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Abstract:  

Achieving electricity sector transitions consistent with stringent climate change mitigation 

under the Paris Agreement requires a careful understanding both of the coordinating role of national 

governments and of its interactions with the heterogeneous market players who will make the low-

carbon investments in the electricity sector. However, traditional energy models and scenarios 

generally assume exogenous policy targets and fail to capture this co-evolution between policy-

makers and heterogeneous private and public investors. This paper uses BRAIN-Energy, a novel agent-

based model of investment in electricity generation to simulate and contrast government and investor 

dynamics in the transition pathways of the UK, German and Italian electricity sectors. Key findings 

show that a successful transition – which achieves the energy policy “trilemma” (low carbon, secure, 

affordable) – requires the co-evolution of the policy dimension (strong and frequently updatable CO2 

price, renewable subsidies and capacity market) with the strategies of the heterogeneous market 

players. If this dynamic balance is maintained then incentives are politically feasible and suppliers 

learn and evolve (in what we term a virtuous cycle). If either the incentives are too weak to drive 

learning or too expensive so the policy regime collapses, then the transition fails on one of its key 

dimensions (in what we term a vicious cycle). Getting this balance right is harder in risky markets that 

also have players with more pronounced bounded rationality and path dependence in how they make 

investments.  
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1. Introduction 

 National commitments in the Paris Climate Agreement enhance prior efforts for countries to 

decarbonise their energy systems to mitigate global climate change. The UK pledged in the 2008 

Climate Change Act to reduce greenhouse gas emissions (GHGs) by 80% by 2050 compared to the 

1990’s level. It also legislated five-yearly carbon budgets, to be set by the Committee for Climate 

Change (CCC), to reach this target in a cost-effective way [1,2]. These decarbonisation targets have led 
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to a substantial development of low-carbon energy sources in the UK, with the electricity sector 

leading this transition. Policy instruments continue to be required to incentivise further investments 

in renewables [3], and to regulate the integration of the growing share of renewables in the energy 

sector. Regulatory change is key to initially stimulate investments into renewable technologies [4], but 

the subsequent growth of such technologies is strongly aligned with the strategic response of utility 

companies. If utilities manage to align their capabilities with the regulatory framework virtuous co-

evolutionary cycles between firm strategies and policies are initiated which help the diffusion of 

renewable energy technologies. Hence, to be effective and successful in managing the energy policy 

trilemma (low-carbon, secure and affordable energy supply), governments should acknowledge the 

linkages which arise between the policy instruments, the market players’ investment decisions and 

their outcomes [5]. Approaches which rely on complex system thinking, such as agent-based models 

(ABMs), are able to capture these interactions which take place between the institutional dimension 

and heterogeneous actors [6]. Hence ABMs can study the co-evolution between policy instruments 

and investor strategies and how this can lead to a sustainable energy transition [7]. Failing to account 

for such dynamics could badly miscalculate investment flows in low-carbon technologies, leading to 

unintended consequences such as the lock-in of existing high-carbon technologies [8]. This is in 

contrast with traditional energy (optimisation) models, which tend to simplify the representation of 

institutional and industry/societal actors in the energy sector, not capturing the interplay between 

them [9]. 

This paper uses the agent-based model (ABM) BRAIN-Energy to study how the endogenous 

policy choices of the institutional agents (the government and the regulator agent) interplay and co-

evolve with the investment choices of the market players. BRAIN-Energy focuses on the electricity 

sector as this sector is at the forefront of the energy transition’s policy architecture and new 

technology investment. The goal is to understand under which conditions do the interplay of policies 

and market players’ choices create a virtuous cycle between market players’ investments and the 

regulatory framework to spur decarbonisation efforts, and when this creates a vicious cycle with 

barriers to a sustainable transition. Understanding how positive feedback cycles between low-carbon 

technologies and policies are created, and which policy designs can be effective at targeting key 

groups of “low-carbon” actors is very important to successfully achieve the long-term decarbonisation 

targets, and more research is needed in that direction [10]. Also of critical interest are the costs and 

security of supply of the energy transition. By focusing on the electricity sectors of the UK, Germany 

and Italy, this paper aims to understand what lessons can be learned from countries with different 

market structures, types of actors and governance set-up [11]. The country case studies are reviewed 

in section 3.1. 

The rest of the article is structured as follows: chapter 2 reviews different approaches to 

studying actors in the energy sector transition, their limitations and advantages with regards to 

studying the interplay of institutional actors and market players, and chapter 3 highlights BRAIN-

Energy’s novelty and strengths and its key features and enhancement for this article. Chapter 4 

introduces the scenarios, before discussing results in chapter 5, and leading to the conclusions and 

policy recommendations in chapter 6. 

 

 

 



 

 
3 

 

2. Modelling of key actors in energy transitions 

2.1 Actors and institutional agents in energy models 

Quantitative energy models are key tools to study the energy transition, and are crucial for 

policy-making and industrial decision-making. At the global level, integrated assessment models 

(IAMs) have been extensively used to assess the feasibility of reaching climate change targets, and 

have been the underpinning of the Intergovernmental Panel on Climate Change [12]. Other types of 

energy models, such as partial equilibrium optimisation models [13,14], are used to asses national 

energy and climate change policies and to produce future decarbonisation scenarios of the energy 

sector at a national level. These models minimise total-energy system costs based on an end-point 

policy constraint or carbon reduction target. While such models are highly mathematically and 

technologically detailed, and focus on the technological configuration which future energy systems 

should have, they assume aggregated, perfectly rational and utility-maximising decision makers. They 

lack attention to the role, actions and motivations of the actors involved in shaping the future of the 

energy sector, to the role of governance arrangements and institutions, and to the co-evolutionary 

processes between the technological, institutional and behavioural dimensions [15].  

The majority of existing energy system models assume rational and homogeneous decisions 

makers [16], which doesn’t represent reality [17], and over-simplifies the path-dependent interactions 

between market and institutional agents. The heterogeneity of the actors and their behaviours 

remains therefore largely overlooked in energy models. Moreover, equilibrium and optimisation 

models are not suited to incorporate the growing complexity and uncertainty between different 

dimensions in the energy transition [6]. 

The complexity of the energy sector’s low-carbon transition is given by the interplay, the co-

evolution and the potential self-reinforcement of the technological dimension, the social dimension, 

and the institutional dimension. Therefore this links technologies and infrastructure (which define the 

way energy is produced, transported and consumed), with different agents and stakeholders involved 

in the energy transition, and with policies and regulatory instruments. Co-evolution is an important 

concept in evolutionary economics [18,19], and takes place whenever one dimension’s evolution 

influences the direction and scale of other dimensions. Co-evolutionary dynamics between the 

technological and the institutional dimensions have been used to understand the process of lock-in to 

high carbon technologies, which hinders the uptake of new and alternative technologies [8,20,21]. 

However, [9] find that only a few energy models account for co-evolutionary dynamics between 

policies, behaviour of actors and technologies [22], claiming that such dynamics are key and that 

energy models should not only look at technologies to be useful for effective climate-change 

mitigation efforts [23]. 

