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Topological phases of a dimerized Fermi–Hubbard model
for semiconductor nano-lattices
Nguyen H. Le1✉, Andrew J. Fisher2, Neil J. Curson 3 and Eran Ginossar1

Motivated by recent advances in fabricating artificial lattices in semiconductors and their promise for quantum simulation of
topological materials, we study the one-dimensional dimerized Fermi–Hubbard model. We show how the topological phases at
half-filling can be characterized by a reduced Zak phase defined based on the reduced density matrix of each spin subsystem.
Signatures of bulk–boundary correspondence are observed in the triplon excitation of the bulk and the edge states of uncoupled
spins at the boundaries. At quarter-filling, we show that owing to the presence of the Hubbard interaction the system can undergo
a transition to the topological ground state of the non-interacting Su–Schrieffer–Heeger model with the application of a moderate-
strength external magnetic field. We propose a robust experimental realization with a chain of dopant atoms in silicon or gate-
defined quantum dots in GaAs where the transition can be probed by measuring the tunneling current through the many-body
state of the chain.
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INTRODUCTION
Topological phases of matter are among the most exciting
developments of modern condensed matter physics,1–4 owing
to their rich phenomenology and wide-ranging potential
applications from metrology5 to quantum computation.6 Many
experimental platforms have been used to realize these exotic
phases of matter such as cold atoms,7 photonic lattices,8,9 and
engineered solid-state systems including graphene nanorib-
bons,10,11 arrays of carbon monoxide molecules,12,13 and
chlorine monolayers14 on a copper surface. The band theory
of topological insulators (TIs)15 based on the independent-
electron approximation is well developed and has had many
successes. However, in many of the possible experimental
platforms for quantum simulation of TIs using electrons in solids,
such as dopant atoms and gate-defined quantum dots in
semiconductors,16,17 the electron–electron interaction is much
stronger than the hopping amplitude of the electrons18,19 and
therefore the independent-electron approximation is poor.
Topological phases of strongly correlated models form a topic
of ongoing active research with intense theoretical20 and
experimental effort, including recent implementations in cold
atoms21 and two-dimensional materials.22 There have been
various proposals for the equivalent of the single-particle Berry
phase (or Zak phase in one dimension) for the characterization
of interacting topological phases, from the magnetic-flux-
induced Berry phase23,24 to Green’s functions25 and entangle-
ment.26–28

Here we discuss one of the simplest one-dimensional (1D) models
of strongly correlated TIs, the Su–Schrieffer–Heeger–Hubbard (SSHH)
model, whose topological properties in various contexts have been
investigated using the entanglement entropy,26,27 the entanglement
spectrum,28 correlation functions,29 quench dynamics,30 and Berry
phase.31 The SSHH model describes electrons hopping on a 1D
superlattice with staggered hopping amplitudes but uniform local
interaction. In this model, there exists a charge excitation gap at half-

filling due to the on-site interaction (the Mott gap) and another gap
at quarter-filling due to dimerization. This opens the possibility of
realizing these fillings in experiments, for example by measuring
transport while varying the chemical potential and looking for
vanishing conductance when the chemical potential lies in the
gaps.18 For this reason, we focus on these two fillings.
We introduce the concept of the reduced many-body Zak phase

based on the reduced density matrix of a subsystem and show
that this phase, rather than the normal many-body Zak phase of
the full system, should be used for classifying the topological
phases at half-filling. This phase jumps from 0 to π as the hopping
amplitude difference between the even and odd sites changes
sign. At half-filling, the usual bulk–edge correspondence is
manifested in the topological phase transition: the closing and
reopening of the eigenenergy gap at the transition point
accompanies the appearance of uncorrelated edge states. This is
evident in the triplon-excitation spectrum of the dimer chain. In
contrast, at quarter-filling the edges remain correlated to the bulk
for both signs of the hopping amplitude difference, because of the
presence of a long-range antiferromagnetic (AFM) order. There is
also no gap in the eigenenergy spectrum due to the presence of
gapless spin excitations. So the quarter-filled state does not show
the characteristics of a TI. However, we show that applying an
external magnetic field leads to a transition to the topological
ground state of the non-interacting Su–Schrieffer–Heeger (SSH)
model. Importantly, the strong on-site interaction significantly
reduces the critical field strength required for the transition. Thus
our analysis paves the way for the observation of electronic 1D
topological insulator states in nanofabricated semiconductor
devices. We propose a device architecture for observing this
transition in a 1D chain of dopant atoms or quantum dots. The
transition can be probed by measuring the tunneling current
through the edges of the chain, which we estimate using a many-
body formulation for the conductance of coupled quantum
dots.32–34
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RESULTS
The SSHH model
The SSHH Hamiltonian is

H ¼ H0 þ V ; (1)

where

H0 ¼
X
j;σ¼"#

� 1þ ð�1ÞjΔt
h i

cyjþ1;σcj;σ þ h:c:;

and

V ¼ U
X
j

nj;"nj;#:

H0 is the well-known non-interacting SSH model35 of a particle
hopping along a chain with staggered hopping amplitudes, t±=
1 ± Δt, as shown in Fig. 1a, and V is the on-site interaction. Here cyj;σ
denotes the creation operator for the particle at site j and spin σ.
All energies in this paper are scaled by the mean value of the two
hopping amplitudes.
We first describe briefly the topological phases of the SSH

model given by H0.
36,37 For 1D periodic systems of independent

particles, the Berry phase picked up during an adiabatic process
when the particle moves across the Bloch states in the Brillouin
zone, first discussed by Zak,38 is

