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PC–SPSA: Employing dimensionality reduction to
limit SPSA search noise in DTA model calibration
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Abstract—Calibration and validation have long been a signif-

icant topic in traffic model development. In fact, when moving

to Dynamic Traffic Assignment (DTA) models, the need to

dynamically update the demand and supply component creates

a considerable burden on the existing calibration algorithms,

often rendering them impractical. These calibration approaches

are mostly restricted either due to non–linearity or increasing

problem dimensionality. Simultaneous Perturbation Stochastic

Approximation (SPSA) has been proposed for DTA model cal-

ibration, with encouraging results, for more than a decade.

However, it often fails to converge reasonably with the increase

in problem size and complexity. In this research, we combine

SPSA with Principal Components Analysis (PCA), to form

a new algorithm we call PC–SPSA. PCA limits the search

area of SPSA within the structural relationships captured from

historical estimates in lower dimensions, reducing the problem

size and complexity. We formulate the algorithm, demonstrate

its operation and explore its performance using an urban

network of Vitoria, Spain. Practical issues that emerge from

the scale of different variables and bounding their values are

also analyzed through a sensitivity analysis using a non–linear

synthetic function.

Index Terms—Model calibration, principal component analy-

sis (PCA), simultaneous perturbation stochastic approximation

(SPSA).

I. INTRODUCTION

E
VOLUTION of the automobile industry entirely changed
the prospect of traveling for mankind. Serving as the

most widely used mode of transportation, it comes at a price
of congestion, costing us socially, economically and environ-
mentally. Practitioners worldwide try to tackle this problem
through real–time traffic management and operations based
on Dynamic Traffic Assignment (DTA) systems. However, the
efficacy of this practice is based on the level of accuracy
for traffic state estimation and prediction, resulting from DTA
models. Hence, calibration of DTA models is a crucial aspect
towards the performance of these systems.

Dynamic Traffic Assignment (DTA) models are based
on the interaction of demand parameters [including Origin-
Destination (OD) flows, travel behaviors] with network char-
acteristics (link capacities, speed-density relationships), to
simulate road traffic conditions. Calibration of DTA models
involves adjustment of these supply and demand parameters
using observed traffic measurements. These adjustments are
mostly done both offline (for long–term traffic planning)
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[12] and online (for real–time traffic management) [3]. The
calibration approaches developed so far include two types of
formulations: assignment matrix based and non–assignment
matrix based. Assignment matrices provide linear mappings
between OD flows and traffic data, allowing their updating to
be done analytically [32] without the use of a DTA model.
Assignment matrix based formulations limit the use of traffic
measurements to link counts primarily (limited extensions
have been proposed, e.g. [2] considered ways to add Auto-
mated Vehicle Identification information), which might fail
to address the Dynamic OD Estimation (DODE) problem
for congested networks, due to the dynamics of density–
flow relationships (i.e. similar count values possible for both
congested and uncongested traffic regimes) [22].

Having said that, several researchers have enhanced
assignment–based approaches with non–linear features to
overcome these limitations. Frederix et al. [22] address the
DODE problem for congested networks by suggesting that
instead of just using a linear response function, a second term
should also be included (the authors used a first order Taylor
expansion). Thus, the correlation between OD flows and those
link counts, which are indirectly affected e.g. due to congestion
(i.e. spill–backs) is also captured. Toledo and Kolechkina [33]
also provide valuable insight on the performance of different
approaches. By using the enhanced assignment matrix ap-
proximation, the authors show that the analytical approaches,
based on relative gradient and quasi Newton methods, can
outperform meta–heuristic algorithms, using traffic counts as
the information.

On the other hand, non–assignment matrix–based ap-
proaches can use any source of traffic information, due to a
more generic (often non–analytical) formulation [3]. A widely
adopted, non–assignment matrix–based approach for calibra-
tion of DTA models is Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm [28]. Besides being simple
and computationally efficient, SPSA provides the advantage
of using any traffic measurement due to a generic problem
formulation. Being stochastic in nature, SPSA is sensitive
to the definition of its initial parameters (gain sequence),
scale of the estimating variables, the objective function and
its corresponding gradient. Due to these characteristics, its
performance often reduces significantly with the increase in
DTA model size and complexity.

The motivation behind this research is to increase the robust-
ness of SPSA for complex, high–dimensional and non–linear
problems. DTA model calibration is typically a highly non–
linear, undetermined large size problem. Due to its scale and
complexity, SPSA is typically applied for offline calibration,
and requires a significant number of iterations (more than a
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hundred) to reach an appropriate solution. The role of SPSA’s
predefined gain sequence and its problem characteristics is
very significant in determining its performance regarding error
reduction and computational time. Increasing dimensions and
complexity of the calibrated DTA model significantly affect
SPSA’s calibration accuracy and temporal efficiency.

