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Abstract—Channel estimation is of crucial importance in
massive multiple-input multiple-output (m-MIMO) visible light
communication (VLC) systems. In order to tackle this prob-
lem, a fast and flexible denoising convolutional neural network
(FFDNet)-based channel estimation scheme for m-MIMO VLC
systems was proposed. The channel matrix of the m-MIMO VLC
channel is identified as a two-dimensional natural image since
the channel has the characteristic of sparsity. A deep learning-
enabled image denoising network FFDNet is exploited to learn
from a large number of training data and to estimate the m-
MIMO VLC channel. Simulation results demonstrate that our
proposed channel estimation based on the FFDNet significantly
outperforms the benchmark scheme based on minimum mean
square error.

Index Terms—Channel estimation, m-MIMO, visible light
communication, FFDNet, deep learning.

I. INTRODUCTION

W ITH the ever increasing mobile data traffic, massive
multiple-input multiple-output (m-MIMO) is promis-

ing to enhance the communication capacity and the spectrum
efficiency of the existing visible light communication (VL-
C) systems [1]-[3]. However, such benefits may be limited
due to the inaccuracy of channel estimation [4]. Thus, an
accurate channel estimation is of crucial importance in the
m-MIMO VLC systems. However, when the dimensions of
the channel matrix become large, it is extremely challenging
to design efficient channel estimation techniques and achieve
an accurate channel estimation for the m-MIMO systems [5]-
[6]. Moreover, the conventional channel estimation techniques
for m-MIMO systems such as minimum mean square error
(MMSE) are typically dependent on the statistical properties of
the channel and specific prior information [7]-[8]. In practice,
it is difficult to obtain those statistical properties, especially
when the number of transmitters and that of receivers are large.
Therefore, the performance of those conventional channel
estimation methods are not always optimal.

In order to solve these problems, deep learning (DL) has
attracted an increasing attention and has great potential to be
applied for channel estimation of the wireless communication
systems [9]-[11]. Specifically, in [9], a DL-based signal detec-
tor without requiring prior knowledge about the channel state
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information or background noise was proposed for cooperative
detection. And in [10], a DL-based scheme was proposed to
achieve the super-resolution channel estimation and direction-
of-arrival estimation in m-MIMO systems. Since the line-of-
sight (LOS) link communication is dominant in VLC systems,
the m-MIMO VLC channel has the characteristic of sparsity.
This is similar to that in [11] where the mmWave m-MIMO
channel matrix was regarded as a two-dimensional (2D) noise-
free natural image by exploiting the sparsity of the channel.
Then a convolutional neural network (CNN)-based image
denoising network was exploited to estimate the m-MIMO
mmWave channel. Motivated by those facts, the m-MIMO
VLC channel matrix can be also identified as a 2D noise-free
natural image.

Based on the above-mentioned analyses, it is feasible to
utilize the theory of image denoising in DL for estimating the
m-MIMO VLC channel. However, the state-of-the-art CNN-
based image denoising methods are still limited in flexibility
and efficiency [12]. To overcome the drawbacks of the existing
CNN-based image denoising methods, a image denoising
network called fast and flexible denoising convolutional neural
network (FFDNet) was proposed in [12]. FFDNet has the
superiority in terms of both denoising performance and com-
putation efficiency. Moreover, FFDNet performs effectively
and flexibly on the denoising of images that are corrupted
by additive white gaussian noise (AWGN). Therefore, it is
promising to apply FFDNet into the m-MIMO VLC systems
for realizing the channel estimation.

Motivated by the above-mentioned facts, a channel estima-
tion scheme is proposed based on FFDNet in a m-MIMO VLC
system. The main contributions of our work are summarized
as follows. A m-MIMO VLC system using a transceiver array
which is composed of massive LEDs and PDs is considered.
Then, the concept of image denoising is exploited and a
trained FFDNet network is used to estimate the m-MIMO VLC
channel. Moreover, the performance of channel estimation
using FFDNet is evaluated and compared with that obtained by
the traditional MMSE channel estimation scheme. Simulation
results demonstrate that the performance of FFDNet with a
fixed input noise level is better than that of MMSE at high
real noise levels. Furthermore, the performance gain can be
further improved by FFDNet with a tunable input noise level.

The rest of this paper is organized as follows. Section II
comprehensively presents the m-MIMO VLC systems and the
architecture of FFDNet image denoising network. In Section
III, simulation results are presented to evaluate the scheme.
Finally, the paper concludes with Section IV.
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II. CHANNEL AND FFDNET NETWORK

A. System Scenario and Channel Model
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Fig. 1: The m-MIMO VLC system model.

In this paper, a m-MIMO VLC system is considered with
Nt light emitting diodes (LEDs) as the transmitters and Nr
photo detectors (PDs) as the receivers. It is assumed that the
specifications and performance of all LEDs are identical, as are
the PDs. As shown in Fig. 1, the LED-array plane is parallel
to the PD-array plane, and all LEDs and PDs are arranged
with an equal interval [13]. And the vertical distance between
the LED-array and the PD-array is L.
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Fig. 2: The VLC channel model.