ϕ ¼ i
Z π=d

�π=d
dk ukh j∂k ukj i; (2)

where uk is the periodic part of the Bloch wavefunction, k the
crystal momentum, and d the length of the unit cell.
In a chain with open boundary conditions (OBC) the single-

particle eigenstates of this Hamiltonian consist of two distinct
types: zero-energy edge states that are localized at the left and
right edges, and extended bulk states that avoid the edges. The
energy spectrum of the bulk states under periodic boundary
conditions (PBC) splits into two bands, E± ðkÞ ¼ ± ½2ð1þ Δt2Þþ
2ð1� Δt2Þ cosðkdÞ�1=2. The bulk state wavefunction in PBC has the

Bloch form

ψk ¼
X
j

eijkd=2ukðjÞ ¼
X
j

eijkd=2eiθjðkÞcyj +j i; (3)

where +j i is the vacuum and the phase shift θj(k)= 0 for the odd
sub-lattice and jE± ðkÞj exp½iθjðkÞ� ¼ 2 cosðkd=2Þ þ 2iΔt sinðkd=2Þ
for the even sub-lattice. For the SSH model, the Zak phase
is quantized, more specifically it can only be 0 or π depending on
the sign of Δt.7,36,37 There is a topological phase transition from
the trivial phase (Δt < 0), where there is no edge state, to the non-
trivial phase (Δt > 0) where the edge states appear. The energy
levels of the bulk states form two bands separated by a gap in
both phases, and the energy levels of the edge states appear in
the middle of the band gap in the non-trivial phase (see Fig. 1b).
The trivial and the non-trivial phases are characterized by the Zak
phase of 0 and π, respectively.36

Charge excitation gap
With interaction the single-particle picture is no longer valid, but
insight into the topological phases can be gained from looking at
the addition energy spectrum, also known as the charge excitation
spectrum, Ead(n)= E0(n)− E0(n− 1) where E0(n) is the many-body
ground energy for filling n. We use exact diagonalization based on
the Lanczos algorithm for an open chain with N= 12 sites to
compute the addition energy spectrum and show it in Fig. 2. In
this paper, we set N = 12 in all the numerical computations for the
correlated case. Features that survive in the thermodynamic limit
are either obvious or stated explicitly. At U= 0, the addition
energy spectrum reduces to the single particle spectrum of the
SSH model with the zero-energy edge state in the middle of the
gap at half-filling. At large interaction, the Mott gap forms at half-
filling separating the lower and upper Hubbard bands as expected
of the Hubbard model. The spectrum has reflection symmetry
through the middle point of the Mott gap due to the particle–hole
symmetry. Interestingly, there are further gaps at one-quarter- and
three-quarter-fillings, and in the non-trivial phase the edge states
of the charge excitation cross to lie in these gaps (see Fig. 2a, d). A
more detailed description of these edge states is given below in
the discussion of the quarter-filled system. The formation of the
quarter-filling gap is due to the combination of the on-site
repulsion U and the hopping amplitude difference Δt and has
been studied previously.39 Our numerical analysis shows that this
gap is approximately Δt in the large-U limit.
The charge gap and the mid-gap edge state in the addition

energy spectrum at quarter-filling can be explained analytically in
the full dimerization limit where t−= 0 and t+ > 0. The ground
state energy level of each Hubbard dimer (coupled by t+) when
there is a single particle is the bonding state E1=−t+, while the
ground state energy level of the same dimer with two particles is

E2 ¼ ð1=2Þ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 16t2þ

q� �
: (4)

The energy of a particle at the isolated edges is zero. As the
particles are added into the chain, they first fill the dimer bonding
states as they are lower in energy. When each dimer is filled with
one particle, we reach the point of quarter-filling. Now if another
particle is added to a dimer, the energy cost is ΔE= E2− E1, while
if a particle is added to the edges the energy cost is zero. Hence, if
ΔE > 0 the edges are filled first, otherwise the dimers get filled
with two particles until the point of half-filling and only then the
edges are filled. Thus the transition of the addition energy level of
the edge states from half-filling to quarter-filling happens at the
critical interaction Uc such that ΔE= 0, or Uc= 3t+. It is obvious
from the above discussion that the addition energy gap at
quarter-filling is ΔE ≈ t+ in the strongly correlated limit where U≫
t+. We note that in the general case where neither hopping
amplitude is zero the gaps at half-filling and quarter-filling remain

Fig. 1 Energy bands and edge states of the SSH model. a The
non-interacting SSH model of particles hopping along a 1D chain of
potential wells with alternating hopping amplitudes. b Particle
distribution of a typical bulk state (diamond) and an edge state
(circle) for Δt= 0.5. Inset: Eigenenergies calculated for a chain with
N= 20 sites; the bulk energy gap closes at Δt= 0 and opens again
with the appearance of the mid-gap edge states.
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in the thermodynamic limit.39 We provide further evidence by a
finite-size scaling analysis of the gap in Supplementary Material.