The objectives of this research are two–fold: 1) Develop
a modified SPSA algorithm, with the application of Prin-
cipal Component Analysis (PCA) concepts, thus calibrating
the model parameters in a reduced dimensional space; 2)
Evaluate the performance of PCA based SPSA (which we
call PC–SPSA) on a real medium–sized urban network of
Vitoria, Spain, against traditional SPSA; and 3) Examine
the robustness of PC–SPSA against the increase in problem
dimensionality.

This research contributes to the literature by proposing a
statistics–based enhancement for SPSA. The new algorithm
(PC–SPSA) shows an enhanced application scalability towards
larger and more complex problems. PC–SPSA statistically
reduces its problem dimensions and non–linearity through
recognizing the structural patterns in its historical estimates
and calibrates it in a reduced dimensional space using SPSA.
The performance of PC–SPSA in calibrating the considered
network and solving its DODE problem illustrates that using
PCA along SPSA not only increases its application feasibility
for calibrating large size complex networks in an offline con-
text, but it can also be a potential online calibration approach
for networks of medium size and complexity. As PCA restricts
the search area of SPSA within the structural relationships
captured from historical estimates, it not only makes PC–
SPSA perform much faster, but also addresses the issue of
indeterminacy by keeping the solution pattern closer to the
patterns observed in historical estimates. Along reducing the
estimation variables more than 50–fold, PC–SPSA calibrates
a vector of PC–scores corresponding to orthogonal principal
components and reduces non–linearity, which is otherwise
present if calibrating actual DTA model parameters, such as
OD flows.

II. LITERATURE REVIEW

DTA models capture complex interactions between demand
and supply parameters. The extensive literature on DTA model
calibration consists of approaches in both offline and online
contexts; in this paper we focus on the offline context. Offline
calibration approaches estimate model parameters to replicate
average traffic conditions over multiple days. Earlier works on
offline calibration that focused on the DODE problem include
Generalized least square based approach (GLS) by Cascetta
et al. [17] and state space formulations by Ashok and Ben-
Akiva [9], Okutani and Stephanedes [24]. These approaches
are categorized as assignment matrix–based, constrained by
using only traffic counts for calibration and formulated in
an optimization framework using assignment matrix as the
source of mapping between OD demand and traffic counts.
Later, a more generic non-assignment matrix-based approach
is proposed by Balakrishna et al. [12] using Simultaneous
Perturbation Stochastic Approximation (SPSA) [31] to esti-
mate both supply and demand parameters. SPSA has a generic

gradient based problem formulation and it can use any type
of traffic measurements for calibration [5]. Balakrishna et al.
[11] demonstrates the benefits of not using assignment matrix
formulation, while solving a DODE problem. We refer the
reader to Antoniou et al. [4, 6] for further detailed literature
on offline calibration with a focus on SPSA and its variants.

Many efforts have been made to improve the performance
and stability of SPSA for DTA model calibration. Balakrishna
et al. [12] applied SPSA for DTA model calibration with mod-
ifications, such as scaling of perturbation coefficient ck and
use of multiple gradient replications to improve the gradient
approximation, resulting in improved stability of SPSA per-
formance. Cipriani et al. [18] proposed forward (asymmetric)
differencing for gradient approximation, which reduces the
number of function evaluations, but adds more bias in gradient
estimation, compared to using a central differencing technique.
Cipriani et al. [19] and Cantelmo et al. [14] also present a
sensitivity analysis on SPSA by investigating the effects of
multiple perturbation coefficient ck values, as well as varying
the number of gradient replications and applying gradient
smoothing. Cantelmo et al. [15] focus on the problem of seed–
matrix improvement and present a two–step procedure, based
on the concept of dividing the problem into smaller problems:
the first step focuses on the optimization of a subset of OD
variables (those generating the higher flows or contributing to
bottlenecks), while the second step operates on all OD pairs.

