
An ECMS-based powertrain control of a parallel
hybrid electric forklift

Catalin Stefan Teodorescu
Flanders Make

Leuven, Belgium
stefan.teodorescu@flandersmake.be

Steve Vandenplas
Flanders Make

Leuven, Belgium
steve.vandenplas@flandersmake.be

Bruno Depraetere
Flanders Make

Leuven, Belgium
bruno.depraetere@flandersmake.be

Keivan Shariatmadar
Advanced Engineering

Dana – Belgium NV
Brugge, Belgium

keivan.shariatmadar@dana.com

Thomas Vyncke
Advanced Engineering

Dana – Belgium NV
Brugge, Belgium

thomas.vyncke@dana.com

Joost Duflou
Dept. Mechanical Engineering

KU Leuven
Leuven, Belgium

joost.duflou@kuleuven.be

Ann Nowé
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Abstract—In this paper we focus on the supervisory control
problem of a parallel hybrid electric vehicle (HEV): minimize
fuel consumption while ensuring self-sustaining State-of-Charge
(SoC). We reapply the state of the art methodology by comparing
optimal results of Dynamic Programming (DP) against a real-
time control candidate. After careful selection, we opted for an
Equivalent Consumption Minimization Strategy (ECMS) based
approach for the following reasons: (i) results are quite remark-
able with less than 5% fuel usage increase when compared to
DP; (ii) simple and intuitive tuning of control parameters; (iii)
readily usable for code generation (prototyping).

Topics that distinguish this article from others in the liter-
ature include: (i) the usage of trapezoidal rule of integration
implementing DP and ECMS; consequently, the offline simulation
results are intended to be more precise and representative when
compared against the more common, often used rectangular rule;
(ii) a particular post-processing procedure of the recorded driving
cycle data based on physical interpretation; it allows consistent
offline simulations with quite high sampling period (in the order
of seconds); (iii) tuning of control parameters in such a way that
control system is robust towards new, unknown, unpredictable
but closely resembling driving cycles.

In particular, we focus on the supervisory control of a forklift
truck. The real-time control is able to compute: (i) the power split
(i.e. a balanced usage between an internal combustion engine and
a supercapacitor); (ii) the drivetrain control (i.e. automatic gear
shifting and clutching). Numerous numerical implementation
issues are discussed along our presentation.

Index Terms—automotive application, hybrid electric vehicles,
energy management, supervisory control, dynamic programming,
real-time control

I. INTRODUCTION

Hybrid electric vehicles (HEV) are attractive nowadays
because of their ability to achieve reduced fuel consumption
while maintaining similar performance when compared to
conventional vehicles. Some of the key features that make
HEV successful can be cited:
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Fig. 1: Schematic diagram of the powertrain of an off-highway
hybrid forklift truck; for simplicity reasons, not all compo-
nents are illustrated (e.g. the differential, motor reduction are
omitted).

• ability to use multiple power sources. Most often one finds
two: a downsized conventional internal combustion engine
(ICE) together with an electric power source;
• usage of smaller ICE leads to reduced particulate matter

emissions and consequently compliance with regulations
worldwide;
• ability to store regenerative power, instead of wasting it as

conventional vehicles do. Ideally, once the driver pushes the
brake pedal all this power is stored.

However, there is a cost to be paid: these complex machines
require more advanced control than conventional vehicles.

This article is dedicated to the energy management problem,
also called supervisory control in [1]–[3], for a specific parallel
HEV depicted in Fig. 1. This choice for a parallel HEV is also
reflected in the references section.

The post-transmission parallel HEV forklift illustrated in
Fig. 1 uses two power sources that can be used simultaneously:
an ICE and a supercapacitor (SC). The arrows indicate power



distribution, with the following conventions: negative regen-
erative power can be transmitted from the load (i.e. wheels
of the vehicle) towards the SC which can store it for later
usage; positive generative power can be transmitted from ICE
towards transmission (TE), which can be used: (i) to charge
the SC, and/or (ii) to drive the load; positive generative power
can be transmitted from the SC towards TE and then along
the path towards the load. To summarize, note the power flow
can be uni- or bi-directional between these components.

