
Modelling the Directional Response
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Abstract

Fabry-Pérot ultrasound sensors offer an alternative to traditional piezoelectric sen-

sors for clinical and metrological applications, for example, measuring high-

intensity focused-ultrasound (HIFU) fields. In this thesis, a model of the frequency-

dependent directional response was developed based on the partial-wave method,

treating the sensor as a multi-layered elastic structure.

An open-source MATLAB toolbox called ElasticMatrix was developed

to model acoustic and elastic-wave propagation in multi-layered structures with

anisotropic material properties. The toolbox uses an object-oriented framework,

giving it a simple scripting interface and allowing it to be expanded easily. The

toolbox is capable of calculating and plotting reflection and transmission coeffi-

cients, slowness profiles, dispersion curves and displacement and stress fields. An

additional MATLAB class is included to model the frequency-dependent directional

response of Fabry-Pérot ultrasound sensors.

The model was validated, tested and compared with directional response mea-

surements made on two glass-etalon sensors: an air-backed cover-slip sensor with

well-known acoustic properties, and an all-hard-dielectric sensor. Features of the

directional response were investigated and attributed to the critical angles of the

substrate backing, and Lamb- and Rayleigh-modes propagating in the sensor.

The directional response of two sensors with Parylene C (a commonly used

soft-polymer) were also investigated: a sensor with a Parylene C spacer, and a

glass-etalon sensor with a thick Parylene C coating. X-ray diffraction and transmis-

sion electron microscope measurements indicated Parylene has a crystal structure

and impedance measurements indicated that Parylene is acoustically anisotropic.
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Using the measured impedance values, the modelled and measured directivity had

improved agreement compared with isotropic values based on the phase-speeds of

guided modes.

The developed modelling tools allow detailed analysis of the physical mecha-

nisms affecting the frequency-dependent directional response of planar Fabry-Pérot

sensors. This knowledge can be used to inform future sensor design, to aid with

material selection, and for deconvolution of the sensor response from acoustic mea-

surements.



Impact statement

The first key output of this thesis is the development of an open-source MAT-

LAB toolbox called ElasticMatrix. This toolbox uses the partial-wave

method for modelling elastic-wave propagation for multilayered media. These

types of methods have had a significant impact on different areas of acoustics,

such as non-destructive evaluation and geophysics. These methods are still rele-

vant today, however, there is no open-source or easily accessible implementation.

ElasticMatrix fills this gap and is implemented with an object-oriented frame-

work. This makes the toolbox easy to use, develop and expand. It is hoped the

research-community will actively contribute to this software and develop it for their

own requirements.

Secondly, the work in this thesis has investigated the suitability of these meth-

ods for modelling the directional response of Fabry-Pérot ultrasound sensors. The

experimental and modelled results had good agreement for sensors of well known

material properties and demonstrated the directional response could be significantly

affected by elastic waves within the sensor. This has uses for designing and testing

different Fabry-Pérot sensors. This may be used to reduce artefacts on image recon-

struction when imaging with the sensor, and optimize the design for different use

cases. The work has also revealed potential problems with Parylene C as a spacer

material for Fabry-Pérot sensors. In particular, it exhibits anisotropic acoustic prop-

erties and has problems with self-adhesion and delamination. This is not only useful

information for Fabry-Pérot sensors, also for Micro-Electro-Mechanical Systems

(MEMS) devices and many other industries that routinely use Parylene.

The work in this thesis has been communicated through conference publica-
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tions, journal publications, presentations, poster sessions, and online through the

biomedical ultrasound group website. The software developed in this thesis is freely

available on github and MATLAB file exchange.
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2 The Fabry-Pérot Sensor 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Interferometer Transfer Function . . . . . . . . . . . . . . . . . . . 41

2.4 Acoustic Phase Sensitivity . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Variation of Refractive Index with Pressure . . . . . . . . . . . . . 45

2.6 Modelling the Directional Response . . . . . . . . . . . . . . . . . 49
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Chapter 1

Introduction

1.1 Motivation

The versatility of ultrasound has made it essential in many different clinical and

industrial applications, including: medical imaging, non-destructive evaluation

(NDE), microscopy and metrology [1, 2]. The detection of ultrasound for these

applications uses a variety of different technologies. To give a few examples, a

piezoelectric phased array transducer is often used in medical imaging and NDE,

a Fabry-Pérot sensor or capacitive micromachined ultrasound transducer (cMUT)

array may be used to detect signals in photoacoustic imaging, and Michelson inter-

ferometry may be used to measure acoustic fields in metrology.

For an accurate measurement of the acoustic field there are a number of sen-

sor characteristics which must be considered. For example, the noise equivalent

pressure (NEP), the frequency-response and bandwidth, the linearity with respect

to pressure or stress, the perturbation effect of the sensor in the measurement field,

and the stability over short and long time scales.

Another important characteristic is the frequency-dependent directional re-

sponse. This is the amplitude and phase sensitivity of the sensor from planar acous-

tic waves as a function of incidence angle and frequency [3]. The directionality (and

other characteristics) of the sensor are application dependent. In some instances it is

desirable for the ultrasound detector to have an omnidirectional response. For exam-

ple, when making measurements of a highly focused acoustic field, and in photoa-
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coustic tomography and synthetic aperture pulse-echo imaging [4, 5]. Conversely,

there are other instances where having a highly directional response is desirable, for

example, to minimize the detection of edge waves or waves reflected off scanning

tank walls when measuring sound speed and absorption [6, 3]. In all of these cases,

choosing a sensor with an unsuitable directional response may cause artefacts in

the measurement, reduce the signal-to-noise ratio, or fail to detect features in the

measured field.

In general, there are two mechanisms which contribute to the frequency-

dependent directional response. The first, which is common to all sensors, is the

influence of spatial averaging. The significance of this effect is determined by the

size of the detection area (active element) compared with the wavelength of the

ultrasonic wave. For a fixed frequency, a smaller sensor area tends toward an omni-

directional response and a larger area has a more directional response. The second

mechanism contributing to the directional response occurs when the incident ultra-

sound wave reaches the detector. Here, the ultrasound wave may be scattered and

have complex interactions with the sensor which depend on the geometry, construc-

tion materials, and transduction mechanism. These interactions vary depending on

both the angle and frequency of the incident ultrasound wave.

Developing and understanding accurate models of the directional response for

different sensors is important for a number of reasons. Firstly, models can be used as

a tool for analysis and design to improve the directional characteristics of the sensor

[7]. Additionally, a model may be used to deconvolve the directional response from

measurements in medical and imaging applications. This can improve the accuracy

of the measurements and reduce imaging artefacts [5, 8, 9]. Finally, understanding

the sensitivity and directional response of the sensor allows users to choose the most

appropriate detector for their intended application.

The focus of this thesis is on modelling the directional response of planar

Fabry-Pérot ultrasound sensors. The directional response of a planar soft-polymer

sensor has previously been modelled by Cox [7] and was initially found to have

good agreement with measurements. However, the measured data was dominated
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by the effects of spatial averaging which precluded features occurring from guided

modes. Subsequent measurements of similarly constructed sensors, with small ef-

fective elements, had poor agreement between the measured and modelled data, an

example is given in Figure 1.1. Additionally, the model by Cox was restricted to

three isotropic layers and neglected the strain-optic effect.

An initial motivation of this thesis was to understand why this model had poor

agreement and to fully explain the complex features of the directional response for

planar Fabry-Pérot sensors. This is discussed further at the end of this chapter in

Section 1.5. The remainder of this chapter outlines the characteristics of common

hydrophones used for detecting ultrasound. Here, there is a particular focus on hy-

drophones for biomedical applications and the directional response of these sensors.

Figure 1.1: (a) Measured directional response of a soft-polymer sensor. (b) Modelled di-
rectional response of a soft-polymer sensor using an equivalent model to Cox
[7].

1.2 Spatial Averaging Directional Response Models
In this section, three simple models of the directional response are introduced.

The directional response is often thought of as the transmitted diffraction pattern

caused by an equivalent source which corresponds to the sensitive element of the

hydrophone [3]. The principle of reciprocity is used to equate the transmit and re-

ceive diffraction patterns [3]. The hydrophones can be modelled by averaging the

pressure on the surface of the hydrophone over the area of the sensitive element.

This leads to the first model, which assumes a circular planar piston in a rigid pla-
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nar baffle, where the directional response D for a single frequency plane wave is

given by [10, 3]

D(k,θ) =
2J1(kasinθ)

kasinθ
. (1.1)

Here, J1 is a Bessel function of the first kind, θ is the angle of incidence, k is the

bulk wavenumber of the acoustic wave, and a is the radius of the active element of

the hydrophone. The value of a can deviate from the nominal active element size

and is often fitted by comparing measurements of the directional response with the

model. The fitted value of a is called the effective element radius. The effective

element area is important to consider when choosing an appropriate hydrophone for

measurements or if using a model to deconvolve measurement data.

A modification of the first model is a circular piston in a soft baffle, where the

directivity is given by [11]

D(k,θ) =
2J1(kasinθ)

kasinθ
cosθ . (1.2)

Finally, the third model assumes an unbaffled circular piston, where the directivity

is given by [12]

D(k,θ) =
2J1(kasinθ)

kasinθ

(
1+ cosθ

2

)
. (1.3)

The directional responses of these models are omnidirectional at low ka values and

become increasingly directional as ka increases. In general, the directional response

is complex, Figure 1.2 and Figure 1.3 show the magnitude of the normalised direc-

tional response. The phase is not plotted, however, there is a π-phase change at

every zero crossing in the directional response. All the models give similar results

for high ka values (ka > 4) but vary at ka values less than this. This can be un-

derstood by considering the wavelength of the acoustic wave in comparison to the

detection area. If the value of ka is large, then there are multiple wavelengths aver-

aged over the detection area and the influence of the rigid/soft/unbaffled boundary

conditions becomes less significant. Whereas, at low ka values there may be only a

few or fractions of a wavelength averaged over the detection area. Here, the bound-

ary conditions will have a greater effect on the measurement.
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The circular piston in a rigid baffle model is the standard for estimating the hy-

drophone effective element size from measurements, however, there are many cases

where this model does not fit measurement data [3, 13, 14, 15]. The discrepancies

may come from the fact that these models incorrectly model the true physical mech-

anisms and boundary conditions of the sensor [16]. For this reason other models

have been proposed. For example, Krucker proposed a model for fibre-optic hy-

drophones which takes into account diffraction effects from the fibre-tip [17]. For

membrane hydrophones, Bacon proposed a model which accounts for the coupled

effect of elastic waves on piezoelectric coefficients from Lamb waves propagating

in the membrane [18]. These models have not been plotted here, but go someway

to explain the discrepancies between the three simple models plotted below and the

true directional response of different hydrophones. It is worth noting that the models

have similar responses at small angles of incidence (±15◦). This gives reasonable

results when estimating the effective element radius with the standard diffraction

model for the central portion of the measured directional.

Figure 1.2: Normalised frequency-dependent directional response for the circular piston in
a rigid baffle (RB), the circular piston in a soft-baffle (SB) and the unbaffled
piston (UB) models.
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Figure 1.3: Profiles of the directional response for the circular piston in a rigid baffle (RB),
the circular piston in a soft-baffle (SB) and the unbaffled piston (UB) models.
These profiles are taken from Figure 1.2 at different values of ka. At values
greater than ka > 4 the profiles have significant overlap.

1.3 Common Hydrophones for Biomedical Ultra-

sound Applications

1.3.1 Piezoelectric Hydrophones

1.3.1.1 The Piezoelectric Effect

Piezoelectric hydrophones use piezoelectric elements to detect ultrasound (see Fig-

ure 1.4). Piezoelectric materials produce a voltage when under a mechanical stress

and the magnitude of the voltage and stress are proportional. Additionally, the re-

ciprocal is true, when a voltage is applied to the piezoelectric material a mechanical

strain is induced. These properties allow piezoelectric materials to be exploited to

both transmit and receive a signal in an ultrasound transducer.

A piezoelectric ultrasound receiver may be a single element or an array of mul-

tiple elements depending on the intended use and application. The two most com-

mon piezoelectric materials used are the ceramic Lead Zirconate Titanate (PZT)

and the polymer Polyvinylidene Difluoride (PVDF). Materials, such as PZT are

poly-crystalline and are made from multiple crystals oriented randomly. Each indi-

vidual crystal may exhibit piezoelectric properties, however, PZT does not exhibit

strong piezoelectric properties in this form [19]. A process called poling allows the
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crystal’s dipole moment to be better aligned so the ceramic presents with piezoelec-

tric properties. There are a few steps in the poling process. Firstly, the material

is heated beyond its Curie temperature, (> 200°C for PZT, > 60°C for PVDF). A

strong electric field is applied which aligns the dipoles of the crystals. At this point,

piezo-polymers, such as PVDF, require significant stretching to create a net dipole

moment. The material is then cooled, while the electric field still remains. Af-

ter the material has cooled and the electric field is removed, the material has a net

alignment of its dipoles [19]. In some instances it is also possible to control the

poling process at room temperature [20, 21]. Controlling the different steps of the

poling process allows a variety of different piezoelectric materials to be made with

different shapes and different polarisation directions.

There are several parameters that describe the electro-mechanical behaviour of

piezoelectric materials. Three of the most useful are:

• The piezoelectric strain coefficient (d in m/V), which describes the displace-

ment induced in the material per unit voltage. This describes how efficiently

an applied voltage is converted into a displacement or pressure [19].

• The piezoelectric voltage coefficient (g in Vm/N), which describes the electric

field induced per unit of applied stress. This describes how efficiently an

applied stress or pressure is converted to voltage.

• The electro-mechanical coupling factor (k), which indicates how efficiently

the mechanical and electrical energy are converted from one another [19].

In general, PZT transducers have a high piezoelectric strain constant and coupling

coefficient (d ≈ 590,k ≈ 0.5), making them excellent transmitters of ultrasound

[19]. However, the piezoelectric voltage constant is low (g ≈ 20), which makes

them poor receivers. One of the main limitations of using PZT in biomedical

imaging is that it has a much higher acoustic impedance than water. Therefore

a matching-layer material must be used. The matching-layer has an impedance

value between the ceramic and water and improves the performance of the trans-

ducer. The impedance mismatch causes PZT transducers to have resonant behaviour
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which reduces the transmit and receive bandwidth to be localised around the centre

frequency.

PVDF has an acoustic impedance closer to that of water. This makes it more

applicable than PZT as a sensing element in hydrophones for exposimetry. As they

are well matched, PVDF does not exhibit highly resonant behaviour and has a wider

frequency bandwidth. Additionally, the piezoelectric voltage constant for PVDF is

high (g≈ 230), which makes it an excellent material for detecting ultrasound. How-

ever, the piezoelectric strain and coupling coefficient are low (d ≈ 25,k ≈ 0.15),

which make it a poor transmitter. Hence, PVDF is mainly used for the detection of

ultrasound [19].

Image removed on copyright grounds.

Figure 1.4: (a) A selection of different needle hydrophones (Precision Acoustics, Dorset,
UK). (b) Membrane hydrophone (Precision Acoustics, Dorset, UK). (c) Cap-
sule hydrophone (Onda Corporation, CA, US).

1.3.1.2 Needle Hydrophones

Needle hydrophones generally have a small PVDF sensing element (40 µm to

1 mm) at the end of a thin walled metal tube. The compact nature of these

hydrophones make them suitable for measuring acoustic fields where other hy-

drophones, for example membrane hydrophones, cannot fit [3]. Additionally, their

small profile reduces the perturbation effect on the acoustic field being measured.

Needle hydrophones typical exhibit rapid fluctuations in sensitivity at low fre-

quencies. An example of the amplitude and phase frequency-response of two needle
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hydrophones can be seen in Figure 1.5. Diffracted waves around the tip of the nee-

dle hydrophone propagate across the active element which create an interference

pattern on the surface. The interference pattern depends on a number of factors,

including the needle tip geometry, the wavelength, and the incident angle of the

acoustic wave [19, 22]. Additionally, there are guided wave modes which are ex-

cited on the surface of the needle. These factors cause the fluctuations seen at low

frequencies for needle hydrophones. These effects can be somewhat mitigated by

modifying the shape of the tip [23].

The directional response of the hydrophone is affected by the element size,

where a smaller element has a flatter directional response, but also a reduced sen-

sitivity. The reduction in sensitivity with decreasing element size can be seen in

the collected values for NEP that are included in Table 1.1. Wear investigated the

directional response of four needle transducers of varying element diameter from

200-1000 µm [3]. The results from one of the transducers can be seen in Figure 1.6

which shows the directional response of the measured and modelled data at different

values of ka. The measured data has a similar response to the models described in

Section 1.2. In general, at high values of ka the effective active element size was the

same as nominal element size. However, the models either over- or under-estimated

the element size at low values of ka [3].

1.3.1.3 Membrane Hydrophones

Membrane hydrophones consist of a thin sheet of PVDF stretched on a circular

frame, where a small region in the centre acts as the active element which is typ-

ically between 0.2 to 1 mm. Generally, the frame is wide enough to not interfere

with the beam or field being measured, however, the large planar surfaces can cause

reflections which affect measurements [3]. The thin membrane (0.9 to 25 µm) is

smaller than the acoustic wavelength in water (75 µm at 20 MHz). Therefore, the

perturbation effect of the hydrophone on the acoustic field is reduced. When com-

paring a needle and membrane hydrophone of a similar active element size, the

needle hydrophone is generally more sensitive [19]. This arises from the design

of the two hydrophones. Membrane hydrophones are designed to be acoustically
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Image removed on copyright grounds.

Figure 1.5: Frequency response for membrane (M) and needle (N) hydrophones of different
element sizes. This figure has been reproduced from Martin and Treeby [24].

Image removed on copyright grounds.

Figure 1.6: Directional response versus different models of directivity for a needle hy-
drophone (DIBE-0600, force Technology Institure, Brondby, DK). This figure
has been reproduced from Wear [3].

transparent whereas needle hydrophones have a rigid termination at the back. This

means as an acoustic wave passes through a needle hydrophone there is a reflection

at the back of the piezoelectric element, and the acoustic wave is effectively mea-

sured twice [19]. This can be seen in the NEP values seen in Table 1.1. There are

backed membrane hydrophones which do not suffer from this disadvantage, how-
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Table 1.1: Table of noise-equivalent pressure values.

Hydrophone Active Element NEP NEP Ref
Diameter [Pa] [mPa

√
Hz]

Needle 1.0 mm 71 0.7 [19]
Needle 0.5 mm 2001 20 [19]
Needle 0.2 mm 1.09k1 109 [19]
Needle 0.075 mm 6k1 600 [19]
Membrane 0.4 mm 1.7k1 170 [19]
Membrane 0.2 mm 4k1 400 [19]
Membrane 0.5 mm 5k2 800 [16]
Membrane 0.2 mm 3k2 600 [16]
Membrane 0.075 mm 55k2 11000 [16]
cMUT 0.25 mm - 0.9 [25, 26]
cMUT 0.07 mm - 3 [26]
Eisenmenger FOH 100 µm 500k3 111000 [27, 19]
FP Polymer film 64 µm 2103 49 [28]
FP Multilayer FOH 5 µm 30k3 6708 [29, 19]
FP Multilayer polymer 60 µm 1803 40 [30]
Planoconcave sensor 12.5 µm 2.64 to 9.84 1.6 to 3.3 [31]

1Rms noise level over a 100 MHz measurement bandwidth. 2Peak NEP measured over a
25 MHz bandwidth. 3Rms values over a 20 MHz bandwidth. 4Rms NEP values of 2.6 Pa
for a 2.8 MHz Bandwidth and 9.8 Pa for a 8.9 MHz bandwidth.

ever, these were primarily constructed to decrease the occurrence of jitter and not

to improve the NEP .

The amplitude and phase frequency response of membrane hydrophones is

smooth, varying± 3 dB over a range of 0−45 MHz [32, 20, 9]. At high frequencies

there may be a thickness resonance which depends on the membrane thickness. An

example of the frequency-response for two membrane hydrophones can be seen in

Figure 1.5. Over this frequency range, the membrane hydrophones have a smoother

amplitude and phase frequency response when compared with needle hydrophones.

Because of these characteristics, membrane hydrophones are currently the gold

standard for transducer characterisation in water-tanks [19]. However, there are

other common techniques for hydrophone calibration [33, 22, 34, 20]. Over small

angular ranges (±35◦) the directional response of membrane hydrophones agrees

with the models described in Section 1.2 (see Figure 1.7). However, at large angles

> 35◦ and low frequencies there are large side lobes. These occur from the presence
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of guided (Lamb) modes excited in the membrane hydrophone [18]. The directional

response can be seen in Figure 1.7.

Image removed on copyright grounds.

Figure 1.7: Directional response versus different models of directivity for DIBE-0600
membrane hydrophone. Figure reproduced from Wear [14].

1.3.2 Capacitive Micromachined Ultrasonic Transducers

An emerging alternative technology to piezoelectric transducers are capacitive mi-

cromachined ultrasonic transducers (cMUTs). With reference to Figure 1.8, an air

or vacuum cavity is formed between two heavily doped silicon electrodes and a met-

alised membrane. When cMUTs are used for transmission, a DC and AC voltage

are applied. The DC voltage alters the height between the top and bottom electrode

as they are attracted to one another, and the AC voltage modulates the membrane to

produce and ultrasound wave [35]. When the cMUT is used to receive ultrasound,

only a DC voltage is applied. The incident ultrasound wave modulates the distance

between electrodes, hence its capacitance, and this is converted to an oscillating

voltage and amplified [35, 36]. The center frequency of the membrane can be con-

trolled by varying the DC voltage and distance between the electrodes [37]. There

is a small impedance mismatch between the vibrating membrane and the coupling

fluid which helps avoid the need for matching layers [38, 39, 19]. This allows for a

broader bandwidth and good transduction efficiency [40].

The concept for these transducers has been present since early piezoelectric
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devices but at that time the existing technology was not able to manufacture what

was needed [41]. This is due to the cMUT requiring strong electric field strengths

of millions of volts per centimetre, so that electrostatic forces on the order of kilo-

grams per square centimetre can be generated [36]. It is mainly from the advances

in micro-fabrication techniques in the early 2000’s which have allowed this technol-

ogy to develop. One main advantage of a cMUT over traditional piezoelectric ele-

ments is that large custom 2D arrays can be easily produced using photolithography

(the same technique used for producing silicon based integrated circuits). Recently,

emerging products such as the Butterfly iQ [42] are demonstrating cMUTs can em-

ulate different types of transducer arrays and deliver clinically suitable images at a

fraction of the cost of clinical ultrasound machines.

When used for detection, the cMUT has two main modes of operation. The

first is the “conventional” mode where a DC voltage is applied and the membrane

does not touch any part of the substrate. This mode of operation has a reduced

sensitivity (−10 dB) compared to piezoelectric elements [43]. The second mode of

operation, called “collapse” mode, is when the centre of the membrane is made to

touch the substrate. When the pressure wave is incident, the membrane has a greater

volume displacement, giving it a higher sensitivity than the conventional mode [37].

A disadvantage of cMUTs common to both modes of operation is that the

bandwidth and frequency response of the cMUT are affected by the higher order

vibrational modes of the membrane [44]. An example of the frequency response

can be seen in Figure 1.9. Additionally, these vibrations may propagate into neigh-

bouring elements, causing significant acoustic cross-talk [45, 46].

In one study, the measured directional response for a cMUT element was com-

pared with a PZT element of the same size (200 µm pitch, central frequency 5

MHz). The measured directivity of the cMUT element was shown to be smoothly

varying and have a wider angular range than the equivalently size piezoelectric el-

ement [40, 47, 48]. However, the PZT was 7.8 dB more sensitive than the cMUT

element at normal incidence. The directivity measurements are shown in Figure

1.10. There are few directivity measurements of cMUT elements, so it is not pos-
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sible to say if these results are representative of all types. The elements measured

(shown in Figure 1.10) are relatively large hence the directional response appears

to be dominated by the effect of spatial averaging. The effect of membrane vibra-

tional modes may become apparent for smaller cMUT elements, as is shown in the

frequency-response in Figure 1.9.

Figure 1.8: Diagram of a cMUT.

Image removed on copyright grounds.

Figure 1.9: Frequency response of a cMUT. There are many features caused by higher-
order vibrational modes on the membrane. This figure has been partially repro-
duced from Hall [44].

1.3.3 Optical Hydrophones

1.3.3.1 Introduction to Optical Hydrophones

The optical detection of ultrasound provides a range of alternatives to piezoelectric

hydrophones and cMUTs. Optical methods rely on changes of intensity, phase or

polarisation of light to detect ultrasound [19]. The optical hydrophones described

in the following sections generally fall within one of two categories: intrinsic or ex-

trinsic hydrophones. The transduction mechanism of intrinsic sensors, for example

the Eisenmenger hydrophone, is based on the interaction of light and sound within

the fibre itself. Conversely, extrinsic senors, rely on an external detection element
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Figure 1.10: Directivity of a PZT element, and an equivalently sized cMUT. Note the
cMUT has a broadband directional response at low frequencies. This figure
has been partially reproduced from Rebling [40].

and an optical fibre or a transparent substrate is used to transmit light to and from

the sensor [49, 50, 4]. The Fabry-Pérot interferometer is an extrinsic sensor and

can be manufactured as fibre-optic sensor, a plano-concave sensor, or as a planar

sensor. The planar configuration of the sensor is the main focus of the thesis and is

described in greater detail in Chapter 2.1.

Optical hydrophones can provide a number of benefits over piezoelectric hy-

drophones and a few examples are given here. Firstly, the effective element sizes

of FOHs can be considered to be the diameter of the fibre-core. However, it has

been shown that the whole fiber tip acts mechanically with the sound wave and con-

tributes to the effective element size [51]. Generally, these sensors have smaller ele-

ment sizes than piezoelectric devices. The small effective element size means these

sensors are less likely to suffer from spatial averaging effects. Additionally, unlike

piezoelectric elements, the sensitivity of optical hydrophones does not necessarily

decrease with element size as more power can be coupled into the interrogation

laser [19]. Hence, optical-hydrophones can have effective element sizes as small as

a few microns and be more sensitive than a piezoelectric element of an equivalent

size at small element sizes (< 1 mm) [19].

Additionally, there are a number of other benefits that arise from using opti-

cal hydrophones. The nature of optical measurements mean these sensors are less

prone to electromagnetic interference. The FOH cables are flexible and small which
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allows them to be used in places of restricted access. The FOHs can be made robust

to high-intensity ultrasound fields and can be replaced more readily while maintain-

ing small effective element sizes [13]. Membrane and needle hydrophones can be

made robust and maintain low NEPs, however, these modified hydrophones have a

relatively large element size [5, 9, 52, 53, 54]. This can be seen in Table 1.1.

1.3.3.2 Eisenmenger Hydrophone

Some optical detection techniques use the acousto-optic effect where the pressure

of the acoustic wave causes a time-varying change in density in the medium through

which the wave is propagating [27, 55]. The change in density causes a change in

refractive index which can be detected by an interrogating laser beam. One such

example using this technique is the Eisenmenger hydrophone [27]. Here, light from

a laser is coupled into the core of an optical fibre. At the distal end of the fibre there

is a mismatch in the refractive indices of the fibre (fused silica) and water, hence

some of the laser light is reflected back. The reflected optical power is measured

by a photodiode. An incident acoustic wave modulates the refractive indices of the

fused silica and water. This causes a change in the optical reflection coefficient and

intensity of the reflected optical power [19, 13].

