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Abstract

Present-day cohorts of genome-wide DNA provide a powerful means of elucidating

admixture events where different human groups intermixed, providing new insights

into human history and population movements. The method GLOBETROTTER

(Hellenthal et al., 2014) shows increased precision over other available techniques

for characterising admixture due to modelling haplotype information, i.e. associ-

ations among tightly linked Single Nucleotide Polymorphisms (SNPs). However,

because of its computational demands, GLOBETROTTER can only handle rela-

tively small sample sizes of tens to hundreds of admixed individuals.

In this thesis, I present a new statistical method, fastGLOBETROTTER, that

both reduces computational time and increases accuracy relative to GLOBETROT-

TER. In particular, fastGLOBETROTTER more efficiently models admixture link-

age disequilibrium by sampling sets of genomic regions within individuals that are

the most informative for admixture events. Additionally, I have developed an al-

gorithm for allocating memory more efficiently to enable a factor of up to 20 fold

improvement in computation time relative to GLOBETROTTER. Therefore, this

technique can cope with the rapidly emerging large-scale cohorts of genetically

homogeneous populations sampled from small geographic regions, e.g. within a

country (China Kadoorie Biobank, UK Biobank), to provide more precise estimates

of admixture dates. Via simulations, I use fastGLOBETROTTER to demonstrate

the sample sizes required to characterize admixture between groups with high lev-

els of genetic similarity, and the time depths for which these approaches can reliably

detect such past intermixing.

I also apply fastGLOBETROTTER to over 6000 European individuals, using
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over 2500 individuals as ancestry surrogates, revealing new insights into admix-

ture across Western Europe. These include admixture events dated to ∼500-600CE

from sources carrying DNA related to present-day West Asian and North African

populations found in individuals within France, Belgium and parts of Germany. I

also report admixture from East-Asian/Siberian-like sources in individuals within

Finland, Norway and Sweden at different times starting ∼1900 years ago.



Impact Statement

Identifying and describing past events where different populations intermixed (i.e.

“admixture”) is essential for understanding the processes leading to the present-

day genetic diversity of humans and other organisms. While computational meth-

ods have been developed previously to infer admixture events, the currently most-

powerful techniques to do so are unable to cope with the increasingly large-scale

DNA datasets that are emerging.

In this thesis, I propose a new method that can infer the dates and components

of admixture events more accurately and efficiently than currently available models.

I develop a distributable software, fastGLOBETROTTER, that can handle large-

scale data, e.g. decreasing computational time by a factor 20 relative to the most

powerful existing approach while increasing precision. I provide a step-by-step

tutorial to enable users from non-computational backgrounds to apply this software

to their data, which I have already distributed to researchers in the field for on-going

feedback. I also apply fastGLOBETROTTER to genome-wide genetic variation

data from over 6000 European samples, unearthing new insights into the admixture

history of parts of Europe.

This software will accelerate academic studies in several areas beyond pop-

ulation genetics. Inferring admixture can evaluate the genetic impact of well-

established historical events (e.g. mass migrations, empires and armies) and unearth

details about events that were largely unknown or hotly debated among researchers

in other disciplines (anthropology, archaeology, linguistics). Understanding admix-

ture is also essential for the design and analyses of studies to identify genetic loci

associated with (historical or on-going) disease susceptibility, and how these loci
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have been distributed among human groups via historical intermixing. There are

also several applications beyond academics. This includes forensics applications,

through improved ability to identify the genetic make-up of individuals whose DNA

has been found at crime scenes, particularly as some countries move towards storing

information at >100K genome-wide genetic markers per individual in their crime

databases. Admixture inference is also vital for the livestock industry, through un-

derstanding mixing of breeds, as well as in conservation efforts by identifying de-

grees of intermixing between endangered species and other animals. Finally, this

work will also impact the views of a widespread audience of lay people interested

in the history of humans and other organisms and/or their own genetic origins, e.g.

as highlighted by the enormous popularity of ancestry testing companies.
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Chapter 1

Introduction

Recent findings show that anatomically modern humans are believed to have arisen

315,000 years ago in Africa [1, 2]. Following this, the spread of Homo sapiens out

of Africa to the rest of the world first began around 270,000 years ago [3] with later

migrations around 130,000-60,000 years ago [4–7]. Migrating people reached dif-

ferent continents at different times, and due to natural barriers, e.g. geography and

climates, they separated, settled and progressed independent of one another. How-

ever, throughout the subsequent millennia, migrations, wars, slavery, colonization

and other factors influenced intermingling between different populations that had

previously been isolated from one another. Such interactions occasionally resulted

in the exchange of cultural material and – potentially – intermixing among the dif-

ferent groups. Tracing human population history has been done by incorporating

different types of evidence from e.g. anthropological, archaeological, linguistic,

cultural and other historical materials. Recent advances in DNA sequencing and

genotyping technology, combined with powerful new computational and statistical

methods, has now made it possible to use DNA as an additional tool for inferring

the history of human populations.

The human genome is made up of 23 pairs of chromosomes, with 22 pairs

of autosomal chromosomes and one pair of sex chromosomes that differ between

males and females (i.e. the X and Y chromosomes). Along the string of all 46

chromosomes, there are over 6 billion DNA base-pairs in total. This basepair se-

quence varies among individuals due to processes such as mutation, which results
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in a change in basepair sequence, and recombination briefly described below. The

degree to which genetic variation, or genetic diversity, varies among individuals

sampled from one or more populations can be influenced by an array of factors,

such as changes in population size, the exchange of genetic material among groups,

and natural selection whereby some genetic variants confer an advantage in a par-

ticular environment [8, 9]. Population geneticists pay most attention to levels and

patterns of genetic diversity that differ between populations, which can lead to a

better understanding of human population history.

When two humans reproduce, their offspring inherits one chromosome from

each parent within each of the 23 pairs, i.e. a paternal copy and maternal copy from

the father and mother, respectively. For each autosome and the maternally-inherited

X-chromosome, the chromosome that the offspring inherits from each parent is of-

ten a mixture of the DNA that parent inherited from their own parents. This is due

to a process known as recombination that – within each chromosome pair – shuffles

the DNA between each parent’s two chromosomes during meiosis. As a result of

this recombination process, genetic regions located far apart along a chromosome

can come from different ancestral sources (i.e. different grandparents) within each

offspring. At a population level, recombination ensures that genetic variants lo-

cated far apart along a chromosome can be uncorrelated among unrelated individu-

als sampled from a population. Alternatively, genetic variants located nearby can be

correlated, because relatively little historical recombination has occurred between

them. The correlation among nearby SNPs or other genetic markers is referred to

as “linkage disequilibrium” (LD), and leads to nearby variants in the genome being

“linked” and carrying correlated (or non-independent) information.

In order to learn about population demography, many initial studies anal-

ysed mitochondrial DNA (mtDNA) and Y chromosome data (specifically the non-

recombining part of the Y-chromosome, or NRY), which was relatively easier to

acquire and analyse [10, 11]. However, mtDNA and NRY provide information

from only a single linked locus, severely limiting the power of what they can re-

veal about population history [12]. Subsequent decreases in the cost of capturing
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whole genome autosomal data, either via sequencing or by targeting specific ge-

netic markers, has made autosomal data increasingly popular for exploring human

history. In contrast to mtDNA and NRY, each autosome undergoes recombination

and hence can be comprised of many thousands of independent loci inherited from

different ancestors, potentially increasing the precision of inference. Of particular

prominence is the analysis of biallelic Single Nucleotide Polymorphisms (SNPs),

which are the most frequent type of genetic variation, located across the 22 auto-

somes.

This thesis will focus on using genome-wide autosomal SNP data to shed light

on a particular aspect of population history inference: identifying and characterizing

events where different groups of individuals intermixed, which is known as genetic

admixture.

1.1 Genetic Admixture

Genetic admixture occurs when two or more genetically distinct populations in-

termix and form an admixed individual. In the autosomes and X-chromosome,

recombination shuffles the chromosome segments of admixed individuals over the

subsequent generations, such that the chromosomes of the descendants of the ad-

mixture event are comprised of a mosaic of DNA inherited from the ancestral

sources [13, 14].

One particular model of admixture is known as the “pulse model” [15–17]. An

example of the simplest type of a pulse model of admixture is provided in Figure

1.1, where there is an admixture between two groups A (red) and B (yellow), λ

generations prior to sampling. Under this model, individuals from the admixed

population randomly mate for these λ generations. Following this, and assuming

no crossover interference, within the admixed individuals the boundaries between

segments of DNA inherited intact from one of the original admixing sources follow

a Poisson process with rate λ per Morgan, as it describes the occurrences of a

discrete event (crossover in this case) that appear to happen at a certain rate (λ per

Morgan). This model enables means of leveraging genetic patterns in the admixed
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Figure 1.1: Schematic representation of an admixture event when sources A (red) and B
(yellow) mix λ generations ago. The contiguous DNA segments or “chunks”
inherited from each ancestry become shorter as the number of generations in-
creases, due to recombination.

individuals to infer admixture times and proportions [16, 18–21].

As an example, Hellenthal et al., 2014 [21] simulated admixture between two

sources under the pulse model by following the procedure outlined in Price et al.,

2015 [22]. In particular, among these simulations are two sets of 20 simulated in-

dividuals each that descend from a single admixture event between two sources

occurring 30 generations ago. The sources are African and European in the first set,

contributing 80% and 20% of the DNA, respectively, while the sources are Central-

South-Asian and European in the second set, each contributing 50% of the DNA.

These simulations used DNA from 21 present-day Yoruban individuals from Nige-

ria, 21 present-day Brahui individuals from Pakistan and 28 present-day individuals

from France as the African, Central-South-Asian and European admixing sources,

respectively, in order to generate the simulated admixed individuals. Here we as-

sume these admixing populations were not sampled, a likely reflection of reality for

at least older admixture. Instead individuals from other populations are used as sur-

rogates for each of these continental admixing sources; in particular here we use the

genomes of 22 Mandenka from Africa, 21 Balochi from Central South Asia, and 23
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British/Irish from Europe to represent the Yoruba, Brahui and French, respectively.

Throughout this chapter, as an illustration, I apply various published methods to

these simulated examples.

1.2 Signatures of admixture
Several techniques have been developed to detect population structure, i.e. to quan-

tify the level of heterogeneity among sampled individuals. This genetic structure

can be affected by demographic processes such as migration, drift, and admixture

between populations [23]. Hence patterns of population structure potentially can

shed light on these historical processes, including admixture. Two of the most

widely-used approaches for describing population structure are model-free meth-

ods, such as Principal Components Analysis (PCA), and model-based clustering

algorithms.

1.2.1 Principal components analysis

PCA is a vector decomposition method that projects the genetic variation data of in-

dividuals into lower dimensions using orthogonal vectors or principal components

that each attempt to capture a large degree of the variation or information of the

whole data while describing each individual using a single value. The first prin-

cipal component explains more overall variation in the data than the second, and

so on. When applying PCA to genotype data, individuals are projected and graph-

ically visualized, typically on the first few principal components that explain the

largest variation in the genotype data out of all components [24–26]. This projec-

tion is sometimes used as evidence for evolutionary processes including migration,

geographical isolation, and admixture between populations [27]. For example, Fig-

ure 1.2 plots the first two principal components from a popular program EIGEN-

STRAT [28] applied to our simulated data and the surrogate individuals. Note that

surrogate individuals from the three continental groups fall into different corners

of the plot, while each set of admixed individuals falls between the two continen-

tal groups comprising their ancestry in a manner indicative of admixture and with

placement roughly consistent with admixture proportions.
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Despite of the appealing intuition and visualization of PCA, the interpretation

of the projection is not always reliable as PC projections have been shown to de-

pend on sample size, SNP ascertainment, and and features of demography besides

admixture [27, 29].

122 Genetics of human origins

Figure 1

Balochi

ROLLOFF

RFMix

GLOBETROTTER

29 ± 2

38 ± 6 27 ±  3

30 ± 1

Su
rro

ga
te

s
Ad

m
ixe

d 
Po

p

Ireland/UK
Mandenka
Yor/Fra–SIM
Fre/Bra–SIM

co
m

po
ne

nt
 2

–0
.1

5
–0

.0
5

0.
05

0.
15

0.00 0.10
component 1

EIGENSTRAT (PCA)

ADMIXTURE

admixture inference schematic

tract lengths (cM) distance (cM) distance (cM)

pr
op

or
tio

n 
of

 tr
ac

ts
pr

op
or

tio
n 

of
 tr

ac
ts

Yoruba 80% / French 20% Yoruba 80% / French 20%

Brahui 50% / French 50% Brahui 50% / French 50% Brahui 50% / French 50%

Yoruba 80% / French 20 %

RFMix inferred tracts

RFMix inferred tracts

ROLLOF F

ROLLOF F

GLOBETROTTER

GLOBETROTTER

TREEMIX

K=2

K=3

K=4

K=5

–0.05 0.05 0.15

Balochi Fre/Bra–SIM Ireland/U K

Fre/Bra – SIM

Ireland/UK

Yor/Fre–SIM

Yor/Fre – SIM

Mandenka

Mandenk a

Balochi

0.11 0.153

0.115

0.076

0.038

0
0

0.021 1.0005

1.0004

1.0003

1.0001

1

0.016

0.01

0.005

0
100 20 30 40 50 0 10 20 30 40 50

10 20 30 40 50 0
1

1.035

1.07

1.106

1.141

10 20 30 40 50

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

0.14
0.13
0.12
0.11
0.1

0.09
0.08
0.07
0.06
0.05
0.04
0.03

0 10 20 30
tract lengths (cM) distance (cM) distance (cM)

0

0.02
0.01

100 20 30

(a)

(b)

(c)

(d)

(e) (f) (g)

(h) (i) (j)
Current Opinion in Genetics & Development

Identifying admixture in simulated data from [2!!]. (a) Populations represented by blue/green surrogate groups mix 30 generations in the past,
generating admixed haplotypes at bottom. A and B denote allele types at each biallelic SNP; orange bars separate segments in admixed

Current Opinion in Genetics & Development 2018, 53:121–127 www.sciencedirect.com

Figure 1.2: EIGENSTRAT on the simulated example and surrogates. Each dot is an indi-
vidual colored by population and projected on principal components 1 (x-axis)
and 2 (y-axis).

1.2.2 Model-based clustering methods

The aim of clustering methods is to classify individuals into a number of groups

based on their genetic variation patterns. The most widely-used methods anal-

yse unlinked SNPs and use probabilistic models to infer population substructure.

These programs include the widely used software STRUCTURE [30], ADMIX-

TURE [31], FRAPPE [32] and related techniques (fastSTRUCTURE [33], teraS-

TRUCTURE [34]). STRUCTURE classifies the genetic variation data of individ-

uals into K clusters, allowing individuals to be assigned to multiple clusters – a

pattern that may indicate admixture – using Markov Chain Monte Carlo (MCMC).

Later, Falush et al. [15] extended the STRUCTURE model to accommodate linked

markers with the aim to capture the mosaic pattern of DNA that descends from

the admixing ancestors (e.g. Fig 1.1). Under the pulse model, the breakpoints be-

tween successive DNA segments inherited from a single ancestor from the time of

admixture occur as a Poisson process with rate r (in generations) per unit of ge-
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netic distance. Therefore, Falush et al., 2003, proposed a Markov Chain using the

following linkage model:

Pr(Zi(1) j = k|r,Q) = qik,

and

Pr(Zi(l+1) j = k′|Zil j = k,r,Q)

exp−glr +(1− exp−glr)qik if k = k′

(1− exp−glr)qik′, otherwise
(1.1)

where Zil j is the cluster from which individual i derives its jth allele at locus l

from L total loci. qik can be viewed as the proportion of DNA for which individual

i is most related to that of individuals in cluster k, with Q containing the set of all

such proportions across all individuals and clusters. As mentioned above, the rate r

can be thought of as the number of generations ago in which the source populations

admixed (though the authors caution this may not provide a good estimate of this

parameter in practice), and gl is the genetic distance (in morgans) between loci l

and l + 1. In Equation 1.1, the top part is the probability where there is no switch

in cluster membership between l and l + 1; it is the combination of probability of

no recombination exp−glr and the probability of at least one recombination 1−

exp−glr times the probability of switching back to k or qik. While the bottom is the

probability that there is at least one switch between l and l+1, resulting in a switch

from cluster k to cluster k′.

Normally users select the number of clusters K (though K can also be esti-

mated, [35, 36], and many of these programs then determine the proportion of each

individual’s DNA derived from K inferred clusters. Therefore, it can be tempting

to interpret the K inferred clusters as K ancestral source groups that potentially

intermixed, though individuals falling into multiple clusters may not always reflect

admixture. Figure 1.3 provides results from ADMIXTURE applied to the simulated

and surrogate data using K = 2-5. Here ADMIXTURE accurately describes sources

and proportions of admixture in the two simulated groups at K = 3, but does not
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always characterize this admixture well at other values of K, with cross-validation

choosing K = 2 as the best-fitting value. Therefore, as in PCA, multiple different

demographic histories can lead to similar clustering [30, 37].
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Figure 1.3: ADMIXTURE analysis on the simulated example and surrogates for cluster
numbers K = 2–5 (columns = individuals, colors = clusters).

1.3 Identifying admixture

1.3.1 f statistics for admixture testing

f statistics estimate the change in allele frequencies or genetic drift between popu-

lations under the assumption that populations are related by a pre-defined topology.

The ADMIXTOOLS package developed by Patterson et al. [17] and previously de-

scribed in Reich et al. [38] offers different tests for admixture. This includes the

three-population test ( f3), which tests whether there is admixture in populations C

from sources related to populations A and B by calculating (PC−PA)(PC−PB) across

all SNPs where PA, PB, and PC are the allele frequencies at any locus in population

A, B, and C, respectively. It is based on the fact that if population C descends from

an admixture event between two ancestors A and B, the allele frequency of C, or PC,

at SNP loci should fall between the frequencies of PA and PB. If this is significantly

negative, then population C descends from an admixture event between two sources

related to A and B. Significance is assessed using jack-knife re-sampling, based

on dividing the genome into independent regions or chromosomes. Applying AD-
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MIXTOOLS to calculate f3 statistics for the two simulated populations using the

given surrogates, strong evidence of admixture in both (Z-scores < 30) is found.

However, the authors note that the f3 statistics may no longer be negative if C has

experienced a high degree of drift, e.g. due to a bottleneck, following admixture, as

this can cause PC to no longer often fall between PA and PB [17].

The four-population test, or f4, aims to test whether (A;B) and (C;D) form

clades by estimating (PA−PB)(PC−PD) across all SNP loci. This statistic can be

viewed as the correlation between the difference of allele frequencies between A,B

and C,D. If the assumed clade is true, then there should be no correlation between

PA−PB and PC−PD, so that f4 has expectation zero. In contrast, if f4 is positive or

negative, it indicates there is a correlation between (A,B) and (C,D) that indicates

possible admixture. Specifically, if f4 is significantly negative, it implies admixture

between sources related to C and B and/or between sources related to D and A. If it

is positive, it implies admixture between sources related to A and C and/or sources

related to B and D. In practice, users usually set population A as an outgroup,

i.e. assuming no admixture from A to either C and D, and test if f4 is negative to

suggest admixture between C and B or positive to suggest admixture between D and

B. Moreover, ratios of f 4 statistics can also be used to infer admixture proportions

from each source, given the phylogeny among populations is known [17, 38].

1.3.2 Tree-based inference

Tree-based inference methods model the admixture among ancestral populations

and their descendant populations as a tree where inner nodes represent populations,

and edges reflect the genetic drift showing how far descendent populations have

drifted from their ancestral populations. For instance, qpGraph included in AD-

MIXTOOL [17, 38] scores how well observed f statistics fit those predicted by a

user-specified bifurcating tree relating the n sampled populations, with this tree po-

tentially containing multiple migration events. The authors caution that the number

of populations included should be small in practice.

MixMapper [39] extends qpGraph to a larger number of populations, by first

inferring which populations are unadmixed using f3 statistics, then building a bi-
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furcating tree using these putatively unadmixed populations, and finally adding ad-

mixed populations onto this tree.

Figure 1.4: TREEMIX result (black lines = topology; red/orange lines = migration edges)
inferred from individuals simulated as mixtures of 50% French + 50% Brahui
(“Fre/Bra-SIM”) or 80% Yoruba + 20% French (“Yor/Fre-SIM”). Balochi, Ire-
land/UK, and Mandenka are used as surrogates for Brahui, French, Yoruba,
respectively.

TreeMix [40] is a related model that builds bifurcating trees relating a large

number of groups and then adds links between branches to indicate admixture.

TREEMIX uses a multivariate normal distribution to relate observed allele frequen-

cies among populations, incorporating work by [41, 42], with the mean and covari-

ance of this distribution defined by the (unknown) tree branch lengths (measuring

drift) and admixture links or “migration edges” among populations. Figure 1.4

shows the inferred tree topology and admixture events when applying TREEMIX

to the simulated data and surrogate individuals, correctly characterising the admix-

ture in both cases.

The advantage of these methods is the intuitive way that they visualize the

relationship between populations and migration events. However, a major limitation

is the computational burden when analysing large number of populations, with the

complexity of genetic relationships greatly limiting the search space of possible tree

topologies.
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1.4 Dating admixture

1.4.1 Local Ancestry Inference

The offspring of two parents from two isolated ancestral populations carries exactly

one copy of a chromosome from each of the ancestries (Figure 1.1). These admixed

individuals pass chromosomes along to their offspring that can contain a mixture

of ancestries, due to recombination. Generations later, the genomes of the descen-

dants of these admixed individuals will consist of contiguous “blocks” of ancestry

inherited from each admixing population. Local inference along the genome of the

ancestral sources that each individual inherited DNA from has been used to infer

selection and map disease–associated genes in admixed populations [43, 44]. Sev-

eral statistical models have been use to infer the ancestral source at each position in

the genome.

Price et al. proposed the method HAPMIX [22] that takes haplotype infor-

mation to infer individual-level information about ancestry, based on the idea that

the haplotype of an admixed individual or offspring can be represented as a mosaic

from the parental populations. To represent this idea, it requires phased genotype

of surrogate individuals representative of each ancestral source as input. HAPMIX

then identifies the surrogate population that best matches the haplotype segments

within each admixed individual. HAPMIX offers accurate local ancestry; however,

Pugach et al., 2011 [14] has shown from simulations that the HAPMIX date esti-

mator might not be accurate as it underestimates some parameters, e.g. number of

recombination, in some cases. Also, one limitation of this method is that it can only

analyse a single admixture with two reference populations at a time, making it not

flexible for admixture events consisting of multiple sources or where sources are

unknown.

Maples et al. developed a computationally efficient method, RFMIX [45], for

inferring local ancestry. RFMIX partitions each chromosome of an admixed indi-

vidual into windows and uses a random forest to infer the ancestry in each window

using reference phased chromosomes that are also partitioned into windows of the

same size (Figure 1.6). Within a window, a random forest is trained to distinguish
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Figure 1.5: Schematic of sampling offspring (black line) from representative parental hap-
lotypes (red and blue lines) taken from Price et al., 2009 [22]. Imperfect copy-
ing mimicking the mutation is show at the bottom dotted line when compared
to the true admixed haplotype (bottom bar).

ancestry by using the reference panels; the votes for each ancestry are then per-

formed to represent the admixed chromosome. These votes are summed to generate

the posterior ancestry probabilities within each window. Finally, the posterior an-

cestry probabilities are used to determine ancestry across all windows. Figure 1.7b,e

shows results from applying RFMix to the simulated data, which is dating admix-

ture based on continuous ancestry tracts. Given the admixture proportion α in the

admixed genome at λ generations, the density function f (d) of the ancestry tracts

length from the source population is:

f (d) = (1−α)λexp−(1−α)λd

where d is the is a variable representing the length in cM [16, 46]. There is much

better agreement between the expected exponential decay generated using the above

equation with λ and α from the truth (dashed red lines) and the observed tract

length distribution inferred by RFMix for the Yoruba-French simulation relative to

the French-Brahui simulation, because the two admixing sources are considerably

more genetically similar in the latter. This highlights an issue with many of these

approaches – they typically only perform well when the intermixing source groups

have a relatively high level of genetic differentiation.

Churchhouse and Marchini developed the method MULTIMIX [47] to infer the
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Figure 1.6: Illustration of RFMIX method taken from [45]. A chromosome is parted into
multiple windows (dashed vertical lines). Within each window, a random forest
(green) is trained to distinguish ancestry by using the reference panels (blue and
red) with allelic types (black and white circle on the trees), after which a vote
is made for the most probable ancestry for local admixture inference (bottom
bar).

local ancestry in both phased and unphased admixed individuals. Unlike HAPMIX,

it is based on a multivariate model that makes it applicable to infer multiple ances-

tral populations, and it does not require phased ancestral haplotypes. The model is

a hidden Markov model that accounts for background LD – LD that does not re-

late to admixture [15, 48]. Like RFMix, MULTIMIX describes sources of ancestry

within windows, with a transition matrix of the HMM that models the switch of an-

cestry between adjacent windows. The MULTIMIX transition probability between

consecutive window W(l) j and W(l+1) j is denoted as:

Pr(W(1) j = a|r,q) = qa j
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and

Pr(W(l+1) j = a|Wl j = b,r,q)

exp−dlr +(1− exp−dlr)qa j if a = b

(1− exp−dlr)qa j, otherwise
(1.2)

where qa j is the ancestry proportion of individuals j contributing from ances-

tral source a, and dl is the genetic distance in Morgans between the midpoints of

the two windows l and l + 1. r is the rate parameter related to number of genera-

tions since an admixture event between the source populations, under a pulse model

assuming random mating. The above equation relates to the linkage STRUCTURE

model [15], in that they rely on modelling mosaic patterns that descend from mul-

tiple ancestors along the chromosome. However, instead of using genetic distance

from SNP loci, MULTIMIX uses the distance between windows or blocks that are

individually assigned ancestry.

1.4.2 Techniques using linkage disequilibrium decay patterns

Recall Figure 1.1, considering two ancestries A and B that mixed at λ generations

ago. The genetic distance g between any two SNPs inherited from A and B can

be modelled under the Poisson process as an exponential decay curve with decay

rate λ . Based on this property, many tools have been proposed to identify and date

admixture. For example, Moorjani et al., 2011 [20] proposed ROLLOFF, which is

a method for dating the most recent admixture event by fitting the decay in LD ver-

sus genetic distance among segments inherited from two admixing sources A and

B. Taking as input SNP data and two pre-specified surrogates reflecting the two

ancestral populations, ROLLOFF constructs an LD curve R(g) showing the corre-

lation between pairs of SNPs, with a weighting function that puts more weight on

SNPs where the difference in frequency between the surrogates to A and B is large.

They fit the model R(g) = R0exp−λg + ε to estimate the number of generations λ

simultaneously with the curve amplitude, R0, and the residuals from regression, ε .

Figure 1.7c,f shows results from applying ROLLOFF to the simulated data. Like

RFMix, there is much better agreement between the expected exponential decay
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(dashed red lines) and the LD curve generated by ROLLOFF for the Yoruba-French

simulation relative to the French-Brahui simulation. Loh et al. proposed a method,

ALDER [19], for inferring the admixture date based on the same idea of ROLLOFF,

but with several significant improvements. Like ROLLOFF, ALDER uses the decay

curve of weighted LD to estimate an admixture date. However, ALDER offers a new

weight function that is more accurate, and uses the amplitude of the weighted LD

curve to infer the admixture proportion. Moreover, ALDER adopts a fast Fourier

Transform (FFT) to speed up computation of the weighted LD statistic.

1.4.3 Techniques using linkage disequilibrium decay patterns

among haplotypes

These methods use haplotypes to infer admixture events rather than just indepen-

dent SNPs, which is considered to be more informative for capturing the ancestral

signal from large-scale genotyping or sequencing data. To do this, Hellenthal et

al. proposed the software GLOBETROTTER [21] that incorporates haplotype in-

formation when modelling admixture LD decay to infer the admixture date. This

approach first constructs the genomes of each putatively admixed individual as a

mosaic of that of a set of reference individuals, based on identifying matching hap-

lotype patterns. GLOBETROTTER then measures the decay of LD among seg-

ments matched to different reference populations, relating the decay rate to the time

of admixture. GLOBETROTTER also provides the inference of the proportion con-

tributed from the different ancestral sources. Unlike ROLLOFF and ALDER that

identify a single best surrogate for each source by finding the best model fit out

of pairings of available surrogates, GLOBETROTTER infers the genetic make-up

of each source as a mixture of DNA from all surrogate groups (i.e. without requir-

ing one pre-specified surrogate per source). In cases where evidence of admixture is

found, GLOBETROTTER further examines whether the data fits a single rate of de-

cay, indicative of a single date of admixture, or a multiple rates of decay suggesting

multiple dates of admixture. Figure 1.7a summarizes the intuition of using differ-

ent type of information among 3 approaches i.e. RFMix only observes the decay

of the tract-length distribution of DNA contributed from an ancestry; ROLLOFF
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measures the LD decay between any pair of SNPs with different allele frequencies

in the two ancestries, while GLOBETROTTER observes the LD decay from any

pair of DNA segments contributed from the two ancestries along the chromosomes.