The reduced many-body Zak phase
For correlated systems one can define a many-body Zak phase,
first introduced as a measure of macroscopic polarization,40–42

from the ground state of H satisfying a twisted boundary
condition

Ψκðx1; :::; xj þ L; :::; xNÞ ¼ eiκLΨκðx1; :::; xj ; :::; xNÞ; (5)

where L is the total length of the chain. Writing Ψκ ¼ e
iκ
Pn

j¼1
xjΦκ

with n the number of particles, then Φκ is the ground state of

HðκÞ ¼ e
�iκ
Pn

j¼1
xj He

iκ
Pn

j¼1
xj that satisfies the periodic boundary

condition in all coordinates xj. It can be seen as the many-body
analog of uk in the non-interacting case. H(κ) is the Hamiltonian of
a ring threaded with the magnetic flux κL,43 and can be obtained
from H by the simple replacement tj ! tje�iκðxjþ1�xjÞ . The many-
body Zak phase is then defined as the adiabatic phase picked up
by the many-body ground state when this magnetic flux is
changed by one flux quantum

ϕ ¼ i
Z π=L

�π=L
dκ Φκh j∂κ Φκj i: (6)

From Eq. (5), we see that Ψ−π∕L=Ψπ∕L since they satisfy the same
anti-periodic boundary condition, hence the function Φκ at the
initial and the end points are related by Φπ∕L=WΦ−π∕L where

W ¼ e
�ið2π=LÞ

Pn

j¼1
xj . For numerical computation, κ is discretized in

a grid of M points κl from −π∕L to π∕L, and it can be shown that ϕ
is simply the phase of a complex number23

ϕ ¼ argðZÞ ¼ arg
YM�1

l¼1

Φκl jΦκlþ1

� i
 !

: (7)

This phase can be rewritten in terms of the density matrix ρðκÞ ¼
Φκj i Φκh j as

ϕ ¼ arg tr W
YM�1

l¼1

ρðκlÞ
 !" #

: (8)

The SSHH Hamiltonian H has inversion symmetry, thus changing xj
to −xj maps H(κ) to H(−κ). This implies that HðκÞ ¼ UHð�κÞUy

where U is the unitary operator of inversion. As a result E(κ)= E
(−κ), and Φκ ¼ eiακUΦ�κ , where ακ is an arbitrary phase. It follows
that ρκ ¼ Uρ�κUy, and with a grid centered around κ= 0 such
that κl=−κM−l, we have Z� ¼ tr

Q1
l¼M�1 ρðκlÞWy� �

¼ tr
QM�1

l¼1 ρðκlÞUyWyU
� 	

. As the inversion operation transforms

xj to −xj, we have UyWyU ¼ W and thus Z*= Z, or Z is real,
meaning the many-body Zak phase must be either 0 or π
depending on whether Z is positive or negative.
The total particle number n is a good quantum number for the

eigenstates of the SSHH Hamiltonian. We first study the half-filled
spinful case (n= N). The ground state Φ(κ) of H(κ) is computed
with PBC and the Zak phase is obtained using the discrete formula
of Eq. (7). We carry out the computation for −0.5 ≤ Δt ≤ 0.5 to see
whether there is a topological phase change when Δt changes
sign as in the non-interacting SSH model and for 0 ≤ U ≤ 10 to
study the effect of interaction. The phase is found to be 0 for all
values of U and Δt, so it does not reveal any phase transition for
either weak or strong interaction. This result is expected at zero
interaction, as we then have two copies of the SSH model, one
with spin up and the other with spin down. For each copy the Zak
phase changes from 0 to π, and it is straightforward that the Zak
phase of the joint state (given by a Slater determinant) is the sum
of the individual phases, hence its values are 0 and 2π, which are
equal since the phase is defined only modulo 2π. Our result shows
that adding interaction does not alter the Zak phase.
For revealing the topological phase transition, we introduce the

reduced Zak phase of a subsystem within a larger correlated
system. It can be obtained from the reduced density matrix of that
subsystem. The definition is a generalization of the discrete
formula given in Eq. (8), with the density matrix of the total system
replaced by the reduced density matrix of the subsystem, which
we denote by A:

ϕA ¼ argðZAÞ ¼ arg tr WA

YM�1

l¼1

ρAðκlÞ
 !" #

; (9)

where ρA is the reduced density matrix obtained by the partial
trace over the complement, ρAðκÞ ¼ trA ρκð Þ, and WA ¼
e�ið2π=LÞ

P
j2A xj . For the specific case of the half-filled SSHH model,

we look at the reduced Zak phases of the spin-up and spin-down
subsystem. By symmetry, the two phases are equal. We find that
both change from 0 to π when Δt changes sign for both weak and
strong interaction, i.e., for all interaction strength in the interval
[0, 10].

Bulk-edge correspondence and triplon excitations
One of the most interesting aspect of topological band insulators
is bulk–edge correspondence: The change of the Zak phase, which
is a property of the eigenstates of the bulk, is accompanied by the

Fig. 2 Addition energy spectrum and edge population of the SSHH model. The addition energy spectrum of the
Su–Schrieffer–Heeger–Hubbard model as a function of interaction strengths in the a non-trivial phase and b trivial phase and c as a
function of hopping amplitude difference in the strongly correlated limit. To keep track of the edge states, the energy levels are colored
according to the population at the two ends of the chain (nedge); changes of color thus correspond to occupation of edge states. At strong
interaction, there are three gaps formed, at half-filling and at quarter-/three-quarter-filling. The edge population shows that in the non-trivial
phase the mid-gap edge states shift from half-filling at U= 0 to quarter-filling and three-quarter-fillings at large U [marked by the horizontal
arrow in a]. The edge population as a function of filling in the strongly correlated limit is shown in d: In the trivial phase, the edge population
increases gradually, while in the non-trivial phase the edge population increases sharply at quarter- and three-quarter-fillings, indicating the
existence of an edge state for the charge excitation at these fillings.
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appearance of localized edge states and signaled by the closing
and reopening of the bulk band gap in the excitation energy
spectrum, as demonstrated for the non-interacting SSH model in
Fig. 1. To investigate bulk–edge correspondence in the strongly
correlated case at half-filling, we compute the excitation energy
spectrum of an open chain for U= 10 in Fig. 3. In our calculations,
we classify states according to the spin projection,
Sz ¼ ð1=2ÞPjðnj;" � nj;#Þ, which commutes with the SSHH Hamil-
tonian. Owing to the symmetry between spin up and spin down,
the states with Sz and −Sz have the same energy; the total spin S is
also a good quantum number. In the trivial phase (Δt < 0), the
ground state is non-degenerate and has Sz= 0 and S= 0. The
energy gap closes at Δt= 0, at which point the lowest triplet
excitation (S= 1, comprising the second lowest energy level with
Sz= 0 and the two lowest energy levels with Sz= ±1) come down
and become degenerate ground states in the non-trivial phase (Δt
> 0). Thus the ground-state degeneracy χ changes to four across
the topological phase transition.
When U≫ t±, the half-filled SSHH model is well approximated