Compared to other fibre-optic hydrophones, the Eisenmenger hydrophone has

very low sensitivity and requires a relatively high-powered interrogation laser to

detect the small refractive index changes [51]. These sensors are at least an order

of magnitude less sensitive than an equivalent piezoelectric hydrophone (Table 1.1)

[19]. This makes it unsuitable for measuring the pressure of low intensity fields.

However, the simplicity of this sensor is its main advantage. It is extremely ro-

bust making it ideal for measuring fields of high acoustic intensity, for example,

measuring shock waves in lithotripsy [19, 13]. Some examples of the directional

response of an Eisenmenger FOH are shown in Figure 1.11. The response generally

follows the models demonstrated in Section 1.2, in particular the model suggested

by Krucker [17] which uses the whole fiber as the effective element radius. How-

ever, the models underestimate the sensitivity at large angles of incidence at high

frequencies. Wear suggests that this is due to the low pressure produced by the high
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frequency transducer so the measurement is comparable to the noise level [13].

Image removed on copyright grounds.

Figure 1.11: Directional response of an Eisenmenger fibre-optic hydrophone. This figure
has been partially reproduced from Wear [13].

1.3.3.3 Fabry-Pérot Sensor

The Fabry-Pérot sensor consists of two partially reflective mirrors separated by an

optically transparent spacer forming an interferometer. An interrogation laser beam

is multiply reflected by the mirrors and the intensity of the reflected optical power

is measured. When an ultrasound wave is incident on the sensor, there is a change

in the reflected power through the modulation of the spacer thickness and refractive

index. The transduction mechanism of a planar Fabry-Pérot sensor is discussed in

greater detail in Chapter 2.

There are a number of different configurations of Fabry-Pérot sensors which

affect the frequency-response and directional response. To summarise the main

configurations: a planar sensor deposited on a large flat substrate, a planar sensor

deposited on the distal end of an optical fibre, a plano-concave dome shaped sen-

sor deposited on a large flat substrate or fibre, and a curved sensor deposited on a

tapered fibre. For all of these configurations, the mirrors may be a single metallic

layer (such as aluminium) or be made from a number of alternating dielectric lay-

ers. The thickness of the material spacer varies from a few microns to hundreds of

microns.

The frequency response of the sensor is determined by the materials of the



1.3. Common Hydrophones for Biomedical Ultrasound Applications 34

sensor spacer and backing and the thickness of spacer. Generally, the resonant

frequency of the spacer determines the bandwidth. A thicker spacer (100s of µm)

has a lower bandwidth and a thinner spacer (10s of µm) has a larger bandwidth.

This is illustrated in Figure 1.12. However, there is a trade off in sensitivity and

spacer thickness, as a thicker spacer is more sensitive than a thinner spacer.

Image removed on copyright grounds.

Figure 1.12: Frequency response of plano-concave microresonators at different thick-
nesses. A thinner spacer has a wider bandwidth but lower sensitivity. This
figure has been partially reproduced from Guggenheim [4]

The active element size of the planar Fabry-Pérot sensor can be approximately

considered to be the diameter of the interrogation laser beam. For a fiber-optic

sensor this is closer to the outer fiber diameter. This varies depending on the profile

of the interrogation beam. However, even with small element sizes, the sensitivity is

comparable with other hydrophones with element sizes orders of magnitude larger.

This can be seen in Table 1.1. This means the directional response of the Fabry-

Pérot sensor is noticeably different to other hydrophones as the effects of spatial

averaging are negligible and the main features of the directional response are caused

by the interaction of the incident wave with the sensor. The directional responses

of Fabry-Pérot sensors are unique for each configuration and a few examples are

included here: a planar sensor on a large flat substrate (Figure 1.13), a planar and

curved FOH (Figure 1.14) and a plano-concave sensor can be seen in (Figure 1.15).

There are a number of other factors which affect the features in the frequency-

response. For example, the thickness of the mirrors relative to the spacer, how
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well matched the backing and spacer is with water, and geometrical factors such as

diffraction effects around the tip of an optical fibre. Similar to needle hydrophones,

tip effects of FOHs can be ameliorated through tapering [56].

Image removed on copyright grounds.

Figure 1.13: (a) Frequency-dependent directional response of a planar Fabry-Pérot sensor
with soft-dielectric mirrors a Parylene C spacer and ZEONEX substrate. (b)
Profiles of the directional response. This figure has been reproduced from
Buchmann [57].

Image removed on copyright grounds.

Figure 1.14: (Left) Frequency-dependent directional response of a planar Fabry-Pérot ul-
trasound sensor deposited on a flat optical fibre. (Right) Frequency-dependent
directional response of a curved (Fabry-Pérot sensor deposited on a tapered fi-
bre. Profiles of the directivity measurements are plotted below. This figure has
been reproduced from Zhang [58].



1.4. Summary 36

Image removed on copyright grounds.

Figure 1.15: (Left) Frequency-dependent directional response of a plano-concave Fabry-
Pérot sensor. (Right) Profiles of the directional response. The modelled di-
rectional response for a 2 mm circular disk of equivalent sensitivity to the
plano-concave sensor is plotted in both figures. The response of the plano-
concave sensor is more omni-directional than the 2 mm disk. Figure partially
reproduced from Guggenheim [4].

1.4 Summary
This chapter introduced different hydrophones and discussed their transduction

mechanisms and directional response. A key takeaway is that a simple spatial

averaging model of the directional response based on a circular piston in a rigid

baffle is not suitable for describing the response of hydrophones with small element

sizes. However, the simple diffraction approach may be useful for small angles of

incidence and when used in combination with frequency dependent effective radii.

For some sensors, especially the Fabry-Pérot sensor, the directional response differs

greatly from these simple models and requires a more rigorous modelling approach.

1.5 Thesis Objectives and Structure
This thesis is focused on modelling the frequency-dependent directional response of

planar Fabry-Pérot ultrasound sensors. These sensors can detect ultrasound over a

broadband frequency range (tens of MHz) and maintain high sensitivity with small

element sizes (tens of microns) [28]. These sensors are frequently used in photoa-

coustic imaging, as a reference sensor for hydrophone calibration, and can also be

used for general ultrasound field characterisation [59, 49, 60, 7, 28, 61, 50, 62, 19].

For a planar sensor interrogated by a sufficiently small spot size, the directional
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response of this sensor is dominated by the complex wave-field within the sensor

caused by the interaction of elastic waves with the multilayered structure of the

sensor.

An accurate model of the directional response will provide an understanding

of the underlying physics present in the sensor, specifically, where acoustic critical

angles and guided-wave modes are generated and their effect on the sensors sensi-

tivity. These details are essential in optimising the Fabry-Pérot design to tailor-make

sensors with specific applications in mind. For example, sensors with a flat and om-

nidirectional response could be designed by selecting materials with properties that,

when insonated, do not excite any guided waves in the sensor.

A model of the directivity, and in particular of how it relates to the specific

wave modes in the sensor, will not only inform future sensor design, but can be

used to deconvolve the directional response from array measurements made with

the sensor. The use of an analytical model for the deconvolution provides a number

of benefits over using the measured directivity including 1) the model does not

suffer from noise, 2) the phase can be accurately calculated, 3) a larger range of

angles and frequencies can be used in the deconvolution process [8, 5].

The general aims of this thesis are:

• To model the directional response of the planar Fabry-Pérot interferometer

using multilayered elastic models.

• To determine the underlying physical phenomena which cause different ob-

servable features of the directional response.

• To provide a simple toolbox allowing users to model, predict and optimise the

directional response of Fabry-Pérot sensors.

The remainder of the thesis is structured as follows. Chapter 2 introduces

the Fabry-Pérot sensor in greater detail and discusses the transduction mechanism.

Chapter 3 presents the global matrix and partial wave methods for modelling elastic

wave propagation in multilayered media. This is needed to model the multilayered

structure of the Fabry-Pérot sensor and to gain an understanding of the underlying
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physical mechanisms. The implementation and numerical validation of the partial-

wave method is given in Chapter 4. This developed code has been released as an

open-source MATLAB toolbox (www.elasticmatrix.org), and the code structure and

practical examples are demonstrated in this section. The comparison of the mea-

sured and modelled directional response of glass etalon sensors is given in Chapter

5. Further analysis is provided in Chapter 6 for soft-polymer sensors where the

spacer is made from Parylene C. The main conclusions and future work are collated

in Chapter 7.



Chapter 2

The Fabry-Pérot Sensor

2.1 Introduction

The previous section outlined the main technologies used for detecting ultrasound

including piezoelectric hydrophones, capacitive micromachined ultrasonic trans-

ducers, and optical hydrophones. This section describes the planar Fabry-Pérot

ultrasound sensor in greater detail.

The form of the Fabry-Pérot sensors discussed in this thesis are based on the

original interferometric idea developed by Charles Fabry and Alfred Perot in 1899

[63, 64]. Figure 2.1 demonstrates the planar form of the Fabry-Pérot interferometer.

As described in Section 1.3.3.3, the same sensing device may also be deposited on

the tip of an optical fibre and may have curved mirrors.

The planar Fabry-Pérot sensor consists of two partially reflective mirrors sep-

arated by an optically transparent spacer deposited on top of a substrate backing.

The partially reflective mirrors may be a single metallic material or an alternating

stack of dielectric mirrors. The substrate backing may either be a flat or wedged

shaped block (used to reduce parasitic interference from the substrate), or the sub-

strate may be the tip of an optical fibre [7]. An interrogating laser beam at the

base of the substrate is multiply reflected between the mirrors and the intensity of

the reflected optical power is measured. The reflected intensity is dependent on the

optical phase difference between both mirrors. A phase shift occurs from two mech-

anisms: firstly, an incident ultrasonic wave displaces the mirrors from their initial
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positions, and secondly, the mechanical strain of the spacer causes local changes in

the refractive index [65, 66]. Additionally, the refractive indices of the mirror layers

is modulated as well, as is that of the substrate and the surrounding fluid [60, 50].

This contributes to the transduction through additional phase changes of the inter-

fering optical waves in the interferometer as well as through reflectance changes of

the interferometer mirrors. For interference filter designs using spacer thicknesses

of only λ/2 or small multiples of that, the mirror thickness may contribute to the

effective spacer thickness in a significant way [19]. The transduction mechanism is

expanded in further detail in Section 2.4. The journal article in [67] © IEEE 2019

has been adapted to form parts of this chapter.

Figure 2.1: Example of a hard-dielectric planar Fabry-Pérot interferometer. The interfer-
ometer consists of two mirrors separated by an optically transparent spacer.
A laser incident at the base of the interferometer is multiply reflected and the
reflected intensity is measured. An acoustic wave modulates the reflected in-
tensity. Figure reprinted from [67] © IEEE 2019.

2.2 Fabrication
The dielectric mirrors, thin film mirrors, and optically transparent spacer are de-

posited onto the substrate using physical vapor deposition. This process provides
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a conformal coating and uniform thickness [66, 68]. When using vapour deposi-

tion, the thickness of the material is dependent of the length of time the material

spends in the deposition chamber [69]. This method allows the spacer to be made

from only a few microns thick to tens of microns allowing for broad detection band-

widths from the tens of MHz to the GHz range [60, 70, 71]. However, there is a

trade-off between bandwidth and sensitivity. A thin spacer has a broader detection

bandwidth but is less sensitive when compared with a thicker spacer.

The exact materials used when fabricating the sensor varies with the intended

application. For example, a sensor built with a glass spacer presents with differ-

ent characteristics to a polymer spacer. A polymer has a lower Young’s modulus

than glass hence for the same incident acoustic pressure, the polymer has a greater

deformation. The sensitivity of the sensor is dependent on the rate of change of

the optical phase difference between the two mirrors, therefore a greater deforma-

tion causes a greater phase change and hence a greater sensitivity. For low acoustic

pressures, a polymer based sensor is more sensitive than a glass based sensor of

equivalent thickness. However, for high acoustic pressures, the measured response

of the polymer sensor may be saturated, or worse, the sensor destroyed. In this

scenario a glass sensor is more suitable [5].

2.3 Interferometer Transfer Function

The phase interferometry transfer function (ITF) describes the variation of the re-

flected optical power as a function of the optical phase difference between the two

Fabry-Pérot mirrors. Some examples of this function for different mirror reflec-

tivities are given in Figure 2.2 (a), assuming a collimated laser beam at normal

incidence, no losses, and no phase changes at the mirrors. It can be seen when the

reflectivities of the mirrors are high (R = 0.9), the ITF has a sharper fringe and a

broad maximum, whereas for low reflectivities (R = 0.1), the transition between

maximum and minimum is smoothly varying. The fringes occur when the cavity is

in resonance and the thickness is equal to an integer multiple of the half-wavelength
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(λ0/2) of the interrogating light. This is described by

2ncdc = Nλ , (2.1)

where the variables nc and dc are the refractive index and thickness of the cavity,

and N is an integer value [72]. When the sensor is in resonance, the light within the

optical cavity constructively interferes with itself and destructively interferes with

the reflected light from the first mirror. Hence there is a minimum in the ITF [72].

Conversely, out of resonance the light inside the cavity destructively interferes with

itself and the light reflected from the first mirror is mostly unperturbed. Hence, out

of resonance there is only a small or no change in the reflected light intensity [72].

When the interferometer is used for detection, the wavelength of the interro-

gating laser is set to be on the slope of one of the fringes. This is said to be the bias

point. An incident acoustic wave causes a change in optical thickness and a change

in refractive index, the ITF shifts and there is a change in the reflected intensity. An

example can be seen in Figure 2.2 (b). The maximum sensitivity is found when the

laser is tuned to the maximum slope of the ITF. The sharper the fringes of the ITF,

the more sensitive the sensor is. The change in phase with pressure is called the

acoustic phase sensitivity and this is essential for calculating the directivity of the

planar Fabry-Pérot sensor.

With planar sensors, a focused interrogation laser beam diverges on each round

trip within the optical cavity. This lateral “walk-off” reduces the fringe depth and

the maximum achievable sensitivity. Recently, plano-concave sensors were intro-

duced to ameliorate the effect of lateral walk-off. These sensors are constructed

from a plano-concave polymer microcavity between two highly reflective mirrors

[31]. The microresonators are embedded in a layer of an identical polymer to give a

acoustically homogeneous planar structure. Though the structure may not be acous-

tically homogeneous if the mirrors are thick compared to the plano-concave dome

height. The plano-concave sensor matches the divergence of the focused laser beam

to the curvature of the top-mirror. This refocuses the laser light in the microcavity,

eliminating walk-off. The improved visibility of the fringe means the sensors have
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a sharper fringe and have been shown to be more sensitive than planar Fabry-Pérot

sensors [31]. Since the microresonators are embedded in a polymer to give an

acoustically flat structure, the modelling process outlined in the rest of this thesis

could also be applied to these sensors.

(a) (b)

Figure 2.2: (a) Variation of the ITF function with different reflectivities. (b) Shifting effect
of the ITF fringe when the cavity length changes.

2.4 Acoustic Phase Sensitivity
If the shift of the ITF from an incident acoustic wave is small then the change in

reflected optical power is linearly proportional to the pressure of the acoustic wave.

For one round trip within the Fabry-Pérot cavity, the change in optical phase with

respect to acoustic pressure is dependent on two mechanisms. The first is the change

of refractive index with pressure, and the second is the change in displacement

between the two mirrors of the Fabry-Pérot cavity. Note, the contributions from the

changes in the refractive indices and reflectivities of the mirrors are neglected here.

With reference to Figure 2.3, the total phase change is

φ =
4π

λ0

∫ L+u(L)

u(0)
n(z)dz, (2.2)

where u(z) is the displacement of the mirror as a function of position z, where

the first mirror is located at z = 0 and the second mirror is located at z = L. This

equation describes how the phase is proportional to the integral of the refractive
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index changes across the entire cavity. If there is no acoustic field then u(0) =

u(L) = 0, and n(z) is constant so the equation simplifies to an expression for the

static cavity

φ = φ0 =
4πn0L

λ0
.

The phase change from the presence of an acoustic wave can be expanded as

∆φ = φ −φ0 =
4π

λ0

∫ L+u(L)

u(0)
n(z)dz− 4πn0L

λ0
, (2.3)

=
4π

λ0

∫ L+u(L)

u(0)
(n0 +∆n)dz− 4πn0L

λ0
, (2.4)

=
4π

λ0

∫ L+u(L)

u(0)
n0dz+

4π

λ0

∫ L+u(L)

u(0)
∆ndz− 4πn0L

λ0
, (2.5)

where n(z) = n0 +∆n(z), which is expanded in Section 2.5. Evaluating the first

integral, the equation simplifies

∆φ =
4πn0

λ0

(
L+u(L)−u(0)

)
+

4π

λ0

∫ L+u(L)

u(0)
∆ndz− 4πn0L

λ0
(2.6)

=
4πn0

λ0

(
u(L)−u(0)

)
+

4π

λ0

∫ L+u(L)

u(0)
∆ndz, (2.7)

where the change in displacement of the mirrors is

∆d = u(L)−u(0). (2.8)

Relating the change in φ with a unit change in pressure, the acoustic sensitivity can

be written as

As =
4π

λ0

(
n0∆d +

∫ z2

z1

∆n ·dz
)
. (2.9)

where z2 = L+ u(L),z1 = u(0). There are now two terms describing the change

in φ . The first term, ∆d, describes a phase change from a change in distance from

the displacement of the mirrors. The second term, ∆n, describes the phase changes

from the integral of the refractive index changes in the spacer. The refractive index

change of the spacer/cavity material is induced by local changes in density caused

by the compression and expansion of the pressure wave [73].
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Figure 2.3: Coordinate system for the sensor. The vertical lines 1 and 2 represent the loca-
tions of the mirrors which are distance L apart. u(z) is the displacement of the
mirrors located at z = 0 and z = L. The angle of incidence of the plane acoustic
wave is given by θ .

2.5 Variation of Refractive Index with Pressure

A refractive index grating is produced when a medium is under a mechanical strain

from an acoustic wave. The interaction of light with this refractive index grating

is termed an acoustooptic interaction. This subsection follows the derivation from

[74] and introduces the strain-optic tensor and its importance in determining the

change in refractive index with pressure.

Generally, an un-strained material has three principle refractive indices which

can be represented geometrically by an ellipsoid, as shown in Figure 2.4. Here,

the length of the semi-axes indicate the refractive index seen by an electric field

polarised in that axis. Assuming, initially, the axes of the index-ellipsoid coincide

with the acoustic (x,y,z) axes, the ellipsoid is represented with

x2

n2
x
+

y2

n2
y
+

z2

n2
z
= 1, (2.10)

where the principal refractive indices are given by nx,ny,nz. If the material is opti-

cally isotropic, the principal refractive indices are nx = ny = nz = n0. If the material

is biaxial it is described by three different refractive indices, hence nx 6= ny 6= nz.

Light travelling in the z-direction polarised in the y-axis sees a refractive index of

ny, and if polarised in x, it sees a refractive index of nx. A mechanical strain can

cause an optically isotropic material to become birefringent, i.e., an un-polarised
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electromagnetic wave incident at an arbitrary angle has two linear polarisations with

different phase speeds. This may not be true if the mechanical strain is isotropic.

Thinking about the ellipsoid visually, the effect of a normal strain is to stretch

and compress the ellipsoid and the effect of shear strain is to rotate the ellipse around

its centre point. In general, the ellipsoid after an applied compressional and shear

strain is given by
x2

n2
1
+

y2

n2
2
+

z2

n2
3
+

2yz
n2

4
+

2xz
n2

5
+

xy
n2

6
= 1, (2.11)

where ni for i = 1, ...,6 are constants which are formed from a combination of the

principle refractive indices, nx,ny,nz. The three axes of this new ellipsoid give the

principle refractive indices of the material under mechanical strain.

In the presence of an acoustic wave, there are compressional and shear strains

present within the spacer of the Fabry-Pérot interferometer. Under an arbitrary

mechanical strain, the changes in (1/n2)i of the index ellipsoid are given by

∆

(
1
n2

)
i
= ∑

j
pi jε j. (2.12)

Here, pi j is the strain-optic tensor and ε j is the strain where the indices of j ∈

{1, ...,6} using Voigt notation (1 = xx,2 = yy,3 = zz,4 = yz,5 = xz,6 = xy). Con-

sidering an ellipsoid which initially has the principle refractive indices aligned with

the acoustic axes, if the material is then subject to a combination of compressional

and shear strains, the index ellipsoid becomes

x2

(
1
n2

x
+∑

j
p1 jε j

)
+ y2

(
1
n2

y
+∑

j
p2 jε j

)
+

z2

(
1
n2

z
+∑

j
p3 jε j

)
+2yz

(
∑

j
p4 jε j

)
+

2xz

(
∑

j
p5 jε j

)
+2xy

(
∑

j
p6 jε j

)
= 1. (2.13)

Here, nx,ny,nz are the initial principle refractive indices.

If the interrogation laser of the Fabry-Pérot sensor propagates parallel to the
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z-axis and is linearly polarised in the x-axis, the refractive index seen by this elec-

tromagnetic wave can be calculated from the intersection between the x-axis and the

ellipsoid. The length between the intersection point and the origin is the refractive

index for light polarised in x. To calculate the intersection point, z,y are set to zero

which leaves n1 as the only relevant component of Eq. (2.11). This leads to the

relation

1
n2

1
=

1+n2
x ∑ j p1 jε j

n2
x

, (2.14)

n1 = nx(1+n2
x ∑

j
p1 jε j)

− 1
2 . (2.15)

If |n2
∑ j p1 jε j|< 1, this can be expanded using the series approximation

(1+ x)a ≈ 1+ax+
a(a−1)

2!
x2 +

a(a−1)(a−2)
3!

x3. (2.16)

Taking the first two terms in the approximation then gives

n1 ≈ nx(1−
1
2

n2
x ∑

j
p1 jε j). (2.17)

Similarly for a wave polarised in the y-axis, the equation is

n2 ≈ ny(1−
1
2

n2
y ∑

j
p2 jε j). (2.18)

This result can now be substituted into Eq. (2.9). In general, the acoustic sensitivity

is dependent on the polarisation of the interrogating laser

As =
4π

λ0

(
ni∆d +

∫ z2

z1

∆ni ·dz
)
, (2.19)

where ∆ni is

∆n1 ≈−
1
2

n3
x ∑

j
p1 jε j, (2.20)
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if polarised in x and

∆n2 ≈−
1
2

n3
y ∑

j
p2 jε j, (2.21)

if polarised in y. For an optically isotropic, homogeneous and non-absorbing mate-

rial, the change in refractive index when the light is polarised in x can be simplified

to

∆n =−1
2

n3
0

(
p11

∂ux

∂x
+ p12

∂uz

∂ z

)
. (2.22)

If the incident laser light is parallel to z and polarized in y, the strain-optic coefficient

p11 is replaced with p12. Note, this result is only correct for planar sensors where

the coordinate system can be chosen arbitrarily so that the strain in y-direction is

constant. For fibre sensors there are additional radial terms [50, 75].

Image removed on copyright grounds.

Figure 2.4: Diagram of the optical indicatrix. The principle refractive indices of a material,
ni, in x,y,z are given by the semi-axis lengths of the ellipsoid. For an isotropic
material, the principle refractive indices are the same in each axis and the el-
lipsoid reduces to a sphere. Generally, for an electromagnetic wave travelling
along the z-axis and polarised in x, the refractive index seen is nx, and the phase
speed is given by v = c/nx where c is the speed of light in a vacuum. For an
electromagnetic wave travelling in an arbitrary direction with wavenumber k,
a plane is drawn normal to this direction at the origin of the ellipsoid. The
semi-axes of the ellipse found from the intersection of the plane and the index
ellipsoid give the refractive indices seen by the electromagnetic wave. This
image has been reproduced from [74].
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2.6 Modelling the Directional Response

One of the main aims of this thesis is to accurately model the frequency-dependent

directional response. This can be found by averaging the acoustic sensitivity over

the area illuminated by the interrogation laser beam weighted by the profile of the

laser beam, S(x) [7]. For an incident wave of unit pressure the directivity can be

written

D( f ,θ) ∝

∫
A

(
n0
(
uz(z2)−uz2(z1)

)
+
∫ z2

z1

∆n.dz
)

S(x,y)dA. (2.23)

The weighting of the laser profile, S, for a circular Gaussian and top-hat beam profile

are stated here, though a full derivation is included in Appendix A.

S =
2J1(ζ a)

ζ a
, (2.24)

and for a Gaussian profile, the weighting is

S = e−πσ2ζ 2/2. (2.25)

Here, ζ is the horizontal wavenumber, a is the beam diameter and σ is the stan-

dard deviation of the Gaussian distribution. The Gaussian distribution can be

given in terms of the full width at the half maximum (FWHM) using the relation

FWHM = 2
√

2ln2σ . The Gaussian weighting is an approximation which may only

hold true if the cavity lies in the focus of the beam. However, the beam profile ef-

fects will mostly be noticeable in the form of spatial averaging features in the direc-

tivity. Since the spot diameter is very small, there are no discernible features from

spatial averaging in the directional response measurements shown in Chapters 5 and

6. This means features of the directional response are dominated by the complex

acoustic wave-field produced within the sensor and the results and conclusions in

this thesis are still valid. Rigorous optical and elastic modelling may be needed to

fully describe the transduction mechanism of the Fabry-Pérot sensor, especially for
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sensors with large spot sizes.

2.7 Previous Models of the Fabry-Pérot Sensor

Beard et al. [59, 49] modelled the transduction mechanism for low finesse Fabry-

Pérot interferometers consisting of thin-metallic mirrors and showed good agree-

ment with the measured normal incidence frequency response.

Cox & Beard [7] extended the normal-incidence model of Beard [49] to cal-

culate the frequency-dependent directional response of a soft-polymer sensor. They

used a three-layer elastic model (two half spaces sandwiching the Fabry-Pérot cav-

ity) as the mirrors were acoustically negligible. The model showed good agreement

with the measurements taken. However, the measurements exhibited a low signal-

to-noise ratio above 10 MHz and the features were dominated by the effect of spatial

averaging due to the large interrogation beam spot-size (400 µm). This precluded

the observation of features that occur at high frequencies and large angles arising

from complex wave field interactions. Additionally, Cox [7] did not include the

change in refractive index of the spacer materials. Cox noted the contribution from

the refractive index change was significantly smaller than the contribution from the

displacement change.

Weise [51] modelled the response of an alternating stack of dielectric mirrors

forming a thin high-finesse Fabry-Pérot interferometer deposited on the tip of an

optical fibre by combining a multilayered optical model from Wilkens [50, 76] with

an acoustic finite element simulation. Weise only investigated the normal incidence

response of the fiber-optic sensor. After estimating the strain-optic coefficients of

mirrors in the model, they showed good agreement with the measured normal inci-

dence frequency response. Additionally, Weise identified the acoustic phenomena

which affected the frequency response, showing there were contributions from lon-

gitudinal, lateral and Rayleigh waves as well as edge diffraction effects. This had

good agreement with the measured frequency response [51].

