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Standfirst  

The increasing availability of sequencing has accelerated the discovery of genetic causes of 

kidney disease, with clear benefits for patients. However, insufficient or contradictory 

evidence exists for numerous variants that were previously reported to be pathogenic, calling 

into question some proposed gene–disease associations. Rigorous re-appraisal of evidence is 

needed to assure diagnostic accuracy. 

 

 

Main commentary  

Genetics has had a dramatic impact on modern medicine, including nephrology. Over the past 

2–3 decades, hundreds of genes associated with kidney disease have been discovered, 

providing precise diagnoses and revealing fundamental insights into renal physiology and 

pathology. The rapid pace of kidney genomic discovery and its clinical implementation is 

exciting and holds great promise. However, concerns exist that the ability to generate 

genomic data from patients is outpacing our ability to interpret the data properly. If we are to 

effectively integrate genomic medicine into nephrology, accurate assessment of genes and 

variants is needed. Here, we aim to highlight the scale and scope of the challenge in kidney 

genomics and discuss strategies to improve diagnostic accuracy. 

 

[H1] Relevance of diagnostic accuracy 

A genetic diagnosis can end protracted diagnostic odysseys, enable targeted treatments, 

inform the risk of disease recurrence after transplantation and aid the assessment of potential 

donors. Conversely, an erroneous interpretation of a genetic test may lead to unsuitable 

treatment and can misinform risk of disease recurrence, risk to family members (including 

potential donors) and decisions with regard to family planning or pregnancy termination. In 

short, diagnostic accuracy of a genetic test is of utmost importance and proper evaluation of 

the results and methods is critical for patient care.  

 

[H1] Scope of diagnostic inaccuracy 

The problem of diagnostic inaccuracy is not restricted to nephrology. Over the past ten years, 

a number of public databases such as gnomAD (gnomad.broadinstitute.org) that aggregate 

large amounts of sequencing data have become publicly available. These resources provide 

insights into variant frequency within reference populations, enabling robust assessment of 

published disease-associated variants. Such assessments have revealed that many published 



variants are unlikely to cause disease due to their excessive frequency in healthy controls and 

a lack of independent, robust evidence for pathogenicity. One review estimated that up to a 

quarter of published variants might be erroneously considered pathogenic.1  

 

[H1] Variant classification  

Professional societies, such as the American College of Medical Genetics (ACMG) and the 

Association for Molecular Pathology (AMP) have proposed the use of graded evidence to 

classify variants as benign, likely benign, of uncertain significance, likely pathogenic or 

pathogenic and computational tools are now available to support this approach.2 Importantly, 

the absence of a variant from population databases alone constitutes insufficient evidence of 

pathogenicity. Moreover, judgement needs to be applied to some criteria, such as functional 

studies. Usually, these should be graded as supportive, since only well-validated clinical 

assays can provide strong evidence of causality.3  

 

[H1] Variants of uncertain significance  

Multiple evidence types, with at least one being strong or moderate, are needed to classify a 

variant as (likely) pathogenic. Most novel missense variants will be variants of uncertain 

significance (VUS), which is therefore a common outcome of genetic studies. Critical review 

of the phenotype is necessary to determine whether a particular variant fits the clinical 

findings. If the prior probability of a given monogenic disorder is low VUS are very unlikely 

to be disease-causing (Supplementary Figure 1). Evidence to prove variant pathogenicity is 

often insufficient, even when the gene matches the phenotype.4 

 

Genes of uncertain significance 

In some instances, application of graded evidence can call into question the entire association 

of a gene with a disease, so that it becomes a gene of uncertain significance. For example, a 

2008 study identified 3 different heterozygous variants in SLC9A3R1 (which encodes 

NHERF1) in 4 of 92 European individuals with nephrolithiasis or osteopenia,5 with clinical 

and functional evidence consistent with a causative role for the variants in renal phosphate 

loss, leading to nephrolithiasis or osteopenia. However, analysis of population databases 

shows that the cumulative frequency of those 3 variants in Europeans is 5.2%. Not only is 

this frequency essentially the same as that in the study group (4.4%), but if these 3 variants 

were indeed disease causative, the implication is that SLC9A3R1-related disease would be the 

most common genetic kidney disorder, exceeding ADPKD by approximately 50-fold. 



Despite these observations, which call into question a pathogenic role of SLC9A3R1 variants, 

these are still described by OMIM (#604990) and by several published papers as a genetic 

cause of kidney disease, highlighting the need to critically review published evidence to aid 

variant interpretation  

Small study sizes also pose a problem when assessing the causality of identified variants. 

