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Abstract Commercial off-the-shelf microprocessors are

the core of low-cost embedded systems due to their pro-

grammability and cost-effectiveness. Recent advances

in electronic technologies have allowed remarkable im-

provements in their performance. However, they have

also made microprocessors more susceptible to tran-

sient faults induced by radiation. These non-destructive

events (soft errors), may cause a microprocessor to pro-

duce a wrong computation result or lose control of a

system with catastrophic consequences. Therefore, soft

error mitigation has become a compulsory requirement

for an increasing number of applications, which operate

from the space to the ground level. In this context, this

paper uses the concept of selective hardening, which is

aimed to design reduced-overhead and flexible mitiga-

tion techniques. Following this concept, a novel flexible
version of the software-based fault recovery technique

known as SWIFT-R is proposed. Our approach makes

possible to select different registers subsets from the mi-

croprocessor register file to be protected on software.

Thus, design space is enriched with a wide spectrum of

new partially protected versions, which offer more flex-

ibility to designers. This permits to find the best trade-

offs between performance, code size, and fault coverage.

Three case studies have been developed to show the ap-

plicability and flexibility of the proposal.
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1 Introduction

In recent decades, major technological advances in the

development of microprocessors have occurred. Some

of these developments include the dramatic increase in

their performance, and the ever increasing integration

density. These were made possible mainly thanks to the

progressive miniaturization of electronic components.

Nevertheless, this fact has also led to some adverse con-

sequences. One of the most concerning is that, due to

the reduction of the electronic components size to nano-

metric scales, voltage source levels and noise margins

have also been reduced, which has caused electronic

devices to become less reliable and, therefore, micro-

processors to be more susceptible to several types of

faults, especially those induced by radiation [1].

Radiation effects on electronic components can cause

catastrophic consequences in mission-critical systems.

Radiation-induced faults are originated by the impact

of high-energy particles against the electronic compo-

nents which may result, directly or indirectly, in the ion-

ization of their internal silicon structures. These events

can affect the components operation permanently (per-

manent faults) or temporary (transient faults). In this

paper, we will focus on the latter. Transient faults do

not result in permanent damage, but may affect the

system behavior by altering temporarily signal trans-

fers or stored values. These are also known as soft er-

rors. Specifically, we will focus on the type of transient

faults known as Single Event Upset (SEU ), which is

characterized by the logic state alteration of a single
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memory element in the system [2]. SEUs have usually

been considered as a concern for space application sys-

tems, because it is in outer space where these are more

frequent. However, in recent decades, this problem has

been extended to the electronic circuits that must op-

erate in the atmosphere [3], and even at ground level

[4].

Moreover, thanks to their programmability, perfor-

mance and cost-effectiveness, Commercial Off-The-Shelf

(COTS ) electronic components offer important capa-

bilities and benefits in the implementation of low-cost

safety-critical and high availability systems, such as mi-

cro-satellites [5,6] or avionics safety systems [7]. Nev-

ertheless, their high sensitivity to radiation-induced ef-

fects, particularly transient faults, limit their applica-

bility in the near future. At this juncture, soft error

mitigation has become a mandatory issue for an in-

creasing number of application domains (avionics, au-

tomotive, defense, medicine, and communications) [1,

8].

To overcome the problems produced by soft errors,

applying fine-grain redundant hardware has been the

usual solution in qualified RadHard microprocessors.

However, COTS components prevent the application of

hardware-based soft error mitigation methods directly

within the processor, therefore other approaches have to

be adopted. Duplication or triplication of COTS com-

ponents are the most usual coarse-grain hardware al-

ternatives for these kind of embedded systems [9]. De-

spite the majority of these hardware-based approaches

provide an effective solution to the transient faults, in

general, these techniques have serious drawbacks to the

system in terms of used resources, power consumption,

die size, design time, and economic costs; limiting their

use in low-cost and small systems.

In recent years, however, several proposals based on

redundant software have been developed, adding both

detection and fault correction capabilities to programs.

As software-based techniques do not require any modifi-

cations in the hardware of the microprocessor, they are

particularly suitable for COTS based systems ensuring

an acceptable dependability level [10–12]. In fact, some

of these approaches have already been used in mission

critical systems, including COTS microprocessors, for

satellites and space missions [7].

Although software-based approaches are more cost-

effective than the hardware-based ones, they provoke

a non-negligible overhead to the programs in terms of

execution time and code size [13]. In many cases, this

is the main difficulty for the software-based techniques

feasibility. In order to reduce these overheads and to

offer more flexibility to designers, recent works have

proposed the selective hardening based on software [14–

16]. This consists of protecting only specific parts of the

program or the microprocessor architectural resources

(reachable from the instruction set architecture - ISA)

by means of redundant software. Protected parts can be

chosen according to their vulnerability or their contri-

bution to the overheads. In the first case, to prioritize

the protection of the most vulnerable resources, and

in the second case, to avoid causing a high impact to

the system, such as a high overhead in memory or an

unacceptable degradation of performance.

Based on this concept, we present a novel selec-

tive version of the software-based technique known as

SWIFT-R [17], namely selective SWIFT-R (S-SWIFT-

R). Our proposal allows applying the protection to dif-

ferent register subsets from the microprocessor register

file looking for a reduction in the overheads but keeping

a high fault coverage. The feasibility of the proposal is

demonstrated by means of experimental results in three

representative case studies.

As a result, this technique is suitable for low-cost

dependable applications which use COTS microproces-

sors. Furthermore, the flexibility of our approach al-

lows the designer applying the technique in an incre-

mental way to explore the solutions space on the soft-

ware side effectively. This not only facilitates to find

a software version that best satisfies the dependability

requirements, but also avoids the excessive overheads

caused by usual software-based techniques.

