 2017. 695

62. Carly D Ziter, Eric J Pedersen, Christopher J Kucharik, and Monica G Turner. Scale- 696

dependent interactions between tree canopy cover and impervious surfaces reduce day- 697

time urban heat during summer. Proceedings of the National Academy of Sciences, page 698

201817561, 2019. 699

63. Patricia Gober, Anthony Brazel, Ray Quay, Soe Myint, Susanne Grossman-Clarke, Adam 700

Miller, and Steve Rossi. Using watered landscapes to manipulate urban heat island effects: 701

how much water will it take to cool Phoenix? Journal of the American Planning Association, 702

76(1):109–121, 2009. 703

64. E Scott Krayenhoff, Mohamed Moustaoui, Ashley M Broadbent, Vishesh Gupta, and Matei 704

Georgescu. Diurnal interaction between urban expansion, climate change and adaptation in 705

us cities. Nature Climate Change, 8(12):1097–1103, 2018. 706

65. Jean-Francois Bastin, Emily Clark, Thomas Elliott, Simon Hart, Johan van den Hoogen, Iris 707

Hordijk, Haozhi Ma, Sabiha Majumder, Gabriele Manoli, Julia Maschler, et al. Understanding 708

climate change from a global analysis of city analogues. PloS one, 14(7):e0217592, 2019. 709

66. Zhaowu Yu, Shaobin Xu, Yuhan Zhang, Gertrud Jørgensen, and Henrik Vejre. Strong contri- 710

butions of local background climate to the cooling effect of urban green vegetation. Scientific 711

Reports, 8(1):6798, 2018. 712

67. Jiachuan Yang and Elie Bou-Zeid. Should cities embrace their heat islands as shields from 713

extreme cold? Journal of Applied Meteorology and Climatology, 57:1309–1320, 2018. 714

68. Prathap Ramamurthy, Ting Sun, Keith Rule, and Elie Bou-Zeid. The joint influence of albedo 715

and insulation on roof performance: An observational study. Energy and Buildings, 93:249– 716

258, 2015. 717

69. Prathap Ramamurthy, Ting Sun, Keith Rule, and Elie Bou-Zeid. The joint influence of albedo 718

and insulation on roof performance: A modeling study. Energy and Buildings, 102:317–327, 719

2015. 720

70. Antonio Gasparrini, Yuming Guo, Masahiro Hashizume, Eric Lavigne, Antonella Zanobetti, 721

Joel Schwartz, Aurelio Tobias, Shilu Tong, Joacim Rocklöv, Bertil Forsberg, et al. Mortality 722

risk attributable to high and low ambient temperature: a multicountry observational study. The 723

Lancet, 386(9991):369–375, 2015. 724

71. David M Hondula, Robert E Davis, and Matei Georgescu. Clarifying the connections between 725

green space, urban climate, and heat-related mortality, 2018. 726

72. Alberto Martilli, E Scott Krayenhoff, and Negin Nazarian. Is the urban heat island intensity 727

relevant for heat mitigation studies? Urban Climate, 31:100541, 2020. 728

73. Hiteshri Shastri, Beas Barik, Subimal Ghosh, Chandra Venkataraman, and Pankaj Sadavarte. 729

Flip flop of day-night and summer-winter surface urban heat island intensity in India. Scientific 730

reports, 7:40178, 2017. 731

74. Tirthankar Chakraborty, Chandan Sarangi, and Sachchida Nand Tripathi. Understanding diur- 732

nality and inter-seasonality of a sub-tropical urban heat island. Boundary-Layer Meteorology, 733

163(2):287–309, 2017. 734

75. M Georgescu, M Moustaoui, A Mahalov, and Jimy Dudhia. An alternative explanation of the 735

semiarid urban area “oasis effect”. Journal of Geophysical Research: Atmospheres, 116 736

(D24), 2011. 737

76. Young-Kwon Lim, Ming Cai, Eugenia Kalnay, and Liming Zhou. Observational evidence of 738

sensitivity of surface climate changes to land types and urbanization. Geophysical Research 739

Letters, 32(22), 2005. 740

77. JM Sobstyl, T Emig, MJ Abdolhosseini Qomi, F-J Ulm, and RJ-M Pellenq. Role of city texture 741

in urban heat islands at nighttime. Physical review letters, 120(10):108701, 2018. 742

