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Abstract
Measurement of muscle strength and activity of upper limbs of non-ambulant patients with

neuromuscular diseases is a major challenge. ActiMyo1 is an innovative device that uses

magneto-inertial sensors to record angular velocities and linear accelerations that can be

used over long periods of time in the home environment. The device was designed to insure

long-term stability and good signal to noise ratio, even for very weak movements. In order

to determine relevant and pertinent clinical variables with potential for use as outcome

measures in clinical trials or to guide therapy decisions, we performed a pilot study in non-

ambulant neuromuscular patients. We report here data from seven DuchenneMuscular Dys-

trophy (DMD) patients (mean age 18.5 ± 5.5 years) collected in a clinical setting. Patients

were assessed while wearing the device during performance of validated tasks (MoviPlate,

Box and Block test and Minnesota test) and tasks mimicking daily living. The ActiMyo1 sen-

sors were placed on the wrists during all the tests. Software designed for use with the device

computed several variables to qualify and quantify muscular activity in the non-ambulant sub-

jects. Four variables representative of upper limb activity were studied: the rotation rate, the

ratio of the vertical component in the overall acceleration, the hand elevation rate, and an esti-

mate of the power of the upper limb. The correlations between clinical data and physical activ-

ity and the ActiMyo1movement parameters were analyzed. The mean of the rotation rate

and mean of the elevation rate appeared promising since these variables had the best reliabil-

ity scores and correlations with task scores. Parameters could be computed even in a patient

with a Brooke functional score of 6. The variables chosen are good candidates as potential

outcomemeasures in non-ambulant patients with DuchenneMuscular Dystrophy and use of

the ActiMyo1 is currently being explored in home environment.

Trial Registration: ClinicalTrials.gov NCT01611597

PLOSONE | DOI:10.1371/journal.pone.0156696 June 7, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Le Moing A-G, Seferian AM, Moraux A,
Annoussamy M, Dorveaux E, Gasnier E, et al. (2016)
A Movement Monitor Based on Magneto-Inertial
Sensors for Non-Ambulant Patients with Duchenne
Muscular Dystrophy: A Pilot Study in Controlled
Environment. PLoS ONE 11(6): e0156696.
doi:10.1371/journal.pone.0156696

Editor: Krishna Mallela, University of Colorado
Anschutz Medical Campus, UNITED STATES

Received: January 27, 2016

Accepted: May 18, 2016

Published: June 7, 2016

Copyright: © 2016 Le Moing et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The PreActi study was entirely funded by
Institute of Myology, AIM. Eric Dorveaux and David
Vissière are employed by the commercial company
SYSNAV. SYSNAV provided support in the form of
salaries for authors ED and DV and provided the
prototype used for the study and the operating
system on a collaboration agreement, but did not
have any additional role in the study design, data
collection and analysis, decision to publish, or

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156696&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
The measurement and quantification of the autonomy of patients suffering from chronic ill-
ness requires the development of monitoring tools. To improve monitoring of disabilities and
dependency caused by a disease, new e-health applications aim at transforming medical care
practice for patients. Among the many aspects of e-health developments are those related to
the acquisition of remote medical measures. The need to monitor patients in their daily life has
generated a need for precision sensors that meet the constraints of use outside a clinical institu-
tion [1]. In a few fields of medicine, such as cardiology and epileptology, ambulatory monitor-
ing devices have been used in clinical trials and practice for years [2,3].

Actimetry is often used to measure the activity of a subject over a period of time. It can be
achieved through different approaches (combined or not) such as measurement of accelera-
tions or angular velocities, typically within a three-dimensional space. Actimetry using accel-
erometry has been used as a physical activity assessment that is clinically relevant in able-
bodied children [4], to quantitatively assess physical activity of patients with cerebral palsy
[5,6], upper limb motor function and walking in patients with multiple sclerosis [7,8], and to
detect seizures [9–12]. Gyroscopic systems have been used for localization [13] to analyze pos-
tural parameters involved in pathological gait in patients with hemiplegia and Parkinson dis-
ease [14], and to determine biomechanical and rotational parameters for orthopedic diseases
[15].