The main contributions of this work can be sum-

marized as follows. Firstly, it is proposed S-SWIFT-

R: a new selective fault recovery software-based tech-

nique based on the well known SWIFT-R. The pre-

sented approach leverages the idea of selective harden-

ing to enrich the (software-side) design space with a

wide spectrum of new possibilities. The main improve-

ment over SWIFT-R is determined by the increase of

flexibility and the possibility to explore different so-

lutions offering the best reliability/overhead compro-

mise. This is a mandatory task for the low-cost depend-

able design of COTS -based applications. Secondly, it is

presented a comprehensive set of experimental results

which demonstrate the flexibility and applicability of

S-SWIFT-R by representing several trade-offs between

overheads and fault coverage.

This paper is organized as follows. Next section pro-

vides background information about the related work.

Section 3 presents the proposed soft error mitigation

technique: S-SWIFT-R. Section 4 reports and discusses

the experimental results obtained in the proposal eval-

uation. Finally, Section 5 summarizes some concluding

remarks and suggests the future works.



Selective SWIFT-R 3

2 Related work

Hardware redundancy has traditionally been the most

common approach to address reliability issues in the

design of digital circuits. This includes a wide variety

of solutions based on: Error Detection and Correction

Codes — EDACs [18], gate-level logic redundancy [19,

20], and architectural level protection [21]. More recent

techniques propose selective hardening of the system,

adding protection only to the most vulnerable hardware

parts [22]; or reducing the performance degradation by

applying partial redundant threading [23,24].

In recent decades, thanks to the current prolifera-

tion of processor based systems and the need for de-

pendable low-cost solutions, a large number of protec-

tion approaches based on the use of redundant software

have emerged. The so-called Software Implemented Hard-

ware Fault Tolerance (SIHFT ) [25] techniques can be

divided in two main categories according to the type of

error they pretend to detect/correct: errors that may af-

fect the control flow execution [26]; or errors that may

affect the program data [27].

The first group is also known as signature checking

techniques. Some examples of these include Control-

Flow Checking by Software Signatures (CFCSS ) [26],

Assertions for Control Flow Checking (ACFC ) [28],

Yet Another Control flow Checking Approach (YACCA)

[29], and Control-flow Error Detection through Asser-

tions (CEDA) [30]. Moreover, those approaches included

in the second group are mainly based on the N-versions

programming approach [31], which can be applied at

different granularity levels: program [11,32], procedure

[33], and the most commonly used, instruction level [27,

34–36].

Most software-based approaches are aimed at de-

tecting faults. Some of them apply redundancy to high-

level source code (e.g., C language) by means of au-

tomatic transformation rules [37], whereas others use

instruction redundancy at a low level (assembly code)

in order to reduce the code overhead and performance

degradation, and improve detection rates [26,27,36].

Only a few of these techniques have been extended to

allow system recovery, but they incur, as a consequence,

in higher overheads in terms of code size and execution

time [17,38]. Overall, even though software-based tech-

niques can be a suitable protection solution for low-cost

COTS -based applications, they also could pose a design

problem such as high overhead in memory, and dispro-

portionate penalties in performance. This is especially

true for those techniques that are addressed not only to

fault detection but recovery tasks.

To reduce the implicit overheads of software-based

techniques, a few works based on selective hardening on

software have been proposed recently. They propose to

transfer to the software world the concept of selective

hardening, typical from the hardware world [22,39,40].

In [15,16], the authors propose the selective instruction

replication to guarantee the application-level correct-

ness in multimedia applications. This kind of applica-

tions can tolerate, in some cases, a execution which is

not 100% numerically correct, and the program results

can still appear to be correct from the user perspective

[41]. In our case, mission-critical systems require the

architecture-level correctness instead. In addition, the

work presented in [14] uses the selective hardening on

software focused on the detection of data-flow errors.

Our proposal allows the system recovery as well.

The main advantage offered by selective software-

based techniques is the flexibility. Designers are pro-

vided with a wide set of possibilities, being able to

explore deeply the design space provided by the soft-

ware techniques, taking into account factors such as

code overhead, performance degradation, and reliability

level. For instance, if applying a particular set of hard-

ening routines results inconvenient according to the re-

quirements of an application (e.g., if the maximum ex-

ecution time is exceeded), the technique can be applied

partially depending on the critical program resources

or sections. In short, the designer is able to fine-tune a

tailored fault mitigation strategy based on software.

Moreover, recent hybrid hardware/software fault mit-

igation approaches have shown promising results. These

techniques combine software redundancy with additional

hardware support [42–46]. In this context, the S-SWIFT-

R technique here proposed can be used as a part of

a more complex hybrid technique, or as a component

of a cross-layer protection strategy. In fact, our previ-

ous works [47,48] present some preliminary results of

this, when tailored hybrid approaches are used by com-

bining partial protection on both hardware and soft-

ware (co-hardening). Unlike our previous approaches

that were aimed at the hardware/software co-design,

the presented proposal in this work focuses on the pre-

sentation of a new selective software-only fault recov-

ery technique suitable for low-cost COTS -based appli-

cations. In addition, a comprehensive experimentation

is presented to support the proposal.

3 Selective SWIFT-R

Since memories are designed to reach the highest pos-

sible density, they are more sensitive to ionizing par-

ticles than other parts of the circuit. In addition, con-

sidering that they represent the largest parts of mod-

ern designs, memories are the first candidates to be

hardened in a design. However, there already is a large
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number of fault tolerance techniques, mainly based on

EDACs, that may solve this problem properly [18]. In

this work, therefore, we address the protection of the

microprocessor register file due to both its criticality in

microprocessor-based applications and the difficulties

to protect it.

