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Abstract—Clinical trials often fail to recruit an adequate num-
ber of appropriate patients. Identifying eligible trial participants
is resource-intensive when relying on manual review of clinical
notes, particularly in critical care settings where the time window
is short. Automated review of electronic health records (EHR)
may help, but much of the information is in free text rather than a
computable form. We applied natural language processing (NLP)
to free text EHR data using the CogStack platform to simulate
recruitment into the LeoPARDS study, a clinical trial aiming
to reduce organ dysfunction in septic shock. We applied an
algorithm to identify eligible patients using a moving 1-hour time
window, and compared patients identified by our approach with
those actually screened and recruited for the trial, for the time
period that data were available. We manually reviewed records of
a random sample of patients identified by the algorithm but not
screened in the original trial. Our method identified 376 patients,
including 34 patients with EHR data available who were actually
recruited to LeoPARDS in our centre. The sensitivity of CogStack
for identifying patients screened was 90% (95% CI 85%, 93%).
Of the 203 patients identified by both manual screening and
CogStack, the index date matched in 95 (47%) and CogStack
was earlier in 94 (47%). In conclusion, analysis of EHR data
using NLP could effectively replicate recruitment in a critical
care trial, and identify some eligible patients at an earlier stage,
potentially improving trial recruitment if implemented in real
time.

I. INTRODUCTION

RANDOMISED clinical trials can provide robust evidence
of the effectiveness of medicines and other treatments,

but are expensive to conduct and may fail to recruit a
sufficient number of appropriate patients to have adequate
statistical power [1]. Clinical trials units try to use a variety of
techniques to increase patient recruitment, such as increasing
the awareness amongst patients and clinicians [2]. However,
identification of suitable patients can be resource-intensive,

H. C. Tissot, A. D. Shah, D. Brealey, S. Harris, R. Agbakoba, L. Romao and
L. Roguski are with the Institute of Health Informatics, University College
London, London, UK; Health Data Research UK London, University College
London, London, UK; and University College London Hospitals, London, UK

A. Folarin, and R. Dobson are with the Institute of Health Informatics,
University College London, London, UK; Health Data Research UK London,
University College London, London, UK; and the Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London, UK

F. W. Asselbergs is with the Institute of Health Informatics, University
College London, London, UK; Health Data Research UK London, University
College London, London, UK; and Department of Cardiology, University
Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

often relying on manual review of clinical notes to identify
potentially eligible patients, where the information may be
split over different systems. This can be particularly difficult
in emergency settings and intensive care units (ICU), where
it is important to identify eligible patients early, so that the
window of opportunity is not missed [3]. Staff shortages and
inconvenient timing can potentially lead to eligible participants
being missed [4].

Electronic heath records (EHRs) are increasingly used for
research [5] and have been proposed as a way of improving
trial recruitment, either via a patient-centric approach or in the
form of decision support for clinicians, such as point-of-care
alerts [6]. Algorithms to identify trial participants may reduce
the human resource needed for identifying patients earlier.
Patient characteristics extracted from EHR databases can be
mapped to trial information derived from study eligibility
criteria [7], [8]. However, much of the information in EHRs
is unstructured, in the form of free text, rather than in a struc-
tured form. Natural language processing (NLP) techniques can
extract relevant information from free text, but cannot be relied
upon to be completely accurate because of typographical errors
and nuances of human language. However, NLP may be used
to pre-screen potential trial participants, reducing the number
of patient records that need manual review [9]–[11].

Algorithms incorporating NLP have been tested for their
ability to identify patients eligible for clinical trials [9], [12]–
[14]. Previous studies have tended to evaluate patients at a
single time-point only, but critical care patients may have
rapidly changing physiology, and trials may have narrow time
windows for recruitment. One such trial was the LeoPARDS
trial [15], which tested a drug for improving outcomes in
life-threatening infections in ICU patients. We aimed to test
whether NLP in combination with electronic structured data
could assist in recruiting patients to a critical care trial such
as this. The simulation was conducted within one of the
LeoPARDS trial sites, University College London Hospitals
NHS Foundation Trust (UCLH). UCLH is is a teaching
hospital and part of a National Institute for Health Research
(NIHR) Biomedical Research Centre (BRC), and is leading
a collaboration across multiple BRCs to curate a critical care
research database within the NIHR Health Informatics Collab-
oration (CCHIC) [16]. We demonstrate that even simple NLP
techniques combined with a multi-contextualized searchable
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platform are able to support automatic or semi-automatic
clinical trial screening.