An example of the measured and modelled directional response of a soft-

polymer sensor is given in Figure 2.5. This sensor is constructed similarly to the
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sensor measured by Cox, however the spot diameter is 50 µm. The model used

is equivalent to that used by Cox. There is poor agreement in the measured and

modelled directional response. For example, a feature has been highlighted with a

grey dashed line. This feature appears in a different place in the measured data. It is

not known what causes these features, why they affect the directional response, and

the influence that the strain-optic effect has. Understanding this disagreement was a

motivation for this thesis. Additionally, the assumption that the mirrors are acousti-

cally and optically negligible is not always reasonable when modelling Fabry-Pérot

sensors with mirrors made from many alternating dielectric materials.

The next chapter begins where Cox [7] left off by introducing matrix models to

model the interaction of elastic waves within the Fabry-Pérot’s multilayered struc-

ture. Other introduced concepts, such as dispersion, are useful in understanding the

features of the directional response and the underlying physical mechanisms.

Figure 2.5: (a) Measured directional response of a soft-polymer sensor. (b) Modelled di-
rectional response of a soft-polymer sensor using an equivalent model to Cox
[7].



Chapter 3

Elastic Waves in Layered Media

3.1 Introduction

An elastic material is one in which the force acting on a displaced particle is pro-

portional to the displacement. Ignoring losses, the Fabry-Pérot interferometer has

multiple elastic layers consisting of the spacer, mirrors, and substrate. When an

acoustic wave is incident on the sensor, the stresses and displacements within the

spacer and mirrors can be used to find the two terms governing the acoustic phase

sensitivity. As discussed in Chapter 2. These are: 1) the change in refractive index

of the spacer caused by a mechanical strain, and 2) the difference in vertical dis-

placement between the two mirrors. This chapter introduces the partial-wave and

global matrix method to model an acoustic wave propagating through a multilay-

ered elastic medium.

Matrix methods, in particular the partial-wave and global matrix method, rep-

resent the stress and displacement fields as a sum of partial-waves for each mate-

rial of the layered-structure. Each partial-wave represents an upward or downward

travelling (quasi-)compressional or (quasi-)shear wave (bulk waves which are not

purely shear or compressional but have similar characteristics are given the pre-

fix quasi). The field properties (stresses and displacements) of every layer in the

medium are represented by a field matrix multiplied by the relevant partial-wave

amplitudes. By invoking boundary conditions at the interfaces of adjacent layers,

the partial-wave amplitudes and field properties of the first layer can be related to
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the last, and all the field matrices are assembled in the form of a ‘global’ matrix.

The resulting matrix equation can be used in two different ways. Firstly, the roots

of the equation can be found which give the modal solutions or dispersion curves.

Secondly, a subset of partial-wave amplitudes can be defined and the remaining am-

plitudes solved for. This can be used to calculate the displacement and stress fields

within the multi-layered structure when a plane wave is incident. This method is

discussed further in Section 3.2 and 3.3.

This chapter begins by introducing the key equations needed to derive the

wave equation for an infinite anisotropic elastic medium. The theory is expanded

to consider the interaction of an infinite plane wave at the boundary between two

elastic media. From this it is straightforward to derive the reflection and trans-

mission coefficients. The final section of the chapter introduces the partial wave

and global matrix methods for calculating the directional response of multi-layered

Fabry-Pérot sensors. The propagation of elastic waves through layered media has

been widely studied, and for further information the reader is directed to references

[1, 77, 78, 79, 80, 81].

The journal article [82] has been reproduced and modified to form parts of this

chapter, with reprint permission under CC BY.

3.2 The Elastic Wave Equation

3.2.1 Derivation of the Elastic Wave Equation

Here, the wave equation for an unbounded anisotropic elastic medium is derived.

These equations are simplified for a medium with orthotropic symmetry. Figure

3.1 introduces the medium geometry (in two-dimensions), coordinate system and

notation that is used throughout this chapter. The interfaces of each layer are in

the (x1,x2) plane. The x3 axis is orthogonal to this plane. Note, the coordinate

notation has changed from Chapter 2 (x1 = x,x2 = y,x3 = z). Each partial-wave has

an amplitude B, where the superscript indicates the layer number.

An example of an isotropic material is glass, where the material properties are

the same when measured from every direction. An example of a transverse-isotropic
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material is a bundle of fibres, where the properties have translational symmetry

axially along the fibre, and are isotropic in the plane perpendicular to this. An

example of an orthotropic material is sheet metal which has been rolled between

two rollers. The metal grains are stretched in the rolling direction and compressed

perpendicular to this. The analysis below is restricted to model layered orthotropic

materials if they are aligned such that the three orthotropic planes of symmetry

are aligned with x1,x2,x3 and the wave-vector of the propagating wave lies in a

plane of symmetry. There are a number of reasons why the equations are simplified

for this case. Firstly, it is assumed that many of the materials in the Fabry-Pérot

sensor are isotropic. However, it is shown in Chapter 6, a commonly used sensor

material, Parylene C, has a crystal structure which exhibits anisotropic acoustic

properties. Column-like crystals of Parylene grow in the direction of (x3). This

indicates it may have transverse-isotropic or orthotropic properties. Secondly, it has

been shown that a stack of multiple, alternating isotropic layers can be represented

by a single transverse-isotropic material in the case when the acoustic wavelength

is much larger than the thickness of a single layer [83]. This indicates a single

transverse-isotropic material may be suitable for modelling dielectric mirrors.

In an unbounded isotropic elastic medium there are two bulk wave types that

exist. These are compressional waves and shear waves. In a compressional wave,

the particle displacement of the medium is in the direction that the wave propa-

gates. In a shear wave, the particle displacement is perpendicular to the direction of

motion. In an unbounded anisotropic medium there are three bulk waves - quasi-

compressional, quasi-shear-vertical and quasi-shear-horizontal. In an anisotropic

medium the displacement in different axes are coupled, therefore a compressional

type motion may also cause a shear motion. Hence, these bulk waves are termed

“quasi”. The degree of the coupling is determined by the degree of anisotropy and

the angle of wave propagation. For the coordinate system used here, quasi-shear-

vertical waves are polarised in the (x1,x3) plane and quasi-shear-horizontal waves

are polarised in (x1,x2). Pure bulk waves may exist in an anisotropic medium under

certain conditions, for example, if the direction of wave propagation is along an axis
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Figure 3.1: Diagram for an n-layered elastic medium. In the 2D plane there are four partial-
waves with amplitude Bn

i , these represent (quasi-)compressional (solid arrows)
and (quasi-)shear (dashed arrows) waves travelling upwards and downwards in
each layer.

of symmetry [78]. When considering two semi-infinite media, for example, at the

interface between a solid and a vacuum, guided wave modes may also exist that are

the combination of both the quasi-shear and quasi-compressional waves.

For an elastic medium, Hooke’s Law states that the deformation of a material

is proportional to the applied stress. This is given by relating the stress tensor σ to

the strain tensor ε by the stiffness tensor C. Using Einstein summation notation this

is given by

σi j =Ci jklεkl, (3.1)

where i, j,k, l ∈ {1,2,3} and the strain tensor ε is defined as

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (3.2)

where ui is the displacement in the direction of the i axis. The stiffness tensor, C, is

of rank four and has 81 individual components. However, exploiting symmetry, the

stiffness tensor can be reduced to have only 21 individual coefficients to describe a

fully anisotropic material [78]. Equation (3.1) can be combined with the equation

of momentum conservation

ρ
∂ 2ui

∂ t2 =
∂σi j

∂x j
, (3.3)

to arrive at the elastic wave equation for an unbounded, homogeneous, and lossless
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anisotropic medium

ρ
∂ 2ui

∂ t2 =
1
2

Ci jkl
∂

∂x j

(
∂ul

∂xk
+

∂uk

∂xl

)
, (3.4)

where the indices i, j,k, l ∈ {1,2,3}, x and t are the spatial and temporal variables,

ρ is the total material density.

Here, the analysis is restricted to materials that are orthotropic, which reduces

the number of independent coefficients in the stiffness tensor to 9. Firstly, Voigt

notation is used to contract the indices of the stiffness-matrix (where 11→ 1,22→

2,33→ 3,23→ 4,13→ 5,12→ 6). The expanded form of Hooke’s Law for an

orthotropic material is



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


. (3.5)

For i = 1, the momentum equation Eq. (3.3) is

ρ
∂ 2u1

∂ t2 =
∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
, (3.6)

substituting for the components of stress from Eq. (3.5) then gives

ρ
∂ 2u1

∂ t2 =
∂

∂x1
(C11ε11 +C12ε22 +C13ε33)

+
∂

∂x2
(2C66ε12)

+
∂

∂x3
(2C55ε13). (3.7)
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Expanding the strain components using Eq. (3.2) yields

ρ
∂ 2u1

∂ t2 =
∂

∂x1

(
C11

∂u1

∂x1
+C12

∂u2

∂x2
+C13

∂u3

∂x3

)
+

∂

∂x2

(
C66

(
∂u1

∂x2
+

∂u2

∂x1

))
+

∂

∂x3

(
C55

(
∂u1

∂x3
+

∂u3

∂x1

))
. (3.8)

Rearranging the previous equation leads to

ρ
∂ 2u1

∂ t2 =C11
∂ 2u1

∂x2
1
+C66

∂ 2u1

∂x2
2
+C55

∂ 2u1

∂x2
3

+(C12 +C66)
∂ 2u2

∂x1∂x2

+(C13 +C55)
∂ 2u3

∂x1∂x3
. (3.9)

Here, the wave-vectors of each partial-wave are chosen to lie in the (x1,x3) plane.

This means the displacement u2 is constant, hence ∂u2/∂x2 = 0. Using a similar

process for i = 2 and i = 3 the expanded form of the wave-equations for all the

components are

ρ
∂ 2u1

∂ t2 =C11
∂ 2u1

∂x2
1
+C55

∂ 2u1

∂x2
3
+(C13 +C55)

(
∂ 2u3

∂x1∂x3

)
ρ

∂ 2u2

∂ t2 =C66
∂ 2u2

∂x2
1
+C44

∂ 2u2

∂x2
3

ρ
∂ 2u3

∂ t2 =C55
∂ 2u3

∂x2
1
+C33

∂ 2u3

∂x2
3
+(C13 +C55)

(
∂ 2u1

∂x1∂x3

)
. (3.10)

In the isotropic case, the medium can be described with two material constants

(λ ,µ) called the Lamé parameters, or with the compressional cL and shear cS wave

speeds. These are substituted for the stiffness coefficients as follows: C11,C22,C33 =

λ +2µ = c2
Lρ , C44,C55,C66 = µ = c2

Sρ and C12,C13,C23 = λ .
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3.2.2 Solutions to the Wave Equation

A single-frequency plane wave can be written in the form

ui = Ai exp(i(ζ x1 +ζ αx3−ωt)), (3.11)

where i ∈ {1,2,3}, i =
√
−1 , ω = 2π f is the circular frequency, α is the ratio of

the vertical and horizontal (ζ ) wavenumbers, and Ai is the polarisation unit vec-

tor which describes the direction of displacement relative to the direction of wave

propagation. The phase velocity ν along the x1 axis is calculated from the relation

ν = ω/ζ . When using this form, the real or imaginary part of the complex number

should be taken to calculate the displacement of the plane wave at time t and co-

ordinate x3. Taking the real part is equivalent to the incident plane wave having a

cosine form, and taking the imaginary part is equivalent to the incident wave having

a sinusoidal form. Taking the absolute value of the complex number gives the maxi-

mum amplitude of the displacement. When adding or subtracting multiple complex

displacement fields, for example, to calculate the difference in vertical mirror dis-

placement, care should be taken to manipulate the values in complex form before

taking the real part, imaginary part, or absolute value.

3.2.3 Christoffel Equation

For an isotropic material, the horizontal ζ and vertical ζ α wavenumbers are a func-

tion of the frequency, angle of propagation, and the compressional or shear speed.

The horizontal wavenumber ζ is the same for every layer and bulk wave type as

a result of Snell’s law [77]. By definition, the shear and compressional speed is

constant for every angle of propagation for an isotropic elastic medium. This makes

it relatively straightforward to write down the wave-vector components. However,

this is not the case for anisotropic materials as the quasi-compressional and quasi-

shear speed is angle dependent. To find the ratio of the wave-vector components α

and polarisations Ai of an anisotropic medium, the Christoffel equation needs to be

used.

Firstly, the plane wave solution for the wave equation Eq. (3.11) is substituted
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into Eq. (3.10)

−ζ
2
ρν

2A1 =−ζ
2A1C11−ζ

2
α

2A1C55− (C13 +C55)ζ
2
αA3

0 = (C11−ρν
2 +C55α

2)A1 +(C13 +C55)αA3

−ζ
2
ρν

2A2 =−ζ
2A2C66−ζ

2
α

2A2C44

0 = (C66−ρν
2 +C44α

2)A2

−ζ
2
ρν

2A3 =−ζ
2A3C55−ζ

2
α

2A3C33− (C13 +C55)ζ
2
αA1

0 = (C55−ρν
2 +C33α

2)u3 +(C13 +C55)αA1 (3.12)

where the substitution ω2 = ζ 2ν2 has been used on the left hand side to simplify

the equations. These equations can be rearranged into the Christoffel equation
Γ11 0 Γ13

0 Γ22 0

Γ31 0 Γ33




A1

A2

A3

= 0, (3.13)

where the components of the Christoffel matrix (Γ) are

Γ11 = (C11−ρν
2 +C55α

2) Γ22 = (C66−ρν
2 +C44α

2)

Γ33 = (C55−ρν
2 +C33α

2) Γ13 = Γ31 = (C13 +C55)α

Γ12 = Γ21 = Γ32 = Γ23 = 0.

Solving Eq. (3.13) admits three solutions for α2 and therefore 6 solutions for α .

In the general case, these solutions correspond to upward or downward travelling

quasi-compressional or quasi-shear waves. From here, the notation αq, where q ∈

{1,2, ...,6}, is used to indicate each solution. It can be seen from Eq. (3.13) that the

plane wave component A2 is only dependent on Γ22, hence displacement occurring

in the (x1,x3) plane is independent of displacement in x2. This only occurs as a

result of the imposed restrictions on the material symmetry and alignment of the

material axes with the coordinate system used. Four solutions (q = 1,2,3,4) of αq
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Eq. (3.13) can be found when

det

∣∣∣∣∣∣ Γ11 Γ13

Γ13 Γ33

∣∣∣∣∣∣= 0. (3.14)

These describe upwards and downward travelling quasi-shear-vertical (qSV) and

quasi-longitudinal (qL) waves with the displacement restricted to the (x1,x3) plane.

This leads to a polynomial equation in the form

aα
4 +bα

2 + c = 0, (3.15)

where the coefficients are given by the expressions

a =C33C55 (3.16)

b = (C55−ρν
2)C55 +(C11−ρν

2)C33 (3.17)

− (C13 +C55)
2 (3.18)

c = (C11−ρν
2)(C55−ρν

2). (3.19)

The solutions to α2 are found using the quadratic equation

α
2 =
−b±

√
b2−4ac

2a
. (3.20)

The positive solutions of the quadratic equation correspond to (quasi-)compressional

waves and the negative solutions correspond to the (quasi-)shear waves. The order

is arbitrary, however, in the following equations, α1 = −α3 and α2 = −α4, where

α1 and α3 are downward and upward travelling (quasi-)compressional waves and α2

and α4 are downward and upward travelling (quasi-)shear waves. This order is indi-

cated on Figure 3.1. The remaining two solutions (q = 5,6) are found from Γ22 = 0,

and correspond to upward- and downward- travelling quasi-shear-horizontal (qSV)

waves, hence,

α
2 =
−C66 +ρν2

C44
. (3.21)



3.2. The Elastic Wave Equation 61

The notation Aiq will now be used to indicate the polarisation vector for each

solution q. The displacement field can now be written as a sum of the partial-wave

components

ui =
4

∑
q=1

AiqBq exp(i(ζ x1 +ζ αqx3−ωt)), (3.22)

where i ∈ {1,3} and Bq is the amplitude of each partial-wave. For a multi-layered

medium, the Christoffel equation Eq. (3.13) is solved independently for every layer

to calculate the polarisation vector and wave-vector of each partial-wave. However,

the amplitude Bq of each partial-wave is solved by invoking the boundary conditions

at the interfaces of adjacent layers. This is discussed in Section 3.3.
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3.3 Partial-Wave and Global Matrix Method

3.3.1 Overview

Each partial-wave represents the superposition of waves that are multiply reflected

or transmitted at the interfaces between each layer in a steady-state. The polar-

isation vector and wave-vector of each of these partial-waves can be found from

the Christoffel Equation as described in Section 3.2.3. The degree of reflection

and transmission depends on the boundary conditions at the interfaces and mate-

rial properties of each layer. The coupled equations that arise from the bound-

ary conditions can be combined into a ‘global-matrix’ which allows them to be

solved simultaneously. This global matrix approach can be used to tackle vari-

ous problems in elastic wave propagation. For example, the singularities of the

global matrix give the dispersion curves, and by specifying an incident wave am-

plitude, the resulting wave-field throughout the structure can be calculated. More

detailed descriptions of the partial-wave and global-matrix method can be found in

[84, 78, 85, 77, 86, 79, 87, 88].

3.3.2 Boundary Conditions and Partial-Wave Amplitudes

As mentioned previously, the wave-vector of the plane waves are constrained to a

plane of symmetry of the orthotropic or transverse-isotropic material reducing the

analysis to two dimensions, (x1,x3). From Eq. (3.2), Eq.(3.5) and Eq. (3.22) the

normal and transverse displacement and stress describing (quasi-)longitudinal and

(quasi-)shear-vertical waves for a single layer is written in the form
u1

u3

σ33

σ13

=


A11 A12 A13 A14

A31 A32 A33 A34

D11 D12 D13 D14

D21 D22 D23 D24




e1

e2

e3

e4




B1

B2

B3

B4

 , (3.23)
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where

D1q = (C13A1q +C33αqA3q)(iζ ) D2q =C55(αqA1q +A3q)(iζ ),

eq = exp(i(ζ x1 +ζ αqx3−ωt)).

Only the first four solutions of αq are needed as the motion in (x1,x3) is decou-

pled from (x2). The left hand vector of Eqs. (3.23) contains the components of the

displacement and stress, and the right hand vector contains the amplitude of the

partial-wave components. The product of the matrices in Eq. (3.23) can be written

as a field matrix F,

F =


A11 A12 A13 A14

A31 A32 A33 A34

D11 D12 D13 D14

D21 D22 D23 D24




e1

e2

e3

e4

 . (3.24)

At an interface x3 = d between material layers in welded contact, the normal and

transverse stress and displacement must be continuous across the interface. There-

fore, the product of the field matrix and partial-wave amplitudes at the interface of

one layer is set equal to the field matrix and wave amplitudes of the adjacent layer.

For example

FI
1BI = FII

1 BII, (3.25)

where Fn
N is the 4×4 field matrix for layer n at interface N and Bn is a 4×1 vector

of partial-wave amplitudes for layer n. For clarity a diagram has been included in

Figure 3.2. This process is repeated for every interface of the layered medium. For

n-layers, there are 4(n−1) boundary conditions and 4n wave amplitudes which can

be arranged into a global matrix. This assumes the first and last layers are semi-

infinite in thickness and every layer is elastic. For a medium consisting of n layers,

the global matrix equation is written



3.3. Partial-Wave and Global Matrix Method 64

Figure 3.2: Field matrix and partial-wave amplitude vector labelling for an n-layered elastic
medium. Here, Fn

N is the 4×4 field matrix for layer n at interface N and Bn is
a 4×1 vector of partial-wave amplitudes for layer n.


FI

1 −FII
1

FII
2 −FIII

2
. . . . . .

Fn−1
n−1 −Fn

n−1




BI

...

Bn

= 0. (3.26)

For clarity, it is helpful to write the problem for a specific case. For example, for

three layers the global matrix is

 FI
1 −FII

1

FII
2 −FIII

2




BI

BII

BIII

= 0. (3.27)

By assigning values to four of the partial-wave amplitudes, Eq. (3.27) (and

Eq. (3.26)), can be rearranged and solved for the remaining partial-wave ampli-

tudes. For example, if a compressional wave in the first medium is incident on

the layered-structure, the downward-travelling partial-wave amplitude relating to

shear (B1
2, Figure 3.1) in the first layer and upward-travelling partial-wave ampli-

tudes relating to compressional (Bn
3) and shear (Bn

4) waves in the last (nth) layer

are set to zero. Finally, the downward-travelling partial-wave amplitude relating

to a compressional wave in the first layer is set to BI
1 = 1 (the calculated outputs

can later be scaled if desired). In this case, the solved amplitudes describe the

solution for an incident single-frequency plane-wave at an angle θ or wavenumber
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ζ and frequency f . Separating the known wave amplitudes from the unknown wave

amplitudes, Eq. (3.27) can be written as

 FI+
1 −FII

1

FII
2 −FIII−

2




BI+

BII

BIII−

=

 −FI−
1

FIII+
2




BI−

BIII+

 . (3.28)

Here, + and − superscripts indicate the upwards and downwards travelling partial-

wave amplitudes and their respective columns in the field matrices. The global

matrix for systems with other numbers of layers follows analogously.

For clarity, an expanded form of Eq. (3.28) is given in Eq. (3.29). FI+
1 is the

third and fourth columns of FI
1, and BI+ is the third and fourth elements of BI. In

the example described above, the first element of BI− is 1 and all the elements of

BIII+ and the second element of BI− are 0.

Once the unknown wave-amplitudes for each layer are found, Eq. (3.23) can

be used to find the displacement and stress anywhere in the layered structure. Ad-

ditionally, for a two layered medium, normalising the wave-amplitudes by the inci-

dent wave amplitude gives the displacement reflection and transmission coefficients.

This is compared to analytical solutions from the literature in Section 4.4.

Alternatively, the dispersion curves can be extracted from the model by set-

ting the incident wave-amplitudes of the layered structure to zero and finding

the frequency-wavenumber pairs in which the resulting left-hand-side matrix of

Eq. (3.28) becomes singular. The algorithm used is described further in Chapter

4
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3.3.3 Shear-Horizontal Waves

For the chosen coordinate system and material symmetry, shear-horizontal waves

propagate independently of (quasi-)shear-vertical and (quasi-)compressional waves.

Motion in x2 decouples from (x1,x3), which means there is no mode conversion and

shear-horizontal waves only excite shear-horizontal waves at an interface [80]. The

displacement in x2 is written as a sum of partial wave components

u2 =
6

∑
q=5

AiqBq exp(i(ζ x1 +ζ αqx3−ωt)), (3.30)

where solutions 5 and 6 of q correspond to shear-horizontal waves. From Eq. (3.2),

Eq.(3.5) the displacement and shear stress is u2

σ23

=

 A25 A26

D35 D36

 e5

e6

 B5

B6

 , (3.31)

where

D3q =C44αqA2q(iζ ).

3.3.4 Potential Method

In the isotropic case, the method of potentials can also be used to model elastic

wave propagation in multilayered materials [79, 84, 7]. In this method, the elastic

wave equation can be split into two separate wave equations via the Helmholtz

decomposition which states that a displacement field is the sum of the divergence

of a scalar potential field and curl of a vector potential field (u = ∇φ +∇×ψ).

The first term ∇φ relates to a dilation of the material, where the shape is constant

but the volume changes. The second term ∇×ψ refers to a shear distortion of the

material, where the material changes shape but the volume is constant. Hence, the

first term corresponds to the propagation of compressional waves and the second to

the propagation of shear waves.

Both the partial-wave and potential method were implemented during the

course of this PhD. However, only the partial-wave method is discussed here. This
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is because the partial-wave method is more general and reduces to the potential

method in the isotropic case. For reference, the potential-amplitudes and partial-

wave amplitudes are related by the following relations, where the superscript p

indicates the potential method,

Bp
1 =

B1

ikx
, Bp

2 =−B2

ikt
, (3.32)

Bp
3 =

B3

ikx
, Bp

4 =
B4

ikt
. (3.33)

For the partial-wave method in the isotropic case kx = ζ indicates the horizontal

wavenumber, and kt = ζ α2 =−ζ α4 is the shear-vertical wavenumber.

3.3.5 Attenuation

The model from the previous section is capable of describing the propagation of

elastic waves through a multilayered structure. In practice, as a wave travels along a

layer, it may leak energy into the adjacent medium and the wave amplitude decays

with distance. To see the effect of this behaviour, an attenuation term is needed.

At this point, the introduction of a complex wavenumber allows for a viscoelastic

description [84, 89].

The real part of the complex wavenumber describes the elastic propagation

of the wave and the imaginary part describes an attenuation. This representation

describes bulk waves whose attenuation is linearly increasing with frequency [84].

Note, it is also possible to include a complex frequency instead of wavenumber [90].

Here, just the isotropic case is considered. The plane wave solutions, Eq. (3.11),

have a similar expression, however, the wavenumber k is now complex and can be

written in the form

ui ∝ ei(ki,imagxi−ωt)e−ki,realxi. (3.34)

The first exponential term describes the harmonic propagation of the wave, and the

second exponential term describes the exponential decay of the wave with distance

[84]. The compressional cL and shear cS speeds of the media are defined as complex



3.4. Dispersion and Modal Solutions 69

values [84],

c′L,S =
cL,S

1+ iA/2π
. (3.35)

Here, the attenuation is given by A in Nepers per wavelength, therefore a wave that

has a unit amplitude will decay by e−A every wavelength travelled.

3.4 Dispersion and Modal Solutions

3.4.1 Introduction

The previous sections describe the partial-wave method for modelling elastic wave

propagation in layered media. This section investigates how these models can be

used to gain a deeper insight into the underlying physical mechanisms of the Fabry-

Pérot sensor and other layered media.

At interfaces between two different media and in embedded layers, there

may exist wave modes that are a combination of compressional and shear waves

and propagate independently of the bulk waves. These are termed guided wave

modes. The wave velocity of guided waves often varies with frequency, a phe-

nomenon called dispersion. A dispersion curve is thus a graph of how the

speed of a guided wave varies with frequency. This section briefly describes

the common guided waves which may appear in the Fabry-Pérot sensor and

how they may be calculated from the matrix formulation described previously.

For more information about guided waves, the reader is directed to references

[1, 79, 91, 92, 93, 94, 95, 96, 97, 98].

Evanescent Wave

A plane wave incident on the interface of a half-space at the critical angle is trans-

mitted parallel to the interface and is reflected normal to the interface. The trans-

mitted wave has an exponential decay away from the interface, this is termed an

evanescent or inhomogeneous wave. These manifest in the model as the partial-

waves having complex wavenumbers.



3.4. Dispersion and Modal Solutions 70

Rayleigh Wave

A free wave is one which propagates indefinitely along a medium without leaking

energy into the adjoining half spaces [91]. A Rayleigh wave is a type of free wave

which propagates at the interface between a vacuum and a solid half space [96]. The

Rayleigh wave has a maximum displacement at the interface and the displacement

decays exponentially moving perpendicularly into the solid half-space away from

boundary. Rayleigh waves have a characteristic elliptical motion.

