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Abstract—The cloud technology has dramatically increased
the virtualisation usage during the last years. Nevertheless, the
virtualisation has also imposed some challenges on the security
of the cloud. A remarkable case is in the usage of cryptographic
hardware such as the Trusted Platform Module (TPM).

A TPM is a device, physically attached to a server, that pro-
vides several cryptographic functionalities to offer a foundation of
trust for the running software. Unfortunately, the virtualisation of
the TPM to bring its security properties to virtual environments
is not direct due to its design and security constraints.

During the last years several proposals have been presented
to solve the virtualisation of the TPM. Nevertheless, the vir-
tualisation systems have not started to adopt them until very
recently. This paper reviews three existing implementations of
virtual TPM in the Xen and QEMU virtualisation solutions. The
main contribution of the paper is an analysis of these solutions
from a security perspective.
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I. INTRODUCTION

The cloud technology has dramatically increased the usage
of virtualisation during the last years. Virtualisation has de-
tached the software applications from the physical machines
where they are hosted. This allows a sensible use of resources,
since the same infrastructure can be shared by many applica-
tions and the number of running servers can be adapted to the
load. Nevertheless, the virtualisation has also introduced new
challenges to the security of the clouds. A remarkable case
is the one where the machines were using secure hardware
to ensure the integrity of the infrastructure, such a Trusted
Platform Module (TPM).

A TPM [1] is a device, physically attached to a server, that
provides different cryptographic functionalities to facilitate the
creation of a foundation of trust of the software installed in
the server. Unfortunately, the TPM was not designed with
virtualisation in mind, hence its virtualisation is not direct and
it implies several security considerations.

Since Berger et al. [2] presented their work about virtuali-
sation of the TPM, a few other proposals have appeared [3],
[4], [5], [6]. Nevertheless, existing virtualisation software did
not seem to adopt any of these solutions until very recently.

The main purpose of this paper is the analysis of three
identified implementations of virtual TPM (vTPM) for the Xen
and QEMU virtualisation solutions. The paper is organised in
seven sections. Section II presents the technologies related to
the implementations analysed, Section III describes the vTPM
solution for Xen, Section IV describes two vTPM solutions

for QEMU, Section V analyses the security of the solutions
presented, Section VI discusses the security findings, and
Section VII presents the final conclusion of the paper.

II. TECHNOLOGIES

This section describes the technologies that might be in-
volved in a virtualised Trusted Platform Module solution.

A. Platform virtualisation

Platform virtualisation is the practise of emulating one or
more physical hosts, or parts of them, within an actual physical
host. The software that creates and manages the virtual guests
(emulated hosts) within the host machine (physical host) is the
hypervisor. Two types of virtualisation can be distinguished:

• Full virtualisation: The physical host is fully emu-
lated. The operating system of the virtual guest does
not realise is running on an emulated device and it
does not require any modification. This solution can be
based only on software or leverage specific hardware
virtualisation extensions of the CPU [7], which provide
different performance.

• Paravirtualisation: The physical host is emulated with
selected modifications of its architecture to enhance the
scalability, performance and simplicity of the solution [8].
The operating system of the virtual guest has to be
adapted to work with the emulated host.

In this article we selected the Xen [9], [10] and QEMU [11],
[12] virtualisation systems. Xen is a system that supports full
and paravirtualised x86 guests. Xen maps the virtual guests as
domains. There is a privileged domain, called Dom0, and user
domains, called DomU. Additionally, some of the functionality
of Dom0 was disaggregated in Stub Domains [13] for security
and scalability purposes. QEMU is a fully virtualised system
that can emulate different architectures. As opposed to Xen
that manages the whole host machine, QEMU is a standalone
application within the host machine.

B. Trusted Platform Module

A Trusted Platform Module (TPM) [1] is a device, phys-
ically attached to a server and with a standard interface
called TPM-TIS [14], that provides different cryptographic
functionalities in the host, e.g. to ensure the integrity of the
platform. A TPM includes a Root of Trust for Storage (RTS)
for external secure key storage, non volatile protected storage
(NVRAM), facilities to digitally sign data and the Platform
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Configuration Registers (PCR) to store measurements of the
system done by the TPM.

A TPM has at least 16 PCR registers, which are initialised
to a known value when the machine is rebooted. The values
of these registers cannot be arbitrarily set. Instead, they are
modified by an operation called extension that performs a hash,
a SHA1 in TPM 1.2 [1], of the previous value of the register
and the piece of data to measure. The signed values of the
PCR registers can be retrieved from the TPM by issuing the
TPM Quote operation.

