
 Elsevier Editorial System(tm) for Mathematical and Computer Modelling
 Manuscript Draft

Manuscript Number: MCM-D-11-01529R1

Title: An Approach to the Application of Shift-and-add Algorithms on Engineering and Industrial
Processes

Article Type: SI: MME&HB2011

Keywords: Shift-and-add algorithms; Engineering; CAD/CAM; Numerical Methods

Corresponding Author: Dr. Jose-Luis Sanchez,

Corresponding Author's Institution:

First Author: Jose-Luis Sanchez

Order of Authors: Jose-Luis Sanchez; Antonio Jimeno-Morenilla; Rafael Molina-Carmona; Jose Perez-
Martinez

Manuscript Region of Origin: SPAIN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32320358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cover Letter

for the submission of

"An Approach to the Application of Shift-and-add Algorithms on Engineering and Industrial Processes"

Authors: Jose-Luis Sanchez-Romero, Antonio Jimeno-Morenilla1, Rafael Molina-Carmona2, and Jose

Perez-Martinez1

1Department of Computing Technology and Data Processing, University of Alicante, Spain

2Department of Computing Sciences and Artificial Intelligence, University of Alicante, Spain

Dear Sir or Madam,

Please kindly consider the manuscript

"An Approach to the Application of Shift-and-add Algorithms on Engineering and Industrial Processes"

for publication in the Special Issue corresponding to the Mathematical Modelling in Engineering and

Human Behaviour 2011 Conference on the Mathematical and Computer Modelling Journal.

Please do not hesitate to request any additional information that might be needed in order to make your

decision.

Sincerely,

Jose-Luis Sanchez-Romero

October 7, 2011

Corresponding author:

Jose-Luis Sanchez-Romero

Department of Computing Technology and Data Processing

Polytechnic University College, University of Alicante

Carretera de San Vicente, s/n

03690 San Vicente del Raspeig, Alicante (Spain)

e-mail: sanchez@dtic.ua.es

Phone number: +34 965 90 3681

Fax number: +34 965 90 9643

Detailed responde to reviewers of

"An Approach to the Application of Shift-and-add Algorithms on Engineering and Industrial Processes"

(MCM-D-11-01529)

The reference missing in page 8, sentence "so as to calculate the distance
shown in Eq. (??)" has been corrected.

The caption under Figure 1 was wrong. It has been modified so as to indicate
the correct meaning of the figure.

Jose-Luis Sanchez-Romero

November 23, 2011

Corresponding author:

Jose-Luis Sanchez-Romero

Department of Computing Technology and Data Processing

Polytechnic University College, University of Alicante

Carretera de San Vicente, s/n

03690 San Vicente del Raspeig, Alicante (Spain)

e-mail: sanchez@dtic.ua.es

Phone number: +34 965 90 3681

Fax number: +34 965 90 9643

*Detailed Response to Reviewers

An Approach to the Application of Shift-and-add
Algorithms on Engineering and Industrial Processes

Jose-Luis Sanchez-Romeroa,∗, Antonio Jimeno-Morenillaa, Rafael
Molina-Carmonab, Jose Perez-Martineza

aDepartment of Computer Technology and Data Processing, University of Alicante, 03690
Alicante, Spain

bDepartment of Computing Sciences and Artificial Intelligence, University of Alicante,
03690 Alicante, Spain

Abstract

Different kinds of algorithms can be chosen so as to compute elementary func-
tions. Among all of them, it is worthwhile mentioning the shift-and-add al-
gorithms due to the fact that they have been specifically designed to be very
simple and to save computer resources. In fact, the almost only operations
usually involved on these methods are additions and shifts, which can be easily
and efficiently performed by a digital processor. Shift-and-add algorithms al-
low fairly good precision with low cost iterations. The most famous algorithm
belonging to this type is CORDIC. CORDIC has the capability of approximat-
ing a wide variety of functions with the only help of a slight change on their
iterations. In this paper, we will analyze the requirements of some engineering
and industrial problems in terms of type of operands and functions to approxi-
mate. Then, we will propose the application of shift-and-add algorithms based
on CORDIC to these problems. We will make a comparison between the differ-
ent methods applied in terms of the precision of the results and the number of
iterations required.