Lamb Wave

In 1917, Lamb extended the theory derived by Rayleigh considering the problem

of elastic waves in a medium bound by two parallel planes [97]. It was found that

there exists an infinite number of solutions of Lamb waves which are higher or-

der modes of two fundamental shapes: a symmetric mode, and an anti-symmetric

mode. Symmetric or ‘compressional’ modes are distinguishable as being symmet-

ric about the centre-line of the medium. The distance between the parallel planes

of the medium are compressed or expanded resulting in an hour-glass shape. Anti-

symmetric or ‘flexural’ modes are distinguishable as the mode is anti-symmetric

about the centre-line of the medium. The distance between the parallel planes re-

main constant resulting in a rippled shape. An illustrative demonstration of the

mode shapes can be seen in Figure 3.3.

Leaky Waves

If the guided waves lose some energy to the surrounding then they are termed

“leaky”. In the previous examples, if the medium or solid half space is surrounded

by a fluid instead of a vacuum then some energy is transferred into the fluid. These

guided waves are then called “leaky-Rayleigh” or “leaky-Lamb” waves [91]. How-

ever, for large impedance differences, for example, a metal or glass plate in water,

there is not a significant effect on the Lamb or Rayleigh modes.

Interface Waves

Stoneley [98] described a wave travelling along the interface between two elastic

solid media. For special combinations of material properties, a free Stonely wave
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Figure 3.3: Illustrative example of anti-symmetric and symmetric mode shapes.

may exist. Otherwise, these guided waves are “leaky” or may be referred to simply

as interface waves. If the interface is between a liquid/vacuum and a solid then this

may be referred to as a surface wave.

3.4.2 Modal Solutions

By choosing the appropriate number of layers and material properties, the differ-

ent wave modes described above can be found using the partial-wave method and

the approach described here. In Section 3.3, the equations of stress and strain are

assembled into a matrix equation which takes the form

SB = b, (3.36)

where S is the system matrix of equations, B is a vector of partial-wave amplitudes,

and b is a vector of known wave amplitudes (see Eq. (3.28)). Dispersion curves can

be generated by finding non-trivial pairs of frequency and wavenumber where

SB = 0. (3.37)
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At these points, a solution exists for free waves propagating along a layer without

any incident wave. Solutions to Eq. (3.37) exist when the complex determinant of

the system is singular. However, the presence of a singular determinant does not

necessarily indicate the presence of a guided wave mode. In the instance when the

component of the wavenumber parallel to the interface is equal to the wavenumber

of any of the bulk waves of the system, the matrix has multiple columns which are

identical, hence the determinant becomes singular [84]. The implementation of the

numerical method to find the modal solutions is described in the next chapter.

3.5 Summary
The partial-wave method presented in this section can describe elastic wave prop-

agation in isotropic, transverse-isotropic, and orthotropic media. The matrix for-

mulation allows the partial-wave amplitudes of the first layer to be related to the

last. The wave amplitudes can be used to calculate the stresses and displacements

at any coordinate within the sensor and consequently calculate the directional re-

sponse. Reflection and transmission coefficients and dispersion analysis have been

presented as tools to understand the underlying physical mechanisms within the

sensor and are discussed further in Chapter 4.



Chapter 4

ElasticMatrix: A MATLAB

Toolbox for Anisotropic Elastic-Wave

Propagation in Multilayered Media

4.1 Introduction

The previous chapter introduced the partial-wave method for modelling elastic wave

propagation in layered media and the directional response of the Fabry-Pérot sensor.

Additionally, dispersion curves were introduced, which can be used to analyse the

wave-phenomena which give rise to the complex directional response.

The partial-wave method and other matrix models of wave propagation in

multi-layered elastic solids have had a significant contribution to research areas

such as acoustics, geophysics and electromagnetics. A few examples include: struc-

tural health monitoring [99], characterisation of interface bonding [100], detection

of debonding in joints [101], measuring material properties [84], designing com-

posite layered structures [78], mode sorting of guided waves [102], the physical

interpretation of guided wave structures [103], the investigation of anisotropy on

amplitude-versus-offset synthetic modelling [104], reflection and transmission of

plane waves [105], elastography of layered soft tissues [106], and ice detection on

wind turbines [107].

Despite its usefulness, there are few available implementations of the partial-
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wave method. Additionally, coding the required matrix formation, inversion, and

analysis for general multi-layered systems is non-trivial and time-consuming. The

current state-of-the-art implementation is Disperse [108]. This software has been

in development since 1990 and is primarily focused on calculating the dispersion

solutions for multi-layered structures. The Disperse software was originally based

on the partial-wave and potential method, however, it is currently being updated to

use the spectral collocation method (SCM) [108, 109, 110, 111, 112]. The main

limitation with Disperse is that it is closed-source. For this reason it is not easily

adaptable for applications that are not dispersion analysis, for example, extracting

reflection coefficients or slowness profiles. Other open source code modelling the

partial-wave method include LAMB [113] (however this is limited to modelling

only an isotropic plate) and ANIVEC [114] (however this code is not easily avail-

able).

In this chapter, a new open-source toolbox called ElasticMatrix is in-

troduced which uses the partial-wave method for multi-layered structures with an

arbitrary number of isotropic, transverse-isotropic and orthotropic layers. Where

possible, it is validated against existing literature, analytic examples, and Disperse.

Additionally, ElasticMatrix has been made publicly available with detailed

documentation so that it is both easy to use and extend.

The partial-wave method was chosen over the SCM for a number of reasons.

Firstly, the primary aim of the thesis is to model the directional response of the

Fabry-Pérot sensor which requires modelling elastic wave propagation in multilay-

ered media. For this use-case, the partial-wave method is suitable as it is analytic,

more accurate, and faster than the SCM. Additionally, as the partial-wave method

is well established it can be easily adopted by researchers who are aware of this

method and easily adapted to model coupled systems and complex materials such

as piezo-electric materials [78]. A secondary aim of this thesis is to improve the un-

derstanding of the underlying physical mechanism of the Fabry-Pérot sensor. One

method to do this is to calculate the dispersion curves of the elastic structure. For

simple simple layered structures the partial-wave method is robust and proven at
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its ability to trace the correct dispersion curves. Hence, the partial-wave method is

still a suitable choice for this purpose. However, the SCM casts the layered sys-

tem as an eigenvalue matrix problem, where the eigenvalues give the dispersion

solutions. This formulation makes the SCM generally superior at calculating dis-

persion curves. For simple layered structures the performance of both methods are

comparable. Where the SCM really becomes advantageous is when calculating dis-

persion curves for strongly anisotropic and strongly absorbing materials, in these

cases the partial-wave method struggles. In the future if the calculation of disper-

sion curves becomes the primary use-case of the toolbox it would be sensible to

adapt the dispersion curve algorithm to use the SCM or a similar method. However,

the remainder of the toolbox functionalities are useful as is, for example calculating

reflection/transmission coefficients, slowness profiles, displacement fields and the

directivity of the Fabry-Pérot sensor.

This chapter has three parts. Section 4.2 discusses the implementation of key

algorithms in the software, such as how the dispersion curves are traced. Section

4.3 describes the ElasticMatrix software with example code of how to use

different methods. Finally, Section 4.4 compares the results from the model with

examples from analytical derivations and literature.

The journal article [82] has been reproduced and modified to form parts of this

chapter, with reprint permission under CC BY.

4.2 Implementation

4.2.1 Field Matrices and Global Matrix

To construct the global matrix given in Eq. (3.27), a field matrix Fn must be calcu-

lated for the interfaces of each layer n. To improve the conditioning of each field

matrix, rows relating to stress are scaled by iζ × 109. The stress equations have

a common factor of iζ (see Eq. (3.23)) and most stiffness coefficients are on the

order of GPa. The global matrix is constructed by calculating the 4× 4 field ma-

trices above and below each interface and arranging them into a single matrix as

given in Eq. (3.27) and Eq. (3.26). This leads to a rectangular matrix which has
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4n columns and 4(n− 1) rows. Additionally there are 4n partial-wave amplitudes.

Two partial-wave amplitudes are defined in the first layer and two in the last, and

the global-matrix in Eq. (3.27) is rearranged to be square as shown in Eq. (3.29).

The resulting equation is solved using the mldivide function in MATLAB. This

function solves a system of linear equations using the fastest algorithm based on the

matrix structure. However, the global-matrix becomes singular at values of ζ and

ω on or close-to dispersion curve solutions. In practice, it is unlikely that the exact

dispersion solution will be chosen as a point of calculation.

4.2.2 Dispersion Curve Algorithm

Dispersion curves are used to gain an understanding of the underlying physics in the

Fabry-Pérot sensor. The computation of dispersion curves in ElasticMatrix is

similar to the algorithm described by Lowe [84] and is described here. As intro-

duced in Section 3.4.2, the dispersion curves can be generated by finding non-trivial

pairs of frequency and wavenumber where

S( f ,ζ )B = 0. (4.1)

Here, S is the system matrix for a given frequency f and horizontal wavenumber

ζ and B is a vector of partial-wave amplitudes. This corresponds to solutions of

frequency and wavenumber where det |S( f ,ζ )| = 0. The computation of disper-

sion curves is performed in the frequency-wavenumber domain as the curves are

close to straight lines. After calculation, the curves can be transformed in terms of

frequency-phasespeed or frequency-angle. The main steps in the dispersion curve

algorithm are as follows:

(1) Firstly a range of frequencies f are chosen (this is a user chosen param-

eter in the ElasticMatrix toolbox described in Section 4.3). The range of

wavenumbers ζ can be automatically generated by using the maximum frequency

and finding the lowest bulk wave speed cmin in the material layers. The formula

ζmax = 2π fmax/(cmin ∗ 0.8) is used to find the maximum value of ζ . This ensures

the curves are traced to the maximum of the frequency range. The value of 0.8 is
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used to ensure Rayleigh waves are captured. These typically have a phase velocity

85% to 95% of the shear wave speed.

(2) The starting points of each dispersion curve are found by fixing one param-

eter and sweeping over the other. For example, the lowest wavenumber is chosen

and the determinant of the system matrix is calculated over the entire range of fre-

quencies. Close to the dispersion solutions, the system matrix becomes singular

leading to minima in the determinant. Figure 4.1 (a) shows the fully traced disper-

sion curves in wavenumber and frequency. The dashed blue lines indicates where

the frequency and wavenumber sweep are taken. The determinant of the system

matrix along the sweeps can be seen in Figure 4.1 (b) and (c). The minima in the

determinant indicate starting points of the dispersion curves. The number of starting

Figure 4.1: (a) Dispersion curves in wavenumber and frequency. The dotted blue lines
indicate where the initial starting points sweeps are taken. (b) The determinant
across the frequency sweep. Four minima can be seen corresponding to four
dispersion curve starting points. (c) The determinant across the wavenumber
sweep. Two minima can be seen corresponding to two dispersion curve starting
points.

points depends on the thickness of the plate and the frequency. For example, along

the frequency sweep, there are four starting points for a 1 mm titanium plate within

the first 5 MHz, and there are four starting points for a 0.1 mm titanium plate within

the first 50 MHz. Hence, the starting points for the product of the plate thickness-
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frequency product are constant. The frequency intervals ∆ f are chosen based on the

formula

∆ f =
fmax

fmaxdT
1000 N f

=
1000
dT N f

. (4.2)

Here, fmax is the maximum frequency, dT is the total thickness of the finite layers

and N f is the number of sample points per frequency-thickness (MHz-mm) product

(hence the origin of the factor of 1000). This formula scales ∆ f relative to the thick-

ness of dT so that the number of points per frequency-thickness product is constant.

A graph of the number of starting points found in the frequency sweep versus N f

has been plotted in Figure 4.2 (a) for three different materials covering a range of

sound speeds for Teflon, perspex and titanium. Note, the lower the sound speed

the more starting points there are. All starting points are found at approximately

N f = 100. For this implementation N f = 200. This improves the accuracy at no

significant computational cost. A low value of N f misses starting points as there is

not enough sampling to find all the minima in the determinant. This is shown in

Figure 4.2 (c) and (d). A similar metric is used to choose the ∆ζ step size for the

wavenumber sweep,

∆ζ =
ζmax

ζmaxdT Nζ

=
1

dT Nζ

. (4.3)

Interestingly, low values of Nζ over-estimate the number of starting points, as shown

in Figure 4.2 (b). However, all three curves converge after Nζ > 200. Here Nζ is

chosen as 300. The minima are found by taking the gradient of the sweep and

looking for crossing points of the x-axis when the gradient changes from positive to

negative, as shown in Figure 4.2. These are used as the coarse starting points in the

dispersion curve algorithm.

(3) A more precise frequency and wavenumber of the dispersive solution is

found using a bisection algorithm. For every coarse starting point, the wavenumber

is fixed and a minimisation function is used to find the exact frequency of the dis-

persion curve using the determinant as a cost metric. ElasticMatrix makes use

of MATLAB’s fminbnd() function to constrain the minimisation between ±∆ f .

The tolerance between the previous and current value is set to stop at 1× 10−4,
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Figure 4.2: (a) Number of starting points found versus number of points per N f for the
frequency-sweep. The solid line is a Teflon plate, the dashed line is a perspex
plate and the dotted line is a titanium plate. (b) Number of starting points found
versus number of points per N f for the wavenumber-sweep. (c) Low N f for the
frequency sweep. (d) High N f for the frequency sweep. The arrow shows that
there are two starting points which can only be found if N f is high enough.
(e) Gradient of the frequency sweep. Minima are found where the gradient
changes from negative to positive.

which is sufficient accuracy in practice. Testing the algorithm at different toler-

ances did not have a significant impact on compute time. These refined values are

used as the starting points for each dispersion curve where each starting point is

used to trace a different curve.

(4) The algorithm starts tracing the curves from the lowest wavenumber value

across the range of frequencies. The second point on the dispersion curve is found

by increasing the fixed value of wavenumber (+∆k) and repeating the method from

the previous step.

(5) The algorithm uses linear interpolation between the first two points to esti-

mate the location of the third, fourth and fifth points on the dispersion curve. Here,

interp1() is used with the ’linear’ and ’extrap’ flags. For each esti-

mated point, a simple gradient descent algorithm moves the estimated point to the

closest minimum in the determinant. This is illustrated in Figure 4.3. In Figure 4.3
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Figure 4.3: (a) The neighbouring points of the predicted point (in red) are evaluated. (b)
If the predicted point is not the lowest, the next point along is chosen and the
points either side are evaluated. (c) If the current point is the lowest, the two
points either side (in blue) are used as bounds for fminbnd to find the minima.

(a), the red dot indicates the predicted frequency of the next point on the dispersion

curve. The determinant value at this point is compared to the frequencies either

side ( f2 +∆ f = f3, f2−∆ f = f1). The estimated point is updated until it is lower

than the neighbouring points. Then, as before, fminbnd is used to find the exact

frequency-wavenumber pair.

(6) A piece-wise cubic interpolation scheme (pchip) is used to estimate the re-

maining points. Following each prediction, step (5) is repeated to refine the value

of frequency. The estimates use the interp1() function in MATLAB with the

’pchip’ and ’extrap’ flags. The pchip algorithm gives more accurate predic-

tions than the linear scheme (see Figure 4.4 (a)). The cubic interpolation adds “in-

ertia” to help prevent tracing the incorrect modes at points when dispersion curves

cross. Additionally, the pchip algorithm has smooth behaviour at turning points and

flat regions, unlike higher-order polynomials which have a tendency to overshoot

and oscillate. The piece-wise cubic spline was fitted with 25 points. It was found

that fitting with more points gave a more accurate prediction. This is shown in Fig-

ure 4.4 (b). Additionally, the improved accuracy of the predicted point decreased

the total time the algorithm needed to run, which levels out at approximately 55

seconds (for a titanium plate in a vacuum between 0 and 5 MHz). This result is

shown in Figure 4.4 (c). The decrease in compute time occurs because the pre-

dicted point is closer to the true minimum, so it requires less time to perform the
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gradient descent part of step (5).

Figure 4.4: (a) For the first two steps in wavenumber (ζ ), no interpolation is used. For ζ2
to ζ5 linear interpolation is used. For ζ5 and onward a cubic spline is used.
The red points and red dashed line indicated the predictions based on linear
interpolation. The orange points and lines indicate the predictions based on the
pchip algorithm. (b) Error between the dispersion curve point and the predicted
point versus number of fitting points for the cubic spline. The more fitting
points used, the more accurate the prediction of the next point. (c) Time taken
for the entire dispersion curve algorithm to run versus number of fitting points
for the cubic spline. The dispersion curve algorithm runs quicker when more
points are fitted.

(7) Finally, a coarse method was also implemented that performs steps (2) and

(3) for every wavenumber value and returns the points on the dispersion curves

rather than tracing each curve individually. This method is computationally more

expensive, but is also more robust as it does not rely on the dispersion curves being

connected. This is particularly helpful for difficult problems to trace such as a

polymer plate immersed in water. For these very leaky problems it can often be

difficult to distinguish a minima. This is shown in in Figure 4.5. Here, the frequency

sweep of a titanium plate is shown with a coupling medium of increasing impedance

from Z1 to Z5. The minima in the determinant become less pronounced. Currently,

the algorithm implemented in ElasticMatrix only searches in the real domain

of ζ and does not trace the attenuation of each dispersion curve. The attenuation of

each curve describes how much of the guided wave energy is leaked into an adjacent

medium, for example, a plate embedded in a polymer.

As mentioned previously, the dispersion curves can be easily converted into
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Figure 4.5: Effect of coupling materials with increasing impedance Z on the determinant
of the frequency sweep. Here, Z1 < Z2 < Z3 < Z4 < Z5. The minima become
less pronounced when there is a coupling medium of increasing impedance,
this makes it difficult to trace dispersion curves in the real ζ domain.

different domains using the relation

ζ =
ω

ν
=

ω sin(θ)
c1

, (4.4)

where ζ is horizontal wavenumber, ν is the phase velocity, ω is the frequency and

c1 is the bulk velocity in the first medium and θ is the incident angle of the plane

wave in the first medium. The group velocity can be found from the gradient of the

dispersion curve

cg =
∂ω

∂ζ
. (4.5)

4.2.3 Time Domain Analysis

The partial wave method finds wave-amplitudes describing the (quasi-)compressional

and (quasi-)shear waves in each layer for an incident continuous plane wave of a

single frequency. The displacement and stress equations Eq. (3.23) are used to

determine the displacement and stress at any coordinate within the sensor. The dis-

placement at coordinate (x1,x3) is found by summing the individual contributions

from the four partial-waves and taking the real part. The displacement equations
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take the form

ui =
4

∑
q=1

AiqBq exp(i(ζ x1 +ζ αqx3−ωt)), (4.6)

where Aiq is amplitude of the wave, ω is the circular frequency and ζ and ζ αq

are the horizontal and vertical components of the wavevector. The wave-field is

plotted by defining a mesh in (x1,x3), and calculating the displacement at each

point. This gives the wave-field for a single-frequency plane-wave at time t. The

dynamic behaviour of the wave-field is observed by increasing t.

Note, for multilayered media the phase and displacement information at ei-

ther side of the interface is contained within the complex partial-wave amplitudes.

Hence when summing the wave fields, it is important to keep all the values complex

and take the real value at the end.

Any incident wave-field can be decomposed into a sum of plane waves. Hence

the interaction of a more complex wave-field with a layered structure can be de-

termined. Firstly the angular-spectrum of the desired incident wave-field must be

taken. Each component can then be used to calculate a plane wave displacement

field. The Fourier coefficient at each frequency is used to weight the fields. They

are then summed together and scaled to give the output field. Compared to conven-

tional numerical schemes used to solve the elastodynamic equations, some benefits

of this approach are that the results are exact and do not suffer from numerical in-

stabilities, dispersion or stair-casing errors. Additionally, if only the final field at

specific coordinates is desired, the simulation only needs to be calculated once for

the desired spatial and temporal coordinates (x1,x3, t).

4.3 Software Description

4.3.1 Overview

As mentioned in Section 4.1, the partial-wave method and other matrix models of

wave propagation in multi-layered elastic solids have had a significant contribution

to different areas of research. This section introduces the ElasticMatrix soft-

ware which aims to make these methods freely available and adaptable to different
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research communities.

Some potential uses of this software are: 1) plotting the slowness profiles

of materials, 2) determining the reflection and transmission coefficients of multi-

layered structures, 3) finding the dispersion curves of layered structures, 4) plotting

the displacement and stress fields, 5) extending the toolbox for other applications,

for example modelling the directional response of Fabry-Pérot ultrasound sensors

[67, 7].

The ElasticMatrix toolbox implements the partial-wave method using an

object-oriented framework in MATLAB. This allows the toolbox to be used with

either a simple scripting or command line interface, and makes it easy to use and

expand. The software is divided into three classes. The first class, Medium, de-

fines the multi-layered geometry and material properties of each layer. The second

class ElasticMatrix is initialised by a Medium object. This class contains the

partial-wave method implementation and methods for extracting additional details

such as dispersion curves and reflection coefficients. By default, all the calcula-

tions use double (64 bit) precision. The final class, FabryPerotSensor, is an

example of how numerical models can be built from the ElasticMatrix and

Medium objects. This class inherits ElasticMatrix and can be used to model

the directional response of a Fabry-Pérot ultrasound sensor. Each class in the tool-

box inherits the MATLAB handle class. Consequently, the object does not need to

be reassigned when a method is called. The classes and their respective attributes

and methods can be seen in Figure 4.6. The toolbox is self contained and has been

tested with MATLAB 2016a and above. There are three steps to using the toolbox.

Firstly, the geometry of the layered medium must be defined. Secondly, the input

parameters to the model should be defined, which are generally a range of angles,

frequencies, or wavenumbers. Finally, the model can be solved and details such as

the reflection coefficients and dispersion curves can be extracted. Note, for clarity

in the code implementation, the x1 and x3 coordinates are referred to as x and z,

respectively.
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Figure 4.6: UML class diagram for Medium, ElasticMatrix and
FabryPerotSensor. The top field for each box indicates the name
of the class, the second field lists the properties, and the third field lists
the methods. Here, ElasticMatrix is composed from Medium and
FabryPerotSensor inherits ElasticMatrix. The (−) indicates a
private method or property and (+) indicates a public method or property.
Underlined methods are static. The type is indicated after the colon (:). Terms
inside brackets are the inputs to methods. The figure has been reproduced from
[82] with reprint permission under CC BY.

4.3.2 Documentation

A common problem with open-source and academic software is the lack of good

documentation. This makes the uptake or use of open source software difficult.

ElasticMatrix has been extensively documented using the k-Wave [115] cod-

ing standard so a user can download the code base and run their first examples

within minutes. Detailed step-by-step examples are found in the ElasticMatrix

./examples folder and html documentation can be accessed through the MAT-

LAB help and clicking ElasticMatrix toolbox (see Figure 4.7).
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Figure 4.7: ElasticMatrix can be downloaded from the web link or
(http://www.elasticmatrix.org). After adding the software to the MAT-
LAB path, the html documentation can be accessed in the supplemental
software section.

4.3.3 Medium

The Medium class is used to define the material properties and thickness of each

layer. The class is initialised by calling the class constructor with input arguments of

the material name followed by its thickness. However, the thickness of the first and

last layers are semi-infinite and their values should be set with the Inf keyword.

The Medium class will automatically set the thickness of the first and last layer to

Inf if another value is used. An example is given below.

my_medium = Medium(‘water’, Inf, ‘blank’, 3e-3,...

‘PVDF’, 1e-3, ‘glass’, Inf);

Here, my medium is an object array and every index in the object array corresponds

to a different layer in the medium. In the current example, my medium(3) returns

an object with the material properties and thickness associated with PVDF. The

‘blank’ keyword can used for a material which is not predefined. The material

properties and names can be set using their respective set functions. User defined

materials can be added to the file materialList.m.
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4.3.4 Slowness Profiles

Slowness profiles are a plot of the inverse of the phase velocity of each bulk wave

component. They can be used to determine the angles of reflection and transmission

between multi-layered media as well as the direction of energy propagation and

skew angle [79]. Slowness profiles are found by solving the Christoffel equation,

Eq. 3.13, and only depend on the material properties of each material. The method

.calculateSlowness is part of the Medium class, and calls the function

calculateAlphaCoefficients(...)

which is an implementation of Eqs. (3.13) and (3.14). This takes input arguments

of the material properties and phase-velocity and returns the polarisation and wave-

vectors. The slowness profiles given by this function are plotted in terms of kx/ω

vs kz/ω (where kx = ζ is the horizontal wavenumber and kz = ζ α is the vertical

wavenumber). For an isotropic material, the slowness profiles for each bulk wave

are spherical, however, this is not true for an anisotropic material.

An example of the slowness profiles for isotropic-glass and transverse-

isotropic beryl is shown in Figure 4.8. This figure has been reproduced from

[116]. The slowness profiles of the (quasi-)longitudinal, (quasi-)shear-vertical and

(quasi-)shear-horizontal bulk waves are shown. As glass is an isotropic material, the

slowness profiles are spherical and the magnitudes of L,SV and SH when kx/ω = 0

or kz/ω = 0 are equal to the reciprocal of the compressional- and shear-speeds of

glass. For the transverse-isotropic case, when kx/ω = 0, the value of qL is equal to√
ρ/C33 and qSV is equal to

√
ρ/C55. When kz/ω = 0, the value of qL is equal to√

ρ/C11 and the value of qSV is equal to
√

ρ/C55.

my_medium = Medium(‘glass’, Inf, ‘beryl’, Inf);

my_medium.calculateSlowness;

my_medium.plotSlowness;

4.3.5 ElasticMatrix

The medium class is used to initialise the ElasticMatrix class which runs the

partial-wave method over a range of frequencies, wavenumbers, phasespeeds and
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Figure 4.8: The slowness curves for isotropic-glass and transverse-isotropic beryl mate-
rials where (q)L, (q)SV, (q)SH correspond to the reciprocal of the (quasi-
)longitudinal, (quasi-)shear-vertical and (quasi-)shear-horizontal partial-wave
speeds. Note, the SV and SH modes are coincident for glass as it is isotropic.
The figure has been reproduced from [82] with reprint permission under CC
BY.

angles. Two of these must be defined using the .set functions. The .calculate

method is then used to run the partial-wave procedure. The .calculate method

constructs, rearranges and solves the global-matrix, Eq. (3.28), using the function

calculateMatrixMethod(...)

This function takes input arguments of the material properties and the parameters

to calculate over (angles, frequencies, wavenumbers). It returns the determinant of

the system matrix and the stresses and displacements at the layer interfaces. Each

individual field-matrix is calculated using the function

calculateFieldMatrixAnisotropic(...)

which is an implementation of Eq. (3.23). This takes input arguments of the material

properties, the wave-vector components, polarisation components and the phase

velocity and returns the field-matrix. The default calculation is to find the partial-

wave amplitudes and interface stresses and displacements when there is a single-

frequency compressional wave incident on the structure from the first layer. An

example is given below for a titanium plate.

my_medium = Medium(‘water’, Inf, ‘titanium’,...

