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Abstract—This paper presents a mechanism to transform radio
micro-Doppler signatures into a pseudo-audio representation,
which results in significant improvements in transfer learning
from a deep learning model trained on audio. We also
demonstrate that transfer learning from a deep learning model
trained on audio is more effective than transfer learning
from a model trained on images, which suggests machine
learning methods used to analyse audio can be leveraged for
micro-Doppler. Finally, we utilise an occlusion method to gain
an insight into how the deep learning model interprets the
micro-Doppler signatures and the subsequent pseudo-audio
representations.
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I. INTRODUCTION

The analysis of micro-Doppler (‘u-D’) signatures produced
from radio waves is becoming an increasingly viable technique
for the task of activity recognition. Unlike video, which relies
on optimal lighting conditions and can raise concerns with
respect to privacy [1], or wearable technologies, where the
richness of information is dependent on levels of compliance
[2], radio waves are relatively unobtrusive and undetectable
by humans. Furthermore, these signals can be obtained in a
passive Wi-Fi setup, which is of low-cost to implement due
to its ubiquitous nature.

In addition to the Doppler information that can be extracted
from the Wi-Fi signals, the u-D effect occurs when a target
interacts with a signal and produces an additional vibration or
rotation [3]. As the intensity of the u-D effect is dependent on
velocity and direction, each individual movement of a target
will produce a distinct p-D signature, which can be used for
activity recognition [1].

Typically wp-D signatures are analysed in the frequency
domain, often through the means of a spectrogram. This is
defined as the squared amplitude of the short time Fourier
transform of a signal. By using this representation, the motion
features of a target can be identified [3]. A human operator can
perform activity recognition by looking at the spectrograms
directly or by listening to the audio output of the u-D shift,
but there is room for human error [4, 5] and the p-D shifts
may be so minute that they are not identifiable by the human
observer.

The consistency of patterns for individual movements makes
analysing p-D signatures through deep learning methods an

attractive proposition. However, this is restricted by the lack
of sufficiently large and suitably annotated p-D signature
datasets. In contrast, deep learning classification methods for
audio are relatively commonplace and have achieved promis-
ing results [6]. Outside of deep learning methods, similar sig-
nal processing techniques have been used to analyse audio and
u-D signatures, primarily as different categories within each
medium can vary in time depending on the target generating
the signal.

This paper aims to leverage the similarities between audio
and radio and the consequent machine learning techniques
used on audio. We achieve this by introducing a mechanism
to pre-process the p-D signatures into a pseudo-audio rep-
resentation, so that transfer learning from a deep learning
model trained on audio can be successfully conducted. We also
discuss an occlusion method which is used to provide further
insight into the mechanisms of the deep learning model and
to understand which features of the p-D signatures appear to
be most important for classification.

II. RELATED WORK

A. Speech Processing Methods for Micro-Doppler Classifica-
tion

Previous works have adapted speech recognition techniques
(such as linear predictive coding, mel frequency cepstral coef-
ficients and dynamic time warping [4, 5, 7]) for u-D signature
classification. However, the assumptions underpinning these
techniques can differ greatly from the physics of radar u-D [8].
Moreover, manual feature engineering techniques can also be
slow and consequently can impact learning on larger datasets.
We counteract these issues by presenting a more automated
mechanism to transform the u-D signatures directly into a
representation that resembles audio and by using deep learning
to extract the features.

B. Transfer Learning

Convolutional neural networks (‘CNNs’) are capable of
achieving state-of-the-art results in both image and audio
classification [6]. CNNs are often used for tasks where the
input data exhibits the properties of locality (where features in
the data have a local spatial support) and translation invariance
(where features in the data are independent of location).
This makes spectrograms a particularly suitable candidate for
training through CNNs, as p-D signatures corresponding to



different actions should be equivariant to shifts in time and
frequency [9].

However, the size of labelled p-D datasets tends to be
insufficient for suitable training through a deep CNN. This
can be rectified through transfer learning, where the initial
learnt weights from a CNN trained on one task are extracted
and frozen, and only the later layers are fine tuned [10]. The
effectiveness of this knowledge transfer is dependent on the
extent of similarity between the two tasks. For pu-D signature
classification, only transfer learning from CNNs trained on
images has been attempted [11, 12]. This paper would be the
first to conduct transfer learning from a CNN trained on audio
for this task.