A. Optimal control problem

The optimal fuel consumption problem can be formulated
as follows:∥∥∥∥ min

u(t∈[t0,te])
J =

∫ te

t0

ṁ(τ, u(τ)) dτ (1a)∥∥∥∥subject to:∥∥∥ |PSC(t)| ≤ Pmax
SC (1b)∥∥∥ SoC(te) ∈ Ω(SoC ref, ε) (1c)∥∥∥ ˙SoC(t) = −PSC(t)

Emax
SC

(1d)∥∥∥ SoCmin ≤ SoC(t) ≤ SoCmax (1e)∥∥∥ GE(t) = GEreq(t−∆tGS) (1f)∥∥∥ CL(t) = CLreq(t−∆tCL) (1g)∥∥∥∥ power balance static equality equations including
losses along powertrain path

(1h)∥∥∥∥∥ instantaneous torque and speed inequality con-
straints on each powertrain component

(1i)

where the control actions

u(t) = [PSC(t), GEreq(t−∆tGS), CLreq(t−∆tCL)] (2)

constitute the optimization variables. The internal state vari-
ables

x(t) = [SoC(t), GE(t), CL(t)] . (3)

The cost function J in (1a) is defined using the integral of
fuel rate ṁ over a finite time-horizon. The values t0 and te
represent the starting and the ending time, respectively, of the
driving cycle load data. The latter is specified in terms of speed
and torque profiles (ωload(t), Tload(t)).

The constraint (1b) imposes bounds on the power delivered
to and from the SC. For simplicity, we considered symmetric
bounds, where Pmax

SC corresponds to maximum power.
Let us now detail one-by-one, the constraints from (1c),

(1d), (1e). They are responsible of State-of-Charge (SoC),
defined as the ratio between available electric energy ESC(t)
and maximum electric energy Emax

SC :

SoC(t) =
ESC(t)

Emax
SC

∈ [0, 1] (4)

A simplified electric circuit model of SC is used, by assuming
the voltage to be constant. The electric energy is governed by
the equation:

ĖSC(t) = −PSC(t) (5)

The constraint (1c) expresses a desired self-sustaining SoC
property: we want that by the end of the driving cycle both
power sources are available and, in particular, the electrical
power source is not lost. Moreover it should be in an ε-
neighborhood of a desired reference value SoC ref; we call
it an Ω-set. This is a softer constraint, easier to cope with in
real-time (RT) control, when compared to the alternative of
using an equality between SoC(te) and SoC ref.

The equation (1d) expresses the dynamics of the SoC.
The inequality constraint (1e) is a guarantee that electric

energy inside the SC stays within admissible bounds. Too low
SoC values put the SC in a situation where it cannot deliver
full power Pmax

SC any more. Often SoCmin is chosen around
0.25, while SoCmax equal to 1 corresponds to fully charged
SC.

In order to introduce (1f)-(1g) we need to give an insight
on the transmission model. It consists of a clutch in series
with multiple parallel gears that can be acted one at a time.
This is depicted in Fig. 2. The role of the clutch is to isolate
(decouple) the ICE on the driveline path, thus allowing the
vehicle to run with only one power source, namely the SC.
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𝑪𝑳 𝒕

GEARS
𝑮𝑬 𝒕

gear1

gear2

gear3

Input shaft
(towards ICE)

Output shaft 
(towards SC and load)

Fig. 2: Transmission model.

The equation (1f) expresses the fact that gear status GE(t)
is a delayed version of the request signal GEreq(t) that was
made in the past; both take discrete values; ∆tGS is the overall
time needed to do gear shifting (in the order of seconds).

The equation (1g) translates the relation between clutch
status CL(t) and the request CLreq(t) that was made in the
past; both take binary values corresponding to these states:

(i) engaged, allowing for power to be transmitted from the
ICE towards SC and load;

(ii) disengaged, leaving the ICE isolated from the rest of the
powertrain; consequently, the HEV can only be driven in
electric-mode.

For this transmission, the overall time ∆tCL required by
clutch action to become effective is such that ∆tCL ≤ ∆tGS.

The set of constraints (1h) ensure drivability requirement
(see [4]).



Finally, the last set of constraints (1i) make sure that each
powertrain component is running in its admissible operating
range. For safety reasons, the torques and speeds on the shafts
cannot exceed specific values specified by each manufacturer.

B. Methodology

The state of the art methodology in [1], [3], [5]–[10] for
the design of real-time control consists of 3 steps that will be
recalled hereafter.