1e-3, ‘water’, Inf);
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my_model = ElasticMatrix(my_medium);

my_model.setFrequency(linspace(1e6, 5e6, 100));

my_model.setAngle(linspace(0, 45, 100));

my_model.calculate;

4.3.6 Reflection and Transmission Coefficients

For a plane wave incident at an oblique angle on a multi-layered structure, the re-

flection and transmission coefficients determine the amplitude of the wave that is

reflected and transmitted at each interface. Knowing these coefficients is useful for

a number of applications. For example, selecting the appropriate launch angle when

coupling energy into particular modes in a wave-guide, or determining the thickness

and material properties of matching layers for ultrasonic transducers [79, 117].

The angles of refraction at the interfaces between multi-layered media can be

found by studying the slowness profiles. However, slowness profiles do not take

into account the boundary conditions at the interfaces. Consequently, the magni-

tude of each of the refracted waves cannot be calculated directly. For a plane wave

incident on a multi-layered structure, the magnitude of the reflection and transmis-

sion coefficients are found by normalising the partial-wave amplitudes Bn
N by the

incident plane wave amplitude B1
1. This is automatically calculated when using the

.calculate method.

An example of the reflection and transmission coefficients at a PVDF-

aluminium interface is given below and shown in Figure 4.9. For a plane com-

pressional wave incident on a PVDF-aluminium interface, there are four resulting

refracted waves. These are a reflected R and transmitted T compressional L and

shear S wave. These are compared against analytical solutions in greater detail in

Section 4.4.

my_medium = Medium(‘PVDF’, Inf, ‘aluminium’, Inf);

my_model = ElasticMatrix(my_medium);

my_model.setFrequency(1e6);

my_model.setAngle(linspace(0, 90, 90));
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my_model.calculate;

my_model.plotRTCoefficients;

Figure 4.9: Longitudinal L and shear S reflection R and transmission T coefficients for a
PVDF-Aluminium interface. The figure has been reproduced from [82] with
reprint permission under CC BY.

4.3.7 Dispersion Curves

Dispersion curves describe the modal solutions of the multilayer structure. Knowl-

edge of the dispersion curves is useful for determining the most appropriate modes

to excite in ultrasonic inspection.

As mentioned in Section 4.2.2, the modal solutions are found when the global

matrix becomes singular. The ElasticMatrix software can calculate dispersion

curves for simple layered structures (i.e., a plate in a vacuum or water). An example

of the dispersion curves for a 1 mm titanium plate in a vacuum is shown in Figure

4.10 (a). The dispersion curves are plotted on a graph of frequency vs wavenumber

and show the first three symmetric S and anti-symmetric A Lamb modes. The results

from Disperse are also plotted and have excellent agreement. Further examples and

comparisons are made in Section 4.4.9.

my_medium = Medium(‘vacuum’, Inf, ‘titanium’,...

0.001, ‘vacuum’, Inf);
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my_model = ElasticMatrix(my_medium);

my_model.setFrequency(linspace(0.5e6, 5e6, 100));

my_model.calculateDispersionCurves;

my_model.plotDispersionCurves;

Figure 4.10: (a) Dispersion curves for a titanium plate in a vacuum. The solid lines are
from ElasticMatrix and the points are generated using Disperse [108].
The first three symmetric (S, black) and anti-symmetric (A, blue) are plotted.
(b) Displacement field for an anti-symmetric and symmetric mode shape. The
figure has been reproduced from [82] with reprint permission under CC BY.

4.3.8 Displacement and Stress Fields

More information about the wave-physics and guided wave structures can be taken

from dispersion curves by plotting the displacement and stress fields at different

points. In the ElasticMatrix software implementation, the x and z ranges

over which to plot the displacement or stress fields must be specified. The

.calculateField(...) method returns a structure with the input ranges and

field values at each point of the resulting grid. The values of the structure can be

plotted independently or given as an argument to the .plotField method. An

example is given below for the displacement field within an titanium plate for a

symmetric and anti-symmetric mode. The resulting plot can be seen in Figure 4.10

(b).

field_values = myModel.calculateField(...
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freq, angle, {x_range, z_range});

myModel.plotField(field_values, plot_style);

The plotField method only plots the displacement and stress field for a

single frequency plane wave. Currently there is no available method for plotting

field parameters of more complex sources, although more complex sources can be

constructed from a sum of plane waves. This code is under development and two

demonstrative examples are shown in Figure 4.11 and Figure 4.12. Figure 4.11

shows an incident ultrasound beam reflecting at the Rayleigh angle (≈ 27◦) at a

water-aluminium interface. At this angle, a leaky-Rayleigh wave is generated on the

aluminium surface. The incident beam is reflected, and a second beam is emitted

which is displaced away from the directly reflected beam. This phenomenon is

called Schoch displacement. The model has been used to reproduce this effect,

although the two images cannot be directly compared as the exact properties of the

experiment are not known. The second example is a finite Gaussian pulse in space

incident on an aluminium plate immersed in water, with a snapshot taken at different

time intervals. A guided wave is generated in the aluminium plate. This wave leaks

energy at discrete intervals into the surrounding fluid and the amplitude decays with

distance. There are some banding artefacts caused by wrapping from infinite plane

waves. It is hoped these can be ameliorated with further development.

4.3.9 FabryPerotSensor

One of the aims of this thesis is to model the directional response of Fabry-Pérot

ultrasound sensors. The ElasticMatrix class can solve the elastic-wave prop-

agation problem in multilayered media which is needed for calculating the direc-

tional response. The FabryPerotSensor is a child class of ElasticMatrix

and is one example of how the ElasticMatrix toolbox may be expanded.

This class includes additional inputs for modelling the directional response. The

FabryPerotSensor is initialised with a Medium class which defines the geom-

etry of the Fabry-Pérot sensor. A range of angles and frequencies must be defined

using the relevant set functions. The directional response is calculated from the

difference in displacement of the mirrors. Currently, the mirror locations are set as
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Figure 4.11: Example of Schoch displacement, an incident ultrasound beam at the Rayleigh
angle, there is a direct reflected beam and a second beam emitted by the leaky-
Rayleigh wave which is displaced from the first. Left: the model. Right: a
Schlieren image of Schoch displacement which was presented in Lamanfi et
al [118]

Figure 4.12: The magnitude of the stress of a plate in water. (t1) A pulse is incident on the
aluminium plate. (t2) The pulse interacts with the aluminium plate, a guided
mode is excited. (t3) A reflected and transmitted pulse can be seen. (t4) Multi-
ple transmissions can be seen as the guided mode progresses. The amplitude
of each subsequent transmission reduces.

the interface locations between layers. For example, for a sensor geometry consist-

ing of three layers (modelling the coupling fluid, spacer and substrate), the mirror

interface locations are set to 1 and 2. There is a separate function for modelling

the directional response with the inclusion of the strain-optic coefficients, as de-

scribed in Chapter 2. This will be fully integrated with the FabryperotSensor

class in the future. The FabryPerotSensor class uses the ElasticMatrix

methods to calculate the partial wave amplitudes, as described in Chapter 3. The

FabryPerotSensor then uses the displacements at the mirror interface loca-

tions to calculate the directivity. Since all the methods from the ElasticMatrix
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class are inherited by the FabryPerotSensor class, analysis such as the reflec-

tion and transmission coefficients, dispersion curves, and plotting field parameters

fields can be calculated just the same as before.

An example of the modelled and measured directional response for a glass

etalon Fabry-Pérot sensor can be seen in Figure 4.13. Features of the directional

response correspond to symmetric and anti-symmetric Lamb modes propagating

within the sensor. These results are discussed in greater detail in Chapter 5.

my_medium = Medium(‘water’, Inf, ‘AlMir’, 1e-8,...

‘glass’, 175e-6, ‘AlMir’, 1e-8, ‘air’, Inf);

fp_sensor = FabryPerotSensor(my_medium);

fp_sensor.setAngle(linspace(0, 45, 45));

fp_sensor.setFrequency(linspace(0.1e6, 100e6, 100));

fp_sensor.setMirrorLocations([1, 4]);

fp_sensor.calculateDirectivity;

fp_sensor.plotDirectivity;

fp_sensor.calculateDispersionCurves;

4.3.10 Run-time

ElasticMatrix runs the partial-wave method for every parameter pair speci-

fied. The compute time increases linearly with the number of layers for the same

number of parameter pairs, and linearly with the number of parameter calculations.

These operations use relatively little memory and processor power and can be run

on most desktop or personal computers. Figure 4.14 plots the calculation time ver-

sus number of layers for 502 frequency-angle pairs. For example, the calculation

took approximately 12 seconds for a model consisting of forty layers when running

on a standard desktop computer (4-core Intel Xeon E3-1240 running at 3.50 GHz

with 32 GB of DDR3 2133 MHz memory).

4.3.11 Summary

This section introduces a new open-source toolbox called ElasticMatrixwhich

models elastic wave propagation in multi-layered media with anisotropic materi-
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Figure 4.13: The modelled directional response (−40◦− 0◦) and measured directional re-
sponse (0◦−40◦) from [67]. The dispersion curves associated with this sensor
are plotted as black points. The figure has been reproduced from [82] with
reprint permission under CC BY.

Figure 4.14: The run-time for the partial-wave method versus the number of layers for 502

frequency-angle pairs. There is a linear relationship between the number of
layers and calculation time. The figure has been reproduced from [82] with
reprint permission under CC BY.

als with isotropic, transverse-isotropic or orthotropic symmetry. The toolbox uses

the partial-wave method which allows the calculation of slowness profiles, reflec-
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tion and transmission coefficients, dispersion curves, and stress and displacement

fields. The software has been implemented using the object-oriented capabilities

of MATLAB allowing for a simple command line or scripting interface. The im-

plementation allows researchers to add functionality and integrate the software

into other projects. It is hoped the research user-base will actively contribute to

ElasticMatrix and add to the functionality.
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4.4 Validation

4.4.1 Introduction

The previous section demonstrates the ElasticMatrix toolbox for modelling

elastic wave propagation in multilayered media. This section introduces a number

of validation examples. Firstly, simple checks are performed to ensure the model

is working as expected. Secondly, where possible the model is compared against

analytic solutions and commercial software. In this chapter, the absolute difference

error between the model and analytical solutions are normalised so that an error of

10−16 is machine precision. In most practical applications an error of 10−4 is ac-

ceptable. Lastly, the model is used to reproduce existing results from the literature.

4.4.2 Boundary Conditions

The simplest check for the model implementation is to ensure the boundary condi-

tions. At the interface between two solid media, the normal and transverse stress

and displacements are continuous. Therefore, the stresses and displacements at in-

terface i calculated with the field matrix and partial-wave amplitudes of layer l must

be the same as the stresses and displacements at interface i calculated with the field

matrix and partial-wave amplitudes of layer l +1.

A test was performed to check whether the partial-wave amplitudes from adja-

cent layers gave the same values for the stresses and displacements. This was done

by evaluating the displacements and stresses at a small distance within both media,

either side from the interface. The distances were reduced until both were evaluated

at the same coordinate. As the distance is reduced, the percentage error reduces

smoothly. At the limit of the interface, the errors in the displacements and stresses

are on the order of machine precision (10−16).

A similar test was performed to check the error at the interfaces for a multi-

layered structure containing fluid, elastic and anisotropic materials. It was found

the mean errors in the stresses and displacements at the interfaces were on the order

of (10−16). It must be noted however the transverse displacement for fluid-elastic

interface is discontinuous. Additionally, for fluid layers the shear stress should be
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zero, however numerically the shear stress was on the order of (10−8). This error

occurs for a couple of reasons. Firstly, fluid materials are represented as elastic ma-

terials with small shear speeds (1 m/s to avoid divide by zero errors). Secondly, the

boundary conditions for transverse displacements are not explicitly removed when

dealing with fluid-solid interfaces. The errors propagate into the calculation of the

wave-vector components and global matrix construction. These small numerical

errors could be ameliorated in future by explicitly calculating the wave-vector com-

ponents for fluids and removing equations relating to the continuity of transverse

displacements at fluid interfaces. The value of 1 m/s was chosen to minimize the

errors that propagate. Figure 4.15 contains a plot of the displacement and stresses

through an example multilayered structure. The uz,σzz,σxz are continuous across

every interface and ux is continuous across all interfaces except those adjacent to

fluids.

Figure 4.15: Visualisation of the field parameters for an arbitrary frequency and wavevector
for an arbitrary multi-layered structure with a mixture of isotropic, anisotropic
and fluid layers. Note, the displacement and stresses are continuous across
every interface except for the fluids, hence the boundary conditions are hold-
ing. Additionally, the shear stress is 0 for a fluid as they cannot support shear
waves.
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4.4.3 Comparison with Potential Method

It was mentioned in Section 3.3.4 that the potential method was implemented sepa-

rately. The potential method and partial-wave method are mathematically identical

in the isotropic case. A test was performed for a multilayered structure over a range

of frequencies and angles comparing the interface displacement, stresses, and the

amplitudes of the potential and partial-wave amplitudes for each layer. The av-

erage error for each of these parameters was on the order of (10−16). This test

demonstrates that with two different implementations and derivations the same re-

sults are achieved. The following validation examples only describe the results

from the partial-wave implementation for clarity, however, the same tests have been

performed for the potential method and both implementations give the same results.

4.4.4 Displacement in Water

The displacements given by the model are arbitrarily scaled to that of an incident

wave pressure of 1 Pa in water. The values from the model were compared to the

analytical formula for the maximum particle displacement in water. This is given

by

uw =
P

Zω
, (4.7)

where uw is the maximum particle displacement, P is the pressure, Z is the acoustic

impedance and ω is the angular frequency. This relationship indicates the maximum

particle displacement for a harmonic plane wave is inversely related to frequency.

A two layer medium was initialised and each layer was set to have the properties

of water. The model was calculated for an acoustic wave incident normal and at 45

degrees to the “interface” between the layers. The magnitude of the complex dis-

placements returned by the model were calculated and plotted against the analytical

result for 0 and 45 degrees, this can be seen in Figure 4.16. (The model was checked

at a range of angles between 0 and 90 degrees but only two are plotted). The model

matched the analytical results with an average numerical error of less than (< 10−8).

The small numerical error compared to machine precision occurs because fluid me-

dia are represented with a small shear speed. The error propagates when calculating
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the wavevector components with the Christoffel form. As discussed previously,

these errors can be improved by explicitly removing equations related to transverse

displacement for fluid-media, however, is small enough for almost all practical pur-

poses. This test demonstrates the scaling of the model is correct. Additionally, as

the scaling coefficient can be factored out of the partial-wave derivation, different

scalings can be achieved by multiplying the output displacements by the relevant

factor. For example, to have the displacements at 10 Pa, the output displacements

simply need to be multiplied by 10. However, this may not be realistic for every

material if the elastodynamic behaviour is non-linear with pressure.

Figure 4.16: Check of the displacement scaling in water at a pressure of 1 Pa. The mag-
nitude of the displacement calculated should be the same for a plane wave
travelling at any angle.

4.4.5 Fluid-Fluid Interface

The angle-dependent reflection and transmission pressure coefficients at the inter-

face between two fluid half-spaces are plotted in Figure 4.17. Two cases were mod-

elled and compared to the analytical formulae found in Cheeke [1]. The first case

is from a fluid of a higher impedance to a lower impedance, and the second is the

reverse case. The sound speed and density of medium 2 are cL = 3000,ρ = 3000

and the sound speed and density of medium 1 are cL = 1480,ρ = 1000.

When the incident wave is travelling from a half space of lower impedance

to a higher impedance there is a critical angle present. Figure 4.17 (c) and (d)

demonstrates this as the pressure reflection coefficient peaks and becomes unity. In

the reverse case, there are no critical angles hence there are no peaks in the reflected
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or transmitted wave as seen in Figure 4.17 (a) and (b).

The partial-wave and analytical models are in close agreement. The average er-

ror between the partial-wave and analytical model is on the order of (10−5). As dis-

cussed previously, this numerical error occurs from the representation of fluid media

with a small shear speed. Further tests were performed where the impedance ratio

between the first and second fluid (and vice-versa) was taken from 1:1 to 1:1000.

At the highest impedance ratio, the average errors were still on the order of (10−5).

Figure 4.17: Fluid-Fluid interface. Medium 2 has a higher impedance than medium 1.
(a, b) Magnitude of pressure reflection and transmission coefficients from
medium 2 to medium 1. (c, d) Magnitude of pressure reflection and trans-
mission coefficients between medium 1 and medium 2. There is a critical
angle present seen as a peak in the reflection and transmission coefficients.

4.4.6 Fluid-Solid Interface

The angle-dependent reflection and transmission displacement coefficients at the

interface between a fluid and solid half-space were validated against the analytical

solutions in Cheeke [1]. These solutions only describe isotropic materials. Two

different cases were studied. The first is the reflection and transmission between

water and perspex, and the second is between water and aluminium. Three bulk

waves may exist for a compressional plane wave incident on the interface between
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a solid half space and liquid half space. These are a reflected compressional wave,

a transmitted compressional wave, and a transmitted shear wave.

The displacement reflection and transmission coefficients of the water-perspex

interface can be seen in Figure 4.18. The compressional and shear speeds of perspex

are cL = 2700,cS = 1300. Only the compressional wave-speed is higher than that of

water, which means there is only one critical angle at 34° from the compressional

wave. This can be a seen as a peak tending to unity in the reflection coefficient.

After the first critical angle there is a strong shear wave generated in the perspex.

This can be seen as the large increase in shear transmission coefficient, |TS|. This

decays at higher angles of incidence.

The energy coefficients of the water-perspex interface can be seen in Figure

4.19. There is a large peak in the reflected energy coefficient (blue) at the criti-

cal angle. Before this the majority of the energy is transmitted as a compressional

wave (solid red). After the critical angle, the compressional reflection and trans-

mission energy coefficients drop and the majority of the energy is converted into a

transmitted shear wave (red dashed).

The displacement reflection and transmission coefficients of the water-

aluminium interface can be seen in Figure 4.18. There is good agreement between

the partial-wave and analytic models. The compressional and shear speeds of alu-

minium are cL = 6400,cS = 3100. Both the compressional (13.4°) and shear critical

(28.5°) angles can be seen as the reflection coefficient becomes unity.

Additional information can be obtained from studying the energy in the reflec-

tion and transmission coefficients, as shown in Figure 4.19. Prior to the first critical

angle, the majority of the energy is concentrated in a reflected compressional wave

(blue) and transmitted compressional wave (solid red). At the first critical angle,

all of the energy is reflected and the transmitted waves tend to zero. Between the

first and second critical angle, there is no transmitted compressional wave and mode

conversion occurs as there is a strong transmitted shear wave (red dashed). After

the second critical angle, no energy is transmitted and all of the energy is reflected.

Although the transmitted energy coefficient after the second critical angle is zero,
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the displacement transmission coefficient may be non-zero. This is because after

the second critical angle, the displacement transmission coefficients may become

complex indicating the presence of an evanescent (inhomogeneous) wave. The am-

plitudes of evanescent waves are maximum at the interface and decay exponentially

away from the interface. The result is that they do not carry energy away from the

interface, hence have zero energy coefficients.

The mean error between the partial-wave and analytical model is on the order

of (10−5) for the reflection coefficient and transmission coefficients. Again, the

small numerical errors occur from the representation of fluid media with a small

shear speed. Further tests were done comparing where the impedance ratio be-

tween the first and second medium was taken from 1:1 to 1:1000. At the highest

impedance ratio, the average errors were still on the order of (10−5). Rose [79]

provides a solution for the reflection and transmission coefficients for a solid-solid

interface. When calculating the reflection and transmission coefficients (for the two

fluid-solid cases mentioned above) using the Rose model and comparing with the

partial-wave method, the errors are on the order of (10−16). This is because the

Rose model, like the partial wave model, represents the fluid layers with a small

shear speed.

4.4.7 Solid-Solid Interface

The reflection and transmission coefficients from a compressional wave incident on

the interface between two solid elastic half-spaces is considered here. In this case,

there are four bulk waves generated from a single incident wave. These are reflected

and transmitted shear and compressional waves. Two examples were chosen and

compared with the solutions given by Rose [79]. These are an aluminium-perspex

and an perspex-aluminium interface. Both examples have good agreement with the

solution from Rose, and the mean error of the displacement coefficients is on the

order of (10−16).

Figures 4.20 (a) and (b) show the shear and compressional reflection and trans-

mission displacement and energy coefficients for the aluminium-perspex interface.

Both the shear and compressional wave speeds of aluminium are higher than those
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Figure 4.18: (Top-row) Magnitude of the displacement reflection and transmission coef-
ficients for a wave incident on a water-perspex interface compared with an-
alytical results from Cheeke. The horizontal axis is the angle of incidence
and the vertical axis is the magnitude of the displacement coefficients. There
is only one compressional critical angle which is seen as a sharp peak in the
reflection coefficient. After the critical angle there is a large shear wave gener-
ated. (Bottom-row) Displacement reflection and transmission coefficients for
a water-aluminium interface. There are two peaks in the reflection coefficient
which occur from a compressional and shear critical angle. After the second
critical angle the reflection coefficient becomes unity and the transmission co-
efficients become complex resulting in a non-zero magnitude.

Figure 4.19: Reflection and transmission energy coefficients for a water-perspex and water-
aluminium interface.

of perspex hence there are no critical angles present. The dominant reflected and

transmitted waves are compressional, however, between 40° and 70° there is a
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strong shear wave generated. At 90° there is total reflection as this is equivalent

to a wave travelling perpendicular to the interface.

Figures 4.20 (c) and (d) shows the shear and compressional reflection and

transmission displacement and energy coefficients for the perspex-aluminium in-

terface. In this case there are two critical angles as the bulk wave velocities of

perspex are less than that of aluminium. The two critical angles occur at 25° and

60°, which appear as peaks in the reflection and energy coefficients. Prior to the first

critical angle, the dominant bulk waves are compressional, and between the critical

angles the dominant wave type is shear.

Further tests were performed where the impedance ratio between the first and

second solid, and vice versa were taken from 1:1 to 1:1000. In each case the shear

speed was set to half the compressional wave speed. At the highest ratio, when the

lowest impedance was in the second layer, the average errors were still on the order

of (10−16). In the reverse case (1:1000) the errors were on the order of (10−10). This

might not be reliable as the Rose solution was badly scaled in this case. However,

when the ratio was 1:100, the average errors were on the order of (10−16). This ratio

is higher than the vast majority of material combinations. For example the speed

of sound in diamond is approximately 12 kms−1 and the density is 3500 kgm−3,

hence the impedance Zd = 42 MRayl while the impedance of water is approximately

Zw = 1.5 MRayl, hence the ratio of impedance between these two materials is 1:28.

4.4.8 Three-Layers Normal Incidence

The model was compared to the analytical expression describing pressure re-

flection and transmission coefficients for a three-layer structure at normal inci-

dence from [119]. This can be seen in Figure 4.21. The three layers are PZT

(cL = 4000,ρ = 7500), a matching layer (cL = 1540,ρ = 2236,d = 100 µm ) and

tissue (cL = 1540,ρ = 974). At 7.5 MHz, the reflection coefficient tends to zero

and the transmission coefficient peaks. This occurs when there is a quarter wave-

length in the matching layer leading to destructive interference in the reflected field

and maximum transmission occurs. The mean error between the analytical and

partial-wave model for the reflection and transmission coefficients is on the order
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Figure 4.20: (a) Magnitude of the displacement reflection and transmission coefficients
for a aluminium-perspex interface. (b) Energy coefficients for aluminium-
perspex interface. (c) Displacement coefficients for a perspex-aluminium in-
terface. (d) Energy coefficients for perspex-aluminium interface.

of (10−16).

4.4.9 Dispersion Curves

The dispersion curve algorithm was compared with examples in Disperse [108]. A

number of examples were chosen to represent different use cases. The first two

examples correspond to a 1 mm titanium and Teflon plate in a vacuum. These can

be seen in Figure 4.22 (a) and (b). There is excellent agreement between Disperse

and ElasticMatrix, however, a direct comparison was not possible because it

is not possible to choose the corresponding wavenumbers and frequencies in the

Disperse calculation. The red curves correspond to symmetric Lamb modes and the
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Figure 4.21: Pressure reflection and transmission coefficients for three layers at normal in-
cidence. The reflection coefficient dips and the transmission coefficient peaks
when the quarter wave condition is met in the matching layer.

blue curves correspond to anti-symmetric Lamb modes. At low frequencies, only

the fundamental modes exist, (A0) and (S0). At higher frequencies, higher order

modes appear. The A0 and S0 mode shapes coalesce at high frequencies and couple

into a Rayleigh wave travelling on the interface of the plate. The Lamb modes are

discussed in more detail in the next subsection. The third example is a two-layered

plate consisting of 1 mm of Teflon on 1 mm of Titanium in a vacuum. This can

be seen in Figure 4.22 (c). Here, the curves from Disperse are in red and the black

points are from ElasticMatrix, and again there is excellent agreement. These

modes are guided modes but cannot be classed into symmetric or anti-symmetric

modes.

The previous examples were relatively easy for Disperse and ElasticMatrix

to compute as the guided modes solutions are not attenuated by being embedded

in a coupling fluid or medium. In the next few examples, the plates are immersed

in a fluid. Figure 4.23 (a) and (b) correspond to a titanium and Teflon plate in oil.

The red curves are from Disperse and the points are from ElasticMatrix using

the “coarse” method. It can be seen that Disperse cannot completely trace the dis-

persion curves. ElasticMatrix seems more robust with the coarse method but

also appears to pick up spurious modes and bulk wave speeds. The final example

is for a titanium plate embedded in Teflon, both Disperse and ElasticMatrix
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struggle to trace the modes correctly.

Tracing leaky-modes is a notoriously difficult problem and both Disperse and

ElasticMatrix struggle to completely trace the guided modes. Some advan-

tages of Disperse is speed as it is a compiled application it can trace the curves

in seconds whereas ElasticMatrix takes minutes. Additionally Disperse can

trace the attenuation coefficients of leaky-modes. The lack of robustness for very

leaky-cases is a limitation of the partial-wave method. Other techniques based on

the spectral-collocation method or semi-analytic finite element method have been

shown to be more accurate and robust [108, 109, 110, 111, 112, 120].

Figure 4.22: (a) 1 mm Titanium plate in a vacuum. (b) 1 mm Teflon plate in a vacuum.
For examples (a) and (b) the solid black line is from the ElasticMatrix
implementation and the dashed coloured lines are from Disperse. The red
lines correspond to symmetric Lamb modes and the blue lines correspond to
anti-symmetric Lamb modes. (c) A 1 mm Teflon + 1 mm titanium plate in
a vacuum. In this example the solid red line is from Disperse and the black
points are from ElasticMatrix using the “coarse” method. These curves
correspond to guided modes but cannot strictly be classified as symmetric or
anti-symmetric Lamb waves.

4.4.10 Mode shapes of Guided Waves

A selection of mode shapes from a water-aluminium interface and an aluminium

plate immersed in water are plotted here. Figure 4.24 plots the mode shapes, vector

fields of characteristic motion of the Rayleigh wave (R), symmetric (S0) and anti-

symmetric (A0) Lamb modes.

Figure 4.24 R demonstrates the characteristic motion of a Rayleigh wave.