The current settings of the m-MIMO VLC channel is
modeled as the LOS as shown in Fig. 2, since multipath delays
resulting from reflections and defuse refractions are typically
negligible in the m-MIMO VLC scenario [14]. The channel
gain hij between the ith LED and the jth PD is given by
[15]

hij =
Ar

dij
2Ro (ϕij)Ts (φij) g (φij) cos (φij) , (1)

where i = 1, 2, 3, ..., Nt and j = 1, 2, 3, ..., Nr. Ar represents
the effective collection area of the receiver PD. dij denotes
the distance between the ith transmitting LED and the jth
receiving PD. φij and ϕij represent the incidence angle and the
irradiance angle, respectively. Ts (φij) is the gain of the optical
filter, and g (φij) denotes the gain of the optical concentrator
(OC), which can be calculated by

g (φij) =

{
n2

sin2(φoc)
, if 0 ≤ φij ≤ φoc,

0, otherwise φij > φoc,
(2)

where φoc is the field of view (FOV) of the PD. n denotes
the refractive index of OC. Moreover, Ro (ϕij) represents the
Lambertian radiant intensity of the transmitting LEDs, which
can be expressed as

Ro (ϕij) =
m+ 1

2π
cosm (ϕij) , (3)

where m is the order of Lambertian emission, which is given
by

m = − ln (2)

ln (cos (ϕsemi))
, (4)

where ϕsemi represents the LED transmitter semi-angle at a
half power level.

Motivated by the work in [11], after obtaining the channel
matrix H of the m-MIMO VLC system, the channel matrix
can be treated as a noise-free channel image x with a size w×l.
And it becomes a noisy channel image y of size w × l after
it is corrupted by AWGN with real noise level σo. Then the
noisy channel image y is input to a trained FFDNet network
to estimate the channel.

B. The FFDNet Architecture
As shown in Fig. 3 at the top of the next page, the first

layer of FFDNet is a reversible downsampling process which
reshapes the noisy channel image y into four downsampled
sub-images with size w

2 ×
l
2 × 4. The downsampling process

can significantly improve the training speed without reducing
the modeling ability. Moreover, different from the denoising
convolutional neural network (DnCNN), the denoising on
downsampled sub-images can effectively increase the receptive
field without employing the dilated convolution and lead
to a moderate network depth [12]. After the operation of
downsampling, a tunable noise level map M with the input
noise level1 σ is combined with the downsampled sub-images
to establish a tensor ỹ with a size w

2 ×
l
2×(4 + 1) as the input

of the CNN.
With the tensor ỹ as input, the following layer is a CNN

with the depth De. As shown in Fig. 3, in order to effectively
speed up the training process and improve the denoising per-
formance of FFDNet, each layer in the CNN is composed of a
specific combination of three types of operations: convolution
(Conv), rectified linear units (ReLU) and batch normalization
(BN) [12]. The first convolution layer “Conv+ReLU” uses
64 filters with a size 3 × 3 to generate 64 feature maps,
and ReLU is adopted for nonlinearity. The middle layers
“Conv+BN+ReLU” adopt 64 filters with a size 3 × 3 × 64
and BN is added between the operations of convolution and
the ReLU. And the last layer “Conv” uses a filter with the size
3× 3× 64 to reconstruct the output. Furthermore, after each
convolution, zero-padding is employed to guarantee that the
size of the feature maps is not changed. After the CNN, an
upscaling operation is exploited as the reverse process of the
downsampling process applied in the input stage to produce
the denoised channel image x̃ of size w × l.

1σ is the noise level of the noise level map M which is used to control
the trade-off between noise reduction and detail preservation. σo is the noise
level of the AWGN that added to the channel matrix of the m-MIMO VLC
system.
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Fig. 3: The system architecture of FFDNet.

C. The Noise Level Map

Most of the model-based denoising methods aim to solve
the problem, given as [12]

x̃ = arg min
x

1

2σ2
‖y − x‖2 + λΦ (x) , (5)

where 1
2σ2 ‖y − x‖2 is the data fidelity term with the input

noise level σ, and Φ (x) represents the regularization term
associated with image prior. λ is used to control the balance
between the data fidelity term and the regularization term. In
order to solve this problem, an implicit function can be defined
as [12]

x̃ = F (y, σ, λ; Θ) , (6)

where Θ is the trainable parameters in CNN. Since λ can be
equal to σ, eq. (6) can be rewritten as

x̃ = F (y, σ; Θ) . (7)

In this case, the input noise level σ can also control the
balance between the data fidelity term and the regularization
term. And these model-based methods are flexible in image
denoising by setting various input noise levels. Thus it is
promising to exploit CNN to learn the explicit mapping of
eq. (7) which takes y and σ as inputs. However, y and σ
cannot be fed into CNN directly since the dimensions of them
are different. Therefore, in the FFDNet, a tunable noise level
map M which has the same dimension with y is utilized. And
all the elements of M are σ. Then the implicit function can
be further written as

x̃ = F (y,M; Θ) . (8)