Figure 1.7e-g indicates that GLOBETROTTER is more accurate than RFMix and

ROLLOFF in the Brahui-French simulation, a more challenging problem relative

to the Yoruba-French simulation where the inferences are similar between the three

approaches.
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g

Figure 1.7: RFMix, ROLLOFF, and GLOBETROTTER applied to date admixture in the
simulations, with each approach intuitively explained in (a) as measuring (b,e)
the distribution of tract lengths matched to the same surrogate group, or the de-
cay of LD (black dots) versus genetic distance between (c,f) SNPs with differ-
ent allele frequencies in the two surrogates or (d,g) haplotype blocks matched
to a surrogate (Ireland). Dashed red lines give the expected decay for the true
proportions and true admixture date, and numbers in the top right of (c,d,f,g)
give inferred dates and standard errors.

Salter-Townshend and Myers [49] developed a fine-scale local ancestry infer-

ence method called MOSAIC. Like HapMix, this method uses a HMM to quantify

the local ancestry along the genome. However, it can handle multiple ancestral

sources without prior knowledge of admixing groups, making MOSAIC a more

flexible method. Similar to GLOBETROTTER, MOSAIC generates LD-decay or

co-ancestry curves and infers a best-fitting admixture date. Moreover, it provides a

re-phasing step which aims to cope with phasing errors and offers ancestry informed
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phasing of the target haplotype. The schematic is represented in Figure 1.8. Despite

these helpful features, MOSAIC can currently only model one date of admixture in-

volving 2 or more sources; it cannot detect the multiple-date events. The inference

accuracy is also not significantly improved when compared to GLOBETROTTER.
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updated ancestry inference

EM updates
(a) The top row is a single observed admixed haplotype. Two panels of reference haplotypes are available beneath it. From these, local ancestry
estimates (the colours along the bottom) are obtained, conditional on parameter estimates that include the conditional probability of selecting
a panel given the local ancestry, depicted as the bars on the right hand side. The estimated local ancestry is then used to update all parameter
estimates in an EM algorithm.
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(b) The phase hunter method applied to a simulated admixed chromosome 10. The dots show the locations along a chromosome (x-axis) that are
flipped for phase by the algorithm at successive rounds of the phase-hunter (y-axis). Fewer sites are good candidates for flipping in each round. Just
4 forward-backward algorithm passes are required to find all single phase flips that increase the log-likelihood in this realistic example.
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(c) Dating is estimated using the coancestry curve fitting in Dating Admixture Events Using Coancestry Curves using the exponential decay of the
relative probability of pairs of local ancestries.

Figure 1 MOSAIC proceeds by rounds of thin (see Thinning), EM (see EM Updates), phasing (see Re-Phasing). 1a is a cartoon
version and 1b and 1c depict the realistic simulations used to test the approach in Simulation Studies.

4 Salter-Townshend and Myers
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Figure 1.8: Schematic of MOSAIC taken from [49]. The top row is an admixed haplotype.
The haplotypes of reference panels are below and divided into 2 groups of
ancestors (blue and orange). The local ancestry inference of the admixed hap-
lotype is located at the bottom, indicating the ancestry content from blue and
orange source. The sidebars represent the conditional (copying) probability of
choosing reference panels given the local ancestry.
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1.5 Thesis Aims
Amongst several well-established approaches to studying the genetic history of

worldwide populations, GLOBETROTTER has been proven to be the most com-

prehensive and powerful. However, it is considered to be computational costly for

a large-scale genetic data analysis. Therefore, the aim of this thesis is to:

1. develop a new method that increases the speed of inferring admixture events

without losing accuracy

2. apply this new method to large-scale data including 6,000 of European sam-

ples with ∼500,000 SNPs

In Chapters 2, I will describe, in detail, the fundamental intuition behind the

method GLOBETROTTER on which my approach is mostly based. In general, the

method includes haplotype phasing of SNP data, chromosome painting, performing

mixture modelling, generating LD-decay curves, and fitting the curves for admix-

ture events.

With a good understanding of the existing GLOBETROTTER model described

in Chapter 2, Chapter 3 presents my new method fastGLOBETROTTER that im-

proves the speed of inferring admixture dates without losing accuracy. I demon-

strate that the use of sampling distributions can solve the complexity burden of

GLOBETROTTER. Furthermore, there are also other features that can efficiently

reduce computational time such as “code optimization” which enables some parts

of the algorithm to be optimized in the more efficient way. Moreover, fastGLO-

BETROTTER speeds up the calculation by combining multiple donors that share a

similar genetic background.

To evaluate the performance of fastGLOBETROTTER, the computational time

and inference accuracy in a variety of simulated datasets are tested and compared

between fastGLOBETROTTER and GLOBETROTTER, as described in Chapter

4. This chapter shows that fastGLOBETROTTER not only significantly improves

computational time, but also provides more accuracy in some cases, interestingly.

This chapter includes additional simulations designed to assess how to interpret
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results reported in Chapter 5.

Chapter 5 presents the application of fastGLOBETROTTER to a large-scale

dataset consisting of more than 6,000 European samples from Italy, Spain, France,

Germany, Belgium, Poland, Denmark, Sweden, Finland and Norway over 2,500

individuals as ancestry reference. The chapter reports new findings of admixture

events across Western Europe. These include admixture dated to 500-600CE from

sources carrying DNA related to present-day west Asian and African populations

found in individuals within Belgium, France and parts of Germany. In Scandinavia,

we also detect admixture from sources carrying DNA related to east Asian/Siberian

in individuals within Finland, Norway and Sweden at different times starting around

100 CE.

The final Chapter 6 provides a detailed description about how to apply fast-

GLOBETROTTER as a distributed software. It presents two topics: the software

instruction and the software tutorial. The software instruction aims to give readers

basic information about fastGLOBETROTTER, e.g. the method’s intuition, param-

eters, input and output file formats. The tutorials present a step-by-step guidance

on how to perform inference using a real example. The steps progress through the

entire analysis, from description of the data, preparing files for fastGLOBETROT-

TER, haplotype phasing, estimating parameters, chromosome painting, inferring

admixture events and finally ends with interpreting the result.





Chapter 2

Fundamentals of admixture

inference using GLOBETROTTER

2.1 Fundamental of Admixture Inference using

GLOBETROTTER
GLOBETROTTER is a haplotype-based method that models the segments of DNA

inherited from multiple admixing sources to identify and date admixture events.

It relies on characterizing sampled admixed individuals that contain a mixture of

ancestries that are related to different sampled reference groups (or “surrogates”).

For two genetic segments (or “chunks” ) separated by a particular genetic distance,

GLOBETROTTER infers the probability that one segment shares most recent an-

cestry with surrogate X while the other shares most recent ancestry with surrogate Y .

These probabilities are calculated according to different types of admixture scenar-

ios, including a simple admixture consisting of two groups intermixing at a single

time and more complex admixture consisting of admixture involving three or more

groups at one or multiple times.

In particular GLOBETROTTER initially uses chromosome painting (Section

2.2.2) to attempt to identify which segments in a target population are inherited

from each admixing source. While accurate identification of these segments would

enable both determining the proportion of admixture from each source and the date

of admixture (i.e. using the distribution of segment lengths matching to each source
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– see Section 1.4.1), in practice accurate painting is very challenging in most cases

of human admixture. For example, Figure 1.7b,e gives the truth and RFMix inferred

paintings for the simulated cases of Chapter 1. Note that for the French-Brahui sim-

ulation, results are very noisy, which in turn leads to a segment length distribution

that is a poor reflection of the true admixture date (Figure 1.7e). Therefore, GLO-

BETROTTER (and related techniques ROLLOFF, ALDER, MOSAIC) implements

a more robust approach for inferring dates and proportions that does not rely on

perfect (or near-perfect) reconstruction of the sources inherited at each segment of

each target haploid.

Let consider a single admixture model (Figure 1.1) where an admixed pop-

ulation descends from the mixture of two source groups A and B. The genetic

contributions from A and B to the admixed population are PA = α and PB = 1−α ,

respectively. Assuming that that the crossovers between any 2 loci occur at random

(i.e. no crossover interference), they can be described using a Poisson process [15]

with rate related to number of generation λ . Under this model, the probability of no

recombination between any two loci separated by a distance g Morgans since the

date of admixture λ is exp−gλ . Therefore, the probability of having 2 loci separated

by g along a chromosome within a haploid genome of an admixed individual where

one locus derives from A and another from B and A 6= B is:

PAB(g) = PAP(recom|copyA,Batend points)PB +PAP(norecom|copyA,Batend points)PB = PBA(g)

PAB(g) = α(1− exp−gλ )(1−α)+α(0)(1−α)

where P(recom|copyA,Batend points) refers to the probability of having at least one recom-

bination given one endpoint copies from A and another from B. We can simplify

these terms as

PAB(g) = α(1−α)−α(1−α)exp−gλ (2.1)

In the case of A=B:

PAA(g) = (α)(1− exp−gλ )(α)+α(exp−gλ )(1)
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PAA(g) = α
2 +α(1−α)exp−gλ (2.2)

and

PBB(g) = (1−α)(1− exp−gλ )(1−α)+(1−α)(exp−gλ )(1)

PBB(g) = (1−α)2 +α(1−α)exp−gλ . (2.3)

Examples for PAA,PAB,PBB are given in Figure 2.1 for α= 0.5, λ=100. Criti-

cally, PAB increases exponentially with g at rate equal to λ , while each of PAA and

PBB decrease exponentially with the same rate. GLOBETROTTER uses these prop-

erties to both date the admixture event and to identify which surrogate groups best

reflect each admixing source, as briefly outlined below.
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Figure 2.1: Example of PAA,PAB,PBB curves generated from α= 0.5, λ=100. The x-axis is
the genetic distance g between any pair of DNA segments where one segment
is contributed from source A and the other from source B. The y-axis is the
probability calculated from Equations 2.2, 2.1 and 2.3, scaled by genome-wide
expectation of each event (i.e. PAPA, PAPB and PBPB, respectively) as g varies.

In practice we do not observe the true admixing sources A and B but instead

use sampled populations to act as surrogates for these sources.

Let Qml be the probability that segment l within the genome of an admixed

individual (resulting from admixture between sources A and B) is most recently

related ancestrally to surrogate m, and let E(QmlQnr;g) be the expected product of

probabilities that two segments at locations l and r separated by distance g share

most recent ancestry with surrogates m and n, respectively. Hellenthal et al., 2014

show that:
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E(QmlQnr;g) = QmQn +α(1−α)[QB
m−QA

m][Q
B
n −QA

n ]exp−gλ , (2.4)

where QA
m =E[Qml | true ancestry at l is A] and Qm =∑i∈{A,B}Qi

m Pr(true ancestry is i).

They then also define:

ψ(QmQn;g) =
E(QmlQnr;g)

QmQn
= 1+δmnexp−gλ (2.5)

which is used to date admixture and help infer the genetic make-up of the

admixing sources.

2.2 Steps in GLOBETROTTER
Here I describe the main inference steps of GLOBETROTTER, as detailed in Hel-

lenthal 2014. The aim is to determine whether a target population shows evidence

of admixture, and – if so – to identify the sources of this admixture and to date

when the admixture event(s) occurred. Throughout this section, I use the term “tar-

get” to refer to the putatively admixed population, and “surrogate” to refer to other

sampled populations that can be used to describe the sources of admixture in the

target population. These terms differ from the concepts of “recipient” and “donor”

outlined below, which refer only to the painting process described in Section 2.2.2.

Briefly, in this sub-section each individual from the target and surrogate populations

are considered “recipients” when their genetic variation patterns are compared to a

set of “donor” individuals. In practice, typically the same set of sampled popula-

tions are used as surrogates and donors, and for some parts of the analysis the target

individuals often are included among the donors as well.

2.2.1 Haplotype phasing

Haplotype phasing is a process to convert the unphased genotype data of each indi-

vidual to haploid genomes that were each inherited from a different parental source.

Using these phased genomes, we can make use of the haplotype information of

physically close linked alleles on the same chromosome to increase power to char-
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acterize admixture events relative to methods that use ignore haplotype informa-

tion [21, 36]. Phasing methods infer the most likely haplotype configurations in

unphased genotype data, sometimes by using a reference set of individuals whose

phase is well-estimated (e.g. from using trios). Several popular methods exist to do

so, some of which do not require reference individuals, including fastPHASE [50],

BEAGLE [51], IMPUTE [52] and SHAPEIT [53]. Among these tools, SHAPEIT

is the fastest, with linear complexity in terms of number of individuals while others

are quadratic, while maintaining accuracy, and is hence more readily applicable to

large-scale genome-wide data resources such as those considered in this thesis.

2.2.2 Incorporate linkage disequilibrium and haplotype infor-

mation - “chromosome painting” approach

Lawson et al [36] introduced the software CHROMOPAINTER that aims to find

haplotype patterns shared among individuals, which is indicative of recent shared

ancestry. CHROMOPAINTER is based on a HMM that was proposed by Li and

Stephens [54] originally to estimate recombination rates but which was re-purposed

to explore ancestry. CHROMOPAINTER compares the phased SNP data of a re-

cipient (or target) individual to that of a set of donor (or reference) individuals. In

particular for each segment along each haploid genome of a recipient individual,

CHROMOPAINTER identifies the donor haploid with the most closely matching

SNP data. In this manner, CHROMOPAINTER constructs each recipient haploid as

a collection of painted segments (chunks) from the donor haploids, where a chunk is

a continuous segment of DNA – typically containing multiple SNPs – that matches

to (is painted by) the same donor haploid. This painting process is stochastic, so

that different CHROMOPAINTER runs can generate different “painting samples”.

The Forward-Backward algorithm can be used to find the total expected amount

of genome-wide DNA that each target individual matches to each donor. Fig-

ure 2.2 illustrates the concept of constructing painting samples taken from Li and

Stephens [54].

More formally, let hr = {hr1, ...,hrL} be the phased haploid data of a recipient

individual across L SNPs, where hrl is the allele type carried by this recipient hap-
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Figure 2.2: Painting samples taken from Li and Stephens [54]. h4A and h4B are recipients
while h1, h2, h3, are donors. White and black circles represent two alleles. The
shading (or painting) in recipients refers to which haplotype that is copied from
donors at each position.

loid r at SNP l. CHROMOPAINTER constructs each such recipient haploid as a

mosaic of j phased donors with haploid data h1, ...,h j. Let ~q = {q1, ...,q j} be the

vector of copying probabilities, where q j is the probability that haploid hr copies

from donor j at any particular locus. Let~ρ = ρ1, ...,ρL−1 where ρl = Nedl is the

population-scaled genetic distance between locus l and locus l + 1 in the genome,

where Ne is the effective population size and dl is the genetic distance in Morgans

between loci l and l + 1. A HMM is built incorporating the hidden state vector

Ȳ = Y1, ...,YL, where Yl is the donor haploid j that r copies from at locus l. The

transition probability from Yl to Yl+1 follows a Poisson Process with rate ρl , so that:

Pr(Y1 = yl) = qyl

and

Pr(Yl+1 = yl+1|Yl = yl) =

exp−ρl +(1− exp−ρl)qyl+1 if yl+1 = yl

(1− exp−ρl)qyl+1, otherwise
(2.6)

Let θ be a per locus mutation rate parameter, which allows for mismatches

between the allele carried by hr and the allele carried by the copied donor hyl at a

given SNP l. The emission probability of the HMM is given by

Pr(hrl = a|Yl = yl) =

1−θ if h(yl)l = a

θ otherwise
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In practice we fix dl to be the inferred genetic distance using the recombination map

combined across all populations for HapMap. We fix q j to 1/J for j ∈ [1, ...,J].

Then Lawson et al., 2012 [36] describe how to infer θ and Ne using an Expectation-

Maximisation algorithm, with default (or starting) values of Watterson’s estimate

and 400000/J, respectively.

We can use this HMM to estimate the expected total genome-wide amount (in

Morgans) of chunks that haploid r copies from each donor, termed a “copy vector”,

~fr = fr1, ..., fr j where fr j is the expected genome-wide amount that a recipient in-

dividual r copies from donor individual j. Specifically for fixed values of θ , ρl for

l ∈ [1, ...,L−1] and q j for j ∈ [1, ...,J]:

fi j =
1

Pr(D) ∑
L−1
l=1 gl[α jlβ j(l+1)(exp−ρl +(1− exp−ρl)q j)Prh

+(1/2)[α jlβ jl +α j(l+1)β j(l+1)−2α jlβ j(l+1)((exp−ρl +(1− exp−ρl)q j)Prh)]].

(2.7)

Here Prh≡ Pr(hr(l+1)|Yl+1 = h j) - the emission probability generated from donor j.

Pr(D)≡ Pr(hr|h1, ...,h j;~ρ;~q;θ) is calculated from a summation is performed over

all permutations of the copying process, i.e. all possible y, which can be done using

the forward algorithm [55]. Following [55], we define the the forward probabilities

as;

α jl = Pr(hr1, ...,hrl,Yl = h j)

and backward probabilities of the HMM as;

β jl = Pr(hr(1+1), ...,hrL|Yl = h j)

We calculate α jl for j = 1, ...,J in the following manner

α jl =

Pr(hr1 | Y1 = h j)q j for L = 1

Pr(hrl | Yl = h j)(∑
J
i=1 αi(l−1)q j(1− exp−ρl)+ exp−ρl α j(l−1)) for l = 2, ...,L.
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and we calculate β jl for j = 1, ...,J in the following manner

β jl =


β jL = 1.0

[∑J
i=1 βi(l+1)qiPr(hr(l+1) | Yl+1 = i)](1− exp−ρl)+ exp−ρl Pr(hr(l+1) | Yl+1 = h j)β j(l+1)

for l = 1, ...,L−1

To generate painting samples of~Y conditional on (hr,h1, ...,h j;~ρ;~q;θ) , we perform

the following steps;

1. Sample YL according to Pr(YL = h j | h1, ...,h j,hr) ∝ αkL.

2. For l = L−1, ...,1, sample Yl according to:

Pr(Yl = hk|h1, ...,h j,hr,Yl+1, ...,YL)∝ [∑J
i=1 αil](1−exp−ρl)qYl+1 +αY(l+1)lexp−ρl .

In practice, For each individual in this analysis, we generate 10 such “painting sam-

ples” of for each haploid for use in generating coancestry curves (Section 2.2.4).

Figure 2.3a shows an example of multiple painting samples of a target as a mosaic

of donor haplotypes.

2.2.3 Using copy vector to model groups as mixtures of sampled

populations

For any haploid, individual or group, we can describe its genome-wide copy-vector

as a mixture of those from a set of surrogate groups. For example, GLOBETROT-

TER models the copy vector of the admixed group as a linear combination of the

copy vectors of the sampled surrogate groups (Figure 2.3b). Recall The right-hand

side of the Equation 2.7 gives the genome-wide amount of DNA that individual

target i matches to individual donor j. To get the proportion f̂i j, we divide this by

the total amount that target i matches to all donors j ∈ [1, ...,J] and ∑
J
j=1 f̂i j = 1.

Specifically in population level, GLOBETROTTER forms the population-averaged

copy vector f̂ = f̂1, ..., f̂ j from

f̂ j =
ni

∑
i=1

f̂i j/ni (2.8)
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where ni is the number of samples in recipient population i. Let f̂r be a copy vector

of the admixed group or target group, we can describe f̂r as a linear mixture of the

population-averaged copy vectors ( f̂ j) of donor population j = 1, ...,J

f̂r =
J

∑
j=1

β j f̂ j + ε, (2.9)

where ε is a vector of error terms. The mixture coefficients (β js) are estimated

using non-negative least squares regression (nnls) in R, which assumes β j ≥ 0 for

j ∈ [1, ...,J] and ∑
J
j=1 β j = 1. Informally, the above regression identifies which sur-

rogate populations have average genome-wide painting patterns that best match the

painting patterns observed in the target population, and at what relative proportions.

This mixture model accounts for issues such as unequal sample sizes among donor

groups when identifying the surrogates that share recent ancestry with the target.

Typically only a subset of the K surrogate populations have βk > 0.005, reducing

the number out of K total surrogate populations that are subsequently used in analy-

sis. Using these βks, the matrix K× J matrix W , where the mth row and ith column

of W is W (m, i)≡ Pr(ancestry shared most recently with surrogate m | copy donor i)

calculated as:

W (m, i) =
βm f̂mi

∑
K
k=1 βk f̂ki

. (2.10)

Recall that f̂mi refers to the estimated probability that surrogate group m copies

from donor i. The matrix W (m, i) is used as a reweighting matrix to determine

which surrogate is best reflected by the particular donors copied.

2.2.4 Generating coancestry curves

Coancestry curves are generated empirically from the painting samples ~Y for the

two haploids of each target individual in Section 2.2.2. To build the curves, GLO-

BETROTTER initially tabulates the counts among these painting samples whereby

any two chunks (weighted by their lengths) separated by a distance gcM has one

chunk painted by donor group A and the other by donor group B. In practice GLO-

BETROTTER places g into bins of user-specified size (with a default of 0.1cM).

For each target individual, typically 10 painting samples are generated for each of
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the individual’s two haploids, giving 20 samples in total. Separately for each target

individual, GLOBETROTTER compares every pair of chunks within and between

these 20 painting samples, considering chunks on different haploids to cope with

potential phasing errors.

In this manner, GLOBETROTTER constructs a “raw” co-ancestry curve

φr(i, j;g) for a target individual r and a donor pair i and j for each distance g as:

φr(i, j;g) =
20

∑
a=1

20

∑
b=a

∑
χa,b;g

ωlωh, (2.11)

where ωl and ωh are the chunk-lengths of chunks l and h. Here chunks l and h,

separated by gcM, are painted by donors i and j, respectively, and found on painting

samples a and b, respectively, with χa,b;g the set of all chunk pairs meeting these

criteria. Note that longer chunks contribute more to φr(i, j;g), though ωl is capped

at a size of 1cM. Figure 2.3c illustrates this step, whereby each node is a chunk and

its color represents the donor painting that chunk, with edges the genetic distance

between chunks.

As stated in Hellethal 2014 [21], these counts are then multiplied by the

weights from (Equation 2.10) and summed over all donor pairs to find φr(m,n;g),

the counts of segment pairs separated by distance g that are most recently related to

surrogates m,n:

φ
∗
r (Qml,Qnr;g) =

J

∑
i=1

J

∑
j=1

W (m, i)W (n, j)φr(i, j;g) (2.12)

Equation (2.12) is used to find these counts for all pairs of surrogates (m,n) ∈

[1, ..,K]. Note that Equation 2.12 represents our empirical estimate of E(QmlQnr;g)

defined in Equation 2.4.

Next the marginal counts for sharing ancestry with surrogates m and n is cal-

culated as:
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φ̃
∗
r (Qml,Qnr;g) = [

K

∑
h=1

φ
∗
r (Qml,Qhr;g)][

K

∑
h=1

φ
∗
r (Qhl,Qnr;g)]/[

K

∑
h,p

φ
∗
r (Qhl,Qpr;g)].

(2.13)

For each distance g, this gives an additional K×K matrix. If the populations m and

n do not indicate evidence of admixture in this recipient individual, then Equation

2.13 should be approximately equivalent to Equation 2.12 at every distance g for all

m, n in K.

After a step that symmetrizes the two matrices defined by Equations 2.12 and

2.13, the authors then define ψ̂(m,n;g) to be the average (across target individu-

als r) of Equation 2.12 divided by Equation 2.13. ψ̂(m,n;g) is referred to as the

“coancestry curve” of the target population for surrogate pair (m,n) – .e.g. the black

lines in Figure 2.3d.

2.2.5 Fitting the coancestry curve to estimate the admixture date

The value ψ̂(m,n;g) is an estimate of ψ(QmQn;g) in equation (2.5). Specifically,

the authors assume

ψ̂(m,n,g)≡ τmn +σmnexp−gλ + ε, (2.14)

and find the values of λ and (τmn,σmn) for all (m,n) ∈ [1, ...,K] that minimize:

∑
mn

∑
g

(
ψ̂(m,n,g)− τmn−σmnexp−gλ

)2
. (2.15)

Examples of fitted curves of using these values are given in the green lines of

Figure 2.3d. Recall that λ is the date of admixture in generations. The estimates of

σmn are used with the copy-vectors to help infer the proportions of ancestry from

each source and the genetic make-up of each source, which in turn leads to new

estimates of βk for k ∈ [1, ...,K]. In practice, GLOBETROTTER iterates between

inferring the terms in Equation 2.15 and inferring the βks used to make the weights

defined in Equation 2.10, typically using 5 such iterations.

The final results are the estimations of λ , τmn and δmn for all m,n, the propor-
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tions of DNA inferred from each source and a representation of each source group

as a mixture of DNA from the surrogate groups. Moreover, GLOBETROTTER

uses bootstrap re-sampling to infer confidence intervals for the dates. To do so in

a admixed population with nr individuals, each bootstrap re-sample generates nr

pseudo-individuals. For each chromosome of each pseudo-individual, the painting

samples from that chromosome of a single target individual is randomly sampled

from amongst the nr target individuals. After nr such pseudo-individuals are gen-

erated, the admixture dates and proportions are inferred as described above for that

bootstrap re-sample. Typically 100 bootstrap re-samples are used to generate the

final confidence intervals. The authors suggest concluding “no admixture” for any

cases where these bootstrap re-samples contain an estimated date of 1, which is

indicative of no detectable admixture, or >400, which is a date too old for GLO-

BETROTTER to reliably detect and hence an unclear admixture signal.

GLOBETROTTER also attempts to fit two dates of admixture by replacing

Equation 2.15 with a similar equation containing the sum of two exponential distri-

butions with rates equal to the two admixture dates (see a curve example in Figure

2.3e). The authors show this to be theoretically appropriate in the case of multiple

dates of admixture, and similar inference to that described above is performed to

infer the dates, sources and proportions of admixture for both events. Additional

steps can also be used to test for >2 sources intermixing at one time.
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Figure S6: Results for simulations with 20 individuals admixed at 7 generations ago, with 20% of
their DNA from Yoruba and 80% of their DNA from a group previously admixed 37 generations ago
as 50% Brahui and 50% Han. Plot details as in Figure S3, but with three sources of admixture and
two separate events. In the maps, circles depict donor populations inferred to represent each source,
with sizes proportional to the di↵erences between the two sources’ inferred copying vectors (see Note
Note S4.8 for details). The total estimated proportions from the purple and yellow sources are given
in the legends.

45

Figure 2.3: Steps in inferring admixture event from genotype data including haplotype
phasing, chromosome painting to paint the target haplotypes using donor
haplotype based on genetic similarity (corresponding colors), modelling tar-
get groups as mixtures of surrogate populations using copy vector, build-
ing coancestry curve – all possible chunk pairs corresponding to contributing
donors (nodes) are compared to measure genetic distance, and curve fitting
the observed coancestry curve (black) is fitted with expected coancestry curve
(green) for admixture date.





Chapter 3

fastGLOBETROTTER Method

In this section, I describe a new algorithm that can more efficiently and accurately

infer admixture events relative to GLOBETROTTER. In particular, the algorithm

reduces complexity by 1) a sub-sampling method that preferentially selects infor-

mative pairs of chunks from all possible pairs when constructing the co-ancestry

curve, 2) merging donors that appear to be genetically related and 3) novel code

optimization. I also describe other improvements over the original method, such

as removing non-admixture related signals from the co-ancestry curves and a new

jackknifing method for inferring confidence intervals.

3.1 Sub-sampling informative chunks for building

co-ancestry curves
As with GLOBETROTTER, fastGLOBETROTTER takes as input sampled realiza-

tions of the “painting” of each haploid genome of a target individual. This painting

is inferred under the CHROMOPAINTER HMM model as described as~Y in Section

2.2.2. Recall that a “chunk” refers to a contiguous DNA segment within a haploid

genome of the target individual that is painted entirely by a single donor haploid.

(Note that each SNP is assigned to a single chunk, while each chunk typically con-

tains multiple SNPs.) Each painting sample is therefore the set of all such chunks

across the entire haploid genome of the target individual, with this set changing

across different random samples from the HMM model. In the original GLOBE-

TROTTER algorithm, all pairs of chunks separated by < 50 cM within and between
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all painting samples of a target individual’s two haploids are compared when tab-

ulating the counts that two chunks are copied from a particular surrogate pair over

various genetic distances (Figure 3.1:Left). Recall that these counts are used to

generate “coancestry curves” that capture the decay of linkage disequilibrium at-

tributable to admixture (e.g. Figure 2.3).

fastGLOBETROTTERGLOBETROTTER

Figure 3.1: Schematic of building co-ancestry curves. Left – original GLOBETROTTER
and Right – fastGLOBETROTTER. Nodes are chunks colored according to the
donor it is painted by, and edges link chunk pairs used to build the coances-
try curves. In fastGLOBETROTTER, chunk pairs separated by short distances
are sampled more frequently than chunk pairs separated by larger distances.
Increasing edge widths indicates an increased probability of sampling the con-
nected chunk pair.