To do so, we focus on this issue by means of the

technique proposed by Reis et al. known as SWIFT-

R [17]. It is a software-only recovery technique based

on low-level instruction transformation rules (assembly

code), which is based on the well known Triple Modu-

lar Redundancy (TMR). SWIFT-R stands for SoftWare

Implemented Fault Tolerance - Recovery. It intertwines

three copies of the program and adds majority voting

before critical instructions. In other words, it consists

of the triplication of data and instructions, jointly with

the insertion of verification points to check data consis-

tency (by means of majority voters).

Fig. 1 presents an example of a basic program hard-

ened using SWIFT-R (assembly code). Notice that reg-

ister copies (s0’, s0’’, . . . ) are stored in other available

registers from the microprocessor register file, i.e., un-

used registers in the program. Furthermore, majority

voters are recovery procedures that compare if at least

two versions of a register have the same value, correct-

ing the third copy (possibly corrupted).

# Non-hardened code SWIFT-R code
1 main: LOAD s0, 00 main: LOAD s0, 00

2 Create s0 copies
3 LOAD s1, 2A LOAD s1, 2A

4 Create s1 copies
5 ADD s0, s1 ADD s0, s1

6 ADD s0’, s1’

7 ADD s0’’, s1’’

8 CALL incr CALL incr

9 Majority voter for s0

10 STORE s0, 00 STORE s0, 00

11 RETURN RETURN

12
13 incr: LOAD s2, 0F incr: LOAD s2, 0F

14 Create s2 copies
15 ADD s0, s2 ADD s0, s2

16 ADD s0’, s2’

17 ADD s0’’, s2’’

18 RETURN RETURN

Fig. 1 Example hardened program using SWIFT-R

When applying software techniques, it is manda-

tory to take into account their needs in terms of mi-

croprocessor resources. This consideration may hinder

the feasibility of the hardening in case the technique it-

self demands a lot of resources or if the microprocessor

is very limited. Features that have to be considered in-

clude the number of available registers in the micropro-

cessor register file to create redundant copies, and the

amount of available space in the program memory for

instructions replication. In case of SWIFT-R, two ad-

ditional copies are required for each protected register.

This is, a total of 2n additional registers are necessary

to fully implement SWIFT-R (where n is the number of

used registers in the non-hardened program). This fact

makes that SWIFT-R may not result suitable in many

cases for reduced-cost solutions. Furthermore, due to

its fault recovery capabilities, SWIFT-R produces high

overheads that, regarding the application, can easily

surpass 3× the original code size and execution time.

To alleviate this problem, the original authors proposed

to apply SWIFT-R to superscalar processors, in which

the instruction level parallelism (ILP) can be exploited

to execute redundant instructions and, in this way, the

impact on performance can be diminished. Neverthe-

less, in case of low-cost solutions, where microprocessors

usually have more resource limitations, another solution

is required.

Thus, we propose several improvements to the orig-

inal technique based on selective hardening in order to

increase its flexibility and make it suitable for reduced-

cost embedded systems. S-SWIFT-R is also applied by

means of low-level instruction transformation rules but,

in our approach, the strategy consists of applying soft-

ware protection mechanisms only to some selectively

chosen registers from the microprocessor register file.

That is, it is possible to select several register subsets

to be protected from all the registers, e.g., hardening

only the most critical registers.

Taking advantage of the selectiveness on the ap-

plication of S-SWIFT-R, designers can obtain differ-

ent hardened versions of the same program exploring

the design space in a fine-grained manner. The options

were exactly two in the past: whether to use the non-

hardened program or to use the hardened one; however,

now there are many new possibilities between these two

extremes, whose overheads are reduced but still may of-

fer a high fault coverage. The number of versions (m)

is equal to the number of possible combinations (with-

out repetition) among the program used registers, i.e.,

m = 2n, where, n represents the total number of used

registers in the program (m includes the non-hardened

version as well). Therefore, using S-SWIFT-R, design

space is enriched with several new solutions, which of-

fer more flexibility to designers, and facilitate to find

the best trade-offs among reliability, performance, and

code size.

In addition, this approach is useful as well in cases

when is not possible to apply SWIFT-R completely.

This can occur due to the limitations of the micropro-

cessor (e.g., small number of registers available in the

register file, reduced space in the program memory, . . . )

or the high demand for resource utilization in the pro-
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gram (e.g., if the non-hardened code uses most registers

available in the register file and, therefore, there are not

enough available registers for the necessary redundant

copies). In these cases, it is possible to prioritize the

registers depending of their impact of overheads and/or

reliability and protect only a subset of them.

To implement this novel approach successfully, we

propose to use the concept of Sphere of Replication

(SoR) in a flexible way. SoR was first proposed in [49].

The SoR defines the logic domain of redundant exe-

cution. This means that the architectural resources lo-

cated within the SoR are considered to have redundant

mechanisms; consequently, they are protected against

faults. Hence, the SoR delimits the protection cover-

age of hardening techniques. Moving the borders of the

SoR, it is possible to modify the protection level of dif-

ferent fault tolerance techniques by including or exclud-

ing various components inside the sphere.