Keywords: Shift-and-add algorithms, Engineering, CAD/CAM

1. Introduction

CORDIC (COordinate Rotation DIgital Computer) is an iterative algorithm
to approximate mathematical functions [1]. It was originally developed for ap-
proximating rotation of a two-dimensional vector using only shift and add op-
erations. It is specially suited to hardware implementations due to the fact
that it does not require any multiplication. The CORDIC algorithm has been

∗Corresponding author
Email addresses: sanchez@dtic.ua.es (Jose-Luis Sanchez-Romero), jimeno@dtic.ua.es

(Antonio Jimeno-Morenilla), rmolina@dccia.ua.es (Rafael Molina-Carmona),
jperez@dtic.ua.es (Jose Perez-Martinez)

Preprint submitted to Elsevier November 23, 2011

*Manuscript
Click here to view linked References

http://ees.elsevier.com/mcm/viewRCResults.aspx?pdf=1&docID=5912&rev=1&fileID=66037&msid={10426464-89EF-4080-8241-227F054822E1}

widely applied in the field of digital signal processing, with solutions in signal
filtering, matrix processing algorithms, improvement of image processing algo-
rithms, equation systems solvers, and so on. It has also played a significant role
in telecommunications, specially in the design of processors for wireless modems.
CORDIC was originally designed for working with radix-2 operands. However,
in recent years, a renewed interest in decimal computing has arisen, since it is
essential for many applications and scopes [2]. For instance, the need for high
performance decimal systems is essential in CAD/CAM. When defining a radix-
10 magnitude for an object, the use of radix-2 usually implies loss of precision,
since the equivalent binary number is likely to have an infinite amount of frac-
tional digits. On the other hand, there are currently optic and magnetic sensors
which directly supply the output in BCD format, so that the user can easily
monitor the evolution of some magnitudes and detect any errors [3]. The same
happens with some types of actuators which use ISO-ASCII for codifying the
data inputted to the manufacturing process [4]. Moreover, most financial calcu-
lations are carried out using decimal arithmetic, since binary operations often
imply rounding up or down the results when working with fractional operands.
In [5], it is concluded that 55% of the numerical data contained in commer-
cial databases are represented in decimal formats. Furthermore, the European
Commission specifies a certain number of decimal digits for calculating currency
conversions [6].

Some facts reinforce the increasing importance given to decimal representa-
tion. The IEEE 854 standard uses a radix-independent generalization of IEEE
754 and supports decimal floating point operations [7],[8]. Recently, IBM de-
veloped the System z9 [9] and the latest System z10 [10] processors, each of
them including a decimal arithmetic unit. The current trend towards decimal
computation is also mirrored in the literature, mainly via the state-of-the-art in
decimal addition [11], [12].

In this paper, we will analyze the requirements of some engineering and
industrial problems in terms of type of operands and functions to approximate.
Then, we will propose the application of different CORDIC versions to these
problems. We will make a comparison between the different methods applied in
terms of the precision of the results and the number of iterations required.

The paper is structured as follows. In section 2, the original, binary CORDIC,
an old approach to CORDIC for decimal operands, and a more recent decimal
CORDIC, are reviewed. In section 3, the application of CORDIC to a concrete
engineering/industrial environment is proposed, including experimentation with
regard to both precision and latency. Finally, in section 4, conclusions are sum-
marized.

