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Generation of nonlinear internal waves by flow over topography: Rotational effects
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We use the forced Ostrovsky equation to investigate the generation of internal waves excited by a constant
background current flowing over localized topography in the presence of background rotation. As is now well
known in the absence of background rotation, the evolution scenarios fall into three cases, namely subcritical,
transcritical, and supercritical. Here an analysis of the linearized response divides the waves into steady and
unsteady waves. In all three cases, steady waves occur downstream but no steady waves can occur upstream,
while unsteady waves can arise upstream only when there is a negative minimum of the group velocity. The
regions occupied by the steady and unsteady waves are determined by their respective group velocities. When
the background current is increased, the wave number of the steady waves decreases. In addition, the concavity
(canyon or sill), the topographic width, and the relative strength of the rotation play an important role in the
generation mechanism. Nonlinear effects modulate the wave amplitude and lead to the emergence of coherent
wave packets. All these findings are confirmed by numerical simulations.
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I. INTRODUCTION

The generation of nonlinear internal waves in a density
stratified fluid has been intensively studied since the lee wave
generation mechanism proposed by Maxworthy [1] (see the
review articles Cai et al. [2], Jackson et al. [3], and Guo
and Chen [4]). In the decades since then, there has been an
accumulation of in situ data, radar images, and high-resolution
numerical simulations. Our understanding has consequently
expanded and several mechanisms have been identified. These
are internal tidal beams impinging on the pycnocline (New
and Pingree [5], Gerkema [6], and Akylas et al. [7]), res-
onant generation due to lateral small-scale bottom variation
and topographic contractions (da Silva and Helfrich [8] and
Grimshaw and Helfrich [9]), linear sinusoidal internal tide
steepening (Smyth and Holloway [10] and Farmer et al. [11]),
and generation excited by river plumes (Nash and Moum [12]
and Matthews et al. [13]). For a comprehensive review, see
Jackson et al. [3]. It is noteworthy that most generation mech-
anisms are specific manifestation of interactions between flow,
especially the barotropic tide, and topography.

The effect of the Earth’s rotation on the dynamics of these
nonlinear internal waves has been developed since the late
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1990s. For instance, Gerkema [14] found that the rotation
suppresses the disintegration of the internal tide which other-
wise evolves into nonlinear internal waves. Helfrich [15] and
Grimshaw and Helfrich [16] showed that in the presence of
rotation, an initial large-amplitude solitary wave rapidly de-
cays into inertia-gravity waves, and eventually the leading dis-
turbance forms into a coherent wave packet. The emergence
of this kind of nonlinear wave packet was also confirmed
by the laboratory experiments conducted by Grimshaw et al.
[17]. Farmer et al. [18] examined the competition between
rotational effects and nonlinearity, and Yuan et al. [19] demon-
strated the rotational effects impacting on internal undular
bores. While most attention so far has been concentrated
on the effects of rotation on propagation, here we examine
the role that rotation could also play on the generation of
nonlinear internal waves.

The prominent generation mechanism is tide-topography
interaction, and a fundamental assumption is a steady flow
U far upstream passing over a localized topography. The
flow regime is then subcritical (U < c0, c0 is the relevant
linear long wave speed), supercritical (U > c0), or transcrit-
ical (U ≈ c0, resonant generation). In the transcritical case
nonlinearity has to be considered, and a useful model is the
forced Korteweg-de Vries (fKdV) equation; see, for instance,
Grimshaw and Helfrich [16], Grimshaw and Smyth [20],
and Yuan et al. [21], among many others. In the absence of
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FIG. 1. The schematic diagram of the coordinate system. The Gaussian topography expressed as bM exp [−(x/l )2] where, given the
pycnocline locates near the surface when the nonlinear coefficient μ0 < 0 [see Eq. (A13)], in reality, bM < 0 indicates undersea bump, for
example, a sill or ridge, while bM > 0 implies undersea dent, for instance, a canyon or basin; refer to scale (A26).

rotation, the flow regime is characterized by a localized flow
over topography and the generation of undular bores propagat-
ing both upstream and downstream. We note that comparison
of models of KdV type with in situ data demonstrate satis-
factory consistency for waves of small amplitude (Klymak
et al. [22] and Yang et al. [23]) and still has value even for
large-amplitude waves which are formally beyond the scope
of the weakly nonlinear assumption of KdV theory; see Small
et al. [24] and Ostrovsky and Stepanyants [25].

