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Abstract

This thesis takes on the challenge of extracting information from large volumes

of biological data produced with newly established experimental techniques. The

different types of information present in a particular dataset have been carefully

identified to maximise the information gained from the data. This also precludes

the attempts to infer the types of information that are not present in the data. In

the first part of the thesis I examined the evolutionary origins of de novo taxonom-

ically restricted genes (TRGs) in Drosophila subgenus. De novo TRGs are genes

that have originated after the speciation of a particular clade from previously non-

coding regions - functional ncRNA, within introns or alternative frames of older

protein-coding genes, or from intergenic sequences. TRGs are clade-specific tool-

kits that are likely to contain proteins with yet undocumented functions and new

protein folds that are yet to be discovered. One of the main challenges in studying

de novo TRGs is the trade-off between false positives (non-functional open read-

ing frames) and false negatives (true TRGs that have properties distinct from well

established genes). Here I identified two de novo TRG families in Drosophila sub-

genus that have not been previously reported as de novo originated genes, and to

our knowledge they are the best candidates identified so far for experimental stud-
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ies aimed at elucidating the properties of de novo genes. In the second part of the

thesis I examined the information contained in single cell RNA sequencing (scRNA-

seq) data and propose a method for extracting biological knowledge from this data

using generative neural networks. The main challenge is the noisiness of scRNA-

seq data - the number of transcripts sequenced is not proportional to the number

of mRNAs present in the cell. I used an autoencoder to reduce the dimensionality

of the data without making untestable assumptions about the data. This embed-

ding into lower dimensional space alongside the features learned by an autoencoder

contains information about the cell populations, differentiation trajectories and the

regulatory relationships between the genes. Unlike most methods currently used, an

autoencoder does not assume that these regulatory relationships are the same in all

cells in the data set. The main advantages of our approach is that it makes minimal

assumptions about the data, it is robust to noise and it is possible to assess its per-

formance. In the final part of the thesis I summarise lessons learnt from analysing

various types of biological data and make suggestions for the future direction of

similar computational studies.



Impact Statement

Single cell RNA sequencing (scRNA-seq) is a recently developed experimental

technique that captures the transcriptional heterogeneity between individual cells.

The data produced enables biological discoveries that were not previously possible

due to the lack of resolution. Projects based on scRNA-seq data result in impor-

tant contributions in developmental and regeneration biology, and in studies of the

immune system and ageing. In 2019 alone numerous landmark papers have been

published reporting a diverse set of discoveries. For example, it has been shown that

different cell types age in unique ways and mechanisms of disrupted cardiac devel-

opment have been identified. Cell lineages and gene networks for neural subtypes

constituting the whole larval nervous system of a sea squirt have been inferred. The

Human Liver Cell Atlas and the Mouse Organogenesis Cell Atlas providing a global

view of developmental processes in mice have been published, and the work on the

Human Cell Atlas is ongoing. Motivated by these outstanding results, substantial

resources are being allocated to producing more scRNA-seq data. The computa-

tional analysis of this type of data remains challenging due to its compositional

nature and due to the complex structure of noise contained therein. Significant re-

sources are being dedicated to developing new analysis methods, but due to the lack
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of ground truth it is challenging to assess their performance. Benchmarking studies

report inconsistent results for groups of similar methods. Existing analysis methods

are based on strong assumptions about the data. Here I examine these assumptions

in the context of mathematical properties of scRNA-seq data, thus offering an ex-

planation as to the poor results observed in benchmarking studies. I propose an

analysis method based on generative neural networks. This method makes mini-

mal assumptions about the data and is able to integrate information from datasets

produced by different labs. The method is scalable and flexible - it can be easily ap-

plied to large amounts of data, and executed either on GPU clusters or conventional

desktops with limited RAM via data streaming. I also examine different approaches

for modelling the information flow in a cell in a more biologically meaningful way,

actively shaping the training process of neural networks to achieve desired proper-

ties, and training the models in a reproducible manner. My work will enable better

outcomes of future studies based on scRNA-seq data. It will contribute to the adop-

tion of clinical applications of this type of data, which is currently inhibited by

the lack of reproducible and assessable analysis methods. The impact of my work

will increase with the maturation of single cell technologies that are able to capture

both transcriptomic and other types of data from the same cells, as using machine

learning will be the dominant strategy for analysing this new type of data. Both my

work on scRNA-seq data analysis and on identifying evolutionary origins of taxo-

nomically restricted gene will become a stepping-stone for future research in these

areas.
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Chapter 1

Introduction

The expression “genomical amounts of data” is rightfully replacing previously used

“astronomical amounts”. In their projection to year 2025, Stephens et al. [2015]

showed that genomic data is likely to be the biggest of the Big Data domains. De-

velopment of new experimental techniques has increased the amount of biological

data generated by many orders of magnitude, and this has resulted in the need of

new methods for handling and analysing that data and for interpreting the results.

The nature of biological data has changed, while methods are still catching up.

This thesis takes on the challenge of extracting information from large volumes

of biological data produced with newly established experimental techniques. The

different types of information present in a particular dataset have been carefully

identified to maximise the information gained from the data. This also precludes

the attempts to infer the types of information that are not present in the data. For

example, in the case of inferring evolutionary origins of protein coding genes, both

synteny and homology information is used to infer the evolutionary mechanism,
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while no inference is made across large evolutionary distances where sequence

conservation is insufficient. Similarly, information about highly expressed genes

and relative expression levels in single cell RNA-seq data is exploited in neural

network training, while gene expression levels are never compared across cells due

to the lack of comparable values. I will critically re-evaluate assumptions typically

made about specific types of data and propose analysis methods that are not ham-

pered by fundamentally wrong but seemingly necessary simplifying assumptions

about the data.

With this shift in the nature of biological data comes both new challenges and many

great opportunities. Equally, computer science is experiencing an accelerated pace

of discovery and innovation. As UCL’s PhD graduate, now CEO of DeepMind,

Demis Hassabis said “some of the most interesting areas of science are in the gaps

between subjects”. The ambition of my work at the interface of biology and com-

puter science is to build on my expertise in both domains, combining cutting edge

research from fields across disciplines and advancing our ability to extract informa-

tion from genomical amounts of biological data.

This thesis contains two parts - a computational study of genome evolution and

of genome regulation. In the introduction chapter I will provide a comprehensive

review of the relevant fields and the methods commonly employed to answer bio-

logical questions that are at the core of these fields of study. I will conclude this

chapter by discussing the intended contribution of my work. Chapter 2 contains



31

the results of my work aimed at pushing the boundaries of what we can learn

about protein-coding genes evolving de novo using computational approaches. In

the discussion part of this chapter I will conclude that further advancement of our

knowledge about de novo genes requires experimental approaches. Chapter 3 con-

tains the results of my work aimed at analysing single cell RNA-seq (scRNA-seq)

data with generative neural networks. This work combines the most recent ad-

vances in the two fields. When I started my PhD three years ago, this work was not

possible as the data of this type and scale was not yet available and the advance-

ments in machine learning theory employed here have not yet been made. After

a thorough assessment of the mathematical underpinnings of scRNA-seq analysis

with generative neural networks and an in depth analysis of advantages and limi-

tations of this approach, Chapter 4 provides an exploration of different ways how

these advantages could be exploited more fully and how some of the limitations

could be avoided. In this chapter I combine knowledge about the properties of

scRNA-seq and the flow of information through a living cell with recent theoretical

advancements in neural network training. In the discussion chapter I will put my

work on scRNA-seq into the context of the ongoing efforts in this field both from

the biology and the computer science fronts. After summarising the contributions

of my work and discussing how they fit within a wider research agenda I will

share my vision about the future of single cell techniques and about the future of

machine learning in biological research. This chapter will not discuss my work

on evolutionary origins of taxonomically restricted genes, since experimental stud-

ies are required to advance our knowledge and this is beyond the scope of this thesis.
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1.1 Computational study of genome evolution

The decrease in genome sequencing costs resulted in an establishment of a new field

of research focused on evolution of genes and species. New computational methods

for species tree inference took over from morphology and taxonomy studies. More

genomes being available also created an opportunity to trace the evolutionary ori-

gins of gene families, due to the pairs of homologous genes that are separated by a

shorter evolutionary distance and hence could now be identified. Increased number

of homologs in gene families subsequently allowed for building sequence profiles

and employing those to identify more distant homologs. In turn, this accelerated

our ability to predict functions of genes computationally, since experimentally es-

tablished functional data could now be transferred across species, even distantly

related ones.

In parallel to gene homology studies, which are focused on identifying evolution-

ary related genes based on sequence similarity, there emerged the new field of

study of recently evolved new genes. The idea of new functional genes evolving

from scratch captivated the imagination of researchers. The problem was that se-

quenced genomes belonged to species separated by large evolutionary distances.

At those distance, sequence and synteny conservation was insufficient to distin-

guish between genes that evolved by divergence from an ancestral gene and genes

that evolved from previously non-coding genome regions. With thousands of se-
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quencing projects in the pipeline, computational studies of new genes are finally

feasible. Instead of speculating whether the sequence of a gene is different enough

from all other sequenced genes to believe that this gene has evolved de novo, it

is now possible to trace the evolutionary origins of genes along the branches of a

species tree with closely related sequenced genomes. In this section I will provide

an overview of the field of study of new genes that evolved de novo from previously

non-coding parts of the genome, from the paper that coined the term orphan gene

to controversial debates that currently divide researchers in this field.

1.1.1 De novo evolution of protein-coding genes

Some genes are present only in one clade, and are therefore called taxonomically

restricted genes (TRGs). They are also referred to as orphans or simply novel

genes. Before I can precisely define a taxonomically restricted gene, a definition of

a gene is required. Numerous different definitions have been employed throughout

history, see Portin and Wilkins [2017] for a comprehensive overview. Here I will

adopt the gene definition proposed by Portin and Wilkins [2017]: A gene is a DNA

sequence (whose component segments do not necessarily need to be physically

contiguous) that specifies one or more sequence-related RNAs/proteins that are

both evoked by genetic regulatory networks and participate as elements in genetic

regulatory networks, often with indirect effects, or as outputs of genetic regula-

tory networks, the latter yielding more direct phenotypic effects. This definition

highlights how genes are different from other functional elements in the genome,
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for example promoters and enhancers. In this work I will only consider protein

coding TRGs, even though non-coding genes can also be taxonomically restricted.

Some of these protein coding TRGs may have originated de novo, i.e. from non-

coding regions [Vakirlis et al., 2017, McLysaght and Guerzoni, 2015], de novo in

alternative frames of established genes [Willis and Masel, 2018, Guan et al., 2018],

or as a result of genome rearrangement [Chen et al., 2015, Stewart and Rogers,

2019]. There are different ways in which the concept of origination or gene birth

can be defined. Since only protein coding genes will be considered in this work, I

chose the following definition that is concrete yet not too restrictive. The birth of a

protein-coding gene is associated with the moment beyond which a mutation lead-

ing to loss of translation would have a negative effect on fitness. For this to occur,

a de novo TRG needs not only the amino acid sequence itself, but also the right en-

vironment and expression regulation pattern to confer an advantage to the organism.

The research enterprise is biased toward studying ancient gene families with ho-

mologs, i.e. genes evolved from a common ancestor gene, across multiple model

organisms. The properties and evolutionary dynamics of young TRGs are not well

understood, since they are present in at most one model organism and are often

expressed only in a specific tissue or a specific developmental stage. TRGs are

likely to include proteins with yet undocumented functions and, especially in the

case of de novo genes, new protein domains or other structural forms that are yet to

be discovered [Bungard et al., 2017]. Mounting evidence suggests that TRGs can

acquire important functions. For example, a TRG in the tardigrade Ramazzottius
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varieornatus produces a protein that protects DNA and improves radio-tolerance

[Hashimoto et al., 2016]. TRGs in Hymenoptera are implicated in the speciation

of parasitoid wasps and in the production of diverse venoms characteristic of this

clade [Werren et al., 2010]. Albertin et al. [2015] identified numerous cephalopod-

specific genes and were able to find hints about their diverse functions based on

their tissue specific expression profiles. These examples remain anecdotal since

neither structural nor functional characteristics of TRGs can be inferred computa-

tionally due to the lack of homologs outside a specific clade.

Just several decades ago it was believed that TRGs simply do not exist. Susumu

Ohno was convinced that “each new gene must have arisen from an already existing

gene” and “in a strict sense, nothing in evolution is generated de novo” [Soukup,

1974]. In an influential essay, Francois Jacob strengthened this view by stating

that “the probability that a functional protein would appear de novo by random

association of amino acids is practically zero” [Jacob, 1977]. In the 1970s, gene

duplication was considered to be a single most important mechanisms in creating

new genes by divergence from an ancestral gene [Ohno, 1973]. While gene dupli-

cation is still believed to be the main source of new genes, there is now an increased

interest in other ways the genes can originate. The term orphan was first defined by

Dujon [1996] in the section called “The mystery of orphans” which focused on the

large proportion of yeast genes that had no known homologs. In the same issue of

Trends in Genetics Casari et al. [1996] predicted that with influx of new sequencing

data the number of orphans will soon reach zero, especially given that their number
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was already down to 10%. As recently as 2003, TRGs were still thought to be sim-

ply an artefact of limited number of sequenced genomes [Siew and Fischer, 2003].

The molecular details of the origin of new genes have been rigorously examined for

the first time by Long et al. [2003]. The work by [Begun et al., 2005] resulted in the

first published claim that genes could potentially originate de novo. Two decades

and thousands of sequenced genomes later, the prediction made by Casari et al.

[1996] remains unfulfilled - the proportion of TRGs in newly sequenced genomes

is still around 10%.

Now there is mounting evidence that TRGs do emerge de novo, but both the def-

inition of de novo TRGs and what it means for a gene to emerge remain highly

controversial topics [Schlötterer, 2015]. For example, a gene whose sequence di-

verged from an ancestral gene sequence beyond detectability is indistinguishable

from a de novo TRG. Similarly, a gene acquired through a horizontal gene transfer

from a distant clade can be easily mistaken for a de novo gene. In both cases, the

gene is likely to perform a different function in the new genomic context or com-

pared to the ancestral gene. Similarly, a gene that is conserved only in a specific

clade and whose homologs have been lost in every other lineage is indistinguishable

from a de novo TRG [Morel et al., 2015]. As a result, there is no clear line and the

definition of de novo TRGs remains inconsistent across literature.

In the case of a true de novo gene, the birth of protein-coding gene is associated

with the moment beyond which a mutation leading to loss of translation would
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have a negative effect on fitness. From that moment onwards this transcribed and

translated sequence becomes visible to selection; and it is also more likely to be

conserved and hence to have more opportunities to evolve. Before that the sequence

is neither conserved nor selected for its protein-coding properties, and hence cannot

be regarded as a protein-coding gene. This moment of gene birth must be associ-

ated with one of the four events: a transcript acquires an ORF, an ORF becomes

transcribed, a transcribed ORF becomes beneficial to the organism due to a change

in it’s environment, a transcribed ORF acquires a mutation. Here mutation is meant

in a broad sense, it could be a change in ORF’s amino acid sequence or an altered

expression profile - expression up-regulation, expression in a different tissue or

at a different developmental stage. A lot of work has been dedicated to gather-

ing evidence for two competing hypotheses - whether the de novo gene emerge

ORF-first or transcript-first, see Schlötterer [2015] for a review of this debate. Nei-

ther a non-transcribed ORF nor a transcript without an ORF can be a functional

protein-coding gene, and hence neither of them are under conservation/selection

for their properties related to being a protein-coding gene. Another line of debate

is concerned with whether the transition from a non-coding region to a functional

protein-coding gene could happen through an intermediary stage [Carvunis et al.,

2012]. The work by Wilson et al. [2017] provides evidence against this continuum

hypothesis. The role of the stop codons in the process of de novo gene emergence

also remains controversial. Short ORFs are less likely to be prone to aggregation

and hence they are believed to be the main source of de novo gene [Wilson et al.,

2017]. At the same time, probability of acquiring an in-frame stop codon anywhere
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along the ORF is much higher than the probability of getting rid of a particular

stop codon that would result in an extension of the ORF. The exact ratio between

these probabilities depends on the GC content of a particular sequence, but in any

conceivable protein-coding sequence the probability of getting rid of a particular

stop codon (i.e. of a mutation in one of those three nucleotides or a frameshift

bringing the stop codon out of frame) is always lower than the combined probabil-

ity of any codon in the sequence mutating into a stop codon and any pre-existing

out-of-frame stop codon shifting into frame due to an indel mutation. The roll of

translational stop codon read-through is debated both in the context of emergence

of longer ORFs [Jungreis et al., 2016] and in the context of sequence pre-adaptation

that facilitates future de novo gene emergence [Wilson et al., 2017]. Pre-adaptation

hypothesis argues that harmful ORFs disappear rapidly from the pool of sequences

available for transcription aided by pervasive transcription and pervasive translation

[Ruiz-Orera et al., 2018]. Jungreis et al. [2016] showed that translational stop codon

read-through are under continued purifying evolutionary selection in A. gambiae

mosquito and that they are sometimes associated with new gene birth in both A.

gambiae and D. melanogaster.

There are numerous de novo gene related open questions that are currently under

active investigation. How often do de novo genes emerge and what properties of the

genome does this emergence rate depend on? Are de novo genes lost more often

than well established genes? How do they integrate into gene regulatory network?

Is phenotypic novelty, for example a new type of tissue, a new developmental stage
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or a new venom/pheromone produced, more often associated with de novo genes

than not? Are de novo genes associated with new, previously unobserved types of

protein folds? Answering most, if not all, of these questions requires a decently

sized sample of de novo genes which could then be compared to a sample of well

established genes. Hence, the ability to identify de novo genes in different clades

and to distinguish them from evolved copies of well established genes is essential

to advancing our understanding of evolutionary dynamics of de novo genes.

1.1.2 Identifying taxonomically restricted genes

The first challenge in studying de novo TRGs is identifying them. Most previous

studies aimed at elucidating properties and rates of emergence of de novo TRGs

have used an approach known as “phylostratigraphy” that focuses on protein-coding

genes with protein homologs within a particular clade and no detectable homology

outside that specific clade. This approach is incapable of discriminating between

de novo genes and highly diverged copies of well-established genes. Hence, the

properties of “young genes” reported in these studies are averages computed across

the two groups, and risk attributing to TRGs properties that instead reflect the dis-

appearance of the ability to detect homology. For example, most of the studies

reported that new genes tend to be shorter [Wissler et al., 2013, Zhao et al., 2014,

Ruiz-Orera et al., 2015, Sun et al., 2015] and evolve faster than well established

genes [Domazet-Loso, 2003, Toll-Riera et al., 2008, Donoghue et al., 2011]. It

is palusable that TRGs should be shorter than well established genes, since short
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ORFs are less likely to be prone to aggregation [Wilson et al., 2017]. It is also

plausible that TRGs could evolve faster than well established genes, because there

are less evolutionary constraints associated with them. They are less likely to have

many interaction partners and to be entangled in a gene regulatory network. Hence,

it is a priori plausible that TRGs have these properties, but phylostratigraphy does

not provide clear evidence to support this claim because these properties are also

associated with diminishing ability to infer homologous sequences. It is harder

to detect homology for shorter and/or faster evolving genes, and this is sufficient

to explain at least the qualitative direction of the observed trend. Arendsee et al.

[2019] showed that including synteny information in the phylostratigraphy analysis

changes the inferred gene ages, thus demonstrating that by itself phylostratigraphy

approach is not sufficient.

There is an ongoing debate about the frequency of de novo gene birth [Casola,

2018]. While the amount of qualitative evidence that de novo gene birth does

occur is increasing [Cai et al., 2008, Baalsrud et al., 2017], the quantitative evi-

dence about the frequency of this phenomenon is lacking. Synteny-based methods

suggest that sequence divergence is not the main source of orphan genes [Vakirlis

et al., 2019]. Purifying selection is expected to screen occasionally translated open

reading frames (ORFs) in a way that makes them more viable as raw material

[Wilson and Masel, 2011], thus making de novo gene emergence less implausible.

The physico-chemical properties and secondary structures of evolved and random

sequences are very similar, and randomly created sequences can be tolerated in
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vivo by Escherichia coli [Tretyachenko et al., 2017]. Neme et al. [2017] showed

that at least two non-coding and one protein-coding gene, and many more whose

coding nature has not been tested, resulted from 150 randomly generated sequences

(mimicking de novo evolution) in lab conditions. While the beneficial nature of

these genes is disputed [Weisman and Eddy, 2017, Knopp and Andersson, 2018],

substantial tolerance clearly exists.

The only way to be confident that a particular putative de novo TRG is not merely

a rapidly evolving gene duplicate is to find evidence of how it emerged. If we can

identify homologous DNA region(s) in the species outside the clade from which a

gene has emerged (i.e. the outgroup species) and if these DNA regions are non-

coding, then we have the evidence that the gene is specific to this particular clade,

as well as information about the nature of the origination process. When a puta-

tive TRG has simply diverged beyond detection of its protein-coding homologs, no

homologous non-coding sequence will be found (although a syntenic homologous

coding sequence may be found upon close scrutiny), and so a false positive de novo

gene identification will be avoided. A false positive could, however, arise from a

horizontal gene transfer followed by pseudogenization in one lineage. Fortunately,

such cases can often be excluded when homology to the donor clade is detectable.

Both lack of donor sequence and pseudogenization in a member of the focal clade

are required to generate such a false positive, a scenario that in combination should

be reasonably rare. One important scenario to consider is when, following a gene

duplication, the ortholog in the outgroup is lost or diverges beyond detectable ho-
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mology. It is therefore important to consider all likely homologous DNA regions

in outgroup species, not only the single most likely region. One way to do this

is to check whether the identified region in the outgroup species is homologous to

any other regions in that genome. This is made relatively easy when the duplicated

DNA region contained flanking, better-conserved genes, such that local synteny in-

formation can be exploited.

Even with synteny, detecting homologous non-coding sequences can be difficult.

Non-coding regions of the genome are either under little evolutionary constraint,

or under constraint very different from that of protein-coding regions, depending

on their function or lack thereof. What constraint they have might apply to very

general properties, rather than to specific nucleotides at specific codon positions,

and hence might not be enough to prevent rapid degradation of detectable homol-

ogy [Frigola et al., 2017]. Most constraints acting on non-coding regions are not

sequence-specific, often they are related to general genome organisation and/or

methylation. This means that it is necessary to confine analysis to closely related

genomes in order to identify evolutionary origins of TRGs. In genomes that are

separated by larger evolutionary distances the sequence similarity between a de

novo gene and a homologous non-coding genomic region in another species de-

grades beyond detectability. Hence the oportunity to distinguish between genes

that emerged from previously non-coding genomic regions and genes that emerged

by divergence from previously coding genes is lost. In their pioneering work Jain

et al. [2019] introduced a measure of “evolutionary traceability” of a protein family

that quantifies the evolutionary distance beyond which homologous proteins can no
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longer be identified. For a protein of interest they collected its known homologs,

and used a multiple sequence alignment and an evolutionary tree of those sequences

to estimate the protein-specific indel rate and the parameter p of the geometric dis-

tribution characterising indel lengths. They also estimated these parameters for

each of the known Pfam domains in the protein. These parameters (both protein-

and domain-specific) were used to simulate the evolution of the protein of inter-

est. The “evolutionary traceability” of the protein was subsequently measured by

BLASTp at time steps of 0.1 substitutions per site. The advantage of this approach

is that it aims to model protein evolution in a plausible way, accounting for addi-

tional constraints on folding domains. The main, though admittedly unavoidable,

limitation of this approach is that the stringency of selecting homologous sequences

for protein-specific parameter estimation directly influences the estimate of “evolu-

tionary traceability” obtained. No similar work exists for homologous non-coding

DNA regions.

Some analyses restrict their search for putative TRGs to the set of already-annotated

protein-coding genes. Gene annotations are primarily based on ORF length, tran-

scription, and homology to known genes. Hence, a short TRG that has no previously

known homologs is likely to be missed by an annotation algorithm, despite the fact

that TRGs are expected a priori to be short. An alternative approach is to start with

all ORFs present in the genome and exclude the ones that have no evidence for

being functional. Previous studies used different types of evidence of functionality:

Blevins et al. [2017] analysed deep RNA sequencing and ribosome profiling data,
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Ruiz-Orera et al. [2018] combined that with proteomics data and single nucleotide

polymorphism analysis, while Vakirlis et al. [2017] developed a logistic regression

classifier trained on coding and non-coding sequences using such properties as

codon frequency, hydrophobicity and aromaticity scores and structural predictions

(secondary structures, transmembrane and disordered regions). However, TRGs are

expected to have a narrow expression profile [Wu and Knudson, 2018] and they

may have sequence properties distinct from well-studied protein families. The best

indication of functionality is sequence conservation [Graur et al., 2013], which is

by definition unavailable for single-species TRGs, even when they are functional.

There is thus a trade-off between false positives (non-functional ORFs) and false

negatives (true TRGs excluded from the analysis). There is thus a trade-off between

false positives (non-functional ORFs) and false negatives (true TRGs excluded

from the analysis). Beginning with annotated protein-coding genes tilts the balance

toward false negatives, while beginning with all ORFs tilts it toward false positives.

Regardless of how stringent or relaxed the requirements for evidence of function-

ality are, the resulting set of putative TRGs is unlikely to be both high confidence

and exhaustive, limiting the potential for novel biological insights. To advance our

knowledge about de novo TRGs, resource-intensive experimental investigations of

the most promising candidates are required.

Candidates need to be chosen from studies that prioritize avoiding false positives

over avoiding false negatives. For example, BSC4, which is found only in Saccha-

romyces cerevisiae has synthetic lethal knockouts [Cai et al., 2008]. This strong

functional evidence made it a good candidate for structural biology experiments,
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which showed that it has a characteristic three-dimensional fold [Bungard et al.,

2017]. Absent such direct experimental data as synthetic lethal screens, the best

indication of functionality is sequence conservation between several species [Graur

et al., 2013], which is by definition unavailable for single-species TRGs, even when

they are functional.

Several studies have taken an approach similar to ours to investigate the evolu-

tionary origins of putative TRGs (i.e. focusing on the evolutionary evidence of

how they emerged) in primates, insects and rosids [Toll-Riera et al., 2008, Zhou

et al., 2008, Wissler et al., 2013, Sun et al., 2015, Donoghue et al., 2011]. One

of the major limitations of this type of study is that TRG candidates are exten-

sively ruled out based on thinly justified a priori assumptions about TRGs, in some

cases discarding up to 61% of candidate genes [Vakirlis et al., 2017]. In partic-

ular, some studies excluded genes with more than one coding exon because “it

is difficult to distinguish the absence of coding potential due to frame-shifts and

stop codons from the alternative explanation of evolutionary change of intron-exon

boundaries” [Guerzoni and McLysaght, 2016]. It is also believed that the evolution

of both a long ORF and an intron splicing signal is highly improbable [Knowles

and McLysaght, 2009]. Interestingly, other studies excluded single coding exon

genes either to avoid promoter- or enhancer associated transcripts (PROMPTS and

eRNAs) [Ruiz-Orera et al., 2015] or to avoid possible contamination of TEs incor-

rectly annotated as genes [Toll-Riera et al., 2008]. Similarly, many studies excluded

genes whose length is below a certain threshold [Yang and Huang, 2011], genes
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with compositions too far from an average established protein-coding gene, and

genes that are evolving too fast [Vakirlis et al., 2017]. In the most extreme case,

Casola [2018] excluded TRG candidates which are present in several copies in a

genome due to a belief that young genes could not have had the time to duplicate.

Once they have identified TRGs, the second major limitation of these studies is

testing a set of candidates for each of the hypothesised mechanisms of origination

sequentially instead of looking holistically at the evidence available for each of the

genes to establish their evolutionary origin. De novo protein-coding genes might

be born within functional ncRNA, within introns or alternative frames of older

protein-coding genes, or from intergenic sequences. Despite our desire to classify

new genes into discrete categories, the evolutionary journey from an ancestral se-

quence to a new protein-coding gene might involve multiple steps, or vary along

the gene’s length. For example, TRGs might contain both previously non-coding

sequences and fragments of well-established genes. McLysaght and Hurst [2016]

proposed the classification of TRGs into several groups based on the proportion of

the sequence that has previously been under natural selection for protein-coding

properties. However, the distinction can blur, e.g. if previously protein-coding

genes are pseudogenised or rearranged into non-coding sequence (see a review by

Balakirev and Ayala [2003]), and are then resurrected as part of a TRG. While pre-

existing transcription may obviously be an advantage, most of the genome is likely

to be transcribed across relatively short evolutionary time in at least one cell type

[Neme and Tautz, 2016]. Non-functional transcripts of intergenic ORFs have been
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hypothesised to be a reservoir of genomic raw material that can increase organism’s

ability to adapt [Brosius, 2005]. On the other hand, intergenic ORFs have lower

%GC content, compared to alternative reading frames of existing genes that tend to

be GC-rich. Lower %GC content makes intergenic ORFs less suitable as a raw ma-

terial, because the polypeptides produced are more ordered and hence more prone

to aggregation. This is discussed in detail in the following papers [Basile et al.,

2017, Ángyán et al., 2012, Wilson et al., 2017, Casola, 2018, Foy et al., 2019].

1.2 Computational studies of genome regulation

A genome is a blueprint for life; the process of genome regulation allows a cell

to grow, function, and differentiate. Bulk RNA sequencing (RNA-seq) has been

used extensively to learn about the different ways in which cells respond to various

stimuli, and about the differences between tissues in multicellular organisms. While

bulk RNA-seq allows us to identify marker genes that are upregulated in certain

tissues or conditions, it does not capture the heterogeneity between individual cells.

As a result, we might observe two genes that are upregulated in a sample without

knowing that no one cell expresses both genes simultaneously. For this reason bulk

RNA-seq data is of limited utility for inferring gene regulatory networks and study-

ing cell differentiation pathways. The development of experimental techniques for

capturing gene expression profiles at a single cell level started with the pioneering

work by Tang et al. [2009]. The techniques for generating single cell RNA-seq

(scRNA-seq) data have been constantly improving ever since. The availability of
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scRNA-seq data created many opportunities for biological discoveries that were not

possible with bulk transcriptomics. To create a vivid impression of scRNA-seq an

analogy comparing it to a fruit salad is often used, as opposed to bulk RNA-seq that

is compared to a smoothie.

In this section I will first describe how scRNA-seq data is generated and how it is

used to answer different biological questions. Subsequently, I will catalogue various

sources of noise that contribute to the noisiness of scRNA-seq data and highlight

the types of information present in the data. With this I will highlight the need for

new computational methods to analyse scRNA-seq data, and the opportunities for

generative neural network applications. I will review the advantages and limitations

of recent efforts to apply generative neural networks to scRNA-seq data to set the

stage for my work in this area.