II. METHODS

A. Data Sources and Informatics Infrastructure

The Critical Care Health Informatics Collaboration
(CCHIC) is a research platform comprising EHR patient
data from critical care units at five large BRCs (Cambridge,
Guys/Kings/St Thomas’, Imperial, Oxford, and UCLH) [16].
Data are available from 2014 onwards, extracted from a
diverse range of EHR systems in a standardised format. Data
are curated into a research-ready database which has been ap-
proved by an NHS Research Ethics Committee (14/LO/1031).
The CCHIC dataset includes 108 hospital, unit, patient and
episode descriptors (recorded once per admission) and 154
time-varying variables including physiological measurements,
laboratory tests, nursing activities and drug administration.
CCHIC includes structured data only; unstructured data such
as images and free text are not included.

For this study we combined structured UCLH data from
CCHIC (comprising admission and discharge dates, physio-
logical measurements and laboratory results) with unstructured
narrative notes (free text) entered by clinicians, which may
include patient histories, examination findings, diagnoses, past
medical history, suspected conditions and care plans. Free text
was extracted from the UCLH critical care EHR (the IntelliVue
Clinical Information Portfolio (ICIP) by Phillips) recorded in
the following fields: problem lists, event timeline, reason for
admission, admission history, past medical history, and pre-
admission medication.

Stuctured and free text data from the EHR were combined
into a searchable indexed repository using the CogStack [17]
platform for document processing and distributed analysis.
CogStack comprises a set of open source services coordinated
by a batch processing framework that provides multiple inter-
faces for NLP and document processing tools (such as image
to text conversion). It enables structured information from
relational databases to be combined with free text documents
in a configurable, searchable, patient-oriented representation.
Full text searching is possible using Elasticsearch [18].

Bio-Yodie [19] is a named entity linking system developed
as part of the KConnect Horizon 2020 project. It finds men-
tions in the text that correspond to Unified Medical Language
System (UMLS) [20] concepts, and uses various knowledge
sources to choose the best interpretation when more than one
possible match is found. The pipeline utilizes a gazetteer to
locate words or phrases that may indicate an entity mention.
After using a stop list to remove low precision terms, these
mentions are then used to retrieve all the possible candidates
for that term, and a number of scores is used to pick the most
likely matching UMLS concept. The system returns the text
annotated with matched UMLS Concept Unique Identifiers
(CUI) and other relevant information from the UMLS.

Finally, SemEHR [21] is a CogStack tool that enables
concepts retrieved by an information extraction system such
as Bio-Yodie to be contextualised. It uses the ConText algo-
rithm [22], a rule-based algorithm to determine experiencer

(patient or other), affirmation status (affirmed, negative or hy-
pothetical) and temporality (past or recent). NLP annotations
are then assembled at the patient or document level to generate
a timeline view, used to provide semantic data via ontology-
based search and analytic interfaces. We only used affirmative
UMLS concepts that were experienced by the patient in this
study.

We developed an application to mimic the trial screening
process using CogStack. We converted the trial eligibility cri-
teria to a computable algorithm comprising: logical conditions
based on numerical structured data, clinical concepts extracted
from text by a contextualized search function, and logical
compounding functions to group multiple specific conditions
into higher level selection criteria. We compared potentially
eligible patients identified by CogStack with those screened or
recruited in the original LeoPARDS trial for the intersection
of time periods between trial recruitment and the CCHIC data.
All analysis on the EHR data was carried out by researchers
blinded to the trial recruitment log, with no involvement in
the original trial.

B. The LeoPARDS Trial

The LeoPARDS trial (Levosimendan for the Prevention of
Acute oRgan Dysfunction in Sepsis) investigated whether a
24-hour infusion of levosimendan improved organ dysfunction
in septic shock [15]. The trial screened 2,382 patients in 2014–
2015 across 31 centres and recruited 526 patients, of whom 47
were from UCLH, recruited between June 2014 and December
2015. The primary outcome was the mean daily Sequential
Organ Failure Assessment (SOFA) score, which is used to
track the evolution of organ dysfunction. The study showed
no significant difference between levosimendan and placebo
(mean difference in SOFA score, 0.61; 95%CI, -0.07 to 1.29).

Recruitment into LeoPARDS required patients with new
onset septic shock to be identified within 24 hours, so that they
could be randomised to the study drug or placebo. Eligible
patients were identified by dedicated research nurses who
spent 4 to 6 hours each day reviewing the notes of all new
ICU admissions, to identify those who should be selected for
screening. The selection criteria are shown in Table I. The
inclusion criteria aimed to identify adult patients (≥ 18 years)
with septic shock [23], and the exclusion criteria aimed to
exclude patients in whom the trial therapy was inappropriate
or unsafe, and patients with medical conditions which might
make the outcome of the trial difficult to interpret.