The purpose of this study is to investigate the generation
of nonlinear internal waves by steady flow over localized to-
pography in the presence of rotation. For this purpose we use
the forced Ostrovsky equation, which is a combination of the
fKdV equation (Grimshaw and Smyth [20] and Melville and
Helfrich [26]) but with the rotational effect also considered,
as in the Ostrovsky equation, which is an extension of the
KdV equation, to allow for rotational effects, see Ostrovsky
[27] and Grimshaw [28]. An analysis is conducted based on
the linearized forced Ostrovsky equation in Sec. II, whose
results are confirmed in Sec. III, together with the simulations
including nonlinearity. We conclude and discuss in Sec. IV.

II. LINEAR RESPONSE

KdV-type models have continued to evolve since Korteweg
and de Vries [29], and the derivation and implementation can
be found in the literature; for instance, for internal waves see
Gerkema [14], Melville and Helfrich [26], Ostrovsky [27],
Grimshaw [28], Benney [30], Benjamin [31], Grimshaw et al.
[32,33], and Grimshaw and Helfrich [9] and the references
therein.

Here the forced Ostrovsky equation is used to model
internal waves excited by a background flow passing over a
localized topography in the presence of the Earth’s rotation.

It is a development from the KdV equation by adding both
a forcing term and a rotational term. Its canonical form in
nondimensional variables can be written as

∂

∂x

(
−∂A

∂t
− �

∂A

∂x
+ 6A

∂A

∂x
+ ∂3A

∂x3
+ F

∂b

∂x

)
= αA, (1)

where x and t represent space and time domain, respectively,
and A(x, t ) is the wave amplitude. The Froude number F =
U/c0 and a detuning parameter � = U − c0 [� = c0(F − 1)]
measure the ratio and difference of the constant background
current U to the intrinsic linear long wave speed c0 (c0 is
obtained in the absence of a background flow). The localized
topography is given by b(x) and the rotational parameter
α characterizes the effects of the Earth’s rotation. Here we
consider only the normal case for internal waves when α > 0.
The coordinate system is sketched in Fig. 1. More details on
the derivation of the forced Ostrovsky equation for internal
waves can be found in the Appendix.

In the absence of rotation, Grimshaw and Smyth [20]
and Grimshaw and Helfrich [9], based on the forced KdV
theory, found that the generation mechanism falls into three
categories, subcritical � < �m < 0, transcritical �m < � <

�M , and supercritical � > �M > 0, where

�M,m = 6|bM | ± {
12|bM | + 36b2

M

}1/2
, (2)

where bM is the magnitude of the localized forcing, which
could be either positive or negative, depending on the topogra-
phy, see Fig. 1. For long-time simulations, a rescaling is useful

A = α1/2Ā, x = α−1/4x̄, t = α−3/4t̄, � = α1/2�̄ , b = αb̄.

(3)
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Then Eq. (1) becomes, after removing the overbars,

∂

∂x

(
−∂A

∂t
− �

∂A

∂x
+ 6A

∂A

∂x
+ ∂3A

∂x3
+ F

∂b

∂x

)
= A,

F = 1 + α1/2�. (4)

Note that the rotational parameter α appears only in the
rescaled F . Thus, small α corresponds to large b in this
rescaled equation, generating large A. Also small α corre-
sponds to large �, and the boundaries of the transcritical
regime (2) become

�M,m = 6α1/2|bM | ± [
12|bM | + 36αb2

M

]1/2
. (5)