by the Heisenberg model of localized spin-1/2 particles with
alternating exchange interaction J± ¼ 4t2± =U.

44 For Δt far from
zero, we find that, in the ground state, each dimer consisting of
two sites coupled by the stronger exchange interaction, J>, is in a
singlet state and is uncorrelated from the other dimers. The
excitation gap between the adjacent bands of states in Fig. 3a is
due to the excitation to the triplet states of these dimers. This
triplon excitation gap is hence approximately J>, and the nth
excited band has n triplons.
In the non-trivial phase (Δt > 0), the two edge spins at the two

ends of the chain are decoupled from the dimers, and they can be
in either a singlet state S0j i ¼ "#j i � #"j ið Þ= ffiffiffi

2
p

or one of the
three triplet states T0j i ¼ "#j i þ #"j ið Þ= ffiffiffi

2
p

, Tþj i ¼ ""j i,

T�j i ¼ ##j i, all having zero energy. This explains the fourfold
degeneracy of the ground state in the non-trivial phase. More
specifically, at Δ= 0.5 and U= 10, our numerical calculation shows
that the reduced density matrices of the two edges in the four
ground states have around 99% overlap with the singlet and the
triplet states, that is, ϕj

� 

ρedgesj ϕj



 i � 0:99 for j= 1, …, 4 where

ϕj



 i are S0j i; T0j i, and T±j i.
The reduced density matrix of each strongly coupled dimer in

the bulk at both Δt= ±0.5 satisfies S0h jρdimer S0j i � 0:92. Despite
the significant nonvanishing value of the coupling J<, the dimers
are almost totally uncorrelated with each other and the edges.
This is due to monogamy of entanglement: Since each spin in a
dimer is maximally entangled with its partner in the singlet state,
it must be unentangled from any other spin.45

The decoupled dimer picture is further confirmed by the spin
correlation Sz;jSz;k

� i in the ground state with Sz= 0, as shown in
Fig. 3d. In the non-trivial phase, the two spins in the dimer are
perfectly anti-correlated with each other but uncorrelated with
other spins, and the edge spins at the two ends are free. The spin
correlation in the trivial phase is the same but without the two
free ends (see Fig. 3f), since there is no weakly coupled edges in
this case. A long-range AFM order develops near Δt= 0 as
expected for a 1D Hubbard model46 (see Fig. 3e).
In the non-interacting regime, the edge states are identified by

the localization of a single-particle state at the edges, while in the
strongly correlated regime we have an effective spin model and
the edge states are identified as uncorrelated spins. In order to
identify the edge states at arbitrary interaction, we calculate the
von Neumann entropy of the entanglement47 between the two
ends of the chain and the rest in Fig. 3c. The formation of the edge
states is indicated by the sharp drop in entanglement since these
states are uncorrelated from the rest. Figure 3c shows a clear

Fig. 3 Properties of a half-filled SSHH model with OBC. a Eigenenergy spectrum in the strongly correlated regime (U= 10), colored
according to the spin ∣Sz∣ of the eigenstates (states with ±Sz have the same energy). For each value of Sz up to 60 lowest energies are shown.
The ground-state degeneracy χ changes from one to four at the topological phase transition due to the four degenerate edge states.
b Eigenenergy spectrum in the non-trivial phase (Δt= 0.5) as a function of the on-site interaction. The ground-state degeneracy reduces from
χ= 6 in the non-interacting regime to χ= 4 in the interacting regime due to the raising in energy of two ionic states where the edge is double
occupied (see text). c The entanglement entropy between the first subsystem consisting of the two ends and the second one consisting of the
remaining sites in the middle of the chain. d Spin correlation Sz;jSz;k

� i in the non-trivial phase. The abscissa and ordinate are the sites j and k.
The bulk dimers have perfect AFM correlation but the edges are uncorrelated with the rest; e same as d for Δt= 0 showing long-range AFM
correlation; and f same as e for Δt=−0.5.
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transition line where the edge states are formed, and the
transition to the edge phase is more abrupt at large U. At U= 0,
the transition point is not at Δt= 0 as expected for the SSH model
owing to finite-size effects; we expect the transition point would
become closer to Δt= 0 with increasing system size (see
Supplementary Material).
Figure 3b shows the eigenenergy spectrum in the non-trivial

phase as the on-site interaction changes from weak to strong. At
U= 0, the ground state degeneracy is χ= 6 since in addition to
the one singlet state and three triplet states the edges have two
more degenerate ionic states where two electrons occupy the
same edge, i.e. "#;+j i and +; "#j i. For U > 0, the energy of
these ionic states is lifted owing to the on-site repulsion, thus
reducing the ground-state degeneracy to χ= 4.

