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Abstract— The High Frequency (HF) band of the power spec-
trum of the Heart Rate Variability (HRV) is widely accepted
to contain information related to the respiration. However, it is
known that this often results in misleading estimations of the
strength of the Respiratory Sinus Arrhythmia (RSA). In this pa-
per, different approaches to characterize the change of the RSA
with age, combining HRV and respiratory signals, are studied.
These approaches are the bandwidths in the power spectral
density estimations, bivariate phase rectified signal averaging,
information dynamics, a time-frequency representation, and a
heart rate decomposition based on subspace projections. They
were applied to a dataset of sleep apnea patients, specifically to
periods without apneas and during NREM sleep. Each estimate
reflected a different relationship between RSA and age, sug-
gesting that they all capture the cardiorespiratory information
in a different way. The comparison of the estimates indicates
that the approaches based on the extraction of respiratory
information from HRV provide a better characterization of the
age-dependent degradation of the RSA.

I. INTRODUCTION

The Respiratory Sinus Arrhythmia (RSA), initially de-
scribed in 1733 [1], can be seen as an increased Heart
Rate (HR) during inspiration and a decreased HR during
expiration. Since its discovery, its function and physiological
mechanisms have remained unclear. The most accepted hy-
pothesis suggests that the RSA helps to match the perfusion
and ventilation processes during the respiratory cycle in order
to improve the pulmonary gas exchange and optimize the
energy efficiency of the pulmonary circulation. Nevertheless,
some studies suggest that more tests are needed to prove this
hypothesis [2]. The controversy around the role of the RSA
highlights the importance of methods for its quantification.
To observe the modulation exerted by the respiration on the
HR, a Heart Rate Variability (HRV) representation can be
used. The respiratory modulation is generally reflected within
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the High Frequency (HF) band (0.15 Hz-0.4 Hz) of the Power
Spectral Density (PSD) estimate of the HRV. However, it has
also been observed that the influence of the respiratory rate
might fall within bands outside the HF band or it might
consist of a narrow spectrum inside the HF band. Hence,
quantifying the RSA as the total power contained in the HF
of the HRV might be misleading [3].
The aim of this work was, on the one hand, to compare
different state-of-the-art methods typically used to quantify
the RSA, and on the other hand, to assess whether they
all capture the same type of information. This evaluation
was done under the assumption that the strength of the
RSA decreases with age [4]. The features were assessed
in terms of their capability to characterize this change.
The methods compared here analyze the information shared
between the respiratory signals and the HRV representation
(i.e. the tachogram). The breathing signals were used either
to separate the respiratory information from the HRV, to
define frequency bands different from the HF band, or to
quantify the information transferred from respiration to HRV.
To this end, the following approaches were used:

• The Bandwidth (BW ) of the respiration was used to
define the frequency bands of interest in the PSD of the
HRV, as produced by the respiratory modulation. The
normalized power in this band was evaluated as RSA
quantification [3].

• Entropy measures were used to quantify the information
transfer from respiration to HRV [5].

• Bivariate Phase Rectified Signal Averaging (BPRSA)
curves were calculated and used to derive features as
possible RSA quantifications [6].

• A Time-Frequency representation was used to separate
the spectrum of the HRV in two components. One of
them corresponding to the respiratory modulation. The
total power contained in this component was included
in the evaluation [7].

• Subspace projections were used to extract the respira-
tory information from the HRV. This information was
then used to quantify the total power of the HRV
explained by the respiration [8].

These estimates were compared with the normalized power
in the HF band (HFn) of the HRV [9].