One can include/exclude the memory subsystem,

the microprocessor register file, or even select only a

subset of critical registers from the microprocessor reg-

ister file. For instance, in EDDI [27] the memory sub-

system is considered to be located inside the SoR, so

the instructions responsible to perform read/write op-

erations over the memory do not cause that any data

cross the SoR borders. In the same way, if the memory

subsystem is considered to be outside of the SoR (as

in SWIFT [36]), those instructions reading from mem-

ory or writing into memory are causing some data to

cross through the sphere frontiers and must be handled

in a special way. In our case, S-SWIFT-R allows to

include/exclude selectively chosen subsets of registers

form the register file.

To facilitate the proposal implementation we pro-

pose that the program instructions, whose execution

imply a data flow crossing the borders of the SoR, have

to be classified in a special way. In case only the micro-

processor register file is located inside the SoR, when

an instruction causes that some data enter inside the

SoR (e.g., reading an input port, loading a value into

a register or reading a value from memory), it is classi-

fied as inSoR. In contrast, when an instruction provokes

data to go out from the SoR (e.g., writing on an output

port, storing a value into the memory), it is classified

as outSoR. Otherwise, instructions whose execution do

not imply a data flow (e.g., an unconditional branch)

are classified as none.

In the original SWIFT-R, the SoR is considered to

hold the complete microprocessor register file. Thus, in

Fig. 1, instructions 1, 3, and 13 are classified as inSoR

and are followed by data replication instructions on the

hardened code (lines: 2, 4, and 14). Instructions 5, 8,

11, 15, and 18 are classified as none. Instructions 5,

and 15 perform an arithmetic operation, thus, they are

replicated after the original instruction using the reg-

ister copies (lines: 6, 7, 16, and 17). Finally, the only

instruction that sends data outside of the SoR is the

instruction number 10 (it sends data to the memory

subsystem), and therefore, data should be verified be-

fore leaving the sphere by means of a majority voter

(line number 9).

The application of S-SWIFT-R to a source code (as-

sembly code) can be explained as follows:

1. Each program instruction is classified according to

the direction of the data flow it provokes with regard

to the SoR, whose elements should be previously de-

fined. The architectural resources located within the

SoR are considered to be protected against faults.

Instructions are classified as:

(a) inSoR: those instructions whose execution pro-

vokes a data flow entering to the SoR.

(b) outSoR: those instructions whose functionality

causes a data flow leaving the SoR.

(c) none: those instructions whose execution do not

imply a data flow (e.g., an unconditional branch)

or those that provoke a data flow that does not

cross the SoR borders.

2. Data triplication the first time that any data enter

to the SoR. Therefore, for each instruction classified

as inSoR, two additional copies will be created of the

data entering to the sphere. These redundant copies

have to be created by copying the register values,

without repeating memory or input port accesses.

3. Triplication of instructions that perform any data

operation (e.g., arithmetic, logic, shift, rotation in-

structions). Notice that redundant instructions should

operate using register copies (replicated data).

4. Verify the correctness of the data involved in the

instructions classified as outSoR before their execu-

tion. This verification is made by inserting majority

voters and recovery procedures just before these in-

structions. This is necessary to avoid erroneous data

leaving the sphere, because once the data have left

the SoR, recovery will be not possible, and the cor-

rupted data may cause a system error.

5. Special consideration should be given to instruc-

tions located before a conditional branch which alter

the ALU flags (zero, carry, . . . ). Data involved in

these instructions have to be checked as well (using

again majority voters and recovery procedures be-

fore their execution). This verification is necessary

because if a register value is corrupted, an operation

using this register may produce an erroneous resul-

tant flag, and consequently, this may provoke an in-

correct branch somewhere in the program’s control

flow graph after the conditional branch execution.
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6. Release redundant registers (copies) if they are not

needed anymore in the rest of the program; other-

wise, copies should be kept along the program exe-

cution. This condition implies a detailed analysis to

the control flow graph.

This selective approach of SWIFT-R is made possi-

ble by the flexible implementation of the sphere of repli-

cation. Basically, the new proposal consists in moving

out of the SoR the registers that are not required to

be protected, while some other registers remain within

the SoR and, consequently, code transformations are

responsible for protecting only this subset of registers.

Observe that program instructions should be re-

classified when elements within the SoR change (when

some registers are considered within the SoR and others

outside of it). Each instruction is classified according to

the direction of the data flow it causes with regard to

the new SoR components. Thus, instructions involving

data stored in unprotected registers may cause some

data to cross through the SoR frontiers. The data flow

between two registers (in an instruction considered be-

fore as none because the data flow occurred inside the

sphere) could have changed, in case one of the regis-

ters had been removed from the the SoR. Depending

on the new data flow direction that instruction should

be classified as inSoR or outSoR. For instance, in the

instruction ADD s0, s1, where the s0 register is con-

sidered to be located within the sphere, and the s1 reg-

ister is considered outside of it, while reading the data

stored in the register s1 to sum it to the data stored in

s0, a data flow is produced from outside the sphere to

the inside of it; therefore, the instruction ADD should be

classified as inSoR. Similarly, in the case that s0 was

considered outside the sphere and s1 inside of it, the

produced data flow (when reading the value stored in

s1 to sum it to the data stored in s0) would be from

inside of the sphere to outside of it and, thus, the ADD

instruction should be classified as outSoR.

In order to illustrate the approach, Fig. 2 and Fig.

3 show an example with several versions of a basic pro-

gram hardened using S-SWIFT-R in several register

subsets. Notice that the fully hardened version obtained

by S-SWIFT-R, i.e., the version with protection in all

the program used registers (’s0 and s1 protected’ ver-

sion in Fig. 3), is the same than the one obtained by

the original SWIFT-R approach.