1.2.1 Single cell RNA sequencing

Single cell RNA-seq (scRNA-seq) captures the transcriptional state of a cell. This

transcriptional state is created by an underlying gene regulatory network in which

a limited number of regulators (transcription factors, cofactors, etc.) influence each

other and their downstream target genes. Many biological pathways that are active

in the cell at the same time, both related to the cell identity and to the current activ-

ity of the cell, result in a transcriptional state that is an entanglement of numerous

biological signals. The ability to measure the transcriptional state at a single cell
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resolution allows us to answer previously unanswerable biological questions and

poses previously unmet challenges of noisy compositional data. In this section I

will explain how scRNA-seq data is generated and what questions researchers aim

to answer with this data. I will provide a non-exhaustive overview of methods

developed for scRNA-seq data analysis aimed at addressing these questions with a

focus on showcasing the diversity of ideas behind the methods. For convenience

I will hereafter use “real gene expression level” to mean the number of transcripts

produced by a cell and “gene expression level” to mean the estimate produced by

scRNA-seq.

1.2.1.1 scRNA-seq experimental protocol

A typical scRNA-seq is shown in Figure 1.1. All scRNA-seq protocols start with

dissociating and isolating individual cells. This is followed by a library construc-

tion step - intracellular mRNAs are captured, reversetranscribed to cDNA and

labelled with cell specific barcodes. Many experimental protocols also label cap-

tured molecules with unique molecular identifiers (UMI) [Islam et al., 2013] - six

to eight nucleotide long random oligonucleotide barcodes attached to individual

cDNA molecules during sequencing library preparation. UMIs allow us to distin-

guish between sequenced copies of distinct molecules and copies arising through

PCR amplification. This is followed by a PCR amplification. The libraries are

then combined and sequenced to a required depth. There is a choice between two

types of sequencing techniques - fulllength mRNA sequencing and 3’ enrichment
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methods. After sequencing, the reads are demultiplexed to identify the cells of

origin and are mapped to the reference genome or transcriptome. This results in

read data. In UMIbased protocols the reads are further demultiplexed to produce

counts of captured mRNA molecules, thus resulting in count data free from PCR

amplification noise. See Ziegenhain et al. [2017] and Svensson et al. [2017] for a

comprehensive overview of different protocols.

1.2.1.2 Explosion of scRNA-seq data analysis methods

Analysis strategies for scRNA-seq data fall into two broad categories - cell centric

approaches and gene centric approaches. See Figure 1.2 for an overview of the

scRNA-seq data analysis strategies. Cell centric approaches are aimed at identi-

fying either cell types or cell trajectories. Clustering algorithms are usually used

for cell type identification. This approach is aimed at explaining the heterogeneity

in the data by categorising cells into non-overlapping groups. In data that cap-

tures cell trajectories - either differentiation trajectories or dynamic response to a

stimulus - cells cannot be divided into separate clusters and graph based methods

for trajectory inference are used instead. Both lines of investigation depend on

defining an association measure between the expression profiles - either a distance

or a similarity measure. Since most measures don’t work in 15000+ dimensions

(a typical number of genes in a dataset) Euclidean distances in a small number of

dimensions defined by principal component analysis (PCA) are often used. Gene

centric approaches are aimed at using the heterogeneity between the cells in the
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Figure 1.1: The steps in a typical scRNA-seq protocol. The figure is adapted from the work
by Islam et al. [2013].

data as a context in which gene expression is to be understood. These approaches

are focused on identifying the drivers of gene expression patterns - either through

differential expression analysis or gene regulatory network inference.

Regardless of what analysis will be performed, data is usually subjected to quality
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Figure 1.2: scRNA-seq data analysis strategies.

control and pre-processed first. See Luecken and Theis [2019] for a comprehensive

overview of typical scRNA-seq data quality control and pre-processing steps. After

pre-processing, the data is used as an input into an algorithm for performing a

specific analysis task. Numerous algorithms originally created for bulk RNA-seq

data have been re-purposed to be applicable to scRNA-seq data, and many more al-

gorithms have been designed specifically for scRNA-seq data. These methods have

been selectively reviewed [Bacher and Kendziorski, 2016, Camara, 2018, Tanay

and Regev, 2017] and exhaustively catalogued by many members of the single

cell community. The two main catalogues of scRNA-seq data analysis tools list

177 (https://github.com/seandavi/awesome-single-cell) and

485 (https://www.scrna-tools.org/) tools. Despite the number of tools

being well into hundreds, most studies analysing scRNA-seq data prefer to use

https://github.com/seandavi/awesome-single-cell
https://www.scrna-tools.org/
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established R packages that have been used in many previously published studies.

Seurat [Butler et al., 2018, Stuart et al., 2019] and Monocle [Trapnell et al., 2014,

Qiu et al., 2017b] are very popular. These packages perform many different anal-

ysis tasks and often preclude the user from using pre-processed data as input thus

retaining control over which pre-processing steps are performed.

1.2.1.3 Cell type analysis methods

Most cell type identification methods start with calculating a distance or a similarity

measure between all pairs of gene expression profiles in the dataset. The clusters

are subsequently identified by a clustering algorithm with or without an a priori

defined number of clusters, or by a manual inspection of the data visualised in two

dimensions using a dimensionality reduction algorithm. Popular clustering algo-

rithms like k-means are rivalled by community detection algorithms like knearest

neighbours which only consider neighbouring (i.e. similar) cell pairs as potentially

belonging to the same cluster. Unlike randomly initiated clustering algorithms,

community detection algorithms operate on a greatly reduced search space and are

therefore faster and more readily scalable to large amounts of data. To address

the challenges of defining a distance or a similarity measure in extremely high

dimensionality, Xu and Su [2015] proposed an algorithm based on the concept of

shared nearest neighbour which takes into account the surroundings of neighbour-

ing data points. To ensure the robustness of a clustering algorithm applied to noisy

data Kanter et al. [2018] proposed the “cluster robustness score”. It is calculated
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by adding increasing amounts of noise with zero mean and increasing variance to

the data and identifying clusters that can withstand the most noise. They showed

that manually identified biologically meaningful cell clusters have high robustness

scores, and clusters resulting from over-fitting are the ones most sensitive to noise.

Once the cells are assigned to clusters, cell types present in each cluster are iden-

tified via marker genes. Since the construction of clusters relies on a distance or a

similarity measure that is heavily influenced by highly expressed genes, all resulting

clusters by design have identifiable marker genes associated with them. Luecken

and Theis [2019] showed that they can identify significant marker genes even when

clustering random data generated by Splatter [Zappia et al., 2017]. PanoView [Hu

et al., 2019a] is an iterative clustering method that is aimed at identifying both

major and rare cell types simultaneously. It first identifies the most confident cell

clusters with a density-based clustering algorithm applied to the first three prin-

cipal components in the data, and then iteratively repeats the clustering with the

remaining cells in a new principal component space. The unsupervised methods for

data clustering ignore prior knowledge of marker genes and transcription factors

(TFs) associated with cell types known to be present in the data. Instead, Zhang

et al. [2019a] proposed a semi-supervised method that uses known marker genes

to identify cell types with an expectationmaximisation algorithm. If marker genes

are not known a priori, Aibar et al. [2017] proposed a method that first identifies

TFs and genes they might regulate and then clusters cells based on binary matrix of

“regulon” activity. Xie et al. [2019] proposed an alternative to clustering that does
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not involve a distance or a similarity measure - a fully connected neural network,

similar to the ones used for image classification, with the number of output nodes

equal to the expected number of cell types.

1.2.1.4 Cell trajectory analysis methods

Isolating and studying individual cell types was previously possible with bulk

RNA-seq, though at a much lower resolution. Capturing differentiation trajectories

has only become possible with the advent of single cell technologies. Trajectory

inference methods interpret scRNA-seq data as a snapshot of a dynamic process

and the properties of this process are investigated. At this point, it is important

to remember that not all biological pathways are regulated at the transcriptional

level. A cell’s “decision” to follow one of the downstream trajectories available to

it might be externally induced or stochastic in nature. In both of these scenarios the

gene expression profile does not contain the relevant information. A recent example

is work by Baser et al. [2019] that shows that differentiation of adult neural stem

cells in mice is post-transcriptionally controlled. They demonstrate that stem cells

translate abundant transcripts with little discrimination, the onset of differentiation

results in increasing regulation of the translation process, and hence differentiating

cells become increasingly dependent on post-transcriptional control.

Trajectory inference methods reconstruct the continuous process underlying the

data by identifying paths through the space spanned by the gene expression profiles.
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These paths are constructed by minimising the transcriptional differences between

neighbouring cells. Trajectory inference methods are based on the assumption

that the gene expression profiles change smoothly in time both within cells and

between the parent and the descendant cells. This assumption is reasonable when

studying processes that take place on time scales comparable with mRNA synthesis

and degradation, as the number of mRNA molecules varies smoothly at these time

scales. Another strong assumption made by trajectory inference methods is that

cells can never move backwards along the trajectory or switch path. The assump-

tions made by the methods limit the scope of questions that can be answered using

them. For example, an important question about differentiation is whether the cells

go through smooth, continuous progressions of transcriptional activity during the

fate transitions or whether the fate transitions occur in a discontinuous, stochastic

manner whereby signals modulate the probability of the transition events and cells

must actively “jump” to overcome barriers between discrete fates [Moris et al.,

2016]. This could mean that the fate transitions are characterised by a peak in gene

expression variability [Richard et al., 2016]. The methods that assume smooth,

continuous progressions of transcriptional activity during the fate transitions cannot

answer these questions. Most trajectory inference methods focus on genes with

smoothly varying expression levels. Identifying these genes is the only way to

find out whether the identified trajectories are related to differentiation, cell cycle

progression, circadian rhythm, or some other process. In cells, multiple biological

processes are inevitably occurring simultaneously and hence to isolate the trajecto-

ries of interest it is desirable to regress out the biological effects of other processes.
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Wanderlust [Bendall et al., 2014] was one of the first trajectory inference meth-

ods, only able to detect linear non-branching trajectories. Monocle [Trapnell et al.,

2014] revolutionised the field by introducing the concept of “pseudotime” and a tra-

jectory inference method that was able to produce trajectories that are bifurcating

(a single trajectory that splits into two) and multifurcating (a single trajectory that

splits into two or more trajectories). The concept of pseudotime is really simple - a

single cell is selected as a “root cell” and the rest of the cells are ordered in terms

of their distance from the root cell (based on a pre-defined distance or a similarity

measure). The root cell corresponds to “time = 0”. The groups of cells that are

x distance away from the root cell correspond to “time = x”, where x is contin-

uous. Pseudotime was intended as a quantitative measure of progress through a

biological process that allowed ordering of cells along the discovered trajectories.

Unfortunately, it is often interpreted as a proxy for developmental time, which it is

not. Monocle 2 [Qiu et al., 2017b] was subsequently built based on the hypothesis

that an explicitly defined trajectory structure will result in more robust pseudotimes

and branch assignments, but this method does not perform well in benchmarking

studies.

Another major stepping stone in this field was the application of diffusion maps

- work by Haghverdi et al. [2015] that was subsequently refined into Scanpy tool

[Wolf et al., 2018]. The concept of diffusion maps was first introduced by Coif-

man et al. [2005] as a nonlinear data summarisation technique. Dimensions in a
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diffusion map highlight the heterogeneity of different cell populations, thus empha-

sising transitions in the data. In the context of trajectory inference, each cell has

its diffusion radius around its measured position, and this cell’s ability to diffuse is

described by an isotropic Gaussian wave function. This leads to a definition of a

probability of one cell transitioning into another cell - the interference of the two

wave functions that is itself a Gaussian wave function. Haghverdi et al. [2016]

introduced the simple idea of plotting histograms of the pseudotime coordinates to

identify dense regions which likely correspond to preferred transcriptomic states

that are more stable than other transient states. Currently there are more than 70

trajectory inference methods available. A useful way to group these methods is

based on whether a specific trajectory topology is assumed by the algorithm or can

be suggested by the user. See Saelens et al. [2019] for a review of these methods

and a proposed way to classify them into different types, Cannoodt et al. [2016] for

a review of earlier methods and Saelens et al. [2019] for a recent comprehensive

benchmark of 45 methods.

1.2.1.5 Gene centric analysis methods

Gene centric approaches to scRNA-seq data analysis are aimed at identifying either

differentially expressed genes or gene regulatory networks. SCDE [Kharchenko

et al., 2014] and MAST [Finak et al., 2015] were the first tools developed specif-

ically for differential expression analysis in scRNA-seq. In contrast to similar

methods designed for bulk RNA-seq data, these methods try to account for the
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technical dropouts (genes that were expressed in the cell but not captured by the

experiment) in scRNA-seq data. SCDE is a Bayesian method that estimates the

likelihood of a gene being expressed in each sub-population of cells and the likeli-

hood of expression fold change between those sub-populations. MAST is a hurdle

model - a two-part generalised linear model that specifies one process for zero

counts (technical dropouts with non-detectable expression) and another process for

positive counts (strongly non-zero expressed genes). MAST adjusts for the fraction

of genes expressed in a cell interpreting it as a proxy for both technical and biolog-

ical sources of variation. edgeR [Robinson et al., 2009] and DESeq2 [Love et al.,

2014] are popular methods designed for differential expression analysis of bulk

RNA-seq data - they assume that the data follows a negative binomial count distri-

bution. Independent reviews by Jaakkola et al. [2016] and Soneson and Robinson

[2018] showed that they can be successfully applied to scRNA-seq data and are not

outperformed by tools designed specifically for single cell data.

Gene regulatory network inference methods are based on gene coexpression mea-

sures defined in terms of correlation, mutual information, or via a regression model.

Chen and Mar [2018] benchmarked three gene regulatory network inference meth-

ods developed specifically for scRNA-seq data (SCODE [Matsumoto et al., 2017],

PIDC [Chan et al., 2017], SCENIC [Aibar et al., 2017]) alongside five methods

developed for bulk RNA-seq data. They showed that the networks inferred by

different methods vary substantially and in general methods developed specifically

for scRNA-seq data infer networks that are less similar to each other. An indepen-
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dent review by Pratapa et al. [2019] benchmarked twelve gene regulatory network

inference methods and again showed that the networks inferred are considerably

inconsistent with each other. They also observed that methods that don’t require

pseudotime inference often performed better. In my opinion there are two main rea-

sons that can explain why most methods for gene centric scRNA-seq data analysis

perform poorly. First, most of these methods assume that gene regulatory relation-

ships are the same in all cells in the dataset, which might not be the case. Second,

none of these methods account for the fact that scRNA-seq data is compositional

data.

1.2.1.6 Discoveries powered by scRNA-seq data

Despite the challenges associated with scRNA-seq data analysis, this type of data

has yielded an impressive list of discoveries. Projects based on scRNA-seq data

have made important contributions in many different areas, from developmental

and regeneration biology to studies of disease, ageing, and the immune system.

In the field of developmental biology, Yu et al. [2019] studied pancreatic devel-

opment, Moignard et al. [2015] identified transcriptional programs that underpin

organogenesis, and Cao et al. [2019b] created the Mouse Organogenesis Cell Atlas

that provides a global view of developmental processes in mice. Nowotschin et al.

[2019] analysed all endoderm populations within the mouse embryo until midgesta-

tion and defined the transcriptional architecture that accompanies the emergence of

the first endodermal population and pluripotent epiblast lineage. Cao et al. [2019a]
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constructed cell-lineage maps and provisional gene networks for 41 neural subtypes

that comprise the whole larval nervous system of Ciona intestinalis. The review

by Griffiths et al. [2018] highlights other areas of developmental biology where

scRNA-seq data have made important contributions. In the field of regeneration

biology, Qin et al. [2019] classified cell states throughout the adult axolotl limb

regeneration process and Siebert et al. [2019] identified differentiation trajectories

for each cell lineage in Hydra - a cnidarian that is capable of whole-body regener-

ation from a small piece of tissue. In the field of immune system studies, Jordão

et al. [2019] characterised the mouse brain’s innate immune system and Masuda

et al. [2019] studied the endogenous immune system of the central nervous system

in mice during development and disease. Hodge et al. [2019] characterised the cell

types involved in human cerebral cortex architecture and identified their equivalents

in mice thus extending the potential impact of other studies conducted in mice. Paul

et al. [2015] studied production of all of the cellular components of blood and blood

plasma in mice and Guiu et al. [2019] showed that all cells of the mouse intestinal

epithelium contribute actively to the adult intestinal stem cell pool. The review by

Moignard and Göttgens [2016] highlights the contributions of scRNA-seq data to

our understanding of stem cell differentiation. Aizarani et al. [2019] constructed

the Human Liver Cell Atlas using samples from nine healthy human donors. Wang

et al. [2019c] identified gene signatures associated with immune cell exhaustion

during HIV infection and Velmeshev et al. [2019] found that pathways affected

by autism regulate both synapse function and neural outgrowth and migration. Hu

et al. [2019b] created a map of disease-related genes for human fetal retinal cells
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and highlighted the importance of retinal progenitor cells as potential targets of

inherited retinal diseases. de Soysa et al. [2019] identified mechanisms of disrupted

cardiac development, thus providing a framework for investigating congenital heart

defects. In the field of ageing, Dulken et al. [2019] characterised interactions be-

tween T cells and neural stem cells in old mice brains and Kimmel et al. [2019]

showed that while both cell types and tissue environments influence the magnitude

and the trajectories of ageing, the influence of the cell identity is predominant and

hence different cell types age in unique ways.

1.2.2 Noise and information in scRNA-seq data

As Laurence Hurst put it, “for my own part, the questions of interest remain under-

standing whether genomic activity is mostly so much noise and rubbish or all part

of some poorly understood but exquisite machine” [Cheifet, 2019]. In this section

I will first catalogue the sources of noise that are intertwined with each other and

with the signals in scRNA-seq data. I will review the types of methods often used to

mitigate these sources of noise and their limitations. Keeping the noise structure of

the data in mind, I will then discuss the signals present in scRNA-seq data. Finally

I will explore the implications of the often overlooked fact that scRNA-seq data is

compositional data.
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1.2.2.1 Sources of noise in scRNA-seq data

Compared to bulk RNA-seq data, scRNA-seq data is incredibly noisy. Sources

of noise that are present in the data can be broadly divided into two categories -

biological and technical. Biological sources of noise include properties of tran-

scription, cell-specific properties (cell size, cell cycle stage, mutational load, stress

response, etc.) and gene-specific properties. Technical sources of noise depend

on the experimental protocol used and the methods used for mapping the data to

a reference genome or transcriptome. Another often overlooked source of noise is

time. The mRNA content in the cell results not only from the current cell identity

and the cell activity programs currently executed, but also from the presence of

residual mRNAs from the previous cell state and/or activity, and the lag between

a cell making a decision and actually generating enough mRNAs to execute this

decision. See Figure 1.3 for a summary of the noise sources. There are two main

reasons why dealing with noise in scRNA-seq data is challenging. First, these many

different sources of noise are entangled and hence can not be identified individually.

Second, there is no ground truth and therefore no straightforward way to benchmark

methods aimed at mitigating the noise in the data.

The current expression level of a gene in a cell, i.e. the number of mRNA molecules,

is governed by transcription bursts and mRNA degradation. Even if the cell is main-

taining a constant level of expression of a gene, due to transcriptional bursting the

number of mRNAs fluctuates over time [Bartman et al., 2016]. See Raser [2005]

for an early review of studies of the stochastic and inherently random nature of
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Figure 1.3: Sources of noise in scRNA-seq data can be categorised in three groups.

gene transcription, and reviews by Raj and van Oudenaarden [2008] and Koster

et al. [2015] for a detailed overview of how the dynamics underlying transcrip-

tional regulation have been studied across different domains of life. Raj and van

Oudenaarden [2008] highlighted that characteristics of the stochastic process of

transcription depend both on the biophysical parameters governing the gene tran-

scription and on the gene regulatory network structure. [Donovan et al., 2019]

simultaneously tracked TF binding and transcription at one locus, revealing the

timing and correlation between the binding of a particular TF and the subsequent

transcription. Based on their results they proposed a model in which multiple RNA

polymerases initiate transcription during one burst as long as the TF is bound to

DNA, and bursts terminate upon TF dissociation. Li et al. [2018] experimentally

validated that for TFs that regulate transcription burst frequency, as opposed to
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amplitude or duration, weak binding is sufficient to elicit strong transcriptional

responses. They also showed how refractoriness of a gene after a transcription

burst enables rapid responses to stimuli, that might hinder the trajectory inference

method performance as the smoothness assumption is violated.

Other sources of biological noise in scRNA-seq data are cell properties that differ

amongst the cells in the dataset. These include cell size, cell cycle stage, mutational

load and produced stress response. Foreman and Wollman [2019] showed that in

fact the majority of expression variability results from differences between cells

and that the remaining variability is effectively at the Poisson limit, meaning that

the contribution of transcriptional bursting is relatively minimal. Buettner et al.

[2015] showed that cell cycle related variation in gene expression is not restricted

to known cell-cycle marker genes - 44% of moderately to highly variable genes

that have not previously been associated with the cell cycle show a significant cor-

relation with at least one known cell-cycle marker gene. Catala and Elela [2019]

showed that in Saccharomyces cerevisiae, instead of mRNA transcription, it is

the mRNA degradation that plays a lead role in promoting cell cycle-dependent

gene expression by triggering promoter-dependent co-transcriptional RNA degra-

dation. Gene expression plasticity is necessary for a cell’s ability to accommodate

for mutational load, and this plasticity adds to the noise. El-Brolosy et al. [2019]

studied transcriptional adaptation in response to mutations in zebrafish and mice,

and demonstrated that alleles displaying mutant mRNA decay also exhibit upreg-

ulation of genes that share sequence similarity with the mutated gene, suggesting
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a sequence-dependent mechanism. In contrast, alleles that fail to transcribe the

mutated gene do not exhibit transcriptional adaptation and give rise to more severe

phenotypes. Another major contributor of cell-specific noise is associated with a

cell’s stress response induced by the sample acquisition, the dissociation protocol

and subsequent manipulations. To avoid this, Saint et al. [2019] suggested snap-

freezing cells immediately after harvesting, thus fixing both the cell morphology

and the transcriptome. Beliakova-Bethell et al. [2013] and Richardson et al. [2015]

examined the effects of fluorescence activated cell sorting (FACS) separation on

cell transcriptomes and found no significant effect. The cell’s size, current cell

cycle stage and produced stress response are all linked to the cell’s identity and

hence cannot be disentangled, at least not in a straightforward way.

Several studies captured gene-specific properties that could be associated with

gene-specific noise sources in scRNA-seq data. For example, Horvath et al. [2019]

found that methylated genes in Arabidopsis thaliana have lower expression noise

levels than unmethylated genes. An additional source of noise comes into play in

analyses that use scRNA-seq data as a proxy for protein abundance levels, since

protein synthesis is a stochastic process that is not independent from mRNA synthe-

sis but is not directly correlated with it either. Apart from the number of transcripts,

also their stability should be taken into account. Newman et al. [2006] monitored

protein levels at a single-cell resolution in yeast and demonstrated that the noise

in protein abundance is dominated by the stochastic processes of mRNA produc-

tion and degradation. They also showed that there are protein-specific differences
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in noise that are strongly correlated with a protein’s mode of transcription and a

protein’s function. For example, proteins that respond to environmental changes

exhibit noisy levels of abundance, and proteins involved in protein synthesis exhibit

a much more stable level of abundance. Zarai and Tuller [2018] examined the effect

of competition for ribosomes in Saccharomyces cerevisiae and demonstrated that

periodically changing the mRNA levels of a single gene leads to the translation

of all genes being affected in a periodic manner. This non-independence between

genes and important roles that mRNA degradation plays, for example as shown by

Catala and Elela [2019] and El-Brolosy et al. [2019], results in unexpected addi-

tional sources of noise.

The main source of technical noise results from the limitation of the sequencing

protocols - only a small proportion of transcripts in a cell is sequenced in any given

experiment. Due to mRNA loss and degradation, and inefficiency in the reverse

transcription reaction, sometimes the proportion of mRNAs that are sequenced is as

low as 10% Qiu et al. [2017a]. Other sources of technical noise include mRNA cap-

ture efficiency, library size and quality, efficiency of reversetranscription to cDNA,

PCR amplification bias, specifics of the sequencing protocol used and sequencing

depth. For UMI-based protocols noise from PCR amplification is not a concern,

though UMIs themselves have been recognised as a source of noise as their 6-8

nucleotides long sequences are prone to sequencing errors. These errors lead to an

enrichment in the fraction of UMIs separated by small Hamming distances and all

associated with a single gene. To prevent these sequencing errors from influencing
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the count data, Smith et al. [2017] proposed a network-based method that leverages

the differences between the distributions of average edit distances amongst random

sets of UMIs and UMIs associated with a single gene. Properties of genes (length,

%GC content, etc.) also contribute to noise as they lead to gene-specific affinity

to mRNA capture and reversetranscription to cDNA. Data from fulllength mRNA

sequencing has to be normalised for gene length, while data produced with 3’ en-

richment methods is gene length independent. While in general rates of technical

dropouts are higher for lower expressed genes [Hicks et al., 2017], Kharchenko

et al. [2014] showed that the rates of technical dropouts as a function of expres-

sion magnitude is different for different cells. Noise associated with batch effects

occurs when cells are handled in distinct groups. The slightly different environ-

ments experienced by the cells in different batches result in differences in cell

transcriptomes, i.e. a biological source of noise. These differences also result in

variations in measurements of the transcriptome (efficiency of mRNAs capture and

reversetranscription to cDNA, library characteristics, PCR amplification bias and

sequencing depth), i.e. a technical source of noise. The main limitation inhibit-

ing many potential studies based on acquiring scRNA-seq data is that more often

than not the batch effects coincide with biological differences being studied, for

example different time points in development. Mapping of the reads to a reference

genome or transcriptome results in noise associated with reads mapping to several

genes. Most mapping tools simply discard gene-ambiguous reads, while methods

like RSEM [Li and Dewey, 2011] and Alevin [Srivastava et al., 2019] account for

both gene-unique and gene-ambiguous reads.
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Grün et al. [2014] analysed the sources of technical noise in scRNA-seq data and

showed that sampling noise is a dominant source for genes expressed at low levels,

while variability in sequencing efficiency due to batch effects is a dominant source

for genes expressed at high levels. Kim et al. [2015] used RNA spike-ins to quantify

how the observed variation in expression of a gene is split between technical and

biological noise. They concluded that a large fraction of the variation in the ex-

pression of a gene can be explained by technical noise sources, especially for genes

expressed at low levels, and only about 20% of observed variation is attributable to

biological noise.

1.2.2.2 Noise mitigation in scRNA-seq data

Numerous methods have been developed to mitigate individual sources of noise or

their combinations. As previously mentioned, since there is no ground truth there

is also no straightforward way to benchmark these methods. Often synthetic data is

the only way to assess the performance of a method. However, this assessment is

likely to be biased as synthetic data is not compositional, and it is generated based

on untestable assumptions about real data. Another problem is that the methods de-

veloped for mitigating noise in scRNA-seq data often themselves make untestable

assumptions about the data.

Mitigating the noise in the data first requires an assumption about the underly-
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ing distribution of the data. Which discrete distribution is the most appropriate for

scRNA-seq data is still an open question. An ideal distribution would not only fit the

data well but would also be interpretable, computationally tractable and compatible

with biologically plausible assumptions. The Poisson distribution is the simplest

distribution for handling count data, but it is not suitable for scRNA-seq data as

it assumes that the variance is equal to the mean. Non-zero values in scRNA-seq

data are overdispersed, i.e. their variance grows faster than the mean, and hence the

negative binomial is a better fit. Amrhein et al. [2019] examined the fit between the

mechanistic transcription-degradation models and commonly used discrete prob-

ability distributions. Their results indicate that the negative binomial distribution

arises as a steady-state distribution from a canonical two-state promoter-activation

model of transcription bursting. Grün et al. [2014] investigated the distribution of

transcript counts and found that the negative binomial distribution explained the

distribution for the largest fraction of genes. scRNA-seq data is heteroscedastic,

i.e. there are sub-populations that have different variances, and, more generally, the

distribution shape of the data is very different in different parts of its large dynamic

range. This suggests that a mixture of distributions would be most appropriate

for this data. For example, a continuous mixture of Poisson distributions where

the mixing distribution of the Poisson rate is a gamma distribution results in the

negative binomial. Lopez et al. [2018] showed that the addition of a zero-inflation

component is important for explaining a subset of the zero values in scRNA-seq

data, and that it captures important aspects of technical variability that are not rep-

resented by the negative binomial distribution. Grønbech et al. [2018] proposed an
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analysis based on Bayesian model selection. Their results show that both negative

binomial and zero-inflated negative binomial are a good fit for the data. Poisson-

beta distributions have been suggested as an alternative [Delmans and Hemberg,

2016, Vu et al., 2016]. Vu et al. [2016] showed that Poisson-beta distributions are a

good fit for scRNA-seq data and they can capture the transcription burst frequency

and size as well as the expression drop-off caused by technical noise. Amrhein

et al. [2019] advocate the use of the negative binomial distribution as it provides a

good trade-off between computational complexity and biological simplicity.

In this section I will cover the major categories of methods that have been proposed

for mitigating the effects of noise sources in scRNA-seq data. The most common

way to mitigate the noise in scRNA-seq data is to normalise the data. Often the

normalised values are calculated by dividing the values in the data by cell-specific

scaling factors based on the library size, often referred to as “cell size factors”. This

approach is based on the assumption that the total amount of mRNA is constant

across all cells in the data. McGee et al. [2019] showed that the performance of

normalisation methods is reduced when there are large changes in the total amount

of mRNA per cell. Another commonly used assumption is that the expression of

most genes does not vary across cells. For example, popular methods like DESeq

[Anders and Huber, 2010] and TMM [Robinson and Oshlack, 2010] assume that

about 50% of the genes are not differentially expressed between cells. An alterna-

tive assumption used by scPLS [Chen and Zhou, 2017] is that genes in the data can

be classified into two groups - a control set that is independent from the predictor
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variables and target genes that are of interest in this specific analysis. McGee et al.

[2019] showed that both of these assumptions result in misleading conclusions if

there are large shifts in expression profiles across the data. Linnorm [Yip et al.,

2017] is a recently introduced method that identifies genes with constant expression

throughout the data and calculates the normalisation parameters based on them.

Lun et al. [2016] proposed a different approach where expression values are first

summed across pools of cells, and then these summed values are used to compute

pool-based size factors, which are deconvolved to produce cell-based factors. The

deconvolution is based on normalising the cell pools against an average reference

and repeatedly splitting the cells into pools to create a linear system of equations.

Summing the gene expression values in every pool alleviates the presence of prob-

lematic zeros in the data. Again, this method is based on the assumption that less

than 50% of the genes can be upregulated in the data and less than 50% of them

can be downregulated. Azizi et al. [2017] argued that this type of normalisation re-

moves important cell type-specific information and proposed BISCUIT - a Bayesian

probabilistic model that learns cell-specific parameters by iteratively normalising

and clustering the cells, thus aiming to separate noise from biological signals. No

matter how sophisticated an algorithm, simply scaling the data is not sufficient for

normalisation as it does not address the systematic non-linear biases in the data.

To both normalise the data and stabilise the variance, thus removing the influence

of technical characteristics while preserving biological heterogeneity, Hafemeister

and Satija [2019] proposed a model based on the Pearson residuals from regularized

negative binomial regression, where the library size is used as a covariate in a gener-
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alized linear model. To address the tendency of an unconstrained negative binomial

model to overfit the data, they pooled information across genes with similar expres-

sion levels to obtain stable parameter estimates. Bacher et al. [2017] recognised

that scRNA-seq data shows systematic variation in the relationship between gene-

specific expression and sequencing depth, and a single cell-specific scaling factor

cannot accommodate for this. They showed that common normalisation methods

overcorrect weakly and moderately expressed genes and under-normalise highly

expressed genes. Instead, they proposed SCnorm that uses quantile regression to

estimate the dependence of a gene expression on the sequencing depth for every

gene. A second quantile regression is used to estimate scaling factors for each of

the groups of genes with similar dependence values. Within-group adjustment is

then performed using the estimated scale factors to regress out differences in the

sequencing depth while accounting for potential differences across groups of genes.