In contrast, fastGLOBETROTTER samples only a subset of chunk pairs, using

a sampling distribution that preferentially chooses the chunk pairs that are the most

informative for admixture when constructing the co-ancestry curves. I hypothesize

that the shorter the distance between chunks, the more informative they are. This

is based on the fact that for dates of admixture >7 generations ago, nearly all of

the linkage disequilibrium between chunks that is attributable to genuine admixture

decays to ∼0 by 30cM. Therefore, I exclude chunk pairs separated by ≥ 30cM, as

can be done in the original GLOBETROTTER. To save computational time, rather

than considering all pairs of chunks separated by < 30cM, I instead only consider a

subset (e.g. 1/30th) of the total chunk pairs. To do so, I use a sampling distribution

whereby chunk pairs separated by shorter distances are preferentially considered

over chunk pairs separated by longer distances (Figure 3.1:Right). As I demon-

strate via simulations, this not only saves computational time but can improve the

accuracy of inferred dates by reducing the random noise introduced by fitting chunk

pairs that are separated by long distances and hence contain little or no information
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about the admixture event.

3.1.1 Algorithm

1. Divide a target chromosome into B bins of size XcM (Figure 3.2a)

2. Find which of the C total chunks fall into bin Gi for all i ∈ [1, ...,B]. A chunk

will be put into bin Gi if the midpoint of the chunk falls within the range of

bin Gi (Figure 3.2b). Let Ni be a vector of size B that stores the number of

chunks within each bin Gi, such that ∑
B
i=1 Ni =C.

3. For each bin Gi, the program will compare the chunks in this bin to the chunks

in bin Gi+1, where the distance Di→i+1 between Gi and Gi+1 is X . The pro-

gram then compares Gi with Gi+2 (i.e. with distance Di→i+2 = 2X) between

them) and so on, until reaching the last bin n with Di→n ≤ K, where K is

the maximum allowed distance between chunks (e.g. 30cM; arrows in Figure

3.2c), or until reaching the end of the chromosome.

4. To do the comparison in 3, we do the following:

4a. For each i and j , where i< j, calculate Yi j =Ni∗N j ∗Mi j, which is the

number of samplings of chunk pairs from bin i and j to be performed (i.e. with

one chunk sampled from bin i and the other chunk sampled from bin j ). Mi j

is a scalar that is derived from the sampling distributions (see Section 3.1.2),

which allows us to sample a different proportion of the total chunk pairs in

bins i and j. For example, if Mi j = 1, an equivalent number of chunk pairs will

be sampled as in the original GLOBETROTTER. Alternatively, one could

make Mi j < 1 while having Mi j larger for smaller values of Di→ j relative to

larger values of Di→ j, meaning closer chunk pairs are preferentially sampled

more than distant chunk pairs.

4b. To compare chunks in Gi and G j, the program randomly samples

Yi j chunk pairs without replacement, with one chunk from Gi and one chunk

from G j.
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5. 5. Do step 4 for all pairs of bins (Gi,G j) across the chromosome separated by

≤ KcM.

Figure 3.2: Illustration of fastGLOBETROTTER’s chunk sampling algorithm a) Painting
samples generated from CHROMOPAINTER, where chunks of SNPs are col-
ored according to which donor population they are “painted by” (i.e. a close
genetic match to). The grey dotted lines represent the range of bins that divide
chromosome. b) Chunks are collected into each bin if the midpoint (star) of the
chunk is in between the bin’s range. c) Arrows – sliding windows indicate the
included bins to compare chunk pairs.

3.1.2 Optimization for sampling distributions

To define the scalar Mi j that determines the number of chunk pairs to sample from

bins Gi and G j separated by some genetic distance Di→ j, I introduce six different

sampling distributions (Figure 3.3), with parameters defined so that the total num-

ber of chunk-pairs sampled is 1/30th (∼3%) that sampled by the original GLOBE-

TROTTER when comparing all chunks within a distance of KcM:

1. Constant Mi j - the number of chunk pairs sampled for any two bins i and j

with Di→ j < K are sampled equally regardless of the distance between them.

In this case we use Mi j= 0.03, in order to reduce the number of overall sam-

pled chunk pairs to ∼3% of the total possible chunk pairs used in the original
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GLOBETROTTER, for a fair comparison across all sampling distributions

described below.

2. Linear decay - the number of chunk pairs sampled from bins Gi and G j sep-

arated by distance Di→ j decrease linearly, according to the equation Mi j =

−0.001( j− i)+0.06. This focuses on sampling more chunk pairs from closer

bins while linearly decrease the number of samples as Gi is further from G j.

The slope and intercept values are chosen so that the total number of sampled

chunk pairs is equal to ∼3% of the total possible chunk pairs.

3. Exponential decay - the number of chunk pairs sampled from two bins ex-

ponentially decreases as the distance between bins Gi and G j increases. In

particular Mi j = exp−γDi→ j/c, where c is an arbitrary number to control the

total number of chunk pairs sampled to be ∼3% of the total possible chunk

pairs. An increasing γ denotes an increased focus on chunk pairs sampled

from nearby bins. Here I tried γ = 0.15, 0.1, 0.05, and 0.03, with correspond-

ing c equal to 5, 8, 10, and 19, respectively.

Figure 3.3: Sampling distributions, where the area under all curves is identical to allow a
fair comparison, i.e. to fix the total number of compared chunk pairs, in this
case ∼3% of all possible chunk pairs separated by 30 cM.

We validate the best sampling distributions for fastGLOBETROTTER by ap-

plying each to several simulated datasets in Chapter 4.
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3.2 Introduce sub-sampling algorithm to null indi-

vidual analysis

In this “null individual” step, GLOBETROTTER builds a “null” coancestry curve

that reflects the relative probability that two chunks separated by some genetic dis-

tance that come from different target individuals are matched to a particular pair of

surrogates.

Hellenthal et al 2014 describe a “null individual” analysis that aims to elimi-

nate LD decay signals in the coancestry curves that are not attributable to admix-

ture, hence providing more reliable date estimates. This is done by building a “null”

coancestry curve using chunk pairs where each chunk is from the painting sample

of a different target individual, this “null” coancestry curve should be unrelated

to the admixture event because such chunk pairs on different individuals cannot fall

within a single block of DNA inherited intact from an admixing source group. GLO-

BETROTTER scales the coancestry curve ψ̂(m,n;g) described in Section 2.2.4 by

the “null” coancestry curve before inferring dates and proportions of admixture. I

implement an algorithm similar to that described in section 3.1.1-3.1.2 to the null

individual analysis, by adding a check of whether the randomly sampled chunks

are from the same individual or not. If they are from the same individual, then we

resample again until they are from different individuals. Therefore, I replace two

more steps in section 3.1.1 as follows:

• Step 2. Let Pnull be a vector of size equal to number of total chunks C which

keeps – for each chunk – the index of the individual to which that chunk

belongs

• Step 4b. To compare chunks in Gi and G j, the program randomly samples

chunk pairs, with one chunk from Gi (call this chunk ai) and one chunk from

G j (call this chunk b j). I then consider the donors copied in these two chunks

when building coancestry curves only if Pnull(ai) 6= Pnull(b j). This process is

repeated until it reaches Yi j comparisons.
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3.3 Code optimizing to speed up calculations

The computational time of the original GLOBETROTTER algorithm can be de-

scribed as:

O[NC(B+M)(SL+ J2I + J2I2
j +GJ2K2)+C[min(N;100)]2(L+ I2

j )], (3.1)

where N is the number of the target population individuals, C the number of chro-

mosomes, B the number of bootstrap re-samples (to infer uncertainty in the date

estimation), M the number iterations of inferring dates and inferring source groups

and admixture contributions, S the number of painting samples, L the maximum

number of SNPs across chromosomes, J number of donor populations, I the max-

imum number of chunks across chromosomes and individuals, I j the maximum

number of chunks across chromosomes and individuals that are copied from a sin-

gle donor population j, G the number of bins, and K the number of surrogates.

The first term NC(B+M) is the computation cost of GLOBETROTTER read-

ing in the input file and performing bootstrapping and mixing iterations. Next,

SL is the cost of the step that assigns a unique label to each chunk across all

painting samples for a given chromosome, and J2I + J2I2
j is the cost of compar-

ing all possible chunk pairs to calculate the coancestry curves. GJ2K2 is the cost

of GLOBETROTTER retaining information in bins that vary according to genetic

distance in order to do the re-weighing step described in Section 2.2.4. And fi-

nally, C[min(N;100)]2(L+ I2
j ) is attributable to a so-called “null individual” anal-

ysis that aims to eliminate LD decay signals in the coancestry curves that are not

attributable to admixture. In this “null individual” step, for each chromosome C and

min(N,100) target individuals, GLOBETROTTER compares every possible pair

of chunks on two different individuals that are separated by a user-supplied maxi-

mal distance in cM. The memory requirement of GLOBETROTTER are O(NGK̃2),

where K̃ is the number of surrogates (out of K total) that have βk > 0.005 as esti-

mated in Section 2.2.3. In practice K̃ is often perhaps a factor of 10 smaller than the

number of donors J.
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Generally, the co-ancestry curve calculation is dependent on the number of

target individuals N and the number of chromosomes C (term SL+ J2I + J2I2
j +

GJ2K2 in Equation 3.1). It is possible to speed up this calculation by performing

some calculations once across all C.

Recall the equation to create the co-ancestry curve in the Equation 2.11, where

GLOBETROTTER tabulates the counts φr(i, j;g) of chunk pairs separated by dis-

tance g in target individual r, where one chunk in the pair is painted by donor i and

the other by donor j. This is done for all chunks pairs χa,b;g separated by distance g

in painting samples a,b of target individual r. This step has cost NC(J2I + J2I2
j ) in

Equations 3.1 and 3.2. Later, this raw co-ancestry curve φr(i, j;g) is adjusted using

a re-weighting to obtain the adjusted curve φ∗r (g) in Equation 2.12. The computa-

tional cost of this re-weighting step across all individuals is represented in the term

NC(GJ2K2) in Equation 3.1 and is often the most time consuming part of GLO-

BETROTTER given typical values of J, K, I, I j and G. To save memory, GLO-

BETROTTER does this computation once per chromosome per individual. Instead

this can be done once per individual, by summing the φr(i, j;g) across chromosomes

prior to the re-weighting. However, the trade-off for doing so is that the φr(i, j;g)

must be stored across all target individuals r, in order to avoid having to re-read

in the painting samples generated by CHROMOPAINTER that GLOBETROTTER

takes as input. This increases the memory component of GLOBETROTTER for this

step from NK̃2G to NJ2G. I have implemented an option into fastGLOBETROT-

TER where users are informed of the different memory costs of using this approach,

which requires only a computationally quick estimate of the βks.

This adjustment drops the C term multiplied by GJ2K2 from Equation 3.1 to

give the following new computational complexity:

O[(B+M)(NC(SL+ J2I + J2I2
j )+NGJ2K2)+C[min(N;100)]2(L+ I2

j )] (3.2)
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3.4 Combine donors to minimize computational

complexity
Both the computation time and memory depend on the number of donors J, with

the computational increase in section 3.3 giving a memory increase of order J2.

In addition to reducing time, it is compulsory to efficiently minimize the memory

used by this method if we aim to handle large datasets. To do both, we can reduce

the number of donors J, because this is usually the largest memory contributor

amongst all terms when using GLOBETROTTER. To do this, we propose a method

to combine donors that share a similar genetic background and merge them into a

new group. In order to measure the genetic similarity of each pair of donors, we

make use of the “copy vector” from Equation 2.8, whose elements f̂k j contain the

average genome-wide proportion of DNA by which surrogate group k ∈ [1, ...,K]

copy from donor group j under CHROMOPAINTER. We define f̂·i = f̂1i, ..., f̂ki

and create a correlation matrix Ri j for all i, j ∈ [1, ...,J]:

Ri j = corr( f̂·i, f̂· j)

We apply Pearson’s correlation defined as

Ri j =
∑

K
k=1( f̂ki− ¯̂f·i)( f̂k j− ¯̂f· j)√

∑
K
k=1( f̂ki− ¯̂f·i)2 ∑

K
k=1( f̂k j− ¯̂f· j)2

, (3.3)

where ¯̂f·i = ∑
K
k=1 f̂ki/K.

Since donors that exhibit high correlations reflect a similar pattern of genetic

contribution to recipient groups, it is natural to combine them as a new group. If

donor i and j are combined as donor m, we define a new vector of donor matching

f̂·m with element f̂·m = 0.5∗ ( f̂·i + f̂· j).

Figure 3.4 illustrates an example of copy vectors derived from painting individ-

uals from 51 Europeans population (c1-c51) using 162 donor groups. It is possible

that we can reduce the number donors, for example, if Sweden and Norway con-

tribute similar relative amounts to each recipient group, then they are combined as
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Figure 3.4: Example of copy vector where recipient individuals from European populations
c1-c51 (x axis) are painted by donor populations that include c1-c51 plus 162
other populations (y axis). The below legend are donor populations and the
correspondent colours that give the color code for each recipient population.
(This dataset is described in detail in Chapter 5.)

a new donor group. In practice, I tried merging donor groups i, j where Ri j > 0.95.

This relatively large value should ensure that the new copy vectors, while contain-

ing fewer elements (less colors in Figure 3.4), still preserve the main patterns of

differentiation between recipient groups.
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3.5 Removing non-admixture related signals in the

co-ancestry curve
As noted previously, GLOBETROTTER performs a “null individual analysis” that

mitigates signals in the LD decay curve that are not due to genuine admixture but

may arise instead from e.g. bottleneck events experienced by the target popula-

tion (or other factors that lead to signals of strong genetic drift). However, another

potential issue that this procedure does not account for, but which may also occur

in drifted groups, is that many chunks may be atypically long under the CHRO-

MOPAINTER analysis. To cope with this, GLOBETROTTER ignores any chunk

pairs separated by≤1cM when fitting co-ancestry curves, as such within-population

(or “background”) LD may extend to such lengths in drifted groups. However, the

1cM threshold is arbitrary; related methods (e.g. ALDER [19]) try to automatically

identify the threshold of minimal distance between segments to use. A particular

concern is that the presence of many atypically long chunks over 1cM can lead to a

small number of chunk pairs separated by genetic distances just above 1cM relative

to that expected (see Figure 3.5a). This coancestry curve pattern looks similar to

that expected under multiple distinct pulses of admixture involving different groups

admixing at different times (see Figure 2.3e), and hence can lead to inaccurate ad-

mixture inference.

To cope with this issue, we propose a method for automatically detecting

whether the left end of the coancestry curve is affected by long chunks, and then

removing this part of the curve prior to model fitting. For example, Figure 3.5a

shows the co-ancestry curve of a Finnish group, showing the scaled probability that

two chunks separated by XcM have both chunks most recently related ancestrally to

surrogate HB:welsh. While these curves should be monotonically decreasing (see

Equation 2.2), there is an increase in scaled probability at the left end of the curve.

It appears that the LD decay due to admixture does not begin until 4-5 cM, at which

point the curve begins to decay as expected.

To find the portion of the left-end part of the coancestry curve to remove, we

first analyse the coancestry curve for the highest contributing surrogate group m,
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Figure 3.5: Co-ancestry curves from GLOBETROTTER null individual analysis on a
Finnish group a) noticeable unwanted signal in the beginning of the curve and
its fitted admixture date (green line). b) desirable co-ancestry curve after re-
moving unwanted signal fitted for admixture date.

i.e. the group m where βm = maxK
k=1(βk) with βks estimated using Equation 2.9.

The co-ancestry curve involving only surrogate m, ψ̂(m,m;g), is likely to be the

most informative curve given its high contribution, and hence the most suitable for

detecting this non-admixture related signal. In the scenarios I considered, such as

the European analysis of Chapter 5, adjusting for this maximal curve seemed to fix

this trend in all other curves as well, though this may not extend to every scenario.

Roughly, the aim is to search for the peak of this co-ancestry curve and remove the

area prior to the the peak, given that ψ̂(m,m;g) should be monotonically decreasing

with increasing g for all m. To do so, we use a sliding window of fixed size M

that moves across the x-axis (genetic distance) of the curve, within each window

calculating the slope of a straight line fit to the data within that window. In practice,

we use multiple different window sizes in order to make this method applicable

to all types of curve regardless of their level of noise. Amongst all window size,

we report the maximum of bin number where a negative slope is first reported i.e.

possibly where the left-end part to be removed is located, and remove the left-end

area from the coancestry curve.

More formally, these are the steps of the algorithm:

1. For a windows of size M = 3 bins, we move as a sliding window along the

co-ancestry curve ψ̂(m,m;g)

a. For all bins i, ..., i+M that fall within window M, we apply a linear
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model to fit the curve ψ̂(m,m; i, ..., i+M) with a straight line Y = SX + c to

obtain a slope S

b. If S is negative, let VM = i+((M+1)/2) and go to Step 2

c. Move along the curve by i = i+1 and repeat step 1a abd 1b

2. Repeat step 1 for M =5, 7, 9, 10 and 11 bins

3. Remove ψ̂(m,m;1, ...,max(VM)) from ψ̂(m,m;g)

I tested this procedure in different drifted populations i.e. Finnish, Melanesian

and Icelandic, and visually assessed whether the increasing left part of the curve

was removed for all ψ̂(m,m;g).

3.6 Introduce delete-m Jack-knife method
The objective of this section is to provide an additional option for measuring the

confidence of the inferred admixture date. The algorithm GLOBETROTTER uses

bootstrap re-sampling of individuals, and it is not always possible to perform the

bootstrap resampling, for example, when inferring admixture in a single individ-

ual. Therefore, I implemented an alternative jackknifing procedure to fastGLOBE-

TROTTER, which instead drops one chromosome at a time and estimates the dates

using data from the other 21 chromosomes. This gives 22 estimated values, which

can then be used to give confidence intervals for the inferred admixture date using

previously derived jack-knifing formulas as in Busing et al.,1999 [56].





Chapter 4

Simulations

In this chapter, I describe simulations I used to validate fastGLOBETROTTER.

I measured the efficiency in terms of inference accuracy and computational time

used by fastGLOBETROTTER compared to the original GLOBETROTTER [21].

4.1 Simulation details

4.1.1 European Simulations

The first set of simulated admixed individuals I considered were those used to mim-

ick admixture found in the UK population [57]. In particular, the authors made

simulated individuals that were mixtures of real sampled individuals from Italy and

northern Germany, assuming a single pulse of admixture between these two pop-

ulations occurring λ = 40 generations ago. The proportion of admixture α from

northern Germany varied from α=0.1, 0.25 and 0.5. Briefly, this simulation pro-

cess, described in Price et al., 2009 [22], starts by (1) sampling a centimorgan

(cM) genetic distance g from an exponential distribution with rate λ/100. Then

the authors (2) generated the first g cM of a simulated chromosome as the first g

cM of a randomly sampled real chromosome from population A or B (i.e. Italy or

northern Germany), with A or B chosen according to probabilities α and 1−α ,

respectively. The next g cM is then generated by repeating these two steps, and

this process is repeated until the end of the chromosome is reached. To simulate

a single haploid genome, the 22 haploid autosomes have to be generated in this

way. If there are N simulated individuals, then the steps are repeated 2N times,
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with N = 25 in these simulations. I name this simulation “POBI” which is short for

“People of the British Isles”, the project for which these simulations were generated

(www.peopleofthebritishisles.org/). In summary, the admixture parameters of these

simulations were:

• POBI1 (α = 0.10, λ = 40, N = 25 samples)

• POBI2 (α = 0.25, λ = 40, N = 25 samples)

• POBI3 (α = 0.50, λ = 40, N = 25 samples)

The Italy and north Germany samples are taken from Multiple Sclerosis data, from

which Leslie et al 2015 used 6,209 sampled individuals from ten countries in conti-

nental Europe typed at ≈500,000 SNPs as part of the Wellcome Trust Case Control

Consortium 2 (WTCCC2) study [58]. As in the POBI paper, a set of 51 surrogate

populations, defined based on the clusters used in [57] comprising these 6,209 indi-

viduals, were used as proxies to the admixing sources. Included among these clus-

ters were the two (from Italy and north Germany) containing the individuals used

to generate the simulated haploids, though the 40 individuals used to simulate were

removed from these two clusters prior to analysis. The “target populations” con-

sisted of the simulated individuals from POBI1, POBI2 and POBI3. All remaining

6,169 individuals from the 51 surrogate populations were also used as donors when

painting each surrogate and target individual using CHROMOPAINTER. If success-

ful, the admixture inference from GLOBETROTTER and fastGLOBETROTTER

for these three simulations would identify that two ancestral groups genetically re-

lated to Italy and northern Germany intermixed at time λ , with inferred admixture

proportions related to the true proportion α . G.Hellenthal provided the CHRO-

MOPAINTER output for these simulations used in the POBI paper, which was then

input into each of GLOBETROTTER and fastGLOBETROTTER. However, I also

generated new CHROMOPAINTER output for these simulations as noted below.

4.1.2 Cross-continent Simulations

The simulated datasets in this section were generated using 95 worldwide human

populations (Figure 4.1) described in Hellenthal et al., 2014 [21] to assess the
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performance of GLOBETROTTER when it was first introduced. Each admixed

genome was simulated to mimic admixture occurring λ = 7, 30 or 150 generations

ago (recent, moderate and ancient admixture), or approximately 200 to 4400 years

ago assuming a generation time of 28 years, with varying admixture proportions α

= 0.05, 0.20 and 0.50. The simulation process is analogous to that described for the

POBI dataset. The data were again simulated using real data, simulating mixing be-

tween combinations of the Brahui from Pakistan, Yoruba from Nigeria, French from

France, Han from China, and Colombians from Colombia. The pairs of populations

mixed and sample sizes N per simulation are as follows:

• Brahui–Yoruba (N = 20 samples)

• Yoruba–French (N = 20 samples)

• Brahui–Han (N = 20 samples)

• Colombian–Han (N = 7 samples)

• French–Brahui (N = 20 samples)

With the different combinations of λ and α , this results in 5×3×3 = 45 simu-

lations in total.

In contrast to POBI, here all individuals from the simulating populations were

not used as surrogates or donors, i.e. the entire populations were excluded from

downstream analysis, when testing the simulated populations for admixture. Instead

the remaining 95− 2 = 93 populations were used as surrogates for each scenario

above. The authors stated that these simulations represent a wide range of diffi-

culties, from easier to more challenging problems. For example, it is reasonably

easier to detect admixture between more distantly related populations (e.g. Yoruba

intermixing with French) than closely related populations (e.g. French intermixing

with Brahui). In addition, lower admixture proportions α and older dates of ad-

mixture λ are each likely to be more difficult to detect than more recent admixture

with proportions nearer to 50/50%. And also, the number of samples N represents

the content of admixture signal, making Colombian–Han a more challenging case.

The dates and proportions used in these simulations partially reflect the real genetic

history of modern populations, as inferred in Hellenthal et al., 2014.
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Figure S12: The location of all 95 sampled populations used in the study. Colors denote the
major geographical regions (“clades”) we assigned each population to based on the results of our
fineSTRUCTURE analysis, with our code names for each geographic region provided below the map
(see Note S6.2).

70

Figure 4.1: The geographical location of 95 world populations taken from Hellenthal et al,
2014 [21], with colors according to sub-continental regions listed at bottom.

4.2 The assessment of suitable sampling distributions

According to Section 3.1.2, most of the admixture signal in the coancestry curves

has decayed by∼ 30cM. Therefore, rather than recycling the results from the GLO-

BETROTTER paper, which fit the coancestry curves over the range of [1,50]cM
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when inferring dates (i.e. considered all pairs of chunks separated by 1-50cM), I

re-ran GLOBETROTTER only fitting the curves over the range [1,30]cM, which

is the same range I fit with fastGLOBETROTTER. I evaluated the performance of

fastGLOBETROTTER’s various sampling distributions (described in Section 3.1.2)

that sub-sample from the number of total of possible chunk pairs that fall within

this range. The goal of this section is to compare and evaluate of how different

sampling distributions improve the performance of fastGLOBETROTTER in terms

of inferring admixture dates and proportions, as well as evaluating fastGLOBE-

TROTTER’s improvement in computational efficiency over GLOBETROTTER. I

compared the six different sampling distributions shown in Figure 3.3 by initially

analysing the POBI dataset (Section 4.1.1) to optimize the sampling distributions,

as this is a considerably difficult case involving two relatively genetically similar

European populations intermixing.

GLOBETROTTER and fastGLOBETROTTER have a built-in means of as-

sessing uncertainty in date estimation, by bootstrap re-sampling of individuals. For

simplicity, this bootstrapping fixes the inferred admixture proportions and sources

from the original analysis on the full (non-bootstrapped) data. Thus GLOBETROT-

TER and fastGLOBETROTTER do not have a means of assessing uncertainty in es-

timated admixture proportions. Therefore, in order to assess consistency of propor-

tion estimates, I ran CHROMOPAINTER on the POBI dataset 50 times to construct

50 different sets of painting samples, inferring dates and admixture proportions on

each set of painting samples using fastGLOBETROTTER/GLOBETROTTER. The

results are illustrated by box plots summarizing the inferred dates and proportions

(Figure 4.2–4.8).

In fastGLOBETROTTER I controlled the total number of chunks sampled in

all cases to be the same; as a result the computational time used was approximately

10 minutes for each sampling equation. This is a factor of 7-10 reduction compared

to the time it took to run the original GLOBETROTTER that uses all pairings of

chunks separated by 30cM. We can see that inferred dates of the exponential decay

equation (γ = 0.1 in Figure 4.6) lie nicely in between the true date as boxes are bal-
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Figure 4.2: Box plot of original GLOBETROTTER inferred dates in generations (first 3
boxes) and admixture proportions in percentage (last 3 boxes) using 50 sets
of painting samples of POBI1, POBI2 and POBI3. The dashed line and dots
represent the true dates (λ = 40) and proportions (α = 10%, 25% and 50%),
respectively.
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Figure 4.3: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “constant equa-
tion” on 50 sets of painting samples of POBI1, POBI2 and POBI3. The dashed
line and dots represent the true dates (λ = 40) and proportions (α = 10%, 25%
and 50%), respectively.

anced around 40, meaning that it is more accurate when performing date inference.

We also can see that there is a deviation from the true date in POBI1 and POBI3

when using the constant equation (Figure 4.3). This also occurred in the rest of the

cases including linear decay (Figure 4.4). While there are some deviations in the

mean inferred date in POBI3 when using the exponential decay fraction with γ=
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Figure 4.4: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “linear decay
equation” on 50 sets of painting samples of POBI1, POBI2 and POBI3. The
dashed line and dots represent the true dates (λ = 40) and proportions (α =
10%, 25% and 50%), respectively.
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Figure 4.5: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “exponential de-
cay equation with γ = 0.15” on 50 sets of painting samples of POBI1, POBI2
and POBI3. The dashed line and dots represent the true dates (λ = 40) and
proportions (α = 10%, 25% and 50%), respectively.

0.05, 0.03 (Figure 4.7–4.8), fastGLOBETROTTER performs worst in the case γ=

0.15 (Figure 4.5) where all date inferences are notably deviated from the truth.

The admixture proportions in most of the cases were well estimated, as we can

see that the size of the boxes are small and located near the true proportions. An

exception is POBI3 in all cases (Figure 4.2–4.8) where the inferred proportions are

always underestimated from the truth (0.50). However, I am plotting the admixture
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Figure 4.6: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “exponential de-
cay equation with γ = 0.10” on 50 sets of painting samples of POBI1, POBI2
and POBI3. The dashed line and dots represent the true dates (λ = 40) and
proportions (α = 10%, 25% and 50%), respectively.
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Figure 4.7: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “exponential de-
cay equation with γ = 0.05” on 50 sets of painting samples of POBI1, POBI2
and POBI3. The dashed line and dots represent the true dates (λ = 40) and
proportions (α = 10%, 25% and 50%), respectively.

proportion of the minority contributing source here, which necessarily will have

α ≤ 50%, so this is somewhat expected. From the result shown in this section, I

selected the condition of exponential decay with γ = 0.1 as the best fraction system

for our further analysis.
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Figure 4.8: Box plot of fastGLOBETROTTER inferred dates in generations (first 3 boxes)
and admixture proportions in percentage (last 3 boxes) using “exponential de-
cay equation with γ = 0.03” on 50 sets of painting samples of POBI1, POBI2
and POBI3. The dashed line and dots represent the true dates (λ = 40) and
proportions (α = 10%, 25% and 50%), respectively.

4.3 Validating the performance of fastGLOBE-

TROTTER
In this section, I applied fastGLOBETROTTER with the selected γ = 0.1 to the sec-

ond set of simulations (Section 4.1.2). For each of these 45 simulations, I performed

GLOBETROTTER/fastGLOBETROTTER analyses to compare the efficiency in

terms of time and date inference accuracy using the same computing unit at the

Department of Computer Science, UCL. The cluster includes 4x3.5GHz processors

with 16GB RAM. The date inference from 100 bootstrap resamples are summarized

as a box plot, ordered for each simulation by true admixture date λ = 7, 30 and 150

generations, with results for the true admixture proportions α = 0.05, 0.2, 0.5 given

consecutively within each λ .

The Yoruba–French result in Figure 4.9 suggests that the accuracy of fastGLO-

BETROTTER inference is equivalent to GLOBETROTTER, and it is close to true

dates for most of the cases. We can see a little improvement in the case λ = 150, α

= 0.05 (the hardest case amongst all cases in this simulation), where fastGLOBE-

TROTTER delivers closer estimations to the truth while GLOBETROTTER tends

to underestimate the date.
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Figure 4.9: Box plot of date inference across 100 bootstrap re-samplings of Yoruba–French
simulations. The red dots represent the true dates. For each date (λ ), results
are given for three different admixture proportions (left-to-right): α = 0.05, 0.2,
0.5.