Consideration should be given to the fact that if a

fault affects data enclosed in the SoR, and then the cor-

rupted data leave the SoR (as a result of the execution

of an outSoR instruction), it may provoke an unrecov-

erable error because there will be no additional mech-

anisms outside of the SoR to detect the inconsistency.

# Non-hardened Protected register: s0

1 LOAD s0, 00 LOAD s0, 00

2 Create s0 copies
3 LOAD s1, 2A LOAD s1, 2A

4
5
6 ADD s0, s1 ADD s0, s1

7 ADD s0’, s1

8 ADD s0’’, s1

9 Majority voter for s0

10
11 STORE s0, (s1) STORE s0, (s1)

Fig. 2 Example hardened program using S-SWIFT-R (’non-
hardened’ and ’register s0 protected’ versions)

# Protected register: s1 Protected registers: s0,s1

1 LOAD s0, 00 LOAD s0, 00

2 Create s0 copies
3 LOAD s1, 2A LOAD s1, 2A

4 Create s1 copies Create s1 copies
5 Majority voter for s1

6 ADD s0, s1 ADD s0, s1

7 ADD s0’, s1’

8 ADD s0’’, s1’’

9 Majority voter for s0

10 Majority voter for s1 Majority voter for s1

11 STORE s0, (s1) STORE s0, (s1)

Fig. 3 Example hardened program using S-SWIFT-R (’reg-
ister s1 protected’ and ’registers s0 and s1 protected’ ver-
sions)

Hence, it is necessary to verify the data correctness be-

fore leaving the sphere.

A particular case of this can be seen in Fig. 3 (’reg-

ister s1 protected’ version) when a majority voter is

inserted before the instruction ADD s0, s1 (line 6). In

this example, only the s1 register is considered within

the SoR. Therefore, when executing the instruction in

line 6 (whose function is to do s0 = s0 + s1), there will

be a data flow from s1 to s0, or in other words, there

will be a data flow from inside the SoR going outward;

thus, a majority voter should be inserted to verify the

correctness of the value stored in s1, before it leaves

the sphere.

Moreover, it is worth mentioning that triplication of

instructions imply the protection not only of the reg-

isters but also of all datapaths where instructions pass

through. Replicas of instructions will pass all pipeline

paths so they are all protected through not only spec-

ified register subset but all other components in the

execution pipeline.

4 Evaluation

In order to evaluate the proposed technique, firstly, it

was implemented using the API (Application Program-

ming Interface) exposed by the Software Hardening En-

vironment (SHE ) (proposed in [47]). Secondly, the fault

coverage of the approach was assessed using an FPGA
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emulation-based fault injection tool called FTUnshades

[50].

The experimental setup is described in the first part

of this section. Afterwards, analysis with respect to the

usage of registers in the non-hardened versions is dis-

cussed. Next, overhead results caused by the application

of S-SWIFT-R are presented in the third part. Fault

coverage results are remarked in the fourth part. Fi-

nally, the last part of this section presents experimental

results for an incremental hardening strategy based on

S-SWIFT-R.

4.1 Experimental setup

S-SWIFT-R has been implemented using the Software

Hardening Environment (SHE ). This a tool aimed to

implement, automatically apply, and preliminarily eval-

uate software-based fault tolerance techniques. It com-

prises a flexible hardening multi-target compiler (source-

to-source) and an instruction set simulator to assist the

design decisions.

The hardened code generated by SHE was targeted

to the PicoBlaze microprocessor [51]. PicoBlaze is a

widely used IP (intellectual property core) with similar

features to common 8-bit COTS microprocessors, and

since it is a soft-core, it can be used within FPGA-based

fault emulation tools in order to exhaustively assess the

fault coverage in real conditions. Moreover, PicoBlaze

has severe limitations in performance and resources.

These facts make PicoBlaze particularly appropriate for

this work. Firstly, software-based techniques cannot al-

ways be completely applied to the programs running in

this microprocessor because of both their high code and

performance overheads, and the microprocessor limita-

tions; therefore, selective hardening on software may

result more suitable in these cases. Secondly, it is nec-

essary to inject a large number of faults to the system

to obtain statistically representative reliability results,

which can be carried out using a FPGA-based fault em-

ulation tool.

The main features of the microprocessor are: 16

byte-wide general-purpose data registers (numbered from

0 to F in hexadecimal notation), 1K instructions (10

bits) of programmable on-chip program store, byte-wide

Arithmetic Logic Unit (ALU) with CARRY and ZERO

indicator flags, 64-byte internal scratchpad RAM, 256

input and 256 output ports, 31-location CALL/RETURN

stack, and KCPSM3 assembly syntax.

The benchmark software suite used in the experi-

ments is made up of three representative programs used

in embedded systems: proportional-integral-derivative

controller (PID), finite impulse response filter (FIR),

and advanced encryption standard (AES ). A more com-

plex benchmark (such as MiBench [52] or MediaBench

[53]) could not be evaluated due to the mentioned re-

source limitations in PicoBlaze.

The test programs, for demonstration purposes, were

rewritten using only 5 from 16 available registers in the

microprocessor register file, so enough resources remain

free to harden all registers. This first code transforma-

tion was performed manually. Then, the three programs

were automatically hardened with S-SWIFT-R using

SHE. Since each one of them used 5 registers, a total of

32 different software versions were considered for each

program (including the non-hardened version and all

the selectively hardened possibilities). This means that

a total of 96 different program versions were evaluated.

This brute force strategy is followed only for demon-

stration purposes to show the flexibility of S-SWIFT-

R. However, as can be seen in the next section (Tables

1 and 2), the designer has enough information to pre-

select only a subset with some of the best candidates

for further analyses (especially the reliability evalua-

tion, which is the most time-consuming task).