[16] and [24] argue that when studying sustainability transitions new modelling approaches are 

needed, which analyse policy interventions in the energy sector and their impacts on agents’ 

investments, business models and social practices. This should be done by taking into account 

feedback loops between dimensions (or system elements), reinforcing mechanisms resulting from 

interactions between agents and the institutional dimensions, and co-evolution, which may lead to 

multiple solutions and transition pathways [24]. These new modelling approaches should also 

introduce agents which explicitly take decisions for sound climate policy-making [25]. 
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2.2 Agent-based modelling of energy transitions 

Agent-based modelling is a computational social science [26,27]. Agent-based models (ABMs) 

are bottom-up simulation models which involve multiple and heterogeneous agents, which have 

decisions rules, and which can interact in different temporal and spatial scales [28-30]. In ABMs the 

decisions and interactions of agents give rise to emergent macro phenomena. 

Given their ability to account for heterogeneity, non-linearity, emergence and co-evolution, 

ABMs are very suitable to model the complexity of electricity markets and their low-carbon transition 

[31]. For the above mentioned reasons, [31] find that the use of ABMs for energy policy and for 

studying the low-carbon transition in the energy sector has rapidly grown over the past decade. 

Moreover, ABMs are considered to be one of the most effective modelling approaches to study the 

effects of changing policy instruments on market players investment decisions [5], and to determine 

the side effects of energy and climate policies in an energy sector characterised by a multitude of 

diverse actors, with bounded-rationality (that in decision-making, rationality is finite with good-

enough choices being acceptable)  and heterogeneous strategies [31,32].  

Despite these distinctive advantages, the majority of the most prominent ABMs studying the 

low-carbon transition of the electricity sector, and the impacts of energy and climate change policies 

on investment decisions in the power sector, still treat policy changes as exogenous. Similarly to 

optimisation approaches, co-evolutionary dynamics between the market players and institutional 

agents remain often overlooked.  

[32] use an ABM called EmLab to evaluate the impacts of different energy and climate policies 

on investments in the power sector, which [33] extend to explore the need for flexibility options and 

electricity storage in an electricity system with a capacity mechanism, while [34-36] use the same 

model to assess the effects of capacity mechanisms and strategic reserve. The EmLab model is also 

used to quantify the effects of renewable energy support schemes on social welfare [37]. In all these 

studies policy changes are treated as exogenous and are pre-determined as scenarios at the beginning 

of the simulations. Co-evolutionary dynamics between the policy dimension and the investment 

choices of the market players are not captured. 

 The AMIRIS ABM model [5] aims to explore the impacts of different policy instruments on the 

performance of renewable energy operators. However in this model the regulatory framework agent, 

which is responsible for all energy policy to integrate renewables into the electricity market, is 

classified as an agent “without scope for decision making”. 

Similarly, in the ABM developed by [38,39], which aims to study the investment behaviours of 

heterogeneous investors with heterogeneous expectations of the future, policy instruments are 

exogenous and different CO2 price scenarios are defined at the beginning of the simulations. 

 

 

3. Methodology: BRAIN-Energy 

3.1 Novelty, key features, and case study application 

BRAIN-Energy employs a different approach from the ABM studies reviewed in section 2.2. 

Policy changes in BRAIN-Energy are endogenous, and institutional agents (the government and the 

regulator) adjust policies (the level of the CO2 price, or capacity auctions) depending on the emergent 

techno-economic properties which arise at each time-step from the investment choices of the market 

players and from their interactions. Hence, the novelty of BRAIN-Energy lies in the fact that the 
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investments of the market players co-evolve with the institutional dimension and governance 

structure, as well as in having a strong focus on depicting actors with heterogeneous characteristics 

and bounded-rationality. 

BRAIN-Energy is an ABM of electricity operations and investments [40,41]2. The model’s focus 

is on the electricity supply sector – both for model tractability, and as this sector is at the forefront of 

the energy transition’s policy architecture and new technology investment. The model is characterised 

by a set of different types of market players with bounded-rationality and heterogeneous 

characteristics (explained in section 3.2.1) and institutional agents, such as the government and the 

regulator agents (section 3.2.2). The goal of BRAIN-Energy is to study the evolution of the electricity 

sector until 2050 as a result of the interacting investment decisions of the heterogeneous market 

players, and of the co-evolution of the policy choices of the institutional agents with the market 

players’ investments. BRAIN-Energy, hence, aims to explore future decarbonisation scenarios of the 

electricity sector under a realistic representation of both actors and governance frameworks. 

BRAIN-Energy is calibrated to the UK electricity sector. Selected scenarios have also been run 

for the German and Italian electricity sectors (section 4.1). Germany and Italy have been chosen as 

case studies to compare to the UK (Figure 1), because – similarly to the UK – they have ambitious 

decarbonisation targets, but their national electricity systems have key differences:  

1) they include different types of market players and investors in the national electricity sector 

[11,42,43]; 

2) they have a different institutional structure;  

3) they have a different and more decentralised market structure [11].  

Figure 1 is an illustrative diagram that shows this diversity, characterising the three countries 

by the types of market players and the level of centralisation. The increasing size of the circles in Figure 

1 shows the number and heterogeneity of the market players. Therefore in the UK the ownership of 

renewable assets is mainly is the hands of incumbent utilities [44] and the resulting governance 

structure is more market oriented. In contrast, in Germany the ownership of renewable generation 

assets is extremely fragmented and diverse, and non-corporate and non-state models dominate [11] 

leading to a market where a “civil” society logic prevails. Italy illustrates a middle-ground in the 

centralisation of the electricity market, but with a greater investment role by the national government. 

                                                           
2 Conference paper to be found at: https://www.iaee.org/proceedings/article/15046 (Barazza, 2018) and online model 
documentation to be found at: https://www.ucl.ac.uk/energy-models/models/brain-energy (Barazza, 2019) 

https://www.iaee.org/proceedings/article/15046
https://www.ucl.ac.uk/energy-models/models/brain-energy
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Figure 1 – Illustrative diagram of country case studies in BRAIN-Energy 

 

 

2012 is the calibration year (for data availability, and to be able to compare BRAIN-Energy’s 

results with a few years of historical data). The main exogeneous variables include: electricity demand, 

fossil fuel prices, operational and maintenance costs of power plants, capital costs of generation 

technologies, and the “no-increase” CO2 price (the CO2 price used in BRAIN-Energy is explained in 

detail in section 3.2.2). Table 1 summarises the sources used for both historical and projected future 

data for these variables. Further details on the data used for calibrating BRAIN-Energy in its three 

country versions can be found on the online model documentation3 [41] and in the Appendix. 