We also see similar performance in Brahui–Han simulation (Figure 4.10), most

of cases were inferred correctly and equivalently between fastGLOBETROTTER

and GLOBETROTTER. In the case λ = 150, α = 0.05, we see that fastGLOBE-

TROTTER overestimates the dates while GLOBETROTTER infers closer to the

truth. Moreover, there is an improvement in the case λ = 150, α = 0.2 for fastGLO-

BETROTTER.

GLOBETROTTER and fastGLOBETROTTER inference on Brahiu–Yoruba

simulation (Figure 4.11) are close to the truth for λ = 7, 30 cases. They both un-

derestimate the date for all cases where λ = 150. Interestingly in the case λ = 150,

α = 0.05, the inferences tend to be only ∼100 generations for GLOBETROTTER,

while fastGLOBETROTTER are around ∼130 generations.

In the French–Brahui simulations (Figure 4.12), we see that GLOBETROT-

TER and fastGLOBETROTTER fail to infer admixture in the case λ = 150, α =

0.05 (blue *) and they both underestimate the dates in the case α = 0.5. However,
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Figure 4.10: Box plot of date inference across 100 bootstrap re-samplings of Brahui–Han
simulations. The red dots represent the true dates. For each date (λ ), results
are given for three different admixture proportions (left-to-right): α = 0.05,
0.2, 0.5.

there is an improvement of fastGLOBETROTTER in the case where λ = 150, α =

0.2.

We see the similar pattern in the last simulation Colombian–Han (Figure 4.13)

in that GLOBETROTTER and fastGLOBETROTTER fail to infer admixture in the

case λ = 150, α = 0.05 (blue *). GLOBETROTTER underestimates the date in the

case λ = 150, α = 0.2 while fastGLOBETROTTER tends to infer better. Moreover,

They both have inferred dates closer the truth in α = 0.5, with fastGLOBETROT-

TER often showing improved inference relative to GLOBETROTTER.

The poor inference of GLOBETROTTER and fastGLOBETROTTER for older

dates suggests that such cases, for which the coancestry curve decays more rapidly

with increasing genetic distance, are challenging to characterize even when up-

weighting nearby segments. To cope with this, the authors of the original GLO-

BETROTTER suggest that if the default analysis gives date estimates >55 genera-

tions, then the algorithm should be re-run fitting only chunks separated by 1-5cM.



80 Chapter 4. Simulations

Figure 4.11: Box plot of date inference across 100 bootstrap re-samplings of Brahui–
Yoruba simulations. The red dots represent the true dates. For each date
(λ ), results are given for three different admixture proportions (left-to-right):
α = 0.05, 0.2, 0.5.

I explored this by re-running GLOBETROTTER and fastGLOBETROTTER us-

ing Colombian–Han and French–Brahui simulations with λ = 150 shown in Figure

4.14. The date inference in Colombian–Han in all cases (α = 0.05, 0.2, 0.5) are

improved in both GLOBETROTTER and fastGLOBETROTTER. However, in the

hardest case (α = 0.05), both models still inferred “no admixture” (blue * in Fig-

ure 4.14), reiterating how a small amount of admixture among similar sources is

challenging to characterize with these sample sizes.

simulation true proportion GLOBETROTTER fastGLOBETROTTER

Brahui-Yoruba,α=0.05,λ =7 0.05 0.06 0.05

Brahui-Yoruba,α=0.20,λ =7 0.2 0.19 0.19

Brahui-Yoruba,α=0.50,λ =7 0.5 0.48 0.48

Brahui-Yoruba,α=0.05,λ =30 0.05 0.06 0.06

Brahui-Yoruba,α=0.20,λ =30 0.2 0.2 0.2

Brahui-Yoruba,α=0.50,λ =30 0.5 0.47 0.47
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simulation true proportion GLOBETROTTER fastGLOBETROTTER

Brahui-Yoruba,α=0.05,λ =150 0.05 0.07 0.09

Brahui-Yoruba,α=0.20,λ =150 0.2 0.17 0.18

Brahui-Yoruba,α=0.50,λ =150 0.5 0.49 0.47

Yoruba-French,α=0.05,λ =7 0.05 0.09 0.09

Yoruba-French,α=0.20,λ =7 0.2 0.26 0.26

Yoruba-French,α=0.50,λ =7 0.5 0.46 0.46

Yoruba-French,α=0.05,λ =30 0.05 0.08 0.08

Yoruba-French,α=0.20,λ =30 0.2 0.26 0.26

Yoruba-French,α=0.50,λ =30 0.5 0.47 0.47

Yoruba-French,α=0.05,λ =150 0.05 0.1 0.11

Yoruba-French,α=0.20,λ =150 0.2 0.24 0.23

Yoruba-French,α=0.50,λ =150 0.5 0.47 0.47

Colombian-Han,α=0.05,λ =7 0.05 0.3* 0.28*

Colombian-Han,α=0.20,λ =7 0.2 0.36* 0.41*

Colombian-Han,α=0.50,λ =7 0.5 0.35* 0.32*

Colombian-Han,α=0.05,λ =30 0.05 0.27* 0.16*

Colombian-Han,α=0.20,λ =30 0.2 0.34* 0.35*

Colombian-Han,α=0.50,λ =30 0.5 0.32* 0.29*

Colombian-Han,α=0.05,λ =150 0.05 0.45* 0.43*

Colombian-Han,α=0.20,λ =150 0.2 0.47* 0.44*

Colombian-Han,α=0.50,λ =150 0.5 0.42 0.36*

Brahui-Han,α=0.05,λ =7 0.05 0.12 0.15

Brahui-Han,α=0.20,λ =7 0.2 0.3 0.3

Brahui-Han,α=0.50,λ =7 0.5 0.49 0.49

Brahui-Han,α=0.05,λ =30 0.05 0.16* 0.13

Brahui-Han,α=0.20,λ =30 0.2 0.3 0.3

Brahui-Han,α=0.50,λ =30 0.5 0.5 0.49

Brahui-Han,α=0.05,λ =150 0.05 0.3* 0.2*

Brahui-Han,α=0.20,λ =150 0.2 0.29 0.28

Brahui-Han,α=0.50,λ =150 0.5 0.48 0.48
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simulation true proportion GLOBETROTTER fastGLOBETROTTER

French-Brahui,α=0.05,λ =7 0.05 0.07 0.08

French-Brahui,α=0.20,λ =7 0.2 0.19 0.21

French-Brahui,α=0.50,λ =7 0.5 0.48 0.48

French-Brahui,α=0.05,λ =30 0.05 0.07 0.06

French-Brahui,α=0.20,λ =30 0.2 0.2 0.2

French-Brahui,α=0.50,λ =30 0.5 0.48 0.49

French-Brahui,α=0.05,λ =150 0.05 0.4* 0.28*

French-Brahui,α=0.20,λ =150 0.2 0.22 0.27

French-Brahui,α=0.50,λ =150 0.5 0.46 0.47

Table 4.1: Genetic proportions inferred from GLOBETROTTER and fastGLOBETROT-
TER based on 1 run applied to 45 simulations. The asterisk (*) indicates the
inferences that deviate from the truth more than 0.1.

In summary, these results suggest that the older admixture events are more dif-

ficult to detect than the more recent events, as we can see from all simulations. Also,

the closer of admixture proportions to 0.5, the more accurately admixture signals

are detected in the target individuals. In particular, for some of the cases where α

= 0.05, dates tend to be either over or underestimated relative to cases where α =

0.2,0.5. The level of genetic similarity between ancestral sources also affects the

methods to identify and characterize admixture; in particular in the French–Brahui

simulations, both fastGLOBETROTTER and GLOBETROTTER fail to make infer-

ence in some cases.

The genetic proportion inference from both methods is shown in Table 4.1.

Due to the algorithm limitation that does not allow bootstrap re-sampling for pro-

portion, the values shown in the table are derived from only one run of each simula-

tion. fastGLOBETROTTER and GLOBETROTTER perform equally well in most

of the cases. However, There are some inaccurate inferences (indicated by asterisks)

occurring in Colombian-Han simulation. This might due to the genetic relatedness

between Colombian and Han, and also the low number of target individuals that

also has an impact the performance of GLOBETROTTER and fastGLOBETROT-
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Figure 4.12: Box plot of date inference across 100 bootstrap re-samplings of French–
Brahui simulations. The red dots represent the true dates. For each date (λ ),
results are given for three different admixture proportions (left-to-right): α =
0.05, 0.2, 0.5. Blue asterisks (*) represent no admixture inference.

TER (N = 7 in this case). Apart from this, there are 2 more inaccurate proportions

from other 2 difficult cases i.e. French-Brahui, α=0.05, λ =150 and Brahui-Han,

α=0.05, λ =150. In Section 4.4, we explore how inference can be improved by

increasing number of targets.

The improvements of fastGLOBETROTTER over GLOBETROTTER in many

mentioned cases is not surprising, as the sub-sampling algorithm down-weights

chunks farther apart from each other that do not capture any information about the

admixture event but can add random noise to the inference.

4.4 Increasing number of target samples to increase

power of detection
To validate the performance of fastGLOBETROTTER when applied to a larger

number of target individuals, I simulated additional individuals for the French–

Brahui simulations with α = 0.5 and λ = 150. Previously we see that fastGLO-
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		Colombian-Han_new

λ = 7

Globetrotter fastGlobetrotter

λ = 30 λ = 150 λ = 7 λ = 30 λ = 150

generations

fastGLOBETROTTER: 100 bootstrapping date Inference 

true dates

* *

Figure 4.13: Box plot of date inference across 100 bootstrap re-samplings of Colombia–
Han simulations. The red dots represent the true dates. For each date (λ ),
results are given for three different admixture proportions (left-to-right): α =
0.05, 0.2, 0.5. Blue asterisks (*) represent no admixture inference. (Note that
GLOBETROTTER severely underestimates the date for λ = 150/α = 0.2 in
this example, though it performed better in previous applications (Hellenthal
et al 2014). Similarly, fastGLOBETROTTER also underestimated the date in
this simulation for other runs (results omitted) for unclear reasons. We note in
general that coancestry curves are noisy for this simulation; future work will
explore how this can be used to identify such problematic cases.)

BETROTTER and GLOBETROTTER infer admixture dates around 70 generations

based on 20 simulated target samples in this scenario, hence both substantially un-

derestimating the true dates. I simulated more target individuals, analysing 50 and

100 target individuals, to assess whether this improves the date inference. The box

plot of date inference using fastGLOBETROTTER and GLOBETROTTER, again

using 100 bootstrap resamples of individuals, for these simulations are shown in

Figure 4.15.

The results suggest that with a higher number of target individuals, both fast-

GLOBETROTTER and GLOBETROTTER infer dates closer to the truth, even

when fitting chunks separated by 1-30cM rather than 1-5cM. However, fastGLO-
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Globetrotter
fastGlobetrotter
true dates

ancient grid on French/Brahui and Colombian/Han 150 gens

* * * *

French—Brahui Colombian—Han
generations

Figure 4.14: Box plot of date inference by fitting only chunks separated by 1-5cM across
100 bootstrap re-samplings of French–Brahui and Colombia–Han simula-
tions. The red dashed line represent the true date. The results are given for
three different admixture proportions (left-to-right): α = 0.05, 0.2, 0.5. Blue
asterisks (*) represent no admixture inference.

Figure 4.15: Box plot of date inference across 100 bootstrap re-samplings of French–
Brahui simulations with 20, 50 and 100 target individuals, α=0.5, and λ=150.
The x-axis gives the number of target individuals analysed. Blue asterisks (*)
represent no admixture inference.

BETROTTER outperforms GLOBETROTTER in the cases of 50 and 100 target

individuals, with inference substantially closer to the true dates (red dash line).
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4.5 Improvement in computational time
I summarized the time used by fastGLOBETROTTER and GLOBETROTTER on

each simulation using the same computing unit with CPU speed 3.5 GHz and 16

GB of RAM, as shown in Table 4.5.

Simulation
GLOBE-

TROTTER(mins)

fastGLOBE-

TROTTER(mins)

Time saved

(folds)

POBI1 101.2 8.4 12.0

POBI2 91.9 8.1 11.4

POBI3 78.0 10.2 7.7

Brahui-Yoruba,α=0.05,λ=7 136.2 12.3 11.0

Brahui-Yoruba,α=0.20,λ=7 159.0 16.1 9.9

Brahui-Yoruba,α=0.50,λ=7 267.4 20.2 13.2

Brahui-Yoruba,α=0.05,λ=30 140.5 11.6 12.2

Brahui-Yoruba,α=0.20,λ=30 171.6 16.5 10.4

Brahui-Yoruba,α=0.50,λ=30 233.8 20.8 11.2

Brahui-Yoruba,α=0.05,λ=150 277.1 49.5 5.6

Brahui-Yoruba,α=0.20,λ=150 308.0 57.5 5.4

Brahui-Yoruba,α=0.50,λ=150 375.1 42.5 8.8

Yoruba-French,α=0.05,λ=7 338.0 34.6 9.8

Yoruba-French,α=0.20,λ=7 298.9 27.6 10.8

Yoruba-French,α=0.50,λ=7 255.4 43.7 5.8

Yoruba-French,α=0.05,λ=30 350.4 35.3 9.9

Yoruba-French,α=0.20,λ=30 310.5 31.4 9.9

Yoruba-French,α=0.50,λ=30 268.1 50.3 5.3

Yoruba-French,α=0.05,λ=150 419.1 35.4 11.8

Yoruba-French,α=0.20,λ=150 432.4 38.7 11.2

Yoruba-French,α=0.50,λ=150 424.6 73.2 5.8

Colombian-Han,α=0.05,λ=7 143.0 32.1 4.5

Colombian-Han,α=0.20,λ=7 155.4 26.8 5.8

Colombian-Han,α=0.50,λ=7 152.8 27.6 5.5

Colombian-Han,α=0.05,λ=30 131.8 30.9 4.3
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Table 4.2 continued from previous page

Simulation
GLOBE-

TROTTER(mins)

fastGLOBE-

TROTTER(mins)

Time saved

(folds)

Colombian-Han,α=0.20,λ=30 142.8 33.7 4.2

Colombian-Han,α=0.50,λ=30 146.1 28.0 5.2

Colombian-Han,α=0.05,λ=150 131.4 29.9 4.4

Colombian-Han,α=0.20,λ=150 147.4 32.5 4.5

Colombian-Han,α=0.50,λ=150 179.5 36.8 4.9

Brahui-Han,α=0.05,λ=7 563.2 77.0 7.3

Brahui-Han,α=0.20,λ=7 380.6 93.4 4.1

Brahui-Han,α=0.50,λ=7 554.5 89.7 6.2

Brahui-Han,α=0.05,λ=30 383.9 80.4 4.8

Brahui-Han,α=0.20,λ=30 354.0 85.2 4.2

Brahui-Han,α=0.50,λ=30 356.9 88.1 4.0

Brahui-Han,α=0.05,λ=150 421.5 100.3 4.2

Brahui-Han,α=0.20,λ=150 475.6 110.0 4.3

Brahui-Han,α=0.50,λ=150 464.5 103.0 4.5

French-Brahui,α=0.05,λ=7 151.4 30.5 5.0

French-Brahui,α=0.20,λ=7 143.0 28.6 5.0

French-Brahui,α=0.50,λ=7 131.3 16.8 7.8

French-Brahui,α=0.05,λ=30 147.3 29.3 5.0

French-Brahui,α=0.20,λ=30 148.9 25.3 5.9

French-Brahui,α=0.50,λ=30 144.2 24.4 5.9

French-Brahui,α=0.05,λ=150 257.2 54.7 4.7

French-Brahui,α=0.20,λ=150 253.3 48.1 5.3

French-Brahui,α=0.50,λ=150 258.3 58.2 4.4

French-Brahui,α=0.50,λ=150,50 targets 578.3 130.2 4.4

French-Brahui,α=0.50,λ=150,100 targets 1053.2 210.5 5.0

Table 4.2: Computational time used by GLOBETROTTER and fastGLOBETROTTER ap-
plied to simulations

According to Table 4.2, fastGLOBETROTTER is 4-12 times faster than GLO-
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BETROTTER across all simulations. The fold change in speed depends on the

number of donors J and number of surrogates K in Equation 3.1. While these anal-

yses used only the sub-sampling approach of fastGLOBETROTTER described in

Section 3.1 to speed up inference, we can further improve this by implementing the

code optimization described in Section 3.3 and/or combining donors as described

in Section 3.4. I have implemented three modes of fastGLOBETROTTER, which

the user can toggle, as follows:

• Mode 1 includes the sub-sampling algorithm (Section 3.1) and the code opti-

mization described in Section 3.3

• Mode 2 includes the sub-sampling algorithm (Section 3.1), code optimization

(Section 3.3) and the protocol for combining donors described in Section 3.4

• Mode 3 includes only the sub-sampling algorithm (Section 3.1)

I applied these 3 modes on POBI data and the computation time results plotted in

Table 4.3. The results suggest that all 3 modes of fastGLOBETROTTER infer dates

accurately (close to the truth of 40 generations) and the time used by each mode is

approximately 10-14 times faster than GLOBETROTTER. In this case there is little

difference in time savings between the different modes, for this number of target

individuals and donor set.

inferred date (95% CI) computational time (minutes)

GLOBE-

TROTTER
mode1 mode2 mode3

GLOBE-

TROTTER
mode1 mode2 mode3

POBI 1 40 (15-70) 39 (7-64) 31 (15-54) 39 (12-44) 195.7 16.7 14.9 18.6

POBI 2 45 (32-62) 43 (25-56) 48 (25-56) 40 (20-56) 184.0 15.4 14.8 17.4

POBI 3 53 (35-71) 45 (23-69) 46 (20-59) 44 (23-69) 164.8 11.8 10.8 14.2

Table 4.3: POBI date inference and computational time (minutes) used in GLOBETROT-
TER and 3 modes of fastGLOBETROTTER.

I also tested these 3 modes on the French-Brahui simulations with α=0.50,

λ=150 and number of target samples = 20, 50, 100 individuals, with the compu-

tation time plotted in Figure 4.16 (The corresponding accuracy using mode 3 of
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fastGLOBETROTTER is in Figure 4.15.)

Figure 4.16: Bar plot summarizing computational time used by GLOBETROTTER and
fastGLOBETROTTER mode 1,2,3 applied to the French-Brahui simulations
with α=0.50, λ=150 and different number of target individuals. The number
above each bar indicates the memory (RAM) used by each approach.

These results indicate that modes 1,2 are ∼4-5 fold faster than mode 3, and

∼20 times faster than GLOBETROTTER across different number of targets. How-

ever, as stated in Section 3.3, the code optimization requires more memory to store

data. Here it requires 2G of memory in the case where the number of target individ-

uals is 100. In contrast, mode 2, which additionally merges some donor groups to

speed up the analysis and improve memory, requires 1.5G but with little improve-

ment in computation time.

4.6 Testing for jack-knife technique for date infer-

ence CI
As described in Section 3.6, I performed jackknife re-sampling on the French–

Brahui and Colombian–Han simulations by dropping one chromosome at a time,

yielding 22 estimates across the 22 chromosomes. The results are plotted against the

original bootstrap re-sampling of both GLOBETROTTER and fastGLOBETROT-
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TER in Figure 4.17 and 4.18, respectively.

The date inferences from the jack-knife technique in both simulations aligned

well with bootstrap re-sampling, especially in the case of recent admixture, i.e.

λ = 7 and 30. However, we can see the differences in the case λ = 150 of French–

Brahui, in that jack-knife technique gives the date around 10 generations more than

that of bootstrap re-sampling of fastGLOBETROTTER, which is closer to the true

date (150 generations). The jack-knife technique on Colombian–Han simulation

gives the admixture date similar to bootstrap re-sampling of fastGLOBETROT-

TER. This suggests that the jack-knife technique performs similar to bootstrap re-

sampling, providing a faster alternative to bootsrapping – e.g. a ≈5-fold increase in

speed relative to doing 100 bootstrap re-samples.French—Brahui Jackknife

λ = 7 λ = 30 λ = 150 λ = 7 λ = 30 λ = 150

generations

true dates

Globetrotter fastGlobetrotter

λ = 7 λ = 30 λ = 150* * *
bootstrap resampling bootstrap resampling jackknife resampling

Figure 4.17: Box plot of date inference across 100 bootstrap re-samplings (the first two
panels) and 22 jackknife re-samplings (the last panel) for the French–Brahui
simulations. The red dots represent the true dates. For each date (λ ), results
are given for three different admixture proportions (left-to-right): α = 0.05,
0.2, 0.5. Blue asterisks (*) represent no admixture inference.
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λ = 7 λ = 30 λ = 150 λ = 7 λ = 30 λ = 150

generations

true dates

Globetrotter fastGlobetrotter

λ = 7 λ = 30 λ = 150* * *
bootstrap resampling bootstrap resampling jackknife resampling

Figure 4.18: Box plot of date inference across 100 bootstrap re-samplings (the first two
panel) and 22 jackknife re-samplings (the last panel) for the Colombian–Han
simulations. The red dots represent the true dates. For each date (λ ), results
are given for three different admixture proportions (left-to-right): α = 0.05,
0.2, 0.5. Blue asterisks (*) represent no admixture inference.

4.7 Simulation of bottlenecks following admixture

In this section, I explored the effect of bottlenecks on fastGLOBETROTTER infer-

ence as previously tested with GLOBETROTTER using simulations in Hellenthal

et al., 2014. In particular, if the target population experiences a strong bottleneck

following the admixture event, this can lead to relatively high LD between SNPs

separately by large distances, which in turn mimics the signal expected under ad-

mixture. To test how fastGLOBETROTTER performs in this scenario, I used the

coalescence-based simulated data from Hellenthal et al., 2014 described in Fig-

ure 4.19. Here they simulated Pop1-Pop4 in blue to represent the coalescence his-

tory of African groups, Pop5-Pop7 in orange to represent Western Eurasian groups

and Pop8-Pop11 in green to represent East Asian groups. Specifically, the split at

2500 generations ago and subsequent bottleneck in Pop5-Pop11 mimics the“out-
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of-Africa” event, and the split between Pop4-Pop7 and Pop8-Pop11 at 1000 gen-

erations ago mimics the split between Western Eurasia populations and East Asian

populations with a subsequent bottleneck in the East Asian groups.

They then simulated an admixed population comprised of 100 haploids sam-

pled at present-day from Pop8 (”East Asia”) and 150 haploids from Pop2 (”Africa”),

which gives admixture proportions of 40% and 60%, respectively, and reflects a rel-

atively small population size of only 250 haploids. Then for each haploid of the

next generation, i.e. the first generation after admixture, they randomly sampled

two pairs of (distinct) parent haploids from this pool of size 250 and composed the

new haploid genomes as a mosaic of these two parent haploids, with switches in

the mosaic based on the HapMap Phase 2 genetic map. For the simulations I test

here, 100 haploids were generated in this manner, representing a reduction in popu-

lation size from 250 to 100. For all subsequent λ −1 generations, 100 new haploids

were each composed of a mosaic of chunks from two distinct haploids randomly

sampled with replacement from the previous generation. After λ generations, 50

haploids were randomly sampled to form 25 individuals for subsequent analysis.

They simulated three different dates of admixture λ as noted below:

• Simulation PopG with 60% Pop2 + 40% Pop8 at λ = 45

• Simulation PopH with 60% Pop2 + 40% Pop8 at λ = 20

• Simulation PopI with 60% Pop2 + 40% Pop8 at λ = 10.

I applied these simulations to GLOBETROTTER and fastGLOBETROTTER

using the “Null individual analysis” configuration, which is designed to eliminate

signals in the coancestry curve that are not due to admixture (and hence be robust

to bottleneck effects). The targets are the described admixed simulations PopG-

PopI and donors are Pop2, Pop4, Pop9, Pop10, Pop11, plus six additional admixed

populations (called PopA-PopF) described in Hellenthal et al 2014. The inference

result is summarized in Table 4.4
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GLOBETROTTER inference fastGLOBETROTTER inference

true

date

true

%Pop8

non-Null date

(95% CI)
%Pop8

Null date

(95% CI)
%Pop8

non-Null date

(95% CI)
%Pop8

Null date

(95% CI)
%Pop8

PopG 45 0.4 25(22-27) 0.44 46(40-50) 0.45 30(28-33) 0.45 46(41-50) 0.45

PopH 20 0.4 17(15-19) 0.48 19(17-22) 0.39 17(15-18) 0.39 19(18-20) 0.39

PopI 10 0.4 10(8-11) 0.41 10(9-12) 0.4 10(9-10) 0.40 10(9-11) 0.4

Table 4.4: Inferred dates and proportions of admixture on bottleneck simulations compared
between GLOBETROTTER and fastGLOBETROTTER.

fastGLOBETROTTER’s inference is similar to GLOBETROTTER in terms of

date (95% CI) and proportion estimates in Null individual analysis, suggesting that

it is equally robust to strong bottleneck effects.

4.8 Simulations to mimic the admixture in Euro-

peans
In this section, I perform new simulations designed to understand admixture signals

we detect in our real analysis of European data described in Chapter 5. In particular

I considered four scenarios:

1. “One-date simulation mixing Denmark and Morocco:” N = 50 simulated in-

dividuals, λ = 100 and 200 generations ago, α = 0.8 (from Denmark), gen-

erated by mixing genetic variation data from 162 individuals from Denmark

cluster c49 (see Chapter 5) with that of 25 individuals from Morocco.

2. “One-date simulation mixing Denmark and Evenk:” N = 50, λ = 100 and

200, α = 0.8 (from Denmark), derived by mixing 162 individuals from the

Denmark Group c49 with 12 individuals from Evenk.

3. “Multiple-date simulation mixing Denmark and Evenk I:” First date, N1 = 50,

λ1 = 40, α1 = 0.8 (from Denmark), derived by mixing 162 individuals from

the Denmark Group c49 with 12 individuals from Evenk. Then the second

date involves mixing the resulting admixed individuals with 134 individuals

from Germany cluster c38 with λ2 = 10, α2 = 0.8 (from resulting admixed in-
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Figure S11: Simulated history for populations 1-11, generated using the coalescent-based soft-
ware MaCS (14). Roughly speaking, populations 1-4 in blue are meant to represent diversity in
African groups, with populations 5-7 in orange and 8-11 in green representing Western Eurasian
and East Asian groups, respectively. 100 generations (gens) denotes the split between Pop5 and
Pop6; 350 gens the split between Pop7 and Pop5/Pop6; 375 gens the simultaneous split of pop-
ulations 8-11; 400 gens the split of Pop1 and Pop2; 1000 gens the split of Pop5/Pop6/Pop7 and
Pop8/Pop9/Pop10/Pop11; 2000 gens the split of Pop3 and Pop4; 2500 gens the split of Pop3/Pop4
and Pop5/Pop6/Pop7/Pop8/Pop9/Pop10/Pop11; and 4000 gens the split of Pop1/Pop2 and all other
populations.

54

Figure 4.19: Simulated history for Pop1-Pop11 taken from Hellenthal et al., 2014 [21]. The
simulations were generated using the coalescent-based software MaCS [59].
Pop1-Pop4 (blue) represent the coalescence history of African groups while
Pop5-Pop7 (orange) and Pop8-Pop11 (green) represent Western Eurasian and
East Asian groups, respectively. λ generations on the y-axis denotes the split
time between groups. The bottleneck is shown in the figure when there is the
decrease in population size N in a period of time.

dividuals) to create N2 = 50 individuals as illustrated in Figure 4.20. Note the

earlier admixture date should be λ1+λ2 = 50 here, and the overall proportion

of Evenk ancestry is (1.0−α1)∗α2 = 0.16.

4. “Multiple-date simulation mixing Denmark and Evenk II:” First date, N1 =

50, λ1 = 10, α1 = 0.8 (from Denmark), derived by mixing 162 individuals

from the Denmark Group c49 with 12 individuals from Evenk. Then the

second date involves mixing the resulting admixed individuals with 134 in-

dividuals from Germany cluster c38 with λ2 = 40, α2 = 0.8 (from resulting

admixed individuals) to create N2 = 50 individuals as illustrated in Figure

4.21. Again, note the earlier admixture date should be λ1+λ2 = 50 here, and

the overall proportion of Evenk ancestry is (1.0−α1)∗α2 = 0.16.
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Evenk 

c38

Sim

}
}

λ1	=	40,	αc49	=	0.8	

c49

λ2	=	10,	αc49_Evenk	=	0.8	

Figure 4.20: Illustration of simulation 3 with multiple-date admixture between European
(c49) and Siberian sources (Evenk) at λ1 = 40, and resulting Siberian–
European admixed samples (c49 Evenk) with other European (c38) at λ2 =
10.

Evenk 

Sim

}
}

λ1	=	10,	αc49	=	0.8	

c49

λ2	=	40,	αc49_Evenk	=	0.8	

c38

Figure 4.21: Illustration of simulation 4 with multiple-date admixture between European
(c49) and Siberian sources (Evenk) with λ1 = 10, and resulting Siberian–
European admixed samples (c49 Evenk) with other European (c38) at λ2 =
40.