Adding spike-in transcripts to the lysate prior to library construction enables a dif-

ferent class of normalisation methods that utilise the observed expression values of

the spike-in transcripts with known abundance. The spike-in transcripts are added

as naked RNA, and thus they may be degraded and reverse transcribed to cDNA at

different rates from endogenous mRNAs. Because of that, the usage of spike-ins

has become less prevalent even though this technique was initially very popular.

McGee et al. [2019] pointed out that this criticism of spike-ins does not take into

account the compositional nature of the data. They showed that the performance

of downstream methods improves if spike-ins are used in a compositional manner

- even if the spike-ins have different properties from the endogenous mRNAs they
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help to minimise misleading conclusions from downstream analyses. Athanasiadou

et al. [2019] proposed a method using a spike-in count table together with a vector

of true spike-in abundance to estimate the library calibration factor, which is then

used to estimate nominal abundances of endogenous mRNAs in a cell. See Vallejos

et al. [2017] and Cole et al. [2019] for a comprehensive review of normalisation

techniques. Luecken and Theis [2019] cautioned that no perfect data correction

method exists and inevitably the values in the data will be over- and/or undercor-

rected, thus both reducing the background variation in the data and altering the

variances of the gene expression profiles in an unintended way. This hinders the

performance of the downstream analysis methods, as genes whose background vari-

ation is over-corrected are more likely to be identified as differentially expressed.

If experimental design is taken into account by the normalisation method, i.e. sig-

nals that do not conform to it are treated as noise, then normalisation leads to an

overestimate of the effect size. Luecken and Theis [2019] concluded that at least

for gene-centric analyses of scRNA-seq data normalisation should be avoided.

While data normalisation is aimed at mitigating technical noise, there have been

also numerous efforts to mitigate biological sources of noise, most notably the ef-

fects of the cell cycle phase. Buettner et al. [2015] showed that merely removing

the set of annotated cell-cycle marker genes from the data is not an option, since

cell cycle related variation in gene expression is not restricted to marker genes.

Their results suggest that 44% of moderately to highly variable genes that have not

previously been associated with the cell cycle show a significant correlation with
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at least one known cell-cycle marker gene. Instead, the expression values in each

individual cell should be normalised appropriately based on the identified cell cycle

phase of each cell. The cell cycle phase of a cell is usually identified based on the

expression of known marker genes, for example the ones listed by Macosko et al.

[2015]. Often this normalisation is performed either via a simple linear regression

against the cell cycle score or with a more complex mixture model. See Scialdone

et al. [2015] for a benchmark of methods for cell cycle phase prediction. McDavid

et al. [2016] argued that the cell size variation accounts for the transcriptomic ef-

fects generally attributed to the cell cycle phase, and hence normalising for these

effects based on the cell cycle score leads to the unintended biases in downstream

analysis. In general, at any given point in time many biological processes occur

within the same cell, and these processes are not independent from each other.

Therefore, correcting for one process may unintentionally mask the signal of an-

other. Luecken and Theis [2019] suggested that regressing out several sources of

technical and/or biological noise should be performed in a single normalisation step

that accounts for dependences between these covariates. They cautioned against

performing several normalisation steps in a sequential manner.

As discussed earlier, more often than not the batch effects in the data coincide

with biological differences being studied. This means that a batch effect correction

method should be able to distinguish between variation in the data that is attributable

to batch effects - which is an entanglement of both biological and technical sources

of noise - and variation that is attributable to properties of interest. Similarly to data
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normalisation, simply scaling the data cannot mitigate the non-linear batch effects.

Any batch effect correction method that uses all cells in a batch to fit the batch

parameters will confound the batch effect with biological differences being stud-

ied. The two most popular methods for batch effect correction are Seurat [Butler

et al., 2018] and MNN [Haghverdi et al., 2018]. Seurat uses canonical correlation

analysis to learn a shared gene correlation structure that is conserved between the

batches. It then identifies rare populations of cells that may be non-overlapping

between the batches, i.e. the cells that cannot be well described by this shared gene

correlation structure. The method based on mutual nearest neighbours (MNN) pro-

posed by Haghverdi et al. [2018] does not rely on equal population compositions

across batches; it is based on a much weaker assumption that there is at least one

cell sub-population that is shared between the batches. See Büttner et al. [2018]

for a comprehensive benchmark of batch effect correction approaches. They pro-

posed a k-nearest-neighbour batch-effect test for quantification of batch effects and

used it to assess the methods. Recently several interesting new methods have been

proposed. Stanley et al. [2018] introduced an approach based on diffusion maps

that aligns the batches onto a shared data manifold. Gong et al. [2019] proposed

a method based on a simple assumption that the cells from different batches that

are mutually close to each other are more likely to belong to similar cell types.

It is an improvement on the method proposed by Haghverdi et al. [2018] where

the distances between cells from different batches are compared to the background

distribution of cell distances (the null model) instead of being considered in isola-

tion. Wang et al. [2019d] proposed BERMUDA - an autoencoder based method.
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Prior to using the data to train the autoencoder, it clusters the cells in each batch

individually and identifies similar clusters across different batches. The autoen-

coder’s loss function consists of two parts - the reconstruction loss and the transfer

loss. Similar clusters from different batches are merged by minimising the transfer

loss, which is calculated by estimating the differences between the distributions of

low-dimensional embeddings corresponding to the pairs of similar clusters across

different batches. BERMUDA does not correct the data, instead it provides a latent

space embedding of the data that can be used for downstream analysis as it is free

from batch effects.

A notable property of scRNA-seq data is the abundance of technical dropouts

present in the data - the genes that were expressed in a cell but not captured by

the experiment. The amount of technical dropouts is minimal in bulk RNA-seq

data and hence new methods had to be developed specifically for scRNA-seq data.

These methods have two challenges - distinguishing between technical dropouts

and the real lack of expression, and imputing appropriate expression values for

the technical dropouts. An appropriate expression value is often defined as the

mean of the distribution from which this value would have originated, conditional

on the gene being expressed. The dropout imputation methods can be broadly di-

vided into two groups - data smoothing based methods and model based methods.

Data smoothing based methods aggregate information from similar cells - MAGIC

[van Dijk et al., 2018] using data diffusion, and knn-smooth [Wagner et al., 2017]

using k-nearest neighbour smoothing algorithm. Model based methods make an
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assumption about the distribution of the data - SAVER [Huang et al., 2018] imputes

all zero values in the data, while scImpute [Li and Li, 2018] aims to distinguish

between technical dropouts and genes that are not expressed, and only impute the

values of technical dropouts. Andrews and Hemberg [2019] benchmarked several

data smoothing and model based methods, as well as an autoencoder based method

DCA [Eraslan et al., 2019]. To evaluate the risk of generating irreproducible dif-

ferentially expressed genes and false positive correlations between genes, they used

simulated datasets and real datasets with their values permuted. They showed that

data smoothing based methods generated many false positives, while the perfor-

mance of model based methods varied depending on the diversity of cell types

in the dataset. Andrews and Hemberg [2019] highlighted SAVER as the method

that is least likely to generate false or irreproducible results. I will summarise

five methods that were not included in this benchmark, mostly due to their recent

publication date, to demonstrate the breadth of diversity in approaches that have

been suggested for addressing the technical dropout problem. RESCUE [Tracy

et al., 2019] generates many subsets of highly variable genes by sampling with

replacement, and subsequently clusters the cells based on the corresponding gene

expression signatures in each of the subsets. In contrast to statistical methods, Chen

and Varshney [2019] proposed a geometric method based on optimal recovery -

an approximation-theoretic approach for estimating linear functions of a signal.

netSmooth [Ronen and Akalin, 2018] is a method based on network diffusion; it

uses priors for the covariance structure of the gene expression profiles in order to

smooth the expression values. DeepImpute [Arisdakessian et al., 2018] is a method
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based on a deep neural network; it uses dropout layers to learn the patterns in the

data. DECODE [Mohammadi et al., 2018] uses co-occurrence of genes in the cells

to infer a gene dependency network. The local network neighbourhood of each gene

is subsequently used to distinguish between technical dropouts and genes that are

not expressed. To impute technical dropouts, DECODE builds a predictive model

based on activity patterns of each gene’s most informative neighbours. Despite the

growing arsenal of methods for dropout imputation, fundamentally all of them can

be divided into two groups. The methods in the first group aim to impute only

zero values in the data, and to do that they use the information in the non-zero

values. This results in corrected data that has unintended statistical properties.

Prior to dropout imputation, small non-zero expression values in a cell are likely

to correspond to genes that are expressed at a higher level than the genes with ex-

pression values equal to zero. After the imputation, the zero values of the technical

dropouts have increased, while the values corresponding to lowly expressed genes

that were detected have not. An intuitive property of the data - that genes with

higher expression values are likely to have been more highly expressed in a cell -

is now distorted. The methods in the second group avoid this by not limiting the

data correction to zero values only. In these methods, information is pooled from

all values in the data, and based on that information many or most values in the

data (not only zero values) are corrected. This is problematic in a different way. To

circumvent the limitations inherent to both groups of methods, Leote et al. [2019]

proposed a method for improving dropout imputation quality by integrating the

information about relationships between genes learned from available data other
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than the scRNA-seq dataset being analysed.

The currently available methods for data normalisation, cell cycle and batch effect

mitigation, and technical dropout imputation are imperfect. Let us make an un-

realistic assumption that perfect methods do exist. Using them would result in a

scRNA-seq dataset that is free from cell- and gene-specific effects, as well as cell

cycle and batch effect and contains no technical droputs. This dataset would still

be very noisy because of the stochastic processes that are ongoing in a cell (mRNA

synthesis and degradation, etc.) and because of the stochastic nature of all steps

in the protocol (mRNA capture, mRNA reversetranscription to cDNA, etc.). To

address this, data denoising methods have been proposed. These methods aim at

capturing cell population structure and gene interaction networks from the data, and

using them to infer cell- and gene-specific parameters for the denoising process.

Several methods that fit a probabilistic model for each gene measurement in each

cell are available [Risso et al., 2018, Pierson and Yau, 2015, Prabhakaran et al.,

2016]. They are based on the assumption that a generalised linear model can be

used to accurately map onto a lower dimensional manifold underlying the data.

These methods correctly treat the data as overdispersed count data and account for

technical dropouts. The usual limitations apply - the performance of these methods

cannot be benchmarked in a straightforward way due to lack of ground truth, and

they make untestable assumptions about the data, for example that the relationship

between a data point and its representation in a lower dimensional space is lin-

ear. Additionally, scaling these methods to large datasets is often computationally
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infeasible. Recently Peng et al. [2019] proposed SCRABBLE - a method based

on the mathematical framework of matrix regularisation. This method optimises a

complicated objective function that consists of three terms. The first ensures that

imputed values for genes with non-zero expression remain as close to their original

values as possible. The second ensures that the rank of the imputed expression

matrix is as small as possible, thus incorporating the assumption that only a limited

number of distinct cell types is present in any given dataset. The third uses a user

supplied bulk RNA-seq dataset that originates from the same species and the same

tissue. This third term ensures the consistency between the average gene expres-

sion of the aggregated imputed data and the average gene expression of the bulk

RNA-seq dataset. In contrast to these numerous efforts to denoise the data, several

other methods assumed a different strategy. They simply binarise a scRNA-seq

dataset, thus retaining only the noise-free information about which genes have been

detected in a cell. Li and Quon [2019] proposed scBFA - a method for cell type

identification and trajectory inference from binarised data. This method is moti-

vated by their observation that dimensionality reduction based only on the gene

detection measurements performs better than if both detection and quantification

measurements are used. It assumes that due to the bad signal to noise ratio, gene

expression quantification is uninformative; gene detection is relatively less noisy.

Qiu [2018] proposed a cell clustering method based on evaluating the co-occurrence

between pairs of genes using the chi-square statistics. Xie et al. [2019] proposed a

method based on a neural network trained on binarised data.
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1.2.2.3 Information in scRNA-seq data

The scRNA-seq data contains gene expression profiles of individual cells. Each

expression profile is an entangled mixture of expression patterns associated with

cell identity and numerous activity programs ongoing in a cell, for example cell di-

vision, differentiation, responses to environmental cues, etc. The expression of each

gene is governed by a limited number of regulators (TFs, cofactors, etc.) through

a gene regulatory network. This is an evolved network, which means that its prop-

erties might be different from the expectations associated with a designed network.

Expression values in the data correspond to the number of experimentally captured

transcripts from a single cell, but, due to the limitations of currently available pro-

tocols, the proportion of transcripts that are sequenced is sometimes as low as 10%

Qiu et al. [2017a]. Consequently, the expression values cannot be analysed directly

as absolute measures. There are three (overlapping) types of information contained

in a single expression profile. First, an expression profile contains a non-exhaustive

list of expressed genes, but many genes that are not highly expressed are missing

from this list. Second, it contains a (more complete) set of highly expressed genes,

for which it happens rarely that not a single transcript is captured. Third, it contains

relative information based on the assumption that more highly expressed genes are

likely to have more sequenced transcripts associated with them. Analysis methods

that are able to pool the information from numerous expression profiles contained

in a dataset are essential for interpreting the scRNA-seq data.

The fundamental property of the scRNA-seq data is that it is compositional. This
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property is rarely acknowledged, and the majority of the methods applied to the

scRNA-seq data do not account for it. A compositional data point can be repre-

sented by a positive real vector. The space spanned by these vectors is called a sim-

plex. The information contained in a data point is a set of ratios between the compo-

nents. Therefore, a compositional data point is invariant to multiplication by a posi-

tive constant. This property implies that the sum of the values in a data point is unin-

formative. Aitchison [1982] published the landmark paper relating to compositional

data. He argued that the statistical analysis of compositional data is inhibited by the

lack of applicable concepts of independence, and the lack of rich enough parametric

classes of distributions in the simplex. An R package for compositional data analy-

sis [van den Boogaart and Tolosana-Delgado, 2008] and an unpublished scikit-bio

Python package (https://github.com/biocore/scikit-bio) provide

computational frameworks for working with compositional data that were previ-

ously not available.

Fernandes et al. [2014] was one of the first to advocate for treating all biological

data composed of counts of a large number of features as compositional data, and

not as count data. Similarly, Quinn et al. [2017] produced work aimed at fos-

tering the adoption of methods suitable for compositional data in biological data

analysis. Most recently McGee et al. [2019] highlighted that scRNA-seq data is

compositional, and that this implies that the sum of values in an expression profile

is uninformative. The sum is an artefact of the sampling procedure, and is unre-

lated to the absolute number of transcripts in a cell. The scale of the distances

https://github.com/biocore/scikit-bio
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between the values in an expression profile is not absolute but relative, and hence

is only meaningful proportionally. This suggests that the scRNA-seq data analysis

methods that interpret values in the data as absolute counts of mRNAs, even if they

account for a complex noise structure in the data, are unlikely to produce valid

results. Fernandes et al. [2014] cautioned that properties of compositional data

are very different from datasets composed of numbers that can take any value, and

hence standard statistical methods that assume the independence of the underlying

observations are not applicable.

An important property of compositional data is that values in a data point, an ex-

pression profile in this case, are not independent. The value of one feature restricts

the values of other features. An increase in the observed expression of one gene,

i.e. more of its transcripts being sequenced, leads to less of other gene transcripts

being sequenced even if the expression levels of all genes stay constant. This has

two implications. First, the expression values are not directly comparable between

genes in a cell or between cells. Second, observed correlations between genes

might be simply a consequence of this non-independence property. To illustrate

this, Aitchison [1982] gives an example where changing the abundance of one

feature in a composition results in correlation between the others changing from

strongly positive to strongly negative. This non-independence between the values in

an expression profile has crucial implications when some of the genes are removed

from the analysis. Aitchison [1982] showed that taking a sub-composition of a

compositional data point often results in a completely different interpretation of the
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correlation structure. Fernandes et al. [2014] noted that this effect is problematic

because popular 16S tag-sequencing analysis tools require that reads falling below

a certain threshold to be filtered out, and because ribosomal transcripts in RNA-seq

are often removed either chemically or computationally. Most scientists, this author

included, don’t have an intuition for compositional data. It is tempting to interpret

an observed value in an expression profile simply as a random variable drawn from

the binomial distribution, where the number of trials (n) is the total number of

gene’s transcripts present in a cell, and the success probability for each trial (p) is

the capture probability conditional on cell-, gene- and protocol-specific properties.

It is important to remember that this is a wrong way to think about the scRNA-seq

data.

Identifying relationships between variables, genes in this case, in compositional

data is tricky. Lovell et al. [2015] cautioned that it is essential that only the ratios of

the expression values are regarded as informative, and that measures of association

like Pearson correlation, rank correlation and mutual information are inappropriate.

Figure 1 of their paper [Lovell et al., 2015] illustrates that the correlations be-

tween relative abundances contain absolutely no information about the relationship

between the absolute abundances that gave rise to them, due to the many-to-one

mapping. They show how three gene pairs with correlations between their absolute

abundances equal to +1, -1 and 0 all can look the same when only their relative

abundances are measured. Based on the logratio variance Var(log(x/y)) originally

proposed by Aitchison [1982] as a measure of association for variables that carry
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only relative information, Lovell et al. [2015] proposed a related “goodness-of-fit

to proportionality” statistic. This approach focuses on “strength” of proportionality

and thus allows for comparison of relationships between different pairs of mR-

NAs without testing the hypothesis of proportionality directly. Lovell et al. [2015]

showed that it can be used to meaningfully and interpretably assess the extent to

which a pair of random variables are proportional. Erb and Notredame [2016]

showed in a mathematically rigorous way that, when dealing with compositional

data, choosing a single reference gene (whose expression is assumed to remain un-

changed) as a scaling factor introduces spurious proportionality amongst the other

genes. I believe that the fact that gene-centric scRNA-seq data analysis methods

ignore the properties of compositional data is the reason why these methods per-

form poorly when benchmarked. Until mathematical and statistical theory about

compositional data is developed (which would be a monumental scientific effort), I

do not see the opportunities for gene-centric scRNA-seq data analysis.

1.2.2.4 Association measures

One of the main challenges associated with scRNA-seq data that gets almost no at-

tention in the literature is finding a measure of association between two expression

profiles. All scRNA-seq data analysis methods that don’t rely on machine learning

techniques instead rely on an association measure that can be calculated for any pair

of gene expression profiles. An association measure can be either a distance or a

similarity, or a dissimilarity (often defined as 1 - similarity). The Euclidean distance
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is a very popular choice of association measure, despite the fact that it is guaranteed

to fail in a high dimensional setting of gene expression profiles that often include

20000 genes or more. Beyer et al. [1999] explored the effect of dimensionality on

the “nearest neighbour” problem. They showed that as dimensionality increases,

the distance to the nearest data point approaches the distance to the furthest data

point, and that this effect can occur already after 10-15 dimensions. Ronan et al.

[2016] showed in an intuitive way why high-dimensionality of the data makes all

points roughly equidistant from one another when using common distance metrics

- three standard deviations cover 99.7% and 99.2% of the data in 1 and 3 dimen-

sions respectively, the value drops to 97.3% in 100 dimensions and to 6.7% in 1000

dimensions.

The field of science concerned with scRNA-seq data analysis is very new, but the

problem of defining an association measure between two highly dimensional pro-

files with many zeros is not new. For many decades ecologists have been looking

for the best ways to compare habitats, where each one is characterised by a profile

of numbers of spotted individuals from a long list of all species considered in a

study. The properties of this type of data are very similar to scRNA-seq data - it is

compositional data and the number of observed individuals (i.e. captured mRNAs)

is expected to be much lower than the actual number. Most notable contributions

include the work by Chao et al. [2004] that proposed a way to adapt Jaccard and

Sorensen indices to account for species abundance, and the work by Clarke et al.

[2006] that developed a zero-adjusted BrayCurtis coefficient. Despite the hope that
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they might, these measure do not perform very well when applied to scRNA-seq

data. I found a single example of Bray-Curtis similarity measure being used in a

scRNA-seq data analysis method [Kharchenko et al., 2014].

Instead of trying to define an association measure in 20000+ dimensional space, it

is desirable to reduce the number of dimensions. The simplest way to do so is to

reduced the number of genes that are considered. Choosing a small set of highly

variable genes is a popular approach, but it has been shown that methods for highly

variable gene discovery are often not reproducible and produce inconsistent results

[Yip et al., 2018]. An alternative approach is based on the manifold assumption -

the assumption that high dimensional scRNA-seq data has a much lower intrinsic

dimensionality. This assumption is driven by the fact that the space of biologically

possible cellular states is much smaller than the space of all possible combinations

of gene expression levels. This lower-dimensional manifold is thought to arise

from the constraints of the underlying gene regulatory network. To find this lower-

dimensional manifold, a dimensionality reduction method is required. For example,

Burkhardt et al. [2019] used the Euclidean distance between 100 principal compo-

nents (PCs) as a distance metric. However, it is well understood that principal

component analysis (PCA) seeks to find the direction of the largest variance, and

hence each component is a mixture of biologically unrelated processes [Tan et al.,

2016]. These components can not be interpreted in a biologically meaningful way.

Alternative methods for dimensionality reduction from thousands to a manageable

number have been developed since DNA microarrays, many of those have recently
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been applied to scRNAseq. Different latent variable models, both unsupervised

(such as principle component analysis [Misra, 2002], independent component anal-

ysis [Engreitz et al., 2010], and non-negative matrix factorisation [Kim, 2003]) and

semi-supervised (network component analysis [Liao et al., 2003], semi-supervised

non-negative matrix factorisation [Gaujoux and Seoighe, 2012]) have been applied

to analyse transcriptomic data, with an aim to represent the states of latent pathways

using latent variables.

Kim et al. [2018] compared different similarity metrics and their influence on

scRNA-seq data clustering. They evaluated distance measures (Euclidean, Man-

hattan and maximum distances) and similarity measures (Pearson and Spearmans

correlation) by measuring the correspondence between the known cell clusters and

the cell clusters computed using these measures. Their results demonstrated the

importance of a similarity metric. They concluded that correlation-based sim-

ilarity measures performed better on scRNA-seq data than distance measures.

Subsequently, Skinnider et al. [2019] evaluated 17 measures in a similar manner.

They showed that Euclidean distance (a measure widely used in many scRNA-

seq data analysis methods) is one of the worst performing measures, while the

proportionality-based measures performed the best, in line with the reasoning of

Quinn et al. [2017]. In attempt to avoid the problems with an association measure,

Faust et al. [2012] employed an ensemble approach. They computed Pearson and

Spearmans correlation, as well as Bray-Curtis and Kullback-Leibler measures of

dissimilarity, and defined an association measure based on all four of the com-
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puted metrics. Needless to say that a combination of different metrics that do not

relate to the underlying structure of the data is expected to be meaningless. A

promising new direction is based on the work by Coifman and Lafon [2006] that

shows that many dimensionality reduction methods are special cases of a general

framework based on diffusion processes. The work by Wolf et al. [2018] is the first

successful example of applying diffusion distances in a trajectory inference method.

In my opinion, the main criterion for a suitable association measure should be as

follows. Given two identical copies of the same cell (which of course is impossible),

the association measure should show that the distance between the two correspond-

ing expression profiles is zero, or at least much smaller than a distance to any other

cell. I was unable to construct such a measure. In general, it is unreasonable to as-

sume that a single value of an association measure will be useful for any subsequent

analysis. In terms of biological interpretation, an association measure between two

cells can be defined as the relatedness of the two cell types, the overlap between the

set of processes currently ongoing in the two cells, the similarity of the conditions

the two cells are exposed two, etc. In my work I will propose a novel approach to

defining an association measure. The main idea of this approach is to first reduce

the dimensionality of the data using machine learning and subsequently select a set

of generated dimensions appropriate for a particular type of downstream analysis.
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1.3 Intended contribution of my work

The intended contribution of my work on de novo gene evolution is identifying

the best candidate genes for experimental investigation, since this field is at the

limits of what can be achieved computationally. I aim to strike the balance between

evolutionary distance and proximity, that enables the inference of functionality and

the identification of the evolutionary origins respectively. By identifying the evolu-

tionary origins of candidate genes I intend to both validate their de novo origin and

improve our understanding of how de novo genes emerge.

The intended contribution of my work on applications of generative neural net-

works (GNNs) to single cell RNA sequencing (scRNA-seq) data is to propose a

new method that could address the limitations of existing methods discussed in this

chapter. Instead of comparing autoencoders with a simple yet remarkably useful

Principal Component Analysis (PCA), that is used extensively to reduce the dimen-

sionality of scRNA-seq data, I start from the mathematical framework of PCA and

modify it in simple steps to show the link between the familiar method and the

newly adopted GNNs. I aim to provide a useful assessment of the information flow

through an autoencoder and a comprehensive analysis of a latent space embedding

created by an autoencoder. Using the knowledge gained, I intend to explore the

constituents of the process of training an autoencoder on the scRNA-seq data - the

internal architecture of the autoencoder, the dynamics of the autoencoder training,

the data itself and the inherent noise in the data and randomness of the neural net-

works.
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I intend to provide methods that are able to analyse scRNA-seq data, without

making assumptions about the data that are fundamentally flawed. The prioritised

properties of the proposed method are scalability and reproducibility. The amount

of scRNA-seq data being generated is growing, and so are the opportunities to

integrate previously generated data. Therefore methods that are able to perform the

analysis on streaming data and take advantage of GPU-accelerated computations

are essential. My work is aimed at enabling better outcomes of future studies based

on scRNA-seq data and at contributing to the adoption of clinical applications of

this type of data, which is currently inhibited by the lack of reproducible and assess-

able analysis methods. Pioneering work by Kort et al. [2019] included scRNA-seq

analysis of a diverse group of 38 critically ill patients experiencing circulatory col-

lapse as a common endpoint to wide ranging diseases and demonstrated the clinical

applicability of this data. The contribution of my work is designed to grow in

the future - as single cell technologies are developing rapidly and using machine

learning is becoming a dominant strategy for analysing highly dimensional data and

integrating different modalities of the data to foster biological discovery.



Chapter 2

Evolutionary origins of TRGs in

Drosophila subgenus

This chapter investigates the evolutionary origins of de novo taxonomically re-

stricted genes (TRGs) in Drosophila subgenus. I chose this clade because it is

experimentally tractable, good quality genome assemblies of five closely related

species are available and these genomes are compact, ∼140Mb. My approach was

based on conservative but strongly justified criteria to identify putative de novo

genes among annotated protein-coding genes that have homologs in at least two of

the three species in the simulans-sechellia-melanogaster clade. I aimed to avoid

genome sequencing and assembly artefacts by focussing on de novo taxonomically

restricted gene families (TRGFs) instead of singleton TRGs. I looked for TRGFs

that emerged after the split of the simulans-sechellia-melanogaster clade from the

yakuba-erecta clade and before the speciation of D. simulans and D. sechellia. I

used open reading frame (ORF) conservation across several species as a proxy for

functionality under the selected-effect definition [Graur et al., 2013], as the half-life
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of a non-functional ORF is small given the probability of acquiring a stop codon

by chance. A dN/dS signal of selection would be still stronger evidence for func-

tionality, but short sequences in three closely related species do not contain enough

information to reliably distinguish deviations from dN/dS = 1. First, because only

2 to 3 sequences are available, i.e. a very small sample size that is not statistically

significant. Second, because these 2 to 3 sequences are also very closely related and

have very little diversity. The contributions made in this chapter are as follows:

• A list of high confidence protein-coding genes that emerged de novo in

Drosophila subgenus

• A detailed discussion about the types of information contained in closely re-

lated genomes and how this information can be best used to guide future

experimental studies

2.1 Materials and Methods

2.1.1 Data

The genome assemblies for D. melanogaster, D. simulans, D. sechellia, D. yakuba

and D. erecta were downloaded from RefSeq [Haft et al., 2017] along with the

genome annotations [O'Leary et al., 2015]. The completeness of the protein sets

was assessed using BUSCO [Waterhouse et al., 2017], using 2799 Hidden Markov

Models (HMMs) of single-copy orthologs found in >90% of species in the order

Diptera. Table 2.1 summarises genome statistics for each species.
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Table 2.1: Genome assemblies of Drosophila subgenus species used in this study.

Species (RefSeq assembly accession) Assembly size (Mbp) Molecule count N50 (Mbp) Proteins BUSCO (%)
D. simulans (GCF 000754195.2) 124.96 7 0.45 14179 98.6%
D. sechellia (GCF 000005215.3) 166.59 1 0.042 16467 92.2%
D. melanogaster (GCF 000001215.4) 116.52 8 19.48 13916 99.3%
D. yakuba (GCF 000005975.2) 165.71 8 0.12 14824 98.4%
D. erecta (GCF 000005135.1) 152.71 0 0.45 13605 99%

2.1.2 Homology predictions

I used OMA v2.2.0 implementation of the OMA algorithm [Altenhoff et al., 2017]

with default parameters to infer groups of homologous genes across six genomes:

five Drosophila subgenus species and D. ananassae as an outgroup. All the genes

annotated as protein-coding in the assemblies described above were used, regard-

less of their length. Genes as short as 11 amino acids were included. I selected

orthologous families with genes in at least 2 of the species in the simulans-sechellia-

melanogaster clade and no genes outside this clade as putative TRGFs for further

analysis. To investigate the evolutionary origins of these putative de novo TRGFs,

I used D. yakuba, D. erecta, D. ananassae, D. suzukii, D. pseudoobscura and D.

miranda as outgroup species. Only in D. yakuba and D. erecta the sequence con-

servation was sufficient to make any conclusions. All species whose proteins are

part of RefSeq database were used to validate that putative de novo TRGFs don’t

have homologs outside of clade of interest.

2.1.3 Validation of putative TRGFs

Putative TRGFs were first validated with sequence similarity searches in amino acid

space against all non-redundant proteins in the RefSeq database, using BLASTp

v2.7.1+ [Camacho et al., 2009] with default parameters (word size equal to 3, BLO-



96 Chapter 2. Evolutionary origins of TRGs in Drosophila subgenus

SUM62 amino acid matrix, no sequence masking). All hits with e-value ≤ 1e−03

and covering ≥ 50% of the query were considered. If every gene in a putative

TRGF had at least one hit to the species outside the clade, the family was removed

from further validation. To identify the presence of known protein domains, I used

putative de novo TRG sequences to search against the Pfam v31 database [Finn

et al., 2015] of HMMs of known protein domains. I used HMMER v3.1b2 [Eddy,

2011] to perform these sequence searches against HMMs. If a gene in a putative

TRGF had a hit to any of the domains in the Pfam database, the family was removed

from further validation.

Remaining putative TRGFs were validated with sequence similarity searches in

nucleotide space against the five genomes in Drosophila subgenus, using BLASTn

v2.7.1+ [Camacho et al., 2009] with default parameters (word size equal to 7,

maximum number of target sequences equal to 500, searching on both strands).