Persistent long-range AFM order at quarter-filling
Unlike the half-filled case, the quarter-filled system does not
exhibit conventional bulk–edge correspondence; this is clear from
the lack of a gap in the eigenenergy spectrum (see Fig 4a). Recall
that while there exists a gap in the charge excitation spectrum at
quarter-filling discussed earlier, the absence of an eigenenergy
gap is due to gapless spin excitations.44 The picture of decoupled
dimers each in a singlet state no longer applies: deep in both
phases (Δt far from 0) each dimer is occupied by roughly a single
electron, and in the non-trivial phase the two ends are shared by
one electron (see Fig. 4b for illustration). In contrast to the isolated
edge spins at half-filling, we find that the edges are strongly
correlated with the dimers in the bulk through the spin degree of
freedom, and there is long-range AFM order in both trivial and
non-trivial phases. To show this, we again plot the spin correlation
Sz;jSz;k
� i, however, now with a different definition for the “sites” j
and k: in the non-trivial phase we denote the first value j, k= 1 and
the last value j, k= N∕2+ 1, for the left and right edges, and each
value in between, j, k= 2, . . . , N∕2, is assigned to a dimer in the
bulk. A similar definition of effective sites is used in the trivial

phase but without the edges. The spin correlation between the
edges and the bulk dimers in the non-trivial phase is shown in
Fig. 4c; long-range AFM order is visible. The spin correlation in the
trivial phase is exactly the same but with the two edges removed
as evident in Fig. 4e. Long-range AFM order persists in both
phases and also at the point of the phase transition (see Fig. 4d).
This persistent long-range AFM order is the reason why the
entanglement between the two edges and the bulk shows no
clear drop when Δt changes sign (see Fig. 5b and the discussion
below).

DISCUSSION
Magnetic-field-induced transition to SSH ground state
The absence of an eigenenergy gap and uncorrelated edge states
suggests that the SSHH model at quarter-filling is not a TI.
However, the ground state can undergo a transition to the
topological ground state of the non-interacting SSH model if a
magnetic field is applied, resulting in the total Hamiltonian H1 ¼
H � ðEB=2Þ

P
jðnj;" � nj;#Þ where EB= gμBB and μB is the Bohr

magneton and g the g-factor of electrons in the material. At a
critical magnetic field, the ground state becomes the maximally
ferromagnetic state with all of the electron spins aligned along the
field axis (see Fig. 5a), and an energy gap is opened. Since there is
no on-site interaction between particles with the same spin, this
ground state must be the ground state of the non-interacting SSH
model with N/2 electrons, and due to Pauli exclusion principle the
highest energetic electron must occupy the mid-gap edge state
shown in Fig. 1b. We find that the ground-state degeneracy at
field strength larger than the critical value is χ= 2, agreeing with
the fact that there are two degenerate edge states (left and right)
in the SSH model. The transition to the SSH ground state is further
confirmed in the entanglement entropy between the edges and
the bulk in Fig. 5b. Without the field, the entanglement does not
drop as Δt changes sign since the edges are correlated with the

Fig. 4 Properties of a quarter-filled SSHH model with OBC. a Eigenenergy spectrum in the strongly correlated regime (U= 10), colored
according to the spin ∣Sz∣ of the eigenstates. For each value of Sz the 40 lowest energies are shown. b An illustration of the particle occupation
at each site and the long-range AFM correlation between the electron’s spins in the non-trivial phase. Each dimer in the middle of the chain is
occupied by an electron, and the two edges are shared by one electron. c Spin correlation Sz;jSz;k

� i in the non-trivial phase (Δt= 0.5). The
abscissa and ordinate are the “effective sites” j and k defined as illustrated in b: The first and the last value refers to the two edges, while each
value in between refers to each bulk dimer which is occupied by a single electron; d same as c for Δt= 0; and e same as d for Δt=−0.5. The
long-range AFM correlation persists for all values of Δt.

N.H. Le et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2020)    24 



bulk through the persistent long-range AFM order at quarter-
filling. At field strengths beyond the critical value, the entangle-
ment drops sharply for Δt > 0 owing to the formation of the
localized edge states in the non-trivial phase of the SSH model.
The magnetic-field-induced transition enables experimental

realization of the SSH model in systems with local interactions. It
is shown in Fig. 5c and more clearly in Fig. 5d, right panel, that the
critical magnetic field reduces dramatically with increasing on-site
interaction, meaning it is easier to realize the SSH model if the
local interaction is stronger. For reaching the maximally ferro-
magnetic state, the last spin-down particle needs to be pumped to
the next unoccupied single-particle energy level shown in Fig. 1b.
When there is strong on-site interaction, this spin-down particle
interacts strongly with the other particles with opposite spins,
raising the energy, hence it costs less energy to pump this spin-
down particle to a higher energy level, leading to a smaller
required magnetic field.
Typical parameter values for dopant atoms in silicon and

quantum dots in GaAs are t � 1meV, U=t � 10, and assuming a g-
factor of 2 our calculation gives a critical magnetic field of Bc ~ 2 T
deep in the non-trivial phase at Δt=t ¼ 0:5, which is feasible. For
electrons bounded to impurities or a quantum dot in a
semiconductor host, the g-factor can deviate from the free
electron value of 2,48 and the calculated critical field need to be
rescaled. As long as the deviation is not too large, the critical
magnetic field remains in the realistic range. One sees from Fig. 5d
that, without the strong on-site interaction, at U= 0 for example,
the required magnetic field is around ten times larger and
therefore may not be realistically attainable for larger hopping
amplitude. This emphasizes the importance of interaction.
We note that the jump in the critical field as Δt changes sign in

the U= 0 limit (see Fig. 5d, left panel) is due to the formation of
the mid-gap edge state in the non-trivial phase of the SSH model.
In the trivial phase, the last spin-down particle needs to be
pumped from the lowest energy to the highest energy in the
lower bulk band of Fig. 1b, while in the non-trivial phase it needs
to be pumped to the mid-gap edge state, which is higher in
energy; hence, a larger magnetic field is necessary.