Accelerometers and gyroscopes can be coupled within an inertial device to estimate the ori-
entation of the device. These devices have been used to assess postural disorders [16], patholog-
ical gait [17], tremor in patients with Parkinson’s disease [18] or to quantify spasticity of
patients suffering from stroke [19]. For Duchenne muscular dystrophy (DMD), potential
applications include the assessment of gait and trunk movements [20] and monitoring patients’
the daily life [21]. Inertial systems may be further coupled with magnetometers to allow much
more precise estimation of velocity and position [22]. Recently devices combining inertial and
magnetic measurements have been applied to medical fields such as epileptology [23], rehabili-
tation [24] and autism care [25]. However, the medical applications are still restricted and con-
tinuous home monitoring has yet to be solidly implemented using this technology.

Duchenne muscular dystrophy is one of the most common neuromuscular diseases; it is
caused by mutations in the gene encoding the dystrophin protein [26–28]. The wasting of skel-
etal muscle compromises the patient’s mobility, their physical activity, and quality of life [29]
and leads to complete paralysis and premature death [30,31]. The recent results from new
pharmaco-gene therapies are promising for DMD patients [32–35]. Significant motor
improvement has been reported for ambulant patients treated to restore dystrophin function
[33,36]. Other molecules are in clinical trials for ambulant and non-ambulant DMD patients
(Clinical Trials Identifier NCT01254019, NCT01540409, and NCT01826474). Since the bal-
ance between clinical benefit and side effects will drive regulatory approval, social security
reimbursement, and patient compliance, close follow-up of patients’ activity at home who par-
ticipate in clinical trials or who are treated with approved therapies is thus of critical impor-
tance for both ambulant and non-ambulant patients, especially in the context of very expensive
new medications or post-marketing approval studies.

The gold standard for DMD patient evaluation during trials is currently the 6-minute walk
test [37]. This test reflects ambulant patients’ peak performance in a clinical setting. As this is a
test dedicated to ambulant subjects, non-ambulant patients are prevented from participation in
most clinical trials. In the rare trials open to the non-ambulant population, upper limb function
is not yet considered as a primary outcome (ClinicalTrials.gov Identifier: NCT01027884,
NCT01009294). The present assessment tools for upper limb function in non-ambulant DMD
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patients include observer-rated performance in a controlled environment and self-reported
questionnaires [38–42]. Recently, collaborative efforts among medical doctors, physiothera-
pists, and patients have led to development of a novel scale for assessing performance of upper
limbs [43], a stereo camera-based reachable workspace analysis system [44,45] or a skeletal
tracking system [46]. These different approaches aim to quantify peak patient performance in
a controlled environment. They all require patients to travel to the hospital and are subject to
patient fatigue and motivation at a particular period in time [47]. A device that could measure
patient activity at home would be valuable for clinical evaluations of therapies and for guiding
treatment decisions, especially in non-ambulant patients. Indeed, the non-ambulant popula-
tion would benefit significantly from such a device, since (i) no gold standard exists for non-
ambulant patients, (ii) social and environmental factors probably influence upper limb activity
less than ambulation does, and (iii) non-ambulant patient trips to investigation centers are
more complicated than for ambulant patients making home-based assessment optimal. A
major issue in the development of devices to quantify movement in non-ambulant patients is
that the movements are often of very low amplitude, speed and acceleration; it therefore
requires excellent and well-calibrated sensors to reach good signal to noise ratio, and good
accuracy and integrity even for slow motion (a couple of degrees per second). Moreover, in a
home environment, methods have to be applied which account for the caregivers or the wheel-
chair induced movements of the patient.