In the limit as α → 0 this is unchanged.
In the absence of the forcing term, the linear dispersion

relation for (1) is

ω(k) = �k + k3 − α

k
, (6)

where ω is the wave frequency and k is the wave number, so
that the phase and group velocities are

c(k) = � + k2 − α

k2
, cg(k) = � + 3k2 + α

k2
. (7)

This, when as normal α > 0, c takes all values in the range
(−∞,∞) as k varies from zero to infinity, but cg − � can
only take positive values and has a minimum when k = km,
3k4

m = α. Hence all small waves with large k propagate in the
positive x direction. In contrast a free solitary wave solution
when α = 0 is given by

A = a sech2[K (x − V t )], V − � = −2a = −4K2, (8)

and propagates in the negative x direction at criticality when
� = 0.

The linearized forced equation [(1) with the nonlinear term
AAxomitted] can be solved exactly, and the solution consists
of steady lee waves and some transients. The steady waves are
found by setting c = 0 and then k = ±ks, where

� + k2
s − α

k2
s

= 0, 2k2
s = −�+

√
4α + �2,

cg = 2
√

4α + �2. (9)

Unlike the nonrotating case in which steady lee waves only
occur when the flow is subcritical, it is clear that here steady
lee waves can be found for all �, and in all scenarios the group
speed cg > 0, so they are always found downstream, x > 0. As
� increases, the wave number ks decreases, and even at exact
resonance � = 0, there is a steady solution with k4

s = α. For
large positive �, k2

s ∼ α/� and thus very long waves emerge,
and for large negative �, k2

s ∼ −� independent of α.
The initial value problem for the linearized forced Ostro-

vsky equation with a zero initial condition can be solved with
a Fourier transform,

Alin(x, t ) = 1

2π

∫ ∞

−∞
Â(k, t ) exp (ikx) dk,

Â(k, t ) = kFb̂(k)

ω(k)
{1 − exp [−iω(k)t]},

b̂(k) =
∫ ∞

−∞
b(x) exp (−ikx) dx. (10)

This is split into a steady part and a transient part,

Âsteady = kFb̂(k)

ω(k)
, Âunsteady = −kFb̂(k)

ω(k)
exp [−iω(k)t].

(11)

It is then necessary to examine how the poles at ω(k) = 0,
k = ±ks are resolved. This is achieved in the usual way by
adding a small imaginary part iε, ε > 0, to ω. This has the
effect that the poles at ω = 0 are displaced to ω = iε. Then
each pole in the complex k plane is displaced to ks + iδ, where
cg(ks)δ = ε. Since cg(ks) > 0, the poles lie above the real k
axis. When x < 0, the contour is displaced into the lower
half-plane, and so Asteady = 0 for x → −∞. But for x > 0,
the contour is displaced into the upper half-plane, and there is
a contribution from the poles at k = ±ks, yielding

Asteady ∼ iksF b̂(ks)

cg(ks)
exp (iksx) + c.c., x > 0, (12)

where c.c. denotes the complex conjugate.
These lee waves are joined to the solution near the forc-

ing site where x ∼ 0. The effect of the obstacle width can
be examined by assuming b = b(X ), X = x/l . Then b̂ =
l b̂(K ), K = lk, and

Asteady(x) = 1

2π

∫ ∞

−∞

KFb̂(K )

lω(K/l )
exp (iKX ) dK. (13)

For wide forcing, l → ∞, ω ≈ −lα/K and rotational effects
are dominant. Evaluation of (13) shows that then the steady
solution at the forcing site is given by

Asteady(x) ≈ F

α

∂2b

∂x2
. (14)

On the other hand, for narrow forcing, l → 0, when rotational
effects are initially minimal, and there is no steady solution
at the forcing site when α = 0 in the transcritical regime
(2). Now ω ≈ k3 and the integrand in (13) is proportional to
l2/K2. The integral in (13) now diverges, but instead we note
that ∂2

x Asteady ≈ −Fb in this limit.
A useful measure of nonlinearity vis-à-vis rotational ef-

fects is the Ostrovsky number Os, defined as the ratio of
the nonlinear term to the rotational term; see Farmer et al.
[18] and Grimshaw et al. [34]. In the linear regime, there is
a balance either between the linear dispersion and forcing,
when Os = 36b2

MF 2l4/α, or between the rotational term and
forcing, when Os = 36b2

MF 2/(α3l4). If the forcing is narrow,
l → 0, then the former relation holds and the rotational effect
is small. However, if the forcing is wide, α3l4 ∼ 1, then the
rotational effect is dominant.