2. The CORDIC Method

2.1. Reviewing the binary CORDIC Method

CORDIC was originally developed for computing the rotation of a 2D vector
of circular coordinates expressed as binary numbers, almost exclusively using

2

addition and shift operations [1]. The method was extended to support hyper-
bolic and linear coordinates [16]. CORDIC works in two different modes. In
rotation mode, a vector (x0, y0) is rotated through an angle θ in order to obtain
a new vector (xn, yn). With regard to circular coordinates, the overall rotation
is divided into micro-rotation such that, in micro-rotation j, an angle αj =
tan−1(2−j) is added to or subtracted from the remaining angle θj . In this way,
this angle approaches zero. In vectoring mode, the vector (x0, y0) is progres-
sively rotated towards the x-axis by means of angles such as those previously
mentioned, so that the component y approaches 0. As a result, the sum of all
the angles applied gives the value of the angle of vector (x0, y0) towards the
x-axis, whereas the final component xn is the vector magnitude. Another com-
ponent, z, is used which represents the angle accumulation or decomposition.
The algorithm is based on the following generalized equations:

xj+1 = xj − tσjyj2−d(j) (1)

yj+1 = yj + σjxj2
−d(j) (2)

zj+1 = zj − wd(j) (3)

The parameter σj determines the direction of micro-rotation j. In rotation
mode, σj = 1 if zj is positive, and σj = -1 otherwise. In vectoring mode, σj =
1 if yj is negative, and σj = -1 otherwise. The values for t, d(j) and wd(j) are
shown in Table 1. Table 2 shows the results provided by the algorithm with
regard to the type of coordinates in rotation and in vectoring mode [16]. When
working with hyperbolic coordinates, carrying out each micro-rotation only once
is not sufficient [17]. Indeed, convergence can be achieved by repeating certain
iterations, as shown in Table 1.

Table 1: Parameters for different coordinate type

Type t d(j) wd(j)

Circular 1 j tan−1(2−j)

Hyperbolic -1 j – k, k is the largest tanh−1 (2−j)
integer such that

3k+1 + 2k - 1 ≤ 2j
Linear 0 j 2−j

In iteration j, a scaling factor is added to the new coordinates (xj+1, yj+1).
This factor is given by the following expression:

Kt,j =
√

1 + t 2−2j (4)

The overall scaling factor can be determined by means of the following product:

Kt =
∏
j

Kt,j (5)

3

Table 2: Results on rotation mode and vectoring mode for different coordinate type

Type Rotation (zn = 0) Vectoring (yn = 0)

Circular xn = K1(x cos z – y sinz) xn = K1(x20 + y20)1/2

yn = K1(y cos z + xsinz) zn = z0 + tan−1(y0/x0)
Hyperbolic xn = K−1(x1 cosh z1 + y1 sinhz1) xn = K−1(x21 − y21)1/2

yn = K−1(y1 cosh z1 + x1 sinhz1) zn = z1 + tanh−1(y1/x1)
Linear xn = x0 xn = x0

yn = y0 + x0z0 zn = z0 − y0/x0

Since the coordinates obtained after the last iteration are scaled, they have
to be compensated by multiplying them by K−1t . Several methods to avoid
performing the final product by K−1t and carry out the scaling compensation in
parallel with each of the iterations have been proposed [17]-[22].

2.2. Reviewing an old approach to decimal CORDIC Method

In [13] and [23] the use of CORDIC for BCD operands is proposed. The
modification of the binary method, focusing on the case of circular coordinates,
is expressed by the following iterative equations:

xj+1 = xj − σjyj10−j (6)

yj+1 = yj + σjxj10−j (7)

zj+1 = zj − tan−1(10−j) (8)