II. MATERIALS AND METHODS
A. Materials

A dataset with electrocardiogram (ECG) and thoracic
Respiratory Inductive Plethysmography (RIP) signals was



used. It contains Polysomnography (PSG) recordings of 110
patients with Obstructive Sleep Apnea (OSA) and different
OSA-associated comorbidities. The study was approved by
the ethical committee of UZ Leuven and each patient signed
an informed consent. The signals were acquired with a
sampling frequency of 500 Hz. The apneas and sleep stages
were annotated by sleep specialists according to the AASM
2012 scoring rules [10]. The OSA severity was assessed
with the Apnea Hypopnea Index (AHI), i.e. average number
of respiratory events per hour of sleep. 100 of the patients
were first divided in two groups: one containing 50 OSA
patients (AHI>15) without comorbidities and another with
50 OSA patients with comorbidities (hyperlipidemia: 49,
hypertension: 40, diabetes: 5, myocardial infarction: 4 and
stroke: 2). These groups were matched by age, gender
and Body Mass Index (BMI). 33 of the 50 patients with
comorbidities were taking medication to control the blood
pressure at the moment of the recordings. The remaining
10 subjects (AHI<15) did not present comorbidities. 27 of
the patients in the dataset had smoked or were smokers
at the moment of the recordings. The demographics are
summarized in Table I.

B. Preprocessing and segment extraction

The R-peaks in the ECG signals were detected using the
algorithm proposed in [11]. Next, the R-peaks were visually
corrected for mis-detections and ectopic beats. Subsequently,
an HRV representation (dRR) with a sampling frequency
of 4 Hz was calculated using the RR-interval series and
a cubic spline interpolation. Furthermore, the respiratory
signals were downsampled to 4 Hz. Finally, both dRR and
RIP signals were bandpass filtered (0.05 Hz - 1 Hz) with a
zero phase distortion to remove baseline and high frequency
artifacts.
After preprocessing, segments were extracted from each
subject. To this end, the duration of the annotated apneas
was first extended to one minute. This was done to eliminate
possible biases generated by the recovery period after an
apneic event [12]. Afterwards, epochs of 5 minutes were
extracted. Next, only those during non-Rapid Eye Movement
(NREM) sleep and without apneas were selected. Finally,
epochs containing either a severely contaminated ECG signal
or an irregular respiratory signal were removed after visual
inspection. As a result, different number of segments were
available for each patient.

C. RSA quantification

Features to quantify the RSA were calculated on the 5–
minutes apnea–free epochs. Afterwards, the estimates of seg-
ments from the same patient were averaged. This produced
an estimation of the strength of the RSA per subject. The
features were derived using the following approaches:

1) Respiratory Bandwidth (BW): The PSDs of the res-
piratory and dRR signals were computed using the Welch’s
algorithm with a hamming window of 40 s with 20 s overlap.
Afterwards, the RSA was quantified by first finding the
frequency band corresponding to the −3dB bandwidth in

TABLE I
DEMOGRAPHICS. THE AGE, BMI AND AHI ARE GIVEN AS THE MEAN

VALUES ± THE STANDARD DEVIATION. BELOW ARE THE RANGES GIVEN

AS: (25th PERCENTILE - 75th PERCENTILE, MINIMA – MAXIMA)

N Age BMI AHI Gender Smoking
Years Kg/m2 Events/h

110 47.3±10.6 29.3±4.6 37.8±23.8 M: 82 Y: 26
(38-55 , 26-68) (25.9-32.8 , 20.7-44.7) (21.4-53.25 , 1.8-111.4) W: 28 N: 83

the respiratory signal. Next, the influence of the respiration
on dRR was quantified as the normalized power contained in
the PSD of dRR in the same frequency band, and denoted
by PBW [3]. This method was also used to calculate the
respiratory rate as given by the peak frequency in the PSD
of the respiration.

2) Information Dynamics: The methods developed under
the framework of information dynamics can be used to
estimate the information stored in the respiratory and the
dRR signals, and the information transfer between them.
One possible information estimation is the entropy. Different
entropy terms exist in the literature [13]. The Cross Entropy
(CE ), i.e. the information shared between dRR and the past
information of the respiration [5], was chosen since this term
is related with the influence of the respiration on dRR.