An adaptive SPSA algorithm [30] based on Hessian esti-
mates is also proposed, which automatically scales the esti-
mation variables along adaptive scaling and shifting of the
gain sequence parameters [13]. Another algorithm, referred to
as weighted SPSA (W–SPSA), has been proposed by Lu et al.
[23] incorporating the network information through a weight
matrix defined based on spatial and temporal correlations
between the model parameters and traffic measurements. The
use of a correlation weight matrix helps to reduce the noise
generated by uncorrelated measurements. Antoniou et al. [7]
demonstrated the practical implications of W–SPSA by ex-
ploring multiple techniques for evaluating an effective weight
matrix along the comparison of W–SPSA with SPSA. Another
SPSA–based approach named cluster–wise SPSA (c–SPSA)
has been proposed by Tympakianaki et al. [34], segmenting
OD flows into clusters to approximate the gradient separately
for each cluster and reduce the gradient bias. C–SPSA acts as a
hybrid of FDSA and SPSA with increased number of objective
function evaluations, i.e. number of clusters ⇥ 2 (traditional
SPSA). Clustering is done based on two major techniques:
magnitude based k–means clustering [34] and clustering based
on spatial interactions of OD pairs computed through free–
flow travel times proposed in [35]. The latter technique also
helps reducing the non–linearity in the estimation problem by
combining non–correlated variables in a cluster.

Efforts have also been made to increase the calibration scal-
ability for DTA models by reducing the problem dimensions
using principal component analysis (PCA). Djukic et al. [21]
proposed the technique of applying PCA to reduce the dimen-
sion of OD matrices. PCA converts the problem parameters
into a set of uncorrelated PC–scores through capturing the
structural relationships present in their historical estimates.
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More recently, a similar technique is used by Prakash et al.
[26] and Prakash et al. [27] to enhance traditional calibration
approaches of GLS and EKF (and create their counterparts
PC–GLS and PC–EKF) improving their application scalability
many folds. Prakash et al. [27] demonstrated the application
of PC–EKF for calibrating a DTA model of the expressway
network of Singapore using realistic traffic data.

Osorio [25] follows a different approach and proposes a
metamodel simulation–based optimization approach that also
seems to outperform SPSA and offer a scalable solution,
applicable to large–scale networks.

III. METHODOLOGY

To propose a DTA model calibration approach, we formulate
the calibration problem in an optimization framework, similar
to [12]. The generic optimization problem formulation of DTA
calibration is thus given as:

Minimize
�,x

z(y, y0, x, xp,�,�p) (1)

with
y0 = f(x,�, G)

where:

y, y0 = Observed and simulated traffic measurements
x, xp = OD demand vector (current and prior)
�, �p = DTA model parameters (current and prior)

z = Goodness of fit function
G = Road network

Within this research, we try to solve the traditional DODE
problem by keeping the model parameters � constant and
calibrating the OD demand x based on observed traffic counts
y. Hence, mathematically our optimization problem can be
represented as:

Minimize
x

z =
nX

h=1

[z1(yh, y
0
h) + z2(x

p
h, xh)] (2)

subject to:
y0 = f(x1, ..., xh;�;G) (3)

f(·) represents a DTA model mapping OD flows to traffic
data, xp

h is the prior OD matrix for interval h and x0
h the

corresponding estimated OD. It defines the difference between
assignment and non–assignment based formulations. The use
of assignment matrix A allows mapping to be done analytical,
with f() as y = Ax. However, it also limits the use of any
other traffic measurements than counts (although methods have
been developed to extend this approach to few more types of
measurements, e.g. [2]). Non–assignment–based approaches,
on the other hand, provide the flexibility of using any other
types of traffic measurements, like travel times, queues or even
trajectory data, at the cost of additional runs of a DTA model.

A. SPSA
SPSA comes from the family of stochastic approximation

(SA) algorithms. These algorithms are traditionally used for
large non–linear problems with expensive objective function

evaluations and noisy measurements. A standard form of SA
is given as:

xk+1 = xk � akg
0
k(xk) (4)

where xk+1 represents the estimated decision variable through
the evaluated gradient g0k at the kth iteration by perturbing
xk at iteration k. ak is a predefined positive scalar, specifying
the minimization step size. SA algorithms find an optimum
estimate x⇤ starting from an initial estimate x0 iteratively
tracing the path between them. In SPSA the variables are per-
turbed simultaneously, requiring only two objective function
evaluations per iteration for evaluating the gradient (possibly
averaged over multiple runs to account for stochasticity),
regardless of the number of estimation variables:

g0 =
f(xk + ck�k)� f(xk � ck�k)

2ck

⇥
�1 �2 . . �h

⇤T (5)

where h is the number of OD pairs and � is a h-dimensional
vector generated randomly from a ±1 Bernoulli distribution
having zero mean. ck is the perturbation coefficient predefined
along ak, both known as gain sequence.