Here, a vector field has been plotted where the vertical axis represents the dis-

tance into the aluminium, and the horizontal axis is parallel to the surface of the
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Figure 4.23: (a) Titanium plate in oil. (1) A spurious wave mode. (2) Bulk wave speed
on Titanium. (3) Incorrect position of the A0 and S0 mode. (b) Teflon plate
in oil. (c) Titanium plate embedded in Teflon. (4) Spurious mode. The red
curves are from Disperse and the points are from ElasticMatrix.

half-space. z = 0 is the location of the water-aluminium interface. The vector field

demonstrates the elliptical motion of the Rayleigh wave that decays exponentially

away from the surface (located at z = 0). This is more clearly demonstrated in the

mode shape plot. The vertical axis is the same as the vector field and the horizontal

axis represents the relative displacement amplitude in z (dashed) and x (solid). This

plot demonstrates how the amplitude of the Rayleigh mode decays with depth and

the maximum displacement is just below the interface.

The mode shapes of the S1 and A1 Lamb waves can be seen in Figure 4.24.

The vector plots of the displacement fields have been plotted. Here, the horizontal

axis is parallel to the interface of the plate and the vertical axis from 0 to -1 is the

thickness of the plate. The normalised mode shape has been plotted to the right. The

in-plane (x) displacement is symmetric and anti-symmetric about the centre of the

plate for the S1 and A1 mode shape, respectively. The vector plot of the S1 mode

indicate there are regions of rotation that periodically alternate direction and are

symmetric about the centre of the plate (z =−0.5). This has the effect of stretching

or compressing the plate causing an hour glass shape. The vector plot of the A1

mode has alternating regions of displacement which causes one side of the plate to

compress and one side of the plate to stretch. This gives rise to the rippled structure

of the anti-symmetric mode.
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Figure 4.24: Vector field snapshot (left column) and a profile through Z of the normalised
ux,uz displacement (right column) of the Rayleigh (R), first-order symmetric
(S1) and anti-symmetric (A1) modes.

4.4.11 Comparison with Previous Models

The partial-wave implementation for modelling directivity was compared with pre-

vious results from Beard [49] and Cox [7], to demonstrate the partial-wave model

reduces down to previous models. Figure 4.25 shows the modelled frequency re-

sponse of six different sensor configurations against the measurement data from
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Beard [49]. The vertical axis is the mean stress amplitude normalised to value at

f = 0, and the horizontal axis is the frequency. These sensors primarily consisted of

a PET film glued to a glass or PMMA backing or with a water backing. Discrepan-

cies appear at higher frequencies (> 20MHz), which may occur from uncertainties

from low SNR, jitter, uncertainty in the glue thickness, and differences between the

angular alignment [49].

The system matrix produced by the partial-wave method can be shown an-

alytically to simplify to the previous three-layer model by Cox [7]. Figure 4.26

reproduces the key frequency-dependent directional response result from Cox be-

tween 0−45° and 0−15 MHz. The sensor modelled by Cox consists of a Parylene

C spacer deposited on a glass substrate. The sensor was illuminated by a colli-

mated beam with a diameter of 400µm. This means the effect of spatial averaging

dominates the response of this sensor, and appears as concentric rings.

Figure 4.25: Reproduction of six results from Beard [49]. The horizontal axis is frequency
and vertical axis is the mean stress amplitude normalised to the value at f = 0.
The blue line is the frequency response modelled by the partial-wave method
and the points indicate data taken from Beard.
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Figure 4.26: Reproduction of the key frequency-dependent directional response result from
Cox [7]. The vertical axis represents the frequency and horizontal axis angle.
The directivity is normalised to the on-axis frequency response and the colour
represents the sensitivity of the sensor at that angle and frequency in decibels.
The concentric rings occur from spatial averaging from the beam width of the
interrogation laser.

4.5 Summary
This chapter introduced a new open-source toolbox called ElasticMatrix

which models elastic wave propagation in multi-layered media with anisotropic ma-

terials with isotropic, transverse-isotropic or orthotropic symmetry. The software

has been implemented using the object-oriented capabilities of MATLAB allowing

for a simple command line or scripting interface. The implemented model has been

validated against analytical solutions, commercial software and existing literature.



Chapter 5

Analysis of the Directivity of Glass

Etalon Sensors

5.1 Introduction

This chapter brings together the analysis and methods of the previous chapters to

model the directivity of two glass-etalon Fabry-Pérot sensors. Firstly, the model

was compared with the experimentally measured directional response of an air-

backed cover-slip Fabry-Pérot sensor with well-known material properties. This

was used to validate the model for high frequencies (up to 100 MHz) where there

were multiple acoustic wavelengths within the spacer. Secondly, the model was

compared with the measured directional response of an all-hard-dielectric Fabry-

Pérot sensor. This sensor can be used for high-intensity focused ultrasound (HIFU)

measurements [5]. Additionally, the model was used to analyse, in detail, how

different features of the directivity arise from wave modes present in the sensor.

The transduction mechanism has been discussed previously in Section 2. How-

ever, for clarity a brief description of the sensor’s transduction mechanism is re-

peated in Section 5.2. Directivity measurements and comparisons to the model are

given in Section 5.3 and Section 5.4. The origin of the features present in the direc-

tional response are discussed in Section 5.5. Finally, the influence of the strain-optic

coefficients on the directional response is investigated in Section 5.6.

The conference proceeding in [121] © IEEE 2017, conference proceeding in
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[122] © IEEE 2019, and journal article in [67] © IEEE 2019 have been adapted to

form parts of this chapter.

5.2 Transduction Mechanism Review
Two different Fabry-Pérot sensors were investigated. The first sensor was con-

structed from a glass microscope cover-slip (175 µm), which had thin partially-

reflecting aluminium mirrors (< 1× 10−8 m) deposited on either side. The cover-

slip was mounted at the edges to a polycarbonate frame which gave the cover-slip

an air-backing. The second sensor consisted of two partially reflecting dielectric

mirrors separated by a thin spacer deposited on a glass substrate. The dielectric

mirrors were constructed from twelve λ/4 thick (at 1550 nm) alternating layers of

silicon dioxide, SiO2, and zirconium dioxide, ZrO2, separated by a spacer made

from SiO2, where λ refers to the optical wavelength within the material. An illus-

trative diagram of the sensors can be seen in Figure 5.1. The material properties of

these sensors can be found in Table 5.1.

Figure 5.1: (a) Air-backed glass cover-slip sensor with thin aluminium mirrors. (b) Hard-
dielectric sensor with a glass backing.

The Fabry-Pérot ultrasound sensor detects ultrasound using interferometry,

where an incident acoustic wave modulates the optical path length via two mech-

anisms. The first mechanism is a physical change in the optical path length as the

distance between the two mirrors is modulated. This is calculated by taking the

difference in the vertical component of the displacement field, uz, at the top and

bottom mirrors. The second mechanism is a change in the refractive index ∆n of

the spacer layer caused by local changes in density. The spacer layer is assumed to

be optically isotropic, homogeneous and non-absorbing. If the interrogation laser



5.2. Transduction Mechanism Review 115

beam is parallel to the z-axis and polarized in the x-axis, the change in refractive

index can be written

∆n =−1
2

n3
0

(
p11

∂ux

∂x
+ p12

∂uz

∂ z

)
. (5.1)

Here, n0 is the refractive index of the glass cover-slip and p11 and p12 are strain-

optic coefficients (SOCs). As discussed previously in Section 2, this is only valid

for planar sensors. If the incident laser light is parallel to z and polarized in y, the

SOC p11 is replaced with p12 in Eq. (5.1). The p12 SOC is multiplied by the normal

strain in the z-axis and the p11 SOC is multiplied by the normal strain in the x-axis.

For clarity, the normal strain in the x-axis will be referred to as the transverse strain.

The SOCs for a few glassy materials are given in Table 5.2.

The frequency-dependent directional response, D( f ,θ), to a plane wave of fre-

quency f and angle of incidence θ can be calculated by weighting the two mecha-

nisms by the interrogation beam profile S(x,y) and integrating over the interrogated

area A:

D( f ,θ) ∝

∫
A

(
n0
(
uz(z2)−uz2(z1)

)
+
∫ z2

z1

∆n.dz
)

S(x,y)dA. (5.2)

The aluminium mirrors are significantly thinner than the cover-slip for the air-

backed cover-slip sensor. In this case, the mirrors can be considered infinitesimally

thin and the acoustic phase changes associated with the mirrors can be accounted

for by increasing the thickness of the cover-slip [19]. Additionally, since the alu-

minium mirrors are highly reflective for the optical interrogation wavelength used

here, the contribution of the strain-induced refractive index changes in the coupling

fluid can be considered much smaller than the interference effect within the cover-

slip. Hence, just the strain-optic effect within the cover-slip needs to be considered

[19]. This is not necessarily the case for multi-layered dielectric mirrors, which

are thicker and have different refractive indices and SOCs for each material layer

[60, 50, 51].
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Table 5.1: Table of material properties. Table reproduced from [67] © IEEE 2019.

Material cL (m/s) cS (m/s) ρ (kg/m3)
Water [79] 1448 0 1000
Glass [79] 5570 3430 2500
SiO2 [123] 5900 3700 2500

ZrO2 - - 5680
Air [79] 330 0 1

Aluminium [79] 6250 3100 2700

cL, cS: compressional and shear sound speeds, ρ : density.

Table 5.2: Table of strain-optic coefficients. Table reproduced from [67] © IEEE 2019.

Material p11 p12 n0
SiO2/Quartz [75, 51] 0.121 0.27 1.456

Fused silica (7940) [124] 0.126 0.26 1.457
Fused silica (7070) [124] 0.113 0.23 1.469

PMMA (Plexiglass 55) [125, 126] 0.300 0.297 1.49

5.3 Measuring the Directional Response

5.3.1 Overview

There are a number of different methods of measuring directivity, these can be found

in the references [9, 20, 127, 128, 33, 13, 3, 14, 33, 129, 31]. The method employed

in these measurements is the same as demonstrated by Guggenheim [31].

The Fabry-Pérot sensors were mounted within the base of a specially designed

water bath suspended above the optics required for the interrogation of the sensors.

A diagram is included in Figure 5.2. A focused laser beam, which had an estimated

interrogation spot size of 50 µm and was tunable in the range of 1440 to 1640

nm (Tunics T100S-HP, Yenista Optics, France), was used to interrogate the Fabry-

Pérot sensor. A broadband mono-polar photoacoustic source was created using a 25

mm diameter polymer disk coated with a thin layer of highly absorbing black paint

(Super Gloss, PlastiKote). This polymer disk was positioned at the end of a 10 cm

lens tube and was irradiated by an (Ultra) Q-Switched Nd:YAG laser at 1064 nm

emitting short (≈ 6 ns) pulses at a rate of 20 Hz. The pulse was mono-polar and

broadband (Figure 5.3). This source was attached to a mechanical arm connected to
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Figure 5.2: The Fabry-Pérot sensor is placed at the base of a bath of deionised water. A
broadband laser generated ultrasound source is attached to a moveable stage
which rotates at 0.25◦ increments about the interrogation point on the surface
of the Fabry-Pérot sensor. Figure reprinted from [67] © IEEE 2019.

Figure 5.3: Left, waveform of the photoacoustic pulse at normal incidence after 100 aver-
ages. Right, FFT of the waveform. The data was collected with an all hard-
dielectric sensor which has a -3dB bandwidth at 62 MHz [5].

a rotation stage (PRM1/MZ8, Thorlabs). The rotation stage was controlled through

a custom LabVIEW program which allowed precise angular movements in steps of

0.25◦. To allow precise alignment of the Fabry-Pérot sensor with the source, the

sensor was positioned on a manual five-axis (x, y, z, tip and tilt) positioning system,

as shown in Figure 5.2 [31].

5.3.2 Process of Alignment

To accurately measure the directivity, it was important to ensure the position of the

sensor was a constant distance from the source at every acquisition angle. Firstly,

the correct lateral position was found, which made it easier to find the correct ver-

tical position. With reference to Figure 5.4, to get the correct lateral position, the

source angle θ was moved to a +θ , (for example, θ = 10◦), and the time of arrival
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Figure 5.4: Left, the process of lateral alignment. The sensor is moved to the left or right
until the time of arrival t+ = t−. Right, the process of the vertical alignment.

t+ (TOA) of the photoacoustic pulse was noted. The source was then moved to a

−θ , and the TOA t− of the pulse was compared with the first. If t+ < t− the sensor

was moved to the left (see Figure 5.4), and if t+ > t− then the sensor was moved

to the right. This procedure was repeated until t+ = t− to give the correct lateral

alignment. After the sensor has been aligned laterally, the vertical alignment was

found by comparing the TOA of the pulse at normal incidence, t0 and the TOA from

a positive (or negative) angle, t+. If t0 < t+ then the sensor was moved down and if

t0 > t+ the sensor was moved up. When t0 = t+ the sensor was aligned vertically.

5.3.3 Data Processing

The data was acquired by rotating the photoacoustic source about the sensor in 0.25◦

steps and recording the waveform at each angle with a digital storage oscilloscope

[31]. Each signal acquisition was triggered by the digital trigger from the laser

source. Due to the geometry of the water bath in which the sensor was positioned,

the directional response measurement was limited to ±45◦. At the extreme angu-

lar ranges the lens tube of the photoacoustic source was in contact with the walls

of the water bath. There were 20 averages taken for the hard-dielectric sensor and

100 averages for the air-backed cover-slip. Each acquired signal was zero padded,

multiplied by a Tukey window (taper ratio = 0.7) of 3 to 6 µs centered about the

maximum of the signal and fast Fourier transformed (FFT). An example of an ac-

quired waveform can be seen in Figure 5.3. In most cases, the measurements were
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normalised to the normal-incidence frequency response. If there were many zeros

in the normal incidence response the data (and model) was scaled so that the maxi-

mum of the normal incidence response was equal to unity. If the data is normalised,

when there are zeros in the frequency response, it causes banding artefacts in the

directional response.

5.4 Model Results

5.4.1 Validation Air-Backed Glass Cover-slip

ElasticMatrix was used to model the frequency-dependent directional re-

sponse. The model was validated by comparing it with measurements made with

the air-backed cover-slip sensor.

The medium geometry consisted of a three layer structure using the predefined

materials: water, glass and air. The range of frequencies was set from 0.1 to 100

MHz. The range of angles was set from 0 to 45◦. As there were three layers, the

mirror locations were set to the first and second interface (as the aluminium mirrors

were assumed to be negligibly thin). The interrogation spot was set to ‘Gaussian’

with a diameter of 50 µm.

Figure 5.5 shows the measured (a) and modelled (b)-(c) directional response

between±40◦ and 0−100 MHz. To remove the effect of the frequency-dependence

of the photoacoustic source, the measured data in these figures were normalized so

that the magnitude of the normal-incidence frequency-response matched the mod-

elled frequency-response, as shown in Figure 5.5 (d). Usually, the directivity would

be normalised by the low frequency-normal incident value. However, zeros in the

normal-incidence frequency-response causes significant banding artefacts. There-

fore this alternative normalisation was chosen.

Figures 5.5 (b) and 5.5 (c) show the modelled directivity with and without

refractive index changes. The differences due to including the refractive index

changes are negligible when compared with the noise in the measurement. In

Section 5.5, the features of the directional response are sufficiently described by

considering only the difference in the vertical displacement of the two mirrors. Ad-
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ditionally, the strain-optic coefficients are not known or easily measured for thin-

film dielectric-mirrors and add further uncertainty in the modelling of the all-hard-

dielectric sensor [51]. For the following figures and directivity analysis of the two

sensors the contributions from refractive index changes are neglected. However, the

strain-optic effect is given special consideration in Section 5.6.

The air-backed cover-slip is thick (≈ 175 µm) when compared with the short-

est acoustic wavelength supported by the incident wave. At resonant frequencies

there is constructive or destructive interference within the cover-slip which cause

peaks and nulls in the frequency response. At normal incidence, the resonant peaks

occur when nλ +λ/2 is equal to the cover-slip thickness, where n = 0,1,2,3... and

λ is the acoustic wavelength within the cover-slip. The peaks can be seen at 16,47

and 79 MHz in Figure 5.5. The nulls occur when nλ is equal to the cover-slip thick-

ness. There are nulls at 31,62 and 94 MHz. At non-normal angles of incidence there

are a variety of features which can be best seen in Figure 5.6 which shows horizon-

tal profiles through the directivity colormap. These arise from critical angles and

guided wave phenomena and are described in more depth in Section 5.5.

5.4.2 Hard-Dielectric Sensor

The model was used to help interpret and explain the features of the directional

response of a hard-dielectric sensor recently used for measuring the field generated

by a HIFU transducer [5]. However, the acoustic properties of the dielectric mirrors

used in this sensor are not known. To overcome this, effective material properties

were found by fitting the model to the measured directional response of the HD

sensor.

The dielectric mirrors consisted of twelve alternating layers of vapour-

deposited silicon dioxide and zirconium dioxide. Over the measurement bandwidth,

the shortest acoustic wavelength is much larger than the thickness of any individual

layer in the dielectric mirror. Therefore, the multilayered mirror structure was mod-

elled as a single layer with effective properties for thickness, compressional sound

speed, and shear sound speed. In total, the medium geometry was modelled as a

five layer structure, water, mirror, silicon-dioxide, mirror, and glass. As the mir-
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Figure 5.5: (a) Measured directivity in decibels of the air-backed cover-slip sensor. The
measurements were taken at 0.25◦ intervals using a photoacoustic signal gen-
erated by a 40 mJ laser pulse with 200 averages acquired between -40◦ and
40◦. (b) Modelled directivity excluding refractive index changes and (c) mod-
elled directivity including refractive index changes where p11 = 0.113 and
p12 = 0.23 [124]. Both the measured and modelled directivity have been nor-
malized by the maximum of the first peak in the normal-incidence frequency-
response. (d) Model excluding refractive index changes (solid line) and normal-
ized measurement (dashed line) of the normal-incidence frequency-response.
Figure reprinted from [67] © IEEE 2019

rors were significant in thickness compared with the spacer, their thicknesses were

included in the “two effective interfaces” method described in [19]. The material

parameter fitting was performed using the globalsearch and fmincon func-

tions from the Global Optimization Toolbox in MATLAB. These functions were

used to minimize the sum-of-squared differences (SSD) between the measured and

modelled directional responses by varying the model values for the compressional

sound speed, shear sound speed, and thickness of the dielectric mirrors. The range

of values were 2000 to 6000 ms−1 for the compressional sound speed, 1000 to 6000

ms−1 for the shear sound speed and 0.5 to 5µm for the thickness. The measured

data was filtered using a low-pass filter (one-sided Gaussian, -3dB point at 30 MHz)

to regularize the inversion against high frequency noise in the measurements. The
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Figure 5.6: One sided profiles of the air-backed sensor at 5 MHz intervals up to 40 MHz of
the measured (points) and modelled (line) directivity normalised to the normal-
incidence frequency response. Note the vertical axis is in decibels. Figure
reprinted from [67] © IEEE 2019

implementation of the inversion routine was validated using both noise-free and

noisy synthesized data. The values found for the estimated parameters are shown

in Table 5.3.

When using these fitted material properties, there is good agreement between

the measured and modelled directional response. Figure 5.7 shows the magnitude

of the measured (a) and modelled (b) directional response for the hard-dielectric

sensor normalized to the normal-incidence frequency response. This is plotted be-

tween ±45◦ for a range of frequencies from 0−50 MHz. The corresponding phase

response is shown in Figure 5.7 (c) and (d). One-sided profiles of the directional

response are shown in Figure 5.8. The mirrors and spacer of the hard-dielectric

sensor is thin (≈ 9 µm) when compared with the shortest wavelength present in the

incident wave resulting in a flat frequency-response.
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Table 5.3: Effective dielectric mirror parameters. Table reproduced from [67] © IEEE
2019.

Parameter 5-layer
Spacer thickness (µm) 3.885

Effective Thickness HD Mirror (µm) 1.40
Effective HD mirror cL (ms−1) 4921
Effective HD mirror cS (ms−1) 1930

Figure 5.7: (a) Directivity measurement of the hard-dielectric sensor presented by Martin et
al. [5], and (b) modelled directivity of the same sensor. The results are given on
a linear scale. (c) Phase response of the directivity measurement presented by
Martin [5] and (d) modelled phase response of the hard-dielectric sensor. Key
features: 1) compressional and 2) shear critical angles, 3) peak after water-
substrate and water-spacer compressional critical angles at high frequencies,
4) peak preceding Rayleigh wave with a frequency-dependent phase speed, 5)
minimum due to no difference in the vertical displacements of the mirrors.
Figure reprinted from [67] © IEEE 2019.



5.4. Model Results 124

Figure 5.8: One sided profiles of the hard-dielectric sensor at 5, 15, 25 and 35 MHz of the
measured (points) and modelled (solid) directivity. The magnitude of the mod-
elled reflection coefficient (red dash) at each frequency is plotted for reference.
The left vertical axis is the relative sensitivity of the directional response pro-
files. The right vertical axis is the magnitude of the reflection coefficient. The
vertical grey lines indicated on (a) represent the compressional critical angle
θcl between water and glass, the shear critical angle θcs, and the leaky-Rayleigh
angle θr. Figure reprinted from [67] © IEEE 2019.
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5.5 Feature Analysis

5.5.1 Overview

In Section 5.4, the model was validated by comparing it with directional response

measurements, but the responses themselves were not analysed in terms of the un-

derlying acoustic wave interactions. The key features of the directional responses

for the hard-dielectric and air-backed cover-slip sensors have been labelled in Figure

5.7 and Figure 5.10, and are discussed in detail in Sections 5.5.2 to 5.5.4. Gener-

ally, the features of the directional response can be associated with wave phenomena

in the sensor. For example, features which occur over a narrow angular range for

every frequency appear as vertical bands in the directional response and are asso-

ciated with compressional and shear critical angles. Also, maxima occur when the

incident wave couples into symmetric Lamb waves or Rayleigh waves, and minima

may occur from anti-symmetric Lamb waves or other cases when both mirrors are

moving in phase and have the same displacement.

5.5.2 Critical Angles

Hard-dielectric sensor: In general, the acoustic wave incident on the Fabry-Pérot

sensor couples into both compressional and shear waves. These effects are more ap-

parent on the directivity of the hard-dielectric sensor, hence this is discussed first. At

the water-substrate compressional critical angle (θcl = 15.4◦) there is an evanescent

compressional wave which is perpendicular to the substrate. The vertical displace-

ment of the evanescent mode decays exponentially from the water-mirror interface

into the substrate. At low frequencies, the wavelength is large compared to the

thickness of the mirrors and spacer, and both mirrors have a similar displacement.

As there is no significant difference in displacement between the two mirrors there

is a null in the sensitivity. This can be more clearly observed when looking at pro-

files of the directivity, as shown in Figure 5.8 (a) to (d). Here, one-sided profiles of

the directivity have been plotted at four frequencies. The modelled reflection coeffi-

cient |R| has also been plotted as a reference commonly used in this type of analysis.

There is a lack of sensitivity at the compressional critical angle and a corresponding
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peak in |R|. This is also the cause of the vertical banding features in Figure 5.7 (a)

and (b) and a change in phase seen in (c) and (d) label (1).

The compressional critical angle feature is frequency-dependent due to the in-

creasing significance of the thin mirror and spacer layers at shorter wavelengths.

Considering individual plane waves of different frequencies incident on the sensor,

long wavelengths will only ‘see’ the bulk sound speed of the substrate. However,

for short wavelengths, the effective sound speed will be a combination of the spacer,

the mirrors and substrate and there may be multiple compressional critical angles.

This can be seen in Figure 5.8. As the frequency increases from 5−35 MHz there

is a broadening of both the critical angle dip and reflection coefficient peak. This

is illustrated further in Figure 5.9 which shows the modelled directivity and reflec-

tion coefficient for three frequencies over a small angular range between 14◦−18◦.

As the frequency changes from 0.1−100 MHz, the dip in the directional response

associated with the compressional critical angle moves from 15.4◦ to 15.7◦.

Immediately following the compressional critical angle, there is strong mode

conversion into the shear mode. Less of the incident wave energy is reflected caus-

ing an increase in the magnitude of the displacements of the mirrors. This corre-

sponds to a small peak in directivity which can be seen in Figure 5.7 (a) and (b)

label (3).

After the shear critical angle θcs = 25◦, the incident wave couples into an

evanescent wave which decays exponentially from the surface. The surface dis-

placement increases as the incident wave starts to couple into the leaky-Rayleigh

mode at θr and decreases after. This can be seen as a rapid increase in sensitivity in

Figure 5.8 (a) to (d) following the water-substrate shear critical angle when the re-

flection coefficient approaches unity. There is also a dip in the reflection coefficient

after the shear critical angle. This is a result of adding a small value of attenuation

to the model to help visually identify when the Rayleigh wave occurs. With no at-

tenuation in the model, a leaky-Rayleigh wave is still present but all the energy from

the Rayleigh wave is re-emitted into the coupling fluid, hence the magnitude of the

reflection coefficient is equal to unity. By including absorption, some of the energy
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Figure 5.9: Critical angle separation in the hard-dielectric sensor. The modelled directivity
and reflection coefficient have been plotted at three frequencies over a narrow
angular range near the compressional critical angle between water and glass.
The left vertical axis indicates the relative sensitivity of the directional response
and the right vertical axis indicates the magnitude of the reflection coefficient.
The gray vertical line indicates the critical angle between glass and water. A dip
in the directional response is associated with the first critical angle and moves
from 15.4◦ to 15.7◦ as the peak in the reflection coefficient broadens. Figure
reprinted from [67] © IEEE 2019.

of the Rayleigh wave is absorbed, hence, the reflection coefficient is less than unity

[1].

Air-backed cover-slip sensor: Like the hard-dielectric sensor, the air-backed

cover-slip sensor has a minimum in the directional response at the compressional

critical angle. This can be seen in the directivity profiles for the air-backed sensor

in Figure 5.6. These have been plotted between 0◦ to 40◦ at 5 MHz intervals up to

40 MHz. The additional peaks and troughs, which can be seen in the profiles, are a

result of Lamb modes and will be discussed in the following section.

5.5.3 Guided Wave Features

Lamb waves: The majority of the observable features of the air-backed cover-slip

arise from the incident wave coupling energy into leaky-Lamb modes. Generally,

the sensor has a low sensitivity at frequencies and angles where the incident wave

couples into anti-symmetric modes. At frequencies and angles where the incident
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Figure 5.10: Modelled directivity between −40◦ to 0◦, and measured directivity between
0◦ to 40◦ from 0 to 50 MHz for the air-backed cover-slip sensor. The color-
scale has been plotted in decibels. The calculated dispersion curves have been
plotted in gray and identified as symmetric (S) anti-symmetric (A) Lamb-
modes and the Rayleigh mode (R). The guided wave modes present in the
sensor cause a complex directional response. Note, the A1 dispersion curve
in the measured data is precluded by the plotted modelled dispersion curves.
Figure reprinted from [67] © IEEE 2019.

wave couples into symmetric Lamb modes the sensor has a high sensitivity. This is

illustrated in Figure 5.10 which shows the dispersion curves for the glass plate plot-

ted over the directivity. These have been labelled anti-symmetric (A), symmetric

(S) and Rayleigh (R).