3) Bivariate Phase Rectified Signal Averaging (BPRSA):
BPRSA curves were used to identify quasi periodicities in
dRR (target signal) caused by changes in the respiratory
signal (driver signal). The procedure to derive these curves
consists of first locating anchor points, that correspond to
either increasing or decreasing points, in the driver signal
[6]. Afterwards, portions of the target signal are defined in
windows around the anchor points. Finally, these portions
are averaged to obtain the PRSA curve. This curve reflects
the quasi periodicities occurring in the target signal due to
changes in the driver signal. In this paper, 2 features were
derived from the PRSA curves [14], namely the RMS value
when the anchor points are the increasing points (RMS+) and
the RMS values when the anchor points are the decreasing
points (RMS−).

4) Time Frequency (TF) Representation: Spectrograms
based on a Cohens class TF distribution as described in
[7] were built for each 5–min segment. This tool allows to
visualize changes in the frequency content of the signals over
time while reducing biases in the estimations that occur with
other TF representations. In addition, the coherence spectrum
between the signals, which represents the shared frequency
content and how this changes over time, was calculated using
the same TF representation. In [7], it was shown that the
product between the coherence spectrum and the spectrogram
of dRR can be used to extract the spectrum of the respiratory
component. After this extraction, the respiratory spectrum
was normalized by the spectrum of dRR and then averaged
to obtain a quantification of the RSA (PT F ) per segment.

5) Subspace projections: A subspace projection is a
method that can be used to separate the respiratory infor-
mation from dRR by projecting the latter onto a respiratory
subspace [8]. This projection produced a time series dResp



describing all dynamics of dRR linearly explained by the
respiration. These time series were then used to calculate
the relative power of the respiratory influences as Psub =
(dT

RespdResp)/(dT
RRdRR).

D. Comparison

The RSA estimates were compared using linear regression
between each estimate and the age of the subjects. Each
regression was evaluated based on the R2

ad j, the correlation
coefficients (Pearson (ρp) and Spearman (ρs)) and their
significance (p < 0.05). The features with higher correlation
coefficients were hypothesized to better characterize the
expected change of RSA with age.
In addition, the patients were grouped in bins of 10 years
and significant differences between the groups were tested
using the Kruskal-Wallis test (p < 0.05) with Bonferroni
correction for multiple comparisons.
Furthermore, multiple linear regression models between age
and all possible combinations of the variables AHI, BMI,
presence of cardiac comorbidities, medication intake, gender
and smoking (yes or no) were made in order to analyze
possible confounding effects.
Finally, it has been observed that the strength of the
RSA might depend on the respiratory rate [15]. For this
reason, regression and correlation coefficients between the
respiratory rate with the age were computed to evaluate this
variable as a confounder.

III. RESULTS AND DISCUSSION

The different regressions between age and the possible
confounding variables did not produce a R2

ad j higher than
0.06 when a single variable was included in the regression.
Furthermore, the combined effects of variables did not
produce a R2

ad j higher than 0.17. Hence, the AHI, BMI,
presence of cardiac comorbidities, medication intake, gender
and smoking are not linearly related to the age of the
subjects in this dataset. In addition, ρs was computed for
age with the AHI and BMI variables to check for possible
non-linear confounding effects. Only the ρs for the BMI
was significant but weak (ρs = −0.21, p = 0.02). These
results suggest that the effect of these confounding variables
is negligible.
After preprocessing the signals and extracting the 5-minute
epochs, 8 patients were removed from the analysis since
less than 5 segments were available for them. The RSA
estimates and the respiratory rates were calculated for the
remaining patients.
Afterwards, the effect of the respiratory rate on the RSA
amplitude as a confounder was evaluated. There are studies
supporting [15] and contradicting [16] this hypothesis. In
this study, the regression coefficients and correlations for
the average respiratory rate per patient with age were not
significant. This result suggests that the degradation of
the RSA with age in this dataset does not depend on the
respiratory frequency. However, it was also observed that
each subject breathes within a narrow range of frequencies

TABLE II
R2

ad j , ρp AND ρs FOR THE DIFFERENT RSA ESTIMATES.

