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Abstract

Motivation: Improved DNA technology has made it practical to estimate single-nucleotide polymorphism (SNP)-her-
itability among distantly related individuals with unknown relationships. For growth- and development-related traits,
it is meaningful to base SNP-heritability estimation on longitudinal data due to the time-dependency of the process.
However, only few statistical methods have been developed so far for estimating dynamic SNP-heritability and
quantifying its full uncertainty.

Results: We introduce a completely tuning-free Bayesian Gaussian process (GP)-based approach for estimating dy-
namic variance components and heritability as their function. For parameter estimation, we use a modern Markov
Chain Monte Carlo method which allows full uncertainty quantification. Several datasets are analysed and our
results clearly illustrate that the 95% credible intervals of the proposed joint estimation method (which ‘borrows
strength’ from adjacent time points) are significantly narrower than of a two-stage baseline method that first esti-
mates the variance components at each time point independently and then performs smoothing. We compare the
method with a random regression model using MTG2 and BLUPF90 software and quantitative measures indicate su-
perior performance of our method. Results are presented for simulated and real data with up to 1000 time points.
Finally, we demonstrate scalability of the proposed method for simulated data with tens of thousands of individuals.

Availability and implementation: The Cþþ implementation dynBGP and simulated data are available in GitHub:
https://github.com/aarjas/dynBGP. The programmes can be run in R. Real datasets are available in QTL archive:
https://phenome.jax.org/centers/QTLA.

Contact: mikko.sillanpaa@oulu.fi
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Heritability, the proportion of phenotypic variation attributable to
genetic factors, is a fundamental parameter in population and quan-
titative genetics (Visscher et al., 2008). The aim in narrow-sense her-
itability estimation is to separate the variance of the trait into
additive genetic and environmental variance components such that
their sum equals the total variance of the trait. Generally, heritabil-
ity is a population-specific parameter which can be estimated either
using (i) linear mixed model (LMM) techniques (Henderson, 1984)
or with (ii) multi-locus association (MLA) approaches (Sillanpää,
2011). In LMMs, information of the (additive) genetic relationships
between the individuals in the population must be available, which
can be determined either from known pedigree or from genomic
data [single-nucleotide polymorphism (SNP)], while in MLA mod-
els, heritability can be estimated from genomic data. In LMMs, the
trait variation is assumed to be controlled by a high number of small

effect genes (polygenic), whereas MLA models assume that there are
only few major genes behind the trait variation. We note, that in
case heritability is estimated from genomic data, it is called SNP-
heritability, and we will from now on refer by heritability specifical-
ly to narrow-sense SNP-heritability.

It is well known that heritability of a trait may depend on meas-
urement time, age, environmental conditions (like temperature) or
size (Stinchcombe et al., 2012). In all such cases, it is natural to con-
sider and estimate heritability as a dynamic function. In particular,
functional variation in heritability is motivated by the fact that en-
vironmental changes may affect the environmental variance, and
genes that control traits can activate or deactivate (Bryois et al.,
2017), which then may affect the genetic variance. In general, this
kind of dynamic modelling of biological processes is a fast-growing
field thanks to modern data collection techniques, see e.g. Moore
et al. (2013) and Li and Sillanpää (2015). However, the number of
statistical methods and associated (easy-to-use and publicly
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available) software packages to estimate dynamic heritability is still
limited. To discuss this further, let us first put available methods
into context. For approaches in the multivariate LMM framework
we have the following options.

i. A simple approach: considers all time points as dependent traits

and estimates their trait-specific genetic variances. This multi-

trait model estimates variances jointly but does not apply any

smoothing over time points (Henderson and Quaas, 1976; Lee

and van der Werf, 2016).

ii. Smoothing at phenotype level (Fig. 1C): fits a linear or non-

linear function over phenotypic time points, and then estimates

latent-trait heritability influencing each parameter of that func-

tion using univariate or multivariate LMMs (e.g. Canaza-Cayo

et al., 2015).

iii. Smoothing at breeding value level (Fig. 1B): fits a linear or non-

linear function over time in genomic breeding values (and pos-

sibly residual effects, i.e. permanent environmental effects). A

common approach referred to as random regression (Campbell

et al., 2018; Schaeffer, 2016; http://animalbiosciences.

uoguelph.ca/%7Elrs/BOOKS/rrmbook.pdf), also requires esti-

mation of the residual covariance matrix if the permanent envir-

onmental effects are not smoothed.

iv. Smoothing at variance component level (Fig. 1A): if the residual

variance is also smoothed, the residual covariance matrix can

be left out of the model. Such an example is given by a spline-

based method He et al. (2016, 2017) which is restricted to only

twin data.

In comparison, for MLA approaches, we have the two
possibilities.

i. Smoothing at phenotype level: fits a linear or non-linear function

over phenotypes, and then estimates latent-trait heritability for

trend parameters (e.g. intercepts, slopes), by either using univari-

ate or multivariate methods (see e.g. Gee et al., 2003; Heuven

and Janss, 2010; Li et al., 2014; Sillanpää et al., 2012).

ii. Smoothing at quantitative trait locus (QTL) effect level: fits a

linear or non-linear function over time to QTL effects. In par-

ticular, these methods have been developed for QTL mapping of

function-valued traits, but can also be applied for SNP-

heritability estimation. Examples are varying-coefficient models,

such as Li and Sillanpää (2013) and Vanhatalo et al. (2019).