The unsteady part in (11) can be evaluated at large time us-
ing the method of stationary phase. The dominant contribution
comes from x/t = cg(k) and is always in x > �t as cg > �

for all k, with dispersive decay as t−1/2. For this unsteady part,
the poles at k = ±ks can be avoided by evaluating ∂t A instead
of A as then ∂t Â does not have any poles. Thus

∂Aunsteady

∂t
(x, t ) = B(x, t ) = 1

2π

∫ ∞

−∞
B̂(k, t ) exp (ikx) dk,

B̂ = −ikF b̂(k) exp [−iω(k)t]. (15)
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TABLE I. The behaviors of the steady waves and unsteady waves in the subcritical, transcritical, and supercritical cases.

Steady waves Unsteady waves

Subcritical Wave number ks, 2k2
s = −� + √

4α + �2 . The minimum group velocity cg(km ) = � + 2(3α)1/2,

Transcritical Group velocity cg = 2
√

4α + �2 > 0. either occur both upstream and downstream when
cg(km ) < 0, or only occur downstream when cg(km ) > 0.

Supercritical Only occur downstream. cg(km ) > 0: only occur downstream.

The method of stationary phase now gives

B(x, t ) ∼
∑

−ikF b̂(k)

(
1

2π |ϕ|t
)1/2

× exp

{
ikx − iω(k)t + sign[ϕ]

iπ

4

}
+ c.c.,

x

t
= cg(k), ϕ = −∂cg

∂k
. (16)

Here the sum is over the two positive solutions for k of
x/t = cg(k). The expression, however, is only valid provided
that ϕ �= 0, while near ϕ = 0, this asymptotic solution is
replaced by an Airy function. This unsteady solution exists
only for x/t > cg(km), where cg(km) is the minimum value of
cg, defined by

cg(km) = � + 3k2
m + α

k2
m

= � + 2(3α)1/2, 3k4
m = α. (17)

It follows that transient waves can occur upstream for � <

−2(3α)1/2. A summary of these results is listed in Table I.

III. NUMERICAL SIMULATIONS

In order to check the analytical linear results in Sec. II
against numerical simulations of the forced Ostrovsky equa-
tion, the pseudospectral method is implemented spatially,
with a fourth-order Runge-Kutta iteration temporally. As the
simulations are in a periodic domain, artificial damping layers
are imposed at the two boundaries to prevent waves at one side
from re-entering at the other side. To improve efficiency and
accuracy, the simulations are based on the rescaled Eq. (4),
and given the fact that the analytical results are originated
from the form of (1), a transformation with scales (3) is
conducted. A typical domain of length 2000 is discretized
with 16 384 grid cells, while the time step is 3.2 × 10−3. The
nondimensional topography is given by

b(x) = bM exp

[
−

(
x

l

)2]
, (18)

where bM and l are the height and characteristic width of the
obstacle, respectively, see Fig. 1 for the schematic diagram.

FIG. 2. Numerical simulations of the linearized (a) and full [(b) and (c)] Ostrovsky Eq. (4), while the results are shown in the scale of
Eq. (1). These snapshots are captured at time t = 5000. Here bM = −0.03 for panels (a) and (b), bM = 0.03 for panel (c), and the other
common parameters used are (l,�, α) = (12.6, 0, 0.01), which indicates these scenarios locate on the transcritical case since the criteria
�m = −0.45 and �M = 0.81.
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FIG. 3. The layout is the same as in Fig. 2. These snapshots are captured at time t = 2250. Here bM = −0.04 for panels (a) and (b),
bM = 0.04 for panel (c), and the other common parameters used are (l,�, α) = (3.2, −0.6, 0.01), which indicates these scenarios locate on
the subcritical case since the criteria �m = −0.5 and �M = 1.0. To better illustrate the results, the axes are broken in the x direction.