The drawback of this decimal CORDIC method lies on the relation between
any two consecutive elementary angles in the form tan−1(10−j). The relation
between any two consecutive angles in the form tan−1(2−j) is approximately
2, which facilitates convergence in binary CORDIC. However, in case of the
decimal algorithm, each elementary angle is about 10 times smaller than the
previous one, so convergence of the method cannot be directly guaranteed. This
is not specific of radix 10 representation; in binary CORDIC applied to hyper-
bolic coordinates, certain iterations (e.g, j = 4, 13, 40, . . .) must be repeated so
as to guarantee convergence. In case of decimal CORDIC, each iteration but
the initial one must be repeated 9 times in order to achieve convergence [13].
References [13] and [23] show that the results achieved by decimal CORDIC are
suitable in terms of precision. However, this method cannot compare to binary
CORDIC with regard to latency, since the binary method requires a smaller
number of iterations so as to obtain the same precision. Therefore, the ad-
vantages of using the algorithm with BCD operands would be reduced to omit
conversion between BCD and binary representation and, consequently, to avoid
loss of precision.

4

2.3. ND-CORDIC : A recent Decimal CORDIC

In [25], a new CORDIC which works with decimal operands is proposed.
Besides avoiding the tasks of conversion from decimal to radix-2 representation
and vice versa, which implies neither conversion error nor time consumption
implicit in these stages, the specific features of this recent decimal CORDIC
allow a significant reduction in the number of required iterations. From this
point on, the new decimal CORDIC will be referred to as ND-CORDIC, whereas
binary CORDIC and the older decimal CORDIC [13] will be referred to as B-
CORDIC and D-CORDIC, respectively.

2.3.1. Rotation Mode

From this point on, we will focus exclusively on circular coordinates. The
ND-CORDIC in rotation mode is based on the selection of successive angles αj

such that:
αj = tan−1(mr

j10−e
r
j) (9)

where mr
j10−e

r
j is the value resulting from truncating zj after the first digit on

the left different from 0. That is,

mr
j ∈ {0, 1, ..., 9}, erj ∈ N ∧mr

j10−e
r
j ≤ zj ≤ (mr

j + 1)10−e
r
j (10)

In this way, the z component for accumulating the remaining angle is calculated
by means of the following expression:

zj+1 = zj − tan−1(mr
j10−e

r
j) (11)

Since tan(αj) = mr
j10−e

r
j , the equations for computing x and y are expressed

as follows:

xj+1 = xj − σjmr
j10−e

r
j yj (12)

yj+1 = yj + σjm
r
j10−e

r
jxj (13)

The computation of the overall factor for compensating this scaling can be
obtained by means of the following expression:

K−1ND =

n∏
j=0

cos(αj) (14)

2.3.2. Vectoring Mode

The ND-CORDIC method in vectoring mode is based on the selection of
elementary angles αj such that

tan(αj) = mv
j10−e

v
j (15)

where evj is the magnitude difference between xj and yj , whereas mv
j is the

integer quotient between the first significant digit of yj and the first significant
digit of xj . That is,

αj = tan−1(mv
j10−e

v
j),mv

j ∈ {0, 1, ..., 9}, evj ∈ N ∧

∧mv
j10−e

v
j < [xj]/[yj] ≤ (1 +mv

j)10−e
v
j (16)

5

where [xj] and [yj] are, respectively, xj and yj truncated after the first significant
digit, and can be formally defined in the following way:

[xj] = pxj 10−q
x
j , pxj ∈ {0, 1, ..., 9}, qxj ∈ N ∧

∧pxj 10−q
x
j ≤ |xj | ≤ (1 + pxj)10−q

x
j (17)

[yj] = pyj10−q
y
j , pyj ∈ {0, 1, ..., 9}, q

y
j ∈ N ∧

∧pyj10−q
y
j ≤ |yj | ≤ (1 + pyj)10−q

y
j (18)

The recursive calculation of x, y and z is defined by means of the following
equations:

xj+1 = xj + |yj |mv
j10−e

v
j (19)

yj+1 = yj + σjxjm
v
j10−e

v
j (20)

zj+1 = zj − σj tan−1(mv
j10−e

v
j) (21)

In the first iteration, a default value of mv
j10−e

v
j = 1 is always assumed so

as to manage with those cases in which x0 is lower than y0. In the following
iterations, since the value of xj always increases, yj will always be smaller than
xj . Thus, the magnitude difference between xj and yj will always be positive
when j > 0. For the method to perform smaller oscillations, the value of mv

j is
decremented by 1 if both [xj] and [yj] are different from 1. If both digits are
equal, the default value mv

j = 1 is used. The variable σj has the same meaning
as expressed for B-CORDIC in equations (1) and (2).