Considering the residual covariance structure in these models is

recommended.

Dynamic modelling of biological phenomena can be beneficial
for a number of reasons. For instance, by improving the precision of
the estimation (Li and Sillanpää, 2013). This is due to the simple
fact that, as with any statistical modelling, a larger dataset leads to
increased precision, and naturally the amount of data increases with
the number of measurement points. More importantly, if the nature
of a phenomenon is dynamic, it is only rational to model the phe-
nomenon dynamically and exploiting information content over
time. Finally, there is a heated debate around heritability estimation
as to why the current analysis methods are leading to a noticeable
gap (known as missing heritability) between heritability estimates
from SNP and pedigree/twin data (see e.g. Eichler et al., 2010;
Gibson, 2012; Young, 2019). One important contributor to this is
the time-dependent nature of heritability, which our method aims to
address.

One way to induce smoothing in the model (to model dynamic
phenomena) is given by Gaussian processes (GPs). These are random
processes whose degree of smoothness can be controlled by varying
a set of parameters. In particular, they are appealing because of their
analytical properties: with certain conjugacy structure the end result
is given as an easy-to-calculate formula (Rasmussen and Williams,
2006). Furthermore, GPs have been successfully utilized in genetics
before, e.g. by Vanhatalo et al. (2019), where associations between
molecular markers and function-valued traits were studied. Also,
the idea of using GPs in modelling dynamic biological processes is
not new. For example, Pletcher and Geyer (1999) and Jaffrézic and
Pletcher (2000) suggested that the genetic breeding values and envir-
onmental terms of the phenotype in LMM could be viewed as GPs.
They also considered multivariate phenotypes by modelling the co-
variance function of a process through a parametric representation,
which reduces the number of parameters in the model. In fact, this
approach differs from ours, because we view the variance compo-
nents of the LMM as GPs, which is similar to He et al. (2016,
2017), where variance processes were modelled with splines.

In this article, we specifically consider the Bayesian framework
of statistical modelling. This means that the statistical inference is
not only based on the measurement data and the statistical model
but also on prior assumptions and information about the subject
(Gelman et al., 2013). For example, a common assumption in many
research fields about dynamic processes is given by their smooth-
ness, i.e. values at neighbouring time points are expected to be closer
than at time points further apart. To estimate the parameters in
Bayesian models, it is common to use Markov Chain Monte Carlo
(MCMC) simulation methods (Robert and Casella, 2009), but since
GP models usually have a high number of highly correlated parame-
ters, efficient MCMC sampling is difficult. Thus, in addition to the
traditional Metropolis–Hastings (MH) algorithm, we use the state-
of-the-art method of elliptical slice sampling (Murray et al., 2010),
which has shown to perform well in GP models.

In addition to dynamic heritability estimation, the aim of this
article is to illustrate the difference in the uncertainty of the esti-
mates of joint and independent modelling of dependent traits. If a
trait is measured longitudinally over time, the different measure-
ments can be thought as individual traits. If there is dependence be-
tween traits, it makes sense to model them jointly. This dependence
can be viewed as increased sample size because the value of one trait
affects the value of the other.

This article is organized as follows: In Section 2, we present our
proposed model for dynamic heritability estimation based on GPs.
In addition, we introduce a two-stage method that is used as a base-
line. In Section 3, we evaluate our method with two simulated and
two real datasets and compare with a random regression model
(RRM) implemented with MTG2 (Lee and van der Werf, 2016) and
BLUPF90 (Misztal et al., 2002) software and ACEt R-package for
estimating dynamic heritability (He et al., 2017). In Section 4, we
examine the obtained results, followed by a discussion in Section 5.

2 Materials and methods

We will address the dynamic estimation of heritability by two meth-
ods, a joint estimation and a separated two-stage approach which

Fig. 1. (Top panel) Continuous smoothing over time points can be induced into one

of three possible layers in the LMM hierarchy: either in the variance component

layer (A), genetic value layer (B) or phenotype layer (C). (Bottom panel) Our sug-

gested LMM structure, where continuous smoothing over time points is induced on

the genetic- and residual-variance components
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serves to illustrate why joint modelling is beneficial. Specifically, the
two-stage method first estimates the posterior means of the variance
components and their credible intervals at every time point individu-
ally and subsequently combines the obtained estimates into smooth
curves.

All models in this study are extensions of the basic LMM,
defined as (Henderson, 1984).

y ¼ XbþZuþ �; (1)

where y 2 RN is a measurement vector, X is a matrix of fixed
effects, b contains the regression coefficients associated with them
and N is the number of individuals. The matrix Z (in this case
Z ¼ I) connects random effects u 2 RN � Nð0; r2

GGÞ with correct
individuals. Here, r2

G is the genetic variance and G is the genomic re-
lationship matrix (defined in detail below). Lastly, � 2 RN �
Nð0; r2

EIÞ is the error term. Since we do not have any fixed effects,
we can express the centred measurement vector as yc ¼ uþ �. We
note that the overall covariance matrix of yc can be written as
K ¼ r2

GGþ r2
EI. Narrow-sense heritability is then defined as

h2 ¼ r2
G=ðr2

G þ r2
EÞ.