The first simulation is designed to mimic the intermixing of groups related to

North Africa (represented by Morocco) and Europe as we later report for many Eu-

ropean populations in Spain, France, Belgium, and Germany. The second, third
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and fourth simulations further assess our model’s ability to distinguish gene flow

between Siberian-related groups and Scandinavian populations, which we later re-

port for populations in Finland, Norway and Sweden. I considered two scenarios

here, one with a single date of admixture (simulation 2) and one with multiple dates

(simulation 3 and 4), to understand fastGLOBETROTTER’s ability to detect multi-

ple dates of admixture. The scenarios for Siberian gene flow considers cases where

the fist admixture happens 50 generations ago, followed by a second admixture

event from one of the original admixing sources at 10 generations ago (Simulation

3) versus 40 generations ago (simulation 4).

For each simulated dataset, I used CHROMOPAINTER to represent each of

the simulated haplotypes as a mosaic of phased haploids taken from a reference of

real individuals sampled from 160 worldwide populations (as described in Section

5.2) except individuals from the populations used in the simulations, i.e. HB:evenk

and HB:moroccan. I used the estimated switch and emission rates from the main

analysis, described in Section 5.2.1, and performed admixture inference in the same

manner of Section 5.2.2. The date point estimates and 95% confidence intervals are

provided in Table 4.5.

simulations conclusion
inferred date
(95% CI)

prop1 source1 source2

simulation 1
λ=100 1-date 118(108-126) 0.08 HB:mozabite HB:mandenka HB:german HB:norwegian
λ=200 1-date 197(178-220) 0.47 HB:norwegian HB:sannamibia HB:tsi MS:NIreland
simulation 2
λ=100 1-date 102(99-104) 0.19 HB:yakut HB:dolgan HB:german HB:norwegian
λ=200 1-date 173(148-195) 0.35 HB:german HB:yakut HB:german HB:norwegian
simulation 3
λ1=40, λ2=10 1-date 45(45-46) 0.22 HB:yakut HB:dolgan HB:german HB:norwegian
simulation 4
λ1=10, λ2=40 1-date 51(49-52) 0.35 HB:yakut HB:belorussian HB:german HB:english

Table 4.5: fastGLOBETROTTER inference applied to simulations mimicking admixture
events in Europeans. “Conclusion” gives fastGLOBETROTTER’s admixture
conclusion, in the case a single date of admixture between two sources. “prop1”
refers to the proportion of ancestry contributed by source1. Each source’s ge-
netic make-up is described by the proportions of recent ancestry they are inferred
to share with each surrogate group; here I show the labels and proportions of the
two surrogate groups with the highest such ancestry proportion contributions to
each source.
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Table 4.5 suggests that fastGLOBETROTTER can accurately detect the both

European-Siberian and European-North Africa admixture with 50 individuals, ac-

curatenly dating admixture in both cases of simulation 1 and when λ=100 in Sim-

ulation 2. There is a slight underestimation of the true date in the case λ=200 of

simulation 2, though – as mentioned in Section 4.3 – this can likely be fixed by only

considering chunk pairs separated by <5cM when building coancestry curves.

For both of the multiple-admixture simulations 3 and 4, fastGLOBETROTTER

can only detect a single date of admixture. This suggests that fastGLOBETROT-

TER may fail to infer multiple pulses of admixture in cases where one of the orig-

inal admixing sources (in this case European) intermixes again with the previously

admixed group. This is not surprising, as multiple pulses of admixture that occur

relatively close in time are difficult in theory to disentangle from a single admixture

event with date between these two pulses. For simulation 3, the inferred date of

45 generations falls between the recent (10 generations) and older (50 generations)

true admixture dates. In contrast, for simulation 4 the inferred date (51 generations)

matches the initial admixture event, suggesting that the recent event (which is only

10 generations later) has little effect on admixture LD patterns. Meanwhile the

simulation 3 results suggest that very recent admixture (in this case 10 generations

ago) may lead to an excess of large (in this case European) segments that decreases

fastGLOBETROTTER’s inferred admixture date. I revisit these simulations when

interpreting results of my application to European samples in Chapter 5.

4.9 Summary

In summary, I demonstrated the performance of the new algorithm, fastGLOBE-

TROTTER, compared to GLOBETROTTER, using the simulated datasets described

in this chapter. The performance of the methods were evaluated from 1) computa-

tional time 2) date inference and 3) proportion inference (the latter only in the POBI

dataset, which is a very challenging scenario of admixture between two European

groups). fastGLOBETROTTER is faster than GLOBETROTTER by a factor of 4-

20 times depending on alternative modes used. While fastGLOBETROTTER pre-
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serves the accuracy of inference on most of the simulations tested, it also improves

date inferences in some cases.

I also demonstrated that increasing the number of admixed target individuals

can provide more precise estimates of admixture dates. In this scenario, fastGLO-

BETROTTER outperformed GLOBETROTTER by converging closer to the true

dates faster as the number of targets increases, while using less computational time.

This suggests that this technique is suitable for exploiting large scale cohorts to

provide fast and accurate admixture inference.



Chapter 5

Genetic admixture in European

populations

In this chapter, I describe the application of fastGLOBETROTTER to study Eu-

ropean admixture using a large, previously published dataset that includes ∼6,000

individuals from Europe. This study shows the power of fastGLOBETROTTER

to elucidate unearthed admixture events when the large number of individuals is

considered.

5.1 Introduction
The initial migrations of the ancestors of modern Eurasians out of Africa began

around 50,000-70,000 years ago [60]. Following this, there was a split to basal

West Eurasian and East Asian groups and later basal West Eurasians were inter-

mixed with Neanderthals [61]. After the Last Glacial Maximum that induced a

major selection pressure in Western Eurasia [62], the population of West European

Hunter-Gatherers (WHG) emerged around 20,000 years ago [63]. Later around

10,000 years ago in the Neolithic period, there was the arrival of agricultural-based

people known as Early European Farmers (EEF) arrived from the Anatolian steppe,

and spread across the continent. During the Bronze Age, the dispersal of a pop-

ulation related to the Ancient North Eurasians (ANE) who were related to Upper

Palaeolithic Siberians from the Pontic-Caspian steppe further markedly affected the

genetic make-up of Europeans [64]. The modern European populations are there-
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fore believed to be made up of different levels of ancestry related to these WHG,

EEF and ANE sources, which highlights the complex history of population inter-

actions across the continent [61]. Moreover, with the European continent being

bordered by Asia to the east and the Mediterranean Sea separating itself from North

Africa to the south, European populations are associated with numerous admixture

events induced by Roman, Norse, Arab and Turkish expansions to the continent.

To characterize the genetic demography of modern European populations, I

tested several present-day European populations for admixture, attempting to iden-

tify and date any admixture events and quantify the populations’ ancestry compo-

sitions using a genome-wide single nucleotide polymorphism (SNP) dataset com-

posed of 6,209 Europeans and over 4,000 worldwide reference samples.

5.2 Admixture in 6,209 Europeans from 10 countries

The dataset used in this study includes 3 cohorts:

1. 1,471 individuals from 95 worldwide human populations genotyped using the

Illumina 660W array from Hellenthal et al., 2014 [21] described in Figure 4.1.

The individuals from these populations were treated as a reference to describe

admixture in Europe.

2. 927 individuals from 65 worldwide human populations genotyped using the

Illumina 550 described in Busby et al., 2015 [65]. The individuals from this

dataset were also treated as reference samples.

3. 8,124 European samples from the International Multiple Sclerosis Genetics

Consortium (IMSGC) [58] genotyped on the Illumina Human 660-Quad chip.

Samples were collected from the United Kingdom (UK), North Ireland, Italy,

Spain, France, Germany, Belgium, Poland, Denmark, Sweden, Finland and

Norway. 1,915 samples from the UK and North Ireland were used as ref-

erences, as the history of this region has already been characterized using

GLOBETROTTER in Leslie et al., 2015 [57], while the remaining 6,209

Europeans were used as target individuals to detect admixture (Figure 5.1).

These individuals were multiple sclerosis patients that were sampled from
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various hospitals within these countries. Due to data access restrictions, hos-

pital records of these people are not available; instead only the country of

sampling is provided. Nonetheless we expect individuals to cluster based

on geography within this dataset, as illustrated by previous analyses of these

samples that were able to use hospital sampling information [57].

Figure 5.1: The 6,209 target European samples from Multiple Sclerosis data mapped based
on their country of origin.

All datasets and genetic maps were based on build 36 of the human genome.

The datasets above were merged using PLINK [66], which subsequently turned out

a total of 10,522 individuals. Only SNPs with more than 1% of minimum allele

frequency and less than 10% of missingness were retained, resulting in 477,417

autosomal SNPs. I split the dataset in binary PLINK format by chromosome and

simultaneously phased all individuals using SHAPEIT [53], extracting the most

likely pairs of haplotypes per individual (--output-max switch) and using a multi-

core calculation of up to 8 CPUs for maximum speed (--thread 8 option).

5.2.1 Inference of population structure

I followed the framework for inferring population structure from haplotype data rec-

ommended in Leslie et al., 2015 [57]. This framework uses CHROMOPAINTER to

paint the recipient haplotypes as a mosaic of pieces of the other donor haplotypes.
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This painting process also summarizes the genome-wide relationship of haplotypes

shared among individuals in the form of “copying vectors” that are comprised of

either the total expected count of shared DNA segments among individuals, or the

total expected length of shared DNA segments among individuals. Population struc-

ture can subsequently be inferred by clustering individuals based on the similarity

of their copying vectors, which is done using the program fineSTRUCTURE [36].

Specifically, I ran CHROMOPAINTER to form the two phased haploids from

each of the 10,522 individuals as a mosaic of those from all other 10,521 individ-

uals. To do so, I ran CHROMOPAINTER initially to estimate the genome-wide

average switch Ne (-n flag) and global emission rates θ (-M flag) in the Hidden

Markov model of CHROMOPAINTER (Section 2.2.2) using a subset of individuals

(1 individuals out of every 10) and chromosomes (4, 10, 15, 22) with 10 iterations

of the expectation-maximization (EM) algorithm, i.e. using (excluding input/output

file names for brevity):

ChromoPainterv2 -g <infile> -r <recomrates> -t <individualfile>

-a 1 10 -s 0 -i 10 -in -iM -o <outfile>

I then averaged the estimated values of Ne and θ across chromosomes,

and yielded 52.82727348 and 0.000134461, respectively. Next, I ran CHRO-

MOPAINTER on each chromosome separately using these fixed values, and painted

each individual against all the others, with the following command:

ChromoPainterv2 -g <infile> -r <recomrates> -t <individualfile>

-a 0 0 -s 0 -i 10 -n 52.82727348 -M 0.000134461 -o <outfile>

This produced a matrix of copying vectors that provides the total expected

count of DNA segments for which each individual shares a most recent ancestor

with each other individual. I input this matrix into the program fineSTRUCTURE

to cluster the European individuals into genetically homogeneous clusters. I per-

formed 5 million iterations of Markov Chain Monte Carlo (MCMC) to infer the

number of clusters and cluster assignments of all individuals, and sampled these

inferred values at every 10,000 iterations using the following command:

finestructure -X -Y -x 0 -y 5000000 -z 10000 <chunkcounts>
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<mcmcfile>

This gave 500 MCMC samples, with each one having an inferred number of

clusters and cluster assignment. I then used fineSTRUCTURE to single out the

MCMC sample among these 500 with the highest posterior probability overall, after

which a further 10,000 steps are taken to find a solution that improves the posterior

under a greedy approach. This generated a final number of 91 inferred clusters.

Next a tree is constructed that hierarchically merges these clusters, one-at-a-time,

under a greedy approach until only two clusters remain. These steps were accom-

plished using the following command:

finestructure -X -Y -x 10000 -m T -t 100000 <chunkcounts>

<mcmcfile> <treefile>

The flag -t indicates the number of pairwise comparisons of clusters to con-

sider when merging at each level of the tree; the value I input was large enough

that all such possibilities (91choose2) were considered. While fineSTRUCTURE

inferred 91 clusters in total, in practice clusters that merge early in the tree, which

typically have subtle genetic differences, are often combined in order to increase

the sample size of the final classifications (Leslie et al., 2015 [57]). Based on a

visual inspection of the tree, I classified individuals into 86 major groups (c1-c86)

used in subsequent analyses. I performed principal components on the matrix of

copying vectors excluding reference individual using the princomp() function

in R to visualize the categorized both by country (Figure 5.2) and by the 86 clusters

(Figure 5.3). The cluster name, total samples, region and number by population are

given in Table A.1.

5.2.2 Dating of admixture events in the 86 clusters

I detected admixture across Europe used these 86 clusters to detect admixture across

Europe using these 86 clusters on fastGLOBETROTTER, and to inferred the pro-

portion and dates of any such admixture in these groups us-ing 162 reference popu-

lations as donors under the fastGLOBETROTTER analysis. To do so, when testing

each cluster as a target, I performed an additional CHROMOPAINTER analysis

that painted the cluster individuals in each cluster against all individuals from 162
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Figure 5.2: PCA of European individuals colored by country of origin. The percentage on
each axis is the variance explained by that PC.
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Figure 5.3: PCA of European individuals colored by groups derived from fineSTRUC-
TURE clustering. The legend shows the 86 groups (c1-c86) and their most
common country of origin among samples within each group. The percentage
on each axis is the variance explained by that PC.

world populations. Under this painting, I applied the switch “-s 10” to generate 10

painting samples per each European target haploid:
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ChromoPainterv2 -g <infile> -r <recomrates> -f <donorfile>

-a 0 0 -s 10 -n 52.82727348 -M 0.000134461 -o <outfile>

The donorfile (-f flag) defines which sampled groups are to be painted (i.e. each

of 86 clusters as a recipient) and which are to be painted against (i.e. 162 world pop-

ulations as donors). Analogous to the analyses of Hellenthal et al., 2014 [21] and

Leslie et al., 2015 [57], I used these painting samples and the paintings generated

from CHROMOPAINTER that were used in the fineSTRUCTURE analysis to iden-

tify, date and describe the admixture with the following command:

R < fastGLOBETROTTER <paramfile> <paintingsamplefile>

<recomrates> <mode> --no-save > -o <outfile>.

In the paramfile, I designated the donors and surrogate groups as the 162 refer-

ence populations defined by population label, and the target group as each European

cluster. For each European cluster c1-c86, I ran fastGLOBETROTTER to estimate

admixture dates and proportions, using 100 bootstrap re-samples of individuals’

chromosomes to infer the 95% CI for the actual admixture date(s). I summarize the

results in Figure 5.4 for the 83 clusters for which fastGLOBETROTTER inferred

a single of admixture between two or more sources (i.e. the “one-date” or “one-

date, multiway” conclusion described in Chapter 6); the remaining three clusters

that inferred multiple dates of admixture (i.e. “multiple-date”) are not shown.

5.2.3 Admixture events in Europeans

As seen in Figure 5.4, fastGLOBETROTTER detected admixture in all clusters

from multiple disparate source groups. Sources related to present-day individuals

sampled from Africa, Asia, Siberia, and West Asia contributed in different propor-

tions to shape the modern day European genetic make-up. There is also evidence

of potentially “local” admixture events, where the intermixing sources were genet-

ically similar to one another and to sampled individuals from the region where the

cluster individuals now reside.

Finland
Finnish individuals appear the most genetically distinct from other Europeans

in the PCA plot of Figure 5.2, thereby suggesting unique ancestry relative to other
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Europeans and/or relatively strong isolation effects from other Europeans. Across

all 11 clusters, inference from fastGLOBETROTTER indicates admixture between

a source with Siberian/East Asian-related ancestry (Russian-like) and a source with

Northwest European (UK-like) ancestry dated to a range of times spanning 180-550

CE (Figure 5.5 , 5.4). This is consistent with the geography of Finland, which is the

easternmost of our European samples and nearest to Russia and Siberia [67, 68].

Sweden

The admixture events in Sweden can be divided into two main cate-

gories. Some clusters (c62-68) show admixture between Northwestern European

(UK/German-like) and Northeastern European (Polish-like) sources dated 800-1100

CE. In contrast, other clusters show admixture between Northwestern European

(UK/German-like) and Northeastern European with Siberian/East Asian ancestry

(Russian-like). Specifically, the PCA plot of the latter clusters (c56, c59, c60,

c61) shows relatedness to Finnish samples suggesting that these Sweden clusters

might derive the Siberian/East Asian signal from migration of Finns to Sweden.

Interestingly, the ancestry inferred in c22 shows a distinctive admixture event; one

ancestry source from Armenians and another source from Northwestern Europeans

(UK/German-like), the admixture date is as recent as 1300 CE. This is suggest-

ing that c22 might be descendants of the Europeans in Sweden and the migrating

Armenian-like group, this is also supported by the PCA in Figure 5.6 in that c22 is

the most distant group among all Swedish groups.

Norway

Like Sweden, we can see the same trend in Norway clusters, with inference

suggesting a source related to Northwestern Europeans carrying South Central Eu-

ropean ancestry (UK/German-like) intermixed with a source related to Northwest-

ern Europeans carrying additional Siberian/East Asian ancestry (Norwegian-like).

The admixture dates among these clusters vary from 400-1400 CE.

Denmark

Denmark is the only country in Scandinavia with no ancestry related to present-

day Siberians. Instead, the two Danish clusters show admixture between Northwest-
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ern European (UK/German-like) and Northeastern European (Polish-like) sources

dated to around 830-900 CE. It is observed that there is a small amount of Arma-

nian/Iran ancestry in the c49 cluster. My results coincide with a previous genetic

study of a large Danish cohort in terms of date of admixture and inferred ances-

try [69].

Poland

The detected admixture in Poland occurred around 830 CE and indicates that

a source related to local Northeast Europe (Croatian-like) intermixed with a source

related to Northwest/South-Central Europe (UK/Toscani-like).

Germany

The history of admixture in German groups shows two disparate types of ad-

mixture event in the region. The first, shown in clusters c38, c39, c41, c41, c42

suggests intermixing between sources related to Northwest Europe (UK-like) and

Northeast Europe (Polish-like) dated around 1250 CE.

The second, shown in clusters c43-c48, suggests intermixing between a source

related to Northwest Europe (UK-like) and South-Central Europe (Westsicilian-

like) and a source related to North African/Armenia/Iran dated 500-700 CE. Sig-

nificantly, the PCA plot aligns clusters c38, c39, c41, c41, c42 near Poland while

clusters c43-c48 are aligned more with Belgium and France suggesting different

admixture events, whose signals are discussed below.

Belgium

The Belgium samples presented in this study seem genetically homogenous.

Even though they are divided into three clusters, fastGLOBETROTTER infers very

similar admixture events in each, with a single event occurring around 600 CE

between sources related to Northwest Europe (UK-like) and South-Central Eu-

rope (South-Italian-like). The latter group, which reflects the minority contribut-

ing source, also interestingly shows some shared ancestry with present-day peoples

from North African/Armenian and Iranian along with South-Italian-like ancestry.

Our results add further details to the previous genetic study of 189 Belgians by Van

den Eynden et al., 2018 [70]], which reported the evidence of “recent” migration
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from Southern Europe and Northern Africa in Belgian but did not provide an esti-

mated admixture date.

France
In France, fastGLOBETROTTER suggests that clusters c19 and c52 experi-

enced admixture events between a source related to populations from Northwest

Europe (UK-like) and a source related to populations from North Africa (Moroccan-

like). In contrast, clusters c35 and c51 experienced admixture from sources related

to North West Europe (UK-like) and South Central-Europe (South-Italian-like). The

admixture dates are around 400-550 CE across all clusters.

Italy
The Italian clusters show the most diverse admixture signals among our Euro-

pean groups, suggesting multiple ancestral sources from within and outside Europe

contributing to Italian genetics. Admixture related to European ancestry suggest

contributions primarily from sources related to South Central Europe (Greek-like)

and Northwest Europe (French-like). The most abundant source of non-European

ancestry relates to West Asia/Armenia/Iran, with additional contributions related to

North and Sub-Saharan Africa. The timing of the admixture events and the sources

involved differ between clusters (c14-18, c20-21) that fall closer to Central Europe

on the PCA and clusters (c6-9) that fall on the edge of the PCA, perhaps (consis-

tent with the PCA) reflecting different admixture histories between geographically

Northern and Southern Italy, respectively. Admixture dates in “Northern Italy” clus-

ters (c14-18, c20-21) are much older at around 400-500 CE, relative to admixture

dates of 700-1000CE in “Southern Italy” (c6-9). Similar findings were reported in

a recent paper by Raveane et al., 2019 [71] using different Italian samples.

5.2.4 Summary of admixture inference in Europe

Consolidating the signals across all clusters divides them broadly into two cate-

gories. The first category includes clusters predominantly consisting of individ-

uals sampled from countries north of the Baltic Sea (Finland, Norway, Sweden),

which infer some proportion of their ancestry is related to present-day groups from

East Asia and Siberia. Meanwhile clusters predominantly consisting of individu-
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als sampled from countries south of the Baltic Sea (Belgium, France, Germany,

Spain, Italy) have little trace of E.Asian/Siberian-like ancestry, and instead have

some ancestral components matching those of individuals from present-day West

Asia, North Africa and/or Sub-Saharan Africa.

Admixture signal from East Asian/Siberia ancestry in Scandina-

vians

The orange part of Figure 5.14 shows the signal of East Asian/Siberia ancestry in

some Scandinavian clusters. The oldest signal is present in Finnish cluster c27

and dated to around 64 generations ago or ≈180 CE. In general, the proportions

of ancestry matching to these E.Asian/Siberian sources are highest in Finland (e.g.

clusters c32, c25), the easternmost Scandinavian country closest geographically to

Siberia, and then steadily decrease in Finnish, Swedish and Norwegian clusters with

more recent admixture dates (e.g. clusters c59, c60, c61, c85, c81, c77). This is

consistent with the Finnish individuals descended from early intermixing between

European and E.Asian/Siberian-like sources. This is consistent with results reported

by Saag et al., 2019 [67], who found Siberian admixture in ancient DNA samples

from Estonian in Late Bronze Age graves dating ≈2,500 years ago. While their

reported date is more ancient than that inferred by fastGLOBETROTTER, this does

not preclude multiple episodes of intermixing involving an East Asian-like source

in the region by the Iron Age.

Our simulations 3 and 4 in Section 4.8 illustrate how multiple dates of ad-

mixture between two sources, where one of the original admixing sources subse-

quently intermixes with the previously admixed group, may be inaccurately de-

scribed by fastGLOBETROTTER as a single admixture event, sometimes with an

inferred date somewhere between the dates of the two admixture events. In our

results here, when moving geographically from east to west (i.e. Finland to Nor-

way), clusters show decreased dates and decreasing proportions of ancestry related

to E.Asia/Siberia. These two observations are consistent with a scenario where

a source related to northwest Europeans initially intermixed with a source related

to East Asians around (or perhaps older than) 180 CE, with this intermixing per-
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haps occurring geographically nearer to Finland than to Norway or Sweden. Sub-

sequently, this admixed group could have migrated west, intermixing with other

unadmixed Europeans, which could lead to both decreased date estimates and de-

creased E.Asian/Siberian proportions of ancestry as we observe (Fig 5.14). Such a

pattern was observed in simulation 3 where two episodes of admixture were simu-

lated at 50 and 10 generations ago, for which fastGLOBETROTTER concluded a

single admixture event with an inferred date at ≈45 generations. In contrast, for

simulation 4 where the simulated dates were 50 and 40 generations, i.e. the second

admixture event was not much more recent than the first admixture event, fastGLO-

BETROTTER inferred a single admixture event at ≈50 generations, i.e. matching

the older admixture event. This suggests that recent admixture within Europe may

be decreasing fastGLOBETROTTER’s inferred date for an older event involving an

East Asian-like source. Increased sample sizes from these areas, which may allow

fastGLOBETROTTER to correctly identify and date multiple pulses of admixture,

and/or additional data from ancient human remains may shed light on whether this

is indeed the case.

In a simple analysis to mitigate effects of any such recent intermixing, a Mas-

ters student (Matthew Greenfield) that I co-supervised re-analyzed these same 86

clusters while removing all surrogate groups except the UK. Excluding European

reference populations as surrogates may act to mask more recent admixture if

indeed the source of this admixture was a more local European-like population.

We retained the UK in this analysis to assist in detecting the admixture we ini-

tially inferred, i.e. admixture between sources related to present-day European and

E.Asia/Siberia populations. However, we hope that the present-day UK is suffi-

ciently diverged from any European-like group that subsequently intermixed with

this European-E.Asian/Siberian admixed population. Results of this analysis are

shown in grey dots in Figure 5.14. As expected under a scenario where indeed

recent admixture was affecting our initial inference, inferred dates under this new

analysis are consistently older with the shift in the range of admixture date from

180-1150 CE to 20-1000 CE. Furthermore, we can see that there are increasing
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proportions from E.Asian/Siberian in the new analysis, likely because some of the

European groups included as surrogates in my original analysis carried some East

Asian ancestry.

Admixture signal from West Asian/North African ancestry in Eu-

ropeans

The green part of Figure 5.14 shows a signal of West Asian/African ancestry in

some European clusters. In Italy and Spain, the proportions of ancestry related to

these groups vary across clusters with no notable trend in inferred dates, perhaps

reflecting multiple waves of migration from these geographically nearby regions

into Italy/Spain over several generations. Notably some French clusters (c19, c52),

all three Belgian clusters c53-c55 and some clusters containing Germans (c43, c45,

c46, c47, c48) infer the same admixture date of 550-700 CE, showing various de-

grees of ancestry sharing with groups related to modern-day Greece, Cyprus, Mo-

rocco, Turkey and Armenia. While the historical event driving this signal is unclear,

an intriguing possibility is that it relates to the Roman Empire, which covered all of

present-day Belgium, Germany, France, Turkey, North Africa and elsewhere prior

to its decline and eventual fall in 530CE [72]. In particular individuals with ances-

try related to the ancestry of people found in North Africa, West Asia and South

Europe today could have moved across the empire during this time, and intermixed

with people living in or around present-day Belgium, France and Germany, perhaps

with this intermixing occurring in part after the fall of the Roman Empire as our

inferred date suggests. Other German clusters (c38, c41, c42) do not appear to have

this W.Asian/African signal, instead exhibiting ancestral signals related to Eastern

European groups (Figure 5.10), perhaps reflecting geography and the political his-

tory of a divided Germany.

5.3 Admixture in a Greek cohort of 631 individuals
In this section, I study genetic admixture in a Greek population. The data primar-

ily comprises 748 individuals from the “TEENAGE (TEENs of Attica: Genes and

Environment)” cohort [73,74], which consists of randomly sampled Greek students
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aged 13–15 attending public secondary schools located in Athens. DNA samples

from TEENAGE were genotyped using Illumina HumanOmniExpress BeadChips,

yielding 831,665 SNPs. The data was merged with the set of world-wide reference

populations described in Section 5.2 including 1) 94 populations (excluding Greece)

from Hellenthal et al., 2014 [21], 2) 65 populations from Busby et al., 2015 [65], and

3) 12 European populations from the Multiple Sclerosis cohort. To reduce complex-

ity, a maximum of 100 individuals per population were included [58], which turned

out 4,224 individuals in total. Quality control was performed using PLINK [66],

taking only SNPs with allele frequency >1% and missingness <10%, which gave

281,079 SNPs across 22 chromosomes. I phased all individuals in the merged data

using SHAPEIT [53].

5.3.1 Subpopulations in Greek population

In this analysis, I applied a similar framework to that described in my analysis of

Section 5.2.1. Initially, I performed 10 iterations of expectation-maximization (EM)

algorithm to infer the genome-wide average switch Ne and global emission rates θ

in CHROMOPAINTER’s Hidden Markov model (−n flag and −M flag, respec-

tively), starting with default values. For computational simplicity, for this E-M step

I painted only one out of every ten individuals, and only chromosomes 1, 8, 15 and

20. Each individual was painted using all other 4,223 individuals as donors. I av-

eraged inferred values for each parameter, weighting the averages by chromosome

length, and then averaged across all painted individuals. This produced values of

152.4843 and 0.0005527 for Ne and θ , respectively.

Next I ran CHROMOPAINTER to paint each of the 4,224 recipient individu-

als using all other 4,223 individuals while fixing the estimated values of Ne and θ .

The matrix of inferred number of haplotype segments that each individual matches

to every other (i.e. the “coancestry matrix”) was input into fineSTRUCTURE to

cluster individuals based on haplotype sharing patterns. I ran fineSTRUCTURE for

5 million iterations of MCMC, while sampling every 10,000 iterations and conse-

quently obtained 500 MCMC samples, each with an inferred number of clusters and

cluster assignment for each individual. Taking the MCMC sample with the highest
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posterior probability, fineSTRUCTURE then used 10,000 hill-climbing steps to find

a solution with a higher posterior. After this hill-climbing step, the 631 Greek in-

dividuals were assigned to 45 clusters. Starting from the final cluster assignments,

fineSTRUCTURE merged clusters one by one under its greedy approach until only

two clusters remained. Based on visual inspection of the resulting tree, I classified

the Greek individuals into ten main clusters (c1-c10). I excluded 117 Greeks that

were not assigned to any of these ten clusters (Figure 5.15). In justification of the

fineSTRUCTURE clusters, I show a visualization of principal components of the

CHROMOPAINTER’s copy vectors using princomp() in R in Figure 5.16. The

Greek individuals are widely spread across this PCA, with some Greek clusters ap-

pearing close to Middle East populations (e.g. Jordanian) and others to Europeans

(e.g. Poland).