Figure 2 illustrates the scenarios of the wave generation
when the background current is transcritical, where here
� = 0 is chosen as an example. Figure 2(a) demonstrates
the simulations of the linearized Ostrovsky equation, and at
large times, it is clear that steady lee waves dominate the field
near the topography, the linear wavelength is approximately
19.7, which matches with what the linear theory (9) predicts,
2π/ks = 2π/α1/4 = 19.9. In the far field downstream, un-
steady transient waves, asymptotically described by Eqs. (15)
and (16) in the linear regime, are quite apparent and tend
to evolve into wave packets but not very coherent. When
the nonlinear effect is taken into account, see Fig. 2(b), the
steady lee waves persist into the nonlinear regime as steady
“cnoidal”-like waves with a slightly smaller wavelength and
larger amplitude compared to their linear counterparts. Coher-
ent nonlinear wave packets emerge in the far field, propagating
with a speed approximately cg(ks) (9), again, as noted in
the linear theory. In this case, Eq. (16) indicates the tran-
sient unsteady waves only exist in the range of x > cg(km)t ,
where cg(km) > 0 (17), thus no unsteady waves can occur
upstream, and meanwhile, the steady lee waves cannot emerge
upstream either [refer to Eq. (12)], so all waves propagate
downstream.

Note that in the linear regime [(12) and (15), altering the
sign of the forcing term b can only reverse the polarity of the
waves, but it gets more complicated when the nonlinear effect
is considered. A comparison between Figs. 2(b) and Figs. 2(c)
clearly illustrates that the nonlinear terms impose more effect
on the case of positive forcing bM > 0, which appears to have
more wave packets composed of waves with larger amplitude
and smaller wavelength. In reality, for internal waves with
a near-surface pycnocline, the nonlinear coefficient μ0 < 0
(A13), bM > 0 amounts to undersea canyon or basin. That is,

the generation of large-amplitude internal waves is likely to be
more efficient when the constant flow passes over holes rather
than bumps.

When the background current is subcritical, � < 0, which
allows unsteady transient waves upstream, as the group speed
cg(km) = � + 2(3α)1/2 (17) has the possibility to be negative.
In Fig. 3, � = −0.6 < �m = −0.5, which falls into the sub-
critical case. Here the linear theory predicts that the unsteady
waves propagate upstream with group speed |cg(km)| = 0.25
and the wavelength of the steady waves is 8.4, which are both
clearly confirmed by the simulations. Again, the case of pos-
itive forcing [Fig. 3(c)] generates larger nonlinear waves than
that with negative forcing [Fig. 3(b)]. Distinguished from the
transcritical cases, the nonlinear results with positive forcing
forms coherent wave packets, whose group speed, however, is
apparently overestimated in the linear theory. For the negative
forcing, the linear results are larger than the nonlinear results,
since here the nonlinear term takes on the effect of mitigation.
Given a fixed background flow, there exists a criterion of the
rotational parameter α determining the emergence of waves
upstream. It is remarkable that when the group speed cg(km) =
� + 2(3α)1/2 � 0, the waves will not propagate upstream,
and this is examined in Fig. 4, where cg(km) = −0.25 in
Fig. 4(a) and cg(km) = 0 in Fig. 4(b). Clearly, the amplitudes
in Fig. 4(b) are perceptively smaller than those in Fig. 4(a),
which suggests that the rotational effect can suppress the
generation and propagation of nonlinear internal waves, as
pointed out by Farmer et al. [18], among many others. Note
that in Fig. 4(a) with relatively weak rotation, the Ostrovsky
number Os = 1.3 is larger than the critical value Osc = 1, and
it indicates the formation of nonlinear internal waves; while
Os = 0.4 < 1 in Fig. 4(b), and then the formation will be
inhibited.
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FIG. 4. The parameters used are (bM , l, �) = (−0.04, 3.2, −0.6), which indicates these scenarios locate on the subcritical case. Panel
(a) indicates the rotation α = 0.01, while (b) for α = 0.03, and both are plotted at time t = 2500.