We defined the SPSA algorithm along the modifications
stated in the literature for solving DODE problems. Gain
sequence parameters are defined based on the guidance given
in Spall [29]. Gain sequence is based on cautiously defined
parameters of c, �, a, A and ↵. With k as the iteration number,
these parameters define the pattern of reductions in ck and ak
over incrementing iterations, as:

ck = c/k� ak = a/(k +A)↵

subject to:

ak > 0, ck > 0, ak ! 0, ck ! 0,
1X

k=0

ak = 1,
1X

k=0

a2k/c
2
k < 1

Further modifications that are included in our implemen-
tation of SPSA are: the use of gradient replications for
lesser biased gradient, non–negative and scaled OD flows
perturbation/minimization through relative segmented pertur-
bation/minimization based on their magnitudes as proposed
by Balakrishna [10]. Equation 6 shows the expression used
for evaluating relative segmented perturbation ck and mini-
mization ak:

ak =
ak ⇥ i⇥ n

µ
ck =

ck ⇥ i⇥ n

µ
(6)

where µ is the mean of OD matrix (decision variable). The
highest OD matrix magnitude is divided into segments with n
as the segment size. The gain sequences ck and ak are scaled
for each OD pair using i, which is the segment number in
which this OD pair magnitude lies.

B. PC–SPSA
We propose PC–SPSA as an enhanced version of SPSA,

improving its application scalability for calibrating larger and
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more complex DTA models. The application of principal
component analysis (PCA) is done on historical estimates
to extract the structural relationships between OD pairs as
PC–directions ’V ’, as proposed by Djukic et al. [21]. These
directions are used to reduce the size of the OD estimation
vector to a few uncorrelated PC–scores. These PC–scores are
later calibrated using a modified SPSA algorithm.

1) Principal Component Analysis: We apply the method-
ology given in Prakash et al. [26] to reduce the dimensions of
our OD vector. Singular value decomposition is applied on a
data matrix X to evaluate its principal components (PCs). This
data matrix X is the combination of historical OD matrices
with nk ⇥ nx dimensions: nk is the number of data points
and nx represents the dimension of an OD matrix in the form
of a vector for each corresponding data point. Singular value
decomposition results in two unitary matrices U , V and a
diagonal matrix ⌃:

X = U⌃V T (7)

Columns of the unitary matrix V present orthogonal PCs, with
their corresponding PC–scores stored in the diagonal matrix ⌃.
Due to a property of PCA, the amount of variance captured
in the PCs reduces in a descending order and thus the first
few PCs can capture most of the variance present in the data
matrix. Hence, V (also called PC–directions) may be reduced
to V̂ , where only the first nd elements are retained:

V̂ = [ v1 v2 v3 ... vnd ] (8)

The reduction in the dimension of the matrix V̂ is based on
the ratio of the cumulative summation over the summation of
its corresponding PC scores vector. The new matrix V̂ is then
used to reduce our starting OD matrix into PC scores z of
dimension nd ⇥ 1, as:

z = V̂ Tx (9)

Furthermore, the OD vector can be approximated as:

x ⇡ V̂ z (10)

The data matrix used in evaluating the PC–directions V
should contain previous estimates with similar characteristics
temporally. This implies that different sets should be con-
structed e.g. for different times of day (e.g. morning and
evening peak periods), as well different days of the week (e.g.
work days vs. holidays). Among others, Antoniou [1, Section
5.1] and Balakrishna [10, Section 3.3] provide detailed insights
for techniques to develop these historical estimates, stated as
“warm–up” procedures.

2) Application of PCA on SPSA: To incorporate PCA in
SPSA, we propose a modified version of SPSA. In PC–
SPSA, we calibrate PC–scores instead of actual parameters
along the modifications required, due to the difference in
characteristics between OD flows and their evaluated PC–
scores. To transform SPSA into PC–SPSA we propose the
following modifications:

• Addition of a data matrix consisting of previous estimates
to evaluate PC–directions V through Equation 7.

• Transformation of OD flow vectors to PC–scores for the
steps of perturbation and minimization using Equation 9.

• Instead of having a relative segmented change, pertur-
bation and minimization are applied as a percentage
increase or decrease. Gain sequences ck and ak are also
redefined, as they specify a percentage change in PC
scores z. The expressions for perturbation and minimiza-
tion thus become:

Perturbation: z± = zk ± zk ⇥ ck� (11)
Minimization: zk+1 = zk � zk ⇥ akg

0 (12)

where zk+1 are the new estimated PC–scores at kth
iteration by perturbing and evaluating zk.

• Conversion of PC scores to OD matrices after perturba-
tion and minimization using Equation 10, to evaluate the
objective function through a DTA model simulation.

Modifications for the steps of perturbation and minimiza-
tion are proposed because of the variations present in the
magnitudes of the PC–scores. Each PC–score represents the
amount of variance captured by its corresponding principal
component, hence their magnitudes can vary significantly. In
case of calibrating OD flow vectors directly, the variation
is far less significant and may be addressed considering the
relative segmented change using Equation 6; however, for PC–
scores the variation can be much larger and requires further
modifications.