C. Simulation of Patient Identification Using CogStack

We simulated the review of all patients in the ICU every
hour, looking back on clinical data collected during the pre-
vious 24 hours to classify whether the patient had new onset
septic shock; see Fig. 1. The patient was marked as eligible at
the earliest timepoint that they fulfilled the selection criteria,
and they were not considered eligible for future time points.

Septic shock was defined in EHR data as concurrent exis-
tence of systemic inflammatory response syndrome (SIRS) due
to known or suspected infection, and use of vasopressor drugs.
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TABLE I
SELECTION CRITERIA FOR THE LEOPARDS TRIAL [15].

Inclusion Criteria Exclusion Criteria

(A) Fulfil at least 2/4 of the criteria of the systemic in-
flammatory response syndrome (SIRS) due to known or
suspected infection within the previous 24 hours. The
SIRS criteria are:
1. fever (> 38◦C) or hypothermia (< 36◦C),
2. tachycardia (heart rate > 90 beats per minute),
3. tachypnoea (respiratory rate > 20 breaths per

minute or PaCO2 < 4.3 kPa) or need for mechanical
ventilation, and

4. abnormal leukocyte count (> 12,000 cells/mm3, <
4000 cells/mm3, or > 10% immature [band] forms).

(B) Hypotension, despite adequate intravenous fluid resus-
citation, requiring treatment with a vasopressor infusion
(e.g. noradrenaline / adrenaline / vasopressin analogue)
for at least four hours and still having an ongoing
vasopressor requirement at the time of randomisation.

(A) more than 24 hours since meeting all the inclusion
criteria;

(B) end-stage renal failure at presentation (previously
dialysis-dependent);

(C) severe chronic hepatic impairment (Child-Pugh class
C) [24];

(D) a history of torsades de pointes;
(E) known significant mechanical obstructions affecting

ventricular filling or outflow or both;
(F) treatment limitation decision in place (e.g. ‘Do Not

Resuscitate’ or not for ventilation/dialysis);
(G) known or estimated weight > 135 kg;
(H) known to be pregnant;
(I) previous treatment with levosimendan within 30 days;
(J) known hypersensitivity to levosimendan or any of the

excipients;
(K) known to have received another investigational medic-

inal product within 30 days or currently in another
interventional trial that might interact with the study
drug – potential co-enrolment into other studies would
be considered on an individual study basis.

START

Set index datetime to
1 Jun 2014 00:00

END

For each patient in ICU:
Access eligibility for 24h

time period starting on index
datetime

Increment index
datetime by 1 hour

Fig. 1. Flowchart showing iteration through screening times.

SIRS was defined on the basis of meeting physiological thresh-
old values for at least two of the following four parameters:
body temperature (fever or hypothermia), ventilation (high
respiratory rate or requirement for mechanical ventilation),
heart rate, and white cell count. We did not assess hypotension
or measures of fluid resuscitation, but assumed that patients
prescribed vasopressor medication had refractory hypotension
(Fig. 2).

We operationalised ‘known or suspected infection’ as a re-
cent diagnosis of infection from SemEHR (with specific types
and sites of infection listed as search terms; see Table IV).

We then applied the LeoPARDS exclusion criteria using
structured and unstructured data as follows: end stage renal
failure, dialysis, torsades de pointes, mechanical obstruction
(mitral stenosis or aortic stenosis) or severe hepatic impairment
(using either recent or past temporal context provided by
SemEHR), or pregnancy (using only recent temporal context).
Relevant UMLS concepts are listed in Table V. We addition-
ally identified patients with severe hepatic impairment by the
presence of any two of bilirubin ≥ 34.2 micromol/L (CCHIC
structured data), ascites or encephalopathy. This is an approx-
imation of Child-Pugh class C [24], assuming encephalopathy
is severe, ascites is moderate, and the international normalised
ratio and albumin are in the middle of the scoring ranges.
We were unable to apply the exclusion criteria of previous
treatment with levosimendan, hypersensitivity to levosimendan
or enrolment into another interventional trial (items I, J, and
K from Table I) as this information was not entered in a
structured way or in a form of text that could extracted as
UMLS concepts. Fig. 2 presents the overall workflow for
identifying patients eligible for LeoPARDS trial.

D. Technical Implementation of Eligibility Criteria

Our approach was designed to support an unlimited recur-
sive nested set of conditional clauses connected by grouping
logical operators. Partial matches and temporal constraints
were also required as part of the formal criteria specification.