Our present study aimed to highlight the feasibility of quantifying the range of upper limb
movements produced by non-ambulant patients, using magneto-inertial sensors. We devel-
oped a wireless movement monitor—ActiMyo1—which contains a three-axis accelerometer, a
three-axis gyroscope, and a three-axis magnetometer. This new tool is light and easy to wear
and to use at home and during the patient’s daily routine. Its battery has an operational auton-
omy of at least 12 hours. Our goal was to make the device sensitive enough to detect even the
slightest change of upper limb position. This report describes a monocentric clinical pilot study
with the objective to demonstrate feasibility and reliability of physical data recorded with Acti-
Myo1 in a laboratory setting for non-ambulant DMD patients.

Materials and Methods
The protocol for this trial and the TREND checklist are available as supporting information;
see S1 TREND Checklist, S1 Protocol and S2 Protocol.

Patients
The study was conducted between January 2012 and December 2012 at the Institute of Myol-
ogy, at Hospital Pitié-Salpêtrière, in Paris (France) within the Pre-Acti protocol approved by
the local Ethics Committee (Comité de Protection des Personnes, Ile-de-France VI, 80–11) and
by the French Regulatory Agency (ANSM, B111169-10). Patients were recruited from the neu-
ropaediatric and adult neuromuscular consultation at the Institute of Myology and by informa-
tion spread through by the French Muscular Dystrophy Association (AFM). Before inclusion,
all patients or their parental authorities provided signed informed consent.

Patients over 10 years of age with genetic confirmation of their neuromuscular disease were
included. These patients had to be non-ambulant (i.e. unable to walk 10 meters without exter-
nal aid) and had to be able to sit for at least 3 hours in the wheelchair.

The exclusion criteria were: cognitive impairment, occurrence of neurological, inflamma-
tory, infectious, endocrine, or acute orthopedic disease in the previous month, scheduled sur-
gery within 3 weeks of inclusion date, and occurrence of surgery of the upper limbs in the
previous three months.
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Study design
Patients performed several tests while wearing the ActiMyo1 device in a laboratory setting at base-
line and fifteen days later in order to analyze both feasibility and reliability. These tests involved the
upper limb and consisted of tasks to quantify strength (using the MyoGrip and the MyoPinch [48–
50]) andmotor abilities (MoviPlate [42], Box and Block test [51], and a modified version of Minne-
sota dexterity test [52]), and tasks mimicking daily activities like typing and handwriting. All tests
were done with both hands, starting with the dominant hand, three times (except for handwriting,
which was done only once with the side normally used for this activity), and while wearing the
ActiMyo1 on the wrist. The patients were video recorded throughout all the tasks.

ActiMyo1

A prototype version of the ActiMyo1was used in this study. It consisted of two watch-like devices
(length x width x height: 40 x 27 x 25 mm; weight: 38 grams) connected through Bluetooth to the
recording station (210 x 145 x 90 mm) (Fig 1A). The watch-like devices contained a three-axis
accelerometer, a three-axis gyroscope, and a three-axis magnetometer that recorded respectively
the linear acceleration, the rotation rate (angular velocity), and the magnetic field in the three
dimensions of space. The autonomy of the system was approximately 16 hours. Raw data were
transmitted in real-time to the recording station nearby and were stored on a micro SD card.

During the tasks in the laboratory setting, the watch-like devices were placed on each wrist
of the patient and the recording station was kept within the range of 4 meters, on a stable sur-
face. The recording station was also equipped with a switch to record a binary signal to mark
the beginning and the end of any specific event, as chosen by the evaluator.

The ActiMyo1 system records the following in the watch reference frame:

- The specific acceleration vector that indicates the instantaneous inertial acceleration for
each axis (Ax, Ay, and Az). It is expressed in g-force (1 g = 9.81 m/sec2).

- The instantaneous angular velocity vector that indicates the instantaneous rotation of the
wrist in the reference system of the watch (Gx, Gy, and Gz). It is expressed in degrees per
second (°/sec).

- The magnetic field vector that indicates the direction and strength of the local magnetic
field (Mx,My, andMz). It is expressed in gauss (in Paris, the Earth's magnetic field is
approximately 0.45 gauss).