2.1 Genomic relationship matrix
To separate the genetic and environmental variance components,
knowledge of the genetic relations between individuals is needed. A
genomic relationship matrix can be estimated from molecular mark-
er data. VanRaden (2008) describes the procedure of constructing
such a matrix. First, let M be an N�M genotype matrix where N is
the number of individuals and M is the number of markers. The ele-
ments in M are coded as �1; 0;1 for homozygote, heterozygote and
the other homozygote, respectively. Second, let pi be the allele fre-
quency of the second allele at locus i. Then, we construct a matrix P
with the same dimensions as M and set the ith column of P to
2ðpi � 0:5Þ. Let Q ¼M � P. Finally, we can construct a genomic re-
lationship matrix as:

G ¼ QQ0

2
P

ipið1� piÞ
: (2)

To reduce the estimation error, we used a shrinkage estimated
version of this matrix, defined in detail by Endelman and Jannink
(2012) and implemented in the R-package rrBLUP (Endelman,
2011). We note that the estimated genomic relationship matrix G is
positive-semidefinite and hence might not be invertible. However,
for our model formulation, this will not be a problem. This is due to
the fact that we always add positive values to the diagonal of the
matrix; see matrix K above.

2.2 Joint model over time points
To extend the model (1) to the case of longitudinal data, we can use
the Kronecker product denoted by �. The extended model defines a
probability distribution for a data vector ~yc ¼ ½ycð1Þ . . . ycðTÞ�

0 that
can be written as

~yc ¼ ~u þ ~�; ~yc; ~u;~� 2RNT (3)

where ~u ¼ ½uð1Þ . . . uðTÞ�0 � N ð0; diagðr2
Gð1Þ; . . . ; r2

GðTÞÞ �GÞ con-
tains all breeding values and ~� ¼½�ð1Þ . . . �ðTÞ�0e
Nð0; diagðr2

Eð1Þ; . . . ;r2
EðTÞÞ � IÞ contains all error terms from indi-

vidual time points consecutively and T is the number of time points.
The overall covariance matrix for ~yc can be written as
~K ¼diagðr2

Gð1Þ; . . . ; r2
GðTÞÞ �Gþ diagðr2

Eð1Þ; . . . ; r2
EðTÞÞ � I. The

variance component vectors can now be estimated with a Bayesian
approach by setting suitable priors for them. It is worth noting that
this model structure implies that all covariances across time (within
and between individuals) are ignored. For the rapid performance of
the algorithm, this assumption is crucial. It is in the priors of the
variance component vectors where we assume dependence over time
(see Fig. 1, bottom panel). This is a fundamental difference com-
pared with for example Pletcher and Geyer (1999) who model the
dependence on the level of breeding values. The idea behind our

assumption is that the dependence of neighbouring trait values indu-
ces dependence on the variance level.

The priors are based on assumptions about the qualitative fea-
tures of the variance component functions, namely their continuity
and smoothness. Due to the aforementioned reasons, we assume
that the variance values at neighbouring time points are on average
closer than at time points further apart. To formulate such assump-
tions mathematically, one can use GPs, fully defined by a mean func-
tion and a covariance function (Rasmussen and Williams, 2006).
We write log r2

G � GPð0;CGðt; t0ÞÞ and log r2
E � GPð0;CEðt; t0ÞÞ,

where CGðt; t0Þ ¼ covðlog r2
GðtÞ; log r2

Gðt0ÞÞ and CEðt; t0Þ ¼
covðlog r2

EðtÞ; log r2
Eðt0ÞÞ. Logarithms are used to allow negative val-

ues for the processes and the zero mean can be achieved approxi-
mately by suitable translation of the data. For CG and CE, we use
the Matérn covariance function, given by

Cðt; t0Þ ¼ s2 21��

Cð�Þ
jt � t0j

k

� ��
K�
jt � t0j

k

� �
; (4)

where s2 is the magnitude parameter that controls the overall vari-
ance of the stochastic process, k is the length scale that governs how
fast the covariance drops with respect to the distance of time points,
Cð�Þ denotes the gamma function and K�ð�Þ the modified Bessel func-
tion of the second kind. The value of � controls the mean-square dif-
ferentiability of the process, which affects its smoothness. We note
that for � ¼ 0:5;1:5;2:5; . . ., there exists a simple form for the co-
variance function. In this study, we fix � ¼ 1:5, which means that a
sample process is once mean-square differentiable and we obtain

C1:5 t; t0ð Þ ¼ s2 1þ jt � t0j
k

� �
exp � jt � t0j

k

� �
: (5)

This means the process is rather smooth, but it is also allowed to
change rapidly (Rasmussen and Williams, 2006).

A common problem with GPs is determining values for the
hyperparameters s2 and k. In the Bayesian framework, one can set
up separate priors for each and estimate them together with the
other unknowns using MCMC. However, it is known that identifi-
ability issues arise when simultaneously estimating both hyperpara-
meters (Zhang, 2004). Thus, it is common to fix one of them. In our
case, we fix s2 ¼ 1 and scale the data so that the mean of the overall
variance over time points equals 2. This means the mean of the en-
vironmental and genetic variance over time points is 1 if they are
equal.