2.3.3. Scaling compensation in ND-CORDIC

The scaling compensation by means of multiplication should be avoided due
to the high computational cost of this operation. In B-CORDIC, compensation
without multiplications is easy to perform because the scale factor is a constant
[17]. However, in ND-CORDIC this factor varies depending on the different
angles chosen throughout the different iterations.

A technique based on look-up tables (LUT) can be used which allows the
compensation to be performed on each iteration. Equations (12) and (13) in
rotation mode and equations (19) and (20) in vectoring mode can be modified
so as to include the compensation, giving as a result the following expressions,
where the superscript C indicates that the coordinates are scaling-compensated:

xCj+1 = (xj − σjyj tan(αj)) cos(αj) (22)

yCj+1 = (yj + σjxj tan(αj)) cos(αj) (23)

The above equations can be rewritten in the following way:

xCj+1 = xj cos(αj)− σjyj tan(αj) cos(αj) (24)

yCj+1 = yj cos(αj) + σjxj tan(αj) cos(αj) (25)

6

In equations (24) and (25), four different terms appear:

tx,0 = xj cos(αj) (26)

ty,0 = yj cos(αj) (27)

tx,1 = yj tan(αj) cos(αj) (28)

ty,1 = xj tan(αj) cos(αj) (29)

The compensation technique consists in storing the above four terms in four
independent blocks of LUT. The input lines for each block of LUT consist of

the one-digit mantissa m
{r,v}
j and the exponent e

{r,v}
j , and also the value of xj

or yj . If each term was stored on a single LUT, the size of each LUT would be
excessive. Instead, a set of smaller LUT can be used for each term. As explained
in [25], the overall storage size for a precision of pa fractional digits for the angle
and pc fractional digits for each coordinate is given by 24+4+dlog2(pa)e · 4pc · 4pc.

3. Application of CORDIC on Industrial Processes.

3.1. Specific characteristics of data in the industrial/engineering environment

A trending issue in CAD/CAM is the utilization of decimal operands, since in
the earlier stages of the product design engineers work with radix-10 magnitudes,
which are propagated throughout the whole manufacturing process. Therefore,
decimal formats should be considered so as to represent data and operate with
them. Addition on BCD operands is more complex than binary addition since
the carry resulting from the sum of two digits must be propagated to the sum of
the following ones [13]. Moreover, the sum of two BCD digits must be corrected
in case it is greater than 9.

BCD Excess-3 (BCD XS3) format allows decimal addition/subtraction to
be more efficiently performed, since only two 4-bit binary adders are required
for each pair of digits. The final result is directly obtained in BCD XS3. More
precise information on BCD XS3 adders can be found in [13]. Conversion from
BCD to BCD XS3 and vice versa can be easily performed by means of a few logic
gates. Therefore, the use of BCD XS3 is proposed since addition, subtraction,
and other operations such as detection of zero and nine’s complement are simpler
than for BCD.