1) Control-oriented plant model: The powertrain model
consists of a succession of mechanical components (like the
differential, transmission, clutches, gears, motor reduction,
etc.) and electrical ones (like supercapacitor, etc.) that are
coupled together. Using input-output power balance static
equations that also take into account power losses, one can
build a simplified model. It is representative for steady-
state behavior, while neglecting transient dynamics (e.g. ICE
dynamics due to inertia). For control purpose, it is more useful
to build a so-called backward-facing model (see [11, §12]):
given instantaneous driving cycle load, i.e. a fixed pair of
(ωload(t), Tload(t)) values, the model should be able to provide
all feasible combinations in terms of internal states and control
actions of the powertrain components. Then, it is the task of
the supervisory control to choose the most optimal one. In
practice, lookup tables are used to build these models, most
of them consisting of efficiency loss maps (ICE, TE, SC, etc.)
that are experimentally measured.

The table below summarizes specifications of the parallel
HEV used, namely a modified series forklift truck Kalmar
DCE120-12.

Diesel ICE 160 kW max power
Supercapacitor (SC) 104 kW max power
Transmission DANA TE15, 3 steps automatic
Mass of vehicle 15600 kg
Max payload vehicle 12000 kg

2) Model-based control designs: Supervisory control can
be divided into two classes:
(i) offline, like Dynamic Programming (DP), and
(ii) online, real-time implementable.

The DP algorithm in [12] is a step-by-step procedure
consisting of a systematic exploration of all possible solutions
in state-space. Gradually, only the optimal trajectories are
being kept while the others are being disregarded. Eventually
the global optimal control solution is computed.

In particular, generic matlab functions implementing DP
exist. E.g., in [13], [14] they were applied to the parallel HEV
control problem.

Concerning the second class, numerous real-time strategies
are presented in the literature, some of which include:
• a gear-shifting and clutching strategy in [15], based on

a predefined map having points that are optimized offline
using DP;
• using an approach similar to the so-called data mining tech-

niques, authors in [5] extract rules by exploring and seeking
for structure inside the DP results. Criticism includes the

fact that in general, there is no guarantee that clear patterns
exist at all. Moreover, assuming a priori they do exist:
(i) these patterns could be very difficult to be identified
and later on modeled, (ii) once identified on a particular
HEV, there is no guarantee that they will be present in
combination with another driving cycle or another vehicle,
so this methodology might lack scalability.
• heuristic control in [3], [9]; H∞ control in [9].
In addition to them, the family of Equivalent Consumption
Minimization Strategy (ECMS) is quite popular nowadays. We
mention the works of [1], [6], [7], [9], [10], [16] and the book
[3]: the main difference comes from the choice of tuning the
control parameters. In this paper, we address the same topic
and focus exclusively on ECMS.

3) Selection of control designs: The widely used method-
ology that is also applied in this article can be summarized as
follows. On the one hand we have DP which is used:
• for benchmarking purpose: it provides the global optimal

control action; later on, the proposed real-time control
strategies are compared against DP in order to check their
performance;
• to check feasibility and compatibility between driving cycles

data and the HEV model: if DP cannot reproduce a given
driving cycle then we know for sure that there is no point
in looking further for a real-time control strategy;
• to better understand and gain insight of the best control

action. As mentioned above, some authors attempted to
replicate it for online usage, by extracting rules.

Apart running slow, the main drawback of DP is the fact
of being acausal, making it unsuited for RT usage: it needs
knowledge of the future (driving cycle) in order to take
decisions concerning the present. In practice, this information
might not be available. Moreover, DP control decisions are
duty cycle-dependent and once applied on another driving
cycle, there is no guarantee that decisions are still optimal.

Contrary to DP, ECMS requires knowledge of the present,
instantaneous driving cycle data only, no future preview is
needed. It is formulated as an instantaneous optimization
problem:

min
u(t)

PICE(t) + s(t)PSC(t) (6)

subject to: (1b)− (1i)

Decisions are being made at each time instant by weighting
together available powers from the two power sources.

Before introducing s(t) let’s make a step backwards in time.
Historically, the original optimization problem (1a)-(1i) was
approached using DP and, equivalently, by the Pontryagin’s
minimum principle. ECMS is based on the latter by introduc-
ing additional assumptions (see [2]), notably to the nature of
the so-called equivalence factor s(t).