The selection criteria for the LeoPARDS trial were designed
by following an inner hierarchical structure of conditional
components. The inclusion criteria comprised the default
mandatory component for defining patient eligibility, requiring
at least an inner logical group or an inner logical specifica-
tion. The exclusion criteria were a complementary component
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Asses SIRS criteria:
(1) Temperature < 36 or > 38 deg C
(2) Heart rate > 90/min
(3) Resp rate > 20/min, PaCO2 > 4.3 kPa or

mechanical ventilation
(4) White cell count < 4 or > 12 x 10^9/L

Asses exclusion criteria:
(1) Recent or past free text statement of renal failure, torsades de

pointes, cardiac outflow obstruction or treatment limitation
(2) Recent free text statement of pregnancy
(3) Weight > 135 kg
(4) At least two of: recent ascites (free text), encephalopathy (free

text), or bilirubin > 34.2 micromol/L

START

EXCLUDE
PATIENT

INCLUDE
PATIENT

Fig. 2. Workflow for identifying patients eligible for LeoPARDS trial using
electronic health records.

comprising an inner logical group of conditions, specifying the
set of patients to be subtracted (or flagged) from the cohort
matching the inclusion conditions.

In order to formally describe the inclusion and exclusion
criteria for the LeoPARDS trial, we defined a set of logical
compounding functions (LCF). LCFs group a set of logical
conditions that are individually evaluated and logically com-
bined to give an overall True or False output. LCF results can
be hierarchically combined to specify more complex logical
operations. The proposed LCFs are described below – n is
a numerical constraint parameter and L is the set of logical
conditions to be evaluated (all LCFs return False when
L = ∅):

• MIN(n,L): each logical condition c ∈ L is logically
evaluated, resulting True when at least n conditions from
L result True;

• MAX(n,L): each logical condition c ∈ L is logically
evaluated, resulting True when no more than n conditions
from L result True;

• ALL(L): results True if, and only if, there is no condition
c ∈ L logically evaluated resulting False;

• ANY(L): results True when there is at least one logical
condition c ∈ L that is logically evaluated resulting True
– equivalent to: MIN(1, L);

• ONE(L): results True if there is only one condition c ∈ L
that is logically evaluated resulting True, all the other
conditions resulting False – equivalent to: MAX(1, L);

• NOT(L): results True if, and only if, there is no condition
c ∈ L logically evaluated resulting True – equivalent to:
MAX(0, L).

In addition to the LCFs described above, we defined a
textual contextualised function that searches specific UMLS
concepts resulting from SemEHR and stored in an Elastic-
search repository:

• UMLSearch(umls, temporality): is a textual contex-
tualised search condition that matches annotated doc-
uments (free text notes) against one or more UMLS
concepts (umls parameter) in a given time constraint
(temporality parameter) – temporality can be set as
past or recent, from which recent takes into account
any UMLS concepts mentioned in any documents dated
up to the last 72 hours from the reference screening
date (index date/time in Fig. 1) set as “recent” by
SemEHR, whereas past considers any historical occur-
rences of the given UMLS concepts. When temporality
is not given, UMLSearch searches for any mention
of the given UMLS identifiers that have been experi-
enced by the patient. For example, the inclusion criteria
UMLSearch(UMLS{infection},recent) results a
list of all affirmative annotations (excludes negations)
corresponding to the UMLS codes for infection (Table IV)
found in recent documents (last 72 hours in which the
patient is set as the experiencer (not a family member).

We started by using LCFs to design the primary filters
required to match patients according to the inclusion criteria.
Primary conditions are supported by structured data points
available in CCHIC. Table II provides a formal description of
some of the filters used to design the selection criteria in terms
of logical conditions coupling variables, logical operators, and
grouping LCFs.

E. Comparison of Automated and Manual Screening

We used the CogStack algorithm to identify the start of
septic shock episodes, and compared patients identified with
this method to those actually screened or recruited to the
trial in UCLH. In order to make the comparison valid, we
restricted the comparison to the set of patients who could
potentially have been selected by either method. This was the
set of patients who were admitted to UCLH ICU between July
2014 and June 2015, or October 2015 to December 2015. This
was a period of time when LeoPARDS was actively recruiting
and CCHIC data were available. We excluded the time period
July to September 2015, when UCLH ICU audit activities
were suspended because of staffing shortages, and CCHIC
data were therefore incomplete. We included only the first
ICU admission per patient. All English citizens have an NHS
number, which was used to link free text on the ICIP system
with structured data in CCHIC. We excluded patients without
NHS numbers (such as foreign patients), in whom the datasets
could not be linked by this method.