3.2. Computation of specific operations in industrial processes

One of the most important tasks in the manufacturing process is machining.
It can be conceptually defined as the definition of an object to be manufactured
by means of predefined tools. The more usual operation in machining is the
removal of material by using a cutting tool. In the machining process, the main
task is the tool path computation: obtaining a trajectory of tool centres that
defines the required object to be machined with a given precision. Therefore,
for every object point to be machined, the position of the tool centre must be
determined. This task involves a high computational cost, requiring operations
such as rotations and distance calculation from every object point to the tool

7

centre. An example of a hard-to-compute distance is the one required when
using a toroidal tool for machinig [24]. A toroidal cutting tool is characterized
by a major radius R, a minor radius r, and the coordinates of the torus center
(Tx, Ty), as shown in Fig. 1. The distance from a point (px, py, pz) to a toroidal
tool centre is given by the following expression:

d(px, py, pz) = (Ty − py)−
√

(R+
√
r2 − (px − Tx)2)

2
− p2z (30)

In equation 30, two square roots appear:

sqrt1 =
√
r2 − (px − Tx)2 (31)

sqrt2 =
√

(R+ sqrt1)2 − p2z (32)

The argument of each one of these square roots is the difference of two
squares. The computation of such operations has a high computational cost.
However, it can be efficiently performed by the CORDIC algorithm. In fact, one
of the results provided by this method working in vectoring mode with hyper-
bolic coordinates is precisely the square root of the diffence of two squares [17].
Therefore, an algorithm including two instances of CORDIC can be developed
so as to calculate the distance shown in Eq. (30):

Algorithm distance (px, py, pz, Tx, Ty, R, r: real): real;

Variables srqt_1, sqrt_2, y1, x2, d: real;

y1 = px - Tx;

sqrt_1 = CORDIC_Hyp_Vec(x = r, y = y1);

x2 = R + sqrt_1;

sqrt_2 = CORDIC_Hyp_Vec(x = x2, y = pz);

d = Ty - py - sqrt_2;

return d;

End Algorithm

For B-CORDIC, the natural order of the iterations is altered as shown in
Table 1, due to the fact that some of them must be performed twice so as to
guarantee convergence. Moreover, parameters t, d(j), and wd(j) also change,
as expressed in Table 1. For D-CORDIC, repeating some iterations is also
required so as to achieve convergence. In this case, the repetition are much
more numerous than those for B-CORDIC. The experiments shown in [23] used
10 iterations for the initial stage, that is, for j = 1, and 9 iterations for the
following ones. Parameters t and wd(j) are modified the same way as for B-
CORDIC. For ND-CORDIC, parameters t and wd(j) adopt the same definition
as for B-CORDIC and D-CORDIC. However, in case of ND-CORDIC it is not
necessary to repeat any stage, due to the fact that the elementary angle chosen
in each stage of the vectoring mode is not fixed, but it is specifically selected
according to the value of xj and yj .

Data for experimentation must fulfill a set of constraints according to Eq.
(30). These constraints are the following ones:

r ≥ px − Tx (33)

8

axis	y axy

x y

axis x

(x y z)

xis y

x yy

axis	z

Figure 1: Structure of a toroidal tool and its main parameters.

R +
√
r2 − (px − Tx)2 ≥ pz (34)

R > r (35)

Ty > py (36)

For B-CORDIC and D-CORDIC, there is a new constraint which is de-
termined by the convergence range of both methods. In fact, the maximum
hyperbolic angle supported by B-CORDIC is θb= 1.11817 rad, whereas for D-
CORDIC this angle is θd= 1.102656 rad. Therefore, data were explicitly selected
so as to involve a hyperbolic arctangent lower than 1.1. This constraint does
not apply to ND-CORDIC, whose convergence range is wider than the one of
the other two methods.

Different tests were carried out so as to make a complete comparison with
regard to latency and precision between B-CORDIC, D-CORDIC, and ND-
CORDIC. The architecture for the ND-CORDIC algorithm, as proposed in
[25], was implemented on the hardware description language VHDL using the
Xilinx ISE Design Suite 10.1 tool. The Virtex4 XC4VLX60 FPGA device was
randomly chosen for simulation and synthesis. The architectures for D-CORDIC
proposed in [13] and [23] and for B-CORDIC were also implemented. In all cases,
a complete stage of the method was implemented.