Experimental realization with nanofabricated semiconductor
devices
In the last section of the paper, we propose a device architecture
for realizing the transition to the topological phase of the SSH

model described above. With state-of-the-art fabrication technol-
ogy, it is possible to fabricate 1D chains of dopant atoms in silicon
with scanning tunneling microscope (STM)49,50 or gate-defined
quantum dots in GaAs,17 illustrated in Fig. 6a. Two leads, source
and drain, are positioned close to one edge of the chain. Naturally
there are potential barriers between these leads and the chain.
Electrons from the source can tunnel through the barrier into the
many-body state of the chain and then out to the drain. The A side
gates are for tuning the on-site energy, and thus the chemical
potential, by applying a voltage. The B side gates between the
sites are for controlling the hopping amplitude (also commonly
referred to as the “tunnel coupling” in these systems). A similar
device without the source and the drain was fabricated for a chain
of three quantum dots in ref. 17.
We now show how a transport measurement of the proposed

device can probe the transition to the SSH ground state at
quarter-filling and also the transition between the trivial and non-
trivial SSH topological phases. When the tunneling rate Γ of the
electron from the source/drain to the nearest site is much smaller
than the hopping amplitudes between the sites and kT, which is
typical for dopant atoms and quantum dots, we are in the
sequential tunneling regime.18,51 As the chemical potential is
varied, each time it matches an addition energy (shown in Fig. 2),
the electron in the lead has enough energy to tunnel into the
many-body state of the chain and out to the other lead, resulting
in a peak in the tunneling current (see Fig. 6b). Thus the set of
peaks in the conductance spectrum maps the addition energy
spectrum. The conductance in the linear response regime,
applicable when the bias between the source and the drain is
much smaller than the hopping amplitudes and kT, is computed
with the Beenakker’s formula.18,32–34

For the measurement using the source and drain on the left of
Fig. 6a, the conductance peak at filling n is proportional to G0Dn

where G0= e2Γ∕(�hkT) and Dn ¼ j Ψ
ðnÞ
0 jcy1" þ cy1#jΨðn�1Þ

0

D
ij2 where

Ψ
ðnÞ
0 is the many-body ground state of the chain at filling n. Dn can

be interpreted as the charge excitation density at the left edge at
filling n. Figure 6b, top panel, shows the conductance spectrum in
the strongly correlated case (U= 10) for both signs of Δt, revealing
the lower and upper Hubbard bands, separated by the Mott gap,
of the addition energy spectrum in Fig. 2. There is also evidence of
the charge gap at quarter-filling in the lower band and three
quarter-filling in the upper band. For Δt > 0, there is a sharp
conductance peak in the middle of the quarter-filling gap due to

Fig. 5 Properties of a quarter-filled SSHH model with OBC under an external magnetic field. a Eigenenergy spectrum as a function of the
field strength in the non-trivial phase. The levels are colored according to the spin projection Sz of the eigenstates. Only states with positive Sz
are considered as the ones with negative Sz rise in energy in a magnetic field, and for each value of Sz the 10 lowest energies are shown. At the
critical value EðcÞB � 0:1 (indicated by the arrow), the ground state becomes maximally ferromagnetic (with all spins aligned along the field axis)
and reduces to the non-interacting limit of the SSH model. b Entanglement entropy between the edges and the bulk for various field strength
and Δt. Each contour separates regions where the ground state has different Sz (Sz= 3 indicates the maximally ferromagnetic ground state as
there are 6 particles at quarter-filling). At zero field, the entanglement does not drop as Δt changes sign due to the long-range AFM
correlation between the edges and the bulk at quarter-filling discussed above. At high field, the system reduces to the SSH model, and the
entanglement drops for Δt > 0 due to the formation of the localized edge states, signaling the transition to the non-trivial phase. c Critical field
strength at various values of the on-site interaction and hopping amplitude difference. d 1D slices of c for U= 0 (left panel) and Δt= 0.5 (right
panel) showing the sharp decrease in the critical field strength with increasing on-site interaction.

N.H. Le et al.

6

npj Quantum Information (2020)    24 Published in partnership with The University of New South Wales



the edge state of the charge excitation at this filling, which has a
high density of charge excitation at the edges. The lower panel
shows the conductance spectrum at an applied field strength just
above the critical value of the transition to the SSH model. The
mid-gap conductance peaks are much higher since in the SSH
model the edge states are much more localized. Observing a
sharp increase in the conductance peak at quarter-filling, as
shown by our calculation in Fig. 5c, can serve as experimental
evidence of the transition to the SSH model of topological
insulators. And the appearance of this peak as Δt changes sign
from negative to positive can be a probe of the topological phase
transition.
As an example, we consider parameter values that are typical of

phosphorous donors in silicon: Γ= 0.001 meV, t ¼ 4meV, and U=
40meV. The conductance peak at quarter-filling is then of the
order of 10−6 S at 1 K, leading to a tunneling current of 0.1 nA at
0.1 mV bias, which is large enough for detection.
In the above, we discuss a relatively long chain of 12 sites so

that the lower and upper Hubbard bands in the conductance
spectrum appear dense, but finite-size signature of the edge state
can be observed with a much smaller number of sites in
experiments, as low as N= 4. For N= 4, the “bulk” consists of a
single dimer in the non-trivial phase and each half-band either
side of the quarter-filling gap in Fig. 6b has a single peak. It is
better to have N= 6 so that each half-band has two close peaks
and hence can be easily distinguished from the edge-state peak in
the middle of the gap. These system sizes are feasible with current
technology.