For anti-symmetric mode shapes, the vertical displacement at the top and bot-

tom of the sensor are the same. As there is no change in the distance between the

two mirrors, there is a null in the sensitivity. For a symmetric mode, the vertical

displacements at the top and bottom of the sensor have the same magnitude but in

opposite directions. This opposing movement results in a large difference in ver-

tical displacement and thus a high sensitivity. For frequencies and angles that do

not couple into a Lamb-mode, the displacement of the top and bottom surfaces will

be somewhere between the symmetric and anti-symmetric mode and hence there

is a gradual change in sensitivity between different modes. The mode shapes for

the first and second order symmetric and anti-symmetric modes are plotted in Fig-
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Figure 5.11: (a), (b), (d) and (e) The first and second order mode shapes of the symmetric
and anti-symmetric Lamb waves present in the air-backed cover-slip sensor.
The vertical (solid) and transverse (dashed) displacement across the thick-
ness of the plate d have been plotted and normalized by the maximum dis-
placement. For anti-symmetric modes the displacement at the top of the glass
cover-slip is the same as the bottom. For symmetric modes the displacement
at the top and bottom of the glass plate are out of phase. (c),(f) Visualization
of the symmetric and anti-symmetric mode shapes. Figure reprinted from [67]
© IEEE 2019.

ures 5.11 (a), (b), (d) and (e). Figures 5.11 (c), (f) demonstrate the shape of the

glass cover-slip for the second order symmetric and anti-symmetric mode. Note,

the displacement has been exaggerated for visualisation.

At normal incidence, the frequencies at which higher-order Lamb modes begin

can be calculated as the resonant frequencies of the glass cover-slip. For a 175 µm

thick cover-slip, the resonances from a compressional mode occur at approximately

16,31,47 MHz and from shear mode at 10,19,29,48 MHz which can be seen in

Figure 5.10. The lowest-order Lamb waves, S0 and A0 can be seen from the low-

est frequencies and couple into the leaky-Rayleigh mode. The fundamental Lamb

modes have been labelled Figure 5.10 and in Figure 5.6 (a) to (d). The Rayleigh

mode is a common feature of both the hard-dielectric sensor and the air-backed

cover-slip and will be discussed in the next section.
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Figure 5.12: Rayleigh wave plots generated for the hard-dielectric sensor. (a) Leaky-
Rayleigh wave phase speed (solid) with frequency. The Rayleigh speed for
the glass substrate and the mirrors are also plotted (dashed). (b)-(d) Vector
field plots at three points on (a). The horizontal axis represents the depth from
the water-mirror interface in µm and the vertical axis is the position parallel
to the interface. The vertical lines indicate the boundary between the mirror
(M)-spacer (S) - mirror - backing (B). The vertical lines cannot be seen on (b)
over the plotted depth. Figure reprinted from [67] © IEEE 2019.

Leaky-Rayleigh wave: Both the hard-dielectric and the air-backed cover-slip

sensors have a feature of high sensitivity associated with a leaky-Rayleigh wave.

This result agrees with measurements of the directional response of a similar sensor

presented in [60].

The Rayleigh wave has an elliptical motion with the greatest displacement at

the surface. As there is a large displacement at the surface, there is a difference in

the vertical displacement between the mirrors causing a region of high sensitivity.

This can be seen as a peak in the directivity which occurs immediately preceding

the leaky-Rayleigh angle, θr, which is labelled in Figure 5.8 (a) to (d) and Figure

5.7 label (4) for the hard-dielectric sensor. This can also be seen for the cover-slip

sensor after the A0 and S0 Lamb modes couple, Figure 5.6 (e) to (h), Figure 5.10
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label R.

The leaky-Rayleigh wave for the air-backed cover-slip has a frequency-

independent phase speed as the sensor is primarily constructed from a single ma-

terial. The Rayleigh speed of glass is 3152 ms−1, which can be found using the

approximation cr/cs = (0.862+ 1.14ν)/(1+ ν) [130], where ν is the Poisson’s

ratio of the material and cr/cs is the ratio of the Rayleigh and shear speed.

The hard-dielectric sensor has multiple elastic layers and the Rayleigh wave

exhibits a frequency-dependent phase speed, shown in Figure 5.12 (a). The

Rayleigh wave speed is generally close to the bulk shear speed of the material it

is travelling in. At low frequencies, the wavelength of the leaky-Rayleigh wave is

much larger than the spacer and mirrors and the majority of the wave motion occurs

in the substrate, as shown in Figure 5.12 (b). At high frequencies, the wavelength is

shorter and more motion occurs within the spacer and mirrors, as shown in Figure

5.12 (c) to (d). The leaky-Rayleigh wave speed starts at that of the glass-substrate

(3152 ms−1) and moves towards the Rayleigh speed of the mirrors and spacer (1780

ms−1). The dispersion curve for the leaky-Rayleigh mode can be seen Figure 5.12

(a). At even higher frequencies (not shown here), higher order Rayleigh modes will

appear [131, 132]. The displacement field plots, shown in Figure 5.12, also show

elliptical motion for angles after the shear critical angle. However, the greatest sen-

sitivity occurs at the Rayleigh angle, when the surface displacement is a maximum.

There is a gradual decrease in sensitivity after the Rayleigh angle.

5.5.4 Other Features

Low sensitivity in the hard-dielectric sensor The peak in directivity associated

with the leaky-Rayleigh wave is diminished by the crossing of the minimum high-

lighted in Figure 5.7 label (5). The displacement field within the sensor has an ellip-

tical motion for angles larger than the shear critical angle. The depth of this motion

into the sensor depends on the wavenumber component into the sensor (kz). The

value of this component gets smaller for both a higher frequency and a larger angle

of incidence. As the angle is increased from the shear critical angle, the depth of

the elliptical motion becomes shallower. The displacements of the mirrors change
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from the top mirror having the larger displacement to the bottom mirror having the

larger displacement. Through this transition there is an angle where both mirrors

will have the same magnitude and are moving in phase. Here, there is no difference

in the vertical displacement between the top and the bottom mirror and there is a

null in the sensitivity. This is illustrated in Figure 5.13 where the magnitude and

phase profiles of the directional response are plotted at 25 MHz. The minimum can

be seen at 32◦. There is also a discontinuity in phase as the magnitude is zero and a

−π change in phase as the second mirror has the larger displacement.

Figure 5.13: Relative sensitivity at 25 MHz for the hard-dielectric sensor. The solid line
represents the magnitude of the difference in the complex mirror displace-
ments and the dashed line indicates the phase. The minimum at 32◦ occurs
when the mirrors have both the same absolute displacement and are in phase.
Figure reprinted from [67] © IEEE 2019.

5.6 Influence of Strain-Optic Coefficients

5.6.1 Strain-Optic Coefficients

Previously in Section 5.4 and Figure 5.5 it was shown the inclusion of the strain-

optic coefficients did not have a significant impact on the directional response for

the air-backed glass cover-slip. However, it is of interest to know why this is the case

and when it may become important. This is investigated further for the air-backed

cover-slip in this section. The hard-dielectric sensor has not been investigated for

two reasons. Firstly, the SOCs are not well known for the mirrors, and secondly,
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it is possible the fitting of the mirror material properties has compensated for the

strain-optic effect.

Profiles of the measured and modeled directional response for the cover-slip

sensor at four frequencies are plotted in Figure 5.14. The profiles are normalized to

the normal incidence frequency-response. As the directional response is symmetric

about 0◦ the profiles have been plotted from 0◦ to 40◦. Each sub-plot contains four

profiles, the model without the SOCs (solid), the model including SOCs polarized

in x (dashed) and y (dash-dotted) and the measured response (points).

Additionally, the modelled directivity profiles at 10 MHz have been plotted

in Figure 5.15 for clarity in comparing the model with and without SOCs. The

vertical dashed line at θ = 15.4◦ corresponds to the compressional wave critical

angle between water and glass.

At the critical angle there is only a compressional wave traveling perpendic-

ular to the interfaces within the glass cover-slip. If the SOCs are excluded, the

directional response is only dependent on the vertical displacement of the mirrors.

At the critical angle there is no vertical displacement and therefore a minima in

the response (this was discussed in Section 5.5.2). This can be seen in Figure 5.15

(solid line). When the SOCs are included, the sensor is sensitive at the critical angle

as there is a transverse strain component which effectively shifts the minima associ-

ated with the critical angle towards 0◦. This can be seen in Figure 5.15 (solid black

and dashed lines). The minima is shifted to the left as the transverse strain com-

ponent increases, peaking at the fundamental symmetric mode, S0 which is excited

just after the critical angle. The Lamb modes produce large normal and transverse

strains within the cover-slip when they are excited. This can be seen in Figure

5.16 which shows the normal (a) and transverse (b) strain components integrated

over the cover-slip thickness. These terms are important in the directivity equation,

Eq. (5.2).

In the directivity equation, the p12 coefficient is multiplied by the integral of

the normal strain over the thickness of the sensor. This is equivalent to taking the

difference in the vertical displacement of the mirrors. Hence, if p12 is large and p11
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Figure 5.14: Enlarged plot of Figure 5.6 (a)-(d). Profiles of the measured and modeled
directional response at four frequencies: 5 MHz, 10 MHz, 15 MHz and 20
MHz. Profiles of the measured data (points), modeled directivity excluding
(solid) and including the SOCs have been plotted (polarized in x - dashed,
polarized in y - dash-dotted). Features in the directional response correspond
to the fundamental and higher-order symmetric (S) and anti-symmetric (A)
Lamb modes. Figure reprinted from [122] © IEEE 2019.

is small (tending to zero), the directivity after normalisation will be the same as just

taking the difference in vertical displacement of the mirrors. The p11 coefficient is

multiplied by the integral of the transverse strain over the thickness of the sensor. As

mentioned previously, the minima associated with the critical angle appears shifted.

These results indicate the strain-optic effect may not be significant for materials

with large p12 coefficients but will be most pronounced in materials with large p11

coefficients. Additionally, the impact of the strain-optic effect is different for an

oblique angle of light, as demonstrated in [60].
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Figure 5.15: Profiles of the modeled directional response at 10 MHz. Modeled directivity
excluding (solid) and including the SOCs have been plotted (polarized in x
- dashed, polarized in y - dash-dotted). Figure reprinted from [122] © IEEE
2019.

Figure 5.16: (a) Integral of the normal strain component over the spacer thickness,∫
(∂uz/∂ z).dz. (b) Integral of the transverse strain component over the spacer

thickness,
∫
(∂ux/∂ z).dz. The profiles have been normalized to the maximum

value. Figure reprinted from [122] © IEEE 2019.

5.6.2 Discussion

The isotropic elastic multilayered model of the directional response of planar Fabry-

Pérot ultrasound sensors introduced in Section 5.1 agrees well with the measure-

ments of directivity as discussed in Section 5.4. However, it should be noted that

this model may not be applicable for every Fabry-Pérot ultrasound sensor. First,

the dominant transduction mechanism is considered to be the difference in dis-
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placement of the two mirrors and, for the analysis of the features, the strain-optic

mechanism was neglected. However, when including the strain-optic effect for the

spacer in the model of the directional response, see Figure 5.5 (c) and Figure 5.14,

there were minimal changes in the directivity. Additionally, the strain-optic coeffi-

cients are not well-known nor easily measured for thin-films. For other Fabry-Pérot

sensors the strain-optic effect could contribute more significantly to the directional

response. However, it does not affect the frequency and angle the features in the

directional response occur due to guided modes, but could affect the amplitude re-

sponse.

Second, the model assumes each elastic layer is infinitely long and planar and

the model displacement is constrained to the (x,z) plane, which explicitly excludes

bulk horizontally polarized shear waves. Although horizontally polarized shear

modes do not affect the vertical displacement of the mirrors, they may have an in-

fluence on the refractive index of the material, which may be important in materials

with large strain-optic coefficients.

The geometry of the sensors in this study is simple, effectively consisting of

a few elastic layers, and the majority of features are associated with critical angles

or Lamb and Rayleigh modes. Other Fabry-Pérot sensors may be constructed from

multiple elastic layers. The features in the directivity of these sensors will be dif-

ferent and include other types of guided modes. Additionally, the SOCs for each

material may have to be considered in the transduction mechanism [60, 51].

The materials used for the Fabry-Pérot sensors may have a significant impact

on the strain-optic effect. Soft-polymer Fabry-Pérot sensors commonly use Pary-

lene C and PMMA as the substrate and spacer materials. The SOCs of PMMA can

be seen in Table 5.2. Note the p11 = 0.3 and is larger than the equivalent SOC

of glass. Values for Parylene C SOCs are not known, however, if they are simi-

lar to PMMA the strain-optic effect would be more pronounced for soft-polymer

planar sensors than glass sensors. Additionally, the acoustic and optical properties

of thin films are not always well known and can often be optically or acoustically

anisotropic. Acoustically anisotropic materials might increase the transverse strain
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and the effect of the p11 coefficient. For example, a plane acoustic wave at nor-

mal incidence could cause a transverse motion in anisotropic media. For optically

anisotropic materials there are additional terms in the ∆n equation, for a laser beam

parallel to z and polarized in x

∆n =−1
2

n3
0

(
p11

∂ux

∂x
+ p12

∂uz

∂ z
+ p15

∂uz

∂x

)
. (5.3)

The additional term introduces the shear-strain into the directivity equation ∂uz/∂x

and multiplies it by the p15 SOC. Further study is needed to accurately determine the

optical and acoustic properties of the materials used in other Fabry-Pérot sensors,

to have greater certainty into how significant the strain-optic effect is.

5.7 Summary
In this chapter, the ElasticMatrix toolbox was used to model the frequency-

dependent directional response of planar glass-etalon Fabry-Pérot ultrasound sen-

sors. The model was compared with measurements made with an air-backed cover-

slip and an all-hard dielectric sensor. The main features in the directivity were

described as effects of physical wave phenomena such as compressional and shear

critical angles, Lamb modes and Rayleigh modes. The model had good agreement

with measured data both with and without the inclusion of the SOCs. This suggests

that the strain-optic effect is not significant for glass cover-slip sensors. However,

this may not be true for all types of Fabry-Pérot sensors, for example, soft-polymer

sensors.



Chapter 6

Soft-Polymer Sensors

6.1 Introduction
In Chapter 5, the directional response of two glass etalon sensors was investigated.

The modelled and measured data had good agreement and the directional response

features were mostly associated with critical angles and guided modes. Other types

of Fabry-Pérot sensors use soft-polymers as spacer materials, in particular Parylene

C. These are more sensitive than an equivalently sized glass spacer. This can be un-

derstood by considering the magnitude of displacement of a spacer material made

from a soft polymer or glass. If both spacers have the same thickness and the inci-

dent wave is the same pressure, the soft polymer will deform more than the glass

material. Since the sensitivity of the sensor is dependent on the rate of change of

the optical phase difference between the two mirrors, a greater deformation causes

a greater phase change and hence a greater sensitivity. Some material properties of

Parylene have been collated in Table 6.1.

Figure 6.1: (a) Diagram of a soft-polymer sensor with a glass backing. (b) Diagram of a
glass cover-slip sensor with a layer of Parylene C. Note, the Parylene layer is
not optically interrogated in this configuration.
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Table 6.1: Table of Parylene C properties.

Ref Density cL cS Impedance E ν

[kg/m3] [m/s] [m/s] [MRayls] [GPa]

[133] 1289 21421 - 2.8 - -
[134] 1289 2050.32 878 2 - 2.760 0.388
[7] 1180 2200 1100 - - -
[135] 1288 2135 ± 85 - 2.75 - -
[136] 1100 23501 - 2.58 - -
[137] - - - 3.1 to 5.4 -

cL and cs are the compressional and shear speed respectively. E is the Young
modulus and ν is the Poissions ratio. 1These values were calculated using the
impedance and density. 2These values were calculated from the Youngs modulus
and Poisson ratio and density.

The material values used by Cox [7] (cL = 2200 m/s, cS = 1100 m/s, ρ =

1100 kg/m3) were used to model a soft-polymer sensor consisting of a Parylene

C spacer (≈ 60 µm), glass backing and hard-dielectric mirrors. A relatively thick

spacer was purposefully chosen as features in the directivity caused from guided

waves would occur over a narrower bandwidth. This is beneficial for validating

the acoustic model. A diagram can be seen in Figure 6.1 and the measured and

modelled directional response can be seen in 6.2 and Figure 6.3. The hard-dielectric

mirrors were not modelled here as the exact thickness and material properties are

unknown. Additionally, they are typically an order of magnitude thinner than the

spacer and therefore the directional response is dominated by the properties of the

Parylene spacer and backing material. The model has been plotted with and without

the inclusion of the strain-optic coefficients. The strain-optic coefficients are not

known for Parylene C and the coefficients for PMMA were used instead. The strain-

optic coefficients for PMMA were used for a number of reasons. Firstly, there is

little data for the strain-optic coefficients of polymers, however, PMMA has similar

strain-optic coefficients to other polymers [138]. Secondly, the stiffness coefficients

of PMMA is closer to Parylene than glass [138, 125, 126]. There is poor agreement

between the model and the measurements. A dashed grey line has been added to

the figures to indicate the location of a bright region caused by a guided mode.

The mode appears in different places in the measured and modelled data which
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indicate the material properties are incorrect. It is worth noting that the strain-optic

coefficients do not alter the location of the features that are caused by guided modes,

as these are governed by the elastic properties of the sensor. However, the strain-

optic coefficients can affect the amplitude of the features and where some minima

occur.

Figure 6.2: (a) Measured directional response of a soft-polymer sensor with a glass back-
ing. The data has been normalised to the normal-incident frequency re-
sponse. (b) Modelled directional response using isotropic values of Parylene
but excluding the strain-optic effect. (c) Modelled directional response using
isotropic values of Parylene and including the strain-optic effect with the co-
efficients from PMMA. A grey line has been added to each figure which is
representative of the location of a dispersion curve. This is in a different place
in the modelled and measured data indicating that the material properties of
Parylene are incorrect.

In this instance, the strain-optic coefficients have a large effect on the direc-

tional response. This is because the p11 coefficient used (PMMA, p11 ≈ 0.3) is

much larger than that used in glass p11 ≈ 0.12, hence there is a larger influence

from the transverse strain term in the directional response equation.

As the strain-optic parameters are not known, the influence of these parameters

on the directional response may be significant. In an attempt to separate the optical

and acoustic modelling problem, a layer of Parylene (26 µm) was deposited on the

air-backed cover-slip sensor from Chapter 5 (a diagram can be seen in Figure 6.1).

This meant the optical cavity included only the glass cover-slip. However, the direc-

tional response is affected as the Parylene layer alters the dispersion characteristics

of the guided modes.
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Figure 6.3: Profiles of the directional response of a soft-polymer sensor. The data has been
normalised to the normal-incident frequency response. There is poor agreement
with the measured and modelled data.

The measured and modelled directional responses are shown for the coated

cover-slip sensor in Figure 6.4 and Figure 6.5. It appears as if the material properties

for Parylene are incorrect. This can be clearly seen by focusing on the guided mode

highlighted with a dashed grey line in Figure 6.4. This mode corresponds to an anti-

symmetric leaky-Lamb mode in the glass cover-slip. The dispersion characteristic

of this mode is modified by the presence of Parylene. Hence, it occurs at a different

frequency and angle in the measurement when compared with the model. However,

it is worth noting that the features at angles < 10◦ do have good agreement. This

suggests that the shear properties of Parylene might be incorrect (there is very little

data on this property), or that Parylene might be anisotropic such that the wave

speed in the transverse axis is different than in the normal axis. The properties of

Parylene are investigated further in Section 6.3.

6.2 Evidence for Crystal Structure

6.2.1 Deposition of Parylene

A brief description on the deposition process of Parylene is given here to facilitate

the following discussion. Parylene C (and other Parylene variations) is a polymer
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Figure 6.4: (a) Measured directional response of a Parylene coated cover-slip sensor with
an air backing. In this sensor, the optical cavity only includes the glass cover-
slip. Note, the banding artifacts which occur between 15◦ to 20◦ are caused
by clipping of the oscilloscope which did not have sufficient dynamic range.
The data has been normalised to the normal-incident frequency response. (b)
Modelled directional response using isotropic values of Parylene but excluding
the strain-optic effect in the cover-slip. (c) Modelled directional response using
isotropic values of Parylene and including the strain-optic effect in the cover-
slip. A grey line has been added to each figure which is representative of the
location of a dispersion curve. This is in a different place in the modelled and
measured data indicating that the material properties of Parylene are incorrect.
A banding artefact in (b) and (c) at 30 MHz is caused from the modelled data
being normalised to the normal incidence frequency response.

which is deposited through vacuum deposition (Speciality Coating Systems, Indi-

anapolis). The raw material, the dimer, is heated under a vacuum where it vaporises

into a gas. A dimer is made from two monomers bonded by a weak or strong co-

valent or inter-molecular bonds. The vaporised dimer is pyrolized, which cleaves

the bonds of dimer leaving it in a monomeric form [139]. The gas is passed into

the deposition chamber where it deposits on all the surfaces while simultaneously

polymerizing [140]. The thickness of the coating is dependent on the time the sub-

strate is in the deposition chamber. However, there are a number of other factors

which can affect the coating. For example, the preparation of the substrate, the rate

of deposition, the temperature and the pressure. The Parylene C used in Fabry-

Pérot sensors is deposited at room temperature. These factors lend themselves to

creating a thin (angstroms to millimeters) and uniform “pin-hole” free coating. The

uniformity, control of the thickness, and optical properties are what makes Parylene

a good choice for Fabry-Pérot spacers.
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Figure 6.5: Profiles of the directional response of a Parylene coated cover-slip sensor. The
data has been normalised to the normal-incident frequency response. There is
poor agreement with the measured and modelled data.

6.2.2 X-ray Diffraction and Electron Microscopy Measure-

ments

The structure of Parylene was investigated with X-ray diffraction and electron mi-

croscopy measurements. If Parylene has an ordered crystal structure it may indicate

anisotropy. X-ray diffraction can be used to determine if a material has a crystal

structure and the orientation of the crystal planes. A sample is deposited on a sub-

strate, and a beam of monochromatic x-rays are fired at a range of oblique angles to

the sample. The beam may reflect off the sample surface, or enter the sample lattice

which diffracts the beam. The beam is diffracted differently by the sample if the

atoms or molecules are arranged in a periodic way.

A 25 µm sample of Parylene C was deposited on glass and was measured with

the help of Martin Vickers (Inorganic Chemistry Section, University College Lon-

don). The results of this measurement and a similar result from literature [140] is

plotted in Figure 6.6. In the measurement there is a broadband peak corresponding

to Parylene C at an angle of 14◦. There is a similar peak in the literature measure-

ment occurring at 12◦. The discrepancy in angle is due to different photon energies.

The broadband peak indicates Parylene does have some structure and periodicity. If



6.2. Evidence for Crystal Structure 144

Parylene was amorphous there would not be a peak in the measurement. Note, in the

measurement from literature, the Parylene sample was deposited on a silicon sub-

strate. The silicon is also structured and has corresponding peaks in the diffraction

measurement, whereas there are none in our measurement as glass is amorphous.

Figure 6.6: (a) X-ray diffraction measurement taken with the help of Martin Vickers (In-
organic Chemistry Section, University College London). (b) A similar result
seen by Tan, this figure has been reproduced from [140].

The diffraction measurement from the literature is for Parylene at different

thicknesses (from 0.32 µm to 120 µm), and shows an increase in intensity of the

diffraction peak with the thickness of Parylene. This indicates that the thicker the

sample of Parylene, the more crystalline it becomes. Further measurements from

Tan suggested that the Parylene chains fold over one another to form column-like or

fibre structure. An illustrative diagram can be seen in Figure 6.7 (d). This result is

corroborated by measurements from Jackson who investigated the effect of anneal-

ing temperature on the crystallinity of Parylene thin films [137]. Jackson found that

Parylene was crystalline when annealing at room temperature. Additionally, an-

nealing at a higher temperature increased the crystallinity of the material up-to the

melting point of Parylene. Jackson provided scanning-electron microscope (SEM)

images and showed the annealed Parylene had very clear fibre structures. This can

be seen in Figure 6.7 (a) to (c).

Transmission electron microscope (TEM) images of Parylene were taken to in-

vestigate if our samples also had a fibrous structure. A 500 µm sample of Parylene

was prepared over multiple runs (and months) by Edward Zhang and Jamie Guggen-

heim (Photoacoustic Imaging Group, University College London) and TEM images
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Image removed on copyright grounds.

Figure 6.7: (a) Cross section SEM images of unannealed Parylene. (b) Cross section SEM
images of annealed Parylene at 150◦. There are clear column-like structures
in the Parylene sample. The black bars represent a scale of 10 µm. (c) X-
ray diffraction results at different annealing temperatures. These show similar
results to Figure 6.6. (d) A diagram to show Parylene chains folder over to
grow into column like crystals during deposition. (a), (b) and (c) have been
partially reproduced from [137]. (d) has been partially reproduced from [140].

were taken by Jan Laufer and Sylivia Goerlitz (Institut für Physik, Martin-Luther-

Universität Halle-Wittenberg). These can be seen in Figure 6.8.

Figure 6.8: (a) TEM image of a thick Parylene sample made from multiple runs. Each
individual run can be seen and some have been labelled. The red dashed
line indicates the orientation of substrate backing. (b) A zoomed section of
one of the Parylene layers. There appears to be layered structures oriented
with the substrate. A white line has been added to help visualise the lines.
(c) Same as (b) but zoomed-in further. These measurements were taken by
Jan Laufer and Sylivia Goerlitz (Institut für Physik, Martin-Luther-Universität
Halle-Wittenberg).

A dashed red line has been added to the images to indicate the location of the

substrate backing as in some images the sample is in a different orientation. There
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are multiple straight lines which occur from different runs of Parylene. Focusing in

on a single run of Parylene, there is a layered structure which is physical property

of the Parylene samples. This is present in all of the Parylene layers. The structure

appears to be a different orientation to the fibre structures shown in the previously

described literature, and is parallel to the substrate ([140, 137]). It is not known

what causes this structure.

There are noticeable gaps at the interfaces between multiple runs of Parylene

deposition, which indicates Parylene may have poor adhesion to itself. Discussion

in the literature agrees with this, for example, “Parylene suffers from poor adhesion

to itself and noble metals, such as gold and platinum, a considerable drawback in

the implementation of Parylene for bioMEMS. The adhesion of Parylene devices,

which consist of thin films of Parylene-metal-Parylene sandwiches, is compromised

when devices are soaked in wet environments” [141]. Some Fabry-Pérot sensors

consist of mirrors made from noble metals with Parylene C spacers, and some thick

Parylene spacers are constructed from multiple runs of Parylene deposition. Al-

though not directly related to the material properties, this introduces new problems

in the modelling process. When modelling the multilayered structure, it is assumed

the normal and transverse stress and displacement are continuous across interfaces

between different elastic materials. If there is poor adhesion, the perfect bound-

ary conditions assumed before may not be true, however, it does not necessarily

mean a new modelling technique is required. Imperfect boundary conditions can

be modelled by introducing a thin, modelling layer with artificial properties [84].

Additionally, adhesion problems will cause instabilities of the sensor performance

and sensitivity over time due to water ingress. This may be a practical restriction

for the use of Fabry-Pérot sensors.