We compared the set of patients identified as eligible for
LeoPARDS by the CogStack algorithm with the screening
logs for the original trial. For patients detected as eligible by
CogStack but not screened in the original trial, we carried out
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TABLE II
EXAMPLES OF ELIGIBILITY CRITERIA CONDITIONS DESIGNED WITH
STRUCTURED LOGICAL CONDITIONS AND LOGICAL COMPOUNDING

FUNCTIONS (LCFS).

Condition Logical description
fever body temperature > 38.0

hypothermia body temperature < 36.0

tachycardia ANY {
heart rate > 90 ,
heart rhythm > 90

}

tachypnoea ANY {
resp rate > 20 ,
PaCO2 > 4.3 ,
mechanical ventilation > 0

}

1 abnormal ANY {
leukocyte white cell count > 12000.0 ,

white cell count < 4000.0

}

2 hypotension ANY {
noradrenaline > 0 ,
vasopressin > 0 ,
terlipressin > 0 ,
dopamine > 0 ,
dobutamine > 0 ,
adrenaline > 0

}

overall ALL {
inclusion UMLSearch(UMLS{infection}3,recent)
criteria ,

MIN(2) {
ANY {fever, hypothermia } ,
tachycardia ,
tachypnoea ,
abnormal leukocite

}
}

1 The CCHIC dataset does not include structured variables for
leukocyte morphology, so it was not possible to extract the
criterion “immature [band] forms”. However, we assumed that in
the majority of cases the leukocyte criterion would be met based
on absolute numbers.
2 We used vasopressor treatment rather than blood pressure for the
definition of “hypotension”, because the criterion required that the
patient had persistent hypotension despite adequate fluid resusci-
tation and required vasopressor treatment, and we assumed that
standard clinical practice of ensuring adequate fluid resuscitation
would have been followed.
3 See Table IV for UMLS concepts defining infection.

a manual case note review of a random sample. Two clinicians
reviewed the original EHR case notes on the ICIP system to
ascertain whether the algorithm correctly applied the eligibility
criteria, and why the patient was not included in the screening
log.

III. RESULTS

For the actual LeoPARDS trial in UCLH, 315 ICU admis-
sions (303 patients) were assessed as being potentially eligible
on screening, and 47 patients were recruited. Our CogStack
algorithm identified 407 ICU admissions (395 patients) that
met the eligibility criteria for LeoPARDS. Fig. 3 shows the
numbers of screened and recruited patients by month from
June 2014 to December 2015.

We restricted the comparison to patients with NHS numbers
admitted to ICU during the period when CCHIC data was
non-missing (excluding July to September 2015), and all
subsequent results are based on this subset. There were 2571
ICU patients with a total of 2862 admissions. Of these, 376
patients were identified as eligible by CogStack and 226 were
selected for screening by the manual process. Thus using
CogStack to pre-select patients for screening could potentially
reduce the number of patients for manual review by 85%
(2195/2571; 95% CI 84%, 87%).

The sensitivity of CogStack for identifying patients screened
for LeoPARDS was 90% (95% CI 85%, 93%). Of the 203
overlapping patients identified by both manual screening and
CogStack, 74% (151/203, 95% CI 68%, 80%) had a screening
date which matched within one day. All 34 patients who were
actually recruited to LeoPARDS were detected by CogStack
(see Table III). The 173 additional patients detected by
CogStack had a similar sex distribution (56.1% male, 97/173)
to the overlapping patients (55.7% male, 113/203, P value for
comparison = 1). The age distribution was also similar (Fig. 4,
P value for comparison by Wilcoxon test 0.66).

We also analysed the ability of CogStack to identify eligible
patients earlier than the original UCLH screening log. From
the 203 overlapping patients, 95 (47%; 95% CI 40%, 54%)
were found by CogStack the same day as screening, 48 pa-
tients (24%; 95% CI 18%, 30%) were detected one day earlier,
and 46 patients (23%; 95% CI 17%, 29%) were detected two
or more days earlier (Fig. 5). Where CogStack was not able
to identify patients as early as the manual screening log, this
was because they had been matched to the same patient in an
earlier or later ICU admission.