5.3.2 Admixture inference in Greek clusters

I applied fastGLOBETROTTER to study admixture in the ten Greek clusters by

treating each cluster as a target population and the other 171 (non-Greek) reference

populations as surrogates for the admixing sources that these Greek populations are

descended from. To do so, I performed additional CHROMOPAINTER analyses

to obtain 10 painting samples per each Greek target haploid (“-s 10” similar to

Section 5.2.2) where each Greek haploid is painted using only the 171 reference

populations (and non-Greek populations) as donors. Finally, I used these painting

samples, along with the coancestry matrix generated by CHROMOPAINTER for

the fineSTRUCTURE analysis. In my fastGLOBETROTTER analysis, I entered

default values and performed 100 bootstrap re-samples to generate 95% confidence

intervals for inferred dates. Results for each Greek cluster are summarized in Figure

5.17 and Table A.3.

The admixture events detected by fastGLOBETROTTER in the Greek clus-

ters c2-6, c9-c10 show evidence of contributions from sources related to European

(Hungarian-like) populations versus those related to Near East (Lebanese-like) pop-

ulations, with a clear split between them on each side of ancestral sources (Figure

5.17). The European ancestry in these Greek clusters typically matches that of
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Polish, North Italian and Romanian individuals, while the Near East ancestry corre-

sponds to that of Lebanese, South Italian, African, and Armenian individuals. This

result is in line with many autosomal DNA studies [75,76] showing that Greeks are

genetically closest to Italians and Romanians. Also, recent studies by Kovacevic et

al., 2014 [77] and Lazaridis et al., 2017 [78] show that modern Greeks have ances-

try related to Near Eastern and East European populations. However, none of these

studies indicated the trace of African ancestral sources that fastGLOBETROTTER

detects in Greek clusters c1-c4 (Figure 5.17). There is particularly strong evidence

of admixture between African and Near East sources in c8, which appears close

to African populations in the PCA (Figure 5.16). Cluster c7 is the only group that

shows no evidence of intermixing with Near East groups, while inferring only a 1%

contribution from North Africa.

The inferred admixture dates in these Greek clusters range from 700-1300 CE.

My analyses here broadly support the findings from the study by Hellenthal et al.,

2014 [21] that inferred an admixture date in Greeks at around 718-1138 CE, with

37% of ancestry inherited from a Polish-like source and the remaining 63% from

a Cypriot-like source. This indicates that the intermixing happened later than the

fall of the Roman Empire (and later than detected admixture described in Section

5.2) that had ruled Greece until ∼300 CE. This timing is compatible with the set-

tlement of either the Slavs or Byzantines in Greece around 700-1000 CE. However,

clusters c1, c7, c8 have little evidence of northeast Europe-like ancestry and exhibit

more recent inferred dates around 700-800 years ago. These clusters infer admix-

ture involving different sources that suggest quite disparate histories, i.e. related

to Southern Europe versus Armenia/Iran/Near East (c1), Southern versus Central

Europe (c7) and North Africa versus South Asia/Armenia/Iran/Europe (c8). These

analyses are complicated by the use of modern groups themselves who exhibit vary-

ing levels of recent admixture from different sources. Further studies using ancient

DNA samples that are unaffected by recent admixture events may provide more

insight into how and when the present-day Greek genetic pool was formed.
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5.4 Summary
In summary, fastGLOBETROTTER analyses of European data in this chapter sug-

gest that there have been admixture events among different European populations

at different points in time, which have shaped the genetic make-up in current Eu-

ropean populations in addition to much older events of intermixing between early

farmers, hunter-gatherers and steppe peoples. These admixture events form one

piece of the jigsaw reflecting the whole complex genetic history of European pop-

ulations. My findings show high levels of admixture between different European

populations and also from non-European ancestral sources, such as admixture from

an East Asia/Siberian-like source into Finland groups in 180 CE and admixture

from a West Asia/North African-like source dating back to the fall of the Roman

empire in 550 CE.

This also showcases how efficiently fastGLOBETROTTER can handle large-

scale data. For example, mode 1 of fastGLOBETROTTER managed to infer ad-

mixture dates on the largest cluster containing 212 target individuals, 162 donor

populations and 470K SNPs in 73 minutes with 13G of RAM.
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Figure 5.4: Summarized admixture inference of European clusters c1-c86, for the most
strongly signalled admixture event in cases where > 2 admixing sources were
detected. Bar plots give the inferred genetic make-up of each source, as summa-
rized by their proportion of recent ancestry sharing with reference individuals
from the labeled regions (colors). White bars in the barplot separate the two
inferred admixing sources and are placed to show the inferred proportions of
admixture from each source. To the right of each barplot is the cluster label,
followed by the country label most represented among individuals in that clus-
ter. Inferred dates (circles = point estimate, lines = 95% CIs) are given on the
right, converted to years using the formula 1950− (28× (λ −1) with 28 years
per generation.
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Figure 5.5: Pie illustrate the proportions of DNA that individuals in each Finnish cluster
(pie) are inferred, on average, to match individuals from each major geographic
region (color). The labels below each pie separated by “ ” represents cluster,
major population in cluster, and admixture date in generations. Each cluster is
depicted on the PCA plots as a unique color/symbol, with inset maps highlight-
ing particular clusters.
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Text

Figure 5.6: Pie illustrate the proportions of DNA that individuals in each Swedish cluster
(pie) are inferred, on average, to match individuals from each major geographic
region (color). The labels below each pie separated by “ ” represents cluster,
major population in cluster, and admixture date in generations. Each cluster is
depicted on the PCA plots as a unique color/symbol, with inset maps highlight-
ing particular clusters.
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Figure 5.7: Pie illustrate the proportions of DNA that individuals in each Norwegian cluster
(pie) are inferred, on average, to match individuals from each major geographic
region (color). The labels below each pie separated by “ ” represents cluster,
major population in cluster, and admixture date in generations. Each cluster is
depicted on the PCA plots as a unique color/symbol, with inset maps highlight-
ing particular clusters.
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Figure 5.8: Pie illustrate the proportions of DNA that individuals in each Danish cluster
(pie) are inferred, on average, to match individuals from each major geographic
region (color). The labels below each pie separated by “ ” represents cluster,
major population in cluster, and admixture date in generations. Each cluster is
depicted on the PCA plots as a unique color/symbol, with inset maps highlight-
ing particular clusters.

Figure 5.9: Pie illustrate the proportions of DNA that individuals in a Polish cluster (pie)
are inferred, on average, to match individuals from each major geographic re-
gion (color). The labels below the pie separated by “ ” represents cluster, major
population in cluster, and admixture date in generations. The cluster is depicted
on the PCA plots as a unique color/symbol, with inset maps highlighting par-
ticular clusters.
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Text

Figure 5.10: Pie illustrate the proportions of DNA that individuals in each German clus-
ter (pie) are inferred, on average, to match individuals from each major geo-
graphic region (color). The labels below each pie separated by “ ” represents
cluster, major population in cluster, and admixture date in generations. Each
cluster is depicted on the PCA plots as a unique color/symbol, with inset maps
highlighting particular clusters.
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Figure 5.11: Pie illustrate the proportions of DNA that individuals in each Belgian clus-
ter (pie) are inferred, on average, to match individuals from each major geo-
graphic region (color). The labels below each pie separated by “ ” represents
cluster, major population in cluster, and admixture date in generations. Each
cluster is depicted on the PCA plots as a unique color/symbol, with inset maps
highlighting particular clusters.

Figure 5.12: Pie illustrate the proportions of DNA that individuals in each French clus-
ter (pie) are inferred, on average, to match individuals from each major geo-
graphic region (color). The labels below each pie separated by “ ” represents
cluster, major population in cluster, and admixture date in generations. Each
cluster is depicted on the PCA plots as a unique color/symbol, with inset maps
highlighting particular clusters.
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Figure 5.13: Pie illustrate the proportions of DNA that individuals in each Italian clus-
ter (pie) are inferred, on average, to match individuals from each major geo-
graphic region (color). The labels below each pie separated by “ ” represents
cluster, major population in cluster, and admixture date in generations. Each
cluster is depicted on the PCA plots as a unique color/symbol, with inset maps
highlighting particular clusters.
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Figure 5.14: Traces of East Asian/Siberia (orange) or West Asian/North Afican (green) an-
cestry found in European clusters. The y-axis gives the cluster label and the la-
bel of the country whose individuals are most represented in that cluster, while
the x-axis is the inferred date of admixture (dots = point estimate, lines = 95%
CIs) in generations from the present. The size of the dots (dates) are propor-
tional to the percentages to the right of the date, which give the total amount
of ancestry each cluster shares with (orange) East Asia and Siberian reference
populations or (green) West Asian, North African and Sub-Saharan African
reference populations. Grey dots, CIs and percentages are corresponding in-
ference from another study by Matthew Greenfield which used the same target
clusters but excluded European reference groups (besides the UK) as donors
and surrogates.
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Figure 5.15: fineSTRUCTURE analysis on Greek and other reference samples sorted ac-
cording to the inferred tree on the top, which also provides a confidence value
for each branch. The heatmap shows, for each pair of individuals, the propor-
tion of 500 MCMC samples where those two individuals are found in the same
cluster (key at right). All proportions = 1 are in black. The Greek samples
(blue) are indicated at the bottom bar, along with Africans (red), East Asians
(yellow), Middle Easterners (brown) and Europeans (green). The Greek clus-
ters c1-c10 (blue arrows and labels) are defined according to the proportion of
co-occurrence and clustering in the fineSTRUCTURE tree.
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Figure 5.16: PCA of Greek individuals (crosses) colored by clusters c1-c10 and individ-
uals from world reference populations (grey). The circles indicate sampled
populations from Africa (red), East Asia (yellow), Middle East (brown) and
Europe (blue and green).
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Figure 5.17: Admixture events inferred in Greek clusters c1-c10, with the most strongly
signalled admixture event shown in cases where > 2 admixing sources were
detected. Bar plots give the inferred genetic make-up of each source, as sum-
marized by their proportion of recent ancestry sharing with reference individ-
uals from the labeled regions (color legend at right). White bars in the barplot
separate the two inferred admixing sources and are placed to show the inferred
proportions of admixture from each source. To the left of each barplot is the
cluster label and number of samples in each cluster separated by a colon “:”.
Inferred dates (circles = point estimate, lines = 95% CIs) are given in the mid-
dle, converted to current era (CE) using the formula 1950−(28×(λ−1) with
28 years per generation.



Chapter 6

fastGLOBETROTTER instruction

and tutorials

In this chapter, I provide user instructions for fastGLOBETROTTER, detailing the

set-up, parameter options, input file formats and commands to execute the program.

The second section of this chapter provides a step-by-step example of a real data

analysis, beginning from haplotype phasing and proceeding to chromosome paint-

ing, admixture dating and interpreting results.

6.1 User Instruction

6.1.1 Introduction

fastGLOBETROTTER is a program for inferring and dating admixture in popula-

tions. It follows much of the protocol described in GLOBETROTTER [21], but

provides faster and more accurate inference and is suitable for large-scale data (e.g.

more individuals and larger numbers of SNPs). To describe each admixing event

within a target population, fastGLOBETROTTER uses genetic information from

multiple sampled reference groups or “surrogates” that may be related to ances-

tral sources of the target population. In particular fastGLOBETROTTER identifies

whether the target population descends from multiple sources that intermixed at

one or more times in the past, with each such source described as a mixture of the

sampled surrogates provided by the user. The date(s) of admixture is determined

by modelling how linkage disequilibrium (LD) among genetic segments inherited
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from the surrogates decays versus genetic distance.

CHORMOPAINTER to
generate a "copy vector"

CHORMOPAINTER to
generate "painting samples"

Surrogate Populations

Donor Populations

Donor Populations

Surrogate Populations

Target Population

Recipient Populations

Surrogate Populations

Target Population

Recipient Population

Target Population

Figure 6.1: Sample arrangement used in CHROMOPAINTER/fastGLOBETROTTER
analysis. Left – “all-versus-all analysis” where a copy vector is built by paint-
ing recipients (all surrogate and target individuals) conditional on using donors
as surrogate and target. Right – “painting samples” are produced by painting
all target individuals as a mixture of donor individuals (only surrogate groups
are used as donor not the target).

In this user manual, “target population” refers to the putatively admixed popu-

lation, “surrogate” refers to the sampled populations that represent potential sources

of ancestry in the target. “Donors” and “recipients” are CHROMOPAINTER termi-

nology that are used to indicate roles in painting process, “donors” are the sampled

populations used to describe haplotype patterns in the “recipients” which can be

target and surrogate populations (i.e. by using CHROMOPAINTER to paint each

surrogate and target individual against a set of “donor” individuals). The steps to

perform fastGLOBETROTTER inference are similar to those for GLOBETROT-

TER, with all details provided below.
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6.1.2 Preparing inputs for fastGLOBETROTTER

Prior to fastGLOBETROTTER, users need to perform two CHROMOPAINTER

analyses to obtain two files i.e. 1) a copying vector and 2) painting samples (Figure

6.1).

1. “a copying vector” file – a CHROMOPAINTER XXX.chunklengths.out output

file produced by painting all surrogate and target individuals conditional on

a set of donor individuals. (In practice, e.g. if testing multiple targets using

the same dataset, CHROMOPAINTER is run allowing all individuals to copy

from each other by using the ’-a’ switch in CHROMOPAINTER.)

2. “painting samples” file – a CHROMOPAINTER XXX.samples.out output file

produced by painting all target individuals conditional on a set of donor in-

dividuals. The set of donor individuals should ideally be the same set as

that used in (1), though – most critically – the target population should not

be included among the donors, as doing so will mask admixture signals (see

Section 6.2.3 and 6.2.4 for the details of this step).

6.1.3 Getting started

fastGLOBETROTTER was developed mainly in R, though accompanied by com-

puting functions in C. To install the program, first extract the files in the .tar ball

and then compile using the following command:

R CMD SHLIB -o fastGLOBETROTTERCompanion.so

fastGLOBETROTTERCompanion.c -lz

Note that you must have “zlib” installed (e.g. sudo apt-get install

zlib1g-dev). You must also have the package “nnls” installed in R (i.e. in-

stall.packages(“nnls”)). Note also that in order to run fastGLOBETROTTER on

your machine, you may need to change the line in fastGLOBETROTTER.R that

reads dyn.load(“fastGLOBETROTTERCompanion.so”) to include the pathway di-

rectory, i.e. dyn.load(“/directorypath/fastGLOBETROTTERCompanion.so”). The

fastGLOBETROTTER command line is as follows:
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R < fastGLOBETROTTER.R [parameter infile]

[painting samples filelist infile] [recom rate filelist infile]

[running mode] --no-save > [screen output]

There are 4 required command paramters which are:

1. parameter infile contains a description of all the parameters to use in fast-

GLOBETROTTER (see Section 6.1.4.1).

2. painting samples filelist infile contains a list of the XXX.samples.out files

(e.g. one file per chromosome) from a CHROMOPAINTER analysis of the

target population conditional on the donors (see Section 6.2.4).

3. recom rate filelist infile contains a list of the recombination rate files used

when running CHROMOPAINTER. The file order must identical to the chro-

mosome order in painting samples filelist infile.

4. running mode is used to specify four different fastGLOBETROTTER

modes:

“1” - run at maximum speed, though requiring greater memory (RAM).

This mode is the fastest mode of fastGLOBETROTTER where it uses sam-

pling algorithm and code optimization to reduce computational complexity.

It is relatively 20-fold faster than the original GLOBETROTTER. The draw-

back of this mode is that it consumes more memory than other modes, how-

ever, it is most desirable mode if users can afford the required resource.

“2” - run at maximum speed and require less memory than mode 1. fast-

GLOBETROTTER’s mode 2 employs sampling algorithm, donor merging

algorithm and code optimization making it more flexible for users in that it

requires less memory than mode 1 while still runs at maximum speed (20x).

However, the inferred ancestral sources may be inaccurate in some cases.

This mode is suitable for

“3” - run at less speed but require less memory. This mode only uses

sampling algorithm to reduce complexity making it memory efficient but 3-4

times slower than mode 1 and 2. This mode is suitable for users who have

limited resource.
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“mem” - calculate memory (RAM) required by fastGLOBETROTTER

in Mode 1,2 and 3. This mode should be execute prior fastGLOBETROT-

TER analysis, so users can select the most suitable mode based on resource

availability.

6.1.4 Input Files

6.1.4.1 parameter infile

The parameter file (see example in “tutorial/paramfile.txt”) contains 20 rows. Be-

low is a description of the parameters in each of these rows, which need to be

formatted (and ordered) as shown in bold type, with brackets containing allowed

values and followed by a description.

• prop.ind: [0,1] - indicate whether (“1”) or not (“0”) to infer admixture pro-

portions, dates and sources (if “0”, this information will be read from previ-

ously made fastGLOBETROTTER files specified by save.file.main)

• bootstrap.date.ind: [0,1,2] - “1” to perform bootstrap re-sampling to in-

fer confidence intervals around date estimates, “2” to perform jackknife re-

sampling and “0” for no action

• null.ind: [0,1] - indicate whether to standardize by a “NULL” individual

when performing inference (recommended; this is used for inferring p-values

for evidence of admixture and is also appropriate when “target” population

has likely undergone bottleneck effects and in general testing for consistency)

• input.file.ids: [input.filename1] - pathway and name for file containing id

labels for all samples, for the CHROMOPAINTER analysis run to make the

XXX.samples.out files

• input.file.copyvectors: [input.filename2] - pathway and name for file con-

taining copy vectors for all surrogate and target populations

• save.file.main: [output.filename1] - pathway and name (prefix) for main

output file

• save.file.bootstraps: [output.filename2] - pathway and name (prefix) for

inferred date bootstrap/jackknife output file

• copyvector.popnames: [pop 1 pop 2 ... pop k] - names of all k popula-
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tions used as donors; i.e. that both surrogate and target populations copied

from when running CHROMOPAINTER (NOTE: Any painted segments in

the XXX.samples.out files that select the target population as a donor will be

ignored, even if you include the target population in this line of the input file.)

• surrogate.popnames: [pop 1 pop 2 ... pop j] - names of all j surrogate

populations, i.e. used to describe admixture in target.popname

• target.popname: [pop rec] - name of target population

• num.mixing.iterations: [0,1,...,5,...] - number of iterations of date and pro-

portion/source estimation to perform; “0” specifies to only infer proportions

of ancestry relating the target to each surrogate, and to not try and infer/date

admixture events (only used when prop.ind: 1)

• props.cutoff: [0.0,...,1.0] - at each iteration, remove any surrogates that con-

tribute ≤ this value to the mixture describing the target population

• bootstrap.num: [0,1,...] - number of bootstrap/jackknife re-samples (only

used when bootstrap.date.ind: 1 or 2)

• num.admixdates.bootstrap: [1,2] - number of dates to fit when performing

bootstrap/jackknife resampling (only used when bootstrap.date.ind: 1 or 2)

• num.surrogatepops.perplot: [1,...] - will plot this number squared of

coancestry curves for each page of the curves output file (only used when

prop.ind: 1)

• curve.range: [lower.lim upper.lim] - lower and upper bounds of x-axis (i.e.

cM distance between DNA segments) to fit dates to when generating coances-

try curves

• bin.width: [e.g. 0.1] - width of x-axis bins (in cM) when generating coances-

try curves

• xlim.plot: [lower.lim upper.lim] - lower and upper bounds (in cM) of x-axis

to plot for coancestry curves (only used when prop.ind: 1)

• prop.continue.ind: [0,1] - indicate whether you are continuing proportion

estimation from those in a previous file (in which case the previous file will

be read from save.file.main and output files will add the suffix “ continue”)
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• haploid.ind: [0,1] - indicate whether individuals are haploid (“1”) or diploid

(“0”)

input.file.ids - This file should match exactly the donor input file used in Chro-

moPainterv2 (‘-t’ switch) when generating the XXX.samples.out files. An example

of input.file.ids is provided in “tutorial/individual.txt”. Each row is ordered to

match each row of the genotype input file (’-g’) run using CHROMOPAINTER.

There are three columns per row, with the first column giving the individual iden-

tifier, the second column giving the individual’s population label and the third col-

umn an indicator for whether the individual is not included in the analysis (use “0”

to specify NOT to include the given individual). For example, consider a file with

the following 7 individuals:

IND1 Pop1 0
IND3 Pop1 1
IND2 Pop1 1
IND4 Pop2 1
IND5 Pop2 0
Pop4Ind1 Pop4 1
IND7 Pop1 1

Here we only include individual IND3, IND2, IND4, Pop4Ind1, IND7 while

IND1 and IND5 are excluded from the analysis. Each population label specified in

copyvector.popnames, surrogate.popnames and target.popname of the file “pa-

rameter infile” MUST be in column 2 of at least one row of the file input.file.ids.

An exception, incorporated to make things more flexible for the user, is if all surro-

gate.popnames and target.popname labels missing from column 2 of input.file.ids

are specified in the row labels of input.file.copyvectors, and similarly all copyvec-

tor.popnames missing from column 2 of input.file.ids are specified in the column

labels of input.file.copyvectors. In other words, the column names and row names

of input.file.copyvectors must contain the individual identifiers and/or the popula-

tion labels.

It is critical that the order of individuals in input.file.ids corresponds to the

donor indices used in the XXX.samples.out files used in the analysis. Each painting
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sample (row) of each XXX.samples.out file gives a number D for each SNP, corre-

sponding to the row of the CHROMOPAINTER haplotype input file (‘-g’ switch)

that contains the donor haplotype copied at that SNP (where the first haplotype

in this input file is assigned D = 1). The row containing the label for this donor

individual in input.file.ids MUST be row D/p (with any decimal values of D/p

rounded up to the nearest integer) where p = 1, 2 is the ploidy of the organism.

input.file.copyvectors - This file should contain the XXX.chunklengths.out file

from the corresponding CHROMOPAINTER analyses, in the same format and

combined across all chromosomes and individuals. Each row is an individual (or

population), and the columns give the total amount of genome-wide DNA that the

given individual (or population) is inferred to copy from every “donor” individual

(or population) in the corresponding CHROMOPAINTER analyses. An example

of input.file.copyvectors is provided in “tutorial/copyvector.txt”. The first row

of input.file.copyvectors lists the column labels reflecting the donor individuals

and/or populations. The first column in this first row is “recipient”, and the remain-

ing columns of this first row must contain one of the labels specified in copyvec-

tor.popnames of “parameter infile”. The remaining rows of input.file.copyvectors

list the “recipient” individual (or population) label in the first column, with the re-

maining columns containing the total amount (or proportion) of genome-wide DNA

that the given recipient individual (or population) copies from each donor label pro-

vided in the first row.

6.1.4.2 painting samples filelist infile

This file contains a list of file locations and names of XXX.samples.out output files

from CHROMOPAINTER, specifying one file per line (see tutorial/samplefile.txt).

6.1.4.3 recom rates filelist infile

This file is a list of file locations and names of the recobination rate files used when

running CHROMOPAINTER to make the XXX.samples.out files. The chromosome

order must correspond to the order listed in the painting samples filelist infile (See

tutorial/recomfile.txt).



6.1. User Instruction 135

6.1.5 Output

There are four output files from fastGLOBETROTTER:

6.1.5.1 [output.filename1].txt

This file summarizes the inferred admixture proportions, dates and sources. The

first line lists our “best-guess” conclusion for admixture in the target population.

The conclusion can be:

• uncertain - admixture is detected but difficult to describe (technical details:

combined fit quality for two events “fit.quality.2events” < 0.985)

• one-date - a single date of admixture between two sources (combined fit

quality for two events ≥ 0.985; two-date score “maxScore.2events” <0.35;

fit-quality for a single event “fit.quality.1event” ≥ 0.975)

• one-date-multiway - a single date of admixture between more than two

sources (combined fit quality for two events ≥ 0.985; two-date score < 0.35;

fit quality for a single event < 0.975)

• multiple-dates - two (or more) distinct dates of admixture between two or

more sources (combined fit quality for two events ≥ 0.985; two-date score ≥

0.35)

• no admixture- admixture is undetected or unclear

Note that these are just guidelines, and that we highly recommend careful visual

exploration of the inferred coancestry curves provided in the .pdf output file to see

how well e.g. one versus two events fit the data.

The next lines (“1-DATE FIT EVIDENCE, DATE ESTIMATE, SINGLE

BEST- FITTING DONORS”) provide the fastGLOBETROTTER inferred date, pro-

portions and “best-guess” sources of admixture for a single event or multiway ad-

mixture when assuming only a single date of admixture (i.e. this information is

particularly appropriate when the “best-guess” conclusion is “one-date” or “one-

date-multiway”), as well as measures of “goodness-of-fit” for these events. Specif-

ically:

• gen.1date - inferred date of admixture in generations from present

• proportion.source1 - inferred proportion of admixture from the minority
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contributing source

• maxR2fit.1date - the goodness-of-fit (R2) for a single date of admixture,

taking the maximum value across all inferred coancestry curves

• fit.quality.1event - the fit of a single admixture event

• fit.quality.2events the fit of the first and the second admixture event

• bestmatch.event1.source1 - the single “best-guess” surrogate population that

matches the inferred minority contributing source

• bestmatch.event1.source2 - the single “best-guess” surrogate population that

matches the inferred majority contributing source

• proportion.event2.source1 - inferred proportion of admixture from the mi-

nority contributing source for the second, less strongly signaled event (appro-

priate for “one-date-multiway”)

• bestmatch.event2.source1 - the single “best-guess” surrogate population that

matches the inferred minority contributing source for the second, less strongly

signaled event (appropriate for “one-date-multiway”)

• bestmatch.event2.source2 - the single “best-guess” surrogate population that

matches the inferred majority contributing source for the second, less strongly

signaled event (appropriate for “one-date-multiway”)

The next lines of output (“2-DATE FIT EVIDENCE, DATE ESTIMATES, SIN-

GLE BEST-FITTING DONORS”) give 2 inferred admixture dates, proportions and

“best-guess” sources of admixture when assuming two distinct dates of admixture

(date1 and date2). These lines should be considered only if the “best-guess” con-

clusion is “multiple-dates”. In particular:

• gen.2dates.date1 - inferred date of admixture (in generations from present)

for the first (most strongly signaled) event, when assuming two dates

• gen.2dates.date2 - inferred date of admixture (in generations from present)

for the second event, when assuming two dates

• maxScore.2events - the additional goodness-of-fit (R2) explained by adding

a second date versus assuming only a single date of admixture, taking the

maximum such value across all inferred coancestry curves
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• proportion.date1.source1 - inferred proportion of admixture from the minor-

ity contributing source for the first date’s event (when assuming two dates)

• bestmatch.date1.source1 - the single “best-guess” surrogate population that

matches the inferred minority contributing source for the first date’s event

(when assuming two dates)

• bestmatch.date1.source2 - the single “best-guess” surrogate population that

matches the inferred majority contributing source for the first date’s event

(when assuming two dates)

• proportion.date2.source1 - inferred proportion of admixture from the mi-

nority contributing source for the second date’s event (when assuming two

dates)

• bestmatch.date2.source1 - the single “best-guess” surrogate population that

matches the inferred minority contributing source for the second date’s event

(when assuming two dates)

• bestmatch.date2.source2 - the single “best-guess” surrogate population that

matches the inferred majority contributing source for the second date’s event

(when assuming two dates)

The next lines of output (“1-DATE FIT SOURCES, PC1”) present the fastGLO-

BETROTTER inferred composition of each admixing source in the most strongly

signaled event, when assuming only a single date of admixture. In particular every

two consecutive rows describe the inferred genetic composition of one admixing

source (i.e. where each source is described as a mixture of the sampled surrogate

groups), giving both the proportion of DNA contributed by that source (first col-

umn), and fastGLOBETROTTER’s inferred mixture coefficients to describe each

source (remaining columns - these should sum to 1 for each source). For instance,

consider the following output:

###########################

### 1-DATE FIT SOURCES, PC1:

proportion BantuKenya Mandenka BantuSouthAfrica
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0.29 0.26 0.31 0.43

proportion Han Japanese Balochi Druze Sardinian Ireland English

0.71 0.01 0.01 0.02 0.03 0.03 0.16 0.74

###########################

implies that fastGLOBETROTTER has inferred the first admixing source, which

contributes 29% of the DNA of the target population, to be best represented ge-

netically as a mixture of (0.26, 0.31, 0.43) times the copy vectors of surrogate

labels (BantuKenya, Mandenka, BantuSouthAfrica), respectively. And fastGLO-

BETROTTER has inferred the second admixing source, which contributes 71% of

the DNA of the target population, to be best represented genetically as a mixture

of (0.01, 0.01, 0.02, 0.03, 0.03, 0.16, 0.74) times the copy vectors of surrogate

labels (Han, Japanese, Balochi, Druze, Sardinian, Ireland, English), respectively.

Similar source proportion and mixing coefficient inference is given next for the less

strongly signaled event when assuming a single date of admixture (i.e. 1-DATE FIT

SOURCES, PC2”), which is particularly appropriate when the best-guess conclu-

sion is “one-date-multiway”.

Following this is the analogous inference for the first date’s event when assum-

ing two dates of admixture (“2-DATE FIT SOURCES, DATE1-PC1”), and the sec-

ond date’s event when assuming two dates of admixture (“2-DATE FIT SOURCES,

DATE2-PC1”), which is particularly appropriate when the “best-guess” conclusion

is “multiple- dates”.