I did not use tools like FASTA3 [Pearson, 2000] that take into account synony-

mous codons or amino acid similarity because the homologous DNA sequences are

protein-coding in some species but not the others. BLASTn makes no additional

assumptions about the evolutionary constraints specific to the query sequence, and

hence is most suitable tool for this problem. For each gene I used both the whole

gene sequence and the set of coding sequences (CDSs) as a query. This approach

ensures that hits to even very short CDSs are retained, while also using the infor-

mation in the non-coding parts of the gene when the information contained in a

short CDS is insufficient. All hits with e-value ≤ 1e− 03 and covering ≥ 50%
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of the query (a whole gene or a CDS) were considered, and overlapping hits were

amalgamated. In cases where the total number of hits exceeded 1000, I ordered the

hits by e-value and selected the five best hits per species. Hits (including self-hits

to the genes) were aligned with MAFFT v7.407 [Katoh and Standley, 2013] using

E-INS-i algorithm that makes minimum assumptions about the nature of the result-

ing alignment. I used the “–adjustdirectionaccurately” option to align hits located

on different strands and the “–addfragments” option to subsequently add CDSs to

the alignment of hits. Alignments were examined manually to remove the hits that

were only covering parts of introns or untranslated regions (UTRs) and to extend

promising hits that ended in the middle of the gene. After these amendments the

remaining/extended hits were realigned and the resulting alignments were exam-

ined for presence of homologous ORFs in the yakuba-erecta clade. If an ORF

was identified in at least one of the two outgroup species it was considered as ev-

idence that the putative TRGF originated prior to the speciation of the Drosophila

subgenus and the family was removed from further validation. Putative TRGFs

that passed sequence similarity validations were manually examined for quality

and consistency of annotations. I did not try to identify highly diverged homologs

that are beyond detectability with BLASTp using more advanced methods like

PSI-BLAST [Schaffer, 2001], HHMER [Eddy, 2011] or HHblits [Remmert et al.,

2011] that rely on building a sequence profile. There were two reasons for that.

First, given that the protein is only present in two species the resulting sequence

profile would not contain much more information than a single sequence and hence

it would be unlikely to yield useful results. Second, I relied on our assumption that
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if a homologous gene is present in an outgroup genome it would be included in the

BLASTn hits against that genome. At short evolutionary distances, DNA sequence

conservation is likely to be no worse that amino acid sequence conservation due to

limited average number of mutations per site. This assumption doesn’t necessarily

hold at large evolutionary distances, but for closely related species it would be

extremely unlikely to identify a good DNA sequence match covering all of the gene

and at the same time to miss a homologous gene that diverged beyond detectable

similarity in nucleotide sequence space.

2.1.4 Inferring the origin of TRGFs

To infer the origins of TRGFs, I extracted genome annotations corresponding to

the identified homologous DNA regions in all five species. I also identified ho-

mologous DNA regions in four additional species - two in the melanogaster group

(D. ananassae and D. suzukii) and two in its sister clade obscura group (D. pseu-

doobscura and D. miranda). I used the BUSCA web server to predict protein sub-

cellular localisation [Savojardo et al., 2018], TANGO to predict protein aggregation

[Fernandez-Escamilla et al., 2004], and Wasabi for visualising multiple sequence

alignments [Veidenberg et al., 2015]. All analysis was performed in Python v3.7.0,

using packages biopython v1.73 [Cock et al., 2009] and gffutils v0.9.

2.2 Results

The five species of interest in the Drosophila subgenus (D. melanogaster, D. sim-

ulans, D. sechellia, D. yakuba, and D. erecta) had a common ancestor ∼8 Mya
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[Obbard et al., 2012] (Figure 2.1). I look for taxonomically restricted gene fam-

ilies (TRGFs) that emerged after the split of the simulans-sechellia-melanogaster

clade from the yakuba-erecta clade and before the speciation of D. simulans and D.

sechellia. The divergence time between this clade and its sister clade that contains

D. ananassae is ∼23 Mya. The intergenic sequence conservation between these

clades is insufficient to distinguish between de novo TRGs (for which a homologous

intergenic sequence in an outgroup genome is reqired) and highly diverged copies

of well established genes. Apart from the five species clade shown in Figure 2.1

there are no other groups of five or more Drosophila species that are separated by

less than 15 Mya. D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D.

erecta have genomes of ∼140Mb containing ∼14,000 protein-coding genes. There

is no evidence of major segmental genome duplication in this clade, reducing com-

plications in identifying homologous non-coding sequences. The genome assembly

for D. sechellia is highly fragmented, as confirmed by N50 metric and a BUSCO

estimate that ∼8% of the genes likely present in the genome are missing from the

assembly (Table 2.1). The quality of the D. sechellia genome assembly leads to

a different distribution of annotated protein lengths compared to other species in

this clade (Figure 2.2). For this reason, gene loss can not be inferred based on the

absence from D. sechellia.

Based on OMA homology inference algorithm [Altenhoff et al., 2017], these five

Drosophila subgenus species contain 14,149 gene families. Amongst the inferred

gene families there were 205 families with genes in at least 2 of the species in the
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Figure 2.1: Species tree of the Drosophila subgenus. Branch lengths correspond to di-
vergence time estimates by Obbard et al. [2012]. We looked for TRGFs that
emerged during the evolutionary time marked in red, i.e. between ∼0.5 and
∼3.3 Mya. We ultimately confirm one TRGF shared only by D. simulans and
D. sechellia, i.e. that originated between ∼0.5 and ∼1.4 Mya.

Figure 2.2: Protein lengths distribution in five Drosophila subgenus species. Number of
amino acids is plotted on the x-axis.

simulans-sechellia-melanogaster clade and no genes from species outside the clade.

Protein sequence similarity searches against the RefSeq database revealed diverged

homologs outside the clade for 170 of these families. I used sequence similarity

searches in nucleotide space to identify homologous DNA regions corresponding to

the 35 putative TRGFs in all five genomes. Out of these 35 families, 18 contained

conserved but unannotated ORF(s) covering ≥ 50% of the putative TRGF ORF
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in at least one of the yakuba-erecta clade species, indicative of an earlier origin

of these TRGs A conserved ORF in an outgroup was considered strong evidence

that the gene family originated before the speciation of the clade. I was unable to

obtain a continuous alignment of inferred homologous DNA regions in the yakuba-

erecta clade for five putative TRGFs. It is unknown whether this is due to genome

rearrangements and the lack of sequence conservation or simply because the true

homologous DNA regions are missing from the genome assemblies. Only the 12

putative TRGFs for which I was able to obtain a continuous alignment of homolo-

gous DNA regions in all five species and show that the ORFs were only present in

the simulans-sechellia-melanogaster clade were considered in further analyses.

Manual examination of genome annotations revealed problems and inconsistencies

with ten putative TRGF annotations. For example, some of the genes were missing

a start codon, contained overlapping CDSs or exons misaligned with splicing sig-

nals. In seven families the annotations were inconsistent across species - conserved

homologous DNA regions formed a good alignment but gene annotations indicated

different start/stop codons or splicing signals. These putative TRGF were removed

from further analysis as they did not satisfy our requirement for a conserved ORF

in more than one independently annotated species. Figure 2.3 summarises the dif-

ferent kinds of false positives that we eliminated.

To infer the evolutionary origins of the two putative TRGFs that remained follow-

ing these filters, I looked at the homologous non-coding sequences whose common
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Figure 2.3: The elimination of TRGFs with either evidence of being false positive, or with
insufficient evidence available.

ancestry with the TRGF preceded the origin of the TRGF. In the process, I was able

to confirm the recent de novo status of the first, and refute that of the second.

The first TRGF evolved de novo in the simulans-sechellia clade on 3R chromo-

some, giving rise to Dsim GD19764 and Dsec GM10790. These are annotated

uncharacterised protein-coding genes with two CDSs and a conserved canonical

GU—AG splicing signal. The protein is 129 amino acids long in D. simulans and

113 in D. sechellia. The conserved intron is 52 nucleotides long (not a multiple

of 3), hence it is likely to pre-date the ORF (otherwise, later intronisation would

have resulted in a frame-shift; see Yang and Huang [2011] for a detailed explana-

tion). BUSCA predicts that this TRGF contains transmembrane alpha helix and
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hence localises to the endomembrane system. There is transcriptomic evidence

that Dsim GD19764 is expressed in the male reproductive system [Drosophila 12

Genomes Consortium, 2007], which is in line with previous results showing that

TRGs are predominantly expressed in testes [Levine et al., 2006]. Dsim GD19764

and Dsec GM10790 have no functional annotations, neither experimentally estab-

lished nor computationally infered. The N and C termini of Dsim GD19764 as well

two segments of Dsec GM10790 are predicted to be disordered. Similarly, TANGO

predicts that Dsim GD19764 and Dsec GM10790 have no regions prone to aggre-

gation. This evidence is in line with the hypothesis that young de novo genes are

often disordered since this trait is associated with not being prone to agregation, see

Section 1.1.2 for details.

Figure 2.4: DNA regions homologous to the TRGF containing Dsim GD19764 and
Dsec GM10790. Homologous protein-coding genes are the same color (each
element corresponds to an exon), small nuclear RNA (snRNA) genes are white.
The direction of the arrow shows which strand the gene is located on. Features
with dashed outlines are not annotated. The diagram is not to scale. In the or-
der from top to bottom, the orange genes are Dsim GD29138, Dsec GM10660,
Dmel CG12589, Dyak GE25310, Dere GG11200 (with a syntenic homolog
Dana GF16073 in D. ananassae); the yellow genes are Dsim GD19763,
Dsec GM10789, Dmel CG12590, Dyak GE25451, Dere GG12627 (with
syntenic homologs Dana GF18925 and Dpse GA11706 in D. ananassae
and D. pseudoobscura respectively); the blue genes are Dsim GD19765,
Dsec GM10791, Dmel CG12591, Dyak GE25452, Dere GG12638 (with syn-
tenic homologs Dana GF18926 and Dpse GA11707 in D. ananassae and
D. pseudoobscura respectively); the purple genes are Dsim GD19639,
Dsec GM10658, Dmel CG12161, Dyak GE25306, Dere GG11178.
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Dsim GD19764 is located in an intron of a conserved protein-coding gene

Dsim GD19765, downstream of conserved protein-coding gene Dsim GD19763

located inside the same intronic region (Figure 2.4). In D. sechellia the

Dsec GM10791 gene harbouring two genes inside its intron appears to have lost the

first two exons and thus Dsec GM10790 is located in a similar genomic context but

not inside an intron. The DNA regions that I presume to be homologous to TRGs

in D. melanogaster, D. yakuba and D. erecta are located between the genes homol-

ogous to the ones neighbouring TRGs in the simulans-sechellia clade. The orange

genes in Figure 2.4 have no functional annotations, but there is transcriptomic ev-

idence that they are expressed in testes, antenna and mouth of adult organisms.

The yellow genes are expressed in testes and head of adult organisms. The blue

genes are expressed in wing disc during larval stage and in testes, brain and antenna

of adult organisms [Cannavò et al., 2016]. This genes have two Ig-like protein

folding domains. Dmel CG12591 in D. melanogaster is annotated with functions

related to synapse organization and sensory perception of chemical stimulus. The

purple genes are expressed in testes and head of adult organisms. These genes

are annotated with functions related to proteasomal protein catabolic process and

endopeptidase activity. Given that the TRG and all four genes surrounding it have

transcriptomic evidence of being expressed in testes, it is plausible to conclude that

this area of the genome is extensively transcribed in male reproductive organs in

adult organisms.

There is too little nucleotide conservation for a good alignment to this region in
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D. melanogaster, which contains no ORF. Alignment can be achieved with the

yakuba-erecta clade, where the ORF is disrupted by an early stop codon. Since the

ORFs in both D. yakuba and D. erecta are much shorter that the coding sequence

of the TRG (the ORF in D. yakuba is only 5 amino acids long), these ORF are

not considered to be potentially functional. Note that Hild et al. [2003] previously

inferred a protein-coding gene located in this region on the opposite strand, but

this gene is no longer part of the official genome annotations. I identified potential

homologous DNA regions in four additional outgroup species (D. ananassae, D.

suzukii, D. pseudoobscura and D. miranda), but the sequence conservation level

was insufficient to establish the most likely ancestral state. These regions cover

50-65% of the TRG and have∼70% sequence identity. Extending these hits in both

directions did not lead to a better alignment. No start codon was present in these ho-

mologous DNA regions. We can thus rule out the possibility that two independent

pseudogenization events, one in D. melanogaster and one in the basal lineage of

the D. yakuba-erecta clade, created the illusion of a TRGF as a false positive. The

homologous regions in D. ananassae and D. pseudoobscura contain three (orange,

yellow and blue in Figure 2.4) and two (yellow and blue in Figure 2.4) syntenic

homologs respectively, while the homologous regions in D. suzukii and D. miranda

contain none.

The second gene family, that I mistakenly identified as a de novo TRGF, contains

uncharacterised protein-coding genes Dsim GD20667 and Dsec GM19408, and

an unannotated homologous ORF in D. melanogaster. These annotated genes are
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located on the 3R chromosome and contain a single CDS of length 155 in D. simu-

lans and D. melanogaster. In D. sechellia, a frameshift close to the end of the CDS

results in a conserved stop codon becoming in-frame and thus shortening the CDS

to 139 amino acids. BUSCA predicts that the proteins localise in the nucleus.

Figure 2.5: DNA regions homologous to the gene family containing Dsim GD20667 and
Dsec GM19408. Protein-coding genes are shown in colour, pseudogenes in
grey and ncRNA genes in white. Homologous protein-coding genes are marked
by the same colour, each element corresponds to an exon. Only the first of
the seven exons of the dark blue gene is shown. The direction of the arrow
shows which strand the gene is located on. Features with dashed outlines are
not annotated. Genes shown directly above/below each other share sequence
similarity. The diagram is not to scale.

These putative TRGs are located amongst protein-coding gene families syntenicly

conserved in all five subgenus species, ∼70Kb downstream from a conserved pair

of overlapping genes and ∼25Kb upstream from a conserved seven exon gene.

The region between these two gene families is shown in Figure 2.5. A number of

protein-coding genes are annotated in D. sechellia but have no detectable homologs

in other species in the subgenus. D. melanogaster has a number of annotated ncR-

NAs, one of which overlaps with parts of D. sechellia-specific genes. Since these

protein-coding genes are present in only one species I did not include them in our

analysis as in the absence of conservation, I lack sufficient evidence that they are

functional. The region containing the putative TRGs is annotated as an intron of
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one of these D. sechellia protein-coding genes. The downstream region annotated

as a pseudogene in D. simulans, D. yakuba and D. erecta, and as a ncRNA in D.

melanogaster, is well-conserved in all species. The annotation boundaries vary

among species.

Figure 2.6: Sequence features of the ancestral ORF, which is annotated as a pseudogene in
D. yakuba. Start codons of the annotated pseudogene and of the shorter putative
TRG in the simulans-sechellia-melanogaster clade are in green, well conserved
regions in yellow, frame-shift causing indels in blue, repetitive DNA in orange,
and stop codons in black. I use the following frame numbering convention: the
start codon is denoted the +1 frame, the other two frames on the same strand are
denoted +2 and +3 frames. Frames of the start codons are marked relative to the
pseudogene. The numbers in parentheses indicate how many more nucleotides
(modulo 3) the species it is marked in has. The frames of the stop codons are
not marked due to uncertainty about frame created by the repeat region. The
two stop codons shown are located in the same frame.

The region containing the TRGF is extremely well-conserved in all five species and

is annotated as a pseudogene in D. yakuba. Using BLASTn for similarity searches

to identify the parent gene of this pseudogene I was only able to find a self-hit (i.e.

hits to the genome region containing the putative TRG) and numerous matches cov-

ering <10% of the sequence in all species with an exception of D. simulans where

I identified a 219 nucleotide long unannotated contig with 97.7% sequence identity.

The similarity between the translated amino acid sequences is very weak. I was
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unable to find any other evidence about the parent gene of this putative pseudogene.

The start codon of the putative TRGF is in a different frame than that of the D.

yakuba pseudogene, suggesting that it evolved de novo in an alternative frame to

the parent gene, but upon closer scrutiny I realised that this is not the case. Here

by pseudogene I mean a genomic region that is annotated as a pseudogene. It is

a sequence that evolved from a sequence of a protein coding gene, but no longer

has an intact ORF. It is plausible that a TRG might evolve from a pseudogene, but

the definition of de novo TRGs adopted here is that they evolved from previously

non-coding regions of the genome. Since a pseudogene itself evolved from an

ancestral protein coding gene, a de novo TRG can not evolve from a pseudogene.

The start codon of the putative TRGF is flanked by two indels, which brings the

frame of the annotated D. yakuba pseudogene in frame with the putative TRGF fol-

lowing its annotated start codon, see Figure 2.6. A TG-dinucleotide repeat region

in the middle of the putative TRGF ORF appears to be poorly conserved; this could

be either because of a genuinely higher mutation/indel rate, or merely because of a

poor quality of reads/assembly in this region. The uncertainty created by this region

and the fact that the length of the pseudogene is not a multiple of three makes it

difficult to infer whether the putative TRGF shares the frame with the pseudogene

throughout the whole sequence. More telling information comes from six stop

codons conserved across the five species and located between the repeat region and

the stop codon shared by both the pseudogene and the putative TRGF. Four stop

codons are in +2 frame of the putative TRGF and 2 stop codons are in the +3 frame,
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leaving +1 as the only frame of the putative TRGF free from stop codons conserved

across the five species. If I assume that the pseudogene was free from stop codons

when it originated, then this implies that the putative TRGF sequence following

the repeat region is in the same frame as the original pseudogene sequence. The

pseudogene is only free from stop codons between the repeat region and the final

stop codon. Given that the length of the pseudogene is not a multiple of three

implies that not only substitutions but also indels occurred in this genome region

since the origination of the pseudogene. It is not known whether the homologous

intact gene has been lost or simply is not present in the genome assembly. The fact

that I was unable to identify the ancestral gene associated with this pseudogene,

the high level of sequence conservation (95% sequence identity between D. yakuba

and D. simulans, excluding 25 out of 587 nucleotides corresponding to indels),

and more than 110 amino acid long ORF still present in D. yakuba all add up to

substantial evidence that this D. yakuba ORF annotated as a pseudogene might in

fact be a miss-annotated functional gene. Regardless of whether this pseudogene

is a true remnant of a previously functional gene or a miss-annotated gene that is

still functional today, I conclude that the putative TRGF did not evolve de novo.

Instead it evolved from an ancestral protein encompassing all yellow regions shown

in Figure 2.6 by truncation of the N-terminal.
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2.3 Discussion

The aim of this study was to identify high confidence TRGFs as most promising

candidates for experimental studies of protein-coding genes that emerged in the

past 8 Mya, while avoiding ascertainment biases associated with preconceptions of

how de novo genes are born. I will only learn about how different de novo genes

are from well-established genes if I look for them with an open mind and without

assumptions that their sequences must be similar to well-established genes in order

to be functional. Unlike other studies, I did not filter out genes with composi-

tion distinct from average composition of sequences in protein databases [Vakirlis

et al., 2017] nor assume that TRGFs cannot contain splicing signals [Knowles and

McLysaght, 2009]. To avoid including candidates that are not functional protein-

coding genes, without making such assumptions, I used ORF conservation as a

proxy for selection and hence evidence for functionality, in addition to using NCBI

genome annotations as the most comprehensive synthesis of evidence for transcrip-

tion and/or translation. To avoid including candidates that were not born de novo,

I conducted extensive investigation of homologous non-coding sequences in sister

species.

I identified a single TRGF with annotated single copy genes in D. simulans and D.

sechellia. This TRGF is located in a syntenic context conserved across all species

in Drosophila subgenus. It contains an intron that pre-dates birth as an ORF. I

identified potential homologous DNA regions in four additional outgroup species

(D. ananassae, D. suzukii, D. pseudoobscura and D. miranda), but the sequence
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conservation level was insufficient to establish the most likely ancestral state. No

start codon was present in these homologous DNA regions. We can thus rule out the

possibility that two independent pseudogenization events, one in D. melanogaster

and one in the basal lineage of the D. yakuba-erecta clade, created the illusion of

a TRGF as a false positive. Our results highlight that de novo gene studies should

under no circumstances exclude candidate TRGs just because they have introns.

The number of de novo genes reported in any study depends on the balance of

false positives and false negatives that has been achieved by the authors. This is

shaped by decisions as to what counts as an evidence for functionality and what

properties of the candidate genes signify that they are not true de novo genes. When

I began this study, our requirement that a de novo gene must have homologous

non-coding DNA sequence(s) in out-group species as evidence for the time of

emergence was stricter than most. Since then two papers have been published that

described [Vakirlis and McLysaght, 2018] and applied [Zhang et al., 2019b] a sim-

ilar requirement for homologous non-coding DNA sequences in outgroup species.

Zhang et al. [2019b] examined de novo genes in the Oryza clade and concluded

that about 51.5 de novo genes per million years are generated and retained in this

clade. While care was taken to show de novo status, this number is nevertheless

likely inflated by lenient criteria for functionality. Intact gene structure and some

transcription and translation were considered sufficient, with no requirement for

functional evidence or evolutionary conservation. The estimated rate of de novo
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gene birth is also potentially deflated (but not by as much) by the assumption that

recent de novo genes cannot be present in more than one copy. Another limitation

of the study is that only the single best hit to a genome was considered. Since

hits were accepted if they covered ≥20% of an ORF, this could lead to selecting a

short highly similar region (for example, to a low complexity region) and ignoring

a longer truly homologous region with a slightly lower match score. Accepting

matches that cover as little as 20% of an ORF is contradictory to the idea presented

in the paper that indels and substitutions are the main ORF triggers, and may have

deflated the estimate.

In contrast, our study, which was designed to identify high-confidence experimen-

tal candidates, is likely an underestimate, in part because homologous sequence in

orthologs might be missing or unrecognisable, but mostly because it cannot find

a TRGF unless it is already present in the NCBI gene annotations of two species.

The incomplete nature of genome annotation is more of a problem when a gene

must be annotated in two species than when it must merely be annotated in one.

Abascal et al. [2018] shows that about 12% of human genes have different anno-

tations across the three most popular databases (RefSeq, Ensembl/GENCODE and

UniProtKB), and that some genes that are listed as non-coding actually have more

experimental evidence for producing a protein than some genes listed as protein-

coding. Even in relatively simple species like Escherichia coli about 35% of the

annotated genes lack experimental evidence of function [Ghatak et al., 2019]. The

annotation quality for the Drosophila subgenus is unlikely to be better than for the
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human genome. Nevertheless, I believe that synthesis of evidence from all data sets

submitted to NCBI is by far better than the evidence that I could have gathered and

synthesised myself without performing experimental work.

The availability of evidence for functionality is the limiting factor in identifying

very young genes. Without it, short young proteins are often left out of genome

annotations, and hence alternative approaches like screening all ORFs present in a

genome [Ruiz-Orera et al., 2018] are required to identify them. Given the frequency

of premature stop codon mutations, conservation of an ORF across several species

can be used as a proxy for functionality, as I do here. However, sufficiently short

ORFs can still be conserved by chance sometimes across several species.

One reason I find a lower rate of de novo gene birth might be that false positive

evidence of functionality inflates single-species estimates in other studies, whereas

false negative failure to reproduce such evidence in two species deflates it in our

study. However, it is also possible that both estimates are approximately correct,

with the discrepancy arising from the fact that rapid emergence of functional ORFs

is counter-balanced by rapid loss, as discussed by Schlötterer [2015]. Since new-

born proteins are not yet integrated in the protein interaction network, they might

be relatively dispensable; even if adaptive at first, they might not remain adaptive as

the environmental and genetic context changes. In this case our approach, in using

evolutionary conservation to exclude non-functional polypeptides, also excludes

functional proteins whose functionality is short-lived.
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There have been several previous papers aimed at identifying TRGs in Drosophila

subgenus: the pioneering work of Levine et al. [2006] focused on de novo genes,

followed by a survey of all TRGs [Zhou et al., 2008], a study about essentiality

of TRGs [Chen et al., 2010], an in-depth analysis of the evolution and function of

six candidate de novo genes [Reinhardt et al., 2013], and a study of very young de

novo genes in D. melanogaster that are still segregating in the population [Zhao

et al., 2014]. These studies collectively reported 16 de novo protein-coding genes

and two de novo ncRNAs (Dme CR32582, Dmel CR32690) that are fixed in D.

melanogaster genome and not present outside of the Drosophila subgenus. Three

of these protein-coding genes (Dmel CG33235, Dmel CG33666, Dmel CG34434)

are present only in D. melanogaster and hence were not included in our analy-

sis, and another seven of them (Dmel CG2042, Dmel CG32582, Dmel CG32690,

Dmel CG32824, Dmel CG40384, Dmel CG9284, Dmel CG32582) have been re-

moved from the genome annotations since the time of publication. For the re-

maining six of previously reported de novo protein-coding genes, I was able to

identify homologous genes outside the Drosophila subgenus (Dmel CG31882,

Dmel CG30395, Dmel CG31406, Dmel CG32712) or I was unable to iden-

tify homologous DNA regions in any of the outgroup species (Dmel CG15323,

Dmel CG31909). Note that these last two could still be de novo genes. Here I have

identified a TRGF containing Dsim GD19764 and Dsec GM10790 in D. simulans

and D. sechellia respectively that evolved de novo. This TRGF is not present in

D. melanogaster and hence was not part of these previous studies. I did not iden-



2.3. Discussion 115

tify any TRGFs in this clade that evolved de novo and contain an annotated D.

melanogaster gene. Similarly to previous studies that showed that de novo genes

in Drosophila subgenus are expressed predominantly in testes Levine et al. [2006],

Reinhardt et al. [2013], Zhao et al. [2014], the TRGF identified in this work also

has transcriptomic evidence of being expressed in testes.

Our results show that while de novo genes that are conserved across several species

undoubtedly do exist, their number is probably on the lower side of the spectrum

of estimates reported in previous studies. I have identified only a single TRGF in

the Drosophila subgenus, which does not allow me to identify a common pattern of

emergence of de novo genes. High confidence in its annotation as de novo and as

conserved may make this de novo gene the best candidates in Drosophila subgenus

identified so far for the experimental studies needed to drive the field forward. To

advance our understanding of de novo TRGs experimental studies are required.

For example experimental studies of de novo gene BSC4 which is present only in

Saccharomyces cerevisiae showed that this gene has synthetic lethal knockouts [Cai

et al., 2008] and it has a characteristic three-dimensional fold [Bungard et al., 2017].

Apart from essentiality-testing knockout studies and studies aimed at determining

the three dimensional structure of the protein, de novo gene field would also benefit

from spacial proteomics studies (identifying where in a cell is the protein located),

single cell transcriptomic studies (identifying expression patterns relative to other

genes expressed in a same cell) and phenotypic studies aimed at elucidating the

function of a de novo gene.
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Chapter 3

Analysing single cell RNA-seq data

with generative neural networks

This chapter demonstrates the utility of generative neural networks (GNNs) for

analysing single cell RNA sequencing (scRNA-seq) data. Starting from an intu-

itive concept of Principal Component Analysis (PCA), that provides an idea about

variability present in the data, I build up step-by-step to a model based on GNN that

can be interpreted in a biologically meaningful way. I focus on what information

one can expect to be contained in scRNA-seq data and aim to find an appropri-

ate model architecture to maximise the proportion of the information that can be

extracted. The contributions made in this chapter are as follows:

• A novel approach to scRNA-seq data analysis using GNNs

• A thorough assessment of the information flow through an autoencoder

• A comprehensive analysis of a latent space embedding created by an autoen-

coder
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3.1 Materials and methods

3.1.1 Dataset processing

To demonstrate the properties of scRNA-seq data and the capabilities of GNNs

I will use the human skin dataset produced by Cheng et al. [2018]. I chose this

dataset for several reasons. First, this dataset contains a large amount of cells from

a specific tissue (human skin) which makes it suitable for a GNN training. Sec-

ond, due to the experimental setup and the properties of the skin tissue, the dataset

captures many different aspects of scRNA-seq data - batch and patient effect, cell

cycle effect, cells from healthy and inflamed tissue, cell types that are related to

each other through differentiation, cell types that are not directly related to the rest

of the sample. Finally, another human skin dataset produced by Tabib et al. [2018]

is available, which will allow me to test whether a GNN trained on one dataset can

be applied to a dataset produced in a different lab using a different protocol.

The dataset produced by Cheng et al. [2018] contains 92889 human epidermal cells

from 12 samples. The samples were normal surgical tissue discards from three

different anatomic sites - adult scalp epidermis, adult truncal epidermis (healthy

and psoriatic) and neonatal foreskin. The single cells were dissociated and then put

through fluorescence-activated cell sorting (FACS) to exclude dead cells, doublets,

and debris. Libraries were prepared using Chromium Single Cell 3’ v2 protocol

from 10X Genomics and sequenced with either Illumina HiSeq 2500/4000 or No-

vaSeq 6000.
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Data quality control was already performed by Cheng et al. [2018]. They filtered

out cells with lowest and highest number of detected genes (0.5% and 15% of the

data respectively) to remove empty droplets and doublets respectively. Usually the

number of UMIs not the number of detected genes is used to identify doublets.

To confirm the absence of doublets in the dataset, I assessed the distribution of

number of UMIs per cell. A high proportion of UMIs associated with mitochon-

drial genes is indicative of cells that are either stressed (upregulated mitochondrial

gene expression) or damaged (cytoplasmic mRNAs are lost through a broken cell

membrane but mRNAs inside mitochondria are retained) [Ilicic et al., 2016]. The

authors filtered out cells with highest proportion of mitochondrial gene counts (5%

of the data). A typical scRNA-seq data analysis pipeline includes identification of

genes with high information content (measured by coefficient of variation, mean

adjusted variance or a similar metric), the genes with low information content are

then removed from the dataset. In contrast, I treat scRNA-seq data as compositional

data (because it is compositional data, even though it is widely ignored) and hence

I do not filter genes by their information content simply because such information

is not available. See Section 1.2.2.3 for an explanation about why gene expression

values are not comparable across cells. Unlike most of the analysis pipelines, I

identify and remove cells with low information content. I used coefficient of vari-

ation (the ratio of the standard deviation to the mean) as a proxy for information

content. I calculated these using only non-zero expression values to limit the effect

of technical dropouts - genes that were expressed but not captured due to chance. I
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assessed the distribution of the resulting coefficient of variation and removed 0.5%

of the data with the lowest information content. Once the quality control has been

performed I did not return to this step later in the project, contrary to the sugges-

tion from Luecken and Theis [2019] to first investigate the effects of quality control

stringency on the analysis and then adjust the quality control procedure as necessary.

The ability of a neural network to learn from a dataset and the achievable level

of performance depends on the representation of the data. Finding an appropriate

representation is hence a single most important step in creating a neural network-

based model. There are two aspects of scRNA-seq data that can hinder the neural

network’s ability to learn, but can be alleviated with a data transformation. First,

scRNA-seq data is overdispersed - as the true expression level of a gene increases

the variability of the expression estimate grows unboundedly. Applying log2(x+1)

log-transformation shrinks the differences between large values in the dataset and

thus stabilises the variance while still preserving their rank order within each cell.