Evaluations in laboratory setting
Patients were assessed using the MyoSet as previously reported [42,48,49]. Briefly, MyoPinch
assessed keypinch strength, MyoGrip measured hand grip strength, and MoviPlate assessed the
patients’ ability to move their hand using finger and wrist flexors and extensors to hit alterna-
tively two targets of different heights placed in the sagittal plane for 30 seconds. For the Block
and Box test (BBT) [51], the patient was asked to move 29-mm3 wooden cubes from one
box to another one by one. In our study, this test was performed without the middle partition
(Fig 1B) so that the test could be completed by most of the patients. Each trial lasted 60 sec-
onds. The score was equal to the number of blocks moved. The Minnesota Test [52] is a test
during which patient has to switch different wooden discs disposed on a table. We adapted this
test taking into consideration the condition of the patients: we used only five discs in a row that
must be turned over repeatedly during 60 seconds (Fig 1C). The score was equal to the number
of turned discs. Daily life non-validated activities were chosen to reflect the relevant activities
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(typing, writing). The sentence to be hand written or typed on a PC keyboard was chosen to be
simple and had no special characters (“Les pompiers sont partis de la caserne avec leur camion
rouge”). The score for both tasks corresponded to the number of characters of the phrase writ-
ten/typed one time per trial in 60 seconds.

Data collection
Baseline medical information (clinical status, cardiac, respiratory, and orthopedic data) was
collected at the first visit and any notable recent medical issue was documented at follow-up.
Magneto-inertial data were analyzed using specific software developed by Sysnav Company
using MatLab1 (R2009b, The MathWorks, Natick, MA).

Signal processing and variable computation
The measurements were first calibrated (i.e. compensated to take into account the most rele-
vant errors) before being processed to estimate other meaningful physical quantities. The main

Fig 1. The tools. (A) First version of ActiMyo1, used in the current study. (B) Box and Block test. (C)
Minnesota test with five discs.

doi:10.1371/journal.pone.0156696.g001
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errors typically consisted of biases, and scale factor errors at the one-axis sensor level, and mis-
orthogonality errors between axes and cross-coupling at the 3D sensor level. These errors were
estimated by calibration procedure where the raw measurements were compared, either
directly or indirectly (norm of vector, for instance) to a known and controlled quantity [53,54],
either found in the nature (gravity, Earth magnetic field) or obtained through high-end motion
stimulators. Once the data are calibrated, it is possible to deduce the orientation of the device
in the Earth’s reference frame through attitude estimation algorithms [55,56]. Integrating the
gyroscopes allow to estimate the short-term attitude variations. However, such a solution alone
drifts over time. Accelerometers and magnetometers permitted to give an initialization point
and to eliminate that drift as according to Wahba’s problem [57], the measurements of two
independent vectors are sufficient to fully determine the orientation. Practically, an extended
Kalman filter was chosen to implement the attitude estimation algorithm [58]. For the sake of
interpretability, the estimated attitude was expressed as Euler angles. Given the orientation of
the device, measured or estimated quantities could then be expressed either in the frame of the
device, attached to the wrist, or in the Earth’s reference frame. The vertical and upward compo-
nent of the acceleration in the Earth reference frame was interpreted as the anti-gravity compo-
nent of the acceleration which was of particular clinical significance for weak neuromuscular
patients. Many other parameters and variables (rotation rate around the forearm axis and the
vertical axis, acceleration, torque. . .) were computed to reflect the movement of rotation of the
forearm around the elbow based on the assumption that the elbow was fixed. For each of them,
several statistical variables were tested (minimum, maximum, mean, median, standard devia-
tion, norm). In order to select variables that seemed to be most suitable and consistent for the
study of upper limbs, a preliminary analysis was done with the help of video recordings. Vari-
ables that seemed most reliable and clinically relevant were selected, taking into consideration
the weakness and paucity of upper limb movements in DMD patients. The following variables
were selected:

- The norm of the angular velocity (denoted kOk) of the wrist wearing the device; it was
expressed in degrees per second (°/sec) and directly obtained from the calibrated measure-
ments. Its value does not depend on the frame of expression (sensor frame or Earth’s ref-
erence frame).