C. Image-to-Image Translation

Image-to-image (‘I2I') translation is a computer vision
problem involved with learning a mapping between an input
and output image. A popular approach to this is to view
I21 translation as a conditional image generation problem,
whereby a bijective mapping between the input and output
image is learnt. This is equivalent to generating one image,
conditioned on another image in a different domain. Disco-
GAN, CycleGAN and DualGAN [13-15] are all examples
of this approach. They are very similar in construction as
they use generative adversarial networks (‘GANSs’) to generate
the images, and a reconstruction loss to maintain a bijective
relationship between the two domains.

A GAN is a type of generative model that attempts to
learn the underlying distribution of the input data by pitting
two neural networks against each other in a minimax game.
Namely, a generative model G learns to capture the underlying
distribution of data whilst a discriminative model D attempts
to distinguish between legitimate data samples and samples
synthesised by G [16]. Letting x represent the input data and
Z represent noise input into G, the objective function can be
summarised as follows:

min max By, o ll0g D(X)] + By, log(1 — D(G(2))]

The I2I networks mentioned all use two generators to rep-
resent the conditional mappings learnt and two discriminators
to distinguish between real samples in each domain and syn-
thesised samples produced by the generators. Suppose that the
marginal distributions pertaining to each domain are labelled A
and B. If a bijective mapping is learnt, the generators G 4 g and
G B 4 should be inverse functions. Therefore, the difference in
the reconstruction loss d(Gpa o Gap(a),a) (where d(.) is
a chosen metric) should be minimised. Letting a represent a
sample in A, b represent a sample in B and A be a chosen
weighting for the reconstruction loss, the losses relating to
producing a mapping from A — B can be summarised as
follows (with losses relating to B — A defined similarly):

LGAB = 7]EaNA[lOgDB(GAB(a))] + )\d(GBA o GAB(CL),CL)
Lp = —Eypllog Dp(b)] — Eq~a[log(l — Dp(Gag(a)))]

We treat the p-D signatures as images and use a 121 network
to transform them into a pseudo-audio representation.

III. PSEUDO-AUDIO TRANSFER LEARNING
A. Transfer Learning Model

The p-D dataset used in the experiments was obtained from
a passive Wi-Fi setup detailed in [12]. The dataset comprises of
1,109 spectrograms across six movement classes: taking a bow,
performing a breast-stroke motion, performing a crawl-stroke
motion, performing a double punch, sitting, and standing. Each
spectrogram is 51 x 75, where 51 corresponds to the number
of frequency bins and 75 corresponds to the time steps. The
51 frequency bins cover a frequency shift range from —12.5
Hz to +12.5 Hz and each sample is captured over a period of
5 seconds.

Fig. 1: Example spectrograms for each class.

For the transfer learning experiments, we chose to use a
CNN trained on audio spectrograms. Using such a network
has the benefit of achieving invariance to time and frequency
and additionally would eliminate the requirement of converting
the p-D signatures into the time domain, which could result
in loss of information.

The audio deep learning model chosen for the experiments
was VGGish. This is a CNN trained on 70 million YouTube
videos automatically labelled based on the metadata and image
content for each video [6]. It is inspired by VGG [17], which
comprises of stacks of 2D convolutional layers with increasing
filters followed by max pooling layers, and three fully con-
nected layers for classification. To appropriately process the
audio clips for training, the audio from each video clip was
extracted and divided into 960ms frames and transformed into
log-mel spectrogram form. Each sample is 96 x 64, with 96
corresponding to the time steps and 64 corresponding to the
number of mel-spaced frequency bins, meaning the time and
frequency axes are transposed compared to the u-D dataset.

The majority of VGGish’s original architecture was retained
for our experiments. All of the weights in VGGish were
frozen, except for the fully connected layers which were
adjusted for fine tuning. As the u-D dataset is significantly
smaller than the number of clips used to train VGGish, the two
penultimate layers were reduced to 64 units and the final layer
was fixed to 6 units. We also used a softmax activation function
in place of the sigmoid for the final layer as each of the p-D



signatures were labelled with one class only. Furthermore, we
used random search to set batch size to 10, select the Adam
optimiser and set training time to 20 epochs.