Because our GP model is non-parametric, we have to discretize
the time axis and define a grid of points where we estimate the vari-
ance components. For simplicity, we estimate the variance compo-
nents at the same locations the measurements were taken. This
means that the covariance function Cð�; �Þ becomes a covariance ma-
trix C. Then we have for each element in the matrix that
½C�ij :¼ Cðti; tjÞ. We note that a covariance matrix defined this way
is dense and computationally heavy to operate with. Hence, we use
a sparse approximation for the inverse of the covariance matrix
(Roininen et al., 2014), discussed in more detail in the
Supplementary Material.

The model can be written in hierarchical form as

~ycjr2
E; r

2
G eNð0; ~KÞ;

log r2
EjkE eNð0;CEÞ;

log r2
GjkG eNð0;CGÞ;

log kE eNðlk; f
2
kÞ;

log kG eNðlk; f
2
kÞ:

(6)

By Bayes’ formula, the unnormalized posterior density can be
expressed as

pðr2
G;r

2
E; kE; kGj~ycÞ /

pN ð~ycj0; ~KÞpN ðlog r2
Gj0;CGÞpN ðlog r2

Ej0;CEÞ
pN ðlog kEjlk; f

2
kÞpN ðlog kGjlk; f

2
kÞ;

where pN refers to the multinormal density.
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In practice, with this parameterization, we observed poor mixing
of the hyperparameter chains. Hence, we employed whitening
(Monterrubio-Gómez et al., 2020; Murray and Adams, 2010; Yu

and Meng, 2011), which breaks the dependencies of the variance
component processes and corresponding hyperparameters under the

prior. We first note that the logarithmized variance component
processes can be expressed as log r2

E ¼ C
1
2

EgE and log r2
G ¼ C

1
2

GgG,
where gE and gG are both standard multivariate normally distrib-

uted. The matrix square roots are obtained straightforwardly
through the approximations (see Supplementary Material). Instead

of log r2
E and log r2

G, we now sample gE and gG. The reparametriza-
tion corresponds to the following posterior density

pðgG; gE; kE; kGj~ycÞ / pN ð~ycj0; ~KÞpN ðgGj0; IÞpN ðgEj0; IÞ
pN ðlog kEjlk; f

2
kÞpN ðlog kGjlk; f

2
kÞ;

where

~K ¼ diag exp C
1
2

GgG

n o� �
�Gþ diag exp C

1
2

EgE

n o� �
� I:

The hyperparameters lk and f2
k are set by following

Monterrubio-Gómez et al. (2020). In particular, it is based on the
idea that the length scale is identifiable between the smallest and

largest distance between two time points, say ½a;b�. Hence we want
to place most of its prior probability mass in that interval. By using

the quantile function of a standard normal distribution, we can as-
sign �95% of the prior mass between the interval by solving the fol-
lowing system of equations:

lk � 1:96fk ¼ log a
lk þ 1:96fk ¼ log b:

(7)

We emphasize that this model specification leaves no tuning
parameters to fix prior to estimation which eliminates the need for

preliminary analyses and consequently saves plenty of time.

2.2.1 Parameter estimation in the joint model

To generate dependent MCMC samples from the posterior distribu-
tion of parameters gG and gE, we use the elliptical slice sampling
method (Murray et al., 2010). It is a rejection-free sampling algo-

rithm and we noticed that it does perform better for high-
dimensional data (more than 100 time points) than the block-update

of MH algorithm. The problem with elliptical slice sampling is that
the likelihood must be evaluated multiple times in a single MCMC
iteration, making it quite a bit slower than MH. For the length

scales, we use MH with Gaussian random walk proposals, i.e. the
proposal value is sampled from the distribution NðhðiÞ; r2

RWÞ, where
hðiÞ is the current value of the parameter. The variance is adapted

following Section 3 in Roberts and Rosenthal (2009) to achieve an
acceptance rate of 0.44 which is considered optimal in certain set-

tings. The four parameter subsets (gE; gG; log kE; log kG) are
sampled in alternatingly while keeping the other values fixed.

The computationally most intensive part of the algorithm is the
evaluation of the likelihood function, due to the inversion and deter-
minant computation of an NT � NT covariance matrix.

Fortunately, the form of the matrix allows us to utilize some basic
linear algebra to make the computations feasible. We start by exam-

ining the structure of matrix ~K and note the block diagonal structure
where the blocks consist of time point-specific covariance matrices:

~K ¼
r2

Gð1ÞGþ r2
Eð1ÞI 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . r2
GðTÞGþ r2

EðTÞI

2
664

3
775:

This means, we can express the overall log-likelihood function of
the parameters as a sum of log-likelihood functions of each time

point

log pð~ycj0; ~KÞ ¼
XT

t¼1
log pðycðtÞj0;KðtÞÞ: (8)

Similarly to Kang et al. (2008), we can now use eigen decompos-

ition to decorrelate the measurements using a linear transformation
to speed up the computations. The covariance matrix of the meas-

urements yðtÞ at time t can be decomposed as UDðtÞU 0, where U is
the eigenvector matrix of G and DðtÞ is a diagonal matrix with
½DðtÞ�nn ¼ r2