6.1.5.2 [output.filename1] curves.txt

This output file, with prefix specified by save.file.main in “parameter infile” and

suffix “ curves.txt”, provides the numerical data of the coancestry curves for every

pairwise combination of surrogate populations inferred to match > props.cutoff of

the total ancestry of the target population. It is generated only if prop.ind: 1 in

“parameter infile”.
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6.1.5.3 [output.filename1].pdf

This output file, with prefix specified by save.file.main in “parameter infile” and

suffix “.pdf”, visualizes plots of the coancestry curves for every pairwise combina-

tion of surrogate populations using data stored in [output.filename1] curves.txt.

The given surrogate pairing is specified in each plot’s title. The x-axis gives genetic

distance in cM between pairs of segments (see Section 6.1.4.1 for a description of

how the bins and range for these cM distance values are specified). The y-axis gives

the (weighted) probability of copying from the first and second surrogate popula-

tions listed in the title at a pair of DNA segments separated by the corresponding

x-axis (i.e. cM distance) value.

6.1.5.4 [output.filename2].txt

This output file, with prefix specified by save.file.bootstraps in “parameter infile”

and suffix “.txt”, gives the inferred dates and goodness-of-fit (R2) values for boot-

strap/jackknife re-samples of individuals’ DNA (see above for details of column

values).

6.1.6 Inferring admixture using fastGLOBETROTTER

To run fastGLOBETROTTER under these settings type:

R < fastGLOBETROTTER.R tutorial/paramfile.txt tutorial/

samplefile.txt tutorial/recomfile.txt mem --no-save > output.out

This will take a moment to finish and will output (in “output.out”) the cal-

culated memory required by each mode of fastGLOBETROTTER. This will assist

users to decide a suitable mode according to their computational resources. We sug-

gest considering from mode 1, 2 and 3 respectively. The example of the command

when mode 1 is selected is as:

R < fastGLOBETROTTER.R tutorial/paramfile.txt tutorial/

samplefile.txt tutorial/recomfile.txt 1 --no-save > output.out

Once the program finishes, the output files will be produced in the identified

directory.



140 Chapter 6. fastGLOBETROTTER instruction and tutorials

6.1.7 Computational time and memory

Assume N target population individuals, C chromosomes, B bootstrap/jackknife re-

samples, M mixing iterations, S painting samples, L SNPs (maximum across all

chromosomes), J donor populations, K surrogate groups, I(≤ SL) total “chunks”

(i.e. the maximum number of “chunks” across chromosomes and individuals),

I j(≤ I) “chunks” copied from donor population j (the maximum number of

“chunks” across chromosomes and individuals copied from a single donor popu-

lation) and G grid points over which the coancestry curves are estimated (i.e. G=

(curve.range(upper.lim)-curve.range(lower.lim))/bin.width in section 6.1.4.1).

Then the computational complexity of fastGLOBETROTTER at the maximum

speed is

O[(B+M)(NC(SL+ J2I + I2
j )+NGJ2K2)+C[min(N;100)]2(L+ I2

j )]

The maximum required memory for Mode 1 and 2 is O(NGJ2 +NGK2), while

Mode 3 stores O(NGK2).

6.2 Tutorial

The aim of this tutorial is to walk users through the steps in inferring an admixture

event which include 2 programs, CHROMOPAINTER [36] and fastGLOBETROT-

TER. We will begin with a simulated target population and attempt to infer admix-

ture using the world populations as donors. In the last section, we will interpret

the inference from the output file. Suppose we want to infer the unknown admix-

ture event using 100 target individuals simulated as mixtures of present-day French

people (contributing ≈70% of the DNA) intermixing with present-day Yoruban in-

dividuals (contibuting ≈30%) 30 generations ago. For simplicity, we will focus

only on analysing chromosomes 21-22. We include the following groups (explored

in Hellenthal 2014) listed in the Table below in our analysis.
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Population Region Number of individuals
Balochi Central South Asia 21
Balochi Central South Asia 21
BantuKenya Africa 11
BantuSouthAfrica Africa 8
Druze West Asia 42
EastSicilian South Europe 10
English Northwest Europe 6
Hadza Central Africa 3
Han Southeast Asia 34
Ireland Northeest Europe 7
Japanese Northeast Asia 28
Makrani Central South Asia 22
Mandenka West Africa 22
Maya America 21
Naxi Southeast Asia 8
Russian East Europe 25
Sardinian South Europe 28
Saudi South Middle East 10
Scottish Northwest Europe 6
She Southeast Asia 10
Sindhi Central South Asia 23
Surui America 8
Syrian South Middle East 16
Turkish West Asia 17
UAE South Middle East 9
Uygur Central South Asia 10
Yemeni South Middle East 4
FrenchYoruba Simulated 100

Table 6.1: List of population region and number of samples included in the example.

6.2.1 Preparing input for CHROMOPAINTER

From the SNP data, we use PLINK [66] to prepare, QC and split the data into

chromosomes (if necessary). Then we perform haplotype phasing using SHAPEIT

[53], using the following command:

shapeit --input-bed [bedfile] [bimfile] [famfile] -M

[genticmapfile] --output-max [phasedfile] [samplefile]

We then have to reformat the SHAPEIT output files into CHROMOPAINTER

input format. This can be done using the perl script “impute2chromopainter2.pl”
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included in the fastGLOBETROTTER package or downloadable at https://

people.maths.bris.ac.uk/˜madjl/finestructure/toolsummary.

html

perl impute2chromopainter2.pl [phasedfile] [genticmapfile]

[output]

After this step, we have our input files ready for CHROMOPAINTER as in-

cluded in the folder /tutorial, e.g. where AllFrenchYoruba30gen30propchrXX.txt

file is a haplotype-phased file and Chromxxx.recomrates is its corresponding re-

combination rate file.

tar -xzvf ChromoPainterv2.tar.gz

We then compile:

gcc -o ChromoPainterv2 ChromoPainterv2.c -lm -lz

As mentioned in the fastGLOBETREOTTER User Instructions Section 6.1.2,

there are 2 fastGLOBETROTTER inputs required from CHROMOPAINTER: (1)

a copy vector file and (2) painting sample files. Here are the steps to obtain those

files.

6.2.2 Estimating parameters required by CHROMOPAINTER

Before performing chromosome painting, we need to estimate 2 parameters, the

switch (n) and mutation (M) rates, that are required in CHROMOPAINTER. To do

this, we use Expectation-Maximization (EM), applying ChromoPainterv2 only to

a subset of the data (i.e. only a subset of individuals and chromosomes) to save

computational time. The command for estimating n and M on chromosome 21 is:

ChromoPainterv2 -g AllFrenchYoruba30gen30propchr21.txt

-r Chrom21.recomrates -t individual.txt -a 1 10 -s 0 -i 10

-in -iM -o output estimateEM Chr21

Here, “-a 1 10” specified to only paint individuals 1-10 out of all included

individuals to save computational time, “-s 0” specifies that no painting samples

are needed in this step (as these take up storage and will not be used), “-i 10” −

specifies to use 10 EM iterations to estimate parameters, and “-in -iM” − spec-

ifies that the switch (n) and mutation (M) rates should be estimated with EM.

https://people.maths.bris.ac.uk/~madjl/finestructure/toolsummary.html
https://people.maths.bris.ac.uk/~madjl/finestructure/toolsummary.html
https://people.maths.bris.ac.uk/~madjl/finestructure/toolsummary.html
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We might apply the command to other chromosomes as well e.g. 1, 5, 10, 15,

20, etc. After completing the n and M estimation, we apply a perl script “Chro-

moPainterv2EstimatedNeMutExtractEM.pl” included in this package to summarize

these inferred values across individuals. We also have to modify some parameters in

the perl script such as output file prefix/suffix, the chromosomes analysed, and the

number of SNPs per chromosome (which is used to weight the inference from each

chromosome – see included file ChromoPainterv2EstimatedNeMutExtractEM.pl).

The command is as below;

perl ChromoPainterEstimatedNeExtractEM.pl

From the output of this perl script, we obtain n = 392.48 and M = 0.0004162

and we use these values throughout CHROMOPAINTER analyses.

6.2.3 Generating the copy vector input file

To construct the copy vectors, we use the estimated parameters (n, M) and run

ChromoPainterv2 again, this time we paint all individuals using all individuals as

donors on chromosome 21:

ChromoPainterv2 -g AllFrenchYoruba30gen30propchr21.txt

-r Chrom21.recomrates -t individual.txt -a 0 0 -s 0 -n 392.48

-M 0.0004162 -o AllFrenchYoruba30gen30propchr21 AllvALL

The command “-a 0 0” specifies that we paint each individual in individual.txt

using every other individual as a donor (Figure 6.1–Left). After the analysis is done

for all included chromosomes, the XXX.chunklengths.out files from this analysis can

be combined across chromosomes and into a single file using a perl script “Chro-

moPainterOutputSum.pl”. We also have to identify chromosome number in the perl

script.

perl ChromoPainterOutputSum.pl AllFrenchYoruba30gen30propch

AllvALL.chunklengths.out

6.2.4 Generating the painting samples files

Here we create a population file that specifies which populations are recipients (the

target population) and which are donors (likely all other populations). In this case,
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all reference populations are set as “D” (donors) and FrenchYoruba is set as as “R”

(recipient; see tutorial/popfile.txt). The command for generating painting samples

for chromosome 21 is as follows:

ChromoPainterv2 -g AllFrenchYoruba30gen30propchr21.txt

-r Chrom21.recomrate -t individual.txt -f popfile.txt 0 0 -s

10 -n 392.48 -M 0.0004162 -o AllFrenchYoruba30gen30propchr21

DonorvTarget

This is similar to the previous command except we remove “-a”, and we use

the popfile.txt to determine which populations are to be painted and which are to be

used as donors. In this case, each FrenchYoruba individual will be painted using all

individuals from other populations as donors. (Figure 6.1–Right) Note that we do

not set FrenchYoruba as a donor (in contrast to Section 6.2.3), because the painting

samples used to date admixture events consider only segments matched to different

surrogates (segments matching to other target individuals will be discarded, so that

using your own population as a donor removes a lot of data). Lastly, stating “-s 10”

means that 10 painting samples per each haploid genome of each target (recipient)

individual will be produced and we apply this command to all other chromosomes

in the same way.

6.2.5 Inferring admixture events using fastGLOBETROTTER

In this section, we will apply fastGLOBETROTTER to infer the admixture history

of the target population (FrenchYoruba) using 26 reference populations as surro-

gates the admixing sources. We install fastGLOBETROTTER by unzipping and

extracting the fastGLOBETROTTER.tar.gz file using the command:

tar -xzvf fastGLOBETROTTER.tar.gz

and compiling the program:

R CMD SHLIB -o fastGLOBETROTTERCompanion.so

fastGLOBETROTTERCompanion.c -lz

Note you may need add a new path to a line in fastGLOBETROTTER.R that

reads dyn.load(“fastGLOBETROTTERCompanion.so”) to dyn.load(“/directorypath/

fastGLOBETROTTERCompanion.so”). To run fastGLOBETROTTER, you have
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to prepare three files:

• a parameter file, paramfile.txt, that lists the fastGLOBETROTTER parame-

ters, including which population is the target, and which populations should

be specified as donors and surrogates, etc.

• a painting samples file, samplefile.txt, that collects the file locations of

AllFrenchYoruba30gen30propchrXX DonorvTarget.samples.out.gz of all in-

cluded chromosomes (these files can be in gzipped format).

• a recombination rate file, recomfile.txt, that collects the file locations of

ChromXX.recomrates of all included chromosomes.

In the parameter file, we specify “prop.ind: 1” to infer and date admixture, and

“bootstrap.date.ind: 1” to perform bootstrap re-samples to infer confidence inter-

vals around the inferred date (using “bootstrap.num: 20” such re-samples). To ac-

count for linkage disequilibrium patterns that may not be due to genuine admixture

(e.g. if the target population has experienced a strong bottleneck since admixture),

we suggest setting “null.ind: 1”. We set “input.file.ids:” as individual.txt; this

file must be the same file as we use in ChromoPainterv2 above. The output file-

name (save.file.main:) is defined according to the user’s preference here we use All-

FrenchYoruba30gen30prop.main.txt. We also specify the “input.file.copyvectors:”

made in Section 6.2.3 as copyvector.txt. “copyvector.popnames:” contains the list

of donor populations used in ChromoPainterv2, which we also replicate as our “sur-

rogate.popnames:” (which is typically done in practice).

As mentioned, fastGLOBETROTTER allows users to select a suitable “run-

ning mode” that depends on user’s memory (RAM) availability. The fastest mode

is “Mode 1” which consumes more memory than other modes, whereas “Mode 2” is

faster while requiring less memory than “Mode 1.” but the ancestral inference may

not be accurate. “Mode 3” normally requires minimal memory, but is 2-4 times

slower than Modes 1 and 2. To select the desired Mode, users can calculate RAM

required for each mode by performing this command with the “mem” setting:

R < fastGLOBETROTTER.R tutorial/paramfile.txt tutorial/

samplefile.txt tutorial/recomfile.txt mem -no-save >
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AllFrenchYoruba30gen30prop.out

The result of the memory test will be printed in AllFrenchYoruba30gen30prop.out.

Users then can choose which Mode suits their available resources. Below is an ex-

ample of a command line when Mode 1 is selected.

R < fastGLOBETROTTER.R tutorial/paramfile.txt tutorial/

samplefile.txt tutorial/recomfile.txt 1 -no-save >

AllFrenchYoruba30gen30prop.out

When the analysis is finished, the final inference will be printed in AllFrenchY-

oruba30gen30prop.main.txt. In this example, the admixture conclusion is “one

date” of admixture at around 26 generations. The inferred sources are as follow;

###########################

### 1-DATE FIT SOURCES, PC1:

proportion BantuKenya Mandenka BantuSouthAfrica

0.29 0.26 0.31 0.43

proportion Han Japanese Balochi Druze Sardinian Ireland English

0.71 0.01 0.01 0.02 0.03 0.03 0.16 0.74

###########################

Out of the two sources contributing to the target, one contributes 29% of the

total admixture proportion and is most genetically similar to the sampled Bantu-

SouthAfrica. The other source contributes 71% and is most genetically similar to

the sampled English. This inference is close to the true admixture we simulated in

terms of the date, ancestral sources and admixture proportions. The AllFrenchY-

oruba30gen30prop.main.pdf file provides the plots of fitted “coancestry curves” for

each surrogate pair inferred to describe >0.5% of the target population’s haplotype

patterns.

From these plots we can assess whether the inference proposed by the fast-

GLOBETROTTER model is supported by the data. Importantly, if a curve involv-

ing a pair of surrogates is increasing, this suggests that the given pair of surrogates
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Figure 6.2: Coancestry curves showing side of ancestral sources. Left – increasing trend
suggesting opposite ancestral source (English and Mandenka), Right – decreas-
ing trend suggesting same ancestral source (Mandenka and BantuSouthAfrica).

represent different ancestral source (e.g. English and Mandenka in Figure 6.2–

Left, with the former representing the “French” source and the latter the “Yoruba”

source). Conversely, if the curve is decreasing, this suggests the surrogates are each

representing the same ancestral source (e.g. Mandenka and BantuSouthAfrica in

Figure 6.2–Right, with each representing the “Yoruba” source).





Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this thesis, I have developed a new haplotype-based method for fast and accurate

inference of genetic admixture in populations using genotype data. The speedy cal-

culation of this method allows population geneticists to analyse ever larger data to

unearth previously unseen admixture events. Such approaches will have increasing

utility as researchers collect large-scale datasets from precise geographic regions

(e.g. Genomics England [79], China Kadoorie Biobank [80]) containing thousands

of individuals with relatively homogeneous ancestral histories. I conclude each

chapter in the following.

In Chapter 1, I described admixture events and how genetic variation patterns

in descendants from such events can be used to infer features of the original ad-

mixture event, including information about the admixing sources, proportions and

timings. I outlined different types of DNA that have been used to infer admixture,

explaining the particular benefits of using densely typed genome-wide autosomal

data. I also briefly summarized some of the most widely-used previous methods

used to detect admixture, highlighting the strengths and limitations of each. Much

of this summary was published in a review article: Wangkumhang & Hellenthal,

2019 [81].

In Chapter 2, I provided details of the intuition and theory behind the current

state-of the-art method for inferring admixture events, GLOBETROTTER [21] and
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its accompanying method for local ancestry inference, CHROMOPAINTER [36].

I pointed out that – despite its increased accuracy over previous approaches (Hel-

lenthal et al 2014) – the computational burden of the GLOBETROTTER inference,

particularly for the coancestry curve building step, precludes it from being easily

applicable to large-scale datasets with many hundreds of individuals.

In Chapter 3, I presented a new approach, fastGLOBETROTTER, that builds

upon the GLOBETROTTER framework but is faster and more accurate. I described

how fastGLOBETROTTER incorperates a new sampling method that upweights the

contribution of DNA segment pairs that are more informative for admixture, as well

as new code optimizatinon and donor merging steps to further speed up inference.

These three techniques are important steps that provide a trade-off between accu-

racy, speed and memory-efficiency. I also developed and tested an additional tech-

nique to remove non-admixture related signals in the co-ancestry curve that can lead

to misleading inference in target populations affected by relatively strong genetic

drift (e.g. due to bottlenecks). Additionally, I provided an alternative technique,

jack-knifing, to obtain confidence intervals for inferred admixture dates, which is of

particular interest when making inference on single individuals (e.g. Chacon-Duque

et al 2018) where bootstrap resampling is not suitable.

In Chapter 4, I validated the performance of fastGLOBETROTTER relative to

GLOBETROTTER in terms of the accuracy of admixture dating and the computa-

tional efficiency. To do this, I carefully simulated multiple datasets including easy

and hard cases to detect admixture. I found that the relative computational increase

of fastGLOBETROTTER over GLOBETROTTER is 4-20 fold, while providing

very similar inference accuracy in most cases. Interestingly, there are improve-

ments in some cases, which conceivably may be due to noise reduction by only

fitting the most informative sections of the co-ancestry curve. I also explored the

ability of fastGLOBETROTTER to differentiate multiple pulses of admixture where

the admixed group subsequently admixes again with one of the original sources. I

concluded that fastGLOBETROTTER may detect only a single pulse of admixture

in such settings, with an inferred date falling between the two pulses.
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In Chapter 5, I applied fastGLOBETROTTER to a previously published dataset

consisting of >6,000 European individuals sampled from Finland, Sweden, Nor-

way, Denmark, Germany, Poland, France, Spain and Italy. I applied fineSTRUC-

TURE to cluster these individuals into groups of relative genetic homogeneity, with

these clusters strongly correlating with country though showing multiple sub-groups

within each country. Then using a set of world populations as a reference, I ap-

plied fastGLOBETROTTER to each European cluster, identifying admixture in all

86 clusters that suggested multiple admixture events occurring within the past two

millennia. In particular fastGLOBETROTTER found evidence for admixture with

sources that were genetically related – at least in part – to different non-European

ancestry sources. This included admixture identified in clusters from Finland, Nor-

way and Sweden dated to 180-1350 CE involving a source genetically related to

present-day peoples of Siberia and East Asia. Another interesting signal was ad-

mixture dated to ≈550 CE in clusters from Belgium, France and Germany, involv-

ing a source related to peoples of W.Asia and N.Africa. East Asian-like ancestry

previously has been identified in ancient DNA samples that are over 2.5kya found

in areas near Finland [67,68] ; our results could be picking up intermixing involving

this same source at later times. The signal of N.African and W.Asian ancestry in

present-day peoples from Belgium, France and Germany is to my knowledge previ-

ously unknown. Its origin is unclear, though it is consistent with the movement of

peoples across the Roman Empire, which at its height covered present-day Belgium,

France, Turkey, and parts of Germany and North Africa. While our inferred admix-

ture date is after the fall of the Roman Empire, intermixing between W.Asian and

European-like sources may have occurred after the fall and/or we may be picking

up signals of a previously admixed group (i.e. descendants of admixture prior to the

fall of the Roman Empire) that intermixed later with a European-like source (see our

Chapter 4 simulations with multiple pulses of admixture). This study provides fur-

ther evidence that large-scale genetic data potentially can uncover previously hidden

admixture events. Combining this genetic evidence with inference from other fields

such as archaeology will further our understanding of human history.
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In Chapter 6, I provide instructions and a tutorial for using fastGLOBETROT-

TER. As fastGLOBETROTTER has been developed as a distributed software freely

available to academics, the documents are meant to assist other users in performing

all steps of analysis, from phasing to chromosome painting, admixture detection

and interpreting results. As part of this tutorial, I provide a step-by-step example

from real data analysis.

7.2 Future perspectives

A future direction for fastGLOBETROTTER that may be fruitful is to make the

methods more appealing and easy for users, given there are multiple steps involved

in all analysis steps. To do so, one might consider automating the pipeline as de-

scribed in the tutorials section. This might include reformatting input/output for

SHAPEIT to CHROMOPAINTER and on to fastGLOBETROTTER, which cur-

rently requires a lot of different, specfic configurations. This future work would

build up and strengthen the applicability of my software. Further speed-ups of

GLOBETROTTER would be desirable, as SHAPEIT is relatively faster in complet-

ing the haplotype phasing step (e.g. offering multi-CPU computation) and CHRO-

MOPAINTER can be accelerated by splitting individuals into subsets and making

local inference separately on a high performance computational cluster. Paralleliz-

ing GLOBETROTTER is not as potentially possible, given each target individual is

first analyzed separately before being combined again at each step of mixing pro-

portion and date inference.

To further explore the genetic admixture signals in Europe unearthed here

(Chapter 5), fastGLOBETROTTER can be applied to other datasets to test the hy-

pothesis of a potential “Roman-like” genetic legacy (i.e. an ancestral signal related

to present-day populations from South Central Europe, North African, and Arme-

nian/Iran as found in this thesis). In particular testing other areas formerly under

Roman control, such as Portugal, Luxamburg, Netherlands, Austria and Switzerland

(e.g. using the POPRES dataset [82] and Novembre et al, 2008 [29]), and compar-

ing these to other areas not under Roman control. For example, assuming there
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was a single admixture event between W.Asian/N.African-like and European-like

sources in southern Europe, with this admixed group then moving north and mixing

with other Europeans, we might expect to see a cascading effect of decreasing dates

(in generations ago) and proportions of W.Asian/N.African-like ancestry the fur-

ther away geographically from Italy. We see a similar observation in Figure 5.14 of

decreasing E.Asian/Siberian-like ancestry from Finland to Norway, consistent with

Siberian-like and European-like sources intermixing in the East and then spreading

west in Scandinavia. Selection effects of these admixture events could also be an

interesting area of future work, e.g. testing whether some parts of the genome of

Finns retain unusually high proportions of East Asian-like ancestry, indicative of

adaptive alleles being transmitted by East Asians to Europeans and retained over

time.
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Supplementary Data

Table A.1: The reference (donor) populations (“HB:” refers to Hellenthal and Busby
dataset, “MS:” refers to Multiple Sclerosis dataset) and 86 fineSTRUCTURE
clusters (c1-86) used in the analysis. Cluster name refers to a unique short
name given to each cluster, the corresponding number of samples N and re-
gion are given in the next 2 columns, “N by country” shows the top 3 major
populations in each cluster followed by its number of samples.

cluster N region N by country

MS:UK 1854 NorthWestEurope MS:UK 1854
MS:NIreland 61 NorthWestEurope MS:NIreland 61
HB:yukagir 4 Siberia HB:yukagir 4
HB:yoruba 21 SubAfrica HB:yoruba 21
HB:yi 10 EastAsia HB:yi 10
HB:yemeni 9 NearEast HB:yemeni 9
HB:yakut 25 EastAsia HB:yakut 25
HB:xibo 9 EastAsia HB:xibo 9
HB:westsicilian 10 SouthCentralEurope HB:westsicilian 10
HB:welsh 4 NorthWestEurope HB:welsh 4
HB:velamas 9 SouthAsia HB:velamas 9
HB:uzbekistani 15 CentralAsia HB:uzbekistani 15
HB:uygur 10 CentralAsia HB:uygur 10
HB:upcaste 5 SouthAsia HB:upcaste 5
HB:ukrainian 20 NorthEastEurope HB:ukrainian 20
HB:uae 14 NearEast HB:uae 14
HB:tuva 13 Siberia HB:tuva 13
HB:tuscan 8 SouthCentralEurope HB:tuscan 8
HB:turkmen 10 WestCentralAsia HB:turkmen 10
HB:turkishs 20 Turkey HB:turkishs 20
HB:turkishn 20 Turkey HB:turkishn 20
HB:turkishe 23 Turkey HB:turkishe 23
HB:turkish 19 Turkey HB:turkish 19
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Table A.1 continued from previous page

cluster N region N by country

HB:tunisian 12 NorthAfrica HB:tunisian 12
HB:tujia 10 EastAsia HB:tujia 10
HB:tu 10 EastAsia HB:tu 10
HB:tsi 98 SouthCentralEurope HB:tsi 98
HB:tharus 2 SouthAsia HB:tharus 2
HB:tamilnadu 2 SouthAsia HB:tamilnadu 2
HB:tajik 15 WestCentralAsia HB:tajik 15
HB:syrian 16 NearEast HB:syrian 16
HB:surui 5 Americas HB:surui 5
HB:spanish 34 SouthWestEurope HB:spanish 34
HB:southitalian 18 SouthCentralEurope HB:southitalian 18
HB:sindhi 24 CentralAsia HB:sindhi 24
HB:siciliane 10 SouthCentralEurope HB:siciliane 10
HB:she 10 EastAsia HB:she 10
HB:selkup 10 Siberia HB:selkup 10
HB:scottish 6 NorthWestEurope HB:scottish 6
HB:saudi 19 NearEast HB:saudi 19
HB:sardinian 28 Sardinia HB:sardinian 28
HB:sannamibia 5 San HB:sannamibia 5
HB:sankhomani 30 San HB:sankhomani 30
HB:sandawe 28 CentralAfrica HB:sandawe 28
HB:sakd 4 SouthAsia HB:sakd 4
HB:russian 25 NorthEastEurope HB:russian 25
HB:romanian 16 SouthEastEurope HB:romanian 16
HB:polish 17 NorthEastEurope HB:polish 17
HB:piramalaikallar 8 SouthAsia HB:piramalaikallar 8
HB:pima 14 Americas HB:pima 14
HB:pathan 22 CentralAsia HB:pathan 22
HB:papuan 17 Oceania HB:papuan 17
HB:palestinian 46 NearEast HB:palestinian 46
HB:oroqen 9 EastAsia HB:oroqen 9
HB:orcadian 15 NorthWestEurope HB:orcadian 15
HB:norwegian 18 NorthWestEurope HB:norwegian 18
HB:northossetian 15 WestCaucasus HB:northossetian 15
HB:northitalian 12 SouthCentralEurope HB:northitalian 12
HB:nogay 16 WestCentralAsia HB:nogay 16
HB:nihali 2 SouthAsia HB:nihali 2
HB:nganassan 10 Siberia HB:nganassan 10
HB:naxi 8 EastAsia HB:naxi 8
HB:naga 4 EastAsia HB:naga 4
HB:myanmar 3 SouthAsia HB:myanmar 3
HB:muslim 5 SouthAsia HB:muslim 5
HB:mozabite 29 NorthAfrica HB:mozabite 29
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Table A.1 continued from previous page

cluster N region N by country

HB:moroccan 25 NorthAfrica HB:moroccan 25
HB:mordovian 15 NorthEastEurope HB:mordovian 15
HB:mongolian 19 EastAsia HB:mongolian 19
HB:miao 10 EastAsia HB:miao 10
HB:melanesian 10 Oceania HB:melanesian 10
HB:meghawal 1 SouthAsia HB:meghawal 1
HB:meena 1 SouthAsia HB:meena 1
HB:mbutipygmy 13 CentralAfrica HB:mbutipygmy 13
HB:maya 21 Americas HB:maya 21
HB:mawasi 1 SouthAsia HB:mawasi 1
HB:mandenka 22 SubAfrica HB:mandenka 22
HB:malayan 1 SouthAsia HB:malayan 1
HB:makrani 25 CentralAsia HB:makrani 25
HB:maasai 97 SubAfrica HB:maasai 97
HB:luhya 94 SubAfrica HB:luhya 94
HB:lithuanian 10 NorthEastEurope HB:lithuanian 10
HB:lezgin 18 EastCaucasus HB:lezgin 18
HB:lebanese 5 NearEast HB:lebanese 5
HB:lambadi 1 SouthAsia HB:lambadi 1
HB:lahu 8 EastAsia HB:lahu 8
HB:kyrgyz 16 CentralAsia HB:kyrgyz 16
HB:kurumba 4 SouthAsia HB:kurumba 4
HB:kurmi 1 SouthAsia HB:kurmi 1
HB:kurd 6 Armenia/Iran HB:kurd 6
HB:kumyk 14 EastCaucasus HB:kumyk 14
HB:kshatriya 7 SouthAsia HB:kshatriya 7
HB:koryake 5 Siberia HB:koryake 5
HB:kol 16 SouthAsia HB:kol 16
HB:ket 2 Siberia HB:ket 2
HB:karnataka 8 SouthAsia HB:karnataka 8
HB:karitiana 11 Americas HB:karitiana 11
HB:kanjar 5 SouthAsia HB:kanjar 5
HB:kalash 23 CentralAsia HB:kalash 23
HB:jordanian 20 NearEast HB:jordanian 20
HB:japanese 28 EastAsia HB:japanese 28
HB:irish 7 NorthWestEurope HB:irish 7
HB:iranian 20 Armenia/Iran HB:iranian 20
HB:indianjew 8 CentralSouthAsia HB:indianjew 8
HB:indian 1 CentralSouthAsia HB:indian 1
HB:hungarian 19 NorthEastEurope HB:hungarian 19
HB:hezhen 8 EastAsia HB:hezhen 8
HB:hazara 22 CentralAsia HB:hazara 22
HB:hannchina 10 EastAsia HB:hannchina 10
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Table A.1 continued from previous page

cluster N region N by country

HB:han 34 EastAsia HB:han 34
HB:hakkipikki 3 SouthAsia HB:hakkipikki 3
HB:hadza 3 CentralAfrica HB:hadza 3
HB:greek 20 SouthEastEurope HB:greek 20
HB:gond 4 SouthAsia HB:gond 4
HB:germanyaustria 4 NorthWestEurope HB:germanyaustria 4
HB:german 30 NorthWestEurope HB:german 30
HB:georgian 20 WestCaucasus HB:georgian 20
HB:french 28 SouthWestEurope HB:french 28
HB:finnish 2 NorthEastEurope HB:finnish 2
HB:evenk 12 Siberia HB:evenk 12
HB:ethiopiant 5 NorthAfrica HB:ethiopiant 5
HB:ethiopiano 7 NorthAfrica HB:ethiopiano 7
HB:ethiopianjew 11 NorthAfrica HB:ethiopianjew 11
HB:ethiopiana 7 NorthAfrica HB:ethiopiana 7
HB:english 8 NorthWestEurope HB:english 8
HB:egyptian 12 NorthAfrica HB:egyptian 12
HB:dusadh 7 SouthAsia HB:dusadh 7
HB:druze 42 NearEast HB:druze 42
HB:dolgan 7 Siberia HB:dolgan 7
HB:dhurwa 1 SouthAsia HB:dhurwa 1
HB:dharkar 8 SouthAsia HB:dharkar 8
HB:daur 9 EastAsia HB:daur 9
HB:dai 10 EastAsia HB:dai 10
HB:cypriot 12 Cyprus HB:cypriot 12
HB:croatian 19 NorthEastEurope HB:croatian 19
HB:colombian 7 Americas HB:colombian 7
HB:chuvash 17 Chuvash HB:chuvash 17
HB:chukchi 5 Siberia HB:chukchi 5
HB:chenchu 4 SouthAsia HB:chenchu 4
HB:chechen 20 EastCaucasus HB:chechen 20
HB:chamar 10 SouthAsia HB:chamar 10
HB:cambodian 10 SouthAsia HB:cambodian 10
HB:buryat 15 EastAsia HB:buryat 15
HB:burya 2 Siberia HB:burya 2
HB:burusho 25 CentralAsia HB:burusho 25
HB:bulgarian 31 SouthEastEurope HB:bulgarian 31
HB:brahui 25 CentralAsia HB:brahui 25
HB:brahmin 11 SouthAsia HB:brahmin 11
HB:biakapygmy 21 CentralAfrica HB:biakapygmy 21
HB:bhunjia 1 SouthAsia HB:bhunjia 1
HB:bengali 1 SouthAsia HB:bengali 1
HB:belorussian 9 NorthEastEurope HB:belorussian 9