78. Mark P McCarthy, Martin J Best, and Richard A Betts. Climate change in cities due to global 743

warming and urban effects. Geophysical research letters, 37(9), 2010. 744

79. Keith Oleson. Contrasts between urban and rural climate in ccsm4 cmip5 climate change 745

scenarios. Journal of Climate, 25(5):1390–1412, 2012. 746

80. Jiameng Lai, Wenfeng Zhan, Fan Huang, James Voogt, Benjamin Bechtel, Michael Allen, 747

Shushi Peng, Falu Hong, Yongxue Liu, and Peijun Du. Identification of typical diurnal patterns 748

for clear-sky climatology of surface urban heat islands. Remote sensing of environment, 217: 749

203–220, 2018. 750

81. PCD Milly. Climate, soil water storage, and the average annual water balance. Water Re- 751

sources Research, 30(7):2143–2156, 1994. 752

82. Wouter R Berghuijs, Murugesu Sivapalan, Ross A Woods, and Hubert HG Savenije. Patterns 753

of similarity of seasonal water balances: A window into streamflow variability over a range of 754

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Manoli et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

time scales. Water Resources Research, 50(7):5638–5661, 2014.755

83. Ronald Gelaro, Will McCarty, Max J Suárez, Ricardo Todling, Andrea Molod, Lawrence756

Takacs, Cynthia A Randles, Anton Darmenov, Michael G Bosilovich, Rolf Reichle, et al. The757

Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).758

Journal of Climate, 30(14):5419–5454, 2017.759

84. Wouter JM Knoben, Ross A Woods, and Jim E Freer. Global bimodal precipitation seasonal-760

ity: A systematic overview. International Journal of Climatology, 39(1):558–567, 2019.761

85. L Turc. Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle. Ann. Agron.,762

12:13–49, 1961.763

86. Ludovic Oudin, Frédéric Hervieu, Claude Michel, Charles Perrin, Vazken Andréassian,764

François Anctil, and Cécile Loumagne. Which potential evapotranspiration input for a lumped765

rainfall–runoff model?: Part 2 - Towards a simple and efficient potential evapotranspiration766

model for rainfall–runoff modelling. Journal of hydrology, 303(1-4):290–306, 2005.767

87. Zhenzhong Zeng, Shilong Piao, Laurent ZX Li, Liming Zhou, Philippe Ciais, Tao Wang, Yue768

Li, Xu Lian, Eric F Wood, Pierre Friedlingstein, et al. Climate mitigation from vegetation769

biophysical feedbacks during the past three decades. Nature Climate Change, 7(6):432,770

2017.771

88. Diana Rechid, Thomas J Raddatz, and Daniela Jacob. Parameterization of snow-free land772

surface albedo as a function of vegetation phenology based on MODIS data and applied in773

climate modelling. Theoretical and applied Climatology, 95(3-4):245–255, 2009.774

89. Markus Schläpfer, Joey Lee, and Luís Bettencourt. Urban skylines: building heights and775

shapes as measures of city size. Preprint at https://arxiv.org/abs/1512.00946, 2015.776

90. RW Macdonald, RF Griffiths, and DJ Hall. An improved method for the estimation of surface777

roughness of obstacle arrays. Atmospheric Environment, 32(11):1857–1864, 1998.778

91. L Allen, F Lindberg, and CSB Grimmond. Global to city scale urban anthropogenic heat flux:779

model and variability. International Journal of Climatology, 31(13):1990–2005, 2011.780

92. David J Sailor and Lu Lu. A top–down methodology for developing diurnal and seasonal an-781

thropogenic heating profiles for urban areas. Atmospheric Environment, 38(17):2737–2748,782

2004.783

93. David J Sailor, Matei Georgescu, Jeffrey M Milne, and Melissa A Hart. Development of a784

national anthropogenic heating database with an extrapolation for international cities. Atmo-785

spheric Environment, 118:7–18, 2015.786

94. Helen C Ward, Simone Kotthaus, Leena Järvi, and C Sue B Grimmond. Surface urban energy787

and water balance scheme (SUEWS): development and evaluation at two UK sites. Urban788

Climate, 18:1–32, 2016.789

95. David J Sailor and Chittaranjan Vasireddy. Correcting aggregate energy consumption data to790

account for variability in local weather. Environmental Modelling & Software, 21(5):733–738,791

2006.792

Manoli et al. PNAS | February 13, 2020 | vol. XXX | no. XX | 9


	Materials and Methods