B. Pseudo-Audio Representation

Pre-processing the p-D signatures to resemble the audio
spectrograms used to train VGGish was a necessary step to
ensure successful knowledge transfer. An additional consid-
eration was to ensure the pre-processing did not remove the
distinct p-D features corresponding to each class, hence the
121 model needed to incorporate this constraint.

After rotating the axes of the u-D signatures to match
the input data for VGGish, we used a modified I2I network
inspired by [13-15] for pre-processing. This architecture,
labelled as ‘DSGAN’, used two generators to learn a bijective
mapping between the presented p-DS and audio log-mel
spectrograms. To ensure a bijective relationship is maintained,
we incorporated an L2 reconstruction loss. This is chosen
to be weighted equally with the generator loss as this pre-
served more of the p-D features in this particular dataset.
We experimented with both L1 and L2 reconstruction losses,
but found the L2 loss was better in retaining more of the
w-D features. We attribute this to the skewed nature of the
dataset which is caused primarily by the presence of high
amplitudes around zero Doppler. However, instead of using
two separate discriminators to distinguish between real and
synthesised samples for each domain, only one discriminator
is used to distinguish between real and synthesised samples.

The discriminator’s parameters were updated iteratively
by presenting real and synthesised samples from the p-D
domain followed by presenting real and synthesised samples
from sound domain. As the discriminator has the task of
distinguishing synthesised samples from real samples from
both domains, the generators should be able to deceive the
discriminator by synthesising samples that are an intermediate
representation between the two domains. Consequently this
setup enables more of the features from the source domain to
be retained.

The architecture of the two generators are identical, utilising
an encoder-decoder structure similar to the implementations
employed in the established I2I networks [13-15]. The en-
coder component is comprised of upsampled 2D convolu-
tional layers, whilst the decoder component is comprised of
downsampled 2D convolutional layers to resize the input back
to the original image dimensions. Each layer uses ‘same’
padding, 3 x 3 kernels, and is activated by a ReLU activation
function. Batch normalisation is applied to all layers except for
the input layers. The discriminator is similarly constructed,
using a stack of upsampled 2D convolutional layers. A 2D
convolutional layer with one filter activated with a sigmoid
function is appended at the end of the discriminator to provide
a probability estimate between real and synthesised samples.

Both the u-D signatures and sound data were resized to
an even dimensionality so that the encoder-decoder structure
could generate outputs that were the same size. This was
conducted so that the discriminator could compare between

the real and synthesised samples. This does not appear to
significantly affect the quality of features, as results matching
the baselines were achieved.

The sound domain dataset used for the experiments were
log-mel spectrograms sampled from AudioSet [18]. This is
a dataset consisting of over 2 million manually labelled 10-
second sound clips from 632 audio event classes drawn from
YouTube videos. DSGAN was trained by separately shuffling
the p-D data and Audioset data and grouping the random
pairs for each batch fed into the model. By randomly pairing
the datasets, this ensured that a more general relationship
is learnt between the domains rather than collapsing to one
representation.

As the p-D dataset is small, the model was trained for
varying number of epochs (1, 5, 10 and 30) to observe how
the extent of training affected the learnt mapping. Following
training, the p-D data was transformed into pseudo-audio
representations by feeding the entire p-D dataset through the
generator that was used to learn the mapping to sound data.
These pseudo-audio representations were used to fine tune
VGGish. We measured indicative performance by using five-
fold stratified cross-validation to record validation accuracy.
As a benchmark, we compared this to results of a one-vs-one
linear support vector machine (‘SVM’); pseudo-audio repre-
sentations learnt by other I2I networks [13-15]; u-DS whose
mean and standard deviation were shifted to fit the Audioset
samples; and VGGish fine-tuned using the unprocessed p-D
signatures. Moreover, to investigate whether transfer learn-
ing through audio was more effective than training through
other modalities, we also recorded the cross-validation results
following fine-tuning of VGG-16 [17], which is trained on
images.