 

 

Exogenous variables Initialisation Source 

Electricity demand  UK: 309 TWh 

GER: 593 TWh 

IT: 328 TWh 

UK:    Historical- National Grid half-hourly data 

           Future- [45], “Two Degree” scenario 

GER:  Historical- Open Power System Data Platform4, AG 

Energiebilanz5 

           Future- [46] 

IT:      Historical- GME6 

          Future- [47,48] 

 

Fuel costs Gas:  

UK: 20.3 GBP/MWh 

GER and IT: 29 EUR/MWh 

Coal (GER): 37 EUR/MWh  

UK:                Historical- [49] 

                  Future- [49], “Reference” scenario 

GER and IT: Historical- BmWi Energiedaten database7 

                      Future- [46] 

 

Capital costs of technologies 

(EUR/kW) 

 

Gas: 400 

Coal: 1,800 

Nuclear: 6,000 

[50] 

 

 

                                                           
3 https://www.ucl.ac.uk/energy-models/models/brain-energy 
4 https://data.open-power-system-data.org 
5 https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2016.htmlx 
6 http://www.mercatoelettrico.org/it/Download/DatiStorici.aspx 
7https://www.bmwi.de/SiteGlobals/BMWI/Forms/Listen/Energiedaten/energiedaten_Formular.html?&addSearchPathId=3
04670 

https://www.ucl.ac.uk/energy-models/models/brain-energy
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Onshore wind: 1,300 

Offshore wind: 3,000 

PV: 1,560 

Biomass: 2,500 

 

 

 

 

 

Operational & Maintenance 

(O&M) costs 

 UK: [51] 

GER and IT: [50] 

 

CO2 price (“no-increase” 

trajectory) 

UK: 6.39 GBP/t 

GER and IT: 7.36 EUR/t 

UK:               Historical – [49] 

                      Future – [49], “Reference” scenario 

GER and IT: Historical-  EEX Exchange 

                      Future- [46] 

Table 1 – Exogenous variables in BRAIN-Energy 

 

BRAIN-Energy is built in the open-source software environment Netlogo [52], and has a yearly 

resolution to best be able to study investment decisions and their co-evolution with the policy 

environment. 

Every year the market players (section 3.2.1) take operational decisions about producing and 

dispatching electricity from their power plants (section 3.3), and subsequently their revenues, 

financial positions and market shares are updated. Subsequently, the government agent checks the 

progress in meeting the interim decarbonisation targets and eventually adjusts the CO2 price if 

progress lags behind the set targets (section 3.2.2). The regulator agent can enforce capacity auctions 

if they believe security of supply to be at risk (section 3.2.2). The fact that the government and the 

regulator agent are active decision-makers is an enhancement in the version of BRAIN-Energy used in 

this paper, and their activity and the feedback loops created by their actions are depicted in green in 

Figure 2. As a last step, market players decide about decommissioning unprofitable plants and take 

investment decisions about new power plants (section 3.4). Figure 2 shows BRAIN-Energy’s annual 

flow, where the black arrows are the model’s operational flow. 

 

 
Figure 2 - BRAIN-Energy's operational flow and feedback mechanisms 
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3.2 Agents and their characteristics 

3.2.1 Market players 

In BRAIN-Energy there are 6 different types of market players – the colourful pawns in Figure 3, 

and as detailed in Table 2 – all of which are active decision makers. These are: incumbent utilities, 

municipal utilities, independent power producers (IPPs), new-entrants, institutional investors and 

households. The online documentation8 [41] contains an explanation of the different types of market 

players in BRAIN-Energy. 

Based on a review of the existing literature, the UK model has 3 types of market players: 

incumbent utilities, IPPs and new-entrants. The German and Italian scenarios exhibit a greater variety 

of market players: incumbent utilities, IPPs, new-entrants, municipal utilities (only in the German 

model), institutional investors, and households [11,42,47,53,54,]. 

Households are aggregated market players in BRAIN-Energy. One household aggregates 1,000 

households9. 

Table 2 summarises the main characteristics and behaviours of each type of market player, and 

the number of market players of each type which have been modelled in the UK, German and Italian 

versions of BRAIN-Energy at the calibration year. The bounded-rationality of the market players in 

BRAIN-Energy is reflected in the fact that their investment decisions are affected by their limited 

foresight of the future, and are based on their own heterogeneous expectations of electricity demand, 

fuel and technology costs. Furthermore, bounded-rationality is also reflected in the fact that emerging 

knowledge about the other players strategies affects the investments of the market players (see 

imitation in section 3.4), and also learning from own previous successful (or unsuccessful) investment 

(see path-dependency in section 3.4). 

  

                                                           
8 https://www.ucl.ac.uk/energy-models/models/brain-energy 
9 the average household investment in PV in Germany and Italy is 10 kW (CPI, 2012; GSE, 2016) and the minimum 
investment size in PV in BRAIN-Energy is 10 MW 
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Type Number 

at 2012 

Aim Technology 

preference 

Cost of capital Foresight Number of 

years before 

switching off 

unprofitable 

assets  

Incumbent 

utility 

 UK 

 Germany  

 Italy 

 

 

4 

3 

2 

Production of 

electricity to meet 

demand and provision 

of stable dividends to 

shareholders [54-56]. 

Vertically integrated. 

Can invest in all 

technologies 

5%-7% [54,57,58] 15-20 years 7 

Independent 

power 

producer 

 UK 

 Germany 

 Italy 

 

 

 

2 

2 

2 

Profit maximisation 

and increased market 

share [54,59]. Not 

vertically integrated. 

Gas and nuclear. 

Renewables: 

onshore- and 

offshore wind [54] 

 

8%-10% in 

Germany and UK,  

8-12% in Italy [60] 

10-15 years 

[59] 

5 

New-entrant 

 UK 

 Germany 

 Italy 

 

None 

None 

None 

Their main expertise is 

not electricity 

generation, but they 

want to maximise 

profits attracted by 

subsidies 

Only renewable 

generation 

technologies 

12% 10 years 5 

Municipal 

utility 

 Germany 

 

 

2 

Investment choices 

are driven by financial 

return expectations, 

but also by wider 

environmental 

considerations [11,54] 

Gas and renewable 

generation 

technologies (PV, 

onshore wind and 

biomass). Larger 

municipalities also 

invest in offshore 

wind [54] 

4% [11], as they 

can borrow from 

local banks 

 

25 years, as 

supply of 

energy to 

their region is 

their main 

business 

7-10 

Institutional 

investors 

 Germany 

 Italy 

 

 

2 

2 

Seek stable, 

predictable and long-

term returns and 

cash-flows to match 

their long term 

liabilities [54,59,61]  

Onshore wind and 

PV. More 

experienced 

institutional 

investors can also 

invest in offshore 

wind. Preference 

for large projects 

[54,55,59,62] 

5%-10% in 

Germany and UK  

5-12% in Italy, 

[59,60] 

20-25 years, 

as this 

matches their 

long-term 

liabilities 

[54,55,63] 

5-10 

Households 

 Germany 

 Italy 

 

8 

6 

Invest for self-

production and 

eventually sell surplus 

[53,64] 

Small scale PV 

[42,43,54,64] 

3%-6% [58] 5 to 15 years 

(pay-back 

period) 

 

Table 2 - Market players in BRAIN-Energy and their characteristics/behaviours 
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3.2.2 Institutional agents 

Institutional agents in BRAIN-Energy are the government and the regulator agent. Representing 

governments as active players, who like the other players in BRAIN-Energy have bounded-rationality, 

can improve how energy models can be useful to understand barriers and opportunities of 

sustainability transitions [65]. Governments have bounded-rationality because they are not always 

able to produce policy outcomes which are best from a social welfare point of view [65], and because 

policy makers are not more rational than private companies when making decisions [66]. Hence, 

BRAIN-Energy represents institutional agents as active players with the aim of understanding how 

barriers to effective climate change mitigation efforts, such as inertia and lock-in can arise in 

interaction with other market players and how these can best be addressed to give rise to a 

sustainable low-carbon transition. 