Whilst the number of reported disease genes has increased dramatically in recent years, each 

novel disease gene identified tends to be causative in ever-smaller subsets of patients. 

Consequently, reporting numbers can be as low as a single patient, increasing the likelihood 

of an incidental association.6 

 

[H1] Defining genetic architecture 

The likelihood of a genetic test correctly revealing the molecular diagnosis is critically 

dependent on the prevalence of detectable monogenic disorders in the test population — that 

is, the prior probability of individuals within the test population having an identifiable, 

disease-causing variant. In situations in which similar clinical presentations can result from 

monogenic or non-monogenic disorders (for example, nephrotic syndrome or C3 

glomerulopathy), it is vitally important that accurate data are available to allow reliable 

estimation of the prior probability. Two methodological issues commonly contribute to 

overestimation of the prior probability. The first is that studies often enrol patients who have 

been highly selected based on their likelihood of having a monogenic disease (for example, 

based on family history, parental consanguinity and/or syndromic features). The second 

involves the misclassification of variants as pathogenic in cohort studies on which the 

estimate is based. Such misclassification is a particular issue in older genetic studies, 

conducted before the ACMG–AMP criteria were formulated and/or prior to the availability of 

large-scale population sequencing data. Yet despite the availability of these resources, 

misclassified variants remain a problem.  

Another example of potential misunderstanding of genetic architecture concerns recessive 

disorders that can be caused by a number of genes, such as Bartter or nephrotic syndromes. 

Increasingly, digenic or oligogenic inheritance of variants has been proposed, whereby the 

disease is supposedly caused by heterozygous variants in different causative genes. Such 

reports seem to be emerging for a couple of reasons. First, owing to the ability to sequence 

many genes simultaneously and second because of the temptation to assign causality to single 

variants across multiple recessive disease genes implicated in a particular disease. However, 

solid evidence from controlled studies that recessive kidney disorders can be caused by such 



combination of heterozygous variants is lacking. A key problem with many such studies is 

that they consider cases only and do not assess the frequency of individually rare, 

heterozygous variants ascertained comparably in ethnically matched controls. Unfortunately, 

public sequencing databases aggregate variants on a population level, thereby preventing 

comparisons of the burden of rare variants at the individual level. 

 

[H1] Drivers of inaccuracy 

The understandable desire of researchers and clinicians to provide a definitive molecular 

diagnosis for patients potentially increases the risk of a well-recognised statistical reasoning 

error termed the ‘prosecutor’s fallacy’.7 In the context of genetic testing, this error would 

arise from an individual researcher observing a suspicious variant in a patient with a rare 

disease and deciding intuitively that it constitutes sufficient evidence for causation, even if 

the formal ACMG–AMP criteria for pathogenicity are not met. In addition, experts for a 

particular disease or gene will be obvious and perhaps enthusiastic reviewers for a paper 

suggesting an association involving their gene or disease of interest, but their expertise in the 

application of general gene-disease evidence review may be limited. Further contributors 

might include the problems of publication bias and a commercial-academic reward system 

that favours high diagnostic yields and the discovery of novel disease-causing genes.  

 

[H1] A way forward 

A number of steps can be implemented to improve the accuracy of attribution of 

pathogenicity to genes and variants. Any study that identifies a pathogenic variant must 

ensure the following. Firstly, that newly proposed gene–disease associations are 

appropriately annotated with the level of evidence supporting the claim,8 and that the 

assessment criteria applied to variants in well-established genes are explicitly stated. Second, 

sufficient details about patients sequenced are provided to enable assessment of clinical 

diagnosis and whether the cohort is enriched for patients with monogenic disease. Lastly, that 

appropriate controls with matched ancestry and sequencing pipelines are included to allow 

unbiased comparisons of variant burden. We ask editors and reviewers of relevant 

publications to also ensure these steps have been followed. The ability of such an approach to 

reveal insights into the underlying genetic architecture of primary membranoproliferative 

glomerulonephritis — a disorder that was frequently considered to be a monogenic disease — 

has now been highlighted.9  



In addition, increased collaborative efforts are needed. An example is the Clinical Genome 

Resource (ClinGen; clinicalgenome.org), which was founded to provide a central resource 

that defines the clinical relevance of genes and variants for use in precision medicine and 

research.10 We are forming a series of ClinGen Expert Panels for kidney disorders to enable a 

reappraisal of published genes and variants. Such an effort is critically needed to establish a 

foundation for the genomic diagnosis of patients with suspected genetic kidney disorders. 
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gnomAD: gnomad.broadinstitute.org  
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