TPM is based on Public Key Infrastructure (PKI). The TPM
has a special key, the Endorsement Key (EK), that is created by
the TPM manufacturer and that can include a certificate issued
by it. When the TPM is initialised by the user, in the process
of taking the TPM ownership, the Storage Root Key (SRK) is
generated. This key is the root of the hierarchy of keys that
will be subsequently generated and used in the TPM. Finally,
the Attestation Identity Keys (AIK) are used as an alias of the
EK for signing information produced by the TPM, e.g. the
PCR register values issued after the TPM Quote operation.

The TPM is mainly used to create a foundation of trust of
the software installed in the host where the device is present.
This is performed through a process called Static Root of
Trust for Measurement (S-RTM) [15]. This process performs
a chain of measurements, starting when the host platform is
reset, of the components and configuration data involved in the
system boot. Each component measures the next component
before passing the control to it, forming what is called a Chain
of Trust (CoT). The CoT, at least, involves the BIOS, the
boot loader and the operating system kernel. The resulting
measurements after a system boot, must be always the same
unless the boot components are modified.

The combination of the TPM Quote operation and the S-
RTM process, allows the remote attestation [16] of the host.
An external attester can request a TPM Quote of the PCRs,
and compare the obtained values with a baseline of the PCR
values of the system generated when it was in a trusted state.

C. Virtual TPM

Virtualisation is currently an extended practise, but the TPM
was not designed for virtualised systems. The security offered
by a TPM is based on the principle of a trusted piece of
hardware to create the foundation of trust in a given host. The
implementation of a virtual TPM (vTPM) for a virtualised
environment, to provide equivalent security than a physical
TPM (pTPM), requires a special care with: protection of
the vTPM secrets, link between the vTPMs and the virtual
guests, extension of the CoT from the host machine to the
virtual guests and key management. Several works analyse and
proposes solutions to the virtualisation of the TPM [2], [17]
and to its integration in virtualised systems [3], [4], [5], [6].
Nevertheless, it is not until recently that implementations have
started to come up and be integrated in well-known virtualised
environments (see Sections III and IV).

Figure 1. Structure of vTPM service in Xen

III. VIRTUAL TPM IN XEN

Xen 4.3 implements the service of virtual TPM (vTPM)
only for paravirtualised guests.The service is designed as a set
of secure separate stub domains (see Figure 1) managed by the
system hypervisor, each of them running a mini-os [18] and
its dedicated functionality. Each virtual guest has a software
emulated TPM, based on the TPM Emulator [19], running
in a vTPM stub domain. And there is a vTPM Manager
stub domain that coordinates and links the vTPMs with the
physical TPM (pTPM). The most relevant characteristics of
the virtualised TPM implementation of Xen are:

• Non transparent vTPM: A custom kernel module
driver (tpmfront) must be installed in each virtual
guest. The module provides the standard TPM interface
(/dev/tpm) to the applications of the virtual guest, i.e.
they can use the vTPM as if it was a pTPM. The custom
kernel module driver is not integrated in the current Linux
kernels and it is not easy to find. In addition, the driver
is not available for non Linux based operating systems.

• vTPM’s secrets bound to pTPM: The secrets of the
vTPM are encrypted with AES-256 and stored in disk.
The symmetric key is bound to an storage RSA key of
2048 bits. The RSA key is generated by the pTPM and
can only be used by it.

• Configurable TPM ownership and SRK authentica-
tion: The passwords used to access the pTPM and the
SRK are configurable. These passwords must be provided
at the time of loading the vTPM Manager stub domain.

• Passthrough of certain Physical TPM registers: The
administrator of the vTPM stub domain can configure
certain PCR registers of the vTPM to adopt the values of
the same registers of the pTPM.

• Extension of CoT from the host machine to the virtual
guests: If the ”pv-grub” external bootloader is used to
boot the virtual guest, the guest kernel is measured
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Figure 2. Structure of vTPM services in QEMU

in PCR #4 and the boot command line and initrd are
measured in PCR #5 of the vTPM. Hence, the integrity of
the guests can be ensured if the “pv-grub” bootloader, the
hypervisor and other components that support the guests
are trusted.

• Migration of vTPM not supported: All virtual TPMs
are bound to a specific pTPM. Hence, guests with virtual
TPMs cannot be migrated to another physical server.

IV. VIRTUAL TPM IN QEMU

QEMU supports virtual TPMs (vTPM) for guests from its
version 1.5. Nevertheless, the only officially supported vTPM
is based on TPM passthrough. This means that the TPM
offered to the virtual guests is the actual physical TPM (pTPM)
of the physical host. In addition, there is an implementation
of the vTPM that is not officially integrated into QEMU that
provides full vTPMs.