For the supercritical case in Fig. 5, the basic dynamics
is almost the same as in the aforementioned two cases: The
simulated linear wavelength is the same as the prediction of
Eq. (9); the results of positive forcing are larger than those
of negative forcing. Nevertheless, no coherent wave packets
occur in this case, which maybe needs a larger forcing term
and long-time simulations. In Fig. 6, the influence of the width
of the topography is examined. When the topography is wide,
there are steady waves as described by Eq. (14), in contrast to
the scenario when the topography is narrow.

IV. SUMMARY AND CONCLUSION

Although there have been a large number of investigations
into the generation mechanisms of oceanic internal solitary
waves, the role of the Earth’s background rotation has been
less well examined, albeit we note some relevant studies:
Farmer et al. [18], Gerkema and Zimmerman [35], and
Ramirez and Renouard [36]. The barotropic tide interacting
with localized topography is the most studied forcing term,
especially in the coastal oceans, straits, and fjords. In this
study we examine the effects of background rotation, using

FIG. 5. The layout is the same as in Fig. 2. These snapshots are captured at time t = 5000. Here bM = −0.04 for panels (a) and (b),
bM = 0.04 for panel (c), and the other common parameters used are (l,�, α) = (3.2, 1.1, 0.01), which indicates these scenarios locate on the
supercritical case since the criteria �m = −0.5 and �M = 1.0. Note that the axes are broken in the x direction.
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FIG. 6. The parameters used are (bM , �, α) = (−0.04, 1.2, 0.01), which indicates these scenarios locate on the supercritical case. Panels
(a1) and (a2) indicate the width of topography l = 3.2, while l = 70 for (b1) and (b2), of which (a1) and (b1) are at time t = 25 and (a2) and
(b2) at time t = 5000.

the forced Ostrovsky equation as the model, this being the
rotational extension of the commonly used forced Kortweg-de
Vries equation; see Grimshaw and Smyth [20]. As usual, we
assume a constant background current as the forcing field.

Depending on the difference between background current
U and the intrinsic linear wave phase speed c0, defining
� = U − c0, the scenarios of evolution fall into three cat-
egories, namely subcritical when � < �m < 0, transcritical
when �m < � < �M , and supercritical when � > �M > 0;
see Eq. (5). Linearized analysis demonstrates that steady lee
waves can be generated for all values of �, with larger �

resulting in a larger wavelength, quite different from the
nonrotating case when steady lee waves only arise in the
subcritical regime. To facilitate the analysis, the waves are
divided into steady and unsteady waves. For steady waves,
the group velocity is always positive and so steady waves
can only be found downstream. However, in the subcritical
case unsteady waves can be found upstream when the min-
imum of group velocity cg(km) = � + 2(3α)1/2 < 0 where
3k4

m = α, defining the wave number where the minimum is
reached. These analytical predictions are confirmed by the
numerical simulations in Sec. III. In the absence of rotation,
Grimshaw and Smyth [20] and Grimshaw and Helfrich [9]
used the forced Korteweg-de Vries equation to show that in
the transcritical regime, nonlinear waves occur both upstream
and downstream, and relying on the strength of the forcing,
their form can be a train of solitary waves of nearly uniform
amplitude or undular bores modelled as a modulated cnoidal
wave train. However, no such undular bores are found in the
numerical results shown here. This is because the rotational
effect acts to destroy the structure of undular bores and results
instead in the emergence of nonlinear envelope wave packets;
see Yuan et al. [19]. This demonstrates the potential crucial
role of rotation on the generation mechanism.

When nonlinearity is taken into account, and the outcome
compared with the linearized results, the most notable differ-
ence is the wave amplitude and the appearance of coherent
nonlinear wave packets. In the transcritical cases, nonlinearity
magnifies the wave amplitude, while in the other two cases,
the nonlinear term mitigates the wave amplitude. This discrep-
ancy in the amplitudes, conceivably, accounts for the slightly
different wavelength and wave speed. In addition, it is found
that the cases when bM > 0 (representing an undersea hole or
canyon) are more efficient on the generation of internal waves
than the case bM < 0 (undersea sill or ridge).