The topic regarding the choice of s(t) gave rise to extensive
research. In particular, authors in [2], [3] proposed to use a
simple formula:

s(t) = s0 + s1(SoC(t)− SoC ref) (7)



where control parameters (s0, s1) are driving cycle dependent.
We are now ready to summarize the features of ECMS that
make it successful:
• is a strong candidate for near-optimal, real-time control

(shown later on in this paper, we achieve less than 5% fuel
usage increase when compared to DP);
• provides an elegant transition from offline DP towards an

online counterpart; it relies on a mathematical framework
with some additional physical insight;
• tuning is simple and intuitive; in particular, a dedicated

control gain parameter s1 can be used to reinforce self-
sustaining SoC;
• is readily implementable using a rapid prototyping;
• when compared against rule-based, heuristic and SDP com-

petitors, it might require less measurement data (driving
cycles) for tuning the control parameters.
This paper is organized as follows. In section II we discuss

some key numerical implementation issues concerning an
offline simulator. It will be used to reliably compare DP and
ECMS. Then, section III is dedicated to the real-time control.
Simulations follow in section IV and the paper ends with
conclusions.

II. AN OFFLINE SIMULATOR

It is important to design a relatively simple control system
that is representative with respect to physical phenomena. The
physics behind the real plant is inherently based on dynamical
equations. Some powertrain components have fast transients
(like the electric current inside the SC, power transmission
through the differential, etc.) while others have longer tran-
sients (like gear shifting process, actuating the clutch, etc.).

On the other hand, as presented in section I, we opt for
a control-oriented plant model that accounts only for the
steady-state behavior, while ignoring the transitory dynamics.
In other words, in order for this simplified plant model to be
representative and meaningful at any successive time instants
tk and tk+1, the powertrain needs to be in steady-state at tk
and tk+1.

To summarize, the advantages of the steady-state control-
oriented model are:
• is able to reproduce, in average, the physical behavior of

powertrain along a given driving cycle;
• is fairly complex, built on experimentally measured maps

stored using lookup tables; consequently we expect the
model-based real-time control to be easily applied later on,
on prototyping platform (e.g. dSpace).

One drawback is that sampling time ∆t needs to be kept quite
high (8). In particular, it should satisfy the constraint:

∆t ≥ max (∆tGS,∆tCL) (8)

If on the contrary, one decides to arbitrarily decrease ∆t
irrespective of (8), then a finer model able to capture the
transitory would be needed. This is beyond the scope of our
work.

As a consequence of (8), we are faced with the problem of
working with large ∆t (in the order of seconds). This might

potentially lead to a degradation of simulated results. Later on
in this section, we will focus on improving the precision of
numerical calculations.

1) Control-oriented plant model: Now that we have high-
lighted some of the general features of the plant model, in this
section we would like to emphasize the operational side.

Effectively, the plant model takes into account all steady-
state mechanical and electrical constraints associated to each
powertrain component. Most of their characteristics can be
found in datasheets provided by manufactures. The rest (e.g.,
efficiency loss maps of ICE, TE, SC, etc.) need to be experi-
mentally measured.

The outcome of the plant model is that it maps one pair of
(ωload(t), Tload(t)) together with all range of feasible internal
state variables, to ICE fuel rates ṁ(t). Consecutively, this
information will be used to calculate the cost function (1a).
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Fig. 3: Fuel usage: instantaneous steady-state ICE fuel rate
ṁ(t) profile curves calculated for ωload(t) = 2 [rad/s] and
Tload(t) = 5000 [Nm]. This gives a desired load power
Pload(t) = 104 [W].

Fig. 3 illustrates an example of fuel rate profile curves (the
y-axis), depending on the power of the supercapacitor (the x-
axis). Each curve corresponds to a different combination of
gear and clutch. The vertical magenta dashed line is used to
indicate the amount of demanded power and is used as an
indicator to split the figure into multiple regions:
(i) the majority of the profile curves situated on the right-hand

side of the magenta dashed line correspond to lowest fuel
consumption: the clutch is disengaged and ICE set to idle
fuel consumption, while the HEV runs in electric only mode;
all excessive power needs to be dissipated by the driver who
needs to push the brake pedal; unlike for passenger cars, it
is undesired to turn off the ICE;

(ii) the profile curves situated between the magenta dashed
line and zero SC power correspond to simultaneously using
the ICE and SC in order to drive the vehicle: the HEV runs



in electric assist mode; the clutch is now engaged; note the
abrupt jump with respect to ICE idle, notably because ICE
has to supply sufficiently high power in order to compensate
for losses along powertrain path;

(iii) profile curves in the region of negative PSC(t) correspond
to simultaneously charging the SC and also driving the load;
the HEV runs in SC charging mode.
Fig. 4 illustrates fuel rate for different load points. Note that

PSC-axis is common to Fig. 3.