- The ratio of the vertical component of the acceleration to the overall acceleration (denoted
vA); it was expressed without units. The ratio was taken once the acceleration was
expressed in the Earth’s reference frame.

- A model-based computed power (denoted P) that corresponds to the mechanical power
necessary to move the forearm based on the assumption that the elbow is not moving. It
was calculated as the scalar product of the torque and the angular velocity, expressed in
the Earth’s reference frame. An inertial matrix (expressed per unit of mass) was arbitrary
chosen to model the forearm: the length of the forearm was set to 20 cm with a 3-cm
radius. This matrix was the same for all patients regardless of their weight. This parameter
was expressed in watts per unit of mass (W/kg), so that the unknown weight of the fore-
arm did not interfere.

- The elevation rate (denoted dθ) corresponds to the temporal derivative of the elevation
angle of the forearm, one of the three Euler angles used to represent the orientation of the
device. This angle was taken between the horizontal plane and the direction of the fore-
arm. The elevation rate thus represented the angular velocity at which the forearm lifted.
It was expressed in degrees per second (°/sec).
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Statistical analysis
In order to assess a possible laterality effect, we compared the maximum value obtained for
strength (grip and pinch) and function (MoviPlate score) between the dominant and non-
dominant hand using the non-parametric Wilcoxon matched-pairs signed-rank test. The reli-
ability of ActiMyo1 variables (kOk), vA, P, dθ) and task scores were assessed for each task first
(average value over all repetitions of the task) and scores of all tasks were pooled to estimate
the intra-class correlation coefficient (ICC). ICC was computed using a two-way random effect
model (absolute agreement) for average measurements on all trials. Correlations between the
functional scores (MoviPlate, BBT, Minnesota, PC typing, handwriting) and the ActiMyo1

variables were assessed using Spearman’s rank correlation coefficient as relationships between
variables might not be linear. Data from all three trials per visit were used. All analyses were
performed using the SPSS 19 statistical software (SPSS Inc., Chicago, IL). The limit of statistical
significance was set to 0.05.

Results

Clinical features
Seven DMD patients (genetically characterized: four with deletions, two with point mutations,
and one with a duplication) were included in the study (Fig 2). The patients had a mean age of
18.5 ± 5.5 years. Clinical features are reported in Table 1.

Feasibility
Patients were able to complete most of the tasks (Table 2). Their primary limitation was due to
their weakness and/or contractures at baseline. For the patient #6, the follow-up visit data was
excluded due to technical problems.

The Minnesota test was adapted to the functional and muscular abilities of the patients. The
three most affected patients (#3, #5, and #7) used only one disc because of their severe muscle
weakness and upper limb contractures. Patients #1, #2, #4, and #6 performed the test with five
discs. The analysis was done separately for the patients using five discs and those using only
one. One patient could not perform the test with the dominant hand (even with the mentioned
adaptations of the test).

The ActiMyo1 device was well tolerated by the patients, and it was never an obstacle in
accomplishing the tasks demanded. ActiMyo1 data were recorded for all the tasks performed,
even in the weakest patient.

Dominance effect
The laterality effect was tested for all the patients in all the tasks, and no dominance effect was
found (Table 3).

Test–Retest reliability
All ActiMyo1 variables showed high to very high reliability as assessed using ICC values (all
ICC� 0.8; Table 4). The correlations between test and retest for each variable are displayed
in Fig 3. Analyzed by tasks, all variables showed high to very high reliability for MoviPlate
and for Minnesota. Moderate to high reliability was observed for the BBT, PC typing, and
writing.
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Fig 2. Patient flow-chart.

doi:10.1371/journal.pone.0156696.g002
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Correlation between the ActiMyo1 variables and the functional scores
(Table 5)
For the MoviPlate and BBT, all variables were significantly correlated with the functional
scores. kOk, P, and dθ were significantly correlated with the Minnesota scores and with the
writing task (Fig 4). MoviPlate data for patient #1 had to be discarded due to a technical issue.