Estimation Method R2
ad j ρp ρs

PT F TF-Rep 0.372 0.615 0.602
PBW PSD 0.315 0.568 0.566
Psub Subspace 0.313 0.566 0.552
CE Entropy 0.310 0.564 0.544
RMS+ BPRSA 0.271 0.528 0.539
RMS− BPRSA 0.199 0.455 0.468
HFn Standard 0.184 0.439 0.435

during the night. It is possible that the strength of the RSA
would change within each subject if they breathe with a
wider range of respiratory rates. Hence, the results suggest
that the respiratory rate is not a confounder in this specific
case, but conclusions can not be made on the relationship
between RSA and respiratory frequency.
Figure 1 shows the boxplots per age group for some of the
features and the significant differences between them. The
boxplots for the Psub and RMS+ features are not included
since the significant differences were similar to those for
PT F and RMS−, respectively. Table II summarizes the
results for the regression coefficients. These were significant
(p � 0.05) in all cases. The ρp and ρs coefficients did not
differ significantly, suggesting that the relationship between
the estimators and the age of the patients is linear.
The PT F is the feature that better captures the changes
produced by age (ρp = 0.615, p � 0.05) according to table
II. In addition, Figure 1 shows that this feature is the one
able to produce the most significant differences between
the age groups. This feature, and the Psub are based on
the extraction of the respiratory modulation from dRR and
the quantification of the fraction of power that it contains.
These results suggest that the degradation of the respiratory
modulation in the elderly is reflected in the whole spectrum
of dRR. These estimators might describe better the change
of RSA with Age than the HFn since they only consider
information contained in dRR produced by the respiration.
Instead, the HFn includes information due to other processes
that might be redundant in terms of the quantification of the
RSA.
The PBW feature is the second best one to characterize the

degradation of the RSA with age according to the correlation
coefficients. It reflects more significant differences between
the age groups compared to the HFn. This might be due to
the occurrence of the respiratory rate in bands narrower than
the HF and this is better captured when the spectrum of the
respiration is considered in the calculations, as explained in
[3].
On the other hand, CE captures information related to
the predictability of the heart rate taking into account its
own past and the past of the respiratory signal. From the
correlation and the significant differences between age
groups in Figure 1, it is observed that this predictability is
reduced in the elderly population, suggesting that the role
of other modulators of heart rate, different from respiration,
becomes stronger with age.
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Fig. 1. Boxplots for different age groups. The number of patients per group were, 4 (21-30), 26 (31-40), 27 (31-40), 29 (31-40) and 16 (31-40).

Finally, the RMS values derived from the BPRSA curves
can be interpreted as a measure of the effect that changes in
respiration have on the dynamics of the heart rate. The fact
that the RMS+ feature has a higher correlation coefficient
with age than the RMS− suggests that the efficiency of
the cardiorespiratory interactions is more affected during
inhalation than during exhalation in the elderly. However,
the metrics for both features are very similar to conclude
this. In addition, these features found the same significant
differences between the age groups, suggesting that they
characterize the degradation of the RSA in the same way.
It is important to highlight that the selected segments only
contain clean ECG and respiratory signals with a regular
pattern during NREM sleep and without any apnea episodes.
Hence, the results might be different in cases in which
irregular respiratory rates occur, e.g. in the presence of
apneas. In these cases, the BW of the respiration would
be wider and probably more frequencies in the spectrum
of dRR would interact with the respiration. In addition,
the comparisons in this paper were done based on the
correlation coefficients, but all of them reflect weak to
moderate relationships between the estimators and the age
of the patients.

IV. CONCLUSIONS

In this study, different approaches to characterize age-
dependent changes in RSA were compared. The results
indicate that the quantification of age-dependent changes in
RSA using the normalized power in the HF band might not
be accurate. Alternative methods are shown to be better and
should be considered when analyzing the RSA. In particular,
the power of the HRV explained by respiration and estimated
with Time-Frequency methods was the best feature to explain
the age-dependent changes of RSA.
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