Fig. 4: Fuel usage: instantaneous steady-state ICE fuel rate
ṁ(t) map (expressed in grams per second) for a wide range
of (ωload(t), Tload(t), PSC(t)) values. Simulation conditions:
GE(t) = 3; CL(t) ∈ {0, 1}.

2) Driving cycles data: The availability of a representative
set of driving cycles data is one of the prerequirements of HEV
control design. Their characteristics need to be compatible
with the vehicle and specifically will be used for:
• tuning of control parameters: in practice it may happen that

some control parameters are better suited for some driving
cycles, while others are better applicable to other driving
cycles. One way to cope with this situation is to perform
clustering of data;
• validation and testing of control design.

Clustering: Generally speaking the idea of associating a
set of tuned control parameters to clustered load data, is not
new (see [16]).

In particular for our use case, the forklift is executing
in daily practice a few typical maneuvers, some of which
include:
• the so-called Y-cycles: repetitive forward-backward move-

ments, picking and placing payloads from one place to
another.
• the so-called R-cycles: long ride cycles where the vehicle is

moving for longer distances between different places. Once
the destination is reached, the vehicle should start executing
Y-cycles.

More details on the clustering procedure, including feature
selection can be found in [17].

100 110 120 130 140
350

400

450

500

550

D
is

pl
ac

em
en

t
x 

[m
]

100 110 120 130 140

0

2

4

A
bs

ol
ut

e 
sp

ee
d

dx
/d

t [
m

/s
]

 

 

original data
post−processed

100 110 120 130 140

−1

0

1

A
cc

el
er

at
io

n
d2 x/

dt
2  [m

/s
2 ]

Time [s]

Fig. 5: Recorded data: R-cycle pattern executed by a forklift.
Post-processing of original data.

Post-processing of recorded data and Interpretation:
Absolute speed profiles measured at the wheels are readily
available on any vehicle. They are typically constituted of
successive bumps which vary in amplitude and width. An
example is given in Fig. 5 showing data collected during actual
driving. By post-processing these signals, one can extract other
profile curves like displacement, acceleration and eventually
obtain the load data (ωload(t), Tload(t)), with t ∈ [t0, te].

For the offline simulator we are now faced with two
challenges:
• recorded data can be noisy: the solution comes by post-

processing (typically use zero-phase filtering);
• the relatively high sampling time ∆t from (8) requires

to downsample the measured signal. Effectively how to
proceed is a challenging task as will be explained hereafter.

In Fig. 5 one curve corresponds to an original measured
speed profile. It has a low sampling period (in the order
of milliseconds) while the offline simulator uses a sampling
period ∆t that is 103 times higher (in the order of seconds).
The question is how to extract meaningful physical relations
between the displacement, speed and acceleration profiles at
the given sampling period ∆t.



The first step is to calculate averages of the original speed
profile v(t) by using a sliding window of width ∆t. Conse-
quently, local oscillatory phenomena influence is mitigated.
These average points will constitute the downsampled speed
profile v̄(t). Moreover, in view of the other signals that need
to be calculated later on, let us introduce an interpretation
aspect: in-between any successive points of v̄(t), we make
the assumption that speed is linear (see its linear profile in
Fig. 5). One benefit of this windowing technique is that it can
be shown that total traveled distances are almost the same, for
v(t) and v̄(t): the longer (with respect to time) these signals
are, the closer the total traveled distances get to each other.

Now we can define ωload(t) = v̄(t)/R, where R is the
rolling radius of the wheel.

The second step is to calculate the downsampled acceler-
ation signal. Using the interpretation introduced above, ac-
celeration ā(tk) is readily given by the slope between two
successive speeds v̄(tk) and v̄(tk+1), where tk is a discrete
time instant:

ā(tk) =
v̄(tk+1)− v̄(tk)

tk+1 − tk
, k ∈ Z≥1

Consequently, we interpret that between two successive sam-
ples, the acceleration is kept constant (see its stairs profile in
Fig. 5).