Although the acoustic and mechanical properties of Parylene are not deter-

mined through these methods, the layered or columnated structure may point to

acoustic anisotropy in the Parylene C depositions used in Fabry-Pérot sensors, sim-

ilar to how these structures give rise to anisotropy in the earths crust in seismological

applications.
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6.3 Determining Material Parameters

6.3.1 Physical and Optical Measurement of Thickness

To accurately model Parylene sensors it is important to determine all the correct

parameters. The simplest parameter to measure is the spacer thickness. This mea-

surement was taken optically and physically. The two different techniques were

used to ensure the sensors thicknesses used in the modelled directional response

were accurate. The optical measurements of thickness uses the free spectral range,

which is the distance between two adjacent minima in the interferometry transfer

function. The length of the undeformed Fabry-Pérot cavity can be calculated as

follows

l =
λ 2

0
2∆λni

, (6.1)

where l is the cavity length, λ0 is the centre wavelength, ∆λ is the free spectral

range, and ni is the refractive index of the spacer material. The measured ITF for

a glass-backed polymer sensor can be seen in Figure 6.9. The calculation for the

cavity length is

l =
(1550×10−9)2

2× (19×10−9)×1.64
, (6.2)

= 38.5µm. (6.3)

Figure 6.9: ITF of a soft-polymer sensor, two red stars have been added. These correspond
to the bottom of the fringe.

A physical measurement of the spacer thickness was performed using a pro-
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Table 6.2: Table of Parylene C thickness measurements.

Serial Number Measurement Mean (µm) ITF (µm)

L50AL21 barrier + spacer 41.8±0.3 38.3±1.0
H50AL11 barrier + spacer 42.8±0.4 38.7±1.0
H50AL11 spacer 39.9±0.5 38.7±1.0
hdie4ab2 barrier + spacer 63.2±0.3 62.2±2.64

1Parylene spacer with thin aluminium mirrors (estimated < 0.01 µm)
deposited on a glass substrate. 2Parylene spacer with hard-dielectric
(estimated 2 to 4 µm) mirrors deposited on a glass substrate. Some
indicated profilometer measurements include a barrier coating (esti-
mated to be 1 to 2 µm). ITF measurements are just of the cavity and
use a refractive index of n = 1.64 [139].

filometer DektakXT, Bruker Massachusetts, US) with the help of Srinath Rajagopal

(National Physical Laboratory, Teddington). The samples were secured in a mount

within the device and a diamond tip stylus was brought down to touch the surface

of the material. The stylus traces in a straight line along the surface of the sample

and measures height variations to within 1 nm when set to the 65 µm height range.

Figure 6.10 contains an example of the analysis used to determine the thicknesses.

The height data was imported into MATLAB, and the data points were thresholded

to eliminate points where the spacer had detached from the substrate. The data

was clustered into two groups with k-means. This was done to automate analysis

as there were multiple measurements taken for each sensor. The results from the

profilometer and ITF measurements can be found in Table 6.2. The predicted thick-

nesses derived from the ITF were within a few microns of the physical thickness

measurements. Discrepancies arise in the ITF measurements as the sensors are low

finesse which make it difficult to estimate the bottom of the fringe. Additionally,

the profilometer was only accurate to 0.83 µm. In any case, a variation in the esti-

mated thickness of a few microns from the ITF will have a negligible change on the

observable features of the directional response as the sensors investigated here are

tens of microns in thickness.
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Figure 6.10: Profilometer measurement of a Parylene spacer. The Parylene coating was
partially removed from the substrate. A profilometer stylus is traced across a
region with and without Parylene. The difference in height of the stylus in-
dicates the thickness of the Parylene spacer. These measurements were taken
with the help of Srinath Rajagopal (National Physical Laboratory, Tedding-
ton).

6.3.2 Acoustic Impedance Measurement

Acoustic impedance measurements of Parylene were taken to determine the de-

gree of anisotropy of Parylene and obtain some material parameters. Two samples

were prepared by Edward Zhang (Photoacoustic Imaging Group, University College

London). These consisted of a 40.5 µm layer of Parylene deposited on a PMMA

substrate in a single run and a (18.9+ 20.2) µm layer of Parylene deposited on

a PMMA substrate in two runs. The impedance was measured with a scanning

acoustic microscopy setup by Kay Raum and Urszula Zabarylo (Charité, Univer-

sitätsmedizin Berlin). The technique estimates the impedance with the reflection

coefficient from the sample with a focused 200 MHz transducer in pulse echo-mode

[142, 143]. There were two measurements taken. The first measurement was from

the top (normal-incidence), which effectively measures the C33 coefficient of the

stiffness matrix. In the second measurement, the samples were cut and placed on

top of one another to give a Parylene layer of ≈ 80 µm. The samples were polished

flat and an impedance measurement was taken from the side, which effectively gives
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C11 of the stiffness matrix (90◦ incident). An illustrative diagram can be found in

Figure 6.11 (a) and (b).

Figure 6.11: Diagram of the top and side measurements for Parylene C. (a) A 40 µm layer
of Parylene is deposited on a PMMA substrate and impedance measurements
are taken from the top. (b) The sample is cut in two and the two Parylene
coatings are put together. An impedance measurement is then taken from the
side. (c) The impedance scan from a measurement of the top of the sample,
this has a uniform impedance. (e) The distribution of impedance values has
been plotted in the top right. (d) The impedance scan from the side of the
sample. The impedance scan from the side also captures the PMMA backing,
the region of higher impedance in the centre of the image is from Parylene.
(f) A profile of the impedance scan indicated as the grey line in (e), which
shows two impedance peaks corresponding to Parylene. The measurements
were taken by Kay Raum and Urszula Zabarylo (Charité, Universitätsmedizin
Berlin).

The top surface measurement of Parylene provided an impedance of approxi-

mately 2.85 MRayl. The side measurement of Parylene provided an impedance of

> 3.4 MRayl. The results are summarised in Table 6.3. It was not possible to get

an accurate side measurement of Parylene in every measurement due to difficulties

in preparing a flat measurement surface. When Parylene was visible it appeared to

have a much higher impedance than when measured from the top. This indicates

strong anisotropy, however, the uncertainty in the measurements was not quantified.
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Table 6.3: Table of Parylene C impedance measurements.

Sample Top [MRayl] Side [MRayl]
Test Mean Median std Mean Median std

One - 1 2.868 2.866 0.044 - - -
One - 2 2.842 2.843 0.023 > 3.41 - -
One - 3 2.840 2.841 0.022 > 3.41 - -
Two - 4 2.861 2.860 0.027 - - -
Two - 5 2.827 2.829 0.021 - - -
Two - 6 2.7582 2.7592 0.042 > 3.41 - -
PMMA 3.355 3.357 0.032

1Impedance appears higher than PMMA substrate. 2Reduced impedance due to
sample tilt. “One” and “two” refers to the 40 µm sample coated in a single or two
depositions. It was not possible to fully quantify the uncertainty for all of the mea-
surements. Data collected by Kay Raum and Urszula Zabarylo (Charité, Univer-
sitätsmedizin Berlin).

6.4 Directivity with Measured Parameters

6.4.1 Parylene Coated Cover-Slip

The measured properties were used to investigate if the modelled directional re-

sponse had better agreement with the measured response shown in Figure 6.12. It

was assumed that Parylene is transversely-isotropic. This seems like a reasonable

assumption as the literature suggests Parylene deposits in column or fibre structures

and the TEM images showed Parylene having a layered structure. A transverse-

isotropic material is described with five parameters using the method shown in

Chapter 3. With the notation from the previous Chapters, these are the density

and four stiffness coefficients, C11,C33,C13,C55. The impedance measurements can

be related to the stiffness coefficients with the following formula

C11 =
Z2

side
ρ

, (6.4)

C33 =
Z2

top

ρ
, (6.5)

where Z is the measured impedance from the side or the top, and ρ is the density

of Parylene. The values used were Ztop = 2.85 MRayl, Zside = 3.45 MRayl, with

density taken as the average of the values given in literature ρ = 1229 kg/m3 (shown
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in Table 6.1). The mean side-impedance of the smaller peak of Parylene was chosen

as it was believed the height of the taller peak was an artefact. This leaves two

unknown parameters, C13 and C55. As the impedance measurement of Parylene

from the side was measured at > 3.45 MRayl, which is close to PMMA (3.355

MRayl), the values for C55 and C13 were estimated by taking the average of the

literature values of (isotropic) Parylene and PMMA giving C13 = 3.58 GPa and

C55 = 1.73 GPa.

Firstly these values were assigned to the model and compared with the mea-

surements for the Parylene coated cover-slip. The results can be seen in Figure 6.12

and Figure 6.13. The dispersion curve that has been highlighted with the dashed

grey line has much better agreement between the model and the measured data

compared with Figure 6.4. This is more clearly demonstrated in Figure 6.14, which

has the dispersion curves calculated from the model. The feature that was high-

lighted previously in Figure 6.4 now has a good fit with the dispersion curve. This

belongs to the fundamental anti-symmetric Lamb mode of the glass plate which

has different dispersion characteristics from the presence of the Parylene layer. The

dispersion curves plotted belong to Lamb-like modes. There is a bright band at 30

MHz in the modelled data which is caused by the normalisation of the model to the

normal-incidence frequency response.

6.4.2 Soft-Polymer Sensor

The anisotropic material properties for Parylene were used to model the soft-

polymer sensor (previously shown in Figure 6.2). The modelling was performed

with and without the strain-optic effect. The results can be seen in Figure 6.15 and

Figure 6.16. Similarly to the Parylene coated cover-slip, the dispersion curve high-

lighted with the dashed grey line has moved. Qualitatively, there appears to be better

agreement. However, the strain-optic coefficients make a significant difference to

the directional response for this sensor. Without measured values for these it is dif-

ficult to model the sensor accurately. The dispersion curves have been calculated

and plotted in Figure 6.17.
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Figure 6.12: (a) Measured directional response of a Parylene coated cover-slip sensor with
an air backing. In this sensor only the glass cover-slip is optically interro-
gated. Note, the banding artifacts which occur between 15◦ to 20◦ are caused
by clipping of the oscilloscope which did not have sufficient dynamic range.
The data has been normalised to the normal-incident frequency response. (b)
Modelled directional response using anisotropic values of Parylene but ex-
cluding the strain-optic effect in the cover-slip.

Figure 6.13: Profiles of the directional response of a Parylene coated cover-slip sensor.
The data has been normalised to the normal-incident frequency response. The
modelled profile at 30 MHz has poor agreement with the measured data as it
is normalised by an almost-zero value in the normal-incidence response.

6.4.3 Discussion

Although the anisotropic model had better agreement with the measurements, the

result is not as convincing for the Parylene C sensors as is with the glass sensors.

There may be a number of reasons why the agreement is not as good. There is
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Figure 6.14: This figure is the same as Figure 6.12 with the dispersion curves calculated
from the model.

Figure 6.15: (a) Measured directional response of a soft-polymer sensor with a glass back-
ing. The data has been normalised to the normal-incident frequency response.
(b) Modelled directional response using anisotropic values of Parylene but
excluding the strain-optic effect. (c) Modelled directional response using
anisotropic values of Parylene and including the strain-optic effect with the
coefficients from PMMA. A grey line has been added to each figure which
is representative of the location of a dispersion curve. Qualitatively, there is
much better agreement compared to Figure 6.2.

still a lack of certainty in the C11 stiffness coefficient as it was not possible to prop-

erly prepare the Parylene sample and get multiple measurements from the side. The

directional response of the Parylene sensors will be most sensitive to this stiffness

parameter as it will change the phase speeds of guided modes, especially at large

oblique angles. However, the preliminary impedance measurements are somewhat

validated by the improved agreement of the dispersion curves in the Parylene coated

cover-slip.

Impedance measurements should be repeated to verify the anisotropy of Pary-



6.4. Directivity with Measured Parameters 155

Figure 6.16: Profiles of the directional response of a soft-polymer sensor. The data has
been normalised to the normal-incident frequency response. There is better
agreement with the modelled and measured data.

Figure 6.17: Same as Figure 6.15 with the dispersion curves calculate from the model.

lene. Additionally, measurements should be done for Parylene samples of different

thicknesses and deposited on different substrates or air-backed measurements. This

is because all these different factors have been shown to adjust the crystallinity and

material structure of Parylene which will in turn alter the stiffness properties and

strain-optic coefficients [140].

To progress further it may be necessary to fully measure the strain-optic pa-

rameters of Parylene. One method suggested by Borelli uses a transparent material

deposited on a piezoelectric substrate which makes up one arm of a Mach-Zehnder

interferometer [124, 144]. The piezoelectric substrate resonates and gives rise to
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a time-varying interference pattern in the sample. The strain-optic coefficients can

be determined from this by polarising the interferometer light in two perpendic-

ular orientations, measuring the change in refractive indices and then solving for

the strain-optic coefficients [124]. One caveat to this method is that the material

stiffness-matrix of Parylene must be known first. Additionally, this method was

used to solve for the p11 and p12 coefficients which is sufficient at describing an

optically isotropic material. If Parylene is birefringent (which it has been shown to

be) [69] it may mean that more strain-optic coefficients are needed to describe the

model.

Additionally, there may be other factors to take into consideration, for exam-

ple, if Parylene has debonding issues and if there is significant material absorption.

The change in phase speed of the guided modes (in particular the fundamental anti-

symmetric leaky-Lamb mode highlighted previously) occur from the adhesion of

Parylene to the substrate and the necessity of the boundary conditions at the inter-

faces. If there was a significant debonding, the phase-speed of the mode would not

be modified so greatly and it would be expected that the fundamental anti-symmetric

Lamb mode couples with the fundamental symmetric Lamb mode as was shown in

Chapter 5. Material absorption was considered, but only tested in the isotropic case.

Adding compressional and shear absorption had no effect on the dispersion charac-

teristics of the guided waves but only reduced their amplitude.

6.5 Summary
This chapter investigated the material properties of Parylene C. Prior to this work

it was believed Parylene C had isotropic properties. However, there was little data

on the acoustic properties and there was poor agreement with model and measure-

ment when using isotropic properties of Parylene. From impedance measurements

it appears as though Parylene is anisotropic and the improvement of the directional

response and the improved alignment of the dispersion curves seem to support this.

The impedance results were not conclusive and further work needs to be done to

accurately determine the material properties such as the strain-optic coefficients.
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General Conclusions

The planar Fabry-Pérot ultrasound sensor offers an alternative to traditional piezo-

electric sensors for clinical and metrological applications. It is able to detect ultra-

sound over a broadband frequency range (tens of MHz) and can be made with small

element sizes (tens of microns) [28]. This sensor is frequently used in photoacoustic

imaging, as a reference sensor for hydrophone calibration, and can also be used for

general ultrasound field characterisation [59, 49, 60, 7, 28, 61, 50, 62, 19].

For a planar Fabry-Pérot sensor interrogated by a sufficiently small spot size,

the directional response is dominated by the complex wave-field within the sensor

caused by the interaction of elastic waves with the multilayered structure of the

sensor. This is different to piezoelectric sensors which are mostly affected by spatial

averaging. In this thesis, a model of the frequency-dependent directional response

was developed based on the partial-wave method, treating the sensor as a multi-

layered elastic structure.

The directional response of the Fabry-Pérot sensor is dependent on both a

change in displacement of the mirrors and a change in refractive index of the spacer.

The change in displacement and change in refractive index was found by modelling

the propagation of elastic-waves via the partial-wave method. This was explained

in Chapter 3. The partial-wave method description in this thesis can describe elas-

tic wave propagation in isotropic, transverse-isotropic and orthotropic media. The

matrix formulation allows the partial-wave amplitudes of the first layer to be related

to the last. The wave amplitudes can be used to calculate the stresses and displace-
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ments at any coordinate within the sensor and consequently calculate the directional

response.

The partial-wave method was developed into an open-source MATLAB tool-

box called ElasticMatrix. These types of methods have had a significant im-

pact on different areas of acoustics, such as non-destructive evaluation and geo-

physics. Though these methods are still relevant today, there is no open-source or

easily accessible implementation. ElasticMatrix fills this gap and is imple-

mented with an object-oriented framework. This makes the toolbox easy to use,

develop and expand. It allows students and scholars to easily develop new algo-

rithms and to take advantage of the features of MATLAB. The toolbox is capable

of calculating and plotting reflection and transmission coefficients, slowness pro-

files, dispersion curves and displacement and stress fields. An additional MATLAB

class is included to model the frequency-dependent directional response of planar

Fabry-Pérot ultrasound sensors. A description of the MATLAB toolbox, the imple-

mentation and validation examples were given in Chapter 4.

In Chapter 5, the model was validated, tested and compared with directional

response measurements made on two glass-etalon sensors: an air-backed cover-slip

sensor with well-known acoustic properties and an all-hard-dielectric sensor. The

main features in the directivity were described as effects of physical wave phenom-

ena such as compressional and shear critical angles, Lamb modes and Rayleigh

modes. The model had good agreement with measured data both with and without

the inclusion of the strain-optic coefficients. This suggests that the strain-optic ef-

fect is not significant in describing the directivity for glass cover-slip sensors. This

is because one term in the strain optic coefficient is the same as the difference in

displacement of the the mirrors. However, this may not be true for all types of

Fabry-Pérot sensors.

In Chapter 6, Parylene C, a spacer material commonly used in soft-polymer

sensors, was found to exhibit anisotropic acoustic properties. Using measured

anisotropic properties of Parylene for the model gave better agreement to mea-

surements compared with isotropic properties. However, the uncertainty in the
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impedance measurements was not quantified and determining the exact stiffness-

matrix coefficients should be the subject of future work. This chapter also revealed

potential problems with Parylene C as a spacer material for Fabry-Pérot sensors.

For example, it has problems with self-adhesion and delamination. This is not only

useful information for Fabry-Pérot sensors, but Parylene is used in MEMS devices

and many other industries.

Knowledge of the physical mechanisms affecting the frequency-dependent di-

rectional response of the planar Fabry-Pérot sensor can be used to inform the design

of future sensors (e.g., see [7, 50]). For example, to increase the measurable band-

width, the thickness of the spacer layer can be reduced. By ensuring the spacer

thickness is much less than the shortest wavelength to be measured, the sensor will

have a relatively flat frequency response. The trade-off to this is a reduction in sen-

sitivity, as the displacement difference will be smaller for a thinner spacer compared

to a thicker spacer of the same material. However, the reduction in sensitivity could

be improved by increasing the finesse of the Fabry-Pérot sensor [19]. Reducing

the spacer thickness will also move the guided wave features to higher frequencies.

Another change that can be made to ameliorate the effect of guided wave features

is to make the compressional and shear sound speeds of the sensor materials closer

to the compressional wave speed of the coupling fluid. This will move critical an-

gle features further from normal incidence. Indeed, when the sound speed of the

sensor is less than that of the fluid there will be no critical angle, giving the sen-

sor a more omnidirectional response. For example, Fabry-Pérot sensors consisting

of a thin polymer spacer on a polymer backing material exhibit a flat frequency-

response with few significant features in the directivity [31]. The trade-off is that

these sensors are less robust to high intensity ultrasound.

The investigations in this thesis were focused on planar Fabry-Pérot sensors

that are deposited on large flat substrates or are free standing. There are differ-

ent configurations of Fabry-Pérot sensors discussed in Section 1.3.3.3. The elastic

model presented in this thesis is applicable for describing large planar sensors and

plano-concave sensors deposited on a planar substrate. The plano-concave sensors
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can be modelled because the domes are encased to give an acoustically flat structure.

For these types of sensors, if the material properties are well known, it is possible to

perform detailed analysis based on the tools presented in this thesis such as tracing

dispersion curves and reflection and transmission coefficients. Sensors which are

deposited on optical fibers and other geometries may need different modelling ap-

proaches such as the finite-difference or finite element method. This is because the

interaction of the acoustic wave with the finite structure becomes important, for ex-

ample, vibrations of the tip in fibre-optic hydrophones. Additionally, sensors which

are thin compared to the smallest acoustic wavelength may not require modelling

of the complex elastic behaviour as the strain over the spacer and mirror materials

can be considered constant.

There are a number of assumptions about the optical mechanism which may

need further consideration. For example, the interrogation beam is assumed to have

a Gaussian or collimated profile and assumed to be normally incident to the sensor.

For beams which are not normally incident or have different profiles, the directivity

mechanism will be different. This comes from a different impact of the strain-

optic coefficients [60, 61]. In this thesis, the mirrors of the Fabry-Pérot sensors

were modelled using the “two effective interfaces” technique, [60]. To properly

account for the effect of the dielectric mirrors a rigorous multi-layered optical model

is needed. However, the main limitation in modelling the directional response of

Fabry-Pérot sensors is difficulties in measuring the acoustic and optical material

properties of thin films.

To take the results from this thesis further and apply it to finite sensors such as

fibre-optic hydrophones, rigorous optical modelling combined with more sophisti-

cated elastic models, such as finite-element will be necessary.
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Derivation of Beam Profiles

A.1 ‘Top-hat’ Beam Profile

For a ‘top-hat’ profile of radius a the spot is [7]

S = 1 for−a≤ x < a (A.1)

= 0 elsewhere. (A.2)

Omitting the time-dependent factor e−iωt , for a ‘top-hat’ becomes

S =
1

2a

∫ a

−a
eiζ xdx =

sin(ζ a)
ζ a

, (A.3)

where ζ is the horizontal wavenumber. Conversion into polar coordinates with

x = r cosφ and dx = rdr

S =
1

πa2

∫ a

0

∫ 2π

0
eiζ r cosφ rdφdr. (A.4)

Here, the integral is between 0 and a as it is from the centre of the beam. The

normalising factor is 1/πa2 as this is the area of a spot. Evaluating this function

using Hankel transform pairs [145]

S =
2
a2

∫ a

0
J0(ζ r)rdr =

2J1(ζ a)
ζ a

. (A.5)
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A.2 Gaussian Beam

The spot S(x) is defined as a Gaussian function with a maximum of 1

S(x) = e−x2/(2σ2), (A.6)

where σ is the standard deviation of the distribution. Setting the value of t to zero,

neglecting the exp{−iωt} term leaves the function as

S =

∫
∞

∞
eiζ xe−x2/(2σ2)dx∫
∞

∞
e−x2/(2σ2)dx

. (A.7)

Conversion into cylindrical coordinates can be seen below, see [7] for justification

S =

∫
∞

0
∫ 2π

0 eiζ r cosφ e−r2/(2πσ2)rdφdr∫
∞

0
∫ 2π

0 e−r2/(2πσ2)rdφdr
. (A.8)

Evaluation of the bottom integral (the normalization factor) can be found using a

standard result ∫
∞

0

∫ 2π

0
e−ar2

rdφdr =
π

a
, (A.9)

hence if a−1 = 2πσ2 this leads to

∫
∞

0

∫ 2π

0
e−r2/(2πσ2)rdφdr = 2π

2
σ

2. (A.10)

Eq. (A.8) now becomes

S =
1

2π2σ2

∫
∞

0

∫ 2π

0
eiζ r cosφ e−r2/(2πσ2)rdφdr. (A.11)

Eq. (A.11) can be evaluated over φ by rearranging

S =
1

2π2σ2

∫
∞

0

(
e−r2/(2πσ2)r

(∫ 2π

0
eiζ r cosφ dφ

))
dr. (A.12)
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Integrating the parameters depending on φ gives a Bessel function of zero order,

where J0 is the Bessel function

∫ 2π

0
eiζ r cosφ dφ = 2πJ0(ζ r), (A.13)

Eq. (A.12) now becomes

S =
2π

2π2σ2

∫
∞

0
e−r2/(2πσ2)J0(ζ r)rdr. (A.14)

The following integral can be determined using Hankel transformation pairs. The

Hankel transformation can be written as

F0(ζ ) =
∫

∞

0
F(r)J0(ζ r)rdr, (A.15)

using the Hankel transform pair

f (r) => F0(ζ ) (A.16)

e−
1
2 a2r2

=>
1
a2 e

−k2

2a2 , (A.17)

a2 =
1

πσ2 , (A.18)

e−
1
2

1
πσ2 r2

=> πσ
2e−

1
2 πσ2ζ 2

, (A.19)

substitution of this result into A.14 gives

S =
2π·πσ2

2π2σ2 e−
1
2 πσ2ζ 2

, (A.20)

the coefficients cancel leaving

S = e−πσ2ζ 2/2. (A.21)

For a plane wave at zero incidence ζ = 0 and S = 1, however at any other incidence

angle, ζ becomes non-zero and S decreases exponentially. For a small spot size the

effect of spatial averaging is negligible.
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1. Ramasawmy, Danny R., et al. “ElasticMatrix a MATLAB toolbox for

anisotropic elastic wave propagation in layered media.” Accepted with mi-

nor revision (2019).

2. Ramasawmy, Danny R., et al. “Analysis of the Directivity of Glass Etalon

Fabry-Pérot Ultrasound Sensors.” IEEE transactions on ultrasonics, ferro-

electrics, and frequency control, IEEE, (2019).

B.1.2 Conference

1. Ramasawmy, Danny R., et al. “The influence of strain-optic coefficients on

the transduction mechanism of glass etalon Fabry-Pérot sensors” 2019 IEEE

International Ultrasonics Symposium. IEEE, (2019).

2. Ramasawmy, Danny R., et al. “ElasticMatrix - An open-source partial-wave

model for evaluating elastic-wave propagation in transverse-isotropic layered

media” 2019 IEEE International Ultrasonics Symposium. IEEE, (2019).

3. Ramasawmy, Danny R., et al. “Directivity of a planar hard-dielectric Fabry-

Pérot optical ultrasound sensor.” 2017 IEEE International Ultrasonics Sym-

posium. IEEE, (2017).
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B.2 Software
1. ElasticMatrix

Repository link - github.com/dannyramasawmy/ElasticMatrix

B.3 Awards
1. 2019 - Best presentation style, UCL Medical Physics PhD showcase.

2. 2017 - Best poster prize at CDT Summer School in Medical Imaging, London.

3. 2017 - Best student paper prize winner in the Sensors and NDE category at

the IEEE International Ultrasonics Symposium, Washington DC.

4. 2017 - Travel award to International Ultrasonics Symposium, Washington

DC.
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Catalunya, 2010.

[114] S. Mallick and L. N. Frazer. Computation of synthetic seismograms for strati-

fied azimuthally anisotropic media. J. Geophys. Res. - Sol. Ea., 95(B6):8513–

8526, 1990.

[115] B. E. Treeby and B. T Cox. k-wave: Matlab toolbox for the simulation and

reconstruction of photoacoustic wave fields. J. Biomed. Opt., 15(2):021314,

2010.

[116] R. C. Payton. Elastic wave propagation in transversely isotropic media, vol-

ume 4. Springer Science & Business Media, 2012.

[117] S. P. Kelly, G. Hayward, and T. E. Gómez Alvarez-Arenas. Characterization

and assessment of an integrated matching layer for air-coupled ultrasonic

applications. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51(10):1314–

1323, 2004.

[118] E. Lamkanfi, N. F. Declercq, W. Van Paepegem, and J. Degrieck. Finite

element analysis of transmission of leaky rayleigh waves at the extremity of

a fluid-loaded thick plate. J. Appl. Phys., 101(11):114907, 2007.

[119] R. Cobbold. Foundations of biomedical ultrasound. Oxford university press,

2006.



Bibliography 179
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