In BRAIN-Energy, the government agent is motivated to achieve the 2050 climate change 

mitigation targets set by law (in each of the three country case studies). The agency power of the 

government agent is defined by the fact that it can intervene in the electricity market by enforcing 

subsidies to renewable energy investments and by applying a price on CO2 emissions to reach the 2050 

decarbonisation objectives.  

In practice, the interaction between the government and the market players in BRAIN-Energy 

works as follows: each year the government agent checks the carbon intensity of electricity generation 

(in the UK model), or the share of electricity produced through renewables (in the German and Italian 

models), compares the progress against the interim carbon budgets (Table 3), and decides whether to 

increase or not the CO2 price. Hence, government intervention in BRAIN-Energy is triggered by the 

outcomes of the investment decisions (and decommissioning decisions) of the market players, which 

determine the share of electricity produced through renewable technologies and the carbon intensity 

of electricity generation. This is how co-evolution between the policy-making dimension and the 

investments of the market players unfolds in BRAIN-Energy (Figure 3). 

 

 
Figure 3 – Co-evolution of electricity market structure, policies and investments in BRAIN-Energy 
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The level by which the government agent can increase the CO2 price over the “no-increase” 

price when progress doesn’t meet the interim carbon budgets is scenario-dependent and can be as 

high as 200%. This is called “strong” CO2 price trajectory in BRAIN-Energy, which brings the CO2 price 

to GBP 302/t at 2050 in the UK model, in line with the CO2 marginal abatement cost used in 

optimisation models in the UK [67,68], simulation models [69], and the UK Government’s high CO2 

price trajectory [70]. In the German and Italian models, the CO2 price would go up to EUR 228/t at 

2050 under the “strong” trajectory, a value consistent with the one used by optimisation models 

focusing on the European energy sector [71,72]. 

The government increase in the CO2 price is in percentage terms, as this allows an exponential 

growth profile if required for progress towards the 2050 long-term objective. If in interim periods the 

electricity sector achieves the desired level of carbon intensity of electricity generation, or the desired 

share of electricity produced through renewables is reached, the government decreases the CO2 price 

again to the “no-increase” trajectory. The calibration of the “no-increase” trajectory in each of the 

three country case studies can be found in Table 1. 

Carbon budgets in the three countries are summarised in Table 3. In the UK model carbon 

budgets (frequency and level) are set according to the five-yearly carbon budgets set out by the 

Committee on Climate Change [1]. In the German model carbon budgets are based on the share of 

electricity produced from renewables as set out in the renewable electricity targets in the 2017 

Renewable Energy Sources Act (EEG 2017), and are set for 2025, 2035 and 2050. Also, a 2020 carbon 

budget has been added in the German version of BRAIN-Energy, in accordance with EU targets, to 

have at least 20% of electricity produced through renewables by 2020. Italian law only sets out a target 

of 55% share of electricity production from renewables at 2030 in the Strategia Energetica Nazionale 

2017 [73] and the 2050 long-term goal of producing at least 80% of total electricity through 

renewables at 2050. However, to make the Italian version of BRAIN-Energy comparable with the UK 

and German ones, carbon targets in BRAIN-Energy have been set also at 2020 (based on EU’s 20-20-

20 targets) and at 2040, calibrated based on the most prominent Italian modelling scenarios as 

summarised in RSE Colloquia [74]. 

 

 UK Germany Italy 

Year Carbon intensity of 

power generation 

Share of electricity produced through 

renewables 

2020 250 gCO2/kWh 20% 20% 

2025 200 gCO2/kWh 45%  

2030 100 gCO2/kWh  55% 

2035 50 gCO2/kWh 60%  

2040 25 gCO2/kWh  70% 

2045 15 gCO2/kWh   

2050 Near-zero >=80% >=80% 

Table 3 - Carbon budgets in UK, German and Italian versions of BRAIN-Energy 

 

Moreover, the government subsidises investments in renewable technologies: this is done 

through Contracts for Difference (CfDs) in the UK, and through feed-in-tariffs (FITs) in Germany and 

Italy. On- and offshore wind plants, biomass plants and PV technologies are covered by the CfDs, which 

guarantee these technologies’ returns for 15 years. FITs in Germany cover all renewable generation 



 

 
12 

 

technologies, while in Italy they exclude PV10. The levels of the FIT payments can be found in the 

Appendix. CfD auctions take place every three years in BRAIN-Energy, to match the historical 

frequency [75]. Winners of the auctions are paid the difference between an auction’s strike price and 

the prevailing market price for 15 years, hence providing stability and predictability to investors’ 

revenues for 15 years. The mathematical formulations behind the CfDs are provided in the online 

model documentation11 [41]. 

The regulator’s objective in BRAIN-Energy is to manage the security of supply aspect of the low-

carbon transition, and to minimise demand-supply gaps. It does this by enforcing a capacity market 

with capacity auctions for conventional generation technologies (and nuclear in the UK). The capacity 

market only works in the UK version of BRAIN-Energy (as foreseen by the Electricity Market Reform), 

and in the Italian model where a capacity market has been active since 2018. No capacity market is 

modelled in the German model, as German law doesn’t foresee such a mechanism.  

In practice, the regulator in BRAIN-Energy has bounded-rationality, and based on its 

expectations it forecasts every year the maximum potential electricity production at 𝑡 + 4  (𝑚𝑎𝑥𝑡+4) 

by estimating the maximum potential electricity production of all active power plants with plant life 

of at least or greater than 𝑡 + 4. If 𝑚𝑎𝑥𝑡+4 is lower than peak demand at year 𝑡 + 4 , then the 

regulator agent holds a capacity auction at year 𝑡. The capacity to be auctioned(𝐶𝐴𝑡) is: 

𝐶𝐴𝑡 = 𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑𝑡+4 −  𝑚𝑎𝑥𝑡+4 

 

Alternatively, the regulator agent can enforce a capacity auction if the de-rated capacity margin 

(defined as the amount of excess electricity generation over annual peak demand, adjusted by the 

specific availability of each type of plant according to its technology) hits 5% in the UK model. This 

level has been defined according to Ofgem’s and National Grid historical values [76], and the same 

has been applied in the Italian model for comparison reasons. 

However, the regulator agent has bounded-rationality and it cannot foresee whether between 

𝑡 and 𝑡 + 4  some power plants will be closed due to unprofitability, which leads to possible supply 

gaps (periods during which peak electricity demand, explained in section 3.3, is not met). Hence, 

similar to the government agent setting the CO2 price, the decisions of the regulator agent co-evolve 

with those of the market players (see Figure 3).  