A. TPM passthrough

The TPM passthrough, as previously mentioned, provides
a vTPM to the virtual guests which is a direct mapping with
the pTPM of the physical machine. The service is designed
as a backend driver for the pTPM that communicates with an
emulated TPM TIS frontend (see Figure 2). The most relevant
characteristics of this implementation are:

• Transparent vTPM offered to guest host: The virtual
guest sees the vTPM as if it was a pTPM. No special
kernel drivers are needed.

• Passthrough of all the physical TPM registers: The
vTPM is a direct mapping of the pTPM. The PCR values,

NVRAM area and keys of the vTPM are the same of the
pTPM. Hence, all the measurements performed by the
physical host are reflected to the vTPM.

• Only one virtual guest can be provided with vTPM:
The reason is the one to one mapping between the vTPM
and the pTPM. The registers and the NVRAM of the
pTPM cannot be multiplexed to support multiple vTPMs.

• Migration of vTPM is not supported: The pTPM
registers and NVRAM cannot be extracted from the
TPM and imported into another pTPM. Hence, migration
cannot be supported.

B. Full virtual TPMs

The full virtual TPMs approach, as previously mentioned,
provides a complete vTPM implementation to the virtual
guests that is totally detached from a pTPM. The service is
designed as a software TPM backend implementation linked
with the external library libTPMS. This library provides TPM
emulation. On the guest side there is an emulated TPM TIS
frontend (see Figure 2) and a modified open source BIOS,
based on SeaBIOS [20], to support the vTPM. The most
relevant characteristics of this implementation are:

• Transparent vTPM offered to guest host: The service
of vTPM is based on full TPM emulation. Since the TPM
TIS interface is emulated, no modifications have to be
performed to the guest operating system.

• vTPM’s secrets stored into QEMU image: The secrets
of the vTPM are stored within an image file. The secrets
are not encrypted by default, however QEMU allows the
use of encrypted images, e.g. QCOW2 [21] can provide
AES-128 encryption.

• No pTPM required: Since the vTPMs are fully emulated
and not bound to a pTPM, this solution does not require
the presence of a pTPM in the system.

• Modified BIOS with vTPM and SRTM support: A
set of patches 1 to be applied to SeaBIOS are provided.
The patches add vTPM support and implement the Static
Root of Trust for Measurement (SRTM), i.e. the code
that takes care of the first measurements right after the
machine is powered on.

• Migration ready: The migration of the vTPM is not
implemented, but it would not be difficult to integrate
because the vTPM is not strongly linked to a pTPM.

V. SECURITY CONSIDERATIONS

There are four aspects of the vTPMs in virtualised en-
vironments that define their level of security regarding a
pTPM: protection of the vTPM secrets, link between the
vTPMs and the virtual guests, extension of the CoT from the
host machine to the virtual guests and key hierarchies and
management. This section analyses these four aspects for the
vTPM implementations presented (see also Table I).

1See e-mail with patches of Stefan Berger “[PATCH V3 0/8] Add TPM
support to SeaBIOS” of April 2011 in SeaBIOS mail list
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Table I
COMPARISON OF VTPMS

Xen QEMU TPM Passthrough QEMU Full vTPM
Approach Multiple vTPMs pTPM passthrough Multiple vTPMs

Multiple virtual guests Yes No Yes

Transparent vTPM No Yes Yes

vTPM secrets
Digital envelope linked to pTPM

(AES-CBC 256 bits and RSA 2048 bits)
pTPM

Image
(allows AES-CBC 128 bits)

Link of vTPM and virtual guest Weak Static Strong (state) / Weak (secrets)

Physical to virtual
Chain of Trust

No, but includes external
bootloader that measures kernel

No
No, but includes external

BIOS with SRTM

Key hierarchies Independent Keys of pTPM Independent

VM Migration No No Yes

Orientation Production Development and testing Production

Implementated in Xen Project 4.3 and above QEMU 1.5 and above Experimental patches for development

A. Protection of the vTPM secrets

A TPM has data that must be kept secret and safe from
manipulation, e.g. the Endorsement Key (EK) or the data
contained in the NVRAM area.