We performed fault-injection experiments to evalu-

ate the technique fault coverage. FTUnshades was used

for this purpose. This is an FPGA-based fault emula-

tion tool that permits to assess several dependability

parameters on the real system implementation. Unlike

other emulation or simulation tools, FTUnshades al-

lows the fault injection without modifications in the

original code, and without hardware instrumentation.

This tool is composed of an FPGA emulation board and

a suite of software tools for testing the emulated design

and analyzing test results.

4.2 Registers usage analysis for the non-hardened

software version

Table 1 shows the registers usage report for the test

programs, which is provided automatically by SHE. It

presents information about the accesses to each regis-

ter during the program execution, and their lifetime.

Accesses give information about the registers usage for

write, read, and read/write operations. These values

are expressed as the percentage of the total number

of each operation type. Moreover, the register lifetime

represents the time when necessary data for the correct

program execution are present in the register [54]. Any

fault occurring to the register during that time destroys

data integrity. Lifetime is expressed as the percentage

of the total program time.

Register lifetime is expressed as the sum of clock

cycles of all the register living intervals during the pro-

gram simulation. A living interval starts with a generic
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write operation and ends with the last read operation

which precedes the next write operation or the end of

the program execution.

This information is an useful guide for the designer

to pre-select which registers should be hardened and,

in this manner, avoid to explore all the possible com-

binations in the design space. Number of accesses to

each register is related to how the overheads will be af-

fected in terms of code size and execution time, whereas

lifetime is related to reliability.

Table 1 Registers usage report (non-hardened programs)

Test Reg Write[%] Read[%] Read/Write[%] Lifetime[%]

0 23.93 47.19 0.00 63.70
1 17.09 5.55 18.96 66.38

PID 2 13.67 11.10 35.88 81.67
3 13.67 11.10 23.48 81.67
4 31.63 25.05 21.68 74.99

0 39.28 44.85 0.00 34.81
1 24.99 10.34 28.96 75.16

FIR 2 17.86 20.68 38.47 88.27
3 17.86 20.67 31.67 88.27
4 0.01 3.46 0.90 99.99

0 48.57 25.19 50.82 80.57
1 8.22 35.36 29.59 92.34

AES 2 9.78 19.39 10.80 62.49
3 22.39 12.85 7.00 34.81
4 11.04 7.21 1.78 35.56

When S-SWIFT-R is applied to some highly ac-

cessed registers, such as 4 in the PID program or 0

in the AES program, the overheads are expected to in-

crease considerably because this protection implies to

use a higher number of redundant instructions. Nonethe-

less, protecting these registers does not guarantee im-

proved reliability, since the vulnerability of each regis-

ter depends, in part, on its lifetime during the program

execution, and this is not always correlated with the

number of times that the register is accessed.

Lifetime has a high impact on reliability, since the

higher the lifetime is, the longer the register is prone to

soft errors. However, it should be considered as well that

the vulnerability of each register depends not only of its

lifetime but also of the criticality of the functions that

the register is used for within the program source code.

Therefore, more investigation is required as additional

criticality criteria have to be taken into account in order

to accurately select and prioritize the best candidates

to be hardened.

For the scope of this work, however, we will focus

only on the lifetime using a slight adjustment as it is

important considering how the living intervals are dis-

tributed along the timeline. In cases of registers having

the same/similar lifetime, criticality is lower for those

presenting a larger number of living intervals. Since a

new living interval is created every time there is a write

operation to the register, during the write operation

there is a fraction of the time in which the register has

not yet taken the correct value, and any fault affecting

it during that time will be overwritten when it finally

takes the written value. According to this, we propose

to adjust the lifetime by subtracting the number of

write operations from the total lifetime of a register.

Finally, the adjusted lifetime is then normalized with

respect to the duration of the program.

The proposed strategy to prioritize the registers to

be hardened is to establish a ranking of the most criti-

cal registers according to their normalized adjusted life-

time. Ranks are assigned to these values in descending

order, which means that registers on top of the ranking

will also be the most critical ones. Then, registers will

be selected for hardening in the same order as its posi-

tion in the rank indicates. Table 2 presents the results

for the studied cases.

Table 2 Prioritization and selection of registers to be hard-
ened

Test Register Adjusted lifetime[%] Criticality rank

0 62.49 5
1 65.52 4

PID 2 80.98 1− 2
3 80.98 1− 2
4 73.40 3

0 32.91 5
1 73.95 4

FIR 2 87.41 2− 3
3 87.41 2− 3
4 99, 99 1

0 74.29 2
1 91.27 1

AES 2 61.23 3
3 31.92 5
4 34.13 4

Notice that if we had considered the lifetime (in-

stead of the adjusted lifetime) to establish the critical-

ity rankings, the rank order would have been the same.

Nevertheless, this is not a general rule; there might be

different cases in which the rank order may be altered.

Results showed in Table 2 indicate the order in which

registers have to be selected for hardening. For instance,

in the AES case the first register to be protected is the

register number 1, followed by the register 0, then the

number 2, and so on, according to the criticality rank-

ing.

In Sections 4.3 and 4.4 (as mentioned before), we

will evaluate not only a few hardened program ver-

sions, but all the versions offered by S-SWIFT-R to

demonstrate the flexibility of the proposed technique.

However, in order to show the usefulness of the pro-

posed pre-selection strategy, Section 4.5 presents the
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case when an incremental hardening approach is fol-

lowed based on the criticality rankings.