Summarising the setup of DSGAN, let R be the domain of
the p-D signatures, » € R represent a sample p-D signature,
S be the domain of the Audioset sound samples and s € S
represent a sound sample, G rs represent a generator learning
a mapping from R to S (with Ggr defined similarly), and
D represent the discriminator. Consequently the objective
functions for each component can be described as follows:

Lgrs = —Err[log Ds(GRrs(r))]
+ Ernrll|Gsr(GRrs(r)) —7|l2]

Lggp = —Esos[log Dr(Gsr(s))]
+ Es~s||Grs(Gsr(s)) — sl|2]

Lp = —Er«g[log Dr(r) +log(1 — Ds(Grs(s)))]
— Esusllog Ds(s) +log(1 — Dr(Gsr(r)))]

C. Results and Discussion

Although pre-processing the p-D signatures using an 121
network before fine tuning matched the results of both the
SVM and pre-processing by rescaling to the sound data’s



Model Acc (%) SD

SVM 83.54 + 4.04

Transfer learning using VGG-16 (no pre-processing) 43.01 + 11.45

Transfer learning using VGG-16 (with z-score standardisation) 68.87 + 4.59

Transfer learning using VGGish (no pre-processing) 57.61 + 16.96

Transfer learning using VGGish (rescale to sound data’s mean and SD)  84.40 + 0.60

TABLE I: Validation accuracies for the baseline models.
1 epoch 5 epochs 10 epochs 30 epochs

Model Ace (%) SD Ace (%) SD Acc (%) SD Ace (%) SD
DSGAN 83.04 +3.59 84.66 +2.85 81.69 +2.09 81.07 + 1.69
DiscoGAN (L1 loss) 78.00 +3.05 7131 + 394  79.00 + 1.79 4994 + 3.90
DiscoGAN (L2 loss) 83.32 + 3.06 84.12 +220 81.32 +3.19 7692 + 3.12
CycleGAN 75.13 + 332 7440 +3.53  66.29 + 357 61.77 + 1.63
CycleGAN (with identity loss) | 76.65 + 1.71  49.33 +2.38 77.37 + 1.10 60.42 + 1.09
DualGAN 75.20 + 2.01 55.36 + 1.82  75.11 + 2.83 5643 + 3.02

TABLE II: Transfer learning validation accuracies after pre-processing the p-DS using 121 networks. Default hyperparameters

were implemented for all of the other 121 networks.

statistics, they performed significantly better than transfer
learning without any pre-processing. This could be explained
be due to the nature of the dataset itself. From the results
of the SVM, it appears that the features in the dataset are
primarily linearly separable but the dataset’s quality could
be constrained by the similarity of features between different
classes. Nonetheless, the results highlight that pre-processing
of the p-D data is required to achieve successful transfer
learning.

The variations in performance of the baseline models trained
on unprocessed data suggest that the the transfer learning per-
formance may primarily be affected by backpropagation issues
due to the differences in amplitudes between the p-D signa-
tures and sound data rather than differences in the modalities
themselves. This is evidenced by significant improvements to
the training caused by shifting the p-D signatures to match the
sound data, which retains the distribution of intensities across
each spectrogram. This suggests that u-D signatures share
more low-level features with audio spectrograms compared to
other modalities.

Fig. 2: Examples of a p-D signature transformed by DSGAN
(Left to right: examples after training for 1, 5, 10 and 30
epochs.)

The most consistent and best performing I2I networks for

pre-processing the data appear to be DSGAN and DiscoGAN
with L2 loss. The resultant spectrograms seem to retain the
same amplitude intensities as the original probe data, but
scaled down in a manner that better matches the reference
sound data. The DualGAN paper states that L1 loss is pre-
ferred for I2I translation as it produces less blurry results [15].
However, in this circumstance, the presence of large ampli-
tudes around zero Doppler causes the overall ;-D amplitudes
to be significantly more skewed than the sound data. As the
L2 loss is more sensitive to outliers, it can retain more of
the features around zero Doppler. Further visual inspections
show that I2I networks which use an L1 loss appear to remove
the zero Doppler bin to make the spectrograms appear more
like the sound data, which causes a decrease in classifica-
tion accuracy. The difference in performance could also be
attributed to placing an equal weighting on the generator and
reconstruction loss, as opposed to placing a heavier weight
on the reconstruction loss which used for CycleGAN and
DUalGAN. Arguably the heavier weight makes the bijective
constraint stricter, and the synthesised images look more
convincingly like sound spectrograms, but this is at a cost
of eliminating the features surrounding zero Doppler.

When trained for longer, DSGAN achieves a higher vali-
dation accuracy in comparison to DiscoGAN. This could be
attributed to DSGAN’s discriminator’s participation in a more
difficult minimax game which produces more intermediate rep-
resentations that retain more of the source domain’s features
as opposed to DiscoGAN.