Finally, we examine the role of rotation on the generation
mechanism for realistic ocean conditions. Luzon Strait in the
South China Sea is a much-studied generation site, see Liu
et al. [37], and much other literature for in situ observational
data. At latitudes around 20◦N the Coriolis parameter f ≈
5 × 10−5 s−1, and typical linear long wave speeds c0 are
approximately 2 m s−1. The coefficient δ0 = c0h1h2/6 for a
two-layer fluid model of upper and lower layer depths of
h1, h2, from which we estimate that δ0 ≈ 103 m3 s−1 for shal-
low depths, h1 = 100 m, h2 = 400 m (for the definitions of
parameters refer to the Appendix). From Eq. (A27) this yields
an estimate of the rotational coefficient α = O(10−3). This
is smaller than the value used in our simulations, where we
used a larger α to reduce computational time and to emphasize
the role of rotation. But note that at higher latitudes and in
deeper water α increases, and so rotational effects can be
expected to increase; see Grimshaw et al. [38]. Transcritical
flow requires that � = U − c0 is quite small, and although
in the Luzon Strait the tidal forcing is usually subcritical on
this criterion, see Grimshaw and Helfrich [9], we note that
the transcritical regime increases with the amplitude of the
topographic forcing. Further, in the present model we have
assumed that the tidal current is a constant, whereas in reality
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it may vary on a timescale consistent with the rotational
timescale. This aspect requires further study, as in Grimshaw
and Helfrich [9], but with the rotational term included. In
this present paper we have focussed on the simplest case of
constant forcing to emphasize the rotational effects.
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APPENDIX: FORCED OSTROVSKY EQUATION

In this Appendix we give a brief outline of the derivation
of the forced Ostrovsky equation for internal waves. At the
leading order we get from linear long wave theory,

ζ ∼ A(x, t )φ(z) + · · · , (A1)

where ζ is the vertical particle displacement relative to the
basic state defined by the density field ρ0(z) and background
current u0(z), and A(x, t ) is the wave amplitude, see Fig. 1 for
the coordinate system. The modal function φ(z) satisfies the
system

∂

∂z

[
ρ0(c − u0)2 ∂φ

∂z

]
+ ρ0N2φ = 0 for − h < z < 0, (A2)

φ = 0 at z = −h, (c − u0)2 ∂φ

∂z = gφ at z = 0, (A3)

where h is the water depth, g is the gravitational acceleration,
and the buoyancy frequency N (z) is defined by N2 = − g

ρ0

dρ0

dz .
In general this has an infinite set of solution for φ(z) and the
linear long wave speed c, but for oceanic internal waves it is
customary to examine only mode one which has the fastest
internal wave speed (formally the lowest mode zero is the
surface wave mode with speed c ≈ √

gh). Then the forced
Ostrovsky (fO) equation is written in the reference frame of
the topography given by z = −h + b(x),

∂

∂x

[
− ∂A

∂t
− c

∂A

∂x
+ μA

∂A

∂x
+ δ

∂3A

∂x3
+ γ

∂b

∂x

]
= �A, (A4)

Iμ = 3
∫ 0

−h
ρ0(c − u0)2

(
∂φ

∂z

)3

dz, (A5)

Iδ =
∫ 0

−h
ρ0(c − u0)2φ2 dz, (A6)

Iγ = ρ0u0(u0 − c)
∂φ

∂z
, at z = −h, (A7)

I� = f 2
∫ 0

−h
ρ0�

∂φ

∂z
dz, (A8)

ρ0(c − u0)� = ρ0(c − u0)
∂φ

∂z
− ∂ (ρ0u0)

∂z
φ, (A9)

I = 2
∫ 0

−h
ρ0(c − u0)