GðtÞnn þ r2
EðtÞ and nn being the eigenvalues of G. By the

orthogonality of U, we have that
varðU 0yðtÞÞ ¼ U 0UDðtÞU 0U ¼ DðtÞ, implicating that the elements in

the transformed measurement vector U 0yðtÞ are independent of each
other. This reduces the log-likelihood calculation into a sum. Most
importantly, since U does not depend on the variance components,

the transformation has to be done only once. Setting zðtÞ ¼ U 0yðtÞ,
the resulting log-likelihood can be written as

log pð~yj0; ~KÞ ¼
XT

t¼1

XN

n¼1
log pðzðtÞnj0; r2

GðtÞnn þ r2
EðtÞÞ: (9)

The pseudocode for the algorithm can be found in the

Supplementary Algorithm S1.

2.3 Two-stage method
To illustrate the benefits of the joint model, we compare it to a base-
line approach. The method consists of two stages: (i) the estimation
of posterior means of the variance components and their 95% cred-

ible intervals at each time point separately and (ii) combining indi-
vidual estimates together by smoothing the obtained estimates from
stage one. The estimation in stage one is based on the same model as

in the joint estimation but for one time point

ycðtÞ ¼ uðtÞ þ �ðtÞ; (10)

where yc is the centred measurement vector at time t, uðtÞ �
Nð0; r2

GðtÞGÞ and �ðtÞ � Nð0; r2
EðtÞIÞ. As in the joint method, the

data are scaled such that the overall variance over time points is 2.

The covariance matrix of ycðtÞ is KðtÞ ¼ r2
GðtÞGþ r2

EðtÞI and the
model can be written as

ycðtÞ �Nð0;KðtÞÞ;
log r2

GðtÞ �Nð0; 1Þ;
log r2

EðtÞ �Nð0; 1Þ:
(11)

We note that this is a special case of the joint model presented

earlier, see Equation (3). Posterior means and 95% credible intervals
of the variance components at each time point are obtained from

this analysis used in the next stage.
Smoothing of the variance component curves over time is based

on the model

yr2 ¼ f r2 þ �r2 ; (12)

where yr2 contains either logarithmized posterior means, lower
95% credible interval limits or upper 95% credible interval limits

estimated in stage one, fr2 � GPð0;Ckðt; t0ÞÞ is a smooth process and
�r2eNð0; c2IÞ is an error term. Ckð�; �Þ is again the Matérn covari-
ance function, defined in Equation (5). Here, yr2 is scaled to have

mean zero and variance one. After discretization, the model can be
written as follows:

yr2 �Nð0;Ck þ c2IÞ;
log c2 �Nð0;10000Þ;
log k �Nðlk; f

2
kÞ;

(13)

where c2 and k are assumed to be a priori independent. The variance

parameter in the error term is given an uninformative prior and the
parameters lk and f2

k are fixed similarly as in joint estimation
method following Monterrubio-Gómez et al. (2020). The process fr2

is analytically integrated out of the model, but we can reconstruct it
at the measurement points after the estimation of the hyperpara-
meters (Rasmussen and Williams, 2006) by noting that
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f r2 jyr2 ; k; c2e
NðCkðCk þ c2IÞ�1yr2 ;Ck � CkðCk þ c2IÞ�1CkÞ:

2.3.1 Parameter estimation in the two-stage method

The parameters log r2
GðtÞ and log r2

EðtÞ in stage one are estimated
using a random walk MH algorithm with the same adaptation as in
the joint estimation method. They are sampled at MCMC iteration
iþ1 from the distributions Nðlog r2

GðtÞ
ðiÞ; sr2

G
ðtÞðiÞÞ and

Nðlog r2
EðtÞ

ðiÞ; sr2
E
ðtÞðiÞÞ. The proposals are accepted by MH (a sin-

gle parameter at a time) conditionally on the other parameter fixed
to its latest value.

The parameters log c2 and log k of the smoothing model in
phase two are estimated similarly as in stage one with the same
adaptation. They are sampled at iteration iþ 1 from the distribu-
tions Nðlog c2ðiÞ; s

ðiÞ
c2 Þ and Nðlog kðiÞ; sðiÞk Þ. The proposals are

accepted by MH (a single parameter at a time) conditionally on the
other parameter fixed to its latest value.

The pseudocode for both stages can be found in the
Supplementary Algorithms S2 and S3.

2.4 Computational considerations
Since the log-likelihood in the joint estimation method can be
expressed as a sum (Equation 9), its computation can be parallel-
ized. We parallelized all log-likelihood calculations, gaining add-
itional speedups. The computation times were between 24 min for
the mouse activity data and 31 min for the Arabidopsis data with
300 000 MCMC iterations. The workstation used for the simula-
tions had an AMD Ryzen Threadripper 2950X 3.5 GHz processor
with 16 cores and 32 GB of RAM. The method is implemented with
Cþþ integrated with R using the Rcpp library (Eddelbuettel and
François, 2011) and Eigen (Guennebaud et al., 2010) (http://eigen.
tuxfamily.org) for linear algebra. The programme is available at
https://github.com/aarjas/dynBGP.