159

Table A.1 continued from previous page

cluster N region N by country

HB:bedouin 45 NearEast HB:bedouin 45
HB:basque 24 Basque HB:basque 24
HB:bantusouthafrica 8 Bantu HB:bantusouthafrica 8
HB:bantukenya 11 Bantu HB:bantukenya 11
HB:balochi 24 CentralAsia HB:balochi 24
HB:balkar 19 WestCaucasus HB:balkar 19
HB:armenian 35 Armenia/Iran HB:armenian 35
HB:altai 13 Siberia HB:altai 13
HB:adygei 17 WestCaucasus HB:adygei 17
HB:abhkasian 20 WestCaucasus HB:abhkasian 20
c1 39 SouthWestEurope Spain 24 France 10 Germany 3
c2 96 SouthWestEurope Spain 88 France 5 Belgium 2
c3 46 SouthWestEurope Spain 28 France 17 Belgium 1
c4 77 SouthWestEurope Spain 54 France 21 Italy 1
c5 9 SouthWestEurope Spain 5 France 4
c6 24 SouthCentralEurope Italy 23 Belgium 1
c7 96 SouthCentralEurope Italy 84 France 6 Germany 4
c8 48 SouthCentralEurope Italy 45 Germany 2 Belgium 1
c9 110 SouthCentralEurope Italy 103 Belgium 3 Germany 2
c10 23 NorthWestEurope Sweden 10 France 4 Germany 3
c11 27 NorthWestEurope Sweden 13 Germany 9 Norway 1
c12 37 NorthWestEurope Germany 15 Sweden 8 Italy 7
c13 18 NorthWestEurope Sweden 8 Germany 3 Spain 2
c14 18 SouthCentralEurope Italy 14 Belgium 1 Denmark 1
c15 30 SouthCentralEurope Italy 30
c16 116 SouthCentralEurope Italy 106 France 6 Germany 2
c17 26 SouthCentralEurope Italy 26
c18 98 SouthCentralEurope Italy 96 France 2
c19 41 SouthWestEurope France 22 Italy 18 Belgium 1
c20 142 SouthCentralEurope Italy 141 Germany 1
c21 47 SouthCentralEurope Italy 46 France 1
c22 13 NorthWestEurope Sweden 7 Germany 6
c23 64 NorthEastEurope Finland 58 Sweden 6
c24 34 NorthEastEurope Finland 30 Sweden 4
c25 58 NorthEastEurope Finland 57 Sweden 1
c26 27 NorthEastEurope Finland 25 Sweden 2
c27 45 NorthEastEurope Finland 45
c28 32 NorthEastEurope Finland 32
c29 89 NorthEastEurope Finland 83 Sweden 6
c30 62 NorthEastEurope Finland 59 Sweden 3
c31 63 NorthEastEurope Finland 56 Sweden 7
c32 82 NorthEastEurope Finland 80 Sweden 2
c33 30 NorthEastEurope Finland 30
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Table A.1 continued from previous page

cluster N region N by country

c34 23 NorthWestEurope Norway 8 Belgium 6 Germany 3
c35 77 SouthWestEurope France 76 Denmark 1
c36 16 NorthWestEurope Sweden 11 Germany 2 Norway 1
c37 84 NorthEastEurope Poland 54 Germany 17 Sweden 8
c38 134 NorthWestEurope Germany 128 Denmark 3 Poland 2
c39 146 NorthWestEurope Germany 136 Sweden 5 France 3
c40 71 NorthWestEurope Sweden 46 Norway 11 Denmark 8
c41 116 NorthWestEurope Germany 113 Sweden 2 Belgium 1
c42 93 NorthWestEurope Germany 82 Denmark 7 Sweden 4
c43 43 NorthWestEurope Germany 43
c44 55 NorthWestEurope Germany 52 Denmark 2 Belgium 1
c45 96 NorthWestEurope Germany 92 Belgium 2 Denmark 1
c46 118 NorthWestEurope Germany 111 Belgium 5 France 2
c47 122 NorthWestEurope Germany 105 France 7 Belgium 4
c48 157 NorthWestEurope Germany 151 Belgium 2 France 2
c49 162 NorthWestEurope Denmark 153 Norway 7 Sweden 2
c50 155 NorthWestEurope Denmark 140 Sweden 12 Norway 2
c51 87 SouthWestEurope France 84 Norway 1 Spain 1
c52 206 SouthWestEurope France 191 Belgium 7 Germany 5
c53 189 NorthWestEurope Belgium 181 France 5 Germany 2
c54 204 NorthWestEurope Belgium 203 Germany 1
c55 107 NorthWestEurope Belgium 107
c56 32 NorthWestEurope Sweden 23 Norway 9
c57 34 NorthEastEurope Finland 22 Sweden 12
c58 18 NorthWestEurope Sweden 15 Finland 2 Denmark 1
c59 44 NorthWestEurope Sweden 44
c60 77 NorthWestEurope Sweden 77
c61 73 NorthWestEurope Sweden 71 Norway 2
c62 30 NorthWestEurope Sweden 28 Finland 1 Norway 1
c63 90 NorthWestEurope Sweden 88 Norway 2
c64 140 NorthWestEurope Sweden 140
c65 212 NorthWestEurope Sweden 211 Norway 1
c66 74 NorthWestEurope Sweden 70 Denmark 4
c67 154 NorthWestEurope Sweden 154
c68 78 NorthWestEurope Sweden 77 Norway 1
c69 27 NorthWestEurope Norway 25 Sweden 2
c70 16 NorthWestEurope Norway 16
c71 21 NorthWestEurope Norway 21
c72 80 NorthWestEurope Norway 76 Sweden 4
c73 28 NorthWestEurope Norway 28
c74 67 NorthWestEurope Norway 67
c75 37 NorthWestEurope Norway 37
c76 92 NorthWestEurope Norway 91 Sweden 1
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cluster N region N by country

c77 87 NorthWestEurope Norway 78 Sweden 6 Denmark 3
c78 42 NorthWestEurope Norway 41 Sweden 1
c79 27 NorthWestEurope Norway 26 Sweden 1
c80 88 NorthWestEurope Norway 86 Sweden 2
c81 79 NorthWestEurope Norway 78 Sweden 1
c82 53 NorthWestEurope Norway 53
c83 53 NorthWestEurope Norway 52 Sweden 1
c84 58 NorthWestEurope Norway 58
c85 32 NorthWestEurope Norway 32
c86 36 NorthWestEurope Norway 36
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Table A.2: fastGLOBETROTTER inference on 86 Europeans clusters. The column “N” refers to number of samples in each cluster; “N by country”

are the top 2 major populations in each cluster followed by its number of samples; “conclusion” – type of admixture event inferred from
fastGLOBETROTTER; “date(95% CI)” – admixture date and its CI from 100 bootstrap resamplings; “prop1” – admixture proportion
contributed from “source1” or surrogates from the first side.

cluster N N by country conclusion
date

(95% CI )
prop1 source1 source2

c1 39 Spain 24 France 10 1-date 18(15-19) 0.14 HB:welsh, HB:yoruba, HB:biakapygmy HB:spanish,MS:UK,HB:scottish
c2 96 Spain 88 France 5 1-date-multiway 35(34-37) 0.21 HB:welsh, HB:mandenka, HB:maya HB:norwegian,HB:welsh,HB:basque
c3 46 Spain 28 France 17 1-date-multiway 51(49-53) 0.49 HB:welsh, HB:scottish, HB:croatian HB:basque,HB:french,HB:spanish
c4 77 Spain 54 France 21 1-date-multiway 39(37-40) 0.18 HB:welsh, HB:moroccan, HB:mandenka HB:welsh,MS:NIreland,HB:basque
c5 9 Spain 5 France 4 1-date 30(19-40) 0.21 HB:welsh, HB:french, HB:tsi HB:basque,HB:spanish,HB:welsh
c6 24 Italy 23 Belgium 1 1-date 37(34-40) 0.23 HB:greek, HB:welsh, HB:tuscan HB:sardinian,HB:southitalian,HB:french
c7 96 Italy 84 France 6 1-date 34(33-34) 0.17 HB:southitalian, HB:mandenka, HB:tsi HB:welsh,HB:northitalian,HB:croatian
c8 48 Italy 45 Germany 2 1-date-multiway 46(42-51) 0.19 HB:greek, HB:armenian, HB:maasai HB:germanyaustria,HB:southitalian,HB:bulgarian
c9 110 Italy 103 Belgium 3 1-date 45(43-46) 0.17 HB:greek, HB:armenian, HB:mandenka HB:french,HB:southitalian,HB:lithuanian
c10 23 Sweden 10 France 4 1-date-multiway 40(37-43) 0.2 HB:moroccan, HB:croatian, HB:tuscan HB:german,HB:french,HB:welsh
c11 27 Sweden 13 Germany 9 1-date-multiway 47(44-50) 0.49 HB:greek, HB:croatian, HB:kurd HB:lithuanian,HB:croatian,HB:russian
c12 37 Germany 15 Sweden 8 1-date-multiway 40(38-42) 0.39 HB:ukrainian, HB:croatian, HB:bulgarian MS:UK,HB:scottish,HB:lithuanian
c13 18 Sweden 8 Germany 3 1-date-multiway 32(29-34) 0.32 HB:greek, HB:hezhen, HB:welsh HB:romanian,HB:welsh,HB:tsi
c14 18 Italy 14 Belgium 1 1-date-multiway 45(39-51) 0.43 HB:welsh, HB:irish, HB:southitalian HB:westsicilian,HB:sardinian,HB:welsh
c15 30 Italy 30 1-date-multiway 53(50-57) 0.46 HB:french, HB:welsh, HB:northitalian HB:tsi,HB:armenian,HB:southitalian
c16 116 Italy 106 France 6 1-date-multiway 52(50-53) 0.17 HB:armenian, HB:tsi, HB:mandenka HB:french,HB:english,HB:lithuanian
c17 26 Italy 26 1-date-multiway 48(41-55) 0.45 HB:northitalian, HB:kurd, HB:mozabite HB:welsh,HB:tsi,MS:NIreland
c18 98 Italy 96 France 2 1-date-multiway 48(45-50) 0.43 HB:northitalian, HB:turkishe, HB:tsi HB:english,HB:northitalian,HB:scottish
c19 41 France 22 Italy 18 1-date 54(50-57) 0.16 HB:moroccan, HB:turkish, HB:greek HB:french,HB:english,HB:welsh
c20 142 Italy 141 Germany 1 1-date 54(52-57) 0.3 HB:northitalian, HB:tsi, HB:turkishe HB:french,HB:welsh,HB:northitalian
c21 47 Italy 46 France 1 1-date 56(52-60) 0.27 HB:turkishe, HB:tsi, HB:northitalian HB:french,HB:welsh,HB:northitalian
c22 13 Sweden 7 Germany 6 1-date-multiway 27(17-46) 0.41 HB:armenian, HB:georgian, HB:hezhen HB:greek,HB:armenian,HB:cypriot
c23 64 Finland 58 Sweden 6 1-date 56(55-59) 0.22 HB:russian, HB:lithuanian, HB:koryake HB:welsh,HB:german,HB:russian
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cluster N N by country conclusion
date

(95% CI )
prop1 source1 source2

c24 34 Finland 30 Sweden 4 1-date 52(50-55) 0.22 HB:russian, HB:lithuanian, HB:chuvash HB:welsh,HB:german,HB:scottish
c25 58 Finland 57 Sweden 1 1-date 61(59-63) 0.21 HB:russian, HB:nganassan, HB:daur HB:welsh,HB:norwegian,MS:NIreland
c26 27 Finland 25 Sweden 2 1-date 54(52-57) 0.19 HB:russian, HB:lithuanian, HB:nganassan HB:welsh,HB:german,MS:UK
c27 45 Finland 45 1-date 64(62-66) 0.2 HB:russian, HB:oroqen, HB:chuvash MS:UK,HB:german,HB:russian
c28 32 Finland 32 1-date 53(51-57) 0.2 HB:russian, HB:oroqen, HB:nganassan HB:welsh,HB:german,MS:UK
c29 89 Finland 83 Sweden 6 multiple-dates(1st) 15(43788) 0.28 HB:norwegian,HB:belorussian,HB:russian HB:german,HB:welsh,HB:russian

multiple-dates(2nd) 95(83-102) 0.28 HB:russian,HB:dolgan,HB:nganassan HB:german,HB:welsh,HB:russian
c30 62 Finland 59 Sweden 3 1-date 62(59-64) 0.23 HB:russian, HB:dolgan, HB:nganassan HB:welsh,MS:NIreland,HB:norwegian
c31 63 Finland 56 Sweden 7 1-date-multiway 60(58-62) 0.27 HB:russian, HB:dolgan, HB:oroqen MS:UK,HB:norwegian,HB:russian
c32 82 Finland 80 Sweden 2 1-date-multiway 63(61-66) 0.25 HB:russian, HB:oroqen, HB:nganassan HB:welsh,HB:norwegian,MS:NIreland
c33 30 Finland 30 1-date 51(39-55) 0.31 HB:russian, HB:mordovian, HB:dolgan MS:UK,HB:russian,HB:norwegian
c34 23 Norway 8 Belgium 6 1-date 27(24-29) 0.06 MS:NIreland, HB:tsi, HB:hadza HB:welsh,MS:NIreland,HB:norwegian
c35 77 France 76 Denmark 1 1-date 52(47-57) 0.1 HB:southitalian, HB:spanish, HB:tsi MS:UK,HB:french,HB:norwegian
c36 16 Sweden 11 Germany 2 1-date 37(34-40) 0.25 HB:daur, HB:lithuanian, HB:welsh HB:polish,HB:welsh,HB:croatian
c37 84 Poland 54 Germany 17 1-date 41(38-45) 0.22 HB:welsh, MS:NIreland, HB:tsi HB:belorussian,HB:croatian,HB:mordovian
c38 134 Germany 128 Denmark 3 1-date 25(23-26) 0.45 MS:UK, HB:german, HB:welsh HB:polish,HB:belorussian,HB:lithuanian
c39 146 Germany 136 Sweden 5 1-date 28(27-29) 0.43 HB:polish, HB:belorussian, HB:romanian HB:german,MS:UK,HB:french
c40 71 Sweden 46 Norway 11 1-date 32(29-35) 0.2 HB:ukrainian, HB:belorussian, HB:romanian MS:UK,HB:german,HB:welsh
c41 116 Germany 113 Sweden 2 1-date 23(20-26) 0.31 HB:polish, HB:ukrainian, HB:lithuanian HB:german,MS:UK,HB:welsh
c42 93 Germany 82 Denmark 7 1-date 26(24-28) 0.23 HB:polish, HB:ukrainian, HB:lithuanian HB:german,MS:UK,HB:welsh
c43 43 Germany 43 1-date 44(41-47) 0.16 HB:polish, HB:ukrainian, HB:armenian MS:UK,HB:german,HB:welsh
c44 55 Germany 52 Denmark 2 1-date 41(37-46) 0.12 HB:ukrainian, HB:lithuanian, HB:tsi HB:welsh,MS:UK,HB:german
c45 96 Germany 92 Belgium 2 1-date 42(39-45) 0.13 HB:ukrainian, HB:cypriot, HB:romanian MS:UK,HB:german,HB:welsh
c46 118 Germany 111 Belgium 5 1-date 49(47-51) 0.15 HB:romanian, HB:armenian, HB:moroccan MS:UK,HB:german,HB:french
c47 122 Germany 105 France 7 1-date 48(47-51) 0.23 HB:turkish, HB:belorussian, HB:northitalian HB:german,MS:UK,HB:french
c48 157 Germany 151 Belgium 2 1-date 42(39-43) 0.33 HB:polish, HB:hungarian, HB:croatian MS:UK,HB:german,HB:english
c49 162 Denmark 153 Norway 7 1-date 41(35-45) 0.15 HB:polish, HB:tsi, HB:kurd MS:UK,HB:welsh,HB:german
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Table A.2 continued from previous page

cluster N N by country conclusion
date

(95% CI )
prop1 source1 source2

c50 155 Denmark 140 Sweden 12 1-date 37(35-39) 0.14 HB:polish, HB:finnish, HB:croatian MS:UK,HB:welsh,HB:german
c51 87 France 84 Norway 1 1-date-multiway 57(55-60) 0.18 HB:spanish, HB:tsi, HB:southitalian MS:UK,HB:northitalian,HB:welsh
c52 206 France 191 Belgium 7 1-date-multiway 50(46-55) 0.09 HB:moroccan, HB:tsi, HB:sardinian HB:french,HB:welsh,HB:english
c53 189 Belgium 181 France 5 1-date 49(48-50) 0.13 HB:armenian, HB:northitalian, HB:greek MS:UK,HB:german,HB:english
c54 204 Belgium 203 Germany 1 1-date 49(48-50) 0.15 HB:greek, HB:northitalian, HB:moroccan MS:UK,HB:german,HB:welsh
c55 107 Belgium 107 1-date 49(47-51) 0.14 HB:northitalian, HB:greek, HB:cypriot MS:UK,HB:german,HB:welsh
c56 32 Sweden 23 Norway 9 1-date 40(38-42) 0.18 HB:russian, HB:norwegian, HB:lithuanian MS:UK,HB:norwegian,HB:welsh
c57 34 Finland 22 Sweden 12 1-date 43(41-45) 0.18 HB:russian, HB:lithuanian, HB:koryake HB:welsh,MS:UK,MS:NIreland
c58 18 Sweden 15 Finland 2 1-date 58(54-64) 0.2 HB:russian, HB:lithuanian, HB:belorussian MS:UK,HB:welsh,HB:german
c59 44 Sweden 44 1-date 30(29-32) 0.17 HB:norwegian, HB:belorussian, HB:russian MS:UK,HB:welsh,HB:norwegian
c60 77 Sweden 77 1-date 38(36-39) 0.13 HB:belorussian, HB:norwegian, HB:russian MS:UK,HB:german,HB:norwegian
c61 73 Sweden 71 Norway 2 1-date 42(40-44) 0.14 HB:norwegian, HB:belorussian, HB:koryake MS:UK,HB:welsh,HB:norwegian
c62 30 Sweden 28 Finland 1 1-date 30(27-33) 0.21 HB:belorussian, HB:russian, HB:mordovian MS:UK,HB:german,HB:welsh
c63 90 Sweden 88 Norway 2 1-date 40(37-43) 0.14 HB:belorussian, HB:norwegian, HB:russian MS:UK,HB:german,HB:norwegian
c64 140 Sweden 140 multiple-dates(1st) 20(17-25) 0.1 HB:lithuanian,HB:russian,HB:belorussian MS:NIreland,HB:welsh,HB:norwegian

multiple-dates(2nd) 89(78-106) 0.13 HB:russian,HB:mordovian,HB:norwegian HB:lithuanian,HB:norwegian,HB:welsh
c65 212 Sweden 211 Norway 1 multiple-dates(1st) 17(13-22) 0.37 HB:russian,HB:norwegian,HB:belorussian HB:orcadian,HB:chukchi,HB:croatian

multiple-dates(2nd) 73(68-84) 0.15 HB:croatian,HB:mordovian,HB:norwegian HB:lithuanian,HB:norwegian,HB:welsh
c66 74 Sweden 70 Denmark 4 1-date 42(38-46) 0.13 HB:polish, HB:lithuanian, HB:ukrainian MS:UK,HB:german,HB:welsh
c67 154 Sweden 154 1-date 43(35-48) 0.14 HB:belorussian, HB:ukrainian, HB:tsi MS:UK,HB:german,HB:welsh
c68 78 Sweden 77 Norway 1 1-date 39(36-44) 0.12 HB:croatian, HB:lithuanian, HB:norwegian MS:UK,HB:german,HB:norwegian
c69 27 Norway 25 Sweden 2 1-date 21(18-23) 0.1 HB:mordovian, HB:russian, HB:lithuanian HB:norwegian,HB:welsh,MS:UK
c70 16 Norway 16 1-date 42(38-47) 0.15 HB:norwegian, HB:russian, HB:mordovian MS:UK,HB:norwegian,HB:welsh
c71 21 Norway 21 1-date-multiway 38(35-41) 0.13 HB:norwegian, HB:russian, HB:nganassan HB:welsh,HB:norwegian,MS:NIreland
c72 80 Norway 76 Sweden 4 1-date 39(37-41) 0.1 HB:norwegian, HB:russian, HB:nganassan MS:UK,HB:norwegian,MS:NIreland
c73 28 Norway 28 1-date 36(33-38) 0.12 HB:norwegian, HB:russian, HB:oroqen HB:welsh,HB:norwegian,MS:NIreland
c74 67 Norway 67 1-date-multiway 30(28-31) 0.12 HB:norwegian, HB:russian, HB:koryake MS:UK,HB:norwegian,HB:welsh
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Table A.2 continued from previous page

cluster N N by country conclusion
date

(95% CI )
prop1 source1 source2

c75 37 Norway 37 1-date 51(49-54) 0.13 HB:norwegian, HB:welsh, HB:lithuanian HB:welsh,HB:norwegian,MS:NIreland
c76 92 Norway 91 Sweden 1 1-date 37(35-39) 0.14 HB:norwegian, HB:belorussian, HB:russian MS:UK,HB:norwegian,HB:german
c77 87 Norway 78 Sweden 6 1-date-multiway 48(45-52) 0.2 HB:norwegian, HB:welsh, HB:polish HB:welsh,MS:NIreland,HB:norwegian
c78 42 Norway 41 Sweden 1 1-date 40(35-44) 0.07 HB:belorussian, HB:greek, MS:NIreland MS:UK,HB:german,MS:NIreland
c79 27 Norway 26 Sweden 1 1-date-multiway 49(43-54) 0.48 HB:norwegian, HB:hadza, HB:selkup HB:welsh,HB:orcadian,HB:basque
c80 88 Norway 86 Sweden 2 1-date-multiway 37(33-40) 0.42 HB:welsh, MS:NIreland, HB:orcadian HB:norwegian,HB:nganassan,
c81 79 Norway 78 Sweden 1 1-date-multiway 39(36-43) 0.12 HB:norwegian, HB:russian, HB:nganassan HB:welsh,HB:norwegian,MS:NIreland
c82 53 Norway 53 1-date 50(43-59) 0.03 HB:kurumba, HB:naxi, HB:she HB:norwegian,HB:welsh,MS:NIreland
c83 53 Norway 52 Sweden 1 1-date-multiway 37(32-43) 0.49 HB:norwegian, HB:russian, HB:nganassan HB:welsh,MS:NIreland,HB:tsi
c84 58 Norway 58 1-date-multiway 55(52-59) 0.19 HB:norwegian, HB:koryake, HB:oroqen MS:UK,HB:welsh,HB:norwegian
c85 32 Norway 32 1-date-multiway 32(23-41) 0.47 HB:welsh, MS:UK, MS:NIreland HB:norwegian,HB:welsh,HB:german
c86 36 Norway 36 1-date-multiway 50(46-56) 0.26 HB:welsh, HB:norwegian, MS:NIreland HB:ukrainian,MS:Nireland,HB:russian
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Table A.3: fastGLOBETROTTER inference on 10 Greek clusters. The column “cluster” shows 10 Greek sub-clusters; “N” refers to number of samples

in each cluster; “conclusion” – type of admixture event inferred from fastGLOBETROTTER; “date(95% CI)” – admixture date and its CI
from 100 bootstrap resamplings; “prop1” – admixture proportion contributed from source1 or surrogates from the first side. “% within
source1” % of contribution from each surrogate in source1.

cluster N conclusion date(95% CI) prop1 % within source1 % within source2

c1 57 1-date-multiway 25(17-32) 0.46 HB:armenian(50%) HB:syrian(15%) HB:cypriot(12%) HB:romanian(63%) HB:northitalian(11%)

c2 182 1-date 36(33-38) 0.44 MS:Poland(34%) HB:croatian(19%) HB:northitalian(16%) HB:romanian(15%) HB:lebanese(42%) HB:southitalian(13%) HB:armenian(10%)

c3 20 1-date 33(16-43) 0.4 MS:Poland(26%) HB:bulgarian(23%) HB:romanian(21%) HB:croatian(13%) HB:northitalian(12%) HB:armenian(24%) HB:cypriot(17%) HB:southitalian(15%) HB:lebanese(10%)

c4 58 1-date-multiway 33(29-44) 0.41 HB:jordanian(21%) HB:armenian(20%) HB:cypriot(12%) HB:moroccan(10%) HB:bulgarian(24%) HB:northitalian(17%) HB:romanian(15%)

c5 99 1-date 39(36-46) 0.49 HB:lebanese(47%) HB:southitalian(16%) HB:cypriot(11%) MS:Poland(38%) HB:romanian(27%) HB:croatian(23%)

c6 134 1-date 37(33-40) 0.49 MS:Poland(34%) HB:croatian(24%) HB:romanian(22%) HB:northitalian(13%) HB:lebanese(47%) HB:southitalian(10%) HB:cypriot(10%) HB:tsi(10%)

c7 31 1-date-multiway 25(18-32) 0.11 HB:southitalian(35%) HB:cypriot(33%) HB:tsi(11%) HB:romanian(76%) HB:bulgarian(10%)

c8 12 1-date-multiway 23(19-29) 0.11 HB:ethiopiano(23%) HB:ethiopianjew(12%) HB:moroccan(11%) HB:makrani(10%) HB:romanian(31%) HB:meghawal(21%) HB:armenian(12%)

c9 24 1-date 25(21-34) 0.48 MS:Poland(56%) HB:belorussian(36%) HB:romanian(32%) HB:turkishe(13%) HB:southitalian(12%) HB:cypriot(10%)

c10 14 1-date 45(29-69) 0.36 HB:tsi(18%) HB:armenian(18%) HB:jordanian(16%) MS:Germany(39%) HB:welsh(15%) MS:Belgium(11%)
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