 

 

3.3 BRAIN-Energy’s operations 

In BRAIN-Energy electricity demand is exogeneous and calibrated based on half-hourly national 

data (Table 1). Additional information can be found in the Appendix and in the online model 

documentation [41]. To match BRAIN-Energy’s yearly resolution, and to account for variations in the 

load profile, the half-hourly data was divided into a yearly day average demand and yearly night 

average demand in each of the three countries. Also a yearly peak demand was defined to make sure 

BRAIN-Energy is able to deal with peak electricity requirements. The yearly peak demand is defined as 

                                                           
10 PV investments were subsidised by the Fifth Conto Energia (https://www.gse.it/servizi-per-te/fotovoltaico/conto-energia). 
This set an aggregated cap on public spending for PV incentives of EUR 6.7 billion, which was exceeded in July 2013, after 
which the Fifth Conto Energia came to an end 
11 https://www.ucl.ac.uk/energy-models/models/brain-energy 

https://www.gse.it/servizi-per-te/fotovoltaico/conto-energia
https://www.ucl.ac.uk/energy-models/models/brain-energy
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yearly average day demand multiplied by the peak factor, calibrated on historical observations of the 

absolute yearly peak electricity demand in the UK, Germany and Italy (see Appendix).  

For intermittent renewable electricity generation assets their installed capacity has been de-

rated by their load-factor (see Appendix) to capture the effects on total generation capacity, running 

time of thermal plants and electricity price. Renewable assets also have a declining “contribution to 

peak” in BRAIN-Energy. This leads to a declining marginal contribution of each additional renewable 

generation asset in meeting peak demand the more renewables are installed in the system, which 

leads renewables to only contribute 5% of their capacity to peak generation, when over 80% of 

electricity is produced from renewable sources [77]. 

In BRAIN-Energy electricity bids from the market players from their different type of plants are 

dispatched on a merit-order basis to satisfy yearly average day and night electricity demand. The short 

run marginal cost of the most expensive bid accepted into the market, which is required to meet 

electricity demand in that year, sets the yearly electricity price (𝑝𝑡). The yearly electricity production 

mix which results from the merit order gives rise to the yearly CO2 emissions generated by the power 

sector, and to the carbon intensity of electricity generation.  

Additional information on BRAIN-Energy’s power sector operations can be found in the model’s 

online documentation12 [41]. 

 

 

3.4 Investments in BRAIN-Energy 

Market players in BRAIN-Energy decommission unprofitable plants after a certain number of 

years that these have been loss-making (see Table 2) and decide about investing in new production 

assets. Their investment decisions (Figure 3) are based on an NPV calculation, which is the result of 

their heterogeneous expectations about future cash-flows n years ahead. n differs by type of market 

player (Table 2) and reflects their limited foresight. Future cash-flows are based on heterogeneous 

expectations about electricity demand, merit order expectations, fuel and capital costs of 

technologies. Also, market players use different discount rates r in their NPV calculations, which equal 

their cost of capital (Table 2). 

 Moreover, investment choices in BRAIN-Energy are path-dependent. The long life-time of 

electricity generation assets [78] makes it essential to take path-dependency into account when 

studying investments in the power sector [32]. Path-dependency is currently modelled in BRAIN-

Energy as “historic” path-dependency. This means that the performance of past investments 

influences future investment decisions taken by the market players, which makes investments 

adaptive and path-dependent (Figure 3). In practice historic path-dependency works in BRAIN-Energy 

as: 1) learning from own successful past behaviour and investments, which lead to increasing revenues 

for a market player. This learning-by-doing process results in a growing market share of market players 

which make successful investments, and to an increased ability to invest in new projects in the future; 

2) learning from own unsuccessful past investments.  

 Market players’ investment choices are also influenced by imitation in scenarios with 

heterogeneous market players (Figure 3). This means that market players have emergent evidence 

about the evolution of the market shares of the other players, and they choose to imitate the market 

                                                           
12 https://www.ucl.ac.uk/energy-models/models/brain-energy. 

https://www.ucl.ac.uk/energy-models/models/brain-energy
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player whose market share grew the most the previous year. Imitation can either delay or encourage 

sustainability transitions [65], and for this reason it has been introduced in BRAIN-Energy. 

Extensive details and equations about economic criteria in investment decisions, and about the 

functioning of path-dependency and imitation can be found in BRAIN-Energy’s online model 

documentation [41] and in [40]. 

 

 

4. Scenarios 

4.1  Core scenarios 

Four core scenarios (Figure 4) have been created to illustrate the interplay between the 

institutional agents and the market agents in the UK electricity market. The aim of the scenarios is to 

capture how investments co-evolve with the policy-making and governance structure, and what 

effects this has on the long-term decarbonisation scenarios.  To investigate the impacts that different 

types of market players, and different electricity market structures have on future decarbonisation 

pathways, the results of UK2 and UK4 scenario have been compared to similar scenarios for Germany 

(GER2 and GER4) and Italy (IT2 and IT4). The country comparison has only been introduced for 

scenarios 2 and 4, because in these scenarios market players are heterogeneous, and it is hence 

interesting to compare countries with different types of market players. 

 

 
Figure 4 – Scenario matrix 

 

 

 

Scenarios are arranged along two axes (Figure 4): the stringency of the policy framework and 

the characteristics of the market players, to explore the coevolution of these drivers in BRAIN-Energy. 

Exogeneous variables are the same in all four core scenarios (Table 1 summarises their calibration). 

Overall parameters used in the scenarios are summarised in Table 4. 
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Scenarios 1 and 2 differ from Scenarios 3 and 4 by the level of government intervention in the 

electricity sector for CO2 mitigation goals. In all four core scenarios the government subsidises 

investments in renewable generation assets (as thus is also linked to industrial strategy policy), and 

the regulator agent always manages security of supply through capacity auctions (except in GER2 

scenario). In Scenarios 1 and 2 the government agent uses a “strong” CO2 price trajectory, meaning 

that whenever carbon budgets are not met it increases the CO2 price by 200% over the “no-increase” 

trajectory (the calibration of which was explained in Table 1). In Scenarios 3 and 4, in contrast, the 

government agent doesn’t adjust the CO2 price when carbon budgets (Table 3) are not met, and keeps 

the CO2 price on the “no-increase” trajectory. Hence, scenarios 3 and 4 are characterised by a lower 

level of co-evolution of policies and investments. 

To explore the impacts of different policy conditions and degrees of government intervention 

on the electricity sector’s evolution we examine the transition under two assumptions: homogeneous 

and heterogeneous market players. In Scenario 1 and Scenario 3 market players are homogeneous. 