Second, the maximum expression value in the cell is not informative. It is likely

that the gene with the highest expression value is amongst the real most highly

expressed genes, but the exact number of transcripts captured is due to chance. If

more transcripts of other genes are captured then the number of transcripts cor-

responding to the most highly expressed gene will be lower. Luecken and Theis

[2019] advocated the log-transformation of the data for two reasons - because it

partially mitigates the meanvariance relationship in the data, and because distances

between logtransformed expression values represent log-fold changes, which are
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the canonical way to measure changes in expression. To avoid the maximum ex-

pression value in each cell being misinterpreted by a neural network as genuine

differences between the cells I scaled the data to [0,1] range. Both of these data

transformations are usually included in scRNA-seq data analysis pipelines regard-

less of the downstream methods used. An alternative line of reasoning leads to

the same protocol. Since neural networks cannot be trained on discrete data, it is

necessary to convert it to continuous data. Scaling the data to a fixed range is a

good option, but it is sensitive to outlier values - a single large expression value

will force the rest of the expression profile to be compressed into a narrow range of

values that is detrimental to the training process. Log-transforming the data prior to

scaling alleviates that.

To visualise scRNA-seq data I used t-distributed stochastic neighbor embedding

(tSNE) implementation by Pedregosa et al. [2011]. tSNE algorithm first creates a

probability distribution using the Gaussian distribution that defines the relationships

between the points in high-dimensional space. It then uses the Student t-distribution

to recreate the probability distribution in low-dimensional space. The heavier tails

of Student t-distribution prevent points from getting crowded in low-dimensional

space due to the curse of dimensionality. tSNE creates a low-dimensional projec-

tion of the data based on the local relationships between data points, thus capturing

the non-linear structure of the data. Starting with a random embedding, t-SNE

optimizes the embedding using a gradient descent. For this reason no “mapping” is

created, i.e. it is impossible to add more data points later to the same embedding.
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The process of embedding optimisation is governed by two important parameters.

The perplexity parameter determines how many neighbouring points are taken into

account when determining a position of a given point. Setting this parameter to

a value smaller than the number of points in the dataset prevents any single point

from having a disproportionate influence on the whole embedding, i.e. makes the

algorithm robust to outliers. The learning rate parameter determines the dynamics

of the parameter value optimisation. At the two extremes, a very low learning rate

results in most points being compressed in a dense cloud with few outliers floating

around and a very high learning rate results in the data looking like a ball with

any point approximately equidistant from its nearest neighbours. tSNE algorithm

does not involve a clustering step, it learns from the data and generates a low-

dimensional embedding of the data. It is up to a user to infer clusters from the

resulting low-dimensional embedding. I used random initiation, learning rate equal

to 500 and 1000 iterations for training. The perplexity parameter was set to 50,

corresponding to the smallest cell cluster that could be of interest in the intended

downstream analysis.

3.1.2 Autoencoders

Generative neural networks are feedforward neural networks that learn through data

reconstruction. Autoencoders are the simplest type of generative neural networks,

they make minimal assumptions about the data. An autoencoder consists of two

parts - the encoder that reduces dimensionality of the data and the decoder that
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reconstructs the data from the lower dimensional embedding back to original di-

mensionality. The lower dimensional embedding is called the latent space. Figure

3.1 shows the usual ball and stick diagram of an autoencoder - it emphasises the

values in the input data (the top of the diagram), the fully connected layers that pass

the information through the network all the way down to the reconstructed values

(the bottom of the diagram). Figure 3.2 shows a more useful representation of an

autoencoder that illustrates the linear algebra underpinning the network. The input

data, the lower dimensional representations of the data and the reconstruction of

the data are shown on the left. The components of an autoencoder are shown on

the right. There are four layers in this autoencoder. A layer of an autoencoder, or

indeed any neural network, consists of a matrix of weights and a vector of biases.

The dimensionality of the matrix matches that of an input and the desired dimen-

sionality of the output. I will use a gene expression profile as a concrete example

of an input data. The gene expression profile (a matrix with 1 row and the number

of columns corresponding to the number of genes) is an input into the first layer of

the autoencoder. The input is first combined with the matrix of weights via matrix

multiplication, and then the biases are added. In Figure 3.2 the biases are not shown

explicitly to avoid clutter, adding them is implied in the arrows. The dimension of

a matrix that is not constrained by the properties of the input is often referred to as

a number of nodes in the layer. The output of a layer contains as many features as

there are nodes in this layer. Different types of layers are used for different applica-

tions, in the case of scRNA-seq data I will only use fully connected layers, which

means that every value in the input is multiplied with every value in the correspond-
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ing raw of the weight matrix. The layer with the lowest dimensionality is called the

latent layer. The output of the latent layer is called the latent representation of the

data. The training of the network happens via backpropagation - the information is

travelling back from the output of the final layer of the autoencoder in the direction

of the input data, i.e. the arrows in the diagram are reversed. A “cycle” of training is

complete when all of the training data passes through the network. This is called an

epoch. The training process consists of hundreds of epochs, i.e. the whole dataset

is used repeatedly to train the network. Hereafter I will refer to “upstream” and

“downstream” in the network meaning the direction of the data passing through the

network (coinciding with the arrows). For the autoencoder implementation used

in this and the following chapter I employed weights and biases initialisation with

uniform distribution as described by [He et al., 2015a] and a popular optimisation

algorithm Adam [Kingma and Ba, 2014] with default parameters.

Figure 3.1: A ball and stick diagram of an autoencoder.
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Figure 3.2: A deep autoencoder.
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3.1.3 Technical implementation

Python (v3.7.0) was used to create all the models described in this chapter and per-

form all the experiments described. This work heavily relies on scipy (v1.1.0)

[Jones et al., 2001], numpy (v1.15.2) [van der Walt et al., 2011], scikit-learn

(v0.20.0) [Pedregosa et al., 2011] and pandas (v0.23.4) [McKinney, 2010]. All

GNN-based models were created using PyTorch (v.1.1.0.post2) [Paszke et al.,

2017]. Learning process was monitored using tensorboardX (v1.5). All plots were

created using matplotlib (v.3.0.0) [Hunter, 2007].

3.2 Results

3.2.1 Properties of single cell RNA-seq data

To demonstrate the properties of scRNA-seq data and the capabilities of GNNs

I will use the human skin dataset produced by Cheng et al. [2018]. The dataset

contains 92889 cells from 12 samples. Data quality control was performed by the

authors. Figure 3.3 shows the relationships between the number of different genes

detected per cell, the number of unique transcript (UMIs) detected and the propor-

tion of the transcripts corresponding to mitochondrial genes. A high proportion

of UMIs associated with mitochondrial genes is indicative of cells that are either

stressed (upregulated mitochondrial gene expression) or damaged (cytoplasmic

mRNAs are lost through a broken cell membrane but mRNAs inside mitochondria

are retained) [Ilicic et al., 2016]. Figure 3.3 shows that all cells have less than 10%

of transcripts corresponding to mitochondrial genes. I removed a single cell with
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the number of unique transcript 42% higher than the cell with the second highest

number due to a high chance of it being a doublet that escaped FACS. To assess

the information content in cell expression profiles, I examined the relationship

between the coefficient of variation, the total number of expressed genes and the

maximum expression value, see Figure 3.4a. It is clear that the higher numbers

of different genes detected correspond to the higher maximum expression values.

As expected, the coefficient of variation, which I used as a proxi for information

content, increases with the maximum expression values. The cells with very low

maximum expression values, see Figure 3.4b, also have very small numbers of

genes detected. This is indicative of a bad quality cells due to either biological

or technical limitations. I removed 0.5% of the cells with the lowest information

content, corresponding to the coefficient of variation cut-off value of 2. This also

removed the cells with maximum gene expression value below 50 unique transcripts

per gene. After this additional quality control, the cleaned dataset contained 92423

cells, see Table 3.1. The number of cells from each sample that were excluded

during quality control stage indicates that all the samples are of similar quality. A

test set containing 20% of the data selected at random will be used to control for

overfitting during GNN training. Table 3.1 shows that the composition of the test

set reflects the composition of the whole data set.

To address certain properties of scRNA-seq data, I log-transformed the data and

then scaled it to [0,1] range, see Section 3.1.1 for motivation behind this. To esti-

mate the variability of amount of information contained in each expression profile
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Figure 3.3: The relationships between the number of different genes detected per cell and
the number of unique transcripts (UMIs) detected. The cells are coloured by
the proportion of mitochondrial transcripts. Number of genes detected per cell
ranges from 928 to 3440, number of transcripts per cell range from 1886 to
33015.

Table 3.1: Number of cells per sample

Tissue Sample ID Total cells Training set Test set Excluded cells

Scalp
11 2381 1838 476 67
26 8054 6397 1637 20
32 10126 8060 1988 78

Trunk
4 12116 9695 2353 68
41 7104 5694 1387 23
53 5909 4703 1184 22

Foreskin
8 8030 6367 1596 67
9 7387 5825 1499 63
12 10757 8506 2201 50

Psoriasis
14 9743 7769 1973 1
48 5709 4604 1099 6
49 5573 4480 1092 1
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(a) The whole data.

(b) Cells with coefficient of variation below 3.

Figure 3.4: The relationship between the maximum expression value in a cell and a coeffi-
cient of variation (calculated using non-zero expression values only). The cells
are coloured by the number of genes detected in a cell.
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after the transformation, I examined the distribution of the values corresponding to

the two-fold differences in expression, see Figure 3.5. As expected, the distribution

is approximately normal with no outliers since cells with low information content

have already been removed.

Figure 3.5: The distribution of values in log-transformed data scaled to [0,1] range cor-
responding to the two-fold differences in expression. The values range from
0.0787 to 0.1763.

Genes that have been captured in a small number of cells do not contain enough in-

formation to influence neural network training, but they slow down the training due

to their computational footprint. As recommended by Luecken and Theis [2019],

I filtered out the genes expressed in a number of cells smaller than the smallest

cell cluster that could be of interest in the intended downstream analysis. Informed

by the cumulative proportion of the genes present in a certain number of cells, see

Figure 3.6, I chose an arbitrary cut-off value of 50. This reduced the total number

of genes by 4.4% to a total of 18962. I avoided a common mistake of first removing



3.2. Results 131

uninformative genes and then looking at the number of genes/UMIs per cell and/or

transforming data in a manner that assumes that the whole expression profile is

taken into account. Figure 3.7 reveals the relationship between the mean and the

variance of the expression level of a gene (both calculated using only non-zero

expression values) and the proportion of the cells in the dataset in which this gene

has been detected. The variances are lower relative to the means in genes expressed

across a larger proportion of cells. This plot shows that, even though the expression

values of a gene are not comparable across cells, there is a pattern in the expression

values.

Figure 3.6: The cumulative proportion of genes present in at least x cells. The insert shows
the shape of the function on the range x ∈ [0,500]. The vertical black line in
the insert show an arbitrary cut-off value of 50 that has been chosen.
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Figure 3.7: The relationship between the mean and the variance of expression values (cal-
culated using non-zero expression values only) for each gene. The genes are
coloured by the number of cells in which this gene’s expression has been de-
tected.

3.2.2 scRNA-seq data through the lens of PCA and tSNE

The linear combinations of the gene expression values that correspond to the largest

variance in the data can be identified with PCA. There are two limitations of PCA

to keep in mind. First, this analysis is designed to find principal components (PCs)

that explain as much variability in the data as possible. As a result, a couple of lead-

ing components will correspond to several biological pathways bundled together

with no information about how to disentangle those signals. This lack of biological

relevance of PCs has been also noted by [Tan et al., 2016]. Second, PCA assumes

orthogonality of important features. Hence, it results in decompositions based

solely on a priori defined statistical constraints which are not likely to have any re-

lationships to biological pathways. PCA is also sensitive to the relative magnitudes

of variables in the dataset, but this is not much of a problem for the data scaled to a
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specific range. Highly expressed genes will be upweighted by PCA, which might or

might not be biologically meaningful. PCA of the Cheng et al. [2018] dataset iden-

tifies 4 PCs with high variances. The first PC corresponds to the expression of M/G1

cell cycle phase marker genes identified by Macosko et al. [2015], which also corre-

lates with the total expression per cell, see Figure 3.8 a-b. The second PC separates

immune cells (identified by expression of marker genes CD74 and HLA-DPA1)

and melanocytes (identified by expression of marker genes PMEL and TYRP1)

from the rest, see Figure 3.8 c-d, and the third separates melanocytes and psoriasis

samples from the rest, see Figure 3.8 e-f. The role of the forth PC is not known.

The rest of the PCs have relatively small variance and are likely to be meaningful

only in combinations. It is more appropriate to use singular value decomposition

(SVD) instead of PCA for sparse datasets like scRNA-seq. However, SVD leads to

results very similar to Figure 3.8 and in practice provides no advantages in this case.

To be able to compare the performance of PCA to the performance of other more

complicated models, a performance metric is required. Since the GNN-based mod-

els I will be comparing with learn by reconstructing the input data, I will use the

sum of square errors between an input expression profile and the corresponding

reconstruction as a performance metric. scRNA-seq data is noisy and it is neither

expected nor desirable that the model reconstructs both the signal contained in the

data and the random noise. Using the squares of the differences between the real

and the reconstructed expression values is therefore appropriate as it penalises large

discrepancies more than small discrepancies that are likely to be associated with
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(a) M/G1 marker genes (b) Total expression

(c) Immune cells (d) Melanocytes

(e) Psoriasis samples (f) Melanocytes

Figure 3.8: (a) PC1 corresponds to the expression of M/G1 cell cycle phase marker genes.
The cells are coloured by the total expression of M/G1 cell cycle phase marker
genes. (b) PC1 also corresponds to the total expression per cell. The cells
are coloured by the total expression. (c) PC2 separates immune cells. The
cells are coloured by the total expression of marker genes CD74 and HLA-
DPA1. (d) PC2 separates melanocytes. The cells are coloured by the total
expression of marker genes PMEL and TYRP1. (e) PC3 separates psoriasis
samples. Psoriasis samples are shown in yellow, other samples in purple. (f)
PC3 separates melanocytes. The cells are coloured by the total expression of
marker genes PMEL and TYRP1.
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noise in the data. The square error is similar to using the epsilon-insensitive error

but without the need to choose an arbitrary cut-off value. Hereafter I will refer to

the average mean square error per cell as the reconstruction error. Using 100 PCs to

reconstruct the dataset results in the reconstruction error equal to 27.6746. To put

this into perspective, using 100 most highly expressed genes instead of PCs would

lead to the reconstruction error equal to 74.3654.

To visualise the data in a two-dimensional plot most scRNA-seq studies use t-SNE

[van der Maaten and Hinton, 2008] that provides a non-parametric mapping to a

lower number of dimensions, typically two. The mapping is learned through it-

erative optimisation-based adjustment and no interpretable information about the

mapping is stored. Figure 3.9 shows a tSNE plot produced based on 100 PCs, see

Section 3.1.1 for details. Cells from every sample form 2 large per sample. Addi-

tionally, there are small clusters containing cells from different samples. Colouring

the same plot based on the marker gene expression levels allowed me to identify the

cell types corresponding to each of the clusters. I used marker gene expression as a

proxy for cell type identification, an approach similar to the one employed by Cheng

et al. [2018]. Basal skin cells can be identified by high collagen gene expression,

here I used COL17A1 collagen gene. Suprabasal skin cells can be identified by

high keratin gene expression, here I used combined expression level of KRT1 and

KRT10 keratin genes. Figure 3.10 a-b shows that the two clusters corresponding

to each of the samples contain basal and suprabasal cells respectively. Immune

cells (identified by combined expression of marker genes CD74 and HLA-DPA1)
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from all samples were clustered together into several tight clusters, Figure 3.10 c.

Similarly, melanocytes (identified by combined expression of marker genes PMEL

and TYRP1) clustered in one part of the plot, Figure 3.10 d. In each cluster cells

are arranged along the gradient of the total expression of M/G1 cell cycle phase

marker genes, Figure 3.10 e. From the plots in Figure 3.10 I conclude that clusters

produced by tSNE algorithm correspond to biological cell types and hence can be

meaningfully interpreted. It is, however, not known whether the clusters resulted

from unique expression profile features identified by the algorithm or were simply

driven by the high expression values of known marker genes. The fact that basal

and suprabasal skin cells from each cluster form a separate cluster, as well as the

fact that the cells in each cluster are arranged based on the cell cycle phase implies

that the data contains both technical (batch effect) and biological (cell cycle effect)

noise.

Figure 3.9: tSNE of 100 PCs coloured by sample.
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(a) Basal cells (b) Suprabasal cells

(c) Immune cells (d) Melanocytes

(e) M/G1 marker genes

Figure 3.10: tSNE of 100 PCs is able to separate (a) basal and (b) suprabasal cells from
each sample, (c) immune cells and (d) melanocytes. (e) Cells in these clusters
are arranged by the expression level of M/G1 cell cycle phase marker genes.
In (a-d) the cells are coloured by the total expression of the corresponding
marker genes. In (e) the cells are coloured by the total expression level of
M/G1 cell cycle phase marker genes.
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3.2.3 From PCA to a deep autoencoder

The two limitations of PCA discussed above can be eliminated by using a shal-

low linear autoencoder that is mathematically equivalent to PCA. An autoencoder

trains by mapping the data into a lower dimensional space and subsequently recon-

structing the data from this lower dimensional representation, see Section 3.1.2 for

details. The training starts from a random mapping to and from the lower dimen-

sional representation and a very poor reconstruction quality. The training proceeds

by iteratively adjusting the mapping guided by the optimiser aimed at minimising

the reconstruction error. Since there is no incentive to explain as much variance

of the data as possible in a single component, an autoencoder will partition the

variance across each component in a random way with the sole goal of producing

the best possible reconstruction of the data. Only if the number of components

(i.e. the lower number of dimensions to which the data is mapped) is insufficient,

there is an incentive to create uncorrelated features. Hence, an autoencoder with a

number of components appropriate for the data will produce features that are free

from constraints related to variance partitioning and feature orthogonality.

There are two aspects to considered before training an autoencoder - the number

of components and the termination criterion for the training. Unlike in PCA where

a desired number of components can be selected based on the total proportion of

the variance they explain and the incremental gain from adding another component,

the decision about the number of components in an autoencoder has to be made

a priori. Yehudai and Shamir [2019] showed that having an over-parameterised
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autoencoder, i.e. the number of components larger than what is required to achieve

a good reconstruction quality, usually has no negative effect on the performance

as extra components will simply remain unused. Hence the only danger is select-

ing a number of components that is too low. The upper bound for the number of

components is the number of features in the data (in this case, 18962 genes). An

autoencoder with 18962 or more components will approach an identity matrix as it

trains. Since there are about 1500 TFs in a human genome [Garcia-Alonso et al.,

2019] and not all of them are active in an adult skin tissue, it is reasonable to assume

that the number of components should be less than that. In practice, the quality of

the data determines the maximum number of meaningful components that could

be obtained from it. Previous studies compared the performance of GNN-based

models with different number of components. Instead I arbitrarily set the number

of components to 100 exploiting the fact that the presence of unused components in

a trained model is indicative of the number of components being too high.

The training of an autoencoder is governed by a loss function that measures the

reconstruction quality, see Section 3.2.2 for the description of the loss function

used. The training will proceed indefinitely unless a termination criterion for the

training is specified. The aim is to identify useful features present in the data with-

out “memorising” the data. Arpit et al. [2017] showed that, while neural networks

are capable of memorising noise, they tend to prioritise learning simple patterns

first. This implies that an optimisation strategy, when employed properly, allows a

neural network to take advantage of patterns in the data even if the capacity of the
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network is sufficient to memorise the data. Arpit et al. [2017] showed that a general

analysis of the effective capacity of a neural network is unlikely to be successful

since the balance between learning the patterns in the data and memorising the data

depends largely on the training data itself. Neto [2018] used their novel approach

for differentiating between memorisation and learning to confirm previously re-

ported surprising results that a neural network trained on Gaussian noise is able

to learn, not only simply memorise the noise. Previous studies applying GNNs

to scRNA-seq data compared the performance of models trained for a different

number of epochs, i.e. using different number of times the whole dataset is used

to train the network. Instead, I used the value of the loss function measured on the

test dataset to detect overfitting. As the training begins, the loss function measured

on the test dataset decreases monotonically as the model learns the patterns that

generalise to the whole dataset. The loss function for the batches of training data

oscillates but exhibits a general downward trend. After a certain number of epochs,

the model starts to memorise the training data which no longer generalises to the

whole dataset, and hence the loss function measured on the test dataset starts to in-

crease monotonically, see Figure 3.17a for an example. This simple trick allows me

to train the model to optimality without including the features that don’t generalise

beyond the immediate training data.

A shallow linear autoencoder with 100 components (which I will refer to hereafter

as nodes) in the latent layer trained to optimality as described above is able to recon-

struct the dataset with the reconstruction error equal to 27.6929. This is comparable
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to PCA performance. Similarly to PCA, this model learns linear combinations of

the gene expression values and reconstructed gene expression values can be nega-

tive. To ensure that the reconstructed expression values lie in the same range as the

original data I used the Sigmoid activation function

Sigmoid(x) =
1

1+ e−x

for the output layer, thus transforming the output to the (0,1) range. This results

in a improvement - the reconstruction error equal to 27.5816. While this model

is no longer equivalent to PCA, it does share the main limitation - it assumes that

the relationships between the genes is constant throughout the dataset. To create a

model capable of capturing the relationships between the genes even if they differ

among subsets of a dataset, at least one hidden layer must be introduced.

Adding a hidden layer with a non-linear activation function (consecutive linear lay-

ers are mathematically equivalent to having a single linear layer) to both the encoder

and the decoder results in two major benefits. First, it removes the assumption that

the relationships between the genes is constant throughout the dataset. Second, it

captures non-linear interactions between the genes. Two decisions about the net-

work architecture have to be made at this point - the number of nodes in the hidden

layers and the activation functions used. As discussed in Section 3.2.3, the num-

ber of nodes larger than required usually has no negative effect on performance as

extra components will simply remain unused. Hence, I arbitrarily set the number
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of nodes in hidden layers to 500. Among activation functions, the Rectified Linear

Unit (ReLU) activation function

ReLU(x) = max(0,x)

is the most widely used in deep neural networks due to its attractive properties.

Since it is impossible to know in advance which activation functions are most suit-

able for a particular application of GNNs, I will explore combinations of different

activation functions using ReLU as a benchmark.

First, I assessed the performance of the non-linear autoencoder with 500 nodes and

ReLU activation in the encoder hidden layer, 100 nodes and ReLU activation in

the latent layer and a symmetrical decoder with Sigmoid activation in the output

layer. It took 90 epochs to train this autoencoder to optimality before the onset of

overfitting. To assess whether the whole capacity of the neural network has been

utilised, I plotted the weights and the biases of the encoder’s hidden layer, see

Figure 3.11. At the beginning of the training both the weights and the biases are

initiated with values close to 0, then during the training these values are incremen-

tally adjusted to improve the performance. Figure 3.11 shows that 270 (on the right

hand side of the plot) out of 500 nodes have a wide range of weights associated

with them and a non-zero bias. In contrast, 230 nodes (on the left hand side of the

plot) remained “unused” as all of the weights associated with them remained close

to their initial value, i.e. did not change during training. Similarly, the weights
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and the biases of the latent layer show that 64 of 100 nodes have been used. This

implies that increasing the number of neurons in the network will not improve its

performance. The performance of this autoencoder is comparable to PCA - the

reconstruction error is equal to 27.6932. The reason for the lack of improvement

becomes apparent when examining the embedding of the data in the latent space.

Figure 3.12 shows the distribution of 92889 data points in each of the 64 “used”

dimensions. All of these 64 distributions are zero-inflated, which is the result of

using ReLU activation function - ReLU(x) = max(0,x). This is an unsuitable latent

space shape, and forcing the data embedding into it results in poor reconstruction

quality. It is apparent that choosing a more suitable activation function can improve

the performance of the autoencoder.

Figure 3.11: A trained non-linear autoencoder with 500 nodes and ReLU activation in the
encoder hidden layer, 100 nodes and ReLU activation in the latent layer and
a symmetrical decoder with Sigmoid activation in the output layer. The plot
shows weights and biases of nodes in the hidden layer of the encoder. The
nodes are arranged as follows (from left to right): 230 “unused” nodes fol-
lowed by 270 “used” nodes ordered by the value of the bias associated with
them.
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Figure 3.12: A trained non-linear autoencoder with 500 nodes and ReLU activation in the
encoder hidden layer, 100 nodes and ReLU activation in the latent layer and
a symmetrical decoder with Sigmoid activation in the output layer. The plot
shows distributions of 64 latent components with the highest variance. Each of
the components is shown in a different colour simply for ease of visualisation.

A choice of an activation function determines the distribution of values in the output

of that particular layer. Critically, a choice of a sequence of activation functions in

the layers of a deep neural network determines the ability of the network to learn.

For the latent layer it is important to have an activation function that produces distri-

butions of values in latent components that are both suitable for capturing features

of a particular type of data and easy to sample from. For scRNA-seq data it is im-

portant to be able to produce non-unimodal distributions corresponding to features

such as differentiation status - most cells in the sample will be either pluripotent

or differentiated, while differentiating cells will be in the minority. Bounded dis-

tributions allow for simple uniform sampling. The ability of the model to capture

biologically meaningful features equally depends on the interplay between the acti-

vation functions used in hidden, latent and output layers. I used the same activation
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function for both the encoder’s and the decoder’s hidden layer.

To identify the best pair of the latent and hidden layer activation functions I tested

all combinations of the following potentially suitable activation functions:

ELU(x) = max(0,x)+min(0,ex−1),

SoftSign(x) =
x

1+ |x|
, Tanh(x) =

ex− e−x

ex + e−x ,

Sigmoid and ReLU. Autoencoders with Sigmoid or Tanh activation in the latent

layer and one of the following activations in the hidden layers - ELU, SoftSign,

Tanh or ReLU - were not able to train on this data. See Table 3.2 for the per-

formance comparison of autoencoders that trained successfully, the architectures

that were not able to train are not presented in this table. The reconstruction error

decreases as the number of used components increases, see Figure 3.13. The distri-

butions of values in the latent components produced by each autoencoder are either

unimodal only, both unimodal and bimodal, or include distributions with one, two

and more modes.

Based on the analysis above, I chose the non-linear autoencoder with 500 nodes

and ELU activation in the encoder hidden layer, 100 nodes and Softsign activation

in the latent layer and a symmetrical decoder with Sigmoid activation in the output

layer. Thereafter I will refer to this model as the deep autoencoder. This model has

several good properties in terms of its ability to train efficiently, reproduce the data
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Table 3.2: Comparison of different models

Latent
layer
activation

Hidden
layer
activation

Epochs
to train

Reconst-
ruction
error

Number
of used
components

Distributions
of latent
components

RELu RELu 90 27.6932 64
Zero-
inflated
unimodal

ELU RELu 70 27.7813 53 Unimodal

ELU ELU 130 27.4960 54 Unimodal

ELU Softsign 110 27.7570 50 Unimodal

ELU Sigmoid 200 27.7050 58 Uni- and
bimodal

ELU Tanh 70 27.3830 98 Unimodal

Softsign RELu 220 29.1858 8 Multimodal

Softsign ELU 190 27.4026 93 Multimodal

Softsign Softsign 520 28.0165 37 Uni- and
bimodal

Softsign Sigmoid 240 27.5861 78 Uni- and
bimodal

Softsign Tanh 110 27.6197 94 Uni- and
bimodal

Sigmoid Sigmoid 500 27.8981 40 Uni- and
bimodal

Tanh Sigmoid 350 27.6439 62 Uni- and
bimodal
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Figure 3.13: The relationship between the number of latent components used by a trained
model and the reconstruction error. The plot is coloured by the the types of
distributions of values in latent components.

well and create useful latent representation of the data. While it takes 190 epochs

to train the model to optimality, it only takes 10 epochs to reduce the reconstruction

error from 37.6578 to 29.4705, and further 10 epochs to reduce it to 28.6901. The

following 170 epochs refine the model to achieve the reconstruction error equal to

27.4026, one of the lowest compared to all other models tested. The dynamics of

the training can be visualised with a tSNE plot of both real and reconstructed data,

see Figure 3.14. After the first epoch none of the reconstructed cells overlap with

the clusters of real cells, after ten epochs there is a good overlap between the real

and the reconstructed cells. The plots of the real and reconstructed data after 20 and

190 epochs are indistinguishable.

The deep autoencoder is an over-parametrised model, and hence if it is trained more

than once on the same data the results will be different. To estimate the variability
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(a) Epoch 1 (b) Epoch 10

(c) Epoch 20

Figure 3.14: tSNE plots of real and reconstructed data after 1, 10 and 20 epochs of training
the deep autoencoder. The data is shown in colour (each sample in a different
colour, similar to Figure 3.9), the reconstructed data is shown in black.

between training runs I trained the deep autoencoder on the Cheng et al. [2018]

dataset 20 times. The reconstruction error produced across these 20 runs range

from 27.4025 to 27.5628, with the mean equal to 27.4840 and standard deviation

equal to 0.045. For comparison, reconstructing the data using 100 PCs produces

an error equal to 27.6746, which is more than 4 standard deviation away from the

mean of the reconstruction error of the autoencoder.

I’ve shown that the average reconstruction error is significantly lower for the deep

autoencoder compared to 100 component PCA. It is important to know whether

this difference is consistent (i.e. the reconstruction error is lower for most cells)

or driven by a group of cells for which one of the methods works much better

than the other. Figure 3.15 shows that the reconstruction error produced by the
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deep autoencoder is lower than the one produced by the 100 PCs for 77.81% of

the cells in the data. There is no group of cells for which the autoencoder works

especially well or especially bad. The most interesting aspect of Figure 3.15 is that

it shows the strong correlation between the reconstruction errors produced by the

deep autoencoder and the 100 PCs. The Pearson correlation coefficient between

the two is 0.9962, which suggests that there might be an underlying property of the

expression profiles that makes some of them easier to reproduce than others. One

apparent property is the number of genes expressed above 0.4 (in the data scaled to

[0,1] range where 1 corresponds to the most highly expressed gene in a cell). The

Pearson correlation coefficient between the number of genes expressed above 0.4

and the reconstruction errors produced by the deep autoencoder and the 100 PCs is

0.7587 and 0.7589 respectively. This implies that the more highly expressed genes

there are in a cell, the “easier” it is to reconstruct the expression profile, regardless

of which method is used. This makes sense intuitively - the expression values for

genes expressed at low levels are dominated by noise, while the expression values

for genes expressed at high levels are more informative (after log-transformation).