Among the 173 patients detected by Cogstack but not
screened in the original trial, we manually reviewed the
clinical notes of a random sample of 20 (11.6%). We found
only 2 patients (10%) who could potentially have been en-
rolled, and one of these was not screened because it was
during the New Year holiday period when trial staff were
not working. Of the remainder, 4 (20%) had a Child-Pugh
score of 1 according to CogStack, i.e. mild liver dysfunction
not meeting the exclusion criteria, but on manual screening
they were excluded because of liver impairment (3 patients)
and pancreatitis instead of sepsis being the cause of SIRS (1
patient). Eight patients strictly met the inclusion and exclusion
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TABLE III
COMPARISON OF NUMBER OF PATIENTS IDENTIFIED BY COGSTACK AS ELIGIBLE FOR LEOPARDS TRIAL, COMPARED TO THE GOLD STANDARDS OF

THOSE ACTUALLY SCREENED OR ACTUALLY RECRUITED.

CogStack Actual screening Actual recruitment
Screened Not screened Recruited Not recruited

Detected and included 203 173 34 342
Detected and excluded∗ 4 0 0 4
Not detected 19 2172 0 2191

Recall (sensitivity) 0.898 (95% CI 0.851, 0.934) 1.000 (95% CI 0.897, 1.000)
Precision 0.540 (95% CI 0.488, 0.591) 0.090 (95% CI 0.063, 0.124)
Specificity 0.926 (95% CI 0.915, 0.936) 0.865 (95% CI 0.851, 0.878)
F1-score 0.674 0.166
∗Patient matches at least one of the exclusion criteria
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Fig. 4. Age distribution of patients identified by CogStack as being eligible
for the trial, according to whether or not they were included in the actual trial
screening.

criteria, but were considered clinically unlikely to benefit
from an experimental therapy because they were either too
sick or dying (5 patients) or at the least severe end of the
spectrum (3 patients). Six patients (30%) had an alternative
explanation for the combination of antibiotic treatment and
physiological parameters that suggested sepsis, that was not
programmed into the CogStack algorithm. A typical example
was a post-surgical patient on prophylactic antibiotics, with
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Fig. 5. Timing of eligibility identified by CogStack compared to manual
screening.

raised respiratory rate and heart rate (possibly due to pain),
requiring inotropes for hypotension due to an epidural.

Finally, in terms of processing time, CogStack demonstrated
potential to serve as a near real-time search and filtering tool in
order to facilitate the pre-screening process. The full process
of screening approximately 11,500 24-hour-sliding windows
(during the time period of the study) was performed in less
then 15 minutes (890 seconds), corresponding to less than 0.1
second per window screening. Experiments were performed
using a 64-bit Linux server with 8 core Intelr XeonrCPU
(E5-2680 v4 2.40GHz) and 64GB RAM.
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IV. DISCUSSION

This study showed that an electronic algorithm incorporat-
ing NLP could successfully match patients against the selec-
tion criteria for a clinical trial in the critical care setting with
a time-sensitive recruitment window. Use of the algorithm for
pre-screening could potentially reduce the number of patient
notes that need manual review by 85%, a considerable saving
in time and labour. Although taking into account only a subset
of free text notes, CogStack was able to identify all the patients
actually recruited and almost all that were screened. Besides
being faster, CogStack was also able to identify that patients
were eligible at least 2 days earlier in 20% of cases, suggesting
that it may be able to help prevent failure of recruitment due
to missing a timeline.

Results from the manual check showed that strict applica-
tion of the criteria resulted in some patients being identified
who would not be included based on clinical judgement (if
they were not sick enough to risk an experimental treatment,
or if they were so sick that any intervention was likely to be
futile). This suggests that trial inclusion and exclusion criteria
need to be more explicit if they are to be accurately applied by
computer algorithms while truly capturing the desired patient
population. Very few additional eligible patients were detected
by the CogStack algorithm, which shows that the manual
processes for participant identification were thorough, albeit
resource-intensive.

A. Improving efficiency of clinical trials

Randomised controlled trials (RCTs) are considered the
gold standard to assess the effects of medical interventions
such as pharmacological treatments [25]. However, they are
time consuming and expensive, and the populations included in
RCTs often do not resemble real-world patient populations [2],
[6], [8]. There is interest in using EHR databases to conduct
clinical trials, with randomised treatment allocation as per
conventional trials, but recruitment and follow-up managed
through the EHR rather than with bespoke visits [26]–[28].
Such trials may recruit a more representative population
than conventional trials, and the results may better reflect
effectiveness in routine clinical practice [26], [29]. Another
advantage of EHR-based automatic patient selection is that
the algorithms can be modified and re-applied to test different
patient selection criteria, making it easier to design future
trials [30].

Clinical trials need to recruit participants according to the
eligibility criteria defined in the protocol in order to accurately
answer the study question. Despite effort and expense, and
a long time period allocated for patient numbers to accrue,
attainment of enrolment goals seems elusive in many studies
[1], [31]. Among randomised controlled trials funded by the
NIHR Health Technology Assessment programme, the final
recruitment target sample size was achieved in only 56% [32].
This can have major impact on the feasibility, power and
validity of the trials.