Robustness against disorders
Disorders in the on-site energy and hopping amplitude are
unavoidable in real experiments. We investigate the effect of
disorders by adding to the SSHH Hamiltonian the on-site energy
term Hon�site ¼

P
j;σ¼"# ϵjnj;σ , where each ϵj is chosen uniformly at

random from a range [−δE, δE], and we add to each hopping
amplitude, tj= 1+ (−1)jΔt, a variation chosen uniformly at
random from a range [−δt, δt]. To study the robustness of the
magnetic-field-induced topological phases above the critical field

strength, we look at the distribution of the addition energy gap at
quarter filling, the distribution of the critical magnetic field
required, the signature of the edge state in the conductance
spectrum, and the distribution of the many-body Zak phase.
We find that, in the presence of both on-site energy and

hopping amplitude disorder, the topological phases are robust as
long as δt+ δE < ∣Δt∣. This is expected since the gap at quarter-
filling in the fully spin-polarized regime is Δt, and the above
condition makes sure that the gap is not closed by the disorder.
Also, δt < ∣Δt∣ means that the weak–strong order between the odd
and even hopping amplitudes is preserved, that is, the couplings
within the bulk dimers are always stronger than those between
them and with the edges. We show in Fig. 7 the numerical
evidence for robustness when Δt= 0.5 and δt= δE= 0.5Δt. Note
that only in this figure we choose to use absolute unit in meV for a
more direct connection with experiments.
Figure 7a shows the distribution of the addition energy gap at

quarter filling, which is Ead(N∕2+ 1)− Ead(N∕2) in the trivial phase,
for B > Bc, compared with the distribution of an addition energy
separation due to finite-size effect at a lower filling within the
lower Hubbard band, Ead(N∕2)− Ead(N∕2− 1). One sees that it is
highly probable that the gap is much larger than the finite-size
energy separations and thus can be identified in experiments. The
critical magnetic field required for the transition to the non-
interacting SSH limit varies within a realistic range, as demon-
strated in Fig. 7b. The critical magnetic field can be reduced if one
chooses a smaller hopping amplitude, but this will leave less room
for disorder, hence there is a trade-off. A typical conductance
spectrum (for B > Bc) of the disordered system in Fig. 7c shows
clearly the high-rising edge-state peak in the non-trivial phase in
the middle of the split Hubbard bands of the trivial phase, which
can be used for identifying the topological phase transition. We
see similar clear signatures in all the 20 random instances we
generated for the conductance spectrum. The many-body Zak
phase in the non-trivial phase for B > Bc also deviates very little
from the ideal value of π.
Similar robustness behavior is observed for the cases of pure

on-site energy disorder when δE < ∣Δt∣ and pure hopping
amplitude disorder when δt < ∣Δt∣. The signatures of the

Fig. 6 Experimental proposal. a A device architecture for realizing and probing the topological phase transition of the SSH model. A chain of
STM-fabricated dopant atoms, or gate defined quantum dots, is positioned in the center of a collection of electrodes and gates. The source
and the drain leads are used for measuring the current of the electrons tunneling from the source, through the many-body state of the chain,
to the drain. Since the source and the drain are close to the edges, the conductance is proportional to the charge excitation density at the
edge of the many-body state (see text). The A side gates are used for tuning the on-site energy, and thus the chemical potential. The B side
gates between the sites are used to control the hopping amplitudes. b The conductance spectrum at kT= 0.02 as a function of the chemical
potential for Δt= 0.5 (solid red) and Δt=−0.5 (dotted blue) at zero field (top panel) and at a field strength just above the critical value
(bottom panel). The spectrum for both values of Δt shows the lower Hubbard band (LHB) and upper Hubbard band (UHB) separated by the
Mott gap, and each band is further separated by the charge excitation gap at quarter-filling. For Δt > 0, there is a conductance peak in the
middle of this gap due to the tunneling through the edge states of the charge excitation. The formation of the strongly localized edge state in
the SSH model above the critical field strength leads to a sharp increase in the conductance peak at quarter-filling in the bottom panel.
c Density plot of the conductance around quarter-filling, showing the sharp increase of the peak at the critical field strength. All energies are
scaled by the average value of the two hopping amplitudes.
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topological phases are of course erased for very strong disorders,
for example, when δt= δE= 2∣Δt∣ (see Supplementary Material). In
a donor chain in silicon, the hopping amplitude oscillates rapidly
with the donor separation due to the inter-valley interference in
the wavefunction. Even with a positional variation within a silicon
unit cell, the hopping amplitude can drop to close to zero
according to effective mass theory,18 thus it might be challenging
to limit the hopping amplitude disorder to within the range [−∣Δt∣,
∣Δt∣]. This can be mitigated by fabricating inter-donor side gates
depicted as B in Fig. 6 for controlling the hopping amplitude. If
acceptors are used instead, there is no hopping amplitude
oscillation owing to the absence of intervalley interference,52

thus the B side gates are not needed, but the A side gates are still
required for varying the chemical potential.
We also investigate the robustness against disorder of the