The latent space created by the deep autoencoder consists of 100 components (i.e.

dimensions) bounded to (-1, 1) range, which allows for easy sampling from this

latent space. Only 93 of these 100 components are used by the deep autoencoder,

indicating that the capacity of the model is bigger than necessary and hence simply

increasing the number of nodes in the latent layer will not improve the performance

of the model. The variances of the components produced by the deep autoencoder,
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Figure 3.15: Comparison of reconstruction errors produced by the deep autoencoder and
by the 100 PCs.

the basic deep autoencoder with ReLU activations in all but the output layer, and

the PCA are not directly comparable as the components are bounded to different

ranges. To accommodate for this, I first computed the variances of each compo-

nent and then divided them by the maximum variance. Figure 3.16 shows that

while amongst PCs there are only a small number of components with considerable

variance, both autoencoders have much higher number of nodes with considerable

variance (i.e. an informative embedding in that dimension). The deep autoencoder

compares favourably with the earlier architecture that used ReLU activation func-

tion, as it has 93 components with an informative embedding of the data. Most

importantly, the distributions of values in the 93 used components produced by the

deep autoencoder are diverse - compare the distributions with one, two and three

modes in Figure 3.27 to zero-inflated unimodal distributions produced by the basic

deep autoencoder with ReLU activations in all but the output layer shown in Figure
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3.12. To fully make sense of the latent representations of the data, I will first analyse

the flow of the information through the deep autoencoder in Section 3.2.4 and then

discuss the properties of the latent space in detail in Section 3.2.5.

Figure 3.16: Comparison of variances of latent components produced by PCA and two
autoencoders (AE) with different activation functions in the latent layer.

PCA identifies linear combinations of the gene expression values that correspond

to the largest variance in the data. If none of the genes or linear combinations of

the genes are able to explain the variance in the data, that would be immediately

apparent. For example, the individual variances of the first five PCs of the Cheng

et al. [2018] dataset are 2.3815, 1.3448, 1.0581, 0.8052 and 0.3612. If the gene

expression values are randomly permuted for every cell, the individual variances

of the first two PCs are 0.02521 and 0.00052. It is not immediately apparent with

GNN-based models, since neural networks can be trained on noise [Arpit et al.,

2017, Neto, 2018]. The plot of the loss function values for the deep autoencoder
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trained on the Cheng et al. [2018] dataset, and on the same dataset with the gene

expression values randomly permuted for every cell, shows that the training dy-

namics are completely different, see Figure 3.17b. During the training of the deep

autoencoder on the real data, the loss function for the batches of training data first

decreases rapidly as every adjustment of an initially random mapping leads to an

improvement, and then starts to oscillate as the model is further refined. For most

of the training the loss function for the batches of training data is lower than the loss

function of the test dataset, since the model has never observed the test dataset. The

loss function for the test dataset decreases monotonically until the onset of overfit-

ting and then increases monotonically afterwards. In contrast, during the training

of the deep autoencoder on noise, the loss function for the batches of training data

oscillates and its values are often higher than the initial value - the mapping after

training is no better than an initially random mapping. The loss function for the test

dataset remains largely constant since adjustments to the model are random instead

of directed. These differences imply that the datasets with insufficient signal to

noise ratio can be identified by monitoring the training dynamics.

3.2.4 Information flow through a GNN

In this section I will follow the flow of information through the deep autoencoder -

starting with the input data, through the hidden and the latent layer of the encoder,

the hidden layer of the decoder and finally the output layer of the decoder. Intu-

itively one would expect that hidden layers of a neural network extract informative
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(a) Training on data

(b) Training on noise

Figure 3.17: Comparison of the loss function values for the deep autoencoder trained on
(a) the real data and on (b) noise.
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features from the input they receive. Huang et al. [2019] formalised this intuition

by showing that for a particular application the features extracted by a hidden layer

coincide with the result of a feature selection optimisation problem.

In the hidden layer of the encoder, a gene expression profile is first multiplied by a

matrix of weights with the number of rows corresponding to the number of genes in

the expression profile and the number of columns corresponding to the number of

nodes in the layer, 500 in this case. Then, biases are added to each of the resulting

500 values. Finally, the resulting values go through the Exponential Linear Unit

(ELU) activation function that is linear on the non-negative domain and non-linear

on the negative domain. The weights and the biases are initiated with random values

close to 0 and are adjusted through backpropagation. There are no restrictions on

the values of the weights and the biases. In the deep autoencoder trained on Cheng

et al. [2018] data the weights in the encoder hidden layer range from -0.6837 to

0.9734, 86.2% of the nodes have more negative weights than positive weights, see

Figure 3.18. Figure 3.19 shows how for one example cell in the data the values of

each of the 500 nodes is composed of the contribution of negative weights, positive

weights and added biases. The values of biases range from -0.2705 to 0.1369;

they are small relative to the values obtained by the nodes. The average number of

encoder hidden layer nodes with negative values per cell for this specific dataset

is 420 out of 500. This suggests that the network is exploiting the non-linear part

of the domain. Finally, the ELU activation function applied to these node values

transforms them to (-1, ∞) range. This results in the hidden representations of an
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input cell - a 500 dimensional vector with values in the approximate range from

-1 to 8. Examining the correlations between the weights associated with each of

the 500 nodes reveals that the maximum absolute correlation between the weights

associated with one node and another node is on average 0.1840. There is a striking

correlation inflation as the information passes through the layer - the maximum

absolute correlation between the node values corresponding to the hidden repre-

sentations of the data is on average 0.7419. The values of 11 out of 500 nodes

have an absolute correlation of more than 0.99 with values of another node. None

of the nodes are immediately interpretable as corresponding to batch effect, cell

cycle or other known characteristics of the cells. This makes sense intuitively - the

training of the network was driven by a single optimisation problem to minimise

the reconstruction loss value. There was no incentive for the network to partition

different features of the data across different layers. Hence, the features only be-

come apparent when the output of the whole encoder is considered, not just a single

layer.

In their attempt to make sense of the features produced by a GNN-based model,

TAN et al. [2014] focused their attention on the genes that are associated with

weights that are more than two standard deviations away from the mean of the

weights for each of the nodes. It’s the magnitudes of the weights and not the dis-

tances from the mean of the weights that determine which genes have the most

impact on the value of a node. To get an estimate of how many genes might have a

major impact on the value of each of the nodes, I calculated the number of genes as-
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Figure 3.18: Positive and negative weights in the hidden layer of the encoder.

Figure 3.19: The values of each of the 500 nodes for one example cell in the data ordered
by the contribution of negative weights. The values are composed of the con-
tribution of negative weights, positive weights and added biases. The magni-
tudes of biases are small relative to the values obtained by nodes - the green
line (the total values) mostly overlaps the orange line (the values without the
biases).
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sociated with the weights that are a certain number of standard deviation away from

0. Figure 3.20 shows that for an analysis concerned with a handful of known marker

genes the cut-off value for the weights that are considered significant would have

to be high - about 10 standard deviations away from the mean value of the weights.

The distribution of weights for each node is heavy-tailed, with most of the values

clustered around the mean of the distribution and a lot of outliers spread many stan-

dard deviations away from it. The impact of the genes associated with high positive

weights is different from that of the genes associated with high negative weights.

Due to the properties of the ELU activation function, if a gene is associated with a

high positive weight and the resulting value of the node is positive, then the effect

of this gene is linear and unbounded. In comparison, if a gene is associated with a

high negative weight and the resulting value of the node is negative the effect of this

gene is non-linear and bounded. Genes that are on average more highly expressed

have more effect than genes with lower expression.

To estimate an impact of each of the variables (genes, in this case) on the model

performance, Breiman [2001] introduced a variable importance method that calcu-

lates importance scores for each variable in the training data based on how much

difference it makes if a variable is replaced with noise. The major flaw in this ap-

proach, as pointed out by Hooker and Mentch [2019], is that the importance scores

mostly depend on the model’s ability to extrapolate as replacing a variable with

noise creates data points that do not occur in reality. For example, consider a gene

that is either not expressed or highly upregulated. Replacing it with noise would
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Figure 3.20: The number of genes associated with the weights that are a certain number of
standard deviation away from 0 for each of the nodes.

create cells where this gene is upregulated in a biologically unrealistic context.

Instead, I used another approach - for each gene I identified the cells in which it is

expressed and compared the values of the nodes resulting from using the real data

and the real data with the expression of this gene set to 0 as an input. I defined the

gene’s impact score as the mean of the absolute differences between the values for

each cell. Based on the distribution of these impact scores, see Figure 3.21, I chose

an arbitrary cut-off value 0.024 to identify genes that have a major impact on each

of the nodes. Values of 321 nodes receive major impact from 1 to 10 genes, values

of 113 nodes from 11 to 116 genes, and for 66 nodes no genes have major effect on

their value, see Figure 3.22.

From the 18962 genes in the dataset only 418 genes have a major impact on at

least one node, and 307 have a major impact on more than one node. There is
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Figure 3.21: Distribution of the gene impact scores.

Figure 3.22: The number of genes with a major impact on the value of one or more nodes.
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a relationship between the maximum expression value associated with a gene in

the dataset and the number of nodes on which this gene has a major impact, see

Figure 3.23. Only 13.64% of 3064 genes with a maximum expression above 0.4

have a major impact on at least one node. Using the average expression of a gene

or a number of cells in which a gene is expressed as a predictor of the number of

nodes it influences does not show a clear pattern. Intuitively one would expect that

the number of nodes on which a gene has a major impact would be a predictor of

the reconstruction error of expression values of this gene since more information

about the expression of this gene is captured by the neural network, but this is not

the case. To test the collective importance of the genes that don’t seem to have a

major impact on any of the nodes, I removed those 18544 genes, trained the deep

autoencoder on the 418 remaining genes and compared the reconstruction error

for those genes. The autoencoder trained on 418 genes only is able to reconstruct

their expression much better than the autoencoder trained on the whole expression

profiles - the reconstruction errors are 0.6487 and 1.4302 respectively.

The latent layer of the encoder is similar to the hidden layer - the input (in this

case, 500 dimensional representations of the cells) is first multiplied by a matrix

of weights, then the biases are added, and finally the activation function is applied.

Softsign activation function used in this layer transforms the values of the 100 nodes

to (-1,1) range. In the deep autoencoder trained on the Cheng et al. [2018] data the

weights in the encoder latent layer range from -0.5405 to 0.6448. There is no bias

towards negative weights, see Figure 3.24. The relationships between the 500 input
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Figure 3.23: The relationship between the maximum expression value obtained by a gene
in the dataset and the number of nodes on which this gene has a major impact.
Only 418 genes that have mayor impact on at least one gene are shown.

features and the 100 nodes in the latent layer exhibits no easily interpretable pattern

- the values of the nodes are not dominated by one or two features. The highest and

the lowest weight in each of the 100 nodes in this layer are associated with one of

the 140 input features, which implies that this layer utilises the information from

the input effectively instead of focusing on a small number of most informative

features. Unlike the hidden layer, in the latent layer the correlation inflation is not

observed - the average maximum correlation between the weights of the nodes is

0.2086 and between the values it is 0.2934.

As shown in Section 3.2.3, some of the components of the latent representation are

readily interpretable. For example, component 40 identifies suprabasal cells. The

value of this component is most influenced by hidden layer nodes 157 and 250.

In turn, there are 22 genes that have major influence on the value of hidden layer
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Figure 3.24: Positive and negative weights in the latent layer of the encoder.

node 250 including four genes from the keratin family KRT1, KRT10, KRT15,

KRT14. There are 4 genes that have major influence on the value of hidden layer

node 157 - KRT5 and KRT14 from the keratin family, suprabasin gene SBSN, and

KRTDAP gene that might be related to the regulation of keratinocyte differentiation

and maintenance of stratified epithelia. As expected, the values of components 51

and 38 that separate data by batch are influenced by a combination of many hidden

layer nodes that are each in turn influenced by numerous genes.

The decoder hidden layer takes values of the 100 latent nodes as input and produces

500 features as output. The weights in this layer have a much wider range - from

-2.0068 to 3.2268. The balance between positive and negative weights is similar to

the encoder latent layer. The highest and the lowest weight in each of the 500 nodes

in this layer are associated with one of the 87 latent nodes, excluding six unused

nodes with the lowest variances. This implies that this layer utilises the information
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from the input effectively and places little emphasis on unused latent nodes. ELU

activation function used in this layer transforms the values of the nodes to (-1, ∞)

range. The values obtained by the nodes in this layer lie in the approximate range

from -1 to 9, which is similar to the range of values of the encoder hidden layer. In

this layer the correlation inflation is not observed - the average maximum correla-

tion between the weights of the nodes is 0.3986 and between the values it is 0.4614.

The average maximum correlation between the values of the decoder hidden layer

nodes and the encoder hidden layer nodes is 0.4434. It is not unexpected that in an

overparametrised neural network the features identified by the hidden layers of the

encoder and the decoder are different.

The decoder output layer is responsible for expanding the dimensionality back to

the original number of dimensions, i.e. genes. The weights in this layer range from

-1.1479 to 1.1018. As expected, 92.98% of the nodes have more negative weights

associated with them, see Figure 3.25. The Sigmoid activation function transforms

negative values of the nodes to gene expression values below 0.5; the majority of

the data is in that range. The weights associated with each of the nodes provide

no clues about the relationships between the genes. For example, the correlation

between the expression values of the two keratin family genes KRT5 and KRT14

(the genes that have a major impact on the value of the encoder hidden layer node

250 that subsequently allows the encoder latent layer node 40 to identify suprabasal

cells) is 0.8544. The correlation between the expression values of these two genes

in the output of the decoder is even higher at 0.9158, but the correlation between
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the weights of the decoder output layer nodes corresponding to these two genes is

only 0.1317. The activation function used for this layer is non-linear but monotonic,

which means that the relationship obscured by the non-linearity could be captured

by Spearman rank-order correlation. In this case, the Spearman rank-order correla-

tion is 0.1300, similar to the Pearson correlation. This is especially striking given

that the average maximum correlation between the weights of the decoder hidden

layer nodes is 0.6123.

Figure 3.25: Positive and negative weights in the output layer of the decoder.

From this analysis of the flow of information through the deep autoencoder I con-

clude that the weights in the encoder can be used to interpret the latent dimensions

created by the trained neural network, while the weights in the decoder cannot

be used to infer the relationships between the genes. The main limitation of in-

terpretability of the encoder weights is the distributions of the weights. These

distributions have a narrow peak around the mean and often have no clear outliers.
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The deep autoencoder training is governed by the loss function that is focused

solely on the quality of the data reproduction and hence there is no incentive to

create sparse weight matrices. As expected, the deep autoencoder exploits the

non-linearity of the activation functions and places the most emphasis on the most

variable features of the latent layer.

3.2.5 Data representation in latent space

The encoder of the deep autoencoder creates the embedding of the data into a lower

dimensional space. A good embedding is useful in many ways - it allows one to

discover important features in the data, it provides a lower dimensional coordinate

space where similarity/distance between data points can be defined, and it facili-

tates the visualisation of the data by either picking two to three of the dimensions or

defining combinations of these dimensions. An embedding of a single data point is

produced by multiplying the expression profile by the encoder hidden layer weights

matrix, adding the biases, applying an ELU activation function, multiplying the

result by the encoder latent layer weights matrix, adding the biases and finally

applying the Softsign function. Theoretically, each of the 100 dimensions of the

latent space is interpretable - one can write an equation that shows the relationship

between each of the gene expression values and the resulting value in the dimension

of interest. In practice, for an expression profile with 10 genes such an equation

would involve 55.6 thousand parameters and two non-linear functions. In this case,

the expression profile contains 18962 genes which results in just over 9.5 million
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parameters. For identifying important connections between the input genes and the

resulting values in the latent vector it is necessary to use heuristics and/or existing

knowledge, such as marker genes or known cell labels.

The latent space of the deep autoencoder consists of 100 dimensions in Euclidean

space bounded to the (-1,1) range. A tSNE plot of the latent space is similar to

the tSNE plot of the dataset, implying that the main signals in the data have been

preserved in the latent space embedding, see Figure 3.26 and 3.9. The average

maximum correlation between the values of the nodes is 0.2934. For comparison

the average maximum correlation between 100 PCs is 0.0007. The embedding

of the cells in the Cheng et al. [2018] dataset do not use the whole of the latent

space. Instead they are spread over 55.43% of the range on average - the seven

unused components use less then 7% of the range each, and other components

use up to 77.56% of the range. The distributions of the unused components have

sharp single-mode peaks around the boundaries of the domain. See Figure 3.27 for

distributions of the latent components - 72 of them have a single-mode distribution

centred around the middle of the domain, 13 have a bimodal distribution, and 6 of

those 13 have the modes far apart. The other 8 components have various distribu-

tions - a trimodal distribution, single-mode distributions located close to the domain

boundary, and distributions with unusual tail shapes. Components 95 and 10 that

identify melanocytes and immune cells respectively have bimodal distributions with

two peaks of unequal size located far apart, see Figure 3.28.
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Figure 3.26: A tSNE plot of the latent space. Melanocytes (cells inside an oval) and im-
mune cells (cells inside a rectangle) form separate clusters, while all other
cells from every sample form 2 large clusters per sample. The cells are
coloured by sample.

I identified latent components that correspond to cell cycle effects using the Pearson

correlation coefficient between the values of a component and the total expression

of M/G1 cell cycle phase marker genes identified by Macosko et al. [2015]. Five of

the components (29, 76, 85, 92, 48) capture some of the cell cycle effects. Com-

ponent 29 has a positively skewed distribution and the other 4 components have

distributions located close to the domain boundaries, see Figure 3.29a. Four of the

seven unused components (19, 31, 30, 52) also correlate with M/G1 cell cycle phase

marker genes. A tSNE plot of these 9 components identifies small sub-populations

within the data, and shows that the components associated with cell cycle phase are

independent of batch effects, see Figures 3.29c - 3.29d.

Identifying latent components that correspond to batch effects requires a measure

of association between a continuous and a categorical variable - the values of the
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(a) Single mode (b) Single mode centered

(c) Bimodal (d) Bimodal, modes far apart

(e) Other

Figure 3.27: Distributions of the latent components: (a) 9 of them have distributions with
sharp single-mode peaks around the boundaries of the domain, (b) 72 have a
single-mode distribution centred around the middle of the domain, (c) 7 have
a bimodal distribution, (d) 6 have a bimodal distribution with the modes far
apart, (e) 8 have various distributions - a trimodal distribution, single-mode
distributions located close to the domain boundary, distributions with unusual
tail shapes. Each of the components is shown in a different colour simply for
ease of visualisation.
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(a) Immune cells (b) Melanocytes

(c) Component distributions

Figure 3.28: (a) The components 10 identifies immune cells. The cells are coloured by the
total expression of marker genes CD74 and HLA-DPA1. (b) The components
95 identifies melanocytes. The cells are coloured by the total expression of
marker genes PMEL and TYRP1. (c) These components have bimodal distri-
butions with two peak of unequal size located far apart.

component and the batch IDs. I used a simple approach based on an estimate of

whether the variance of the continuous variable can be partially explained by the

categorical variable. To do that, for each component I calculated the variance of

its values associated with each of the batch IDs and the total variance of all the

values. If the batch IDs are not related to the values of a component then the vari-

ances of the groups are expected to be similar to the total variance, which is the

case for 92 components. If the variance of each individual group is lower than the

total variance then the batch IDs explain some of the variance in this component.

Eight of the components (51, 38, 17, 6, 22, 11, 21, 7) capture some of the batch

effects. These components have distributions with one, two or three modes; all of
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(a) Component distributions (b) Example scatter plot

(c) tSNE of cell cycle components (d) tSNE of cell cycle components

Figure 3.29: (a) The distributions of the latent components 29, 76, 85, 92 and 48 that cap-
ture cell cycle effects. Each of the components is shown in a different colour
simply for ease of visualisation. (b) An example scatter plot of two of these
components. The cells are coloured by the total expression of M/G1 cell cy-
cle phase marker genes. (c) tSNE of 9 components related to cell cycle phase.
The cells are coloured by the total expression of M/G1 cell cycle phase marker
genes. (d) tSNE of 9 components related to cell cycle phase. The cells are
coloured by sample, similar to Figure 3.9.

them are located around the centre of the range, see Figure 3.30a. A tSNE plot

of these 8 components shows that the batch effects are minimal between the three

scalp samples and between the two foreskin samples, while the other samples are

readily separated in the plot, see Figure 3.30c. There is also a sub-population of

cells from all samples that forms a small cluster, implying that these cells might

react differently to the stimuli that all cells are subjected to during the experimental

protocol. A tSNE plot of 83 latent components that are not associated with batch or

cell cycle phase effects shows that some batch effects are still collectively present

amongst the remaining components, see Figure 3.30d.
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(a) Component distributions (b) Example scatterplot

(c) tSNE of batch components (d) tSNE without batch and cell cycle effects

Figure 3.30: (a) The distributions of the latent components 51, 38, 17, 6, 22, 11, 21 and
7 that capture batch effects. Each of the components is shown in a different
colour simply for ease of visualisation. (b) An example scatter plot of two of
these components. (c) A tSNE plot of eight latent components associated with
batch effects. (d) A tSNE plot of 83 latent components not associated with
batch or cell cycle phase effects. In (b-d) the cells are coloured by sample,
similar to Figure 3.9.

Before considering interpolation or extrapolation in the latent space or a subset

of its components, I first assessed whether noise is distinguishable from data in

this space. For this, I randomly selected 50 cells from the dataset and randomly

permuted the gene expression values in each of the expression profiles. I will call

them noise cells. These noise cells map to a single tight cluster in the latent space,

see Figure 3.31. The position of these cells in individual latent components varies.

They are located in the tail of the distribution of component 29 that corresponds to

cell cycle, between the peaks corresponding to melanocytes and other cells in the

distribution of component 95, outside the range of the unused component 55, and
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throughout the range of the distribution of unidentified component 56, see Figure

3.32. Noise cells are not confined to the boundaries of the latent space and do not

always fall outside the distribution of a latent component. There is no straightfor-

ward way to distinguish between an embedding of a cell used for training the deep

autoencoder and an embedding of a noise cell.

Figure 3.31: A tSNE plot of the latent space including both data and the 50 cells from the
dataset with randomly permuted gene expression values in each of the expres-
sion profiles (enclosed in the rectangle). The data are coloured by sample,
similar to Figure 3.9. The “noise” cells are in black.

Cheng et al. [2018] used 10 PCs of the data as input for Slingshot [Street et al.,

2018] to infer differentiation trajectory from cells they’ve labelled as “basal1” to

the ones they’ve labelled as “granular”. Components 40 and 54 in the latent space

created by the deep autoencoder correspond to the trajectory the authors of the

data have reported, see Figure 3.33a. These components correctly identify immune

cells as not part of the trajectory, but they are unable to separate melanocytes,

WNT1, channel and follicular cells from the trajectory, see Figure 3.33b. Dong
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(a) Cell cycle component (b) Melanocyte component

(c) Unused component (d) Unidentified component

Figure 3.32: The distributions of the latent components 29, 95, 55 and 56. The values of
these components for the “noise” cells (cells from the dataset with randomly
permuted gene expression values) are shown with black dots.

et al. [2019] showed the inconsistency between feature representations in neural

networks trained on images and semantic concepts. Similarly, it is likely that a

neural network trained on gene expression profiles might produce features that are

not aligned with the concepts that a biologist has in mind.

In light of these observations, I conclude that interpolation in latent space has to

be considered with caution. Some of the latent component correspond to the tra-

jectories in the data, for example components 40 and 54 capture the differentiation

trajectory from basal cells to granular cells. Other latent components correspond to

clusters, for example component 95 clusters the data into two groups - melanocytes

and not melanocytes. While interpolation in the dimensions associated with the
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(a) Cells on the trajectory

(b) All cells

Figure 3.33: (a) Components 40 and 54 correspond to the differentiation trajectory Cheng
et al. [2018] have reported. Only cells that are part of this trajectory are shown.
The cells are coloured by the cell type. (b) These components identify immune
cells as not part of the trajectory, but they are unable to separate melanocytes,
WNT1, channel and follicular cells from the trajectory. All cells are shown.
The cells are coloured by the cell type.
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trajectories in the data could be meaningful, interpolation in the “clustering” di-

mensions or in the dimensions corresponding to batch effects is not likely to be

useful. Interpolation in the latent space is often used with the aim to infer prop-

ertied of the rare cell types or transient cell states, which means that the area of

the latent space that is of interest is populated sparsely or not at al. While suc-

cessful applications of vector arithmetics in latent space [Radford et al., 2015] are

encouraging, the exact same examples also reveal the associated challenges - White

[2016] showed that subtracting the smile vector from a woman’s face resulted in

an unintended addition of male attributes to the face. This problem originates from

a sampling bias - the training data contained unequal proportions of images of

smiling man and woman. This is a strong argument against using interpolation in

the setting of unequal density of the data in the latent space. Most interpolation

methods are based on the assumption that a differentiation trajectory, progression

through a cell cycle or an infection, or any other path of interest corresponds to a

straight line in the latent space. This assumption is rarely motivated by any evi-

dence, and it is usually not possible to confirm the validity of this assumption in a

straightforward way. Struski et al. [2019] argued that a good interpolation should

follow the true distribution of the data. They proposed a method for constructing

interpolations which takes into account the density of the data in the latent space

and the differences between the reconstructions of consecutive interpolated points.

They showed that this much more involved process performs better that the linear

interpolation. This approach is based on the assumption that there is a continuous

smooth path of data points along the whole interpolation trajectory. It would be
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unjustifiable to make this assumption for the scRNA-seq data. A trained model

cannot be expected to be predictive beyond the domain of the training data, which

precludes the use of extrapolation in latent space.

3.2.6 A model useful beyond one dataset

A real test for the usefulness of a model is it’s ability to generalise beyond one

dataset it was trained on. To assess this, I used the human skin dataset produced

by Tabib et al. [2018]. This dataset contains samples from dorsal forearm skin

biopsies sequenced using the Chromium Single Cell protocol from 10X Genomics.

The Tabib et al. [2018] dataset contains expression values for 17796 genes present

in the Cheng et al. [2018] dataset, hence only 1166 genes had to be removed from

the Cheng et al. [2018] dataset to be able to subsequently assess a trained model on

both datasets.

The deep autoencoder trained on the Cheng et al. [2018] dataset using 17796 genes

present in both datasets produced the reconstruction error equal to 26.9297 when as-

sessed on Cheng et al. [2018] dataset. When assess on Tabib et al. [2018] dataset the

reconstruction error is much higher - 35.8639. Similarly, the autoencoder trained on

the Tabib et al. [2018] dataset produced the reconstruction error equal to 27.7581

when assessed on the dataset it was trained on and 34.5766 when assessed on the

other dataset. The reconstruction error using 100 PCs computed on the Cheng et al.

[2018] dataset is 27.1094 when assessed on the dataset itself and 35.0012 when
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assessed on the other dataset. This implies that the features generated by the deep

autoencoder generalise to other datasets no better than PCs.

3.2.7 Conclusions

In this chapter I’ve shown that the deep autoencoder has both theoretical and practi-

cal advantages over PCA and other dimensionality reduction algorithms. The deep

autoencoder is able to capture non-linear interactions between the genes, and it

does not assume that the regulatory relationships between the genes stay constant

across the whole dataset. As a result, the reconstruction error is significantly lower

compared to PCA. Though in terms of being useful beyond a single dataset on

which it was trained, the deep autoencoder performs no better than PCA. The deep

autoencoder also produces an embedding of the data into a latent space where more

of the dimensions are informative. Across those dimensions, the deep autoencoder

is able to generate a wide range of diverse distribution shapes that accommodate

different types of features in the data. For example, a distribution with two distinct

peaks located far apart distinguishes between immune cells and other cells, while a

single-mode skewed distribution accounts for a continuous feature that has a “typ-

ical” state and a large range over which it can deviate. Another advantage of the

deep autoencoder is that it does not train on noise, and hence if the data (due to a

problem at experimental stage) contains no signal it is easy to determine it by look-

ing at the training dynamics of the network. Unfortunately, the deep autoencoder

does not allow meaningful interpolation or extrapolation between data points.
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Chapter 4

Extending applications of GNNs to

single cell RNA-seq data

In this chapter I will look at each of the components of the process of applying gen-

erative neural networks (GNNs) to the scRNA-seq data and explore the opportuni-

ties to improve upon each of them. The components of this process include the data

itself, the internal architecture of the autoencoder, the dynamics of the autoencoder

training and the inherent randomness property of the neural networks. Hereafter I

will refer to the deep autoencoder model I explored in the previous chapter as the

original autoencoder to distinguish it from the alternative implementations proposed

below. The contributions made in this chapter are as follows:

• A novel approach to building an autoencoder robust to technical dropouts in

the data

• A novel approach to model biological information flow in the cells using

residual connection
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• An exploration of various approaches aimed at shaping the training process

of the autoencoder

4.1 Addressing properties of single cell RNA-seq

data

In this section I will explore the opportunities of improving the performance and

the biological relevance of the autoencoder solely by manipulating the input data.

First, I will assess the effect of increasing the amount of training data. Next, I will

look for an appropriate transformation of the data to enable an autoencoder to learn

from it more efficiently. I will conclude with a preposition of a novel method that

could enable training a model that is robust to the technical limitations confounding

the scRNA-seq data.

4.1.1 More data is always better

Often a simple way to improve the performance of a method is to use more data.

To test whether the deep autoencoder would perform better if trained on more data,

I randomly split the Cheng et al. [2018] dataset into 12 equal subsets and trained

the model using 1 or more of these subsets. The dynamics of the training observed

through the loss functions is similar across the 12 training rounds. The value of the

training loss function after the first epoch is generally lower if more data is used for

training, see Figure 4.1a, which is expected - more data means more learning during

each epoch. After the first 30 epochs the training rounds are indistinguishable, apart

from the model trained on only 1 subset of the data which takes longer to train. The
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(a) Training loss function values

(b) Test loss function values

Figure 4.1: Comparison of the (a) training and (b) test loss function values. The colours
show the proportion of the data used for training.

values of the test loss function are lower for the models trained on more data, but

the difference is diminishing as more data is added, see Figure 4.1b.

For each of the training rounds I measured the reconstruction error on the subset

of the data the model was trained on, as well as on the whole dataset, see Figure
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4.2. The reconstruction error on the subset of the data used for model training

reduces as more data is used for training, but the added benefit of each additional

lot of data is diminishing. The reconstruction error on the whole dataset reduces

as bigger proportion of this data was used for model training. The observed trend

implies that if the experiment would have profiled more cells the improvement in

the performance of the model would likely be modest. The additional information

contained in the cells from the same experiment is limited.

Figure 4.2: The reconstruction error measured on the whole data and only the data used for
training the model. The x-axis show how many of the 12 subsets of data were
used for training.

Another important question is whether the deep autoencoder is useful for combin-

ing datasets from different experiments produced by different labs. As shown in

Section 3.2.6, the features identified by the deep autoencoder trained on one dataset

generalise poorly to another dataset. This does not mean however, that the deep

autoencoder is not useful for integrating information from several datasets. The
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deep autoencoder trained on the Cheng et al. [2018] dataset (using only the genes

present in both datasets) produces the reconstruction error equal to 26.9297. If both

Cheng et al. [2018] and Tabib et al. [2018] datasets are used for training, the recon-

struction error on the Cheng et al. [2018] data reduces to 26.8911. The effect on the

smaller dataset is much more pronounced. The Tabib et al. [2018] datasets contains

only 6497 cells, less then 10% of the number of cells in the Cheng et al. [2018]

dataset. The deep autoencoder trained on the Tabib et al. [2018] dataset produces

the reconstruction error equal to 27.7581. If both datasets are used for training, the

reconstruction error on the Tabib et al. [2018] datasets reduces to 25.9300. This

shows that the autoencoder is able to learn from a dataset produced by a different

lab and integrate the information to improve the performance on the data of interest.