Electronic health records provide the potential to identify
trial participants more efficiently [7], [8], but there are a
number of challenges. Mapping the selection criteria to logical

conditions can be difficult, as eligibility criteria are described
using natural language designed for human rather than com-
puter interpretation. There has been interest in using NLP
to develop computable algorithms from free text trial de-
scriptions [33]–[36], and an ‘eligibility criteria representation
language’ has been proposed [37]. However, unless EHR data
sources are standardised, it is a major task to enable complex
queries to run on disparate data sources [38]. Representation
of time constraints also needs to be taken into account [39].
Temporal references can be described in diverse ways with
varying degrees of precision (e.g. “within the previous 24
hours”, “previous treatment within 30 days”, “for at least four
hours”) [40], [41].

B. Natural language processing

Detailed information on patient characteristics that are rel-
evant to trial inclusion and exclusion criteria may not be
included in the structured data, and only available in the free
text of EHRs. Although narrative text is a valuable asset for
improving healthcare [42], it is usually inaccessible due to
its lack of structure, hence the need for NLP applications to
extract information in a structured form.

Many of the NLP approaches to date have a fairly nar-
row focus using simple rule-based approaches (e.g. regular
expression patterns) in order to address specific information
extraction tasks, but they require extensive human intervention
for application to new tasks [43]. There are a number of open
source tools that can annotate clinical text using UMLS or
another terminology; examples include cTakes [44] (Mayo
Clinic), Freetext Matching Algorithm [45] and Bio-Yodie [19],
which was used in this project.

Machine learning NLP approaches have been growing in
popularity, as they are more flexible in enabling the system
to ‘learn’ from training data [46]. This is typically done in a
‘supervised’ manner using manually annotated training data,
but semi-supervised [47] and unsupervised methods have also
been developed. An unsupervised approach incorporating an
ontology could accurately identify arrhythmia events from
Italian medical reports [48].

Text analytics platforms such as SemEHR (built on
CogStack) [17], [21] and GATE [49] are increasingly being
used across large document repositories, and can incorporate
a range of NLP tools.

C. Strengths and limitations

The main strength of this study was the demonstration of
algorithms combining structured EHR data and NLP to assist
participant recruitment in a simulation of a real clinical trial.
The LeoPARDS trial had particular recruitment challenges –
the time-sensitive nature of the task, and the severity of the
patients’ condition.

A limitation was that our algorithm attempted to identify a
diagnosis of sepsis which may be difficult even for experienced
clinicians. Hence application of the strict inclusion and exclu-
sion criteria identified patients who were not eligible because
they had an alternative explanation for their physiological state
that was not sepsis; this was apparent to clinician reviewers but
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not to the algorithm because it was not programmed in. This
highlighted the need for much more explicit trial inclusion
algorithms if they are to be interpreted automatically, and it
may be difficult to plan for all such nuances in advance.

Another limitation was that the algorithm included only key
portions of the free text rather than the entire clinical record,
and the identification of some criteria was not possible (such
as white cell morphology). We were limited to the single site
which had free text available for NLP, but the method could
potentially be scaled to many sites and adapted for different
studies.

D. Clinical and research implications

This study has demonstrated the feasibility of this approach
in a critical care trial. Future work should apply this method
at other sites and for other studies, and to develop a method
for a current clinical trial in order to evaluate its utility and
performance for real-time patient screening and recruitment.
UCLH is currently building an ‘Experimental Medical Appli-
cation Platform’ which will combine a rich research repository
of EHR data with text analytics (CogStack) and real-time
data feeds from the operational EHR, to enable the rapid
development of this type of research application.

The algorithm could also be tuned by testing out different
thresholds for inclusion and exclusion, in order to achieve a
combination of sensitivity and specificity which best suits its
use in combination with manual review in a trial recruitment
scenario. Use of EHR data with NLP could also be used to
extract participant data for the trial case report forms. This
will save even more time by avoiding the need for duplicate
data entry, and enable the use of more detailed measures of
health status, such as continuous monitoring of physiological
parameters rather than a single measurement in a case report
form. However, it also introduces new challenges such as
ensuring validity, completeness and accuracy of the data [50],
[51], and harmonising heterogenous data across institutes.