(
∂φ

∂z

)2

dz, (A10)

where f = 2 � sinψ (where � is the rotation rate of the Earth
and ψ is the latitude) is the Coriolis parameter and b(x)
represents the localized obstacle, see Fig. 1. We consider a
constant background current, u0 = U = const, and then c =
U − c0, where c0 is the intrinsic linear long wave speed in
the absence of a background flow and it can be obtained from
Eqs. (A2) and (A3). At resonance (criticality) c ≈ 0, and we
define a detuning parameter � = c. Equations (A4)–(A10)
asymptotically reduce to

∂

∂x

[
− ∂A

∂t
− �

∂A

∂x
+ μ0A

∂A

∂x
+ δ0

∂3A

∂x3
+ γ0

∂b

∂x

]
= �0A,

(A11)

I0μ0 = 3
∫ 0

−h
ρ0u2

0

(
∂φ

∂z

)3

dz, (A12)

I0δ0 =
∫ 0

−h
ρ0u2

0φ
2 dz, (A13)

I0γ0 = ρ0u0(u0 − �)
∂φ

∂z
, at z = −h, (A14)

I0�0 = f 2
∫ 0

−h
ρ0�0

∂φ

∂z
dz, (A15)

ρ0u0�0 = ρ0u0
∂φ

∂z
+ ∂ (ρ0u0)

∂z
φ, (A16)

I0 = 2
∫ 0

−h
ρ0u0

(
∂φ

∂z

)2

dz. (A17)

Here the modal function φ is evaluated at c = 0, but c = �

is retained in the leading-order terms to ensure that all terms
remain in balance.

Introducing the internal Froude number F = U/c0, which
is a dimensionless parameter in characteristics of the ratio of
the background current to the linear phase speed, thus � =
c0(F − 1) and the modal equations (A2) and (A3) become

c2
0

∂

∂z

(
ρ0

∂φ

∂z

)
+ ρ0N2φ = 0, for − h < z < 0, (A18)

φ = 0 at z = −h, c2
0
∂φ

∂z
= gφ at z = 0. (A19)

The coefficients (A13)–(A17) become

I0μ0 = 3
∫ 0

−h
ρ0c2

0

(
∂φ

∂z

)3

dz, (A20)

I0δ0 =
∫ 0

−h
ρ0c2

0φ
2 dz, (A21)

I0γ0 = ρ0c0U
∂φ

∂z
, at z = −h, (A22)

I0�0 = f 2
∫ 0

−h

∂ (ρ0φ)

∂z

∂φ

∂z
dz, (A23)

I0 = 2
∫ 0

−h
ρ0c0

(
∂φ

∂z

)2

dz. (A24)

Note that in the Boussinesq approximation �0 ≈ f 2/2c0,
which is always positive. In the fO Eq. (A11), the coeffi-
cients μ0, δ0 are independent of F , while the coefficients
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� = c0(F − 1) and γ0 vary, where

γ0 = Fσ0, I0σ0 = ρ0c2
0

∂φ

∂z
, at z = −h. (A25)

To facilitate the following analyses and simulations, we
rescale the variables as

Ã = μ0A
6c0

, �̃ = �
c0

, t̃ =
(

c3
0

δ0

)1/2

t,

x̃ =
(

c0
δ0

)1/2

x, b̃ = σ0μ0b
6c2

0
, (A26)

so that Eq. (A11) adopts the canonical form after removing
the tilde superscript.

∂

∂x

(
− ∂A

∂t
− �

∂A

∂x
+ 6A

∂A

∂x
+ ∂3A

∂x3
+ F

∂b

∂x

)
= αA,

F = 1 + �, α = �0δ0

c2
0

≈ f 2δ0

2c3
0

. (A27)

Here we have used the Boussinesq approximation to get a
convenient expression for α. For mode-one internal waves,
σ0 > 0 and so the forcing b̃(x̃) is positive when μ0b > 0 but
negative when μ0b < 0. In particular, flow of a two-layer fluid
with a near-surface pycnocline over a sill is equivalent to
negative forcing.
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