4.3 Overheads

Fig. 4 presents the overhead results for all the software

versions hardened selectively. Static code size overhead

and execution time overhead are showed for all the pos-

sibilities of our test programs (PID, FIR, and AES ).

These results are normalized with a baseline built with

the non-hardened version of each program.

A hardened software version obtained by applying

S-SWIFT-R only to the register subset {0-2-4} means

that only these registers are protected (from 16 possi-

ble general-purpose PicoBlaze registers). Hereafter, the

names of the hardened versions correspond to the reg-

ister group that is protected.

When highly accessed registers are protected, the

overheads increase considerably (as expected). This can

be observed clearly in the registers 0 and 1 of the AES

program, which cause a high overhead when protected.

For example, in the {0} version, the code size and execu-

tion time overheads are 2.54× and 2.61×, respectively.

Notice that overheads results increase incrementally

when more registers are protected. In case of the PID,

static code size overhead goes from 1.28× (in the {2}
version) up to 2.65× in the fully protected version (i.e.,

the {0,1,2,3,4} version), whereas execution time over-

head ranges between 1.20× (in the {0} version) and

2.75× (in the SWIFT-R version). Moreover, in the FIR

case, code overhead varies from 1.01× (in the {4} ver-

sion) to 2.67× in the fully protected version, and ex-

ecution time overhead ranges from 1.01× (in the {4}
version) to 2.53× (in the SWIFT-R version). Finally, in

the AES case, code size overhead goes from 1.22× (in

the {4} version) up to 3.30× (in the SWIFT-R version),

whereas execution time overhead varies from 1.44× (in

the {4} version) to 3.72× (in the SWIFT-R version).

The above mentioned fact means that, as expected,

more resources (code lines and execution time) are re-

quired when more protection is implemented (more reg-

isters are protected). However, it is very important to

notice two additional issues as well, which are related

to the contribution to the overheads that each register

makes when it is protected. Firstly, each register makes

its contribution to code overhead and execution time

overhead independently. For instance, the {4} version

in the PID case presents a considerable code overhead

(1.89×) while its execution time overhead is lower than

that (1.48×). Secondly, each register makes its contri-

bution to overheads in very different manners. There

are versions in which the protection of some registers

causes an almost negligible impact, such as in the {4}
version of the FIR case (the code size and execution

time overheads are both 1.01×), whereas at the same

time, there are other versions in which the protection of

only one register can provoke a high impact, like in the

{2} version of the same test program (code overhead

1.61× and execution time overhead 1.56×).

In addition, in the case of AES, it is worth noting

that due to the high overheads, it was necessary to ar-

tificially expand the microprocessor address space. In

this way, it was possible to use an additional memory

block to fit some of the hardened versions within the

program memory properly.

Consideration should be given to the several inter-

mediate protected versions that might result suitable

for many applications domains. Although the version

with the maximum expected fault coverage is the one

with protection in all its registers (SWIFT-R version),

there are many other versions with protection in groups

of four, three, two, or one registers, whose overheads

are lower than those caused by the complete protec-

tion and can offer enough fault coverage depending on

the application requirements. These versions should be

considered within the analysis as well.

4.4 Fault coverage

In the following tests, we focus on the type of soft error

known as Single Event Upset (SEU ). This is a radiation

effect that is caused by the direct or indirect ionization

provoked by the impact of an incident energetic particle

against an electronic component. This effect provokes

a change in the logic state of a single memory element

(memory cell, flip-flop, latch). We will use the bit-flip

fault model to represent this fault. In this model, only

one bit-flip of a storage element occurs throughout the

circuit operation. Since this fault model closely matches

the real fault behavior, it is widely used by the fault

tolerance community to model real faults [37].

In order to evaluate the fault coverage provided by

S-SWIFT-R, a fault injection campaign was carried out

for each system version using FTUnshades (using the

real implementation of the different systems). Injected

faults were classified according to their effect on the

expected system behavior, similarly as it was first pro-

posed by Mukherjee et al. [55]:

1. In case the system completes its execution, and ob-

tains the expected output after that a fault is in-

jected, the memory element (bit) affected by the

fault and, consequently the fault itself, are classi-

fied as unnecessary for Architecturally Correct Exe-

cution - unACE.
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2. If the fault has not been detected/corrected and pro-

vokes the program to complete its execution with

an erroneous output, this fault is called Silent Data

Corruption - SDC.

3. When the fault causes an abnormal program ter-

mination or an infinite execution loop, the fault is

categorized as a Hang.

Note that SDC and Hang are both undesirable ef-

fects (categorized together as ACE faults).

Firstly, an initial experiment was carried out to cal-

ibrate the FTUnshades. This experiment consisted of

an incremental fault injection campaign (increasing the

number of injected faults on each iteration), performed

until statistically representative results were obtained.

Notice that the minimum number of representative in-

jected faults depends on each application complexity

jointly with the microprocessor architecture. The fault

injection campaigns have been performed against the

register file of the microprocessor. The non-hardened

programs were chosen for the tests because they rep-

resent the worst case scenarios. Obtained results show

that the 95% confidence interval is less than ±1.0% af-

ter 80000 fault injection tests. According to the bit-flip

fault model, only one fault was emulated during each

program execution.

Secondly, for each program version, the fault injec-

tion campaign consisted of injecting 80000 faults (SEUs),

emulating only one single fault per program execution.

Each fault was emulated by means of a single bit-flip in

a randomly selected bit from the microprocessor regis-

ter file (16-byte-wide registers) in a randomly selected

clock cycle from all the workload duration.

Fig. 5 shows the fault classification percentages ob-

tained for each system after all the fault injection ex-

periments in the FTUnshades.