topological phases at half-filling in zero magnetic field, as shown
in Fig. 3. Recall that in the large-U limit the properties of the SSHH
model can be understood from an effective Heisenberg model of
local spins interacting with staggered exchanges, J ± ¼ 4t2± =U.
The characteristic spin correlation in Fig. 3d, where each dimer in
the bulk is strongly correlated while the correlations between the
dimers and with the edges are negligible, is preserved if all the
odd exchanges are smaller than all the even exchanges. This
means the disorder in the hopping amplitude, δt, should be
smaller than ∣Δt∣, similar to the quarter-filling case. One interesting
difference from the quarter-filling case is that the on-site energy
disorder can now be much larger. In the picture of the staggered
Heisenberg model, one electron is localized at each site, thus
changing the on-site energy is akin to changing an energy
constant in the Heisenberg Hamiltonian, which does not affect the
spin excitation spectrum showing the triplon bands in Fig. 3a. This
is true as long as the on-site energy disorder is smaller than the
on-site interaction U. For stronger variations, where the energy of
one site is lower than that of another by more than U, double
occupancy will be favored, leading to the breakdown of the
Heisenberg picture. When both hopping amplitude and on-site
energy disorders are present, we find that the topological phases
at half filling are robust when δt < ∣Δt∣ and δt+ δE < U. More
specifically, the gap above the ground state in Fig. 3a and the
characteristic spin correlation of Fig. 3d remain intact, and
the reduced Zak phase deviates very little from its ideal value.
We refer the reader to Supplementary Material for the numerical
results.
Finally, we comment briefly on other possible imperfections.

The SSHH model assumes the electrons are phase coherent
throughout the length of the chain. A finite chain of 6 sites of

dopant atoms in silicon can be made <50 nm, while the phase
coherence length in STM-fabricated samples at low temperature
can be well >100 nm, as inferred from weak-localization experi-
ments,53 and in GaAs-based samples the phase coherence length
can be as large as a μm.54 Spin–orbit coupling is not taken into
account in our model, but it can be neglected if its energy scale is
much smaller than the hopping amplitude. For Si:P, even with the
enhancement due to external fields the energy scale of the
spin–orbit coupling is of the order of 10−6 μeV, as inferred from
the spin-flip rate in the region of ms,55 which is negligible
compared with a hopping amplitude in the meV or sub-meV
range. In GaAs, spin–orbit coupling may lead to unwanted effect
such as spin flip56 or spin-flip tunneling between the dots57;
however, the energy scale of these effects are just as small. In our
calculation of the conductance spectrum, we assume an energy-
independent tunneling rate, Γ, between the system and the leads,
but in reality electrons tunneling to the upper Hubbard bands
have energies much closer to the top of the barrier between the
leads and the system, resulting in a larger tunneling rate. The
conductance peaks in the upper Hubbard band therefore should
be much higher than those in the lower band.
In summary, we have investigated the topological phases of a

1D Fermi–Hubbard model in the strongly correlated regime. We
introduce the concept of the reduced Zak phase, defined based
on the reduced density matrix of a subsystem, and show that the
topological phases at half-filling can be characterized by this
phase. This reduced phase might be useful for studying the
topological phases of a subsystem in a larger interacting system or
an open system interacting with the external environment. From a
study of entanglement and spin correlation, we demonstrate the
bulk–edge correspondence in the half-filled system. At quarter-
filling, the model does not exhibit properties of a topological
insulator, but it can be transformed to the topological ground
state of the non-interacting SSH model by applying a magnetic
field. Finally, we propose a promising experimental realization
with dopant atoms in silicon or quantum dots in GaAs. The
scheme is robust against significant disorder in the hopping
amplitude and on-site energy.

METHODS
We use the Lanczos algorithm to diagonalize the Hamiltonian in the
occupation basis58

1; 0; 1; ¼ ; 1j i" � 0; 1; 0; ¼ ; 1j i#; etc:; (10)

where the first part is for the spin-up particles and the second for the spin-
down ones. A 1 at position j means the jth site is occupied and a 0 means

Fig. 7 Robustness of the magnetic-field-induced topological phases against disorders for a chain with N= 6 sites. The mean values of the
weak and strong hopping amplitudes are 2 and 6meV, and hence ∣Δt∣, which is half of the hopping amplitude difference, is 2 meV. The on-site
interaction is U= 40meV. The maximum variations in the on-site energy and hopping amplitude disorder are both ∣Δt∣∕2 (see text). The
distributions are generated from a sample of 5000 random instances. a Probability distributions of the addition energy gap at quarter filling
for B > Bc (dark green) and a finite-size addition energy separation within the lower Hubbard band (dark blue), showing that the gap is much
larger and distinct from other energy differences arising from finite-size effects. b Probability distribution of the critical magnetic field Bc
assuming a g-factor of 2. c A typical conductance spectrum of the disordered system for B > Bc in the trivial phase (dashed blue) and non-trivial
phase (solid red). The appearance of the high rising edge-state peak in the non-trivial phase is clearly visible. d Probability distribution of the
many-body Zak phase for B > Bc, which shows only a small deviation from the ideal value of π.
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the reverse. These basis states are then numbered according to the
decimal value of its binary string. From this representation, the reduced
density matrix of the spin-up or spin-down subsystem can be computed in
a straightforward manner. For computing the entanglement entropy
between the edges and the rest of the chain, we define the local Hilbert
space of each site as +j i; "j i; #j i; "#j i, that is, a qudit with dimension 4,
the entanglement entropy can then be calculated for the resulting system
of qudits.47

DATA AVAILABILITY
Data of this study are available at https://doi.org/10.5281/zenodo.3346816. The data
underlying this work are available without restriction. The Matlab code used in this
paper can be downloaded at https://github.com/lehnqt/SSHH.git.
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