3 Example analyses

To test the methods described earlier, we used four different datasets
with a large number of time points. Two were simulated and the
two others were real datasets from https://phenome.jax.org/centers/
QTLA.

3.1 Simulated dataset
The simulated data consist of measurements from N ¼ 1000 indi-
viduals from T ¼ 50 time points. First, a relationship matrix was
created by generating an N �N matrix S with independent standard
normally distributed elements. The relationship matrix was then
computed as G ¼ SST=N þ 0:1I. A small number was added to the
diagonal to make the matrix positive definite. To simulate realistic
data, the longitudinal dependencies need be taken into account as
well. This was done by computing a T � T GP matrix C where the
row i and column j intersection was set to

½C�ij ¼ 1þ
ffiffi
5
p
jti�tj j
ð50=3Þ þ

5ðti�tjÞ2

3�ð50=3Þ2

� �
exp �

ffiffi
5
p
jti�tj j
ð50=3Þ

� �
. The genetic and en-

vironmental components of the data were simulated from the distri-
butions Nð0;C�GÞ and Nð0;C� IÞ, respectively. Finally, the
components were scaled with the corresponding variances at each
time point and summed. A correct relationship matrix was assumed
known in the analysis stage. To demonstrate scalability of the ap-
proach, we created larger datasets with up to 50 000 individuals and
1000 time points (see Supplementary Fig. S5).

3.2 Arabidopsis thaliana dataset
The second dataset contains A.thaliana root tip angle measurements
(Moore et al., 2013). The population consists of N ¼ 162 recombin-
ant inbred lines of Arabidopsis seeds with 234 markers. The seeds
were placed on Petri dishes that were held in front of a camera and
rotated 90� so that the roots grew parallel to the ground. The root
tip angle was measured every 2 min for 8 h resulting in T ¼ 239

time points. Moore et al. (2013) describe the measurement process
in more detail. We used a version of the data where the phenotype
values were averages of multiple individuals representing the same
line.

3.3 Mouse activity dataset
The third dataset consists of mouse activity measurements (Xiong
et al., 2011). The activity of N ¼ 89 mouses was monitored over a
period of 12 days. One day was divided into 6-min intervals and an
active state probability of a given mouse in each interval was calcu-
lated based on the 12 days of data. This results in T ¼ 222 time
points. Since the outcome is a probability, normality assumption is
not realistic. Hence, we transformed the phenotypic data using
logit-transformation following the procedure described by Li and
Sillanpää (2013). The data also have measurements of 251 markers.

3.4 Comparison with ACEt
We also compared our joint estimation method with the freely avail-
able ACEt R-package for estimating dynamic heritability (He et al.,
2016, 2017). The method is restricted only for twin data and it uses
splines in defining the different dynamic variance components. The
ACEt model also includes a common environmental effect as a third
variance component, which our model lacks. For uncertainty quan-
tification, ACEt uses delta-method or bootstrap. For the method
comparison, we used a simulated twin dataset that comes with the
ACEt R-package. It consists of 100 twin pairs, half of who are
monozygotic and half of who are dizygotic. The N ¼ 200 individu-
als have T ¼ 50 equispaced measurements of an artificial trait over
50 years. In twin models, the covariances in the relationship matrix
between a monozygotic twin pair and a dizygotic twin pair are
assumed to be 1 and 0.5, respectively, while the diagonal values are
all 1. Between-pair covariance is assumed to be 0.

3.5 Completing missing genotype data by imputation
There were no missing phenotype values in any of the datasets. The
mouse activity dataset had 0:3% and the Arabidopsis dataset 1:4%
missing marker values. All missing values were imputed once before
calculating the genomic relationship matrix with the mean value of
the given marker over individuals.

4 Results

The results from the Bayesian analysis of simulated data are pre-
sented in Figure 2 for both methods. The posterior estimated vari-
ance component functions generally follow the real functions that
were used to generate the data well. Perhaps the most interesting as-
pect about the results is the difference in the uncertainty of the esti-
mates between the methods. The 95% credible intervals provided by
the joint model are far narrower than those of the two-stage method.
This is because the joint model makes use of the whole dataset,
whereas the two-stage method uses the data of each time point
independently.

The estimated posterior mean curves and their 95% credible
intervals for variance components and SNP-heritability calculated
from the Arabidopsis seed data are presented for the joint model
and two-stage method in Figure 3. Again, one can clearly see much
wider 95% credible intervals surrounding the posterior mean curves
obtained from the two-stage method. Moore et al. (2013) have also
estimated the dynamic heritability from this dataset using ANOVA.
They calculated the variances within and between genetically dis-
tinct lines separately at every point in time. The curve has the same
shape but the actual values are somewhat smaller than ours, peaking
at 0.25, while our estimate peaks at about 0.4. This offset can be
explained by different averaging of used data and in particular, their
estimation lacks uncertainty estimates. Vanhatalo et al. (2019) have
analysed the same data as well and are likely using the same averag-
ing as we do. We note that their obtained heritability estimates coin-
cide very well with ours. However, they also lack uncertainty
estimates. Interestingly, similar results were not expected, since the
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two analysis models differ significantly in structure and especially in
terms of assumptions on the underlying genetics.