Figure 1 describes the main steps of PC–SPSA. The basic
structure of this algorithm is similar to SPSA, with the addi-
tional steps of evaluating PC–directions (using equation 7) in
the beginning and steps to transform the OD flow vectors and
PC–scores into each other (using Equations 9 and 10), before
perturbation, minimization and objective function evaluations.

C. Objective function
PC–SPSA is defined as a non–assignment matrix–based

approach, requiring a DTA model simulation to map OD
flows into traffic measurements. Figure 2 describes the basic
structure behind the objective function evaluation we used in
both SPSA and PC–SPSA. It requires an OD matrix as a basic
input to simulate and outputs different traffic measurements
like counts and travel times. These simulated outputs are
then compared with the observed traffic measurements using a
goodness of fit (Gof) measure, hence resulting in a Gof value
as the output of our objective function.

DODE is a non–linear and underdetermined problem and its
simulated outputs cannot be directly related back to OD flows
(since OD flows are in general still not observable). Hence,
we use the root mean square normalized (RMSN) error as
our goodness of fit (Gof) criteria for the measurable network
performance measures, as shown in Equation 13 [as used e.g.
in 3, 9]:

RMSN =

p
n
Pn

i=1(ŷi � yi)2Pn
i=1 yi

(13)

where y are the observed traffic flows and ŷ are their simulated
counterparts, and n represents the total number of values.

The use of RMSN as Gof provides the practical advantage of
having a single output from our objective function evaluation.
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Fig. 1: Flow chart of PC–SPSA

Fig. 2: Structure within an objective function evaluation

As the inputs and outputs of our objective function are in
general neither equal nor relatable, a single RMSN value
output helps in formulating a generic SPSA formulation.
RMSN has been chosen previously in many similar researches
including [9], [27].

IV. CASE STUDY ON VITORIA NETWORK

We use a simulator based case study to validate our ap-
proach. A network representing the city of Vitoria, Spain, is
used (Figure 3). Vitoria represents a medium–sized urban city
having a dense city center with radial highway network and a
motorway bypass. The network provides a reasonable level of
congestion and route choice, and consists of 5799 links (about
600km in length) with 2884 nodes. There are 395 detectors
installed (with their location shown in (Figure 3). For demand
modeling, the network is divided into 57 zones, leading to an
OD matrix with the dimensions of 3249 OD pairs.

Fig. 3: Network of Vitoria-Spain, with detector locations

A. Experimental Setup

We adopt a commercial software Aimsun [16] as our
simulator. Aimsun provides the ability to simulate in multi-
ple resolutions, including a mesoscopic resolution providing
the desired numerical stability against smaller variations in
simulation parameters and detailed driving behavior patterns
with faster simulations than microscopic simulation [8]. The
simulations are set up with stochastic route choice based sce-
narios using 10 replications to generate statistically significant
results. Each replication provides varying stochasticity based
on its starting random seed and every 10 generated random
seeds are normally distributed in Aimsun.

Route choice parameters are set constant with fixed traf-
fic assignment generated through dynamic user equilibrium
(DUE) using the method of successive averages. Fixed traffic
assignment helps to remove the stochasticity of route choice
and DUE ensures better congestion mitigation over constantly
changing demand during the iterative process. Appropriate
traffic path assignment is crucial for the experimental setup,
as perturbing the OD flows can create congested situations on
the network, causing the simulation outputs to become less
reliable for our objective function evaluations.
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We set up a true network state considering its demand as
true demand and its simulation outputs as observed traffic
measurements. An evening peak hour demand is used with
four 15–min intervals and a 30 min warm–up period. To solve
the DODE problem, we calibrate each of the four demand
intervals separately using traffic counts as the measurement to
formulate our objective function described in Section III-C. In
this specific case study, we do not consider the second term
of the objective function, i.e. the distance from the starting
OD. Due to its generic objective function formulation, this
experimental setup could later be easily extended with travel
times or other trajectory data.

B. Historical Demand
PC–SPSA requires a historical demand data matrix to

evaluate PC–directions ’V ’ for the reduction of the dimension
of the OD flow vector. We formulate this demand using the
expression given in Equation 14. Multiple data points are
generated through perturbing the (calibrated) true demand. r
and q are the coefficients of reduction and randomization,
while � is a vector of Gaussian random numbers with zero
mean and standard deviation equal to � = 1

3 resulting to 99.7%
of the values between �1 and 1.

xhist = (r + q�)⇥ xtrue (14)

Randomness added by q and � ensures the creation of different
historical demand patterns from the true demand to replicate
actual conditions, where actual demand patterns are unknown.