The vTPM secrets in Xen are bound to the pTPM through
a digital envelope. The data of the envelope is ciphered with
AES-CBC symmetric encryption with a 256 bits key generated
using the pTPM TRNG [22]. The symmetric key is protected
with a public key of the pTPM. Hence the vTPM secrets can
only be recovered accessing the pTPM. It is announced that
in the future there will be the possibility to seal the symmetric
key, i.e. the current protection linked to the PCR values of the
pTPM. In that case if the hypervisor or Dom0 critical elements
are corrupted, due to a change of the PCR values, the vTPM
secrets will not be available.

In QEMU TPM Passthrough the vTPM secrets and registers
are literally protected by the pTPM. This has the advantage of
the hardware-based security offered by the pTPM, but it also
means that anybody with access to the pTPM has access to
the vTPM secrets.

In QEMU Full vTPM the secrets are kept in a dedicated
image file without any protection mechanism implemented.
Nevertheless, it is possible to leverage the security offered
by the specific type of image used. Currently only QCOW2
offers privacy, in this case password based encryption with
AES-CBC and 128 bits key. Nevertheless, the password is
limited to 16 alphanumeric characters, hence its security level
is limited to 105 bits. No authenticated encryption [23] nor
other integrity-preserving mechanisms are used, hence the
secrets could be manipulated. In addition, the system is not
mature enough and it was failing when a QCOW2 encrypted
image was used.

B. Link between vTPMs and virtual guests

The link between vTPMs and virtual guests must be pro-
tected. Otherwise, a virtual guest could be provided with a dif-
ferent, and probably manipulated, vTPM with measurements
that may not correspond to the guest.

In Xen, the vTPM is completely independent of the virtual
guest, including their lifecycles, and they run in different
domains. The link between the vTPM stub domains and
the virtual guest domains is not robust neither authenticated.
Hence any vTPM domain can be linked to any virtual guest
domain. In addition, it is possible to pause a virtual guest
domain and replace its vTPM domain with the one of another
guest, i.e. completely replacing PCR registers and non volatile
data. This allows a corrupt admnistrator, or attacker with
equivalent privileges, in Dom0, to manipulate the vTPM
virtual guests association.

In QEMU TPM Passthrough the association between vTPM
and virtual guest is static, since there is only one possible
vTPM that is mapped to the pTPM. Despite this increases
the security of the vTPM secrets in front of attackers without
privileged rights, the vTPM lifecycle and state are mapped
to the pTPM. Hence, anyone with access to the pTPM or to
the host node can manipulate the measurements shown in the
vTPM, e.g. by directly accessing the pTPM, enabling another
virtual guest with access to it or rebooting the virtual guest (on
reboot of the virtual guest the vTPM values are not initialised
since the lifecycle of the vTPM are linked to the physical
machine).

In QEMU Full vTPM, the vTPM is implemented and
managed by the same instance of the hypervisor that manages
the virtual guest. Hence the association with the vTPM and
virtual guest lifecycle is implicit, i.e. there is no possibility to
manipulate the PCR registers. Nevertheless, there is no strong
link between the image file that contains the vTPM secrets
and its virtual guest.

C. Chain of Trust extension to the virtual guests

In a virtualised TPM solution, the security offered by the
vTPMs depends on the underlying host machine. It is desirable
to create a Chain of Trust (CoT) in this host and link it to the
individual CoTs created in each virtual guest. The verification
of the CoT extension requires access to the measurements of
both pTPM and vTPM to evaluate.
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In Xen, the “pv-grub” guest bootloader allows the extension
of the CoT from the host machine to the virtual guests. In
detail, the bootloader measures, in the vTPM, the kernel, initrd
and command line used to boot the guest. Additionally, the
bootloader can be measured in one of the registers of the
pTPM and, this register, be selected to be shown as one of the
vTPM PCRs. In this case, both CoT of the host machine and
virtual guest would be linked. Nevertheless, the authors of the
solution discourage the direct usage of the pTPM in the host
machine. The reason is that if the pTPM drivers and software
stack are installed in Dom0, the administrators of the system
have easy access to the pTPM and, as a consequence, to the
key used to encrypt the data of the vTPMs. This prevents the
usage of the pTPM for measuring and checking the integrity
of Dom0 and extending the CoT. Nevertheless, this will be
solved in the new-coming releases of the solution.

In QEMU TPM Passthrough, it is not possible to extend the
CoT of the physical host to the virtual guest since the PCR
registers of the pTPM and vTPM are the same, the lifecycle of
the vTPM is linked to the one of the pTPM and the bootloader
of the guest image cannot be measured by QEMU. In this
solution there is no clear border between the security of the
physical host and the security of the virtual guest.