Original data were selected in interval [0,1) and represented in BCD with 6
fractional digits. A homogeneous length of 28 bits was used for every number
format, so 24 bits were used for the fractional digits of BCD and BCD XS3
numbers. The initial conversion from BCD to BCD XS3 and the final conversion
the other way were also included for D-CORDIC and ND-CORDIC. For B-
CORDIC, an initial conversion from BCD to binary and a final conversion the
other way were also implemented. The results obtained with every algorithm
were compared with those obtained by means of the direct application of Eq.
(30), calculated in Matlab c©. The mean relative error according to the execution
time is depicted in Fig. 2. It must be taken into account that, for ND-CORDIC,
experiments were performed with only six iterations of the first instance of

9

1,00E+03

1,00E+02

1,00E+01

1,00E+00

1,00E-01

%
)

1,00E-02

rr
or

 (%

1,00E-03

Er

1,00E-04

1,00E-05 B-CORDIC

ND CORDIC

1,00E-06

ND-CORDIC

D-CORDIC

1,00E-07
0 200 400 600 800 1000 1200 14000 200 400 600 800 1000 1200 1400

Time (ns)

Figure 2: Mean relative error according to delay for each CORDIC architecture when calcu-
lating the toroidal tool distance; logarithmic scale.

CORDIC (calculation of sqrt1). This limitation in the number of iterations is
due to the fact that there is not a significant loss of precision and, moreover,
the overall latency is reduced.

It can be observed that the error for ND-CORDIC is lower than that for
D-CORDIC at any time interval. On the other hand, accuracy achieved by
ND-CORDIC is similar to the one obtained with B-CORDIC and, indeed, ND-
CORDIC provides a precision of 10−6 with a latency similar to the one of B-
CORDIC. Besides, when a high number of iterations is performed, ND-CORDIC
achieves an error lower that this limit, while B-CORDIC is not able to.

4. Conclusion

A growing trend towards developing new systems integrating decimal arith-
metic, which is required in many engineering and industrial tasks, has arisen.
In this paper, a proposal for the application of CORDIC on engineering and
industrial processes has been shown. A manufacturing task with a high com-
putational cost has been analyzed and, as a result, the application of CORDIC
has been proposed for improving performance. Moreover, specific features of

10

operands involved in these tasks suggest the utilization of CORDIC versions
specially developed for working with decimal operands. Experimentation has
been performed for comparing the original, binary CORDIC (B-CORDIC) with
two versions of CORDIC for decimal operands (D-CORDIC and ND-CORDIC).
The results confirm that ND-CORDIC requires fewer iterations than both B-
CORDIC and D-CORDIC so as to obtain a required precision. In addition,
ND-CORDIC offers similar global performance than B-CORDIC and, in some
cases, accuracy is even better than the one obtained with B-CORDIC. As a
future work, the application of other shift-and-add methods on such processes,
such as BKM, should also be tested and results compared with CORDIC. More-
over, more hard-to-compute operations typical of industry and engineering must
be explored so as to try to speed them up with the application of shift-and-add
methods.

Acknowledgments

This research was supported by the Conselleria de Educacion of the Valencia
Region Government under grant number GV/2011/043.

References

[1] J. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans.
Electron. Comput., EC-8(3) (1959) 330–334.

[2] M.F. Cowlishaw, Decimal Floating Point: Algorism for Computers, in:
Proc. 16th IEEE Symp. Computer Arithmetic (2003) 104–111.

[3] S. Kim, J. Kwon, S. Kim and B. Lee, Multiplexed Strain Sensor using Fiber
Gratin-Tuned Fiber Laser with a Semiconductor Optical Amplifier, IEEE
Photonics Technology Letters, 13(4) (2001) 350-351.

[4] S. McMains, J. Smith and C. Séquin, The evolution of a layered manufac-
turing interchange format, in: Proc. DETC02, ASME Design Engineering
Technical Conferences (2002) 945–953.