4.1.2 Making the data easier to learn from

While getting the desired amount of data is not always possible, it is always an

option to scale or transform the data to enable GNNs to learn from it better. In this

section I will explore whether the performance of the deep autoencoder can be im-

proved by changing the range of the data in combination with selecting appropriate

activation functions.

The deep autoencoder trains by minimising the loss function equal to the mean

square error between the input and the reconstructed data. Since both the data and

the reconstructed data lies in the [0,1] range, the square error of each individual
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reconstructed gene expression value also lies in the [0,1] range. The derivative of

the x2 function is 2x and hence, the [0,1] range corresponds to the most shallow

gradient of the loss function. To take an advantage of this property of the loss func-

tion used, the data could be simply scaled to a wider range. This would result in

a larger maximum possible error and hence would provide bigger gradients for big

errors and relatively smaller gradients for small errors, thus enabling the model to

learn more efficiently, at least in theory. To test whether this can provide a perfor-

mance improvement in practise, I scaled the data to [0,6] range and used the ReLU6

activation function in the output layer:

ReLU6(x) = min(max(0,x),6).

The choise of a [0,6] range is of course arbitrary, but the advantage of this spe-

cific choice is that there is no need to write a custom activation function since

ReLU6 is included in the PyTorch library. Apart from the benefit described above,

using a ReLU-based activation function in the decoder output layer will result

in zero-inflated distribution of values in the reconstructed data which is ideal for

scRNA-seq data - in the Cheng et al. [2018] dataset, for example, 87.64% of the

gene expression values are equal to 0. To be able to compare the performance of

this model, the reconstruction errors were computed on the data in the original [0,1]

range. Contrary to the theoretical prediction, this modification does not result in an

improved performance of the deep autoencoder - the reconstruction error increases

significantly from 27.4840 to 27.7588 (more than 6 standard deviations from the
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mean). To determine whether this decrease in performance is caused by a bad

combination of activation functions used in the deep autoencoder, I tested different

combinations of the ReLU6 activation function in the decoder output layer with

other upstream activation functions. I’ve picked two best models identified in the

earlier comparison, see Table 3.2, and trained them using the ReLU6 activation

function in the decoder output layer. The performance of the model with the Tanh

activation in the hidden layers and the ELU activation in the encoder latent layer

became worse - the reconstruction error increased from 27.3830 to 27.7511. The

performance of the model with the Tanh activation in the hidden layers and the

Softsign activation in the encoder latent also became worse - the reconstruction

error increased from 27.4378 to 27.6197. These results suggest that increasing the

range of the data does not enable the deep autoencoder to learn more efficiently.

The majority of the values in the data being equal to zero means that the weights in

the encoder hidden layer are mostly multiplied by zeros. If a product of a value in

the data and a weight is zero it provides no gradient information for adjusting this

weight throughout training. Since a single bias is added to each nodes value, the

bias cannot accomodate for the lack of informative gradients for numerous genes.

This explains why accommodating for zero values in the data by using the ReLU

activation function in the decoder output layer did not have a positive effect on the

performance. Another way to accommodate for zeros in the data and the lack of

information they provide is to shift the range of the data. I scaled the data to [0,2]

range and shifted it to [-1,1] range. Now all of the values in the data are non-zero
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and as they get multiplied by weights they provide an informative gradient that

allows to adjust the weights throughout training. There are two choices for the

decoder output layer activation function - Tanh and Softsign. To be able to compare

the performance of this model the reconstruction errors were computed on the data

in the original [0,1] range. The deep autoencoder with the Softsign activation func-

tion in the decoder output layer trained on the data in [-1,1] range performs worse

than the original autoencoder - the reconstruction error increases from 27.4840 to

28.0226. If the Tanh activation function is used instead the reconstruction error

decreases from 27.4840 to 27.3948, which is not a significant difference (the value

is less than 2 standard deviations away from the mean of the distribution). Figure

4.3b reveals that scaling the data to a different range and shifting the dropout values

to -1 instead of 0 does not solve the underlying problem. The deep autoencoder

is able to reconstruct high expression values in the data (the points in the upper

right part of the plot show strong correlation between real and reconstructed gene

expression values), but the low expression values are dominated by noise that the

model is not able, and not expected, to reconstruct (the points in the lower left part

of the plot show lack of correlation).

4.1.3 Accounting for dropouts in the data

A large proportion of zeros in scRNA-seq data correspond to technical dropouts.

This property of the data is often compared to the problem of denoising an image

with many pixel values set to 0. The ideas from the Vincent et al. [2008] paper
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(a) The original autoencoder.

(b) The modified autoencoder.

Figure 4.3: (a) The expression values in a cell plotted against the values reconstructed by
the original autoencoder. (b) The expression values in a cell plotted against the
values reconstructed by the deep autoencoder with the Tanh activation function
in the decoder output layer trained on the data in [-1,1] range.
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that coined the term denoising autoencoder have been applied to scRNA-seq data

in numerous studies [TAN et al., 2014, Deng et al., 2019, Amodio et al., 2017].

Denoising autoencoders perform well on the types of data where the values are

spatially or temporally linked, like images and audio. This is not the case for

scRNA-seq data where genes in the expression vector are ordered randomly or

alphabetically. Ordering the genes by their position on a chromosome does not lead

to a data where values located next to each other are more likely to contain infor-

mation about each other. Similarly, clustering genes by their annotated function

would not resolve the problem of how to arrange the clusters between themselves

and how to arrange the genes inside the clusters. The gene interaction network

inevitably has much more irreducible complexity than the interaction network of

pixels in an image, where the amount of information about a pixel contained in

other pixels is a simple monotonically decreasing function of the distance between

them. Hence, studies that use autoencoders for dropout imputation in scRNA-seq

data are of limited utility.

An alternative way to deal with this property of the data is to consider the parallel

between the the technical dropouts in scRNA-seq data and a (confusingly called

the same way) dropout layer in a neural network. The idea behind a dropout layer

is simple - randomly deleting some of the values in the data (for example, setting

some pixel values to zero in an image) leads to a more robust neural network that

cannot rely on any specific value in the data and instead has to learn robust features

that are based on an interplay between many different values with no single one
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having an overwhelming importance. The concept of a dropout layer has been

introduced by [Srivastava et al., 2014] and has been used extensively since then to

prevent overfitting in neural network training. Khalfaoui and Vert [2018] were the

first to suggest a parallel between the dropouts in scRNA-seq data and a droupout

layer in a neural network.

In this section I will explore the effects of introducing a dropout layer upstream

from the encoder in the deep autoencoder, see Figure 4.4. I expect that the dropout

layer will lead to two direct benefits. First, it will force the deep autoencoder to

learn features that are robust to missing values. Second, it will limit the overfitting

since the values are randomly deleted from the data at the start of every epoch of

training and hence the model never sees the same expression profile twice. Arpit

et al. [2017] showed that dropouts can hinder memorization in GNNs while pre-

serving their ability to learn from real data. I implemented the dropout layer in the

following way - for every non-zero value in an expression profile a random number

in the [0,1] range is generated, if the expression value is less than the randomly

generated number then the expression value is set to zero. This way the probability

of a gene becoming a dropout is proportional to the level of expression thus crudely

mimicking the properties of the data. The number of zeros in the data after the

dropout layer increases from 87.64% to 97.74%. This means that the deep autoen-

coder trained on this data will be more robust to the technical dropouts in the data,

since this additional layer exaggerates the problem in a realistic manner.



190 Chapter 4. Extending applications of GNNs to single cell RNA-seq data

Figure 4.4: A deep autoencoder with a dropout layer upstream of the encoder.
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The denoising autoencoders train by encoding a noisy images, decoding it and aim-

ing to minimise the reconstruction error between the output and the target noise-free

image. This approach does not work for scRNA-seq data as the target noise-free

true gene expression profile, i.e. ground truth, is not available. It is unrealistic to

expect that an autoencoder will be able to distinguish between the dropout values

that occurred during the experiment and the artificially introduced dropouts. To

confirm this, I trained the deep autoencoder with a dropout layer upstream from the

encoder in a usual manner - comparing the reconstructed gene expression profile

with the original data (before going through the dropout layer). The model did

train, but, as expected, the performance was very poor - the reconstruction error

equal to 165.4284.

It is unrealistic to expect that an autoencoder will be able to distinguish between

real and artificially introduced dropouts, or that it will be able to infer the true

unobserved expression values for dropouts present in the data but not the noise-free

levels of expression of other genes. Therefore, I used an approach that has not been

explored before. I trained the deep autoencoder by comparing the reconstructed

gene expression profile with the output of the dropout layer instead of the original

input data. The deep autoencoder trained in this way is not expected to be able to

impute the technical and/or artificially introduced dropout values. Instead, the aim

is to able to learn features from the imperfect data. The reconstruction error of this

autoencoder on real data is 36.5603, which implies that this is a promising direction

to explore compared to conventional approaches that train the autoencoder with a
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dropout layer by comparing to the data prior to the dropout layer.

4.2 Biologically inspired GNN architectures

The deep autoencoder takes gene expression values as input, combines them in a

non-linear manner into a set of 500 features, which are subsequently combined into

100 latent features. The process of the information flow in a living cell is much

more intricate, and it also includes information from outside the cell. While the

input into an autoencoder, in this current implementation, is limited to gene expres-

sion values only, the internal connections in the deep autoencoder can be modified

to create a more realistic model of the information flow and thus produce more

informative latent representations of the cell states. In this section I will explore

two modifications - introducing additional hidden layers and residual connections.

4.2.1 Deeper autoencoders

The gene expression levels in a cell result from an interplay of regulatory mecha-

nisms, which are in turn regulated through various biological pathways. Combina-

tions of these pathways result in biological processes which collectively create the

global signalling network of each individual cell. All of this hierarchical informa-

tion is observed through a narrow window of a single expression profile. In this

profile each gene’s expression might be a result of being regulated through numer-

ous pathways associated with different processes all happening simultaneously in

a cell. To capture this hierarchical information I will introduce additional hidden
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layers to the deep autoencoder. Increasing the number of hidden layer in both the

encoder and the decoder to two results in the reconstruction error equal to 27.3673,

increasing it to three further decreases the reconstruction error to 27.3273. The

improvement is not significant.

I examined the performance of the autoencoder with three hidden layers both in the

encoder and the decoder. In this model the latent space representations of the data

points are interpreted as cell states that are combinations of biological processes

occurring in the cell (the downstream hidden layer). In turn, these processes cor-

respond to one or more active or repressed pathways (the next downstream layer)

which involve several transcription factors (the next downstream layer). The activ-

ity of these transcription factors ultimately result in the gene expression levels in

a cell (the output layer). Figure 4.5 shows that most of the layers in the encoder

actively learn certain features, they do not simply pass down the information from

the upstream layer, which would result in maximum correlations to features in the

upstream layer approaching 1. The trained model uses all of the 100 latent dimen-

sions, Figure 4.6, which was not the case for the original autotoencoder that only

used 93 of them. This implies that the performance of this model can be improved

by increasing the number of nodes in some or all of the layers.
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Figure 4.5: The maximum correlations between the features in the encoder layer and the
features in the layer directly upstream from it.

Figure 4.6: The distributions of 100 latent components. Each of the components is shown
in a different colour simply for ease of visualisation.
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4.2.2 Residual connections

In the original autoencoder a latent space embedding of a cell is created using the

information contained in the features of the encoder hidden layer, which in turn is

based on the information stored in the expression profile. This strictly sequential

flow of information is biologically unrealistic. The nodes of the encoder hidden

layer have access only to the gene expression values, other information about the

identity of the cell or the processes occurring in the cell is not available. The idea

is that the autoencoder can use the information contained in the expression profile

to infer this additional information, i.e. create features corresponding to the cell’s

identity and activities. Here is the problem: nodes in the latent layer are connected

only to the nodes in the hidden layer, and hence they do not have direct access to

the information about gene expressions. In a real cell the information about cell’s

identity, however it is encoded, is combined with the information contained in the

gene expression levels to orchestrate cell’s development and activities. See Stad-

houders et al. [2019] for a good explanation of how a cell state can be interpreted

as an “emergent property” that arises from the interplay of various components

that govern transcriptional regulation in a complex, multi-layered and intercon-

nected manner. Stadhouders et al. [2019] review recent studies suggesting that the

interplay between transcription and genome conformation governs cell-fate deci-

sions, i.e. that both transcriptomic and non-transcriptomic information is utilised

at the same time. Another example where the information about the gene’s ex-

pression level is used alongside with cell state information is cell-fate-instructive

transcription factors - they can short-circuit signal transduction processes when



196 Chapter 4. Extending applications of GNNs to single cell RNA-seq data

over-expressed, which results in a complete rewiring of a cells expression programs

[Graf and Enver, 2009].

To create a model that is able to capture this flow of information between the

different hierarchical levels in a cell, I used residual connections. This powerful

concept was introduced by He et al. [2015b], and it lead to an enormous progress

in image recognition in just a couple of months [Szegedy et al., 2016]. A deep

autoencoder with residual connections uses the information in an expression profile

to create the encoder hidden layer features, and then it uses both these features and

the expression profile to create a latent representation of a cell, see Figure 4.7. The

reconstruction error produced by this model is equal to 27.4607, which is similar

to the original autoencoder (within 0.5 of a standard deviation). I examined the

weights in the encoder hidden layer to estimate how much importance a trained

model places on the available information about the expression values compared to

the features from the upstream layer. Out of 100 nodes, in 64 the highest weight

is associated with a feature and in 36 with a gene, see Figure 4.8. The nodes with

higher maximum weigh values are more likely to have those values associated with

a feature. From this I conclude that features learnt by the upstream layer are more

“informative” than gene expression values on average, as expected. At the same

time some of the gene expression values provide essential information not in the

context of expression values of other genes but in the context of the features learnt

by the hidden layer. Amongst the genes that have a major impact on one of the 36

nodes dominated by the transcriptomic information there are ID2 and ID3 inhibitors
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of DNA binding, BTG2 anti-proliferation factor, HSPA1A heat shock protein and,

as expected, numerous transcription factors (CEBPD, IRF8, TSC22D1, HES1,

etc.). Similarly, the most negative weight is associated with a feature in 58 nodes.

This implies that both types of information are encoded using both linear and non-

linear domain. Notably, there are two genes that are associated with by far the

highest weights in this layer, both of them are members of the keratin gene family

(KRT13 and KRT17) that are highly expressed in skin tissue. To assess the influ-

ence of available transcriptomic information on the overall behaviour of this layer,

I examined the distributions of positive and negative weights associated with each

type of information, see Figure 4.9. The features created by the encoder hidden

layer undoubtedly play a mayor role (i.e. are associated with larger weights), but

the information contained in the gene expression values is also valuable.

4.3 Shaping the autoencoder training process

4.3.1 Shaping feature allocation to nodes

An autoencoder with sufficient capacity, i.e. number of nodes, to model the data

has no incentive to allocate individual features to specific nodes. The training is

governed solely by the loss function that measures the quality of the expression

profile reconstruction. This results in partitioning of concepts that a biologist would

regard as a single feature, for example a cell cycle phase, across several dimensions

in the latent space. In Chapter 3 I showed that 5 out of 100 latent dimensions trained

on the Cheng et al. [2018] dataset were related to cell cycle phase, and more than
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Figure 4.7: A deep autoencoder with residual connections uses the information in an ex-
pression profile to create the encoder hidden layer features, and then it uses
both these features and the expression profile to a create latent representation
of a cell.



4.3. Shaping the autoencoder training process 199

Figure 4.8: Maximum and minimum weights associated with the gene expression values
(in blue) and with the features from the upstream layer (in green) for each of
the nodes in latent layer.

Figure 4.9: The distributions of positive and negative weights associated with the gene ex-
pressions values and the features from the upstream layer.
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8 contained some batch effects. To address this biologically meaningful feature

partitioning across nodes, I used the approach suggested by Ladjal et al. [2019].

First, I trained an autoencoder with 20 nodes in the encoder hidden layer, 4 nodes in

the encoder latent layer and the original decoder with 500 nodes in the hidden layer,

see Figure 4.10. Next, I expanded the dimensionality of the encoder by adding 15

more nodes to the hidden layer and 3 more to the latent layer and kept the trained

weights from the previous round of training in both layers of the encoder. Then,

I trained the expanded autoencoder with a mixture of newly initiated and trained

weights in the encoder and only newly initiated weights in the decoder. I kept

adding nodes to both layers of the encoder until the desired dimensionality was

reached. Ladjal et al. [2019] showed that, in applications to image based problems,

an autoencoder trained by starting with a very low dimensionality and adding small

number of additional nodes throughout training produces a latent space constituted

of independent components ordered by decreasing importance. I examined whether

these PCA-like properties could be achieved outside the domain of image based

applications.

The properties of the latent space created by the autoencoder trained in a dimen-

sionality expanding manner are much different from the intended ones. One of

the four initial components remained unused and the others had a uni-modal dis-

tribution centred at 0. All three of the components introduced during the first

round of expansion remained unused. Only starting from the second round of ex-

pansion the components started to capture features of the data. Triplets of latent
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Figure 4.10: An autoencoder trained by starting with a very low dimensionality and adding
small number of additional nodes throughout training.
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nodes corresponding to different rounds of expansion show different patterns - a

single component with an interesting distribution and another two with a standard

uni-modal distribution centred at 0, three correlated components with a distinctly

shaped distribution, each of the three components with a different distribution.

Figure 4.11 shows some of these examples. It is interesting that the components

that were present in the network from the first two rounds of training, and initially

failed to train, never retrained from that state. Contrary to the expectations, 11

of the latent components in this model correspond to batch effects, and the cell

cycle effect is partitioned across several nodes that were added at different rounds

of expansion. To investigate whether the failure to identify important features was

caused by insufficient number of nodes, I repeated the same training procedure by

initiating the network with 10 nodes in the latent layer instead of 4. The dynamics

remained largely unchanged - some of the initial components failed to train, while

batch and cell effects remained split across numerous components.

4.3.2 Pre-training individual layers

The lack of significant improvement resulting from adding the third hidden layer

that we observed in Section 4.2.1 might be linked to the lack of gradients propa-

gating through all the layers of the encoder. To allow the network to train more

efficiently, Larochelle et al. [2009] suggested pre-training shallow neural networks

with appropriate number of dimensions and subsequently stacking them into a

deeper architecture. This approach can adopted for this application, see Figure
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(a) One interesting component (b) Three correlated components

(c) Three unique components

Figure 4.11: Triplets of latent nodes corresponding to different rounds of expansion show
different patterns - (a) a single component with an interesting distribution and
another two with a standard uni-modal distribution centred at 0, (b) three cor-
related components with a distinctly shaped distribution, (c) each of the three
components with a differently shaped distribution. In each plot the compo-
nents are shown in a different colour simply for ease of visualisation.

4.12. I first trained 3 autoencoders with encoder hidden layer sizes 1000, 500 and

250, while keeping the decoder hidden layer size constant at 500. Then I stacked

the weights from pre-trained encoder layers into a deeper autoencoder and trained

the model to optimality. The reconstruction error produced by this model is equal

to 27.7200, significantly worse performance compared to the original autoencoder

(more than 5 standard deviations from the mean). To improve on this, I used sym-

metrical autoencoders for pre-training the layers instead of keeping the decoder

hidden layer constant. This allowed the individual models to train better and hence

resulted in the improved reconstruction error 27.4625, which is similar to the perfor-

mance of the original autoencoder (within 0.5 of standard deviation from the mean).
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4.4 Reproducible autoencoder training

4.4.1 Autoencoder training consistency

The deep autoencoder is an over-parametrised model, and hence if it is trained

more than once on the same data the results will be different. In this section I will

examine the properties and magnitudes of these differences. To do so I trained the

deep autoencoder on the Cheng et al. [2018] dataset 20 times. The training dynam-

ics is very similar across all runs. The reconstruction quality of the test set after

the first epoch varies, but there is no relationship between the success of the first

epoch and the performance of the model trained to optimality (Pearson correlation

coefficient equal to 0.1011). Comparing the latent features between two training

runs shows that the latent representations they created are different, it is not just the

case of permuting the features to find approximate one-to-one correspondence. The

maximum correlations between latent features created by one of the training runs

and the features created by a different run ranges from 0.1374 to 0.9956, see Figure

4.13. The average correlation between one feature and all the features produced

by another training run is low, see Figure 4.14. The reconstruction errors for each

individual cell are highly correlated - across the 20 training runs the lowest correla-

tion between a pair of runs is 0.9996. This implies that there exist some underlying

properties that determine whether an autoencoder will be able to reconstruct a par-

ticular expression profile after training on a particular dataset.
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Figure 4.12: Enabling the training of deeper architectures by pre-training the weights in
shallow architectures.
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Figure 4.13: The maximum correlations between the latent features created by one of the
training runs and the features created by a different run.

Figure 4.14: The distributions of correlations between a latent feature and all of the features
produced by another training run. Each distribution is shown in a different
colour simply for ease of visualisation.
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4.4.2 Reproducible autoencoder

To address the lack of reproducibility I propose the following strategy, see Figure

4.15. First, the original autoencoder is trained repeatedly (for example 10 times) on

the same dataset. Then, all 10 encoder hidden layer weight matrices are combined

into one ten times bigger layer. This autoencoder with a ballooned encoder hidden

layer is trained once. Based on the resulting values in the weight matrix in the

downstream layer, 500 “most useful” of the 5000 features are selected. The autoen-

coder with 500 nodes and a corresponding pre-trained weight matrix in the hidden

layer is again trained 10 times. Similarly to the strategy for the hidden layer, all

10 latent layer weight matrices are combined into one ten times bigger layer. This

autoencoder with a ballooned latent layer is trained once. Based on the resulting

values in the weight matrix in the decoder hidden layer, 100 “most useful” of the

1000 latent dimensions are selected.

Performing the steps described above twice, will allow the comparison between the

two resulting latent space embeddings. If one-to-one correspondence between the

components of the two latent spaces can be established, that would imply that the

strategy has been successful and a meaningful analysis of the latent space can be

carried out. If such correspondence can not be established this could be a result

of one of the two underlying causes. Either 10 training runs were insufficient to

capture all the diversity of the features that can be learnt from the data, or the

network architecture is not suitable to learn efficiently from this particular dataset.

In the former case, simply increasing the amount of training runs for generating
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Figure 4.15: A more reproducible autoencoder.
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the features of both the encoder hidden layer and the decoder layer will result in

a reproducible autoencoder. This does come at a cost though, since the amount of

computation will increase at every step of the training process. In the latter case,

the inability to create a reproducible autoencoder is a useful indication that an ar-

chitectural change is required for a successful application of an autoencoder to this

specific dataset. It is, however, not possible to distinguish between the two cases in

any other way apart from first trying to improve the reproducibility by increasing

the number of training runs.

4.4.3 Conclusions

In this chapter I’ve explored the opportunities to improve upon each component of

the process of applying (GNNs) to the scRNA-seq data. In terms of data used for

training a GNN, I’ve shown that while more data is always better ultimately every

experiment contains a finite amount of information. Adding more data from the

same experiment results in ever diminish returns. I’ve explored several strategies

for transforming the data to make it more suitable for a neural network training and

to tailor it to a specific loss function used. This strategies were not successful. I’ve

shown that a dropout layer applied correctly is a promising direction to explore.

Tailoring the probability function that determines the number and the properties

of the additional dropouts introduced based on the properties of a specific dataset

is expected to result in a more robust model with improved performance. After

considering all component of the process of applying (GNNs) to the scRNA-seq
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data, I conclude that developing biologically inspired GNN architectures (combin-

ing deeper autoencoders with residual connections and other ways to incorporate

hierarchical information) to mimic information flow in a cell is the most promising

direction. The performance of GNNs applied to scRNA-seq data can be improved

in two important directions - reproducibility and biologically meaningful inter-

pretability.



Chapter 5

Discussion

In the first section of this chapter I will summarise the contributions of my work and

my conclusions based on the results of my work. This will be followed by putting

my work into the context of current efforts aimed at applying neural networks to

scRNA-seq data. In the second part of the chapter I will offer my perspective on

the future of single cell techniques and the analysis methods associated with them.

In particular, I will explain the need for a theoretical framework around the concept

of a cell type, I will cover the new experimental techniques that measure multi-

ple modalities in the same cell and techniques that capture temporal dynamics of

transcription. I will highlight how these advancements in the types and volumes

of single cell data available result in a need for machine learning based methods

which are able to extract the information from the data that would not be available

with statistical methods.
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5.1 Assessment of GNN applications to scRNA-seq

data

In the Introduction chapter of this thesis I’ve covered the properties of the scRNA-

seq data and the intricate structure of noise present in this data. In an comprehensive

survey of the different types of methods that have been developed specifically for

scRNA-seq data or re-purposed to be applicable to it, I explored how do these

methods fit in with the demands of different scientific questions that scRNA-seq

data aims to answer. This motivated the need for new methods that would address

issues that are currently not widely acknowledged because they bring into question

the validity of commonly used analysis methods and previously published results.

In this section I will summarise my contributions to this field, before putting them

into a wider context of how the field has developed during the time of this project

being carried out.

One part of my work was focused on the assessment of the potential of autoencoders

to be adopted as a useful and flexible tool for scRNA-seq data analysis. Unlike all

other methods that create a GNN-based model and compare its performance with

PCA as a benchmark, I started by showing the mathematical equivalence between

PCA and a shallow linear autoencoder. I then added complexity to the model, step

by step, until I reached a deep autoencoder, thus demonstrating the link between

the familiar method and the newly adopted GNNs. I explored the information flow

through the network with the aim to provide a better understanding of what are the
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current capacities and limitations of an autoencoder with a basic architecture. I ex-

amined the properties of the latent space created by the autoencoder. My conclusion

is that interpolation and extrapolation opportunities that attract much attention are

not feasible. This is mainly due to the fact that these methods would require several

strong assumptions about the the data - an assumption that the latent space could be

populated uniformly if enough relevant data is collected and an assumption that the

properties of data points vary smoothly in all dimensions along the interpolation

trajectory - neither of which is true.

Most of the currently employed scRNA-seq data analysis methods are based on

assumptions about the data that are either not testable or do not hold, at least not in

general. The opportunities provided by the progress in machine learning are readily

adopted, as are their assumptions about the data. Instead of extending the existing

arsenal of methods that are confounded by the assumptions that the scRNA-seq

data cannot satisfy, I advocate for taking this into a different direction. The GNNs

are unique in a sense that they learn from reproducing the data and hence there is

an inherent opportunity to assess their performance without any additional knowl-

edge about the data. By exploiting the flexibility of neural networks it is possible

to design biologically meaningful architectures of autoencoders and use these to

create useful embeddings of the data into lower dimensional space. Hand-picking

the relevant combinations from the constructed latent space can be used both for

visualising the aspects of the data that are of interest and for designing a distance

metric that would be uniquely suitable for a particular application.
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Another part of my work explores how alterations to the data, the autoencoder’s in-

ternal structure and the training dynamics can positively influence the performance

and the interpretability of the autoencoder. I advocate for more work on designing

GNN architectures that are informed by our understanding of biology. Based on

my results I conclude that predicting an interaction of biological data with a neural

network architecture, neither of which we understand fully, is not always possible

and hence more effort is required at two fronts. First, innovative ideas of how to

transform scRNA-seq data into a format more amenable to neural network train-

ing are required. Second, dedicated work aimed at making progress in machine

learning applied to tabular data is essential. Cutting edge machine learning research

is focused on image-based problems and natural language processing, while the

contributions of machine learning to biology are sparse. More resources invested in

machine learning applications to tabular data would revolutionise not only biology

but many other fields too.

My conclusion is that GNNs are a useful tool for scRNA-seq data analysis. They

are good at identifying prominent features in the data and producing a lower di-

mensional embedding of the data. This embedding can be then used both for data

visualisation purposes and for designing a meaningful distance metric based on

hand-picked latent dimensions. Looking at the distributions of particular latent

dimensions also allows to distinguish between cell types (for example, melanocytes

or immune cells in the skin tissue) and transitions between them that look distinct
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(similar to a rare cell type) but are cell stages and not types. Two important ad-

vantages of GNNs are their flexibility and scalability. Unlike PCA that requires

the whole dataset to be loaded into computer memory to compute the PCs, GNNs

require only a small batch of data at a time. This means that there is no practical

limit on the amount of data used for training a GNN. The time required for a single

epoch of training grows linearly with the amount of data, and given more data less

epochs of training might be required (depending on the heterogeneity of the data).

Another advantage is that GNNs are good at ignoring irrelevant variables and hence

there is no need for identifying a subset of variables that should be used for an

analysis. Unfortunately, GNNs have no magic superpowers - they learn from the

information present in the data, but they are not able to create new information. The

property of scRNA-seq data is that expression level estimates for genes expressed

at low levels are noisier that the ones for highly expressed genes. As a result, GNNs

are good at encoding and decoding the expression values of highly expressed genes,

but they perform poorly at reconstructing the low expression values (the informa-

tion is simply not present in the data). Similarly to other methods, GNNs are not

currently suitable for interpolation or extrapolation in the data, but unlike other

methods GNNs hold the most potential in this area. The flexibility of GNNs is one

of the main reasons for future research into their applications to scRNA-seq data

analysis. Their architecture can be designed based on our understanding of biology

and specifically information flow in a cell. External clues like chemical environ-

ment and signals from neighbouring cells can be incorporated by using conditional

GNNs or additional input layers.
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5.2 How variational autoencoders became popular

In 2014 Casey Greene pioneered the application of autoencoders to gene expres-

sion data [TAN et al., 2014]. They further explored this approach with ADAGE,

eADAGE and Tybalt [Tan et al., 2016, 2017, Way and Greene, 2017]. Their work

highlighted the existing opportunities in this field, but conventional methods of data

analysis prevailed and there was not much progress in this field apart from a couple

of exploratory papers [Chen et al., 2016, Barsacchi et al., 2018]. The scRNA-seq

data becoming widespread lead to an immediate avalanche of 14 papers published

in the period from October 2018 to March 2019: VASC [Wang and Gu, 2018], scVI

from Nir Yosef lab [Lopez et al., 2018], SSCVA [Gold et al., 2018], scGen from

Fabian J. Theis lab [Lotfollahi et al., 2019], GSAE [Chen et al., 2018], Deep count

autoencoder (DCA) again from Fabian J. Theis lab [Eraslan et al., 2019], scVAE

from Ole Winther [Grønbech et al., 2018], SAUCIE from Smita Krishnaswamy lab

[Amodio et al., 2017], DESC [Li et al., 2019b], [Fan et al., 2019], CIC [Abdolhos-

seini et al., 2019], Dhaka [Rashid et al., 2019], scScope from Altschuler and Wu

lab [Deng et al., 2019] and Dr.VAE [Rampášek et al., 2019]. This avalange was

followed by a continuous stream of additional methods that apply GNNs to scRNA-

seq data: Cyclum [Liang et al., 2019], SISUA Trong et al. [2019], Targonski et al.

[2019], [Kinalis et al., 2019], scAlign [Johansen and Quon, 2019] and most recently

CVA [Lukassen et al., 2019]. The frequency of the new methods being published is

indicative of none of them being adopted for general use. Each of these methods are
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build on an interesting idea, mostly centred around pre-processing the data prior to

using it for training or using a trained GNN in a creative way. There has been hardly

any progress in terms of engineering GNN architectures motivated by the biological

knowledge, shaping the learning process of a GNN to increase it’s applicability to

this specific application, or addressing the unreproducibility of GNN training. The

work I presented in Sections 4.2, 4.3 and 4.4 remains novel and addresses the issues

that have not yet received enough attention.