Now we can calculate Tload(tk) = (mā(tk)−
∑

i Fi(tk))R,
where Fi are external forces like rolling friction, air drag, etc.;
m is total mass of vehicle.

The third step is to calculate the downsampled displacement
signal. Using the same interpretation as above, displacement
d̄(tk) is calculated using the formula:

d̄(tk+1) = d̄(tk) + (v̄(tk)− ā(tk)tk) ∆t+
ā(tk)

2

(
t2k+1 − t2k

)
Consequently, according to our interpretation, between two
successive samples the displacement follows a smooth profile
given by a second order polynomial in time (see its profile, in
Fig. 5).

The displacement signal will be used later on to calculate
an estimate of the average fuel consumption (see further on,
Fig. 7).

3) Backward Dynamic Programming: this iterative algo-
rithm consists in moving one step backward in time and
selecting among a population of candidate trajectories, the
optimal one. This concept is illustrated in Fig. 6 where some
candidate trajectories have been crossed out: they are non-
optimal. For our problem, the cost function from (1a) can
be used to derive the partial cost between two successive
iterations:

J∗(tk, xk;xe) =

min
uk

{∫ tk+1

tk

ṁ(τ, x(τ), u(τ)) dτ + J∗(tk+1, xk+1;xe)

}
where xe represents state vector at final time; the integral can
be numerically calculated using the rectangular or trapezoidal
rule

∫ tk+1

tk
ṁ(τ) dτ ' ∆t (ṁ(tk) + ṁ(tk+1)) /2. Recall that

𝐸
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Fig. 6: Backward DP concept.

u(tk) and x(tk) were defined in (2) and (3), respectively. J∗

is the optimal cost function. It is interesting to notice that a
consequence of choosing the trapezoidal integration method is
that next state variable depends not only on past information
(xk, uk), but also on the next decision uk+1, namely

xk+1 = f(xk, uk, uk+1)

Consequently, this makes its implementation atypical with
respect to standard DP.

III. REAL-TIME CONTROL: AN ECMS-BASED APPROACH

The ECMS optimization problem has already been for-
mulated in (6)-(7). In addition, we choose to normalize the
weighted power quantities that appear inside the cost function,
thus avoiding to work with big numbers. For the ease of
reading, we rewrite it explicitly:

min
u(t)

L(t) =
ṁ(t)

ṁmax +
(
s0 + s1(SoC(t)− SoC ref)

) PSC(t)

Pmax
SC

subject to: (1b)− (1i)

where ṁmax is in the order of tenths of grams/second; Pmax
SC

is in the order of hundreds of kilowatts; (s0, s1) are tuning
parameters and in particular it is interesting to nothe that one
can associate a physical meaning to s1: it acts as the stiffness
of a virtual spring that is stretched between the current value
of SoC(t) and the desired SoC ref. Consequently, the higher s1
is set, the more the SoC(t) will have tendency to keep in the
neighborhood of SoC ref. On the other hand, s0 can be related
to an average behavior of SoC(t); e.g. the state-of-charge will
have tendency to run to its upper saturation limit if s0 is set
too high, at the expense of more fuel being used.

Selection of numerical integration methods

The SoC and the total fuel mass need to be calculated by
numerical integration. Since the first one appears as internal
state variable in the optimization problem while the latter
appears in the cost function, results are expected to differ
when switching from one integration method to another. In
our work, we have tested two methods, namely rectangle rule
(which is the simplest one to implement) and the trapezoidal
rule.



L(tk) =
ṁ(tk)

ṁmax +

(
s0 + s1

(
ESC(tk−1)− PSC(tk−1) ∆t

Emax
SC

− SoC ref
))

PSC(tk)

Pmax
SC

(9)

L(tk) =
ṁ(tk)

ṁmax +

(
s0 − s1

(
ESC(tk−1)

Emax
SC

− SoC ref − PSC(tk−1)∆t

2Emax
SC

))
PSC(tk)

Pmax
SC

+ s1
∆t

2Emax
SC

(PSC(tk))2

Pmax
SC

(10)

1) Rectangular rule: The discrete time-evolution of the
electrical energy is:

ESC(tk) = ESC(tk−1)− PSC(tk−1) ∆t

and the cost function becomes (9). Note that L(tk) is linear
in the optimization variable PSC(tk).