Except for having different technology options, they have the same capital cost, foresight, 

expectations about future technology costs and they all close unprofitable plants down after the same 

amount of loss-making years. Also, in these scenarios investments of the market players are not 

affected by the past and are not path-dependent, and market players do not imitate others. There is 

no (historic) path-dependency (and no imitation either) in the scenarios with homogeneous market 

players (1 and 3) for two main reasons. First, scenarios with homogeneous market players aim to 

represent an “indicative” and “stylised” world where all market players behave the same, and where 

investment decisions are taken according to strict economic rationality criteria as it is in cost 

optimisation models [16]. Therefore, in these “stylised” scenarios no learning opportunities based on 

past investments are taken into account in investment decisions. Second, the success of new 

investments is the same in scenarios with homogeneous market players, as they all have the same 

expectations of future costs (fuel and technology) and electricity demand. Therefore, there is no 

variation in how all market players learn (and this would just cause, for example, all gas plants to shut 

down at a certain point in time, leading to severe supply gaps).  

 In contrast, in Scenarios 2 and 4 market players are heterogeneous: this is defined as having 

different technology options based on their company strategy and expertise, and different 

expectations on capital cost, future technology costs and demand, and on the time taken before 

closing loss-making plants. Investment choices are path-dependent, and market players imitate 

others. Table 4 provides details about the homogeneous and heterogeneous characteristics of the 

market players, with further details in the online documentation [41]. 
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 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 UK1 UK2 GER2 IT2 UK3 UK4 GER4 IT4 

Exogenous variables Table 1 Table 1 Table 1 Table 1 

CO2 price “strong” CO2 price strong” CO2 price “no-increase” CO2 price 

 

“no-increase” CO2 price 

Subsidies to renewables CfDs (UK), FITs (Germany and Italy) 

Capacity market Active (UK and Italy), not active (Germany) 

Market players behaviours 

 Path-dependency 

 Imitation 

 Capital costs 

 Foresight 

 Fuel costs expectations 

 

 Electricity demand 

expectations 

 Technology costs 

expectations 

HOMOGENEOUS 

N/a 

N/a 

6% 

10 years 

Table 1 

 

Table 1 

 

Table 1 

HETEROGENEOUS 

Yes 

Yes 

Table 2 

Table 2 

+/-20% compared to 

level in Table 1 

+/-15% compared to 

level in Table 1 

+/-25% compared to 

level in Table 1 

HOMOGENEOUS 

N/a 

N/a 

6% 

10 years 

Table 1 

 

Table 1 

 

Table 1 

HETEROGENEOUS 

Yes 

Yes 

Table 2 

Table 2 

+/-20% compared to 

level in Table 1 

+/-15% compared to 

level in Table 1 

+/-25% compared to 

level in Table 1 

Table 4- Characterisation of scenarios by agent heterogeneity and policy framework 

 

 

4.2  Sensitivity scenarios 

We created two sensitivity scenarios to explore the impacts of less frequent (ten-yearly as 

opposed to five-yearly) carbon budgets in the UK scenarios. These sensitivity scenarios explore a 

looser coupling and co-evolution of the policy framework on the investments of the market players 

and the outcomes on the electricity sector’s transition. The resulting sensitivity scenarios are UK1-10y 

and UK2-10y (there are no sensitivity scenarios for UK3 and UK4, because the government agent is 

not increasing the CO2 price in these scenarios).  

 

 

 

5. Results and discussion 

In this chapter we show the impacts of the co-evolution between the institutional agents’ 

policy-making and the market agents’ investment decisions on reaching climate change mitigation 

targets and on the cost and security of the low-carbon transition. 

 

5.1 Impact of agents co-evolution on decarbonisation efforts in the UK 

To assess how the scenarios meet the climate change targets in the UK we explore: a) the share 

of electricity produced through renewables at 2050, b) its evolution from 2012 to 2050, c) the CO2 

price, d) the technology mix at 2030 and 2050.  

Results on renewable deployment show that the level of the CO2 price which the government 

agent uses is key to produce environmentally successful pathways (Figure 5). In fact, only scenarios 

where the government agent increases the CO2 price by 200% over the "no-increase" trajectory (UK1 

and UK2 scenarios) successfully manage to produce at least 80% of electricity from renewables at 2050 

(Figure 5). However heterogeneous agents make the level of the CO2 price less effective at meeting 

the 2050 decarbonisation objective (Figure 5).  
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Figure 5 – Evolution of share of electricity produced through renewables and CO2 price in UK scenarios  

 

Figure 5 also shows CO2 prices in BRAIN-Energy in the UK. CO2 prices rise up to 302 GBP/t in UK1 

scenario between 2036 and 2044 to successfully achieve an 80% share of electricity produced through 

renewables at 2050. In UK2 scenario with heterogeneous market players the CO2 price remains at the 

level of 302 GBP/t from 2036 to 2050 to achieve the decarbonisation objectives. Therefore, results 

show how a stronger CO2 price is required to address the barriers which market players with 

heterogeneous characteristics and path-dependent investment choices pose to effective climate 

change mitigation efforts. 

Results from the sensitivity scenarios around the frequency of the carbon budgets in the UK 

model also show that it is key for the government agent to frequently update the CO2 price, hence to 

have frequent five-yearly carbon budgets. Even if the government uses a “strong” CO2 price trajectory, 

if moving from five- to ten-yearly carbon budgets (Figure 6), UK1-10y only achieves a 65% share of 

electricity produced through renewables at 2050 (compared to 87% in UK1), and in UK2-10y only 60% 

of electricity is produced through renewables at 2050 (compared to 84% in UK2). This happens 

because total investments in renewables between 2012 and 2050 decline by 30% between UK1 and 

UK1-10y scenario and by 38% between UK2 and UK2-10y scenario (Figure 6). Hence, the frequency of 

the carbon budgets alone is a key driver of the scenarios environmental performance, and having 

frequent carbon budgets is even more important when market players are heterogeneous.  

Results show therefore that it is a necessary condition to have a closely co-evolving and 

responsive government agent, who uses a strong and frequently updatable CO2 price to give rise to a 

virtuous cycle to meet the low-carbon transition, especially with heterogeneous market players. 
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Figure 6 - Share of electricity produced through renewables and total investments in renewable in UK core 

scenarios and scenarios with 10-yearly carbon budgets 

 

As regards to the technology mix (Figure 7), gas installed capacity in the UK is higher in 

scenarios with a “no-increase” CO2 price (UK3 and UK4), and especially in UK4 (154 GW) where market 

players are heterogeneous. In this scenario gas generation reaches 68 TWh in 2050, as opposed to 

only 11 TWh in UK1 scenario. This happens because the lower CO2 prices in UK4 scenario make running 

gas plants less expensive, and as market players’ investment choices are path-dependent, market 

players tend to repeat investments in gas assets and invest less in other technologies. Offshore wind 

benefits both from market players having heterogeneous characteristics, and from higher CO2 prices. 