The posterior estimates from the mouse activity data are pre-
sented in Figure 4. This kind of data seems to be challenging for the
GP models. This is mainly due to the fact that here the variance
processes have very rough features along with smooth areas. Thus,
the amount of smoothing needed is very different at different time
points. Especially, the heritability process estimated with the two-
stage method does not perform so well and produces highly oscillat-
ing features. The same data were analysed in Vanhatalo et al. (2019)
as well. In this case, their heritability estimates look quite different
to ours. In particular, our methods have smoothed most rough
edges, whereas their estimate has preserved them. Nevertheless, the

overall shape is similar. These differences here are likely the conse-
quence of using very different models.

We also compared the joint model with a RRM [implemented in
e.g. BLUPF90 (Misztal et al., 2002), MCMCglmm (Hadfield, 2010)
and MTG2 (Lee and van der Werf, 2016)] which is a well-
established method for analyzing dynamic biological phenomena.
We simulated 10 different datasets with the method from Section
3.1 and fitted a Legendre polynomial of degree five for both the gen-
omic breeding values and permanent environmental effects. The
model assumes heterogenous residual variances over time. A more
precise model definition can be found in the Supplementary
Material. We computed the mean squared error (MSE) of the esti-
mated genetic and environmental variances as well as heritabilities,
where MSE ¼ ð1=TÞ

PT
t¼1ðf ðtÞ � f̂ ðtÞÞ2, with f ðtÞ being the ground

truth at time t and f̂ ðtÞ the estimate at time t. We used posterior
mean as the point estimate for the joint method. The computed
errors can be found in the Supplementary Table S1. This analysis
was performed using AI-REML method in the software MTG2 (Lee
and van der Werf, 2016) and it took on average 14 min. The MSE of
the joint method was on average 17% smaller than of the RRM. We
note that the MSE varies with the chosen degree of the Legendre pol-
ynomials and for this computation; we chose the best performing
combinations with a reasonable computation time. Additionally, we
fitted a Bayesian version of the same model using BLUPF90 family
of programmes (Misztal et al., 2002) and GIBBS2F90 in particular.
This allowed us to quantify the uncertainty in the variance compo-
nents estimated with the RRM. The results of the analysis and fur-
ther details can be found in the Supplementary Figure S7. The 95%
credible intervals obtained from the RRM are slightly wider than of
the joint model. This might be due to the differences in model struc-
tures (cf. Fig. 1). The computation time for the Bayesian RRM for
the simulated dataset was over 24 h, whereas for the joint method it
was <30 min with 300 000 MCMC-iterations in both. Furthermore,
we would like to mention that the RRM implemented in both
MTG2 and GIBBS2F90 did not converge on our real dataset exam-
ples where the number of individuals is small but the number of
time points high. Yet, the joint method manages to do so, i.e. the
MCMC sampler converges. It is not completely clear to us why this
is the case. One possibility might be the difference in assumptions:
In RRMs the assumptions about the parametric shape of the breed-
ing values and environmental effects induce some shape for the

Fig. 3. The dynamic variance components and SNP-heritability estimated from the

A.thaliana dataset with the two different Bayesian methods. Posterior mean curves

are drawn with solid lines and 95% credible intervals with dashed lines

Fig. 4. The dynamic variance components and SNP-heritability estimated from the

mouse activity dataset with the two different Bayesian methods. Posterior mean

curves are drawn with solid lines and 95% credible intervals with dashed lines

Fig. 2. The dynamic variance components and SNP-heritability estimated from the

simulated dataset with the two different Bayesian methods. The posterior mean

curves are drawn with solid lines and 95% credible intervals with dashed lines
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variance components. In the joint method, the prior assumptions
concern only the variances. This direct modelling strategy might
simplify the estimation process.

Finally, the comparison of our joint model with the ACEt model
for analyzing twin data is presented in the Supplementary Figure S4.
The results obtained by both methods are consistent, even though
ACEt considers also common environment in its model. In our
method, the genetic variance component seems to have absorbed the
common environmental variation, resulting in slightly higher herit-
ability estimate than the one given by ACEt. The uncertainty esti-
mates differ a bit between the methods, which is likely due to the
common environmental component. Moreover, obtained uncer-
tainty limits are not fully comparable because the frequentist ACEt
method uses delta-method and our Bayesian method uses MCMC
sampling for generating the limits.

Performance of the MCMC-algorithm for the joint model can be
evaluated from traceplots of the parameters (Supplementary Figs
S1–S3). All of the parameter chains seem to have converged, al-
though there is some oscillation on the variance component parame-
ters with the lowest effective sample size.

5 Discussion and conclusions

We presented a new Bayesian method for estimating dynamic
narrow-sense heritability, based on LMMs and GP priors. The
method uses data from all time points at once, making it possible for
the time points to ‘borrow strength’ from one another through the
prior covariance structure. This property makes the resulting poster-
ior distributions narrower compared with the second method where
the variance components are estimated separately for each time
point and smoothed afterwards. Another benefit of the method pre-
sented due to non-parametric smoothing using GPs is that it can
handle very general functional shapes.