V. CONCLUSIONS

Electronic health record data may potentially be used in
computer algorithms to help identify trial participants and
increase recruitment in clinical trials, but much of the detailed
clinical information is available only in the form of free text.
We simulated screening and recruitment for the LeoPARDS
trial in critical care, using the Cogstack platform with rule-
based natural language processing tools to process electronic
health record data. CogStack was able to identify the majority
of patients originally screened, including all those recruited,
and in many cases able to identify patients as eligible one or
two days before the actual manual screening process. This
approach could be implemented in real time to facilitate
clinical trial recruitment, and reduce the burden of time-
consuming manual case note review.
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TABLE IV
UMLS RELEVANT CONCEPTS FOR “INFECTION”.

Infection UMLS IDs
cellulitis C0007642, C0267568, C0742022, C0554110, C0263145, C0343024
cholangitis C0311273, C0267922
cholecystitis C0008325, C0149520, C0267841
chronic sinusitis C0149516
colitis C0277524, C0343386
cystitis C0010692
diverticulitis C0012813
empyema C0014009
endocarditis C0014118, C0014122, C0014121, C0155685, C0746604
epididymitis C0014534
epiglottitis C0014541
folliculitis C0016436
gastroenteritis C0017160
herpes encephalitis C0276226
infection (generic) C3714514, C0009450, C0876973, C0037278, C0151317, C0850034, C0262655, C0275518, C0877046, C0242172,

C0744926, C1699561, C0022729, C0238990, C0439633, C1112209, C0749769, C1698666, C0035243, C0442886,
C0745687, C0860239, C0851989, C0149778, C0038941, C0042029

ludwig angina C0024081
mastitis C0024894
maxillary sinusitis C0024959
mediastinitis C0025064
meningitis C0025289, C0085437, C0085436
myocarditis C0027059
myopericarditis C0854532
necrotizing pancreatitis C0267941
necrotizing fascitis C0238124
osteomyelitis C0029443, C0564832
peritonitis C0031154, C0473119, C0341503, C0275551
pharyngitis C0031350
pneumonia C0032310, C0577702, C0339961, C0032300, C0702135, C0155870, C0155862, C0032290, C0264383, C0004626,

C0949083, C1142578, C0519030, C1701940, C0747651, C0694549, C0585104, C0585105
prostatitis C0033581
pyelonephritis C0034186
pyonephrosis C0034216
recurrent bronchitis C0741796
sepsis C0243026, C0036690, C0684256, C0152965, C1142182, C0877153, C1141926, C1719672, C0036685
sinusitis C0037199
tonsillitis C0040425

TABLE V
OTHER UMLS CONCEPTS USED TO COMPOUND THE LEOPARDS SELECTION CRITERIA.

Concept UMLS IDs
torsades de pointes C0040479, C1960156, C1963250, C3150851, C4510938, C4510799, C4511461
renal failure C0011946, C0015354, C0019004, C0019014, C0022661, C0031139, C0041612, C0191116, C0200017, C0206075, C0264654, C0268810,

C0271932, C0398312, C0398338, C0398340, C0398343, C0398344, C0403462, C0403463, C0403464, C0403465, C0419061, C0419062,
C0455667, C0558708, C0565539, C0748315, C1561829, C3494724, C3531744, C3536572, C3649547, C3697607, C4038741, C4047993

mechanical obstruction C0003492, C0003499, C0003507, C0024164, C0026269, C0151241, C0152417, C0155567, C0158618, C0264766, C0264772, C0275846,
C0332886, C0340335, C0340361, C0340371, C0340372, C0340373, C0340375, C0344401, C0345086, C0345087, C0349073, C0349075,
C0349516, C0406810, C0700637, C1290389, C1306822, C1850635, C1868705, C1960800, C3532372, C3532376, C3839320, C3839383,
C3839635

treatment limitation C0582114, C3472262, C4305111
liver impairment C0019147, C0019212, C0085605, C0162557, C0274386, C0400927, C0400928, C0400929, C0745744, C1619727, C2936476, C4039103
pregnant C0026751, C0032979, C0032980, C0032981, C0032995, C0033150, C0041747, C0149973, C0232989, C0232990, C0232991, C0232992,

C0232993, C0232994, C0242786, C0269675, C0278056, C0404831, C0404842, C0425965, C0425979, C0425983, C0425984, C0425985,
C0425986, C0425987, C0549206, C0585066, C0860096, C1291689, C2586154

ascites C0003962, C0008732, C0019086, C0025184, C0031144, C0220656, C0267772, C0267773, C0267774, C0267776, C0269720, C0275919,
C0341525, C0401037, C0401038, C0437001, C0585187, C0741244, C1285291, C3532188, C3665480, C4038874, C4038944

encephalopathy C0019147, C0019151, C3266165
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