Discussion
In this study we compared use of a magneto-inertial-based movement monitor, ActiMyo1,
with previously described functional assessments in boys and adults with Duchenne muscular
dystrophy to quantitatively detect and measure a various range of upper limbs movements
observed in non-ambulant patients.

One of the limitations of this study was the small number of patients evaluated. This is
mainly due to the fact that only one prototype was available at the time the study was initiated
and that all analyses were manually performed. However many data are coming about of large
cohort of patients in longitudinal international clinical trials. The data is coming soon to assess
muscle function of these patients in their daily lives. The group evaluated was chosen heteroge-
neous. Severity of symptoms ranged from the patient who had recently lost ambulation
(patient #1) to the older patient who required continuous ventilation (patient #3). Due to the
general muscle weakness of these patients, tools were used to reliably assess low levels of distal
strength and function. It is known that hand grip and pinch strength correlate with the global
hand strength, which is inversely correlated with functional capacity [59]. All patients from

Table 1. Clinical features of the DMD patients ordered by increasing age.

Patient Age
(years)

Mutation Age at ambulation
loss (years)

Brookescore Non-invasive
ventilation

Steroid
treatment

Grip D
(kg)

Pinch D
(kg)

#1 10.5 del3-11 10.0 3 no no 4.66 1.50

#2 15.5 c.10453_10454insC 12.0 2 no yes 13.99 3.55

#6 16.0 del42-43 11.0 3 no no 6.43 2.58

#4 18.0 c4084C>T 8.5 5 no no 6.46 1.55

#5 20.0 dup48-49 9.0 6 no no 1.13 1.22

#7 20.5 del49-50 8.0 6 nocturnal no 0.62 0.18

#3 28.5 del51 11.0 6 continuous no 0.72 0.30

Mean
(SD)

18.5 (5.5) 10.0 (1.5) 4.4 (1.7)

D—dominant side.

doi:10.1371/journal.pone.0156696.t001

Table 2. The maximal scores on tasks completed by each patient at the two visits sorted by the decreasing age.

Patients MoviPlate D MoviPlate ND BBT D BBT ND Minnesota (n) D Minnesota (n) ND PC Typing (score/min) Writing (score/min)

#1 54 51 52 50 69 (5) 74 (5) 61 87

#2 95 87 67 67 67 (5) 70 (5) 174 161

#6 67 55 36 32 61 (5) 16 (5) 99 87

#4 58 61 30 29 27 (5) 33 (5) 60 109

#5 31 43 NA NA 38 (1) 43 (1) NA 25

#7 35 38 NA NA NA 48 (1) NA NA

#3 29 25 NA NA 11 (1) 20 (1) NA 25

D—dominant hand, ND—non dominant hand, NA—not available, n—number of discs used.

doi:10.1371/journal.pone.0156696.t002
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our study performed previously validated strength tests (MyoPinch and MyoGrip), and the
results from these tests reflected the clinical status of the patients defined by the functional
Brooke score [60].

We did not find any side effect between the dominant and non-dominant hands in our pop-
ulation. This is in line with our previous findings [42]. Other authors demonstrated that differ-
ences between dominant and non-dominant sides may partially be counteracted by physical
activity [59]. In adult Duchenne patients, Bartels et al. reported a significant but relatively
small difference in MFM D3 upper limb score between sides [61]. In our study, patients gener-
ally performed better with their dominant side but this was not statistically significant. This
lack of statistically significant difference was likely due to the small size of the population and
to the fact that the majority of the patients presented with an advanced stage of the disease.
ActiMyo1 data from both hands were pooled for the analyses.

Reliability was difficult to establish when quantifying the different parameters of movement
as measured by ActiMyo1, since patients may change motor strategy from one trial to another.
The reliability of kOk was comparable to each of the scores of the Minnesota test and to Movi-
plate. In other tasks, additional non-efficient movements of patients such as trying to catch a
block in the BBT or hesitating during PC typing had a big impact on the reliability in this lim-
ited set of experiences.