C. Demand scenarios
We use two different demand scenarios to evaluate the

performance of SPSA and PC–SPSA. To create a demand
scenario we follow the guidelines of Antoniou et al. [8].
The true demand is perturbed using the expression given in
Equation 14 with two different r and q coefficients for the
creation of historical estimates. These demand scenarios are:

Scenario 1: xhist = (0.75 + 0.15�)⇥ xtrue

Scenario 2: xhist = (0.65 + 0.20�)⇥ xtrue

Both scenarios have the same target demand with different
reduced historical demand data matrices. Reduced demand
scenarios are created to avoid artificial over–saturation of the
DTA model and create an increased target demand estimation
problem. The first scenario represents a mild demand change,
while the other scenario includes a more severe change in
reduction and randomization. The latest previous historical
estimate from the historical demand data matrix is taken as
the seed OD matrix for calibration.

D. Estimation of PC–directions
To evaluate the PC–directions for this experimental setup,

25 historical estimates are generated: each of one hour de-
mand, having four OD vector corresponding to its four 15
minutes intervals. The historical data matrix X contains 25⇥4
i.e. 100 OD vectors, each of 3249 OD pairs (total dimensions
100⇥3249). The application of single value decomposition on

X results in PC directions matrix V and a diagonal matrix ⌃
containing its corresponding PC scores. It is clarified that the
selection of 25 instances (per OD interval) is indeed arbitrary,
and future research is needed to determine guidelines for
choosing the appropriate number for each application. Figure
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Fig. 4: Cumulative percentage variance captured by PCs

4 shows the graph of the cumulative percentage variance
captured over increasing number of principal components,
computed using the ⌃’s diagonal values. We use this cumula-
tive percentage variance to reduce the number of PCs till the
retained PCs explain at least 95% of the variance present in
the historical data matrix X . From Figure 4 we perceive that
more than 95% of the variance is captured by the first 55 PCs;
hence a reduction factor of 3249/55 i.e. 59 is achieved with
the application of PCA.

V. RESULTS

Based on the generation of historical estimates, two demand
scenarios are developed. We demonstrate the comparison of
the performance obtained by both SPSA and PC–SPSA in
calibrating each scenario. First, we compare the rate of conver-
gence using RMSN values. Then, we use so–called 45–degree
plots to depict the comparison of the initial and target OD
estimates with the calibrated OD estimate, and also similarly
the comparison between observed and calibrated traffic counts,
from both SPSA and PC–SPSA.

A. Convergence
Figure 5 illustrates the RMSN error convergence, while

calibrating scenario 1 and 2, for each of the four time intervals.
Both algorithms have ran to a maximum number of 80
iterations. It is clear that PC–SPSA not only converges to much
better solutions, but it achieves the majority of its gains in a
very small number of iterations (less than ten).

Scenario 1 replicates a mild change of target demand with a
base decrease of 25% and randomized perturbation of ±15%.
Results from the first scenario show that PC–SPSA has a far
better rate of convergence than SPSA, reducing the overall
RMSN error values to almost 5% within the first 10 iterations.

Scenario 2 replicates a more severe change in target de-
mand with a base decrease of 35% and a randomized in-
crease/decrease of ±20%. Results from this scenario show
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Fig. 5: RMSN comparison for demand scenario 1 (top) and
2 (bottom)

similar patterns as in scenario 1 as PC–SPSA converges to
an RMSN error less than 12% for all intervals within the
first 13 iterations. Since the overall base increase in target
demand is more in this scenario than the previous, the number
of iterations required for overall error reduction has also
increased. SPSA also shows the similar rate of convergence
as in the previous scenario, always significantly outperformed
by PC–SPSA.

B. Traffic counts
Figure 6 illustrates 45–degree plots to compare the observed

and calibrated traffic counts of all four demand intervals
from both scenarios. The left subfigures depict the calibrated
counts from SPSA, which are more scattered in comparison
to the calibrated counts from PC–SPSA, shown in the right
subfigures. The scatteredness in all the figures replicates and
validates the RMSN value achieved by both algorithms during
calibration.

C. Validation using OD travel times
Figure 7 illustrates 45–degree plots to compare the observed

and calibrated OD travel times of all four demand intervals
from both scenarios, to further validate the calibration results.
As travel times were not used for the calibration, their parallel
improvement provides additional evidence that the superior
PC–SPSA performance is not related with issues, such as
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Fig. 6: Comparison of observed and calibrated traffic counts
(top: scenario 1, bottom: scenario 2)

overfitting. The left subfigures again depict the calibrated OD
travel times from SPSA, which are more scattered in compar-
ison to the calibrated OD travel times from PC–SPSA, shown
in the right subfigures. The RMSN between the observed
and calibrated OD travel times validate the calibration results
shown in section V–B.