[5] A. Tsang and M. Olschanowsky, A Study of Database 2 Customer Queries,
IBM Santa Teresa Laboratory, San Jose, CA, Technical Report TR-03-413,
1991.

[6] European Commission Directorate General II, The Introduction of the Euro
and the Rounding of Currency Amounts, Note II/28/99-EN Euro Papers
22, 32pp, Belgium, 1999.

[7] The Institute of Electrical and Electronics Engineers, Inc., IEEE 854-1987
– IEEE Standard for Radix-Independent Floating-Point Arithmetic, New
York, 1987.

11

[8] The Institute of Electrical and Electronics Engineers, Inc., 754-2008 –
IEEE Standard for Floating-Point Arithmetic, New York, 2008.

[9] A.Y. Duale, M.H. Decker, H.-G. Zipperer, M. Aharoni and T.J. Bohizic,
(2007) Decimal floating-point in z9: An implementation and testing per-
spective, IBM J. Res. & Dev., 51(1/2) (2007) 217–227.

[10] E.M. Schwarz, J. Kapernick and M. Cowlishaw, Decimal floating-point
support on the IBM System z10 processor, IBM J. Res. & Dev., 53(1)
(2009) 1–4.

[11] H. Thapliyal, S. Kotiyal and M. B. Srinivas. Novel BCD Adders and their
Reversible Logic Implementation for IEEE 754r Format. Proc. of 19th In-
ternational Conference on VLSI Design (2006) 387–392.

[12] S. Gorgin and G. Jaberipur, Fully Redundant Decimal Arithmetic, Proc.
2009 19th IEEE International Symposium on Computer Arithmetic (2009)
145–152.

[13] H. Schmid, Decimal Computation (John Wiley & Sons, New York, 1974).

[14] J.C. Kropa, Calculator Algorithms, Mathematics Magazine, 51(2) (1978)
106–109.

[15] A. Vazquez and E. Antelo. Constant Factor CORDIC for Decimal BCD
Input Operands. 8th Conference on Real Numbers and Computers, Santiago
de Compostela, Spain (2008) 83–91.

[16] J.S. Walther, A unified algorithm for elementary functions, Proc. AFIPS
Spring Joint Computer Conf. (1971) 379–385.

[17] J.-M. Muller, Elementary Functions. Algorithms and Implementation
(Birkhäuser, 2006).

[18] A. Despain, Fourier Transform Computers Using CORDIC Iterations,
IEEE Trans. Comput., C-23(10) (1974) 993–1001.

[19] E.F. Deprettere, P. Dewilde and R. Udo, Pipelined CORDIC architec-
ture for fast VLSI filtering and array processing, Proc. ICASSP’84 (1984)
41.A.6.1–41.A.6.4.

[20] G. Haviland and A. Tuszynski, A CORDIC Arithmetic Processor Chip,
IEEE Trans. Comput., C-29(2) (1990) 68–79.

[21] D. Timmermann, H. Hahn, B.J. Hosticka and B. Rix, A new addition
scheme and fast scaling factor compensation methods for CORDIC algo-
rithms, INTEGRATION, the VLSI Journal, 11 (1991) 85–100.

[22] J. Villalba, J.A. Hidalgo, E.L. Zapata, E Antelo and J.D. Bruguera,
CORDIC Architectures with Parallel Compensation of the Scale Factor,
Proc. IEEE Int. Conf. Application-Specific Array Processors (1995) 258–
269.

12

[23] H. Schmid and A. Bogacki, Use decimal CORDIC for generation of many
transcendental functions, EDN, Feb. (1973) 64–73.

[24] A. Jimeno-Morenilla, Modelado topologico del proceso de fabricacion (Topo-
logical modelling of the manufacturing process), Ph.D. Thesis, University
of Alicante, Alicante, Spain, 2003.

[25] J.L. Sanchez, H. Mora, J. Mora, and A. Jimeno, Function approximation
on decimal operands, Digital Signal Processing, 11(2) (2011), 354–366.

13