The ratio of the vertical component of the acceleration on the whole acceleration norm (vA)
and the elevation rate (dθ) highlight matching lifting and lowering movements of the wrist and
forearm in the vertical direction. The mean elevation rate (dθ) covers a clinically significant
outcome, namely the ability of the patient to lift the arm in the vertical axis, which is crucial for

Table 3. Effect of dominance on functional task results.

Dominant side Non-dominant side Side effect

N Mean SD N Mean SD p-value

MyoGrip (kg) 7 4.86 4.79 7 4.20 3.82 0.176

MyoPinch (kg) 7 1.55 1.20 7 1.34 0.88 0.271

MoviPlate (score) 7 52.71 23.70 7 51.43 19.66 0.551

BBT (score) 4 46.25 16.66 4 44.50 17.64 0.109

Minnesota (score) 6 45.50 23.85 7 43.43 22.63 0.340

PC Typing (score/min) 4 98.55 53.64 NA NA NA NA

Writing (score/min) 6 82.53 52.06 NA NA NA NA

N—number of patients accomplishing the test; BBT—Box and Block test.

doi:10.1371/journal.pone.0156696.t003

Table 4. Reliability of tasks between test and retest of ActiMyo1 inertial variables and task scores.

All tasks
together

Moviplate BBT Minnesota PC typing Writing

N ICC N ICC N ICC N ICC N ICC N ICC

kΩk 99 0.950 36 0.958 18 0.700 31 0.958 9 0.147 5 0.482

P 99 0.841 36 0.816 18 0.679 31 0.860 9 0.829 5 0.648

vA 99 0.818 36 0.794 18 0.786 31 0.857 9 0.889 5 NM

dθ 99 0.925 36 0.933 18 0.783 31 0.884 9 0.446 5 0.607

Scores - - 36 0.984 18 0.970 31 0.970 9 0.954 5 0.987

BBT—Box and Block test; N—number of paired trials between visits for both dominant and non-dominant hands of all the patients; NM—not measurable.

doi:10.1371/journal.pone.0156696.t004
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self-feeding, drinking, teeth brushing, scratching, and other tasks. Antigravity movements are a
key component of several validated scales and scoring, such as Manual Muscle Testing [62],
Brooke score [60,63], Motor Function Measure [41], Hammersmith scale [64], Performance of
Upper Limb [43], CHOP INTEND [65], ABILHAND [66] and quality of life INQol question-
naires [67]. dθ reflected the lifting movement involved in rotating the arm, whereas vA
reflected translational movements in the vertical direction. Since most weak patients use their
elbows as lever arms, dθ probably better reflects the dynamics of movement than vA.

The rotation rate (kOk) and the model-based power P were directly linked to rotations of
the wrist and forearm, respectively (BBT, writing test, and the Minnesota test). P was the scalar

Fig 3. Reliability between test and retest for all the tasks evaluated for each ActiMyo1 variable. �MoviPlate;⬜ BBT;4Minnesota test; *Writing;×
PC typing.

doi:10.1371/journal.pone.0156696.g003
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product of the motor torque and angular velocity. The torque was anti-gravitational in our case
and was applied to lift the forearm. The torque was higher when the lifting movement was near
the horizontal plane and may be particularly relevant for weak patients.

In summary, the ActiMyo1 variables were well representative of movements performed
during the tasks and well correlated well with the scores obtained using other previously vali-
dated tests, which makes these variables potential outcome measures in neuromuscular
patients. The norm of the angular velocity (kOk) and mean of the elevation rate (dθ) are the
most promising variables since they presented good reliability and very good correlation with
the scores obtained on other tasks, with the exception of PC typing. Detection of the mean ele-
vation rate using the magneto-inertial device allows a precise and objective quantification of
muscular activity during their daily life. The variable P is expected to be sensitive to small
movements as it is the product of the angular velocity. The validity of these variables are now

Table 5. Correlation between the ActiMyo1 variables and the functional scores.