The presented estimation method bears some similarities with
random regression as both are based on LMMs, but there are essen-
tial differences that we would like to point out. Most notably, in our
proposed method the smoothing is based on priors that are set for
the variance component vectors, while in random regression the
smoothness of the variances is induced through the assumptions
made about the functional shape of the breeding values and environ-
mental effects. Additionally, our model assumes independence of
different traits (measurements made at different points in time) and
ties them together with the priors. In multivariate LMMs, traits are
assumed to be dependent and random regression attempts to reduce
the size of the estimated covariance matrix by reparametrization.

A benefit of our proposed method is the ability to quantify the
uncertainty in the variance component estimates. This is also pos-
sible in Bayesian RRMs using MCMC but in frequentistic RRMs
additional steps such as application of delta-method or bootstrap
are needed to produce the respective confidence intervals. In add-
ition, our method is completely free of tuning whereas in random re-
gression the degree of the polynomial or alternatively knot points in
splines must be chosen prior to estimation. In practice, we noticed
that the estimation in MTG2 is really fast for a few traits but it
slows down quickly as the number of traits increases. In fact, trying
to run the algorithm with 1000 individuals and 100 traits causes an
insufficient virtual memory error. In contrast, our algorithm still
worked well with 50 000 individuals and 100 time points within a
reasonable time (�20 h). Additionally, high number of traits is not
an issue either as demonstrated in the Supplementary Figure S5. We
like to emphasize that the computation times grow almost linearly
and hence our algorithm exhibits excellent scalability. Based on our
results, we believe that random regression performs best when there
is a high number of individuals and low number of time points
which was not the case in our real data examples. In MTG2, the
time complexity is cubic with respect to the number of time points
(Lee and van der Werf, 2016), and we believe this is also the case
with other RRM implementations. It is also noted by Schaeffer
(2016) that Legendre polynomials might cause artefacts near the
boundaries of the covariate domain and hence GPs are favoured. A
limitation of our method is the inability to model gene-covariate

interactions with possibly only one measurement per individual (cf.
Moore et al., 2019; Ni et al., 2019). Theoretically, to perform such
analysis, the covariate would have to be split up into discrete groups
with each group containing suitably large population (cf. Robinson
et al., 2017). This would also result in each group having their own
relationship matrix. This is not supported by the algorithm at the
moment, however.

Furthermore, the method presented here can also be extended
for further analysis. For example, given the posterior mean estimates
r̂2

GðtÞ and r̂2
EðtÞ at time t, the conditional distribution of genomic

breeding values uðtÞ is NðluðtÞ;RuðtÞÞ (Rasmussen and Williams,
2006), where

luðtÞ ¼ r̂2
GðtÞGðr̂2

GðtÞGþ r̂2
EðtÞIÞ

�1yðtÞ and

RuðtÞ ¼ r̂2
GðtÞG� r̂2

GðtÞGðr̂2
GðtÞGþ r̂2

EðtÞIÞ
�1r̂2

GðtÞG:
(14)

The posterior means of genomic breeding values are not smooth
functions over time (cf. Campbell et al., 2018). After computing the
breeding values, the SNP effects mðtÞ can be estimated for associ-
ation mapping purposes by the back-transformation formula m̂ðtÞ ¼
R0G�1luðtÞ, where ½R�ij ¼ ð½M�ij þ 1� 2pjÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ

p
Þ�1; pj is

the allele frequency of the other allele in marker j and M defined in
Section 2.1 (Bernal Rubio et al., 2016). This kind of longitudinal
analysis was recently performed by Campbell et al. (2019) who first
estimated the breeding values with a RRM and then used the back-
transformation to solve for the SNP effects. Results were compared
with an alternative single time point analysis and the authors found
that the dynamic analysis recovered more significant associations.
The presented model can also be extended by adding fixed environ-
mental effects that affect the phenotype values. This could further
reduce the estimation error. Another strategy is to apply a two-stage
pre-correction similar to He et al. (2016). This means that a linear
regression model is first fitted to estimate the fixed effect coefficients
and the residuals of that model are then used as phenotype values to
estimate the variance components in our LMM.

Further extension would be to consider non-Gaussian longitu-
dinal phenotypes, e.g. binary or count data. In case of binary data,
an extra latent-trait layer can be added to the model (Albert and
Chib, 1993; Felsenstein, 2005; Kärkkäinen and Sillanpää, 2013). In
latent-trait modelling, the binary phenotype can be modelled by con-
sidering an underlying hypothetical normally distributed latent-trait
variable which gives rise to the binary trait at the observed layer. If
the latent-trait variable is smaller than the pre-determined threshold,
binary trait at the observed layer obtains the value zero and other-
wise it obtains the value one.

One future extension is also to consider multiple longitudinal
quantitative traits simultaneously. Some models and methods have
been presented for this purpose—to explain the variation of more
than one trait simultaneously over time (Oliveira et al., 2019; Sung
et al., 2016).

To conclude, we presented a new tuning-free method for estimat-
ing dynamic heritability using a Bayesian LMM and GP priors. To
estimate the parameters in the model, we use MCMC which makes
the uncertainty quantification straightforward. Our results clearly il-
lustrate that joint modelling of the data of all time points reduces
the uncertainty in the estimates compared with independent
modelling.
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