It is worth noting that the high fault coverage re-

sults (greater than 75% unACE in all cases) obtained

for the non-hardened versions are due to the fact that

the fault injection test was performed over the complete

register file, even though the programs do not use all the

sixteen available general-purpose registers. Therefore, a

fault injected in an unused register bit is considered as

unACE because it does not affect the expected pro-

gram output. This way of testing has been carried out

by others researchers as well [26,27,36,17,37], which al-

lows to obtain homogeneous result sets comparable to

each other.

One can observe the remarkable increase in the fault

coverage that it is obtained using S-SWIFT-R. In case

of the first test program, the PID, the fault coverage

ranges between 76.06% unACE faults (non-hardened

program) to 98.12% unACE faults (SWIFT-R version).

Moreover, in the second case, for the FIR program, it

goes from 79.19% unACE to 99.26% unACE faults. In

the AES case, the values vary from 81.74% unACE to

98.77% unACE faults. These results represent the per-

centages of injected faults that do not provoke any un-

desirable behavior to the circuit operation.

In addition, there are several intermediate-protected

versions that might be suitable for many applications

depending on the requirements, especially for low-cost

solutions. For example, in the PID program, when pro-

tection is applied only to the registers number 0, 2, and

4 ({0,2,4} version), a considerable fault coverage in-

crease is produced (up to 96.67% unACE faults). An-

other example can be observed for the FIR program

when the protection is applied to the registers 2 and

4 ({2,4} version). In this case, the increase is up to

94.01% unACE faults, which is remarkable, taking into

account that only two registers are being hardened. A

similar example can be noticed from the AES, when

fault coverage in the {0,1,2} version is up to 97.87%

unACE faults.

In the same manner that each register impacts the

overheads independently when it is protected, each reg-

ister contributes apart to the fault coverage improve-

ments. This can be seen, for instance in the PID pro-

gram, in which the fault coverage is 89.67% unACE

when only the register 2 is protected, whereas protect-

ing only the register 3, the percentage is down to 85.76%

unACE (a 3.91% difference).

In many cases, the selective protected versions can

be better candidates for systems where not only the

fault coverage is important, but also the time execution.
Protecting all registers, using a software technique, could

result in the best fault coverage, but at the same time, it

provokes the highest performance degradation. Hence,

overheads and fault coverage results have to be stud-

ied jointly, representing several trade-offs among code

size, performance, and fault coverage. This analysis fa-

cilitates to guide the design decisions to find the solu-

tions having the best reliability/overhead compromise.

For example, the {1,2,4} FIR version is an interest-

ing choice, because it offers both, high fault coverage

(95.66% unACE faults), and acceptable code size and

execution time overheads (1.97× and 2.07×, respec-

tively). In addition, a similar example can be observed

in the {1,4} version of the AES case, when fault cov-

erage of 95.49% unACE faults is reached, whereas the

code and time overheads are 1.73× and 2.29×, respec-

tively. It is worth noting that our technique provides

detection and recovery of faults, therefore, acceptable

trade-offs can be easily reached between overheads and

fault coverage.
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4.5 Incremental hardening strategy

As previously discussed in 4.2, designers can make the

selection and prioritization of registers to be hardened

according to their criticality. This approach facilitates

the design and assessment of a software-based incre-

mental protection strategy, avoiding a brute force strat-

egy since it is a very time-consuming task.

Using the criticality rankings presented in Table 2,

it is proposed to make an a priori selection based on

the criticality rank of each register, which determines

the order in which the register is hardened in an incre-

mental protection approach. This is a straightforward

strategy that allows evaluating only the most effective

software versions in terms of fault coverage.

Fig. 6, on the one hand, illustrates the fault classi-

fication percentages only for the software versions indi-

cated by the criticality rankings. On the other hand, it

also presents, in a secondary axis, their code size and

execution time overheads normalized to a baseline built

with the non-hardened versions. This figure permits to

see at a glance, the representation of several trade-offs

between fault coverage and overheads for the each test

program.

This approach constitutes a remarkable reduction

in the design space, which not only facilitates to reach

the best compromise between reliability and overheads,
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Fig. 6 Fault classification percentages and overheads for the
incremental hardening of the test programs: (a) PID, (b) FIR,
(c) AES

but also to assess effectively only the most interesting

selective hardened versions.

5 Conclusions and future works

The selective hardening based on software permits to

enrich the software-side design space for the soft errors

mitigation techniques. In this way, reliability engineers

have more flexibility to find solutions having the best

reliability/overhead compromise.

In this paper, a selective version of the software-

based technique known as SWIFT-R has been presented

and called S-SWIFT-R. It is possible to select different

registers subsets to be protected from the micropro-

cessor register file. Thanks to its flexibility, this tech-

nique is appropriated for low-cost dependable applica-

tions which use COTS microprocessors. Furthermore,

it can be used for hardware/software hybrid mitigation

approaches as well.

The S-SWIFT-R evaluation results prove that not

only this technique facilitates to find the best trade-offs

among code size, reliability, and performance, but also

can be automated to be applied automatically to the

programs.

Taking into account parameters like the number of

times registers are accessed, and their lifetime and vul-

nerability, as a part of our future works, new relation-

ships among them will be investigated to permit auto-

matically prioritize the order in which registers should

be protected. This will allow designers to predict the

impact of each register in overheads and reliability when

fault tolerance techniques are applied selectively; there-

fore, this will facilitate the decision making process.

Furthermore, new software-only or hardware/software

soft error mitigation techniques will be proposed by ex-

ploiting the advantages that the selective hardening on

software offers.
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