D. Quality of calibrated OD matrix
Figure 8 illustrates 45–degree plots to compare the initial

and target OD estimates with the calibrated OD estimate from
only the first demand interval of both scenarios. The left
subfigures show the comparison of the SPSA–calibrated OD
matrix with the target OD matrix. Both plots show scattered
data points proposing that the patterns of calibrated OD matrix
are very different from the true OD matrix. SPSA being a
random search algorithm changes the variance patterns of
calibrated OD matrices drastically from their initial values,
because it randomly perturbs its values directly, without any
search directions. Even with a scaled perturbation, it can really
change the patterns from their initial values over a larger
number of iterations.

The right subfigures show the comparison of PC–SPSA’s
calibrated OD matrix with the target OD matrix. Both plots
show minimal scatteredness in comparison to other SPSA plots
with all the data points closer to the 45–degree plot line.
This illustrates that PC–SPSA is able to find better and more
accurate solutions, closer to the true OD estimates. Due to
the application of PCA, SPSA’s search area is restricted only
within the variance captured over the historical estimates.

Of course, as Djukic [20] underlines, this is only one way
of controlling the quality of the estimated OD matrices. The
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Fig. 7: Comparison of observed and calibrated OD travel
times (top: scenario 1, bottom: scenario 2)
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Fig. 8: Comparison of target and calibrated OD matrices
(top: scenario 1, bottom: scenario 2)

author also suggested the use of a similarity metric, SSIM, to
check the structural similarity of the estimated OD matrices
with their targets.

The results from this case study confirm the enhancements
in PC–SPSA due to the application of PCA. The improvements
in the new algorithm are evident as firstly we perturb 54 times
lesser set of variables from 3249 to a mere 60. Secondly, it
reduced the noisy effect of SPSA random search. Being a
random search algorithm it finds the solution by perturbing
the parameters directly and continuously changes its solution
patterns without any search directions. But by reducing the
model parameters using PCA, SPSA’s search gets the required
directions to move faster closer towards the true solution.

VI. DISCUSSION

Based on the simulator case study, PC–SPSA proves to be
an enhanced version of SPSA having faster convergence and
more appropriate solutions. In this section, we use a synthetic
experimental design by replacing the simulator with a non–
linear synthetic function to further discuss and explore differ-
ent aspects regarding PC–SPSA’s performance. In particular,
we perform a robustness analysis upon different dimensions,
discussing its major strengths and weaknesses, its comparison
with previously developed approaches and how it can be
proposed as an online calibration algorithm for DTA model
calibration.

A. Robustness
Although PC–SPSA provides promising results in calibrat-

ing a moderately sized urban network, we explore the robust-
ness of PC–SPSA and compare it with SPSA in calibrating
multiple problems with different dimensions, based on a non–
linear synthetic function. This function is used to replace the
simulator for mapping the OD flows into counts, so that we
can perform a sensitivity analysis on both algorithms with
problems of varying dimensions. The non–linear synthetic
function is formulated as:

y = Wx+Wsx
2 (15)

where y represents the traffic counts and x the OD flow vector.
W and Ws are two randomly generated weight matrices of
dimensions [x ⇥ y] acting as the correlation matrices to map
the OD flows x into counts y. A secondary weight matrix Ws

is used to add non-linearity into the function. We create eight
sets of problems with eight different dimensions 0d0, indicated
by the number of zones, ranging from 20 to 90 zones. The size
of OD flows vector x will be d2 and the number of counts
y is set to one–fifth of OD flows x. We randomly generate x
using a uniform distribution and the correlation matrices W
and Ws using Bernoulli distributions having 80% outputs as
zero and 20% as one. The target demand is created with a
base decrease of 30% and perturbation of ±15%.

Figure 9 illustrates the RMSN values for calibrating the
problems based on the non–linear synthetic function using
both algorithms. Each problem, indicated by its dimensions
0d0, is shown with a unique line pattern. It is evident that
SPSA’s performance deteriorates significantly as the problem
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Fig. 9: Comparison of RMSN values for SPSA and
PC–SPSA over multiple dimensions

dimensions increase, while the performance of PC–SPSA
remains similar regardless of the increase in problem di-
mensions. It is noted that the performance for all PC–SPSA
instances outperforms the performance of even the best SPSA
instance.