In QEMU Full vTPM, the modified BIOS provides support
to link the CoT of both the node machine and the virtual
guests. The modified SeaBIOS implements the S-RTM pro-
cess, which allows to create a CoT within the the virtual
guest. If the BIOS of the virtual guests, the hypervisor and
other software managing the system is measured in the host
machine, the link between the host machine and virtual guests
CoT can be created.

In all the cases where the CoT extension would be possible,
the system is vulnerable to malicious administrators replacing
the bootloaders during runtime, virtual guest BIOS, or any
other software involved in the virtual guest management.

D. Key hierarchies and management

All TPMs have at least an EK and, after its ownership is
taken, a SRK which is the root for its key hierarchy.

In the full vTPM implementations in Xen and QEMU the
keys are completely independent of the ones present in the
pTPM. Despite this implies a loosely coupled key hierarchy
with a pTPM, in practise will facilitate the migration of the
vTPMs when this becomes ready in the future. In Xen the EK
is automatically generated the first time the vTPM is initiated,
while in QEMU the EK has to be explicitly generated by the
user issuing a specific command from within the virtual guest.
In the QEMU TPM Passthrough implementation, the keys used
in the vTPM are the same used in the pTPM.

Additional options exist, when the key hierarchy of a vTPM
is generated [2], in order to provide keys that may become
certified by a certificate authority. Nevertheless, the current
vTPM implementations still do not offer them.

Regarding the key generation, in Xen and QEMU TPM
Passthrough the pTPM TRNG is used as random number

generator. While the QEMU Full vTPM implementation uses
a random number generator provided by the OpenSSL library.

VI. DISCUSSION

Given the security considerations detailed in Section V,
it can be stated that the security currently provided by the
existing vTPMs implementations is not equivalent to the
security of a pTPM. In all the cases, the security of the virtual
guests depend on the administrators of the machine hosts.
Nevertheless, the fully virtualised vTPMs of Xen and QEMU
set the bases for a near future usage of this technology.

In Xen, if there is a malicious administrator in the physical
host, the security offered by the vTPM of the virtual guests
cannot be guaranteed. This is something known by the authors
of this implementation 2. As they state, the solution is to
create a domain building component measured by the pTPM
during boot. This component should have a static library with
the critical domains to build. This component should enforce
the creation and destruction of these domains as well as the
correct pairing of vTPM domains and guests. We believe that
an administrator should not be allowed to log into the machine
without modifying the measurements of the TPM, e.g. the
login could add a measurement to the TPM of each user that
logs into the system. This could be used as a tamper-proof
mechanism. Hence the physical machine would become a kind
of sealed box.

In QEMU, the difference with Xen is that there is no
hypervisor that controls the whole virtualised system. In this
case, for a maximum security, a software manager of the
virtual guests should be installed in the physical host. The
manager should ensure the image file that contains the vTPM
secrets and the modified BIOS were correctly paired to the
correct virtual guest to ensure its integrity. This manager could
be measured as part of the physical machine CoT. In this case
it would also be possible to extend the CoT of the physical
host to the virtual guest, assuming the patched SeaBIOS is in
place and a secure bootloader is installed in the virtual guest.
Since the BIOS code used in QEMU is explicitly provided
when the guest is started, the tool that manages the guest
machines could ensure its integrity. As in Xen, the physical
host could generate measurements in the TPM for each user
logged, hence it would become as a sealed box in the sense
that nobody can log to perform system changes without being
detected.

VII. CONCLUSIONS

In this article we have analysed two virtualisation solutions
with three currently available virtual TPM approaches. The
purpose of this analysis was to determine if there where
available virtualised TPM solutions and the level of security
offered by them.

After the presented analysis we found two implementations
that offer complete TPM virtualisation for Xen and QEMU.
The implementation in Xen still has not reached a level of

2See “Questions about the usage of the vTPM implemented in Xen 4.3” in
February 2014 in the xen-devel mailing list.
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security comparable to a non virtualised solution, but their
developers are pushing hard for it. In addition, the solution is
integrated within the Xen official releases. The implementation
in QEMU offers less security than the one in Xen, e.g. to store
the secrets of the vTPM, and its integration with QEMU is
not officially supported due to restrictions of the project for
including code that has dependencies with external libraries
(in this case because of the libTPMS).

Given the development activity seen, it is expected the
improvement of the security and availability of the virtualised
TPM solutions soon. In addition, the virtualised systems will
integrate other technologies that enhance the trust with their
hypervisor, e.g. the support of the IntelTXT technology [24]
that simplifies the foundation of trust for the hypervisors in
virtualised systems in conjunction with the TPM.
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