This happens because market players have heterogeneous expectations about the evolution of 

technology costs in the future, hence some market players expect offshore wind prices to be lower in 

the future, and offshore wind plants to be more profitable especially under a “strong” CO2 price 

trajectory. Under these circumstances, imitation in UK2 scenario then helps the diffusion process 

(Figure 7). In fact, UK2 scenario has the highest amount of offshore wind installed capacity at 2050 

among UK scenarios (30 GW) which produce 119 TWh of electricity. Hence, heterogeneity (on its own) 

mainly impacts technology choices and hence CO2 emissions, because the different expectations 

about future levels of technology and fuel costs lead market players to favour certain technologies 

over others. Path-dependency (on its own), under low CO2 prices, leads to more gas investments. 
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Figure 7 - Installed technology mix in UK scenarios at 2030 and 2050 

 

 

5.2 Impact of agents co-evolution on the transition’s costs and security of supply 

The interplay of the strategies of the institutional agents with homogeneous or heterogeneous 

market players leads to different capital costs of the electricity sector’s low-carbon transition and 

different timing of investments (Figure 8). UK2 scenario – with a “strong” CO2 price and heterogeneous 

market players which take path-dependent investment choices – is the most capital intensive of all UK 

scenarios, with aggregate investment levels between 2012 and 2050 of GBP 348 billion. In this scenario 

31% of total investments in renewable technologies are made by 2030, but the stronger government 

CO2 price intervention helps to keep investment levels in renewable technologies up after 2030. In 

fact, 84% of total investments in offshore wind generation plants are made between 2030 and 2050 

in UK2 scenario. In contrast, in UK4 scenario, which also has heterogeneous market players which take 

path-dependent investment choices, the fact that the government is less responsive doesn’t help 

maintaining investment levels in renewable technologies up after 2030 (Figure 8), leading to only 60% 

of electricity being produced through renewable sources at 2050 (as opposed to 84% in UK2). 

Therefore, sustaining a closely evolving government post-2030 helps maintain investments levels in 

renewable technologies (in a virtuous co-evolutionary cycle) and hence to successful transitions. 

Furthermore, UK2 and UK4 scenarios are more capital intensive than UK1 and UK3, because path-

dependency leads market players to shut down unprofitable assets before the end of their operating 

life. This creates supply gaps and opportunities for investments by other market players. Hence path-

dependency creates “investment cycles”, which lead to higher total capital investments. However, 

with a weak and non-responsive government such “investment cycles” may lead to unnecessary 

investments and to “failed” transition which do not achieve the 2050 decarbonisation objectives as in 

UK4 scenario. Therefore, a responsive government is also key to break the vicious cycles that path-

dependency could create.  
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Figure 8 - Aggregated capital investments in UK scenarios 

 

UK2 scenario with stronger government intervention and heterogeneous market players also 

has the most expensive electricity prices (Figure 9). This is because the electricity price is the short run 

marginal cost of the most expensive technology producing in a given year (section 3.3), which reflects 

the higher CO2 price in UK2 scenario. Moreover, the fact that UK2 scenario has peak supply gaps 

(Figure 9) leads to higher electricity prices, as increasing the electricity price is one of the levers the 

regulator agent can use to incentivise more capacity investments. Peak supply gaps in UK2 scenario 

happen because market players’ investments are path-dependent and market players actively manage 

their power plants, which they are able to shut down if unprofitable. The regulator agent can’t always 

foresee such early closures due to its bounded-rationality. For this reason and even if a capacity 

market is active there are peak demand supply gaps in UK2 scenario. In contrast, there are no supply 

gaps in UK3 and UK4 scenarios, which also exhibit electricity prices constantly below GBP 100/MWh 

(Figure 9). These scenarios make a cheaper and secure electricity system from a supply point of view, 

however they represent a failed “transition” as they don’t meet 2050 decarbonisation objectives 

(Figure 5). Therefore, results show that security of supply issues illustrate an additional co-evolution 

between institutional and market agents, and that a higher CO2 price should be supported by a 

capacity market, which is the main instrument to mitigate supply gaps.  
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Figure 9 - Supply gaps and electricity price in UK scenarios 

 

 

 

5.3 Country comparison 

Both GER4 and IT4 scenarios lag significantly behind GER2 and IT2 scenarios in reaching the 

2050 decarbonisation targets (Figure 10). In Italy both scenarios are not environmentally successful, 

and in IT4 scenarios only 39% of total electricity is produced through renewables at 2050 (Figure 10). 

This happens because in the Italian scenarios market players have a higher cost of capital to reflect 

the riskier investment environment in Italy [60] as highlighted in Table 2. This prevents scenarios from 

reaching decarbonisation targets even when the government uses a “strong” CO2 price trajectory 

(Figure 10). Hence, results from the country comparison show how also in the German and Italian 

scenarios the level of the government intervention, measured as strength of CO2 price in BRAIN-

Energy’s scenarios, is key to give rise to virtuous co-evolutionary cycles with heterogeneous and path-

dependent market players leading to a higher electricity production through renewables. This is even 

more pronounced when market players face higher costs of capital. 
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Figure 10 - Evolution of share of electricity produced through renewables in German and Italian scenarios 

 

Moreover, the Italian scenarios gas reaches the highest installed capacity at 2050 (78 GW) 

(Figure 11) and production (255 TWh) in IT4 scenario under the same logic as for the UK scenarios as 

explained in section 5.1. In both GER2 and GER4 scenarios offshore wind is the main generation 

technology at 2050 (181 TWh in GER2, and 148 TWh in GER4 scenario) and reaches respectively 50 

GW and 40 GW of installed capacity in the two scenarios (Figure 11) at 2050. However, as only 37% of 

total offshore wind investments are made by 2030 in GER4 scenario (compared to 46% in GER2 

scenario) (Figure 11), GER4 is slower to decarbonise compared to GER2 scenario and misses out on 

the 2050 decarbonisation targets (Figure 10). Hence, German scenarios also show how a stronger 

government intervention is key with heterogeneous and path-dependent market players to encourage 

early investments in renewables to meet decarbonisation targets in a timely fashion.  

 

 
Figure 11 - Installed technology mix and aggregated capital investments in German and Italian scenarios 

 

Similarly to the UK scenarios, GER2 and IT2 scenarios are more expensive in terms of electricity 

price than GER4 and IT4 scenarios (Figure 12), as this reflects the stronger CO2 price in GER2 and IT2 

scenarios. However, (and similarly for the UK), with heterogeneous market players whose investments 
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are path-dependent a strong CO2 price alone is not sufficient to either guarantee a secure supply of 

electricity (as in GER2 scenario) (Figure 12) without a capacity market, or to meet decarbonisation 

objectives in IT2 scenario where market players face higher costs of capital. This leads to “failed” 

transition either under a security or environmental point of view.  

Hence, the findings from the country comparison strengthen the insights on how virtuous cycles 

between market players’ investments and institutional agents may be created to reach an 

environmentally successful and secure transition.  

 

 
Figure 12 - Supply gaps and electricity price in German and Italian scenarios 

 

 

6. Conclusions  

This paper introduced a novel energy modelling feature via an agent-based model (BRAIN-Energy) 

with institutional agents endogenously adjusting policies as a result of the emergent properties of the 

market players’ investment decisions. Hence, BRAIN-Energy aims to analyse the impacts of a co-

evolving governance structure with the investment choices of the market players on the long-run 

transition of the UK, German and Italian electricity sectors.  