B. Characteristics of PC–SPSA

Through the exploration of PC–SPSA performance on a
real–life network and a multidimensional robustness analysis,
we come up with some basic characteristics regarding PC–
SPSA and its application feasibility:

• PC–SPSA iteratively searches for different patterns
within the variance of historical estimates. We perturb the
magnitude of its PC–scores, each of which corresponds
to an orthogonal PC, capturing a variance orthogonally
to all other PCs. Hence, we perturb and minimize the
contributions of each orthogonal variance towards the
overall solution instead of capturing the behavior of each
individual OD pair towards the true solution (as in SPSA).

• PC–SPSA’s performance is not directly affected by the
increase in problem size; instead, it is affected by the
increase in its complexity or non–linearity. The reason is
that we reduce the PC direction matrix V based on the
cumulative variance captured over principal components
(PCs) and with the increase in problem complexity the
variance will get distributed over a higher number of
PCs, due to richer structural relationships between model
parameters, hence reducing the scale of dimension reduc-
tion and increasing the number of iterations required for
calibration.

• The performance of PC–SPSA depends to a large degree
on the quality of the historical estimates as, if the patterns
of the target demand are not similar to its historical
estimates, the overall reduction achieved in RMSN error
will be lower. However, its rate of convergence should
not be affected, as it must depend on the scale of
dimension reduction. Good historical estimates should
ideally include most of the variation possible in the target
estimate.

• The aspect of having good quality historical estimates
is also affected by the scale of non–linearity present in
the problem, as highly non–linear problems will include
richer structural relationships, which increase the uncer-
tainty of having similar patterns between historical and
target estimate, affecting the lowest RMSN achieved.

C. Comparison with previously developed approaches
As discussed in the literature review section, previous

extensions to the SPSA framework tried to address the issues
of stochasticity and non–linearity in DTA model calibration.
W–SPSA [7] proposed the use of a correlated weight matrix
to perturb and minimize the variables. This weight matrix
captures the correlations between model parameters, reducing
the noise of uncorrelated parameters. C–SPSA [35], on the
other hand, tries to reduce the effect of non–linearity by
creating clusters, in which the least correlated parameters
are combined. PC–SPSA using PCA produces similar effects
more sophisticatedly by assessing the structural correlation
statistically between model parameters in the form of PC
directions V and later using them to evaluate PC–scores,
which are orthogonal to each other, almost removing the effect
of non–linearity. In addition, the number of variables to be
estimated are far less in PC–SPSA than in its predecessors.

D. Online calibration
Online calibration approaches tend to estimate the model

parameters for real–time estimation and prediction in DTA
systems [3]. For these approaches, computational time ends up
being the major constraint. Hence, SPSA is not intended to be
an online calibration approach, due to its lengthy computation
time (large number of iterations). However, PC–SPSA could
conceivably be used as an online calibration algorithm, as it
obtains the majority of the loss function reduction after only a
handful of iterations. Furthermore, multiple simulations (e.g.
to alleviate the effects of stochasticity) can be run in parallel
within each iteration. Since an online calibration approach
tends to fine tune the offline calibrated parameters, PC–SPSA
can be feasible due to smaller errors required to minimize.

VII. CONCLUSION

This paper proposes a modified SPSA algorithm referred
to as PC–SPSA. The motivation behind this research is to
enhance the application scalability of SPSA on DTA model
calibration by reducing its search noise. As a random search
algorithm, SPSA searches the solution by perturbing the
variables randomly. Its performance is sensitive against a set of
predefined gain sequence parameters and problem characteris-
tics and deteriorates significantly with the increase in problem
dimensions and non–linearity. PC–SPSA uses a dimension
reduction technique (PCA) to evaluate structural relationships
between the historical estimates as PC–directions and later use
these PC–directions to reduce the set of estimation variables
into PC–scores. These PC–scores are then calibrated using
SPSA. PCA restricts the search area of SPSA within the
variance captured in its historical estimates.
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Modifications in SPSA are developed to incorporate PCA
and the required methodology behind PC–SPSA is presented.
Due to the greater variations present between PC–scores,
scaling in the steps of perturbation and minimization is done
in a modified manner along the usage of PC–scores instead of
the actual model parameters.

Performance evaluations are done for PC–SPSA on an urban
network of Vitoria, Spain, in comparison with SPSA showing
promising results. PC–SPSA outperforms SPSA in both the
rate of convergence and quality of the solution. PC–SPSA
is not only computationally efficient but it also finds the
solution with patterns very close to the true values. Since it
only requires a handful of iterations, PC–SPSA is not very
sensitive against the predefined gain sequence, skipping the
efforts required to fine tune these parameters as in SPSA.

Future research includes extending the scope of the calibra-
tion to demand and supply parameters, as well as validating the
performance of PC–SPSA in other networks and conditions.
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