MoviPlate§ BBT Minnesota
Patients:
1-2-4-6

Minnesota
Patients:
3-5-7

PC Typing Writing

N ρ N ρ N ρ N ρ N ρ N ρ

kΩk 66 0.671* 42 0.830* 42 0.765* 28 0.573* 21 -0.201 11 0.665*

P 66 0.858* 42 0.820* 42 0.719* 28 0.579* 21 0.157 11 0.656*

vA 66 0.677* 42 -0.843* 42 -0.082 28 0.076 21 -0.678* 11 -0.114

dθ 66 0.850* 42 0.823* 42 0.679* 28 0.616* 21 0.298* 11 0.715

BBT—Box and Block test; N—number of trials for both dominant and non-dominant hands of all the

patients at both visits.

§ Without patient 1

* Significance level p < 0.05.

doi:10.1371/journal.pone.0156696.t005

Fig 4. Correlation between the ActiMyo1 variables and the functional tests’ scores. ◆ Patient 1; ■ Patient 2; ▲ Patient 3; × Patient 4;✱ Patient 5;
● Patient 6; + Patient 7. Correlations between kΩk and scores for the tasks (A)Moviplate, (B) Box and Block test, and (C)Minnesota. Correlation between
dθ and scores for the tasks (D)Moviplate, (E) Box and Block test, and (F)Minnesota.

doi:10.1371/journal.pone.0156696.g004
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being assessed in a home environment. Various factors other than motor weakness, like the paren-
tal stimulation or socioeconomic environment, could interfere with a patient’s activity [68,69].
However, we expect that for non-ambulant DMD patients, weakness is the main determinant of
upper limb activity and that long term recording possible with ActiMyo1 will help to low-pass fil-
ter daily variability and thus will provide a robust estimation of the trend of functional changes.

Further validation is required to determine the feasibility of the use of ActiMyo1 in a home
environment. Possible confounding issues will be the feasibility of automatically detecting
wheelchair and caregiver-aided movement. This work is ongoing in several patients with vari-
ous neuromuscular disorders. Additional steps necessary for outcome measure qualification
include the demonstration of reliability on day-to-day and week-to-week bases, the evaluation
of the sensitivity to change and the correlation with clinically meaningful milestones in a multi-
centric setting. ActiMyo1 is now and integral part of several European and American natural
history studies (ClinicalTrials.gov Identifier NCT01385917 for DMD and NCT 02057705D for
Myotubular Myopathy) and is also being used in a therapeutic trial in DMD (ClinicalTrials.gov
Identifier NCT01826474).

Perspectives
The Pre-Acti protocol was a feasibility study of ActiMyo1 in recording movements of non-
ambulant patients. It was critical that the device detected very small movements because the
weakest movements allow a certain degree of autonomy for patients with neuromuscular dis-
eases such as DMD. Much work was invested into improving the system as software and hard-
ware changes were made during the study. ActiMyo1 has evolved into a redesigned and
upgraded final version (S1 Fig) that is shipped in a watertight durable case. It now consists of
two watch-like devices and a docking station with data stored in an internal memory inside
each watch-like device and transferred in the evening to the docking station through electrical
contacts. Data collected in the docking station are then stored on a USB drive that can hold up
to three months of data. Charging of the sensors battery is performed when the watch-like
devices are put on the docking station each night. The main advantage of the newer version is
the reduction of the size and the weight of the device. This size reduction was possible because
less battery life is required to operate them without the Bluetooth connection, which was the
most power consuming component of the prototype version. The downside of ActiMyo1

could be its production price which is partly due to the high quality sensors it contains and the
semi-automatic data analysis that is currently performed. Nevertheless, the first devices manu-
factured in small series will allow us to gather longitudinal home data in non-ambulant patients
with neuromuscular diseases in order to assess efficiency and consistency of this magneto-iner-
tial-based movement monitor in long-term recordings. New technical requirements will also
be considered in the development of ActiMyo1 for other applications such as use by ambulant
patients. Further use of ActiMyo1 will lead to a qualitative and quantitative assessment of
usability of this innovative device in various populations.
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