5.3 Future of single cell techniques

The future of biological research at single cell level lies both in design of new exper-

imental protocols and in development of useful theoretical concepts. In this section

I will discuss recent developments of experimental techniques with a particular fo-

cus on recording more than one type of data from a single cell and quantifying the

temporal dynamics of a transcriptional cell state. Prior to that, I would like to high-

light the need for theoretical concepts that were not required before the widespread

use of single cell techniques and are hence not well developed. Svensson and

da Veiga Beltrame [2019] demonstrated that the number of cell types identified

in scRNA-seq studies is proportional to the number of cells captured by those ex-

periments. This observation shows that the current working definition of a cell

type is closely linked to clusters produced by a clustering algorithm and decoupled

from biological understanding. New terminology similar to taxonomy is required

to facilitate the study of cell types, both common and rare. In this framework, a
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cell type would be equivalent to the concept of a “species”. While a specific defini-

tion of a species exists (a set of all organisms such that any two individuals of the

appropriate mating types can produce fertile offspring) there is no such definition

for a cell type. The more cells are captured by an experiment the more fine-grained

the reported “cell types” become, similar to dividing Homo sapiens population

into nationalities (based on their spacial location) and professions (based on their

current activity). The work by Zimmermann et al. [2019] is an advancement in the

process of developing useful theoretical concepts for this new field. They focused

on remarkable conservation of synteny amongst ancient metazoan genes and iden-

tified genomic regions conferring ancient cell type identities. Kotliar et al. [2019]

advocated for a view that considers a cell as a combination of a single cell identity

(for example, being a melanocyte) and any number of cell activity programs (for

example, undergoing cell division and/or responding to shortage of nutrients). They

used matrix factorisation to convert a scRNA-seq expression matrix to two lower

rank matrices - one encoding gene expression programs and another encoding the

relative levels of activity of these programs in each cell. In mathematical terms cell

types can be defined as stable attractive states, where differentiation to a different

cell type (transitions) correspond to a path between them (possibly through unstable

attractive states) and temporary activities (stress response, undergoing cell division,

etc.) correspond to perturbations followed by return to the original stable attractive

state.

The field of single cell level studies is characterised by a rapid improvement of
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experimental techniques. For example, to address the noise in scRNA-seq data

associated with the stochastic nature of RNA reversetranscription to cDNA Gar-

alde et al. [2018] proposed nanopore direct RNA-seq - a protocol that produces

full-length, strand-specific RNA sequences bypassing the reversetranscription step.

Verboom et al. [2019] introduced a single cell strand-specific total RNA library

preparation method called SMARTer. The main advantage of this novel method is

that apart from polyadenylated RNA it also quantifies the transcription level of non-

polyadenylated genes and circular RNAs. Additionally, SMARTer method provides

the strand information of the captured transcripts. Verboom et al. [2019] demon-

strated that this protocol results in a higher number of detected RNAs compared

to classic scRNA-seq. [Ramani et al., 2020] developed single-cell combinatorial

indexed chromosome conformation capture (sci-Hi-C) protocol - a high throughput

method that produces chromatin interactome mappings in large number of sin-

gle cells. This addresses the limitation of the bulk Hi-C assays that allowed for

mapping of three-dimensional genome organization but were unable to account

for heterogeneity of chromosome higher order structures among individual cells.

To characterize spatial gene expression patterns at single cell resolution Rodriques

et al. [2019] developed Slide-seq. This protocol involves transferring RNA from

tissue sections onto a surface covered in DNA-barcoded beads with known posi-

tions, thus allowing the locations of the RNA to be inferred by sequencing. The

resulting data allows to localize the position of the cell types previously identified

in scRNA-seq datasets in a particular tissue, as well as to infer the temporal evo-

lution of cell typespecific responses. See Stark et al. [2019] for a comprehensive



220 Chapter 5. Discussion

review of developments in RNA-seq, including new/improved methods available

for studying RNA localisation, structure and translation, as well as long-read and

direct RNA-seq technologies. These developments are likely to be incorporated in

single cell protocols soon.

Undoubtedly the most exciting development in the single cell field is the new range

of methods for simultaneous profiling of multiple types of data within a single

cell. These techniques allow to build a much more comprehensive molecular view

of the cell and thus lead to an increased understanding of the context in which

transcriptomic data should be interpreted. See Stuart and Satija [2019] for a re-

view of recent advances in integration of single cell gene expression data with

other types of single cell measurements, including epigenetic, spatial, proteomic

and lineage information. Since the publication of this review, new protocols have

been presented. seqFISH+ developed by Eng et al. [2019] captures transcriptomic

and spatial localisation data (by imaging mRNAs for up to ten thousand genes)

as well as ligandreceptor pairs across neighbouring cells. scDam&T-seq proposed

by Rooijers et al. [2019] allows to simultaneously quantify protein-DNA contacts

by combining single-cell DNA adenine methyltransferase identification (DamID)

with mRNA sequencing of the same cell. This protocol enables the analysis of

protein-DNA binding related mechanisms that regulate cell type-specific transcrip-

tional programs in heterogeneous tissues. Cellular indexing of transcriptomes and

epitopes by sequencing (CITE-seq) introduced by Stoeckius et al. [2017] uses

oligonucleotide-labelled antibodies to integrate cellular protein and transcriptome
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measurements into a single readout from an individual cell. The main limitation

of this method is the high background from non-specific binding of antibodies

which results in low resolution. Lin et al. [2019a] proposed a method that also

simultaneously measures the amount of mRNA and proteins in a single cells, but

unlike CITE-seq is compatible with intracellular proteins and has higher resolution.

Cao et al. [2018] proposed sci-CAR - a combinatorial indexingbased co-assay that

simultaneously measures chromatin accessibility and mRNA (CAR) in single cells.

This method was followed by single-cell chromatin accessibility and transcriptome

sequencing (scCAT-seq) protocol introduced by Liu et al. [2019]. scMethyl-HiC de-

velopped by Li et al. [2019a] simultaneously captures the chromatin conformation

and DNA methylome in single cells. It is likely that this protocol will be fur-

ther improved to allow for additional transcriptomic data capture. [Kimmey et al.,

2019] introduced Simultaneous Overview of tri-Molecule Biosynthesis (SOM3B)

- a method that simultaneously quantifies DNA, RNA, and protein synthesis in in-

dividual cells. The captures information on how DNA, RNA, and protein synthesis

activities are coordinated during transient and sparse cellular processes allows to

study processes such as cell differentiation. While all of the above methods pro-

vide transcriptomic data and an additional modality or two, [Mimitou et al., 2019]

proposed CRISPR-compatible cellular indexing of transcriptomes and epitopes by

sequencing (ECCITE-seq) for the high-throughput characterization of at least five

modalities of information from each single cell.

Apart from methods that simultaneous profile multiple types of data within single
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cells, another exciting direction is defined by experimental techniques that are mov-

ing beyond a snapshot of a cell. scRNA-seq approaches measuring stable RNAs

provide only a snapshot of gene expression and convey little information on the true

temporal dynamics and stochastic nature of transcription. Quantification of nascent

RNAs is required to study immediate regulatory changes in a cell in response to in-

ternal or external clues. Manno et al. [2018] introduced the concept of RNA velocity

- the time derivative of the gene expression state. They proposed to estimate RNA

velocity by distinguishing between unspliced and spliced mRNAs in the transcrip-

tomic data. Erhard et al. [2019] proposed single-cell, thiol-(SH)-linked alkylation

of RNA for metabolic labelling sequencing (scSLAM-seq) which differentiates be-

tween new and old RNAs by integrating scRNA-seq with metabolic RNA labelling

and biochemical nucleotide conversion. This was followed by new transcriptome

alkylation-dependent single-cell RNA sequencing (NASC-seq) developed by Hen-

driks et al. [2019]. Identification of newly synthesised and pre-existing transcripts

in single cells by NASC-seq relies on the incorporation of 4-thiouridine (4sU)

into newly synthesised RNA during gene transcription and subsequent biochemical

separation of 4sU-labelled and unlabelled RNA. See Wissink et al. [2019] for a

comprehensive critical evaluation of the methods that add temporal dimension to

single cell transcriptomic data.
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5.4 Future of machine learning in biology

To make the most of the opportunities presented by the new experimental tech-

niques described above, the analysis methods evolving alongside them are required.

Current analysis methods for single cell data can be broadly divided into two cate-

gories - statistical methods and machine learning based methods (including GNNs).

An opinion piece by Olhede and Wolfe [2018] considers the future of statistical

methods - will they develop to meet the needs of the new types of data or be per-

manently replaced by machine learning. In Section 5.1 I’ve discussed how the

flexibility of GNN architecture is the main advantage of these types of methods. In

addition, GNN-based methods are scalable and make less (untestible) assumptions

about the data. For example, regulatory relationships between the genes are not as-

sumed to be constant in all cells in the dataset. A new frontier for machine learning

based methods is to be able to analyse single cell data that simultaneously captures

several modalities. It is likely that both supervised and unsupervised methods will

be useful, while it is tempting to speculate that the major advancements will come

from semi-supervised methods. Currently most progress in machine learning is

made in applications to image-based problems, which leads to such nonsense as

visualizing DNA sequence alignments in image form (using colours to represent

both the nucleotide and the quality of the reads that are associated with it) to train

a neural network that would be able to identify single nucleotide polymorphisms

(SNPs) and deletions [Cai et al., 2019]. Theoretical advancements in applications

of machine learning to panel data are urgently required.
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There have been numerous recent advancements in GNN research that can lead to

progress in GNN applications to scRNA-seq data. One promising direction is data

representation in latent space. Some representations can entangle or hide features

present in the data while others can facilitate learning, consequently the success of

GNN-based methods generally depends on data representation. Current GNN-based

methods for scRNA-seq data analysis produce a lower dimensional embedding of

the data into Euclidean space, which might not be a suitable approach. Several alter-

natives have been proposed - uniform distribution on d-dimensional torus Mikulski

and Duda [2019], hyperbolic spaces with negative curvature [Mathieu et al., 2019],

etc. An interesting approach was suggested by [Muscoloni and Cannistraci, 2019]

- a hyperbolic space where radial coordinate of the data points characterize their

hierarchy and the angular distance between them represent their similarity. Apart

from useful data representation, finding a way to disentangle the features in latent

dimensions would lead to a major breakthrough in GNN applications to scRNA-seq

data. In Section 4.3.1 I described my work aimed at creating disentangled latent

space where varying one dimension in the latent space while other dimensions

remain fixed would result exclusively in the variation of the aspect associated with

this particular latent dimension. Recently a new methods for producing disentan-

gled latent vectors have been proposed by Kim et al. [2019]. Whether or not a

Euclidean space is used for data representation in latent space, there are interesting

opportunities to explore non-linear interpolation in latent space, provided that the

roadblocks of unequal data density have been avoided. White [2016] suggested a

way to replace linear interpolation in latent space with spherical linear interpola-
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tion. For a comprehensive review of recent work in the area of manifold learning,

data representation in latent space and interpolation in latent space see Bengio et al.

[2012].

Other aspects of GNN architecture that should be considered for improving the

performance of GNNs on scRNA-seq data are the choise of learning rate, the loss

function used and the additional information provided as an input. Fort et al. [2019]

showed that small learning rates lead to initial learning of more specific features that

prevents subsequent efficient learning from the whole dataset. This suggests that

strategies that initiate the GNN training with a high learning rate (i.e. high speed

of updating the parameters of the network) and later switch to a smaller learning

rate could be successful. The mean square error is the most commonly used loss

function that is often used in GNN applications to scRNA-seq data, including my

work. One way to improve on this would be to find a more suitable loss function,

for example compare the expression profile and the decoded expression profile as

two discrete distributions (without log-transforming the data). Cross-entropy loss

function can be combined either simply with sigmoid activation function in the

output layer, or with softmax activation function in the output layer and expression

profiles that are scaled to sum up to 1. Another way to improve on this would be

to add additional terms to the loss function, for example a term that rewards re-

construction of expression values with similar relationships between pairs of genes.

Adding a priory known biological information, such as a gene interaction graph,

to a GNN can ensure that the train GNN will be biologically interpretable. Dutil
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et al. [2018] proposed a way how a gene interaction graphs can be used to impose a

bias similar to the spatial bias imposed by convolutions on an image, with a caveat

that presence of many irrelevant genes in the data hinders the performance. To

improve the performance of GNNs to cell type discovery in scRNA-seq data Kundu

et al. [2019] proposed GAN-Tree that uses a mode-splitting algorithm to split the

parent mode into semantically cohesive children modes thus facilitating unsuper-

vised clustering. The advantages of this method include the fact that there is no

assumption about the number of cell types present in the data and that new data

with new cell types can be added to a trained GAN-Tree by updating only a single

branch of the tree structure. In terms of using the latent space to calculate useful

distances between the cells in a dataset, the work by Balcan et al. [2019] exploring

data-driven algorithm selection and metric learning for clustering problem is highly

relevant. They proposed strategies for simultaneously learning the best algorithm

and metric for a specific clustering problem application. This exploits the fact that

there are multiple ways to measure distances between data points and that the best

clustering performance might require a non-trivial combination of those metrics.

Accumulation of good quality scRNA-seq data will lead to unprecedented opportu-

nities in combining data from different experiments and different labs to accelerate

scientific progress beyond what is possible in a single lab. The opportunities are

both in combining scRNA-seq data sets and in combining scRNA-seq data with

less noisy bulk RNA-seq data. Butler et al. [2018] introduced a strategy for inte-

grating scRNA-seq data sets (including data sets from different species and data
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sets generated via different experimental protocols) based on common sources of

variation, thus enabling the identification of shared cell types across data sets. This

was followed by scMerge proposed by Lin et al. [2019b] - a method for scRNA-seq

data set integration based on the knowledge of genes that appear not to change

across all samples. Going one step further, Wang et al. [2019a] proposed SAVER-X

- a GNN-based method that uses transfer learning to not only integrate the data

sets but also improve their quality by using the information available in other data

sets. Ma and Pellegrini [2019] developed ACTINN - a method to train a GNN on

a dataset with known cell types and subsequently use this trained GNN to assign

cell types to new data. [de Kanter et al., 2019] proposed a cell type identifica-

tion algorithm CHETAH that first produces a classification tree inferred from an

annotated scRNA-seq dataset ant then rapidly assigns cell types to cells in a new

data set. One advantage of this method is that it provides a confidence score based

on the variance in gene expression per cell type. Another advantage is that it is

able to predict intermediate/unassigned cell types thus preventing misclassification

and providing information for previously unexplored tissues and malignant cells.

Monumental efforts like The Human Cell Atlas [Regev et al., 2017] are aimed at

creating a large pool of data that can be used for large scale studies with large poten-

tial for biological discovery. Mereu et al. [2019] suggested that detailed guidelines

and standards should be provided to the labs wishing to contribute data to such

large scale collaborative efforts. This is motivated by their study comparing 13

commonly used scRNA-seq protocols which revealed stark differences in protocol

performance. The work by Svensson and da Veiga Beltrame [2019] is the first effort
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to create and maintain a database of scRNA-seq studies with descriptions of what

kind of data (the technique used, the number of cells profiled) and what biological

systems (organism, developmental stage, tissue) have been studied, as well as the

location of the data. Instead of relying on a single group of people to maintain

such an essential database, it would be great to see a crowd-sourcing effort where

each group when publishing a scRNA-seq study would also add it to the global

repository listing all scRNA-seq studies published so far.

Machine learning based approaches have been shown to be useful for scRNA-seq

data analysis, but there is no conclusive evidence that they perform better than

Bayesian models or even PCA on all data sets. The new frontier where machine

learning techniques will undoubtedly take the lead is the integration of scRNA-seq

data with measurements of genome variants, epigenomes, proteomes, spacial tran-

script organisation and chromatin organization. Argelaguet et al. [2018] proposed

Multi-Omics Factor Analysis (MOFA) - a computational method for discovering

the principal sources of variation in multi-omics data sets. This unsupervised inte-

gration method infers a set of hidden factors that capture biological and technical

sources of variability and disentangles axes of heterogeneity that are shared across

multiple modalities and those specific to individual data modalities. [Stuart et al.,

2019] developed a strategy to integrate different modalities of single cell level data

by “anchoring” them with pairs of corresponding cells between data sets. They

demonstrated the performance of their method by integrating scRNA-seq data with

scATAC-seq data. See Colomé-Tatché and Theis [2018] and Stuart and Satija
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[2019] for a review of existing computational methods for the analysis and integra-

tion of different -omics data types and a discussion about what new approaches are

needed to leverage the full potential of single cell multi-omics data. Apart from

different modalities of single cell level data, methods capable of integrating differ-

ent types of evidence are also required. An approach to analyse scRNA-seq data in

combination with phenotypic measurements introduced by [Saint et al., 2019] is an

example of early developments in this direction. Wang et al. [2019b] developed a

tool for predicting cellcell communication networks that is capable of reconstruc-

tion of complex cell lineages, including feedback or feed-forward interactions. It

uses a structured cell-to-cell similarity matrix to perform unsupervised clustering,

pseudotemporal ordering, lineage inference, and marker gene identification. Klimm

et al. [2019] proposed a method for integrating scRNA-seq data with proteinprotein

interaction networks to detect active modules in cells of different transcriptional

states.

Given this wealth of opportunities for developing new computational methods to

facilitate scientific discovery, an avalanche of new methods is expected. This in turn

creates a pressing need for methods to generate synthetic scRNA-seq data that could

be used for benchmarking these methods. The main difficulty with benchmarking

methods for single cell data analysis is the lack of ground truth. For GNN-based

methods, in contrast to GNNs trained on images or text, validating and visualising

their performance is hindered by our inability to distinguish between a plausibly

looking expression profile and an implausible one. A method to generate synthetic
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scRNA-seq data would allow to assess the performance of the methods during their

development, instead of the current situation of streams of methods being published

and subsequently compared in review papers but almost never adopted for data

analysis outside of the lab where a method was created. Currently, Splatter [Zappia

et al., 2017] is the most popular method for generating synthetic scRNA-seq data.

It works by fitting distributional models based on a mixture of Gamma and Poisson

distributions to observed data and then drawing from these distributions. It tries to

account for both biological variation and variation in library sizes, as well as tech-

nical dropouts and outlier values present in real data. Zhang et al. [2018] proposed

a method that accounts not only for the expression variability across different cell

types but also for the frequency of transcription bursts (that adds variability to an

otherwise homogenous population of cells) and technical variation (mRNA capture,

reverse transcription, RNA fragmentation, and sequencing all bundled up in a single

parameter). Dibaeinia and Sinha [2019] introduced SERGIO - a method that simu-

lates scRNA-seq data by modelling the stochastic nature of transcription as well as

linear and non-linear influences of multiple transcription factors on genes according

to a user-provided gene regulatory network. The advantages of SERGIO include

its ability to simulate branching cell differentiation trajectories according to a user

provided trajectory, and its ability to generate both unspliced and spliced transcript

counts. SPsimSeq proposed by Assefa et al. [2019] generates synthetic scRNA-seq

data by first constructing an empirical distribution of real gene expression data

provided as input. While these methods provide a range of options enabling the

user to choose how much data to provide (from as little as just a number of genes
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and a number of cell types to as much as gene regulatory networks, frequency of

transcription bursts and example expression data), there is a major problem with all

of these methods - they do not account for the fact that scRNA-seq data is com-

positional data. While peer-reviewed paper addressing this need are still lacking,

McGee et al. [2019] proposed the first method to generate synthetic scRNA-seq

data while accounting for its compositional nature.

5.5 Conclusion

In this chapter I summarised the contributions of my work and provided my per-

spective on the future of single cell techniques and the future of machine learning

applications in this field. My conclusion is that the main advantage of using GNN-

based approaches for single cell data analysis is the inherent flexibility of these

methods. In terms of a simple feed forward autoencoder, the future improvements

are likely to come from development of more suitable loss functions and identi-

fying sequences of learning rates required for different stages of training process.

An important direction for future work is developing an approach for partitioning

the features present in the data across the nodes of the latent layer in a way that

facilitates correspondence between the nodes and the biologically meaningful fea-

tures. To allow the use of GNNs for independent biological discovery (unaided

by other methods or additional lab experiments) and clinical applications extensive

work addressing reproducibility of GNN training is required. Major breakthroughs

are likely to come from research focused on developing biologically inspired au-
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toencoder architectures that are more in-line with our understanding of information

flow within and between the cells than a simple feed forward autoencoder. Ma-

chine learning based approaches are likely to result in the most useful methods for

analysing single cell data capturing several modalities and for integrating data sets

from different experiments and labs.
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E. Cannavò, N. Koelling, D. Harnett, D. Garfield, F. P. Casale, L. Ciglar, H. E.

Gustafson, R. R. Viales, R. Marco-Ferreres, J. F. Degner, B. Zhao, O. Stegle,

E. Birney, and E. E. M. Furlong. Genetic variants regulating expression lev-

els and isoform diversity during embryogenesis. Nature, 541(7637):402–406,

Dec. 2016. doi: 10.1038/nature20802. URL https://doi.org/10.1038/

nature20802.

R. Cannoodt, W. Saelens, and Y. Saeys. Computational methods for trajectory

inference from single-cell transcriptomics. European Journal of Immunology,

46(11):2496–2506, Oct. 2016. doi: 10.1002/eji.201646347. URL https:

//doi.org/10.1002/eji.201646347.

C. Cao, L. A. Lemaire, W. Wang, P. H. Yoon, Y. A. Choi, L. R. Parsons, J. C.

Matese, W. Wang, M. Levine, and K. Chen. Comprehensive single-cell tran-

scriptome lineages of a proto-vertebrate. Nature, 571(7765):349–354, July

2019a. doi: 10.1038/s41586-019-1385-y. URL https://doi.org/10.

1038/s41586-019-1385-y.

https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1016/j.coisb.2017.12.007
https://doi.org/10.1016/j.coisb.2017.12.007
https://doi.org/10.1038/nature20802
https://doi.org/10.1038/nature20802
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1038/s41586-019-1385-y
https://doi.org/10.1038/s41586-019-1385-y


BIBLIOGRAPHY 243

J. Cao, D. A. Cusanovich, V. Ramani, D. Aghamirzaie, H. A. Pliner, A. J. Hill, R. M.

Daza, J. L. McFaline-Figueroa, J. S. Packer, L. Christiansen, F. J. Steemers, A. C.

Adey, C. Trapnell, and J. Shendure. Joint profiling of chromatin accessibility and

gene expression in thousands of single cells. Science, 361(6409):1380–1385,

Aug. 2018. doi: 10.1126/science.aau0730. URL https://doi.org/10.

1126/science.aau0730.

J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang,

S. Mundlos, L. Christiansen, F. J. Steemers, C. Trapnell, and J. Shendure. The

single-cell transcriptional landscape of mammalian organogenesis. Nature, 566

(7745):496–502, Feb. 2019b. doi: 10.1038/s41586-019-0969-x. URL https:

//doi.org/10.1038/s41586-019-0969-x.

A.-R. Carvunis, T. Rolland, I. Wapinski, M. A. Calderwood, M. A. Yildirim, N. Si-

monis, B. Charloteaux, C. A. Hidalgo, J. Barbette, B. Santhanam, G. A. Brar,

J. S. Weissman, A. Regev, N. Thierry-Mieg, M. E. Cusick, and M. Vidal. Proto-

genes and de novo gene birth. Nature, 487(7407):370–374, June 2012. doi: 10.

1038/nature11184. URL https://doi.org/10.1038/nature11184.

G. Casari, A. de Daruvar, C. Sander, and R. Schneider. Bioinformatics and the

discovery of gene function. Trends in Genetics, 12(7):244–245, July 1996.

doi: 10.1016/0168-9525(96)30057-7. URL https://doi.org/10.1016/

0168-9525(96)30057-7.

C. Casola. From de novo to ‘de nono’: The majority of novel protein coding genes

identified with phylostratigraphy are old genes or recent duplicates. Genome

https://doi.org/10.1126/science.aau0730
https://doi.org/10.1126/science.aau0730
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/nature11184
https://doi.org/10.1016/0168-9525(96)30057-7
https://doi.org/10.1016/0168-9525(96)30057-7


244 BIBLIOGRAPHY

Biology and Evolution, 10(11):2906–2918, Oct. 2018. doi: 10.1093/gbe/evy231.

URL https://doi.org/10.1093/gbe/evy231.

M. Catala and S. A. Elela. Promoter-dependent nuclear RNA degradation en-

sures cell cycle-specific gene expression. Communications Biology, 2(1), June

2019. doi: 10.1038/s42003-019-0441-3. URL https://doi.org/10.

1038/s42003-019-0441-3.

T. E. Chan, M. P. Stumpf, and A. C. Babtie. Gene regulatory network inference

from single-cell data using multivariate information measures. Cell Systems, 5

(3):251–267.e3, Sept. 2017. doi: 10.1016/j.cels.2017.08.014. URL https:

//doi.org/10.1016/j.cels.2017.08.014.

A. Chao, R. L. Chazdon, R. K. Colwell, and T.-J. Shen. A new statisti-

cal approach for assessing similarity of species composition with incidence

and abundance data. Ecology Letters, 8(2):148–159, Dec. 2004. doi: 10.

1111/j.1461-0248.2004.00707.x. URL https://doi.org/10.1111/j.

1461-0248.2004.00707.x.

B. Cheifet. Where is genomics going next? Genome Biology, 20(1), Jan. 2019.

doi: 10.1186/s13059-019-1626-2. URL https://doi.org/10.1186/

s13059-019-1626-2.

H.-I. H. Chen, Y.-C. Chiu, T. Zhang, S. Zhang, Y. Huang, and Y. Chen.

GSAE: an autoencoder with embedded gene-set nodes for genomics func-

tional characterization. BMC Systems Biology, 12(S8), Dec. 2018.

https://doi.org/10.1093/gbe/evy231
https://doi.org/10.1038/s42003-019-0441-3
https://doi.org/10.1038/s42003-019-0441-3
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1111/j.1461-0248.2004.00707.x
https://doi.org/10.1111/j.1461-0248.2004.00707.x
https://doi.org/10.1186/s13059-019-1626-2
https://doi.org/10.1186/s13059-019-1626-2


BIBLIOGRAPHY 245

doi: 10.1186/s12918-018-0642-2. URL https://doi.org/10.1186/

s12918-018-0642-2.

L. Chen, C. Cai, V. Chen, and X. Lu. Learning a hierarchical representation of

the yeast transcriptomic machinery using an autoencoder model. BMC Bioin-

formatics, 17(S1), Jan. 2016. doi: 10.1186/s12859-015-0852-1. URL https:

//doi.org/10.1186/s12859-015-0852-1.

M. Chen and X. Zhou. Controlling for confounding effects in single cell RNA

sequencing studies using both control and target genes. Scientific Reports, 7(1),

Oct. 2017. doi: 10.1038/s41598-017-13665-w. URL https://doi.org/

10.1038/s41598-017-13665-w.

R. Chen and L. R. Varshney. Optimal recovery of missing values for non-negative

matrix factorization. bioRxiv, May 2019. doi: 10.1101/647560. URL https:

//doi.org/10.1101/647560.

S. Chen and J. C. Mar. Evaluating methods of inferring gene regulatory net-

works highlights their lack of performance for single cell gene expression data.

BMC Bioinformatics, 19(1), June 2018. doi: 10.1186/s12859-018-2217-z. URL

https://doi.org/10.1186/s12859-018-2217-z.

S. Chen, Y. E. Zhang, and M. Long. New genes in drosophila quickly become essen-

tial. Science, 330(6011):1682–1685, Dec. 2010. doi: 10.1126/science.1196380.

URL https://doi.org/10.1126/science.1196380.

X. Chen, S. Jung, L. Y. Beh, S. R. Eddy, and L. F. Landweber. Combinatorial DNA

https://doi.org/10.1186/s12918-018-0642-2
https://doi.org/10.1186/s12918-018-0642-2
https://doi.org/10.1186/s12859-015-0852-1
https://doi.org/10.1186/s12859-015-0852-1
https://doi.org/10.1038/s41598-017-13665-w
https://doi.org/10.1038/s41598-017-13665-w
https://doi.org/10.1101/647560
https://doi.org/10.1101/647560
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1126/science.1196380


246 BIBLIOGRAPHY

rearrangement facilitates the origin of new genes in ciliates. Genome Biology and

Evolution, page evv172, Sept. 2015. doi: 10.1093/gbe/evv172. URL https:

//doi.org/10.1093/gbe/evv172.

J. B. Cheng, A. J. Sedgewick, A. I. Finnegan, P. Harirchian, J. Lee, S. Kwon, M. S.

Fassett, J. Golovato, M. Gray, R. Ghadially, W. Liao, B. E. P. White, T. M. Mauro,

T. Mully, E. A. Kim, H. Sbitany, I. M. Neuhaus, R. C. Grekin, S. S. Yu, J. W. Gray,

E. Purdom, R. Paus, C. J. Vaske, S. C. Benz, J. S. Song, and R. J. Cho. Tran-

scriptional programming of normal and inflamed human epidermis at single-cell

resolution. Cell Reports, 25(4):871–883, Oct. 2018. doi: 10.1016/j.celrep.2018.

09.006. URL https://doi.org/10.1016/j.celrep.2018.09.006.

K. R. Clarke, P. J. Somerfield, and M. G. Chapman. On resemblance measures

for ecological studies, including taxonomic dissimilarities and a zero-adjusted

bray–curtis coefficient for denuded assemblages. Journal of Experimental Ma-

rine Biology and Ecology, 330(1):55–80, Mar. 2006. doi: 10.1016/j.jembe.2005.

12.017. URL https://doi.org/10.1016/j.jembe.2005.12.017.

P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,

I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. de Hoon.

Biopython: freely available python tools for computational molecular bi-

ology and bioinformatics. Bioinformatics, 25(11):1422–1423, Mar. 2009.

doi: 10.1093/bioinformatics/btp163. URL https://doi.org/10.1093/

bioinformatics/btp163.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Har-

https://doi.org/10.1093/gbe/evv172
https://doi.org/10.1093/gbe/evv172
https://doi.org/10.1016/j.celrep.2018.09.006
https://doi.org/10.1016/j.jembe.2005.12.017
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163


BIBLIOGRAPHY 247

monic Analysis, 21(1):5–30, July 2006. doi: 10.1016/j.acha.2006.04.006. URL

https://doi.org/10.1016/j.acha.2006.04.006.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.

Zucker. Geometric diffusions as a tool for harmonic analysis and structure def-

inition of data: Diffusion maps. Proceedings of the National Academy of Sci-

ences, 102(21):7426–7431, May 2005. doi: 10.1073/pnas.0500334102. URL

https://doi.org/10.1073/pnas.0500334102.

M. B. Cole, D. Risso, A. Wagner, D. DeTomaso, J. Ngai, E. Purdom, S. Dudoit, and

N. Yosef. Performance assessment and selection of normalization procedures for

single-cell RNA-seq. Cell Systems, 8(4):315–328.e8, Apr. 2019. doi: 10.1016/

j.cels.2019.03.010. URL https://doi.org/10.1016/j.cels.2019.

03.010.
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