The findings of this co-evolution between the policy-making dimension and the investments of 

the market players show that a strong CO2 price signal is key to successfully achieve climate change 

mitigation targets, especially when market players are heterogeneous and their investment choices 

are path-dependent. The CO2 price should not only be strong, but also frequently updatable via a tight 

coupling with policy to recognise the different investment strategies and responses of heterogeneous 

market players.  

Different policies of the institutional agents also lead to different costs of the transition (in terms 

of capital investments and electricity prices) depending on the strategies and investments of the 

market players and the country set-up. Higher capital requirements are needed with heterogeneous 

market players to successfully decarbonise the UK electricity sector. These higher investment needs 
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in low-carbon technologies are only achieved when the government agent actively manages the CO2 

price. Conversely, using a “no-increase” CO2 price trajectory – especially with heterogeneous market 

players – may lead to a cheaper electricity system, but these transitions are not environmentally 

successful.  

If the institutional agents manage to get incentives and prices high enough so firms make 

profitable investments and then they (and their competitors) learn from these to further invest in a 

sufficient portfolio of low carbon technologies, but not too high so the transition is prohibitively 

expensive, virtuous co-evolutionary cycles are created which facilitate a successful low-carbon 

transition. As in reality market players are heterogeneous, have bounded-rationality, and take path-

dependent investment choices, if governments do not pursue a strong and responsive policy-mix 

(comprising a frequently updated increasing CO2 price, subsidies to renewables (CfDs or FITs) and a 

capacity market) this creates a vicious cycle which derails the low-carbon transition. 

 Future development of the BRAIN-Energy model will build on these insights, test the robustness 

of the virtuous or vicious cycles, and explore further uncertainties. Specific model developments will 

first include heat and transport, with the likelihood for much larger and much more uncertain 

electricity demands, and hence a more challenging iteration between agent decisions and government 

response. Second, the model will include a demand response (via an aggregator agent) to improve the 

viability of electricity systems that meet peak and average demands, and also generating consistent 

costs of successful vs. unsuccessful transitions. Third, the model will include local agents to better 

capture structural changes in where new technology are sited and impact of the distribution aspects 

of the electricity system. Fourth, the model will investigate a broader portfolio of policy instruments 

and how CO2 pricing plus technology support policies are sequenced and interact. And fifth, path-

dependency in BRAIN-Energy could be modelled as a positive learning curve reflecting feedback and 

reinforcing mechanisms stemming from increasing returns and economies of scale, knowledge 

accumulation, and learning-by-doing in economic systems [79].  

In conclusion, this paper demonstrated (via the BRAIN-Energy agent based model) that it is of 

critical importance to take into consideration the interplay of both the political and the market players’ 

dimensions of the low-carbon transition of the electricity sector. These findings confirm that the low-

carbon transition of the electricity sector is a socio-technical process [80], which results from the 

“coevolution of economic, business decisions, technological, cultural and institutional developments” 

[81]. Developing and using models which are able to represent such complex dynamics and co-

evolutions is vital to understand critical barriers to a successful and sustainable transition in the energy 

sector, which could otherwise be overlooked by energy models which mainly focus on technological 

and cost-minimisation aspects of the energy transition. 
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Appendix  

Electricity demand: 

 

UK                                                                          

 
Germany 

 
 

Italy 

 
Sources: see sources in Table 2 
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Peak factor: 

 

 

 

 

 

Source: see sources in Table 2 (same sources as for electricity demand) 

 

 

Installed capacity at 2012 in UK: 

 

 

 

 

 

 

 

 

 

 

 Source: [44] 

 

 

Installed capacity at 2012 in Germany: 

 

 

 

 

 

 

 

 

 

 

 

Source: Bundesnetzagentur Kraftwerkliste, 201813 

 

 

 

 

 

 

 

 

 

                                                           
13 https://www.bundesnetzagentur.de/.../Kraftwerksliste/Kraftwerksliste_2018_1.xlsx?__ 

 % of yearly average day demand 

UK 125% 

Germany 130% 

Italy 150% 

Technology GW 

Gas CCGT 35 

Coal 30 

Nuclear 9 

Onshore wind 6 

Offshore wind 3 

PV 2 

Hydro 4 

Biomass 3 

Peaking plants (e.g. oil) 2 

Technology GW 

Gas CCGT 29.5 

Lignite 22 

Hard coal 25 

Nuclear 12 

Onshore wind 31 

Offshore wind 0.6 

PV 33.5 

Hydro 14.5 

Biomass 6 

Peaking plants (e.g. oil) 4 
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Installed capacity at 2012 in Italy: 

 

 

 

 

 

 

 

 

 

Source: [47] 

 

 

Capital costs of technologies (in EUR/kW): 

 

 EUR/kW 

Technology 2012 2015 2020 2025 2030 2035 2040 2045 2050 

Gas CCGT 400 400 400 400 400 400 400 400 400 

Coal 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 

Nuclear 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 

Onshore wind 1,300 1,269 1,240 1,210 1,182 1,154 1,127 1,101 1,075 

Offshore wind 3,000 2,868 2,742 2,621 2,506 2,396 2,290 2,189 2,093 

PV 1,560 950 750 675 600 555 472 448 425 

Biomass 2,500 2,424 2,350 2,278 2,209 2,141 2,076 2,013 1,951 

Peaking plants (e.g. 

oil) 

400 400 400 400 400 400 400 400 400 

Source: [50] 

 

 

Technical power plant data: 

 

 

 

 

 

 

 

 

 

 

 

 

Source: [50,51,74] 

 

 

 

 

 

Technology GW 

Gas CCGT 63.8 

Coal 8.5 

Onshore wind 8.1 

PV 16.6 

Hydro 22.2 

Biomass 3.8 

Peaking plants (e.g. oil) 9 

Technology Average load factor 

UK and GER 

Average 

load factor 

Italy 

Lifetime Emission intensity 

(gCO2/kWh) 

Gas CCGT 93% 93% 25 years 365 

Coal 90% 90% 30 years 907 

Nuclear 90% N/a 60 years  

Onshore wind 32% 30% 24 years  

Offshore wind 43% 42% 23 years  

PV 11% 16% 25 years  

Hydro 40% 40% 35 years  

Biomass 84% 84% 25 years  

Peaking plants (e.g. oil) 22% 22% 25 years  
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FIT values in Germany 

 

 

 

 

 

Source: EEG 2017 (https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html) 

 

FIT values in Italy 

 

 

 

 

 

Source: Legislative Decree 6 July 2012 

(https://www.mise.gov.it/images/stories/normativa/DM_6_luglio_2012_sf.pdf)  

 

Technology EUR/MWh 

Onshore wind 

Offshore wind 

PV 

Biomass 

65.2 

96.5 

108.1 

95.2 

Technology EUR/MWh 

Onshore wind 

Offshore wind 

Biomass 

127 

165 

122 

https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html
https://www.mise.gov.it/images/stories/normativa/DM_6_luglio_2012_sf.pdf