2) Trapezoidal rule: Compared to the previous integration
method, trapezoidal rule is just slightly more complex and
needs not only past information, but also from the present in
order to compute the time-evolution of discrete variables. In
particular, the electrical energy:

ESC(tk) = ESC(tk−1)− PSC(tk) + PSC(tk−1)

2
∆t

and the cost function becomes (10). Note that L(tk) has not
only a linear term, but also a quadratic term in the optimization
variable PSC(tk).

Comparison: In Fig. 7 we compare the SoC and fuel rate
ṁ profile curves computed using the two numerical schemes.
The differences in results are quite visible mainly due to the
sampling time ∆t which needs to be quite high in order to
fulfill constraint (8). The SoC results of the trapezoidal method
appear to be smoother than results using the rectangular
method. The same remark applies for ṁ where prominent
spikes appear on the rectangular method. Comparing the total
fuel used mECMS(te) (expressed in grams per driving cycle),
we see that values are quite close to each other, as one can read
in the figures. To ease the reading, an estimated average is also
calculated (expressed in liter per 100 kilometers). As expected,
we conclude that the choice of the integration method will
consequently influence the precision of the calculations and
the numerical implementation schemes of both DP and ECMS.
Details will be provided further on.

IV. BENCHMARK: ECMS VERSUS DP

A natural question that arises is how well the real-time con-
trol ECMS perform when compared against the best possible
solution calculated by DP. We apply the methodology recalled
in section I-B. Our main focus will be on the sensitivity
analysis of the tuning parameters (s0, s1).

Cluster-based tuning of (s0, s1): We have already intro-
duced the Y-cycles and the R-cycles. Here, we are interested
in associating to each of these clusters, a set of (s0, s1) that
allows the real-time control to work in near-optimal conditions.

Results of Fig. 8 can be used as a performance indicator
of how well ECMS copes with DP. (s0, s1) candidates are
placed on a uniform grid and for each of these pair of points
we make a fair comparison between ECMS and DP results by
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Fig. 7: Comparison of two ECMS implementations: each uses
a different numerical integration method, while all the other
simulation conditions are similar: (s0, s1) = (0.5, 1); ∆t = 1
second; SoC ref = 0.75; load data consists of the R-cycle from
Fig. 5. Horizontal lines correspond to boundaries SoCmin =
0.25 and SoCmax = 1, respectively.

checking that initial conditions (at time t0) and final conditions
(at time te) of simulated trajectories coincide. Specifically, first
we run ECMS forward in time, then use its final conditions to
initialize DP. Then we run DP backwards in time and once t0
is reached we select that optimal trajectory that starts at the
same initial points with ECMS.

We begin our simulations by first disregarding the self-
sustaining SoC constraint (1c), while keeping all the rest



active. This will provide us an indication of how well, in
general, the ECMS is able to get close to the DP results. Fig. 8a
illustrates the relative total fuel consumption increase defined
according to the formula:

100 (mECMS(te)−mDP(te)) /mDP(te)

and is calculated in percentage (%). ECMS is able to achieve
less than 5% fuel usage increase when compared to DP, which
is quite remarkable. However, not all of these (s0, s1) are able
to ensure the self-sustaining SoC, therefore some of them still
need to be disregarded.

Next, we include the self-sustaining SoC constraint (1c) in
our simulations, together with all the other constraints: the Ω-
set is chosen to be the interval [−0.001, 0.05]+SoC ref. Results
are illustrated in Fig. 8b. Note that a region of arbitrary width,
situated on the left part, has been grayed out: the reason is
to allow s1 to act as increased stiffness, thus leveraging the
self-sustaining ability to handle new, unknown, unpredictable
driving cycles. This simple mechanism acts as a robustness
margin.

In the end, the control designer will select only one optimal
point (s0, s1) by visual inspection of Fig. 8b and consequently
associate it to the specific cluster. All the other information is
disregarded.

V. CONCLUSIONS

This article presented a methodological approach that allows
a control designer to measure the quality and performance of
real-time powertrain control. In particular, we showed how to
implement an ECMS supervisory control which, due to its
performance in simulation when compared with DP, appears
to be a strong candidate towards rapid prototyping on a HEV
forklift truck.
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