IV. OcCLUSION EXPERIMENT

As popular CNN implementations tend to be deep, they
are often treated as black box models. To improve our under-
standing of VGGish and to verify whether VGGish focuses
on the p-D signatures whilst training, an occlusion experiment
was performed. This is a technique introduced in [19], which
involves the creation of heatmaps to illustrate how prediction
confidence is affected depending on which patches of the input
data are occluded.



VGGish was initially fine tuned using pre-processed pi-
D spectrograms without any occlusions. 3 x 3 patches of
the spectrograms were then occluded by setting the value
of the patch to be all zero. The modified spectrogram was
then evaluated through VGGish. This process was repeated
by moving patches across the spectrogram. The data used to
fine tune VGGish was used as this would be a more accurate
depiction of the features VGGish had learnt for each class. The
output of the softmax belonging to the ground truth - the level
of confidence that the spectrogram belonged to the correct
class - was recorded for each iteration. These outputs were
combined to create a 16 x 24 heatmap for each spectrogram.

As the large amplitudes of the unprocessed p-D data made
fine tuning VGGish more difficult, the pu-D data was pre-
processed through an I2I network trained for 5 epochs and
manually by matching the p-D data’s mean and standard
deviation to the sampled sound data’s mean and standard
deviation.

(a) Data transformed by matching mean and SD to the sound
data’s mean and SD.

P

(b) Data transformed using I2I network.

Fig. 3: Heatmaps illustrating the effects of occluding different
patches of one spectrogram belonging to the double punch class.
Darker patches signify a decline in prediction confidence, illustrating
the areas of the spectrogram which are more important for prediction.
These heatmaps are a rotation of the input data used to train VGGish,
as this representation illustrates the effects on classification with
respect to movement position more clearly.

The main observation from both pre-processing methods is
that the frequency bins around zero Doppler contained the
most distinct features between classes. However, this focus
around zero Doppler is less prominent for the 121 transformed
data, which confirms Doppler shifts further away from zero
Doppler are also important for classification. The difference
in heatmaps between the I2I transformed and the manually

transformed data could be attributed to the 121 network learn-
ing a non-linear transformation to transform the p-D data into
a form that resembles audio. Although from visual inspection,
there does not appear to be a drastic alteration in amplitude
intensities, the heatmaps indicate there is a subtle change in
relative amplitude of certain frequencies.

Nonetheless, for each class there seems to be a unique
pattern to the results. For example, for the double punch
movement, prediction confidence tends to drop in the ini-
tial few timesteps by occluding adjacent patches near zero
Doppler. For this class, the I2I network transformed data is
also affected by a negative frequency shift away from zero
Doppler. Although one could interpret this as a temporal
component, the confidence drop does not always happen at
the same time step. As CNNs are translation invariant (and
so should not be influenced by changes in time), this is
a demonstration of VGGish being influenced more by the
change in amplitudes rather than position in the spectrogram.
Furthermore, any supposed temporal factor could be explained
by experimental protocol to collect the data.

V. CONCLUSION

The results show that provided the u-D spectrograms
were transformed into a pseudo-audio representation, transfer
learning from a deep learning model trained on audio was
more effective than deep learning models trained on other
modalities. In this paper we introduce DSGAN, which is able
to transform the p-D spectrograms into a representation more
reminiscent of audio whilst preserving the subtleties of u-
D signatures. This is achieved through formulating a more
difficult minimax game for the discriminator in the archi-
tecture. Visual evaluation of the transformed data indicated
that the best performing pre-processing methods preserved
the amplitude intensities of the original unprocessed data, in
particular the amplitudes around zero Doppler. This suggests
that p-D spectrograms are already akin to audio spectrograms
and indicate that deep learning methods applied to audio may
be of benefit for ;-D classification.

The occlusion experiment indicate that the 121 networks
appear to perform a nonlinear transformation of the p-D data.
This change in amplitude intensities does not appear to be
discernible to the human eye, which raises the possibility that
the nonlinear transformation learnt by the I2I networks may
prove more useful in more complicated datasets.

Furthermore, the occlusion experiment illustrated that a pre-
dominant number of distinguishing features between classes
are concentrated near zero Doppler which could be indicative
of the u-D signatures. This technique may be useful in locating
w-D features where they may not be explicitly observed.
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