D. Dataset Generation and Network Training

In order to train the FFDNet network, it is necessary to
obtain Np training data {(yk,Mk; Hk)}Np

k=1. Firstly, we obtain
the channel matrix Hk by implementing the m-MIMO VLC
channel and treat it as a noise-free channel image. Secondly,
the noise-free channel image Hk is added with AWGN that has
zero mean and variance (σo/255)

2 to form the noisy channel
image yk. Mk is the noise level map. In order to keep the
balance between complexity and performance, similar to the
parameter settings in [12], the depth of the network is set as
15 and it has a receptive field of 62 × 62. The patch size is
set to 70 × 70 since it should be larger than the receptive
field of FFDNet. Then the noisy patches are obtained by
adding AWGN to the noise-free patches. The noisy patches
and Mk are input into the CNN. Finally, during the network

training, the adaptive moment estimation algorithm is adopted
to optimize the FFDNet by minimizing the loss function given
as

L (Θ) =
1

2Np

Np∑
k=1

‖F (yk,Mk; Θ)− xk‖2. (9)

III. SIMULATION RESULTS

In this section, in order to effectively reflect the accuracy
of channel estimation by FFDNet, the simulation results are
given to evaluate the peak signal to noise ratio (PSNR) per-
formance of channel estimation achieved with FFDNet in the
m-MIMO VLC systems. Moreover, the achieved performance
is compared with those obtained with the traditional channel
estimation scheme based on MMSE.

Table 1: BASIC SIMULATION PARAMETERS

Description Notation Value
The size of the room lr × wr × hr 8m× 8m× 4m

Transmitter semi-angle ϕsemi 50 ◦

LED power P 0.02W
FOV of the PD φoc 45 ◦

Physical area of PD Ar 1 cm2

Gain of optical filter Ts (φij) 1
Refractive index of OC n 1.5

Based on the basic parameters of the m-MIMO VLC
system shown in Table 1 [15], a number of channel images
are obtained by implementing the m-MIMO VLC systems.
Some of these images are used as the training data of the
FFDNet network and the remaining images are exploited as
the testing data. After the training and testing of the network,
the performance of FFDNet for the channel estimation of the
m-MIMO VLC system is presented and evaluated. Without
loss the generality, the size of the transceiver array Nt ×Nr
is set to 128 × 128 or 256 × 256. And Fig. 4 is given to
illustrate the noise level sensitivity curves of FFDNet under
both transceiver array sizes.

As shown in Fig. 4, the PSNR is demonstrated by varying
different real noise levels σo ∈ [0, 50] for the specific noise
level maps with σ = 5, 15, 25, 50. It can be seen that the
PSNR value begins to decrease obviously when the real noise
level σo is larger than the input noise level σ. And the PSNR
is decreased with the increase of σo. Therefore, in practical
applications when FFDNet is exploited to estimate the m-
MIMO VLC channel, it is better to choose an appropriate
σ which is larger than the current σo to achieve a satisfactory
noise reduction. Moreover, it can also be seen that the PSNR
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Fig. 4: The PSNR performance of channel estimation achieved
by FFDNet with different sizes of the transceiver array.

values for the specific σ in Fig. 4 (b) are larger than those for
the same specific σ in Fig. 4 (a). This is because the number
of LEDs and PDs in the transceiver array of the m-MIMO
VLC system increases and the array becomes more dense. In
this case, the channel matrix has a more obvious sparsity, and
its feature information is closer to the 2D natural image. Thus,
the channel estimation performance with the FFDNet network
based on the image denoising is better.

In order to evaluate the performance of channel estimation
with FFDNet in the m-MIMO VLC system, based on the same
settings as in Fig. 4 (b), Figs. 5 and 6 are given to compare
the performance achieved by FFDNet with those obtained by
the traditional channel estimation scheme based on MMSE.
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Fig. 5: The PSNR performance of channel estimation achieved
by FFDNet with a fixed σ and that obtained by MMSE.

As shown in Fig. 5, the PSNR performance of the curve
named FFDNet-15 is bascically better than that of MMSE
under different σo. Although the PSNR values of MMSE are
larger than those obtained by FFDNet in the case of the low σo
region, the performance of FFDNet is still better than that of
MMSE at high σo. Moreover, the biggest advantage of FFDNet
is to exploit a variable σ to cope with the interference of
different σo. Therefore, we set an appropriate σ in FFDNet
for the current σo and compare with the results of MMSE. As
shown in Fig. 6, a more satisfactory denoising effect than that
of MMSE can be achieved by FFDNet. And it can be seen
that the advantages of FFDNet become more obvious as the
σo increases.

IV. CONCLUSION

A FFDNet-based channel estimation scheme was proposed
to estimate the channel of a m-MIMO VLC system. In order to
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Fig. 6: The PSNR performance of channel estimation achieved
by FFDNet with a tunable σ and that obtained by MMSE.

realize it, the channel matrix was established as a 2D natural
image. The training method for the FFDNet was provided.
Simulation results have shown the superiority of our proposed
FFDNet-based channel estimation scheme compared